Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.6.2.1
      1  1.6.2.1    tls /*	$NetBSD: bpfjit.c,v 1.6.2.1 2014/08/10 06:56:15 tls Exp $	*/
      2      1.3  rmind 
      3      1.1  alnsn /*-
      4  1.6.2.1    tls  * Copyright (c) 2011-2014 Alexander Nasonov.
      5      1.1  alnsn  * All rights reserved.
      6      1.1  alnsn  *
      7      1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8      1.1  alnsn  * modification, are permitted provided that the following conditions
      9      1.1  alnsn  * are met:
     10      1.1  alnsn  *
     11      1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12      1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13      1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14      1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15      1.1  alnsn  *    the documentation and/or other materials provided with the
     16      1.1  alnsn  *    distribution.
     17      1.1  alnsn  *
     18      1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19      1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20      1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21      1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22      1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23      1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24      1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25      1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26      1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27      1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28      1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29      1.1  alnsn  * SUCH DAMAGE.
     30      1.1  alnsn  */
     31      1.1  alnsn 
     32      1.2  alnsn #include <sys/cdefs.h>
     33      1.2  alnsn #ifdef _KERNEL
     34  1.6.2.1    tls __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.6.2.1 2014/08/10 06:56:15 tls Exp $");
     35      1.2  alnsn #else
     36  1.6.2.1    tls __RCSID("$NetBSD: bpfjit.c,v 1.6.2.1 2014/08/10 06:56:15 tls Exp $");
     37      1.2  alnsn #endif
     38      1.2  alnsn 
     39      1.3  rmind #include <sys/types.h>
     40      1.3  rmind #include <sys/queue.h>
     41      1.1  alnsn 
     42      1.1  alnsn #ifndef _KERNEL
     43      1.1  alnsn #include <assert.h>
     44  1.6.2.1    tls #define BJ_ASSERT(c) assert(c)
     45  1.6.2.1    tls #else
     46  1.6.2.1    tls #define BJ_ASSERT(c) KASSERT(c)
     47  1.6.2.1    tls #endif
     48  1.6.2.1    tls 
     49  1.6.2.1    tls #ifndef _KERNEL
     50  1.6.2.1    tls #include <stdlib.h>
     51  1.6.2.1    tls #define BJ_ALLOC(sz) malloc(sz)
     52  1.6.2.1    tls #define BJ_FREE(p, sz) free(p)
     53      1.1  alnsn #else
     54      1.3  rmind #include <sys/kmem.h>
     55  1.6.2.1    tls #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56  1.6.2.1    tls #define BJ_FREE(p, sz) kmem_free(p, sz)
     57      1.1  alnsn #endif
     58      1.1  alnsn 
     59      1.1  alnsn #ifndef _KERNEL
     60      1.1  alnsn #include <limits.h>
     61      1.1  alnsn #include <stdbool.h>
     62      1.1  alnsn #include <stddef.h>
     63      1.1  alnsn #include <stdint.h>
     64      1.1  alnsn #else
     65      1.1  alnsn #include <sys/atomic.h>
     66      1.1  alnsn #include <sys/module.h>
     67      1.1  alnsn #endif
     68      1.1  alnsn 
     69      1.5  rmind #define	__BPF_PRIVATE
     70      1.5  rmind #include <net/bpf.h>
     71      1.3  rmind #include <net/bpfjit.h>
     72      1.1  alnsn #include <sljitLir.h>
     73      1.1  alnsn 
     74  1.6.2.1    tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75  1.6.2.1    tls #include <stdio.h> /* for stderr */
     76  1.6.2.1    tls #endif
     77  1.6.2.1    tls 
     78  1.6.2.1    tls /*
     79  1.6.2.1    tls  * Arguments of generated bpfjit_func_t.
     80  1.6.2.1    tls  * The first argument is reassigned upon entry
     81  1.6.2.1    tls  * to a more frequently used buf argument.
