bpfjit.c revision 1.6 1 1.6 pooka /* $NetBSD: bpfjit.c,v 1.6 2013/12/15 21:18:01 pooka Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.1 alnsn * Copyright (c) 2011-2012 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.6 pooka __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.6 2013/12/15 21:18:01 pooka Exp $");
35 1.2 alnsn #else
36 1.6 pooka __RCSID("$NetBSD: bpfjit.c,v 1.6 2013/12/15 21:18:01 pooka Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.3 rmind #include <stdlib.h>
44 1.1 alnsn #include <assert.h>
45 1.3 rmind #define BPFJIT_ALLOC(sz) malloc(sz)
46 1.3 rmind #define BPFJIT_FREE(p, sz) free(p)
47 1.1 alnsn #define BPFJIT_ASSERT(c) assert(c)
48 1.1 alnsn #else
49 1.3 rmind #include <sys/kmem.h>
50 1.3 rmind #define BPFJIT_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
51 1.3 rmind #define BPFJIT_FREE(p, sz) kmem_free(p, sz)
52 1.1 alnsn #define BPFJIT_ASSERT(c) KASSERT(c)
53 1.1 alnsn #endif
54 1.1 alnsn
55 1.1 alnsn #ifndef _KERNEL
56 1.1 alnsn #include <limits.h>
57 1.3 rmind #include <stdio.h>
58 1.1 alnsn #include <stdbool.h>
59 1.1 alnsn #include <stddef.h>
60 1.1 alnsn #include <stdint.h>
61 1.1 alnsn #else
62 1.1 alnsn #include <sys/atomic.h>
63 1.1 alnsn #include <sys/module.h>
64 1.1 alnsn #endif
65 1.1 alnsn
66 1.5 rmind #define __BPF_PRIVATE
67 1.5 rmind #include <net/bpf.h>
68 1.3 rmind #include <net/bpfjit.h>
69 1.1 alnsn #include <sljitLir.h>
70 1.1 alnsn
71 1.1 alnsn #define BPFJIT_A SLJIT_TEMPORARY_REG1
72 1.1 alnsn #define BPFJIT_X SLJIT_TEMPORARY_EREG1
73 1.1 alnsn #define BPFJIT_TMP1 SLJIT_TEMPORARY_REG2
74 1.1 alnsn #define BPFJIT_TMP2 SLJIT_TEMPORARY_REG3
75 1.1 alnsn #define BPFJIT_BUF SLJIT_SAVED_REG1
76 1.1 alnsn #define BPFJIT_WIRELEN SLJIT_SAVED_REG2
77 1.1 alnsn #define BPFJIT_BUFLEN SLJIT_SAVED_REG3
78 1.1 alnsn #define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
79 1.1 alnsn
80 1.1 alnsn /*
81 1.1 alnsn * Flags for bpfjit_optimization_hints().
82 1.1 alnsn */
83 1.1 alnsn #define BPFJIT_INIT_X 0x10000
84 1.1 alnsn #define BPFJIT_INIT_A 0x20000
85 1.1 alnsn
86 1.1 alnsn /*
87 1.1 alnsn * Node of bj_jumps list.
88 1.1 alnsn */
89 1.3 rmind struct bpfjit_jump {
90 1.1 alnsn struct sljit_jump *bj_jump;
91 1.1 alnsn SLIST_ENTRY(bpfjit_jump) bj_entries;
92 1.1 alnsn uint32_t bj_safe_length;
93 1.1 alnsn };
94 1.1 alnsn
95 1.1 alnsn /*
96 1.1 alnsn * Data for BPF_JMP instruction.
97 1.1 alnsn */
98 1.3 rmind struct bpfjit_jump_data {
99 1.1 alnsn /*
100 1.1 alnsn * These entries make up bj_jumps list:
101 1.1 alnsn * bj_jtf[0] - when coming from jt path,
102 1.1 alnsn * bj_jtf[1] - when coming from jf path.
103 1.1 alnsn */
104 1.1 alnsn struct bpfjit_jump bj_jtf[2];
105 1.1 alnsn };
106 1.1 alnsn
107 1.1 alnsn /*
108 1.1 alnsn * Data for "read from packet" instructions.
109 1.1 alnsn * See also read_pkt_insn() function below.
110 1.1 alnsn */
111 1.3 rmind struct bpfjit_read_pkt_data {
112 1.1 alnsn /*
113 1.1 alnsn * If positive, emit "if (buflen < bj_check_length) return 0".
114 1.1 alnsn * We assume that buflen is never equal to UINT32_MAX (otherwise,
115 1.1 alnsn * we need a special bool variable to emit unconditional "return 0").
116 1.1 alnsn */
117 1.1 alnsn uint32_t bj_check_length;
118 1.1 alnsn };
119 1.1 alnsn
120 1.1 alnsn /*
121 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
122 1.1 alnsn */
123 1.3 rmind struct bpfjit_insn_data {
124 1.1 alnsn /* List of jumps to this insn. */
125 1.1 alnsn SLIST_HEAD(, bpfjit_jump) bj_jumps;
126 1.1 alnsn
127 1.1 alnsn union {
128 1.1 alnsn struct bpfjit_jump_data bj_jdata;
129 1.1 alnsn struct bpfjit_read_pkt_data bj_rdata;
130 1.1 alnsn } bj_aux;
131 1.1 alnsn
132 1.1 alnsn bool bj_unreachable;
133 1.1 alnsn };
134 1.1 alnsn
135 1.1 alnsn #ifdef _KERNEL
136 1.1 alnsn
137 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
138 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
139 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
140 1.1 alnsn
141 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
142 1.1 alnsn
143 1.1 alnsn static int
144 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
145 1.1 alnsn {
146 1.1 alnsn
147 1.1 alnsn switch (cmd) {
148 1.1 alnsn case MODULE_CMD_INIT:
149 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
150 1.1 alnsn membar_producer();
151 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
152 1.1 alnsn membar_producer();
153 1.1 alnsn return 0;
154 1.1 alnsn
155 1.1 alnsn case MODULE_CMD_FINI:
156 1.1 alnsn return EOPNOTSUPP;
157 1.1 alnsn
158 1.1 alnsn default:
159 1.1 alnsn return ENOTTY;
160 1.1 alnsn }
161 1.1 alnsn }
162 1.1 alnsn #endif
163 1.1 alnsn
164 1.1 alnsn static uint32_t
165 1.1 alnsn read_width(struct bpf_insn *pc)
166 1.1 alnsn {
167 1.1 alnsn
168 1.1 alnsn switch (BPF_SIZE(pc->code)) {
169 1.1 alnsn case BPF_W:
170 1.1 alnsn return 4;
171 1.1 alnsn case BPF_H:
172 1.1 alnsn return 2;
173 1.1 alnsn case BPF_B:
174 1.1 alnsn return 1;
175 1.1 alnsn default:
176 1.1 alnsn BPFJIT_ASSERT(false);
177 1.1 alnsn return 0;
178 1.1 alnsn }
179 1.1 alnsn }
180 1.1 alnsn
181 1.1 alnsn /*
182 1.1 alnsn * Get offset of M[k] on the stack.
183 1.1 alnsn */
184 1.2 alnsn static size_t
185 1.2 alnsn mem_local_offset(uint32_t k, unsigned int minm)
186 1.1 alnsn {
187 1.2 alnsn size_t moff = (k - minm) * sizeof(uint32_t);
188 1.1 alnsn
189 1.1 alnsn #ifdef _KERNEL
190 1.1 alnsn /*
191 1.1 alnsn * 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
192 1.1 alnsn */
193 1.1 alnsn return sizeof(uint32_t) + moff;
194 1.1 alnsn #else
195 1.1 alnsn return moff;
196 1.1 alnsn #endif
197 1.1 alnsn }
198 1.1 alnsn
199 1.1 alnsn /*
200 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
201 1.1 alnsn */
202 1.1 alnsn static int
203 1.1 alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
204 1.1 alnsn {
205 1.1 alnsn
206 1.1 alnsn return sljit_emit_op1(compiler,
207 1.1 alnsn SLJIT_MOV_UB,
208 1.1 alnsn BPFJIT_A, 0,
209 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
210 1.1 alnsn }
211 1.1 alnsn
212 1.1 alnsn /*
213 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
214 1.1 alnsn */
215 1.1 alnsn static int
216 1.1 alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
217 1.1 alnsn {
218 1.1 alnsn int status;
219 1.1 alnsn
220 1.1 alnsn /* tmp1 = buf[k]; */
221 1.1 alnsn status = sljit_emit_op1(compiler,
222 1.1 alnsn SLJIT_MOV_UB,
223 1.1 alnsn BPFJIT_TMP1, 0,
224 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
225 1.1 alnsn if (status != SLJIT_SUCCESS)
226 1.1 alnsn return status;
227 1.1 alnsn
228 1.1 alnsn /* A = buf[k+1]; */
229 1.1 alnsn status = sljit_emit_op1(compiler,
230 1.1 alnsn SLJIT_MOV_UB,
231 1.1 alnsn BPFJIT_A, 0,
232 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+1);
233 1.1 alnsn if (status != SLJIT_SUCCESS)
234 1.1 alnsn return status;
235 1.1 alnsn
236 1.1 alnsn /* tmp1 = tmp1 << 8; */
237 1.1 alnsn status = sljit_emit_op2(compiler,
238 1.1 alnsn SLJIT_SHL,
239 1.1 alnsn BPFJIT_TMP1, 0,
240 1.1 alnsn BPFJIT_TMP1, 0,
241 1.1 alnsn SLJIT_IMM, 8);
242 1.1 alnsn if (status != SLJIT_SUCCESS)
243 1.1 alnsn return status;
244 1.1 alnsn
245 1.1 alnsn /* A = A + tmp1; */
246 1.1 alnsn status = sljit_emit_op2(compiler,
247 1.1 alnsn SLJIT_ADD,
248 1.1 alnsn BPFJIT_A, 0,
249 1.1 alnsn BPFJIT_A, 0,
250 1.1 alnsn BPFJIT_TMP1, 0);
251 1.1 alnsn return status;
252 1.1 alnsn }
253 1.1 alnsn
254 1.1 alnsn /*
255 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
256 1.1 alnsn */
257 1.1 alnsn static int
258 1.1 alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
259 1.1 alnsn {
260 1.1 alnsn int status;
261 1.1 alnsn
262 1.1 alnsn /* tmp1 = buf[k]; */
263 1.1 alnsn status = sljit_emit_op1(compiler,
264 1.1 alnsn SLJIT_MOV_UB,
265 1.1 alnsn BPFJIT_TMP1, 0,
266 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
267 1.1 alnsn if (status != SLJIT_SUCCESS)
268 1.1 alnsn return status;
269 1.1 alnsn
270 1.1 alnsn /* tmp2 = buf[k+1]; */
271 1.1 alnsn status = sljit_emit_op1(compiler,
272 1.1 alnsn SLJIT_MOV_UB,
273 1.1 alnsn BPFJIT_TMP2, 0,
274 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+1);
275 1.1 alnsn if (status != SLJIT_SUCCESS)
276 1.1 alnsn return status;
277 1.1 alnsn
278 1.1 alnsn /* A = buf[k+3]; */
279 1.1 alnsn status = sljit_emit_op1(compiler,
280 1.1 alnsn SLJIT_MOV_UB,
281 1.1 alnsn BPFJIT_A, 0,
282 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+3);
283 1.1 alnsn if (status != SLJIT_SUCCESS)
284 1.1 alnsn return status;
285 1.1 alnsn
286 1.1 alnsn /* tmp1 = tmp1 << 24; */
287 1.1 alnsn status = sljit_emit_op2(compiler,
288 1.1 alnsn SLJIT_SHL,
289 1.1 alnsn BPFJIT_TMP1, 0,
290 1.1 alnsn BPFJIT_TMP1, 0,
291 1.1 alnsn SLJIT_IMM, 24);
292 1.1 alnsn if (status != SLJIT_SUCCESS)
293 1.1 alnsn return status;
294 1.1 alnsn
295 1.1 alnsn /* A = A + tmp1; */
296 1.1 alnsn status = sljit_emit_op2(compiler,
297 1.1 alnsn SLJIT_ADD,
298 1.1 alnsn BPFJIT_A, 0,
299 1.1 alnsn BPFJIT_A, 0,
300 1.1 alnsn BPFJIT_TMP1, 0);
301 1.1 alnsn if (status != SLJIT_SUCCESS)
302 1.1 alnsn return status;
303 1.1 alnsn
304 1.1 alnsn /* tmp1 = buf[k+2]; */
305 1.1 alnsn status = sljit_emit_op1(compiler,
306 1.1 alnsn SLJIT_MOV_UB,
307 1.1 alnsn BPFJIT_TMP1, 0,
308 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k+2);
309 1.1 alnsn if (status != SLJIT_SUCCESS)
310 1.1 alnsn return status;
311 1.1 alnsn
312 1.1 alnsn /* tmp2 = tmp2 << 16; */
313 1.1 alnsn status = sljit_emit_op2(compiler,
314 1.1 alnsn SLJIT_SHL,
315 1.1 alnsn BPFJIT_TMP2, 0,
316 1.1 alnsn BPFJIT_TMP2, 0,
317 1.1 alnsn SLJIT_IMM, 16);
318 1.1 alnsn if (status != SLJIT_SUCCESS)
319 1.1 alnsn return status;
320 1.1 alnsn
321 1.1 alnsn /* A = A + tmp2; */
322 1.1 alnsn status = sljit_emit_op2(compiler,
323 1.1 alnsn SLJIT_ADD,
324 1.1 alnsn BPFJIT_A, 0,
325 1.1 alnsn BPFJIT_A, 0,
326 1.1 alnsn BPFJIT_TMP2, 0);
327 1.1 alnsn if (status != SLJIT_SUCCESS)
328 1.1 alnsn return status;
329 1.1 alnsn
330 1.1 alnsn /* tmp1 = tmp1 << 8; */
331 1.1 alnsn status = sljit_emit_op2(compiler,
332 1.1 alnsn SLJIT_SHL,
333 1.1 alnsn BPFJIT_TMP1, 0,
334 1.1 alnsn BPFJIT_TMP1, 0,
335 1.1 alnsn SLJIT_IMM, 8);
336 1.1 alnsn if (status != SLJIT_SUCCESS)
337 1.1 alnsn return status;
338 1.1 alnsn
339 1.1 alnsn /* A = A + tmp1; */
340 1.1 alnsn status = sljit_emit_op2(compiler,
341 1.1 alnsn SLJIT_ADD,
342 1.1 alnsn BPFJIT_A, 0,
343 1.1 alnsn BPFJIT_A, 0,
344 1.1 alnsn BPFJIT_TMP1, 0);
345 1.1 alnsn return status;
346 1.1 alnsn }
347 1.1 alnsn
348 1.1 alnsn #ifdef _KERNEL
349 1.1 alnsn /*
350 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
351 1.1 alnsn *
352 1.1 alnsn * pc is one of:
353 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
354 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
355 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
356 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
357 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
358 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
359 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
360 1.1 alnsn *
361 1.1 alnsn * dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
362 1.1 alnsn * or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
363 1.1 alnsn */
364 1.1 alnsn static int
365 1.1 alnsn emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
366 1.1 alnsn int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
367 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
368 1.1 alnsn {
369 1.1 alnsn #if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
370 1.1 alnsn BPFJIT_X == SLJIT_RETURN_REG
371 1.1 alnsn #error "Not supported assignment of registers."
372 1.1 alnsn #endif
373 1.1 alnsn int status;
374 1.1 alnsn
375 1.1 alnsn /*
376 1.1 alnsn * The third argument of fn is an address on stack.
377 1.1 alnsn */
378 1.1 alnsn const int arg3_offset = 0;
379 1.1 alnsn
380 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
381 1.1 alnsn /* save A */
382 1.1 alnsn status = sljit_emit_op1(compiler,
383 1.1 alnsn SLJIT_MOV,
384 1.1 alnsn BPFJIT_KERN_TMP, 0,
385 1.1 alnsn BPFJIT_A, 0);
386 1.1 alnsn if (status != SLJIT_SUCCESS)
387 1.1 alnsn return status;
388 1.1 alnsn }
389 1.1 alnsn
390 1.1 alnsn /*
391 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
392 1.1 alnsn */
393 1.1 alnsn status = sljit_emit_op1(compiler,
394 1.1 alnsn SLJIT_MOV,
395 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
396 1.1 alnsn BPFJIT_BUF, 0);
397 1.1 alnsn if (status != SLJIT_SUCCESS)
398 1.1 alnsn return status;
399 1.1 alnsn
400 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
401 1.1 alnsn status = sljit_emit_op2(compiler,
402 1.1 alnsn SLJIT_ADD,
403 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
404 1.1 alnsn BPFJIT_X, 0,
405 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
406 1.1 alnsn } else {
407 1.1 alnsn status = sljit_emit_op1(compiler,
408 1.1 alnsn SLJIT_MOV,
409 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
410 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
411 1.1 alnsn }
412 1.1 alnsn
413 1.1 alnsn if (status != SLJIT_SUCCESS)
414 1.1 alnsn return status;
415 1.1 alnsn
416 1.1 alnsn status = sljit_get_local_base(compiler,
417 1.1 alnsn SLJIT_TEMPORARY_REG3, 0, arg3_offset);
418 1.1 alnsn if (status != SLJIT_SUCCESS)
419 1.1 alnsn return status;
420 1.1 alnsn
421 1.1 alnsn /* fn(buf, k, &err); */
422 1.1 alnsn status = sljit_emit_ijump(compiler,