     82  1.6.2.1    tls  */
     83  1.6.2.1    tls #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84  1.6.2.1    tls #define BJ_ARGS		SLJIT_SAVED_REG2
     85  1.6.2.1    tls 
     86  1.6.2.1    tls /*
     87  1.6.2.1    tls  * Permanent register assignments.
     88  1.6.2.1    tls  */
     89  1.6.2.1    tls #define BJ_BUF		SLJIT_SAVED_REG1
     90  1.6.2.1    tls //#define BJ_ARGS	SLJIT_SAVED_REG2
     91  1.6.2.1    tls #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92  1.6.2.1    tls #define BJ_AREG		SLJIT_SCRATCH_REG1
     93  1.6.2.1    tls #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94  1.6.2.1    tls #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95  1.6.2.1    tls #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96  1.6.2.1    tls #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97  1.6.2.1    tls 
     98  1.6.2.1    tls #ifdef _KERNEL
     99  1.6.2.1    tls #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    100  1.6.2.1    tls #else
    101  1.6.2.1    tls #define MAX_MEMWORDS BPF_MEMWORDS
    102  1.6.2.1    tls #endif
    103  1.6.2.1    tls 
    104  1.6.2.1    tls #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    105  1.6.2.1    tls #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    106  1.6.2.1    tls #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    107  1.6.2.1    tls #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    108      1.1  alnsn 
    109  1.6.2.1    tls /*
    110  1.6.2.1    tls  * Get a number of memwords and external memwords from a bpf_ctx object.
    111      1.1  alnsn  */
    112  1.6.2.1    tls #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    113  1.6.2.1    tls #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    114      1.1  alnsn 
    115      1.1  alnsn /*
    116  1.6.2.1    tls  * Optimization hints.
    117  1.6.2.1    tls  */
    118  1.6.2.1    tls typedef unsigned int bpfjit_hint_t;
    119  1.6.2.1    tls #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    120  1.6.2.1    tls #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    121  1.6.2.1    tls #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    122  1.6.2.1    tls #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    123  1.6.2.1    tls #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    124  1.6.2.1    tls #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    125  1.6.2.1    tls #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    126  1.6.2.1    tls #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    127  1.6.2.1    tls 
    128  1.6.2.1    tls /*
    129  1.6.2.1    tls  * Datatype for Array Bounds Check Elimination (ABC) pass.
    130  1.6.2.1    tls  */
    131  1.6.2.1    tls typedef uint64_t bpfjit_abc_length_t;
    132  1.6.2.1    tls #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    133  1.6.2.1    tls 
    134  1.6.2.1    tls struct bpfjit_stack
    135  1.6.2.1    tls {
    136  1.6.2.1    tls 	bpf_ctx_t *ctx;
    137  1.6.2.1    tls 	uint32_t *extmem; /* pointer to external memory store */
    138  1.6.2.1    tls 	uint32_t reg; /* saved A or X register */
    139  1.6.2.1    tls #ifdef _KERNEL
    140  1.6.2.1    tls 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    141  1.6.2.1    tls #endif
    142  1.6.2.1    tls 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    143  1.6.2.1    tls };
    144  1.6.2.1    tls 
    145  1.6.2.1    tls /*
    146  1.6.2.1    tls  * Data for BPF_JMP instruction.
    147  1.6.2.1    tls  * Forward declaration for struct bpfjit_jump.
    148  1.6.2.1    tls  */
    149  1.6.2.1    tls struct bpfjit_jump_data;
    150  1.6.2.1    tls 
    151  1.6.2.1    tls /*
    152  1.6.2.1    tls  * Node of bjumps list.
    153      1.1  alnsn  */
    154      1.3  rmind struct bpfjit_jump {
    155  1.6.2.1    tls 	struct sljit_jump *sjump;
    156  1.6.2.1    tls 	SLIST_ENTRY(bpfjit_jump) entries;
    157  1.6.2.1    tls 	struct bpfjit_jump_data *jdata;
    158      1.1  alnsn };
    159      1.1  alnsn 
    160      1.1  alnsn /*
    161      1.1  alnsn  * Data for BPF_JMP instruction.