423 1.1 alnsn SLJIT_CALL3,
424 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
425 1.1 alnsn
426 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
427 1.1 alnsn
428 1.1 alnsn /* move return value to dst */
429 1.1 alnsn BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
430 1.1 alnsn status = sljit_emit_op1(compiler,
431 1.1 alnsn SLJIT_MOV,
432 1.1 alnsn dst, dstw,
433 1.1 alnsn SLJIT_RETURN_REG, 0);
434 1.1 alnsn if (status != SLJIT_SUCCESS)
435 1.1 alnsn return status;
436 1.1 alnsn
437 1.1 alnsn /* restore A */
438 1.1 alnsn status = sljit_emit_op1(compiler,
439 1.1 alnsn SLJIT_MOV,
440 1.1 alnsn BPFJIT_A, 0,
441 1.1 alnsn BPFJIT_KERN_TMP, 0);
442 1.1 alnsn if (status != SLJIT_SUCCESS)
443 1.1 alnsn return status;
444 1.1 alnsn
445 1.1 alnsn } else if (dst != SLJIT_RETURN_REG) {
446 1.1 alnsn status = sljit_emit_op1(compiler,
447 1.1 alnsn SLJIT_MOV,
448 1.1 alnsn dst, dstw,
449 1.1 alnsn SLJIT_RETURN_REG, 0);
450 1.1 alnsn if (status != SLJIT_SUCCESS)
451 1.1 alnsn return status;
452 1.1 alnsn }
453 1.1 alnsn
454 1.1 alnsn /* tmp3 = *err; */
455 1.1 alnsn status = sljit_emit_op1(compiler,
456 1.1 alnsn SLJIT_MOV_UI,
457 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
458 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
459 1.1 alnsn if (status != SLJIT_SUCCESS)
460 1.1 alnsn return status;
461 1.1 alnsn
462 1.1 alnsn /* if (tmp3 != 0) return 0; */
463 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
464 1.1 alnsn SLJIT_C_NOT_EQUAL,
465 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
466 1.1 alnsn SLJIT_IMM, 0);
467 1.1 alnsn if (*ret0_jump == NULL)
468 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
469 1.1 alnsn
470 1.1 alnsn return status;
471 1.1 alnsn }
472 1.1 alnsn #endif
473 1.1 alnsn
474 1.1 alnsn /*
475 1.1 alnsn * Generate code for
476 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
477 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
478 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
479 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
480 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
481 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
482 1.1 alnsn */
483 1.1 alnsn static int
484 1.1 alnsn emit_pkt_read(struct sljit_compiler* compiler,
485 1.1 alnsn struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
486 1.1 alnsn struct sljit_jump **ret0, size_t *ret0_size)
487 1.1 alnsn {
488 1.6 pooka int status = 0; /* XXX gcc 4.1 */
489 1.1 alnsn uint32_t width;
490 1.1 alnsn struct sljit_jump *jump;
491 1.1 alnsn #ifdef _KERNEL
492 1.1 alnsn struct sljit_label *label;
493 1.1 alnsn struct sljit_jump *over_mchain_jump;
494 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
495 1.1 alnsn #endif
496 1.1 alnsn const uint32_t k = pc->k;
497 1.1 alnsn
498 1.1 alnsn #ifdef _KERNEL
499 1.1 alnsn if (to_mchain_jump == NULL) {
500 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
501 1.1 alnsn SLJIT_C_EQUAL,
502 1.1 alnsn BPFJIT_BUFLEN, 0,
503 1.1 alnsn SLJIT_IMM, 0);
504 1.1 alnsn if (to_mchain_jump == NULL)
505 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
506 1.1 alnsn }
507 1.1 alnsn #endif
508 1.1 alnsn
509 1.1 alnsn width = read_width(pc);
510 1.1 alnsn
511 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
512 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
513 1.1 alnsn status = sljit_emit_op2(compiler,
514 1.1 alnsn SLJIT_SUB,
515 1.1 alnsn BPFJIT_TMP1, 0,
516 1.1 alnsn BPFJIT_BUFLEN, 0,
517 1.1 alnsn SLJIT_IMM, k + width);
518 1.1 alnsn if (status != SLJIT_SUCCESS)
519 1.1 alnsn return status;
520 1.1 alnsn
521 1.1 alnsn /* buf += X; */
522 1.1 alnsn status = sljit_emit_op2(compiler,
523 1.1 alnsn SLJIT_ADD,
524 1.1 alnsn BPFJIT_BUF, 0,
525 1.1 alnsn BPFJIT_BUF, 0,
526 1.1 alnsn BPFJIT_X, 0);
527 1.1 alnsn if (status != SLJIT_SUCCESS)
528 1.1 alnsn return status;
529 1.1 alnsn
530 1.1 alnsn /* if (tmp1 < X) return 0; */
531 1.1 alnsn jump = sljit_emit_cmp(compiler,
532 1.1 alnsn SLJIT_C_LESS,
533 1.1 alnsn BPFJIT_TMP1, 0,
534 1.1 alnsn BPFJIT_X, 0);
535 1.1 alnsn if (jump == NULL)
536 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
537 1.1 alnsn ret0[(*ret0_size)++] = jump;
538 1.1 alnsn }
539 1.1 alnsn
540 1.1 alnsn switch (width) {
541 1.1 alnsn case 4:
542 1.1 alnsn status = emit_read32(compiler, k);
543 1.1 alnsn break;
544 1.1 alnsn case 2:
545 1.1 alnsn status = emit_read16(compiler, k);
546 1.1 alnsn break;
547 1.1 alnsn case 1:
548 1.1 alnsn status = emit_read8(compiler, k);
549 1.1 alnsn break;
550 1.1 alnsn }
551 1.1 alnsn
552 1.1 alnsn if (status != SLJIT_SUCCESS)
553 1.1 alnsn return status;
554 1.1 alnsn
555 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
556 1.1 alnsn /* buf -= X; */
557 1.1 alnsn status = sljit_emit_op2(compiler,
558 1.1 alnsn SLJIT_SUB,
559 1.1 alnsn BPFJIT_BUF, 0,
560 1.1 alnsn BPFJIT_BUF, 0,
561 1.1 alnsn BPFJIT_X, 0);
562 1.1 alnsn if (status != SLJIT_SUCCESS)
563 1.1 alnsn return status;
564 1.1 alnsn }
565 1.1 alnsn
566 1.1 alnsn #ifdef _KERNEL
567 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
568 1.1 alnsn if (over_mchain_jump == NULL)
569 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
570 1.1 alnsn
571 1.1 alnsn /* entry point to mchain handler */
572 1.1 alnsn label = sljit_emit_label(compiler);
573 1.1 alnsn if (label == NULL)
574 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
575 1.1 alnsn sljit_set_label(to_mchain_jump, label);
576 1.1 alnsn
577 1.1 alnsn if (check_zero_buflen) {
578 1.1 alnsn /* if (buflen != 0) return 0; */
579 1.1 alnsn jump = sljit_emit_cmp(compiler,
580 1.1 alnsn SLJIT_C_NOT_EQUAL,
581 1.1 alnsn BPFJIT_BUFLEN, 0,
582 1.1 alnsn SLJIT_IMM, 0);
583 1.1 alnsn if (jump == NULL)
584 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
585 1.1 alnsn ret0[(*ret0_size)++] = jump;
586 1.1 alnsn }
587 1.1 alnsn
588 1.1 alnsn switch (width) {
589 1.1 alnsn case 4:
590 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
591 1.1 alnsn break;
592 1.1 alnsn case 2:
593 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
594 1.1 alnsn break;
595 1.1 alnsn case 1:
596 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
597 1.1 alnsn break;
598 1.1 alnsn }
599 1.1 alnsn
600 1.1 alnsn if (status != SLJIT_SUCCESS)
601 1.1 alnsn return status;
602 1.1 alnsn
603 1.1 alnsn ret0[(*ret0_size)++] = jump;
604 1.1 alnsn
605 1.1 alnsn label = sljit_emit_label(compiler);
606 1.1 alnsn if (label == NULL)
607 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
608 1.1 alnsn sljit_set_label(over_mchain_jump, label);
609 1.1 alnsn #endif
610 1.1 alnsn
611 1.1 alnsn return status;
612 1.1 alnsn }
613 1.1 alnsn
614 1.1 alnsn /*
615 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
616 1.1 alnsn */
617 1.1 alnsn static int
618 1.1 alnsn emit_msh(struct sljit_compiler* compiler,
619 1.1 alnsn struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
620 1.1 alnsn struct sljit_jump **ret0, size_t *ret0_size)
621 1.1 alnsn {
622 1.1 alnsn int status;
623 1.1 alnsn #ifdef _KERNEL
624 1.1 alnsn struct sljit_label *label;
625 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
626 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
627 1.1 alnsn #endif
628 1.1 alnsn const uint32_t k = pc->k;
629 1.1 alnsn
630 1.1 alnsn #ifdef _KERNEL
631 1.1 alnsn if (to_mchain_jump == NULL) {
632 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
633 1.1 alnsn SLJIT_C_EQUAL,
634 1.1 alnsn BPFJIT_BUFLEN, 0,
635 1.1 alnsn SLJIT_IMM, 0);
636 1.1 alnsn if (to_mchain_jump == NULL)
637 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
638 1.1 alnsn }
639 1.1 alnsn #endif
640 1.1 alnsn
641 1.1 alnsn /* tmp1 = buf[k] */
642 1.1 alnsn status = sljit_emit_op1(compiler,
643 1.1 alnsn SLJIT_MOV_UB,
644 1.1 alnsn BPFJIT_TMP1, 0,
645 1.1 alnsn SLJIT_MEM1(BPFJIT_BUF), k);
646 1.1 alnsn if (status != SLJIT_SUCCESS)
647 1.1 alnsn return status;
648 1.1 alnsn
649 1.1 alnsn /* tmp1 &= 0xf */
650 1.1 alnsn status = sljit_emit_op2(compiler,
651 1.1 alnsn SLJIT_AND,
652 1.1 alnsn BPFJIT_TMP1, 0,
653 1.1 alnsn BPFJIT_TMP1, 0,
654 1.1 alnsn SLJIT_IMM, 0xf);
655 1.1 alnsn if (status != SLJIT_SUCCESS)
656 1.1 alnsn return status;
657 1.1 alnsn
658 1.1 alnsn /* tmp1 = tmp1 << 2 */
659 1.1 alnsn status = sljit_emit_op2(compiler,
660 1.1 alnsn SLJIT_SHL,
661 1.1 alnsn BPFJIT_X, 0,
662 1.1 alnsn BPFJIT_TMP1, 0,
663 1.1 alnsn SLJIT_IMM, 2);
664 1.1 alnsn if (status != SLJIT_SUCCESS)
665 1.1 alnsn return status;
666 1.1 alnsn
667 1.1 alnsn #ifdef _KERNEL
668 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
669 1.1 alnsn if (over_mchain_jump == NULL)
670 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
671 1.1 alnsn
672 1.1 alnsn /* entry point to mchain handler */
673 1.1 alnsn label = sljit_emit_label(compiler);
674 1.1 alnsn if (label == NULL)
675 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
676 1.1 alnsn sljit_set_label(to_mchain_jump, label);
677 1.1 alnsn
678 1.1 alnsn if (check_zero_buflen) {
679 1.1 alnsn /* if (buflen != 0) return 0; */
680 1.1 alnsn jump = sljit_emit_cmp(compiler,
681 1.1 alnsn SLJIT_C_NOT_EQUAL,
682 1.1 alnsn BPFJIT_BUFLEN, 0,
683 1.1 alnsn SLJIT_IMM, 0);
684 1.1 alnsn if (jump == NULL)
685 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
686 1.1 alnsn ret0[(*ret0_size)++] = jump;
687 1.1 alnsn }
688 1.1 alnsn
689 1.1 alnsn status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
690 1.1 alnsn if (status != SLJIT_SUCCESS)
691 1.1 alnsn return status;
692 1.1 alnsn ret0[(*ret0_size)++] = jump;
693 1.1 alnsn
694 1.1 alnsn /* tmp1 &= 0xf */
695 1.1 alnsn status = sljit_emit_op2(compiler,
696 1.1 alnsn SLJIT_AND,
697 1.1 alnsn BPFJIT_TMP1, 0,
698 1.1 alnsn BPFJIT_TMP1, 0,
699 1.1 alnsn SLJIT_IMM, 0xf);
700 1.1 alnsn if (status != SLJIT_SUCCESS)
701 1.1 alnsn return status;
702 1.1 alnsn
703 1.1 alnsn /* tmp1 = tmp1 << 2 */
704 1.1 alnsn status = sljit_emit_op2(compiler,
705 1.1 alnsn SLJIT_SHL,
706 1.1 alnsn BPFJIT_X, 0,
707 1.1 alnsn BPFJIT_TMP1, 0,
708 1.1 alnsn SLJIT_IMM, 2);
709 1.1 alnsn if (status != SLJIT_SUCCESS)
710 1.1 alnsn return status;
711 1.1 alnsn
712 1.1 alnsn
713 1.1 alnsn label = sljit_emit_label(compiler);
714 1.1 alnsn if (label == NULL)
715 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
716 1.1 alnsn sljit_set_label(over_mchain_jump, label);
717 1.1 alnsn #endif
718 1.1 alnsn
719 1.1 alnsn return status;
720 1.1 alnsn }
721 1.1 alnsn
722 1.1 alnsn static int
723 1.1 alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
724 1.1 alnsn {
725 1.1 alnsn int shift = 0;
726 1.1 alnsn int status = SLJIT_SUCCESS;
727 1.1 alnsn
728 1.1 alnsn while (k > 1) {
729 1.1 alnsn k >>= 1;
730 1.1 alnsn shift++;
731 1.1 alnsn }
732 1.1 alnsn
733 1.1 alnsn BPFJIT_ASSERT(k == 1 && shift < 32);
734 1.1 alnsn
735 1.1 alnsn if (shift != 0) {
736 1.1 alnsn status = sljit_emit_op2(compiler,
737 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
738 1.1 alnsn BPFJIT_A, 0,
739 1.1 alnsn BPFJIT_A, 0,
740 1.1 alnsn SLJIT_IMM, shift);
741 1.1 alnsn }
742 1.1 alnsn
743 1.1 alnsn return status;
744 1.1 alnsn }
745 1.1 alnsn
746 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
747 1.1 alnsn static sljit_uw
748 1.1 alnsn divide(sljit_uw x, sljit_uw y)
749 1.1 alnsn {
750 1.1 alnsn
751 1.1 alnsn return (uint32_t)x / (uint32_t)y;
752 1.1 alnsn }
753 1.1 alnsn #endif
754 1.1 alnsn
755 1.1 alnsn /*
756 1.1 alnsn * Generate A = A / div.
757 1.1 alnsn * divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
758 1.1 alnsn */
759 1.1 alnsn static int
760 1.1 alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
761 1.1 alnsn {
762 1.1 alnsn int status;
763 1.1 alnsn
764 1.1 alnsn #if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
765 1.1 alnsn BPFJIT_X == SLJIT_RETURN_REG || \
766 1.1 alnsn BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
767 1.1 alnsn BPFJIT_A == SLJIT_TEMPORARY_REG2
768 1.1 alnsn #error "Not supported assignment of registers."
769 1.1 alnsn #endif
770 1.1 alnsn
771 1.1 alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
772 1.1 alnsn status = sljit_emit_op1(compiler,
773 1.1 alnsn SLJIT_MOV,
774 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
775 1.1 alnsn BPFJIT_A, 0);
776 1.1 alnsn if (status != SLJIT_SUCCESS)
777 1.1 alnsn return status;
778 1.1 alnsn #endif
779 1.1 alnsn
780 1.1 alnsn status = sljit_emit_op1(compiler,
781 1.1 alnsn SLJIT_MOV,
782 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
783 1.1 alnsn divt, divw);
784 1.1 alnsn if (status != SLJIT_SUCCESS)
785 1.1 alnsn return status;
786 1.1 alnsn
787 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
788 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
789 1.1 alnsn
790 1.1 alnsn #if BPFJIT_A != SLJIT_TEMPORARY_REG1
791 1.1 alnsn status = sljit_emit_op1(compiler,
792 1.1 alnsn SLJIT_MOV,
793 1.1 alnsn BPFJIT_A, 0,
794 1.1 alnsn SLJIT_TEMPORARY_REG1, 0);
795 1.1 alnsn if (status != SLJIT_SUCCESS)
796 1.1 alnsn return status;
797 1.1 alnsn #endif
798 1.1 alnsn #else
799 1.1 alnsn status = sljit_emit_ijump(compiler,
800 1.1 alnsn SLJIT_CALL2,
801 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
802 1.1 alnsn
803 1.1 alnsn #if BPFJIT_A != SLJIT_RETURN_REG
804 1.1 alnsn status = sljit_emit_op1(compiler,
805 1.1 alnsn SLJIT_MOV,
806 1.1 alnsn BPFJIT_A, 0,
807 1.1 alnsn SLJIT_RETURN_REG, 0);
808 1.1 alnsn if (status != SLJIT_SUCCESS)
809 1.1 alnsn return status;
810 1.1 alnsn #endif
811 1.1 alnsn #endif
812 1.1 alnsn
813 1.1 alnsn return status;
814 1.1 alnsn }
815 1.1 alnsn
816 1.1 alnsn /*
817 1.1 alnsn * Count BPF_RET instructions.
818 1.1 alnsn */
819 1.1 alnsn static size_t
820 1.1 alnsn count_returns(struct bpf_insn *insns, size_t insn_count)
821 1.1 alnsn {
822 1.1 alnsn size_t i;
823 1.1 alnsn size_t rv;
824 1.1 alnsn
825 1.1 alnsn rv = 0;
826 1.1 alnsn for (i = 0; i < insn_count; i++) {
827 1.1 alnsn if (BPF_CLASS(insns[i].code) == BPF_RET)
828 1.1 alnsn rv++;
829 1.1 alnsn }
830 1.1 alnsn
831 1.1 alnsn return rv;
832 1.1 alnsn }
833 1.1 alnsn
834 1.1 alnsn /*
835 1.1 alnsn * Return true if pc is a "read from packet" instruction.
836 1.1 alnsn * If length is not NULL and return value is true, *length will
837 1.1 alnsn * be set to a safe length required to read a packet.
838 1.1 alnsn */
839 1.1 alnsn static bool
840 1.1 alnsn read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
841 1.1 alnsn {
842 1.1 alnsn bool rv;
843 1.1 alnsn uint32_t width;
844 1.1 alnsn
845 1.1 alnsn switch (BPF_CLASS(pc->code)) {
846 1.1 alnsn default:
847 1.1 alnsn rv = false;
848 1.1 alnsn break;
849 1.1 alnsn
850 1.1 alnsn case BPF_LD:
851 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
852 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
853 1.1 alnsn if (rv)
854 1.1 alnsn width = read_width(pc);
855 1.1 alnsn break;
856 1.1 alnsn
857 1.1 alnsn case BPF_LDX:
858 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
859 1.1 alnsn width = 1;
860 1.1 alnsn break;
861 1.1 alnsn }
862 1.1 alnsn
863 1.1 alnsn if (rv && length != NULL) {
864 1.1 alnsn *length = (pc->k > UINT32_MAX - width) ?
865 1.1 alnsn UINT32_MAX : pc->k + width;
866 1.1 alnsn }
867 1.1 alnsn
868 1.1 alnsn return rv;
869 1.1 alnsn }
870 1.1 alnsn
871 1.1 alnsn /*
872 1.1 alnsn * Set bj_check_length for all "read from packet" instructions
873 1.1 alnsn * in a linear block of instructions [from, to).
874 1.1 alnsn */
875 1.1 alnsn static void
876 1.1 alnsn set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
877 1.1 alnsn size_t from, size_t to, uint32_t length)
878 1.1 alnsn {
879 1.1 alnsn
880 1.1 alnsn for (; from < to; from++) {
881 1.1 alnsn if (read_pkt_insn(&insns[from], NULL)) {
882 1.1 alnsn insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
883 1.1 alnsn length = 0;
884 1.1 alnsn }
885 1.1 alnsn }
886 1.1 alnsn }
887 1.1 alnsn
888 1.1 alnsn /*
889 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
890 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
891 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
892 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
893 1.1 alnsn * a block.
894 1.1 alnsn * If a block has one or more "read from packet" instructions,
895 1.1 alnsn * bj_check_length will be set to one value for the whole block and that
896 1.1 alnsn * value will be equal to the greatest value of safe lengths of "read from
897 1.1 alnsn * packet" instructions inside the block.