    162      1.1  alnsn  */
    163      1.3  rmind struct bpfjit_jump_data {
    164      1.1  alnsn 	/*
    165  1.6.2.1    tls 	 * These entries make up bjumps list:
    166  1.6.2.1    tls 	 * jtf[0] - when coming from jt path,
    167  1.6.2.1    tls 	 * jtf[1] - when coming from jf path.
    168  1.6.2.1    tls 	 */
    169  1.6.2.1    tls 	struct bpfjit_jump jtf[2];
    170  1.6.2.1    tls 	/*
    171  1.6.2.1    tls 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    172  1.6.2.1    tls 	 */
    173  1.6.2.1    tls 	bpfjit_abc_length_t abc_length;
    174  1.6.2.1    tls 	/*
    175  1.6.2.1    tls 	 * Length checked by the last out-of-bounds check.
    176      1.1  alnsn 	 */
    177  1.6.2.1    tls 	bpfjit_abc_length_t checked_length;
    178      1.1  alnsn };
    179      1.1  alnsn 
    180      1.1  alnsn /*
    181      1.1  alnsn  * Data for "read from packet" instructions.
    182      1.1  alnsn  * See also read_pkt_insn() function below.
    183      1.1  alnsn  */
    184      1.3  rmind struct bpfjit_read_pkt_data {
    185      1.1  alnsn 	/*
    186  1.6.2.1    tls 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    187      1.1  alnsn 	 */
    188  1.6.2.1    tls 	bpfjit_abc_length_t abc_length;
    189  1.6.2.1    tls 	/*
    190  1.6.2.1    tls 	 * If positive, emit "if (buflen < check_length) return 0"
    191  1.6.2.1    tls 	 * out-of-bounds check.
    192  1.6.2.1    tls 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    193  1.6.2.1    tls 	 */
    194  1.6.2.1    tls 	bpfjit_abc_length_t check_length;
    195      1.1  alnsn };
    196      1.1  alnsn 
    197      1.1  alnsn /*
    198      1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    199      1.1  alnsn  */
    200      1.3  rmind struct bpfjit_insn_data {
    201      1.1  alnsn 	/* List of jumps to this insn. */
    202  1.6.2.1    tls 	SLIST_HEAD(, bpfjit_jump) bjumps;
    203      1.1  alnsn 
    204      1.1  alnsn 	union {
    205  1.6.2.1    tls 		struct bpfjit_jump_data     jdata;
    206  1.6.2.1    tls 		struct bpfjit_read_pkt_data rdata;
    207  1.6.2.1    tls 	} u;
    208      1.1  alnsn 
    209  1.6.2.1    tls 	bpf_memword_init_t invalid;
    210  1.6.2.1    tls 	bool unreachable;
    211      1.1  alnsn };
    212      1.1  alnsn 
    213      1.1  alnsn #ifdef _KERNEL
    214      1.1  alnsn 
    215      1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    216      1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    217      1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    218      1.1  alnsn 
    219      1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    220      1.1  alnsn 
    221      1.1  alnsn static int
    222      1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    223      1.1  alnsn {
    224      1.1  alnsn 
    225      1.1  alnsn 	switch (cmd) {
    226      1.1  alnsn 	case MODULE_CMD_INIT:
    227      1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    228      1.1  alnsn 		membar_producer();
    229      1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    230      1.1  alnsn 		membar_producer();
    231      1.1  alnsn 		return 0;
    232      1.1  alnsn 
    233      1.1  alnsn 	case MODULE_CMD_FINI:
    234      1.1  alnsn 		return EOPNOTSUPP;
    235      1.1  alnsn 
    236      1.1  alnsn 	default:
    237      1.1  alnsn 		return ENOTTY;
    238      1.1  alnsn 	}
    239      1.1  alnsn }
    240      1.1  alnsn #endif
    241      1.1  alnsn 
    242  1.6.2.1    tls /*
    243  1.6.2.1    tls  * Return a number of scratch registers to pass
    244  1.6.2.1    tls  * to sljit_emit_enter() function.