898 1.1 alnsn */
899 1.1 alnsn static int
900 1.1 alnsn optimize(struct bpf_insn *insns,
901 1.1 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
902 1.1 alnsn {
903 1.1 alnsn size_t i;
904 1.1 alnsn size_t first_read;
905 1.1 alnsn bool unreachable;
906 1.1 alnsn uint32_t jt, jf;
907 1.1 alnsn uint32_t length, safe_length;
908 1.1 alnsn struct bpfjit_jump *jmp, *jtf;
909 1.1 alnsn
910 1.1 alnsn for (i = 0; i < insn_count; i++)
911 1.1 alnsn SLIST_INIT(&insn_dat[i].bj_jumps);
912 1.1 alnsn
913 1.1 alnsn safe_length = 0;
914 1.1 alnsn unreachable = false;
915 1.1 alnsn first_read = SIZE_MAX;
916 1.1 alnsn
917 1.1 alnsn for (i = 0; i < insn_count; i++) {
918 1.1 alnsn
919 1.1 alnsn if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
920 1.1 alnsn unreachable = false;
921 1.1 alnsn
922 1.1 alnsn set_check_length(insns, insn_dat,
923 1.1 alnsn first_read, i, safe_length);
924 1.1 alnsn first_read = SIZE_MAX;
925 1.1 alnsn
926 1.1 alnsn safe_length = UINT32_MAX;
927 1.1 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
928 1.1 alnsn if (jmp->bj_safe_length < safe_length)
929 1.1 alnsn safe_length = jmp->bj_safe_length;
930 1.1 alnsn }
931 1.1 alnsn }
932 1.1 alnsn
933 1.1 alnsn insn_dat[i].bj_unreachable = unreachable;
934 1.1 alnsn if (unreachable)
935 1.1 alnsn continue;
936 1.1 alnsn
937 1.1 alnsn if (read_pkt_insn(&insns[i], &length)) {
938 1.1 alnsn if (first_read == SIZE_MAX)
939 1.1 alnsn first_read = i;
940 1.1 alnsn if (length > safe_length)
941 1.1 alnsn safe_length = length;
942 1.1 alnsn }
943 1.1 alnsn
944 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
945 1.1 alnsn case BPF_RET:
946 1.1 alnsn unreachable = true;
947 1.1 alnsn continue;
948 1.1 alnsn
949 1.1 alnsn case BPF_JMP:
950 1.1 alnsn if (insns[i].code == (BPF_JMP|BPF_JA)) {
951 1.1 alnsn jt = jf = insns[i].k;
952 1.1 alnsn } else {
953 1.1 alnsn jt = insns[i].jt;
954 1.1 alnsn jf = insns[i].jf;
955 1.1 alnsn }
956 1.1 alnsn
957 1.1 alnsn if (jt >= insn_count - (i + 1) ||
958 1.1 alnsn jf >= insn_count - (i + 1)) {
959 1.1 alnsn return -1;
960 1.1 alnsn }
961 1.1 alnsn
962 1.1 alnsn if (jt > 0 && jf > 0)
963 1.1 alnsn unreachable = true;
964 1.1 alnsn
965 1.1 alnsn jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
966 1.1 alnsn
967 1.1 alnsn jtf[0].bj_jump = NULL;
968 1.1 alnsn jtf[0].bj_safe_length = safe_length;
969 1.1 alnsn SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
970 1.1 alnsn &jtf[0], bj_entries);
971 1.1 alnsn
972 1.1 alnsn if (jf != jt) {
973 1.1 alnsn jtf[1].bj_jump = NULL;
974 1.1 alnsn jtf[1].bj_safe_length = safe_length;
975 1.1 alnsn SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
976 1.1 alnsn &jtf[1], bj_entries);
977 1.1 alnsn }
978 1.1 alnsn
979 1.1 alnsn continue;
980 1.1 alnsn }
981 1.1 alnsn }
982 1.1 alnsn
983 1.1 alnsn set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
984 1.1 alnsn
985 1.1 alnsn return 0;
986 1.1 alnsn }
987 1.1 alnsn
988 1.1 alnsn /*
989 1.1 alnsn * Count out-of-bounds and division by zero jumps.
990 1.1 alnsn *
991 1.1 alnsn * insn_dat should be initialized by optimize().
992 1.1 alnsn */
993 1.1 alnsn static size_t
994 1.1 alnsn get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
995 1.1 alnsn size_t insn_count)
996 1.1 alnsn {
997 1.1 alnsn size_t rv = 0;
998 1.1 alnsn size_t i;
999 1.1 alnsn
1000 1.1 alnsn for (i = 0; i < insn_count; i++) {
1001 1.1 alnsn
1002 1.1 alnsn if (read_pkt_insn(&insns[i], NULL)) {
1003 1.1 alnsn if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
1004 1.1 alnsn rv++;
1005 1.1 alnsn #ifdef _KERNEL
1006 1.1 alnsn rv++;
1007 1.1 alnsn #endif
1008 1.1 alnsn }
1009 1.1 alnsn
1010 1.1 alnsn if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
1011 1.1 alnsn insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
1012 1.1 alnsn insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
1013 1.1 alnsn rv++;
1014 1.1 alnsn }
1015 1.1 alnsn
1016 1.1 alnsn if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
1017 1.1 alnsn rv++;
1018 1.1 alnsn
1019 1.1 alnsn if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
1020 1.1 alnsn insns[i].k == 0) {
1021 1.1 alnsn rv++;
1022 1.1 alnsn }
1023 1.1 alnsn }
1024 1.1 alnsn
1025 1.1 alnsn return rv;
1026 1.1 alnsn }
1027 1.1 alnsn
1028 1.1 alnsn /*
1029 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1030 1.1 alnsn */
1031 1.1 alnsn static int
1032 1.1 alnsn bpf_alu_to_sljit_op(struct bpf_insn *pc)
1033 1.1 alnsn {
1034 1.1 alnsn
1035 1.1 alnsn /*
1036 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1037 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1038 1.1 alnsn */
1039 1.1 alnsn switch (BPF_OP(pc->code)) {
1040 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1041 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1042 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1043 1.1 alnsn case BPF_OR: return SLJIT_OR;
1044 1.1 alnsn case BPF_AND: return SLJIT_AND;
1045 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1046 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1047 1.1 alnsn default:
1048 1.1 alnsn BPFJIT_ASSERT(false);
1049 1.1 alnsn return 0;
1050 1.1 alnsn }
1051 1.1 alnsn }
1052 1.1 alnsn
1053 1.1 alnsn /*
1054 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1055 1.1 alnsn */
1056 1.1 alnsn static int
1057 1.1 alnsn bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
1058 1.1 alnsn {
1059 1.1 alnsn /*
1060 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1061 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1062 1.1 alnsn */
1063 1.1 alnsn int rv = SLJIT_INT_OP;
1064 1.1 alnsn
1065 1.1 alnsn switch (BPF_OP(pc->code)) {
1066 1.1 alnsn case BPF_JGT:
1067 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1068 1.1 alnsn break;
1069 1.1 alnsn case BPF_JGE:
1070 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1071 1.1 alnsn break;
1072 1.1 alnsn case BPF_JEQ:
1073 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1074 1.1 alnsn break;
1075 1.1 alnsn case BPF_JSET:
1076 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1077 1.1 alnsn break;
1078 1.1 alnsn default:
1079 1.1 alnsn BPFJIT_ASSERT(false);
1080 1.1 alnsn }
1081 1.1 alnsn
1082 1.1 alnsn return rv;
1083 1.1 alnsn }
1084 1.1 alnsn
1085 1.1 alnsn static unsigned int
1086 1.1 alnsn bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
1087 1.1 alnsn {
1088 1.1 alnsn unsigned int rv = BPFJIT_INIT_A;
1089 1.1 alnsn struct bpf_insn *pc;
1090 1.2 alnsn unsigned int minm, maxm;
1091 1.1 alnsn
1092 1.1 alnsn BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
1093 1.1 alnsn
1094 1.1 alnsn maxm = 0;
1095 1.1 alnsn minm = BPF_MEMWORDS - 1;
1096 1.1 alnsn
1097 1.1 alnsn for (pc = insns; pc != insns + insn_count; pc++) {
1098 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1099 1.1 alnsn case BPF_LD:
1100 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND)
1101 1.1 alnsn rv |= BPFJIT_INIT_X;
1102 1.1 alnsn if (BPF_MODE(pc->code) == BPF_MEM &&
1103 1.1 alnsn (uint32_t)pc->k < BPF_MEMWORDS) {
1104 1.1 alnsn if (pc->k > maxm)
1105 1.1 alnsn maxm = pc->k;
1106 1.1 alnsn if (pc->k < minm)
1107 1.1 alnsn minm = pc->k;
1108 1.1 alnsn }
1109 1.1 alnsn continue;
1110 1.1 alnsn case BPF_LDX:
1111 1.1 alnsn rv |= BPFJIT_INIT_X;
1112 1.1 alnsn if (BPF_MODE(pc->code) == BPF_MEM &&
1113 1.1 alnsn (uint32_t)pc->k < BPF_MEMWORDS) {
1114 1.1 alnsn if (pc->k > maxm)
1115 1.1 alnsn maxm = pc->k;
1116 1.1 alnsn if (pc->k < minm)
1117 1.1 alnsn minm = pc->k;
1118 1.1 alnsn }
1119 1.1 alnsn continue;
1120 1.1 alnsn case BPF_ST:
1121 1.1 alnsn if ((uint32_t)pc->k < BPF_MEMWORDS) {
1122 1.1 alnsn if (pc->k > maxm)
1123 1.1 alnsn maxm = pc->k;
1124 1.1 alnsn if (pc->k < minm)
1125 1.1 alnsn minm = pc->k;
1126 1.1 alnsn }
1127 1.1 alnsn continue;
1128 1.1 alnsn case BPF_STX:
1129 1.1 alnsn rv |= BPFJIT_INIT_X;
1130 1.1 alnsn if ((uint32_t)pc->k < BPF_MEMWORDS) {
1131 1.1 alnsn if (pc->k > maxm)
1132 1.1 alnsn maxm = pc->k;
1133 1.1 alnsn if (pc->k < minm)
1134 1.1 alnsn minm = pc->k;
1135 1.1 alnsn }
1136 1.1 alnsn continue;
1137 1.1 alnsn case BPF_ALU:
1138 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG))
1139 1.1 alnsn continue;
1140 1.1 alnsn if (BPF_SRC(pc->code) == BPF_X)
1141 1.1 alnsn rv |= BPFJIT_INIT_X;
1142 1.1 alnsn continue;
1143 1.1 alnsn case BPF_JMP:
1144 1.1 alnsn if (pc->code == (BPF_JMP|BPF_JA))
1145 1.1 alnsn continue;
1146 1.1 alnsn if (BPF_SRC(pc->code) == BPF_X)
1147 1.1 alnsn rv |= BPFJIT_INIT_X;
1148 1.1 alnsn continue;
1149 1.1 alnsn case BPF_RET:
1150 1.1 alnsn continue;
1151 1.1 alnsn case BPF_MISC:
1152 1.1 alnsn rv |= BPFJIT_INIT_X;
1153 1.1 alnsn continue;
1154 1.1 alnsn default:
1155 1.1 alnsn BPFJIT_ASSERT(false);
1156 1.1 alnsn }
1157 1.1 alnsn }
1158 1.1 alnsn
1159 1.1 alnsn return rv | (maxm << 8) | minm;
1160 1.1 alnsn }
1161 1.1 alnsn
1162 1.1 alnsn /*
1163 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1164 1.1 alnsn */
1165 1.1 alnsn static int
1166 1.1 alnsn kx_to_reg(struct bpf_insn *pc)
1167 1.1 alnsn {
1168 1.1 alnsn
1169 1.1 alnsn switch (BPF_SRC(pc->code)) {
1170 1.1 alnsn case BPF_K: return SLJIT_IMM;
1171 1.1 alnsn case BPF_X: return BPFJIT_X;
1172 1.1 alnsn default:
1173 1.1 alnsn BPFJIT_ASSERT(false);
1174 1.1 alnsn return 0;
1175 1.1 alnsn }
1176 1.1 alnsn }
1177 1.1 alnsn
1178 1.1 alnsn static sljit_w
1179 1.1 alnsn kx_to_reg_arg(struct bpf_insn *pc)
1180 1.1 alnsn {
1181 1.1 alnsn
1182 1.1 alnsn switch (BPF_SRC(pc->code)) {
1183 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1184 1.1 alnsn case BPF_X: return 0; /* BPFJIT_X, 0, */
1185 1.1 alnsn default:
1186 1.1 alnsn BPFJIT_ASSERT(false);
1187 1.1 alnsn return 0;
1188 1.1 alnsn }
1189 1.1 alnsn }
1190 1.1 alnsn
1191 1.4 rmind bpfjit_func_t
1192 1.4 rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
1193 1.1 alnsn {
1194 1.1 alnsn void *rv;
1195 1.1 alnsn size_t i;
1196 1.1 alnsn int status;
1197 1.1 alnsn int branching, negate;
1198 1.1 alnsn unsigned int rval, mode, src;
1199 1.1 alnsn int ntmp;
1200 1.2 alnsn unsigned int locals_size;
1201 1.2 alnsn unsigned int minm, maxm; /* min/max k for M[k] */
1202 1.2 alnsn size_t mem_locals_start; /* start of M[] array */
1203 1.1 alnsn unsigned int opts;
1204 1.1 alnsn struct bpf_insn *pc;
1205 1.1 alnsn struct sljit_compiler* compiler;
1206 1.1 alnsn
1207 1.1 alnsn /* a list of jumps to a normal return from a generated function */
1208 1.1 alnsn struct sljit_jump **returns;
1209 1.1 alnsn size_t returns_size, returns_maxsize;
1210 1.1 alnsn
1211 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1212 1.1 alnsn struct sljit_jump **ret0;
1213 1.3 rmind size_t ret0_size = 0, ret0_maxsize = 0;
1214 1.1 alnsn
1215 1.1 alnsn struct bpfjit_insn_data *insn_dat;
1216 1.1 alnsn
1217 1.1 alnsn /* for local use */
1218 1.1 alnsn struct sljit_label *label;
1219 1.1 alnsn struct sljit_jump *jump;
1220 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1221 1.1 alnsn
1222 1.1 alnsn struct sljit_jump *to_mchain_jump;
1223 1.1 alnsn
1224 1.1 alnsn uint32_t jt, jf;
1225 1.1 alnsn
1226 1.1 alnsn rv = NULL;
1227 1.1 alnsn compiler = NULL;
1228 1.1 alnsn insn_dat = NULL;
1229 1.1 alnsn returns = NULL;
1230 1.1 alnsn ret0 = NULL;
1231 1.1 alnsn
1232 1.1 alnsn opts = bpfjit_optimization_hints(insns, insn_count);
1233 1.1 alnsn minm = opts & 0xff;
1234 1.1 alnsn maxm = (opts >> 8) & 0xff;
1235 1.1 alnsn mem_locals_start = mem_local_offset(0, 0);
1236 1.1 alnsn locals_size = (minm <= maxm) ?
1237 1.1 alnsn mem_local_offset(maxm + 1, minm) : mem_locals_start;
1238 1.1 alnsn
1239 1.1 alnsn ntmp = 4;
1240 1.1 alnsn #ifdef _KERNEL
1241 1.1 alnsn ntmp += 1; /* for BPFJIT_KERN_TMP */
1242 1.1 alnsn #endif
1243 1.1 alnsn
1244 1.1 alnsn returns_maxsize = count_returns(insns, insn_count);
1245 1.1 alnsn if (returns_maxsize == 0)
1246 1.1 alnsn goto fail;
1247 1.1 alnsn
1248 1.3 rmind insn_dat = BPFJIT_ALLOC(insn_count * sizeof(insn_dat[0]));
1249 1.1 alnsn if (insn_dat == NULL)
1250 1.1 alnsn goto fail;
1251 1.1 alnsn
1252 1.1 alnsn if (optimize(insns, insn_dat, insn_count) < 0)
1253 1.1 alnsn goto fail;
1254 1.1 alnsn
1255 1.1 alnsn ret0_size = 0;
1256 1.1 alnsn ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
1257 1.1 alnsn if (ret0_maxsize > 0) {
1258 1.3 rmind ret0 = BPFJIT_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1259 1.1 alnsn if (ret0 == NULL)
1260 1.1 alnsn goto fail;
1261 1.1 alnsn }
1262 1.1 alnsn
1263 1.1 alnsn returns_size = 0;
1264 1.3 rmind returns = BPFJIT_ALLOC(returns_maxsize * sizeof(returns[0]));
1265 1.1 alnsn if (returns == NULL)
1266 1.1 alnsn goto fail;
1267 1.1 alnsn
1268 1.1 alnsn compiler = sljit_create_compiler();
1269 1.1 alnsn if (compiler == NULL)
1270 1.1 alnsn goto fail;
1271 1.1 alnsn
1272 1.1 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
1273 1.1 alnsn sljit_compiler_verbose(compiler, stderr);
1274 1.1 alnsn #endif
1275 1.1 alnsn
1276 1.1 alnsn status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
1277 1.1 alnsn if (status != SLJIT_SUCCESS)
1278 1.1 alnsn goto fail;
1279 1.1 alnsn
1280 1.1 alnsn for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
1281 1.1 alnsn status = sljit_emit_op1(compiler,
1282 1.1 alnsn SLJIT_MOV_UI,
1283 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), i,
1284 1.1 alnsn SLJIT_IMM, 0);
1285 1.1 alnsn if (status != SLJIT_SUCCESS)
1286 1.1 alnsn goto fail;
1287 1.1 alnsn }
1288 1.1 alnsn
1289 1.1 alnsn if (opts & BPFJIT_INIT_A) {
1290 1.1 alnsn /* A = 0; */
1291 1.1 alnsn status = sljit_emit_op1(compiler,
1292 1.1 alnsn SLJIT_MOV,
1293 1.1 alnsn BPFJIT_A, 0,
1294 1.1 alnsn SLJIT_IMM, 0);
1295 1.1 alnsn if (status != SLJIT_SUCCESS)
1296 1.1 alnsn goto fail;
1297 1.1 alnsn }
1298 1.1 alnsn
1299 1.1 alnsn if (opts & BPFJIT_INIT_X) {
1300 1.1 alnsn /* X = 0; */
1301 1.1 alnsn status = sljit_emit_op1(compiler,
1302 1.1 alnsn SLJIT_MOV,
1303 1.1 alnsn BPFJIT_X, 0,
1304 1.1 alnsn SLJIT_IMM, 0);
1305 1.1 alnsn if (status != SLJIT_SUCCESS)
1306 1.1 alnsn goto fail;
1307 1.1 alnsn }
1308 1.1 alnsn
1309 1.1 alnsn for (i = 0; i < insn_count; i++) {
1310 1.1 alnsn if (insn_dat[i].bj_unreachable)
1311 1.1 alnsn continue;
1312 1.1 alnsn
1313 1.1 alnsn to_mchain_jump = NULL;
1314 1.1 alnsn
1315 1.1 alnsn /*
1316 1.1 alnsn * Resolve jumps to the current insn.