    245  1.6.2.1    tls  */
    246  1.6.2.1    tls static sljit_si
    247  1.6.2.1    tls nscratches(bpfjit_hint_t hints)
    248  1.6.2.1    tls {
    249  1.6.2.1    tls 	sljit_si rv = 2;
    250  1.6.2.1    tls 
    251  1.6.2.1    tls #ifdef _KERNEL
    252  1.6.2.1    tls 	if (hints & BJ_HINT_PKT)
    253  1.6.2.1    tls 		rv = 3; /* xcall with three arguments */
    254  1.6.2.1    tls #endif
    255  1.6.2.1    tls 
    256  1.6.2.1    tls 	if (hints & BJ_HINT_IND)
    257  1.6.2.1    tls 		rv = 3; /* uses BJ_TMP2REG */
    258  1.6.2.1    tls 
    259  1.6.2.1    tls 	if (hints & BJ_HINT_COP)
    260  1.6.2.1    tls 		rv = 3; /* calls copfunc with three arguments */
    261  1.6.2.1    tls 
    262  1.6.2.1    tls 	if (hints & BJ_HINT_XREG)
    263  1.6.2.1    tls 		rv = 4; /* uses BJ_XREG */
    264  1.6.2.1    tls 
    265  1.6.2.1    tls #ifdef _KERNEL
    266  1.6.2.1    tls 	if (hints & BJ_HINT_LDX)
    267  1.6.2.1    tls 		rv = 5; /* uses BJ_TMP3REG */
    268  1.6.2.1    tls #endif
    269  1.6.2.1    tls 
    270  1.6.2.1    tls 	if (hints & BJ_HINT_COPX)
    271  1.6.2.1    tls 		rv = 5; /* uses BJ_TMP3REG */
    272  1.6.2.1    tls 
    273  1.6.2.1    tls 	return rv;
    274  1.6.2.1    tls }
    275  1.6.2.1    tls 
    276  1.6.2.1    tls /*
    277  1.6.2.1    tls  * Return a number of saved registers to pass
    278  1.6.2.1    tls  * to sljit_emit_enter() function.
    279  1.6.2.1    tls  */
    280  1.6.2.1    tls static sljit_si
    281  1.6.2.1    tls nsaveds(bpfjit_hint_t hints)
    282  1.6.2.1    tls {
    283  1.6.2.1    tls 	sljit_si rv = 3;
    284  1.6.2.1    tls 
    285  1.6.2.1    tls 	return rv;
    286  1.6.2.1    tls }
    287  1.6.2.1    tls 
    288      1.1  alnsn static uint32_t
    289  1.6.2.1    tls read_width(const struct bpf_insn *pc)
    290      1.1  alnsn {
    291      1.1  alnsn 
    292      1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    293      1.1  alnsn 	case BPF_W:
    294      1.1  alnsn 		return 4;
    295      1.1  alnsn 	case BPF_H:
    296      1.1  alnsn 		return 2;
    297      1.1  alnsn 	case BPF_B:
    298      1.1  alnsn 		return 1;
    299      1.1  alnsn 	default:
    300  1.6.2.1    tls 		BJ_ASSERT(false);
    301      1.1  alnsn 		return 0;
    302      1.1  alnsn 	}
    303      1.1  alnsn }
    304      1.1  alnsn 
    305      1.1  alnsn /*
    306  1.6.2.1    tls  * Copy buf and buflen members of bpf_args from BJ_ARGS
    307  1.6.2.1    tls  * pointer to BJ_BUF and BJ_BUFLEN registers.