1317 1.1 alnsn */
1318 1.1 alnsn label = NULL;
1319 1.1 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
1320 1.1 alnsn if (bjump->bj_jump != NULL) {
1321 1.1 alnsn if (label == NULL)
1322 1.1 alnsn label = sljit_emit_label(compiler);
1323 1.1 alnsn if (label == NULL)
1324 1.1 alnsn goto fail;
1325 1.1 alnsn sljit_set_label(bjump->bj_jump, label);
1326 1.1 alnsn }
1327 1.1 alnsn }
1328 1.1 alnsn
1329 1.1 alnsn if (read_pkt_insn(&insns[i], NULL) &&
1330 1.1 alnsn insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
1331 1.1 alnsn /* if (buflen < bj_check_length) return 0; */
1332 1.1 alnsn jump = sljit_emit_cmp(compiler,
1333 1.1 alnsn SLJIT_C_LESS,
1334 1.1 alnsn BPFJIT_BUFLEN, 0,
1335 1.1 alnsn SLJIT_IMM,
1336 1.1 alnsn insn_dat[i].bj_aux.bj_rdata.bj_check_length);
1337 1.1 alnsn if (jump == NULL)
1338 1.1 alnsn goto fail;
1339 1.1 alnsn #ifdef _KERNEL
1340 1.1 alnsn to_mchain_jump = jump;
1341 1.1 alnsn #else
1342 1.1 alnsn ret0[ret0_size++] = jump;
1343 1.1 alnsn #endif
1344 1.1 alnsn }
1345 1.1 alnsn
1346 1.1 alnsn pc = &insns[i];
1347 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1348 1.1 alnsn
1349 1.1 alnsn default:
1350 1.1 alnsn goto fail;
1351 1.1 alnsn
1352 1.1 alnsn case BPF_LD:
1353 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1354 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1355 1.1 alnsn status = sljit_emit_op1(compiler,
1356 1.1 alnsn SLJIT_MOV,
1357 1.1 alnsn BPFJIT_A, 0,
1358 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1359 1.1 alnsn if (status != SLJIT_SUCCESS)
1360 1.1 alnsn goto fail;
1361 1.1 alnsn
1362 1.1 alnsn continue;
1363 1.1 alnsn }
1364 1.1 alnsn
1365 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1366 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1367 1.1 alnsn if (pc->k < minm || pc->k > maxm)
1368 1.1 alnsn goto fail;
1369 1.1 alnsn status = sljit_emit_op1(compiler,
1370 1.1 alnsn SLJIT_MOV_UI,
1371 1.1 alnsn BPFJIT_A, 0,
1372 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1373 1.1 alnsn mem_local_offset(pc->k, minm));
1374 1.1 alnsn if (status != SLJIT_SUCCESS)
1375 1.1 alnsn goto fail;
1376 1.1 alnsn
1377 1.1 alnsn continue;
1378 1.1 alnsn }
1379 1.1 alnsn
1380 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1381 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1382 1.1 alnsn status = sljit_emit_op1(compiler,
1383 1.1 alnsn SLJIT_MOV,
1384 1.1 alnsn BPFJIT_A, 0,
1385 1.1 alnsn BPFJIT_WIRELEN, 0);
1386 1.1 alnsn if (status != SLJIT_SUCCESS)
1387 1.1 alnsn goto fail;
1388 1.1 alnsn
1389 1.1 alnsn continue;
1390 1.1 alnsn }
1391 1.1 alnsn
1392 1.1 alnsn mode = BPF_MODE(pc->code);
1393 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1394 1.1 alnsn goto fail;
1395 1.1 alnsn
1396 1.1 alnsn status = emit_pkt_read(compiler, pc,
1397 1.1 alnsn to_mchain_jump, ret0, &ret0_size);
1398 1.1 alnsn if (status != SLJIT_SUCCESS)
1399 1.1 alnsn goto fail;
1400 1.1 alnsn
1401 1.1 alnsn continue;
1402 1.1 alnsn
1403 1.1 alnsn case BPF_LDX:
1404 1.1 alnsn mode = BPF_MODE(pc->code);
1405 1.1 alnsn
1406 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1407 1.1 alnsn if (mode == BPF_IMM) {
1408 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1409 1.1 alnsn goto fail;
1410 1.1 alnsn status = sljit_emit_op1(compiler,
1411 1.1 alnsn SLJIT_MOV,
1412 1.1 alnsn BPFJIT_X, 0,
1413 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1414 1.1 alnsn if (status != SLJIT_SUCCESS)
1415 1.1 alnsn goto fail;
1416 1.1 alnsn
1417 1.1 alnsn continue;
1418 1.1 alnsn }
1419 1.1 alnsn
1420 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1421 1.1 alnsn if (mode == BPF_LEN) {
1422 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1423 1.1 alnsn goto fail;
1424 1.1 alnsn status = sljit_emit_op1(compiler,
1425 1.1 alnsn SLJIT_MOV,
1426 1.1 alnsn BPFJIT_X, 0,
1427 1.1 alnsn BPFJIT_WIRELEN, 0);
1428 1.1 alnsn if (status != SLJIT_SUCCESS)
1429 1.1 alnsn goto fail;
1430 1.1 alnsn
1431 1.1 alnsn continue;
1432 1.1 alnsn }
1433 1.1 alnsn
1434 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1435 1.1 alnsn if (mode == BPF_MEM) {
1436 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1437 1.1 alnsn goto fail;
1438 1.1 alnsn if (pc->k < minm || pc->k > maxm)
1439 1.1 alnsn goto fail;
1440 1.1 alnsn status = sljit_emit_op1(compiler,
1441 1.1 alnsn SLJIT_MOV_UI,
1442 1.1 alnsn BPFJIT_X, 0,
1443 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1444 1.1 alnsn mem_local_offset(pc->k, minm));
1445 1.1 alnsn if (status != SLJIT_SUCCESS)
1446 1.1 alnsn goto fail;
1447 1.1 alnsn
1448 1.1 alnsn continue;
1449 1.1 alnsn }
1450 1.1 alnsn
1451 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1452 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1453 1.1 alnsn goto fail;
1454 1.1 alnsn
1455 1.1 alnsn status = emit_msh(compiler, pc,
1456 1.1 alnsn to_mchain_jump, ret0, &ret0_size);
1457 1.1 alnsn if (status != SLJIT_SUCCESS)
1458 1.1 alnsn goto fail;
1459 1.1 alnsn
1460 1.1 alnsn continue;
1461 1.1 alnsn
1462 1.1 alnsn case BPF_ST:
1463 1.1 alnsn if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
1464 1.1 alnsn goto fail;
1465 1.1 alnsn
1466 1.1 alnsn status = sljit_emit_op1(compiler,
1467 1.1 alnsn SLJIT_MOV_UI,
1468 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1469 1.1 alnsn mem_local_offset(pc->k, minm),
1470 1.1 alnsn BPFJIT_A, 0);
1471 1.1 alnsn if (status != SLJIT_SUCCESS)
1472 1.1 alnsn goto fail;
1473 1.1 alnsn
1474 1.1 alnsn continue;
1475 1.1 alnsn
1476 1.1 alnsn case BPF_STX:
1477 1.1 alnsn if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
1478 1.1 alnsn goto fail;
1479 1.1 alnsn
1480 1.1 alnsn status = sljit_emit_op1(compiler,
1481 1.1 alnsn SLJIT_MOV_UI,
1482 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1483 1.1 alnsn mem_local_offset(pc->k, minm),
1484 1.1 alnsn BPFJIT_X, 0);
1485 1.1 alnsn if (status != SLJIT_SUCCESS)
1486 1.1 alnsn goto fail;
1487 1.1 alnsn
1488 1.1 alnsn continue;
1489 1.1 alnsn
1490 1.1 alnsn case BPF_ALU:
1491 1.1 alnsn
1492 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1493 1.1 alnsn status = sljit_emit_op1(compiler,
1494 1.1 alnsn SLJIT_NEG,
1495 1.1 alnsn BPFJIT_A, 0,
1496 1.1 alnsn BPFJIT_A, 0);
1497 1.1 alnsn if (status != SLJIT_SUCCESS)
1498 1.1 alnsn goto fail;
1499 1.1 alnsn
1500 1.1 alnsn continue;
1501 1.1 alnsn }
1502 1.1 alnsn
1503 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1504 1.1 alnsn status = sljit_emit_op2(compiler,
1505 1.1 alnsn bpf_alu_to_sljit_op(pc),
1506 1.1 alnsn BPFJIT_A, 0,
1507 1.1 alnsn BPFJIT_A, 0,
1508 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1509 1.1 alnsn if (status != SLJIT_SUCCESS)
1510 1.1 alnsn goto fail;
1511 1.1 alnsn
1512 1.1 alnsn continue;
1513 1.1 alnsn }
1514 1.1 alnsn
1515 1.1 alnsn /* BPF_DIV */
1516 1.1 alnsn
1517 1.1 alnsn src = BPF_SRC(pc->code);
1518 1.1 alnsn if (src != BPF_X && src != BPF_K)
1519 1.1 alnsn goto fail;
1520 1.1 alnsn
1521 1.1 alnsn /* division by zero? */
1522 1.1 alnsn if (src == BPF_X) {
1523 1.1 alnsn jump = sljit_emit_cmp(compiler,
1524 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1525 1.1 alnsn BPFJIT_X, 0,
1526 1.1 alnsn SLJIT_IMM, 0);
1527 1.1 alnsn if (jump == NULL)