    308      1.1  alnsn  */
    309  1.6.2.1    tls static int
    310  1.6.2.1    tls load_buf_buflen(struct sljit_compiler *compiler)
    311      1.1  alnsn {
    312  1.6.2.1    tls 	int status;
    313      1.1  alnsn 
    314  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    315  1.6.2.1    tls 	    SLJIT_MOV_P,
    316  1.6.2.1    tls 	    BJ_BUF, 0,
    317  1.6.2.1    tls 	    SLJIT_MEM1(BJ_ARGS),
    318  1.6.2.1    tls 	    offsetof(struct bpf_args, pkt));
    319  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    320  1.6.2.1    tls 		return status;
    321  1.6.2.1    tls 
    322  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    323  1.6.2.1    tls 	    SLJIT_MOV, /* size_t source */
    324  1.6.2.1    tls 	    BJ_BUFLEN, 0,
    325  1.6.2.1    tls 	    SLJIT_MEM1(BJ_ARGS),
    326  1.6.2.1    tls 	    offsetof(struct bpf_args, buflen));
    327  1.6.2.1    tls 
    328  1.6.2.1    tls 	return status;
    329  1.6.2.1    tls }
    330  1.6.2.1    tls 
    331  1.6.2.1    tls static bool
    332  1.6.2.1    tls grow_jumps(struct sljit_jump ***jumps, size_t *size)
    333  1.6.2.1    tls {
    334  1.6.2.1    tls 	struct sljit_jump **newptr;
    335  1.6.2.1    tls 	const size_t elemsz = sizeof(struct sljit_jump *);
    336  1.6.2.1    tls 	size_t old_size = *size;
    337  1.6.2.1    tls 	size_t new_size = 2 * old_size;
    338  1.6.2.1    tls 
    339  1.6.2.1    tls 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    340  1.6.2.1    tls 		return false;
    341  1.6.2.1    tls 
    342  1.6.2.1    tls 	newptr = BJ_ALLOC(new_size * elemsz);
    343  1.6.2.1    tls 	if (newptr == NULL)
    344  1.6.2.1    tls 		return false;
    345  1.6.2.1    tls 
    346  1.6.2.1    tls 	memcpy(newptr, *jumps, old_size * elemsz);
    347  1.6.2.1    tls 	BJ_FREE(*jumps, old_size * elemsz);
    348  1.6.2.1    tls 
    349  1.6.2.1    tls 	*jumps = newptr;
    350  1.6.2.1    tls 	*size = new_size;
    351  1.6.2.1    tls 	return true;
    352  1.6.2.1    tls }
    353  1.6.2.1    tls 
    354  1.6.2.1    tls static bool
    355  1.6.2.1    tls append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    356  1.6.2.1    tls     size_t *size, size_t *max_size)
    357  1.6.2.1    tls {
    358  1.6.2.1    tls 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    359  1.6.2.1    tls 		return false;
    360  1.6.2.1    tls 
    361  1.6.2.1    tls 	(*jumps)[(*size)++] = jump;
    362  1.6.2.1    tls 	return true;
    363      1.1  alnsn }
    364      1.1  alnsn 
    365      1.1  alnsn /*
    366  1.6.2.1    tls  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    367      1.1  alnsn  */
    368      1.1  alnsn static int
    369  1.6.2.1    tls emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    370      1.1  alnsn {
    371      1.1  alnsn 
    372      1.1  alnsn 	return sljit_emit_op1(compiler,
    373      1.1  alnsn 	    SLJIT_MOV_UB,
    374  1.6.2.1    tls 	    BJ_AREG, 0,
    375  1.6.2.1    tls 	    SLJIT_MEM1(src), k);
    376      1.1  alnsn }
    377      1.1  alnsn 
    378      1.1  alnsn /*
    379  1.6.2.1    tls  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    380      1.1  alnsn  */
    381      1.1  alnsn static int
    382  1.6.2.1    tls emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    383      1.1  alnsn {
    384      1.1  alnsn 	int status;
    385      1.1  alnsn 
    386  1.6.2.1    tls 	BJ_ASSERT(k <= UINT32_MAX - 1);
    387  1.6.2.1    tls 
    388  1.6.2.1    tls 	/* A = buf[k]; */
    389      1.1  alnsn 	status = sljit_emit_op1(compiler,
    390      1.1  alnsn 	    SLJIT_MOV_UB,
    391  1.6.2.1    tls 	    BJ_AREG, 0,
    392  1.6.2.1    tls 	    SLJIT_MEM1(src), k);
    393      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    394      1.1  alnsn 		return status;
    395      1.1  alnsn 
    396  1.6.2.1    tls 	/* tmp1 = buf[k+1]; */
    397      1.1  alnsn 	status = sljit_emit_op1(compiler,
    398      1.1  alnsn 	    SLJIT_MOV_UB,
    399  1.6.2.1    tls 	    BJ_TMP1REG, 0,
    400  1.6.2.1    tls 	    SLJIT_MEM1(src), k+1);
    401      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    402      1.1  alnsn 		return status;
    403      1.1  alnsn 
    404  1.6.2.1    tls 	/* A = A << 8; */
    405      1.1  alnsn 	status = sljit_emit_op2(compiler,
    406      1.1  alnsn 	    SLJIT_SHL,
    407  1.6.2.1    tls 	    BJ_AREG, 0,
    408  1.6.2.1    tls 	    BJ_AREG, 0,
    409      1.1  alnsn 	    SLJIT_IMM, 8);
    410      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    411      1.1  alnsn 		return status;
    412      1.1  alnsn 
    413      1.1  alnsn 	/* A = A + tmp1; */
    414      1.1  alnsn 	status = sljit_emit_op2(compiler,
    415      1.1  alnsn 	    SLJIT_ADD,
    416  1.6.2.1    tls 	    BJ_AREG, 0,
    417  1.6.2.1    tls 	    BJ_AREG, 0,
    418  1.6.2.1    tls 	    BJ_TMP1REG, 0);
    419      1.1  alnsn 	return status;
    420      1.1  alnsn }
    421      1.1  alnsn 
    422      1.1  alnsn /*
    423  1.6.2.1    tls  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    424      1.1  alnsn  */
    425      1.1  alnsn static int
    426  1.6.2.1    tls emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    427      1.1  alnsn {
    428      1.1  alnsn 	int status;
    429      1.1  alnsn 
    430  1.6.2.1    tls 	BJ_ASSERT(k <= UINT32_MAX - 3);
    431      1.1  alnsn 
    432  1.6.2.1    tls 	/* A = buf[k]; */
    433      1.1  alnsn 	status = sljit_emit_op1(compiler,
    434      1.1  alnsn 	    SLJIT_MOV_UB,
    435  1.6.2.1    tls 	    BJ_AREG, 0,
    436  1.6.2.1    tls 	    SLJIT_MEM1(src), k);
    437      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    438      1.1  alnsn 		return status;
    439      1.1  alnsn 
    440  1.6.2.1    tls 	/* tmp1 = buf[k+1]; */
    441      1.1  alnsn 	status = sljit_emit_op1(compiler,
    442      1.1  alnsn 	    SLJIT_MOV_UB,
    443  1.6.2.1    tls 	    BJ_TMP1REG, 0,
    444  1.6.2.1    tls 	    SLJIT_MEM1(src), k+1);
    445      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    446      1.1  alnsn 		return status;
    447      1.1  alnsn 
    448  1.6.2.1    tls 	/* A = A << 8; */
    449      1.1  alnsn 	status = sljit_emit_op2(compiler,
    450      1.1  alnsn 	    SLJIT_SHL,
    451  1.6.2.1    tls 	    BJ_AREG, 0,
    452  1.6.2.1    tls 	    BJ_AREG, 0,
    453  1.6.2.1    tls 	    SLJIT_IMM, 8);
    454      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    455      1.1  alnsn 		return status;
    456      1.1  alnsn 
    457      1.1  alnsn 	/* A = A + tmp1; */
    458      1.1  alnsn 	status = sljit_emit_op2(compiler,
    459      1.1  alnsn 	    SLJIT_ADD,
    460  1.6.2.1    tls 	    BJ_AREG, 0,
    461  1.6.2.1    tls 	    BJ_AREG, 0,
    462  1.6.2.1    tls 	    BJ_TMP1REG, 0);
    463      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    464      1.1  alnsn 		return status;
    465      1.1  alnsn 
    466      1.1  alnsn 	/* tmp1 = buf[k+2]; */
    467      1.1  alnsn 	status = sljit_emit_op1(compiler,
    468      1.1  alnsn 	    SLJIT_MOV_UB,
    469  1.6.2.1    tls 	    BJ_TMP1REG, 0,