1528 1.1 alnsn goto fail;
1529 1.1 alnsn ret0[ret0_size++] = jump;
1530 1.1 alnsn } else if (pc->k == 0) {
1531 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1532 1.1 alnsn if (jump == NULL)
1533 1.1 alnsn goto fail;
1534 1.1 alnsn ret0[ret0_size++] = jump;
1535 1.1 alnsn }
1536 1.1 alnsn
1537 1.1 alnsn if (src == BPF_X) {
1538 1.1 alnsn status = emit_division(compiler, BPFJIT_X, 0);
1539 1.1 alnsn if (status != SLJIT_SUCCESS)
1540 1.1 alnsn goto fail;
1541 1.1 alnsn } else if (pc->k != 0) {
1542 1.1 alnsn if (pc->k & (pc->k - 1)) {
1543 1.1 alnsn status = emit_division(compiler,
1544 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1545 1.1 alnsn } else {
1546 1.1 alnsn status = emit_pow2_division(compiler,
1547 1.1 alnsn (uint32_t)pc->k);
1548 1.1 alnsn }
1549 1.1 alnsn if (status != SLJIT_SUCCESS)
1550 1.1 alnsn goto fail;
1551 1.1 alnsn }
1552 1.1 alnsn
1553 1.1 alnsn continue;
1554 1.1 alnsn
1555 1.1 alnsn case BPF_JMP:
1556 1.1 alnsn
1557 1.1 alnsn if (pc->code == (BPF_JMP|BPF_JA)) {
1558 1.1 alnsn jt = jf = pc->k;
1559 1.1 alnsn } else {
1560 1.1 alnsn jt = pc->jt;
1561 1.1 alnsn jf = pc->jf;
1562 1.1 alnsn }
1563 1.1 alnsn
1564 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1565 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1566 1.1 alnsn jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
1567 1.1 alnsn
1568 1.1 alnsn if (branching) {
1569 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1570 1.1 alnsn jump = sljit_emit_cmp(compiler,
1571 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1572 1.1 alnsn BPFJIT_A, 0,
1573 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1574 1.1 alnsn } else {
1575 1.1 alnsn status = sljit_emit_op2(compiler,
1576 1.1 alnsn SLJIT_AND,
1577 1.1 alnsn BPFJIT_TMP1, 0,
1578 1.1 alnsn BPFJIT_A, 0,
1579 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1580 1.1 alnsn if (status != SLJIT_SUCCESS)
1581 1.1 alnsn goto fail;
1582 1.1 alnsn
1583 1.1 alnsn jump = sljit_emit_cmp(compiler,
1584 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1585 1.1 alnsn BPFJIT_TMP1, 0,
1586 1.1 alnsn SLJIT_IMM, 0);
1587 1.1 alnsn }
1588 1.1 alnsn
1589 1.1 alnsn if (jump == NULL)
1590 1.1 alnsn goto fail;
1591 1.1 alnsn
1592 1.1 alnsn BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
1593 1.1 alnsn jtf[negate].bj_jump = jump;
1594 1.1 alnsn }
1595 1.1 alnsn
1596 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1597 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1598 1.1 alnsn if (jump == NULL)
1599 1.1 alnsn goto fail;
1600 1.1 alnsn
1601 1.1 alnsn BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
1602 1.1 alnsn jtf[branching].bj_jump = jump;
1603 1.1 alnsn }
1604 1.1 alnsn
1605 1.1 alnsn continue;
1606 1.1 alnsn
1607 1.1 alnsn case BPF_RET:
1608 1.1 alnsn
1609 1.1 alnsn rval = BPF_RVAL(pc->code);
1610 1.1 alnsn if (rval == BPF_X)
1611 1.1 alnsn goto fail;
1612 1.1 alnsn
1613 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1614 1.1 alnsn if (rval == BPF_K) {
1615 1.1 alnsn status = sljit_emit_op1(compiler,
1616 1.1 alnsn SLJIT_MOV,
1617 1.1 alnsn BPFJIT_A, 0,
1618 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1619 1.1 alnsn if (status != SLJIT_SUCCESS)
1620 1.1 alnsn goto fail;
1621 1.1 alnsn }
1622 1.1 alnsn
1623 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1624 1.1 alnsn if (rval == BPF_A) {
1625 1.1 alnsn #if BPFJIT_A != SLJIT_RETURN_REG
1626 1.1 alnsn status = sljit_emit_op1(compiler,
1627 1.1 alnsn SLJIT_MOV,
1628 1.1 alnsn SLJIT_RETURN_REG, 0,
1629 1.1 alnsn BPFJIT_A, 0);
1630 1.1 alnsn if (status != SLJIT_SUCCESS)
1631 1.1 alnsn goto fail;
1632 1.1 alnsn #endif
1633 1.1 alnsn }
1634 1.1 alnsn
1635 1.1 alnsn /*
1636 1.1 alnsn * Save a jump to a normal return. If the program
1637 1.1 alnsn * ends with BPF_RET, no jump is needed because
1638 1.1 alnsn * the normal return is generated right after the
1639 1.1 alnsn * last instruction.
1640 1.1 alnsn */
1641 1.1 alnsn if (i != insn_count - 1) {
1642 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1643 1.1 alnsn if (jump == NULL)
1644 1.1 alnsn goto fail;
1645 1.1 alnsn returns[returns_size++] = jump;
1646 1.1 alnsn }
1647 1.1 alnsn
1648 1.1 alnsn continue;
1649 1.1 alnsn
1650 1.1 alnsn case BPF_MISC:
1651 1.1 alnsn
1652 1.1 alnsn if (pc->code == (BPF_MISC|BPF_TAX)) {
1653 1.1 alnsn status = sljit_emit_op1(compiler,
1654 1.1 alnsn SLJIT_MOV_UI,
1655 1.1 alnsn BPFJIT_X, 0,
1656 1.1 alnsn BPFJIT_A, 0);
1657 1.1 alnsn if (status != SLJIT_SUCCESS)
1658 1.1 alnsn goto fail;
1659 1.1 alnsn
1660 1.1 alnsn continue;
1661 1.1 alnsn }
1662 1.1 alnsn
1663 1.1 alnsn if (pc->code == (BPF_MISC|BPF_TXA)) {
1664 1.1 alnsn status = sljit_emit_op1(compiler,
1665 1.1 alnsn SLJIT_MOV,
1666 1.1 alnsn BPFJIT_A, 0,
1667 1.1 alnsn BPFJIT_X, 0);
1668 1.1 alnsn if (status != SLJIT_SUCCESS)
1669 1.1 alnsn goto fail;
1670 1.1 alnsn
1671 1.1 alnsn continue;
1672 1.1 alnsn }
1673 1.1 alnsn
1674 1.1 alnsn goto fail;
1675 1.1 alnsn } /* switch */
1676 1.1 alnsn } /* main loop */
1677 1.1 alnsn
1678 1.1 alnsn BPFJIT_ASSERT(ret0_size == ret0_maxsize);
1679 1.1 alnsn BPFJIT_ASSERT(returns_size <= returns_maxsize);
1680 1.1 alnsn
1681 1.1 alnsn if (returns_size > 0) {
1682 1.1 alnsn label = sljit_emit_label(compiler);
1683 1.1 alnsn if (label == NULL)
1684 1.1 alnsn goto fail;
1685 1.1 alnsn for (i = 0; i < returns_size; i++)
1686 1.1 alnsn sljit_set_label(returns[i], label);
1687 1.1 alnsn }
1688 1.1 alnsn
1689 1.1 alnsn status = sljit_emit_return(compiler,
1690 1.1 alnsn SLJIT_MOV_UI,
1691 1.1 alnsn BPFJIT_A, 0);
1692 1.1 alnsn if (status != SLJIT_SUCCESS)
1693 1.1 alnsn goto fail;
1694 1.1 alnsn
1695 1.1 alnsn if (ret0_size > 0) {
1696 1.1 alnsn label = sljit_emit_label(compiler);
1697 1.1 alnsn if (label == NULL)
1698 1.1 alnsn goto fail;
1699 1.1 alnsn
1700 1.1 alnsn for (i = 0; i < ret0_size; i++)
1701 1.1 alnsn sljit_set_label(ret0[i], label);
1702 1.1 alnsn
1703 1.1 alnsn status = sljit_emit_op1(compiler,
1704 1.1 alnsn SLJIT_MOV,
1705 1.1 alnsn SLJIT_RETURN_REG, 0,
1706 1.1 alnsn SLJIT_IMM, 0);
1707 1.1 alnsn if (status != SLJIT_SUCCESS)
1708 1.1 alnsn goto fail;
1709 1.1 alnsn
1710 1.1 alnsn status = sljit_emit_return(compiler,
1711 1.1 alnsn SLJIT_MOV_UI,
1712 1.1 alnsn SLJIT_RETURN_REG, 0);
1713 1.1 alnsn if (status != SLJIT_SUCCESS)
1714 1.1 alnsn goto fail;
1715 1.1 alnsn }
1716 1.1 alnsn
1717 1.1 alnsn rv = sljit_generate_code(compiler);
1718 1.1 alnsn
1719 1.1 alnsn fail:
1720 1.1 alnsn if (compiler != NULL)
1721 1.1 alnsn sljit_free_compiler(compiler);
1722 1.1 alnsn
1723 1.1 alnsn if (insn_dat != NULL)
1724 1.3 rmind BPFJIT_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
1725 1.1 alnsn
1726 1.1 alnsn if (returns != NULL)
1727 1.3 rmind BPFJIT_FREE(returns, returns_maxsize * sizeof(returns[0]));
1728 1.1 alnsn
1729 1.1 alnsn if (ret0 != NULL)
1730 1.3 rmind BPFJIT_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
1731 1.1 alnsn
1732 1.4 rmind return (bpfjit_func_t)rv;
1733 1.1 alnsn }
1734 1.1 alnsn
1735 1.1 alnsn void
1736 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
1737 1.1 alnsn {
1738 1.1 alnsn sljit_free_code((void *)code);
1739 1.1 alnsn }
1740