    470  1.6.2.1    tls 	    SLJIT_MEM1(src), k+2);
    471      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    472      1.1  alnsn 		return status;
    473      1.1  alnsn 
    474  1.6.2.1    tls 	/* A = A << 8; */
    475      1.1  alnsn 	status = sljit_emit_op2(compiler,
    476      1.1  alnsn 	    SLJIT_SHL,
    477  1.6.2.1    tls 	    BJ_AREG, 0,
    478  1.6.2.1    tls 	    BJ_AREG, 0,
    479  1.6.2.1    tls 	    SLJIT_IMM, 8);
    480      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    481      1.1  alnsn 		return status;
    482      1.1  alnsn 
    483  1.6.2.1    tls 	/* A = A + tmp1; */
    484      1.1  alnsn 	status = sljit_emit_op2(compiler,
    485      1.1  alnsn 	    SLJIT_ADD,
    486  1.6.2.1    tls 	    BJ_AREG, 0,
    487  1.6.2.1    tls 	    BJ_AREG, 0,
    488  1.6.2.1    tls 	    BJ_TMP1REG, 0);
    489  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    490  1.6.2.1    tls 		return status;
    491  1.6.2.1    tls 
    492  1.6.2.1    tls 	/* tmp1 = buf[k+3]; */
    493  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    494  1.6.2.1    tls 	    SLJIT_MOV_UB,
    495  1.6.2.1    tls 	    BJ_TMP1REG, 0,
    496  1.6.2.1    tls 	    SLJIT_MEM1(src), k+3);
    497      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    498      1.1  alnsn 		return status;
    499      1.1  alnsn 
    500  1.6.2.1    tls 	/* A = A << 8; */
    501      1.1  alnsn 	status = sljit_emit_op2(compiler,
    502      1.1  alnsn 	    SLJIT_SHL,
    503  1.6.2.1    tls 	    BJ_AREG, 0,
    504  1.6.2.1    tls 	    BJ_AREG, 0,
    505      1.1  alnsn 	    SLJIT_IMM, 8);
    506      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    507      1.1  alnsn 		return status;
    508      1.1  alnsn 
    509      1.1  alnsn 	/* A = A + tmp1; */
    510      1.1  alnsn 	status = sljit_emit_op2(compiler,
    511      1.1  alnsn 	    SLJIT_ADD,
    512  1.6.2.1    tls 	    BJ_AREG, 0,
    513  1.6.2.1    tls 	    BJ_AREG, 0,
    514  1.6.2.1    tls 	    BJ_TMP1REG, 0);
    515      1.1  alnsn 	return status;
    516      1.1  alnsn }
    517      1.1  alnsn 
    518      1.1  alnsn #ifdef _KERNEL
    519      1.1  alnsn /*
    520  1.6.2.1    tls  * Emit code for m_xword/m_xhalf/m_xbyte call.
    521      1.1  alnsn  *
    522  1.6.2.1    tls  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    523  1.6.2.1    tls  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    524  1.6.2.1    tls  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    525  1.6.2.1    tls  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    526  1.6.2.1    tls  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    527  1.6.2.1    tls  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    528  1.6.2.1    tls  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    529      1.1  alnsn  */
    530      1.1  alnsn static int
    531  1.6.2.1    tls emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    532  1.6.2.1    tls     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    533  1.6.2.1    tls     size_t *ret0_size, size_t *ret0_maxsize,
    534      1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    535      1.1  alnsn {
    536  1.6.2.1    tls #if BJ_XREG == SLJIT_RETURN_REG   || \
    537  1.6.2.1    tls     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    538  1.6.2.1    tls     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    539  1.6.2.1    tls     BJ_XREG == SLJIT_SCRATCH_REG3
    540      1.1  alnsn #error "Not supported assignment of registers."
    541      1.1  alnsn #endif
    542  1.6.2.1    tls 	struct sljit_jump *jump;
    543  1.6.2.1    tls 	sljit_si save_reg;
    544      1.1  alnsn 	int status;
    545      1.1  alnsn 
    546  1.6.2.1    tls 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    547      1.1  alnsn 
    548  1.6.2.1    tls 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    549  1.6.2.1    tls 		/* save A or X */
    550      1.1  alnsn 		status = sljit_emit_op1(compiler,
    551  1.6.2.1    tls 		    SLJIT_MOV_UI, /* uint32_t destination */
    552  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    553  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, reg),
    554  1.6.2.1    tls 		    save_reg, 0);
    555      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    556      1.1  alnsn 			return status;
    557      1.1  alnsn 	}
    558      1.1  alnsn 
    559      1.1  alnsn 	/*
    560  1.6.2.1    tls 	 * Prepare registers for fn(mbuf, k, &err) call.
    561      1.1  alnsn 	 */
    562      1.1  alnsn 	status = sljit_emit_op1(compiler,
    563      1.1  alnsn 	    SLJIT_MOV,
    564  1.6.2.1    tls 	    SLJIT_SCRATCH_REG1, 0,
    565  1.6.2.1    tls 	    BJ_BUF, 0);
    566      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    567      1.1  alnsn 		return status;
    568      1.1  alnsn 
    569      1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    570  1.6.2.1    tls 		if (pc->k == 0) {
    571  1.6.2.1    tls 			/* k = X; */
    572  1.6.2.1    tls 			status = sljit_emit_op1(compiler,
    573  1.6.2.1    tls 			    SLJIT_MOV,
    574  1.6.2.1    tls 			    SLJIT_SCRATCH_REG2, 0,
    575  1.6.2.1    tls 			    BJ_XREG, 0);
    576  1.6.2.1    tls 			if (status != SLJIT_SUCCESS)
    577  1.6.2.1    tls 				return status;
    578  1.6.2.1    tls 		} else {
    579  1.6.2.1    tls 			/* if (X > UINT32_MAX - pc->k) return 0; */
    580  1.6.2.1    tls 			jump = sljit_emit_cmp(compiler,
    581  1.6.2.1    tls 			    SLJIT_C_GREATER,
    582  1.6.2.1    tls 			    BJ_XREG, 0,
    583  1.6.2.1    tls 			    SLJIT_IMM, UINT32_MAX - pc->k);
    584  1.6.2.1    tls 			if (jump == NULL)
    585  1.6.2.1    tls 				return SLJIT_ERR_ALLOC_FAILED;
    586  1.6.2.1    tls 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    587  1.6.2.1    tls 				return SLJIT_ERR_ALLOC_FAILED;
    588  1.6.2.1    tls 
    589  1.6.2.1    tls 			/* k = X + pc->k; */
    590  1.6.2.1    tls 			status = sljit_emit_op2(compiler,
    591  1.6.2.1    tls 			    SLJIT_ADD,
    592  1.6.2.1    tls 			    SLJIT_SCRATCH_REG2, 0,
    593  1.6.2.1    tls 			    BJ_XREG, 0,
    594  1.6.2.1    tls 			    SLJIT_IMM, (uint32_t)pc->k);
    595  1.6.2.1    tls 			if (status != SLJIT_SUCCESS)
    596  1.6.2.1    tls 				return status;
    597  1.6.2.1    tls 		}
    598      1.1  alnsn 	} else {
    599  1.6.2.1    tls 		/* k = pc->k */
    600      1.1  alnsn 		status = sljit_emit_op1(compiler,
    601      1.1  alnsn 		    SLJIT_MOV,
    602  1.6.2.1    tls 		    SLJIT_SCRATCH_REG2, 0,
    603      1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    604  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    605  1.6.2.1    tls 			return status;
    606      1.1  alnsn 	}
    607      1.1  alnsn 
    608  1.6.2.1    tls 	/*
    609  1.6.2.1    tls 	 * The third argument of fn is an address on stack.
    610  1.6.2.1    tls 	 */
    611      1.1  alnsn 	status = sljit_get_local_base(compiler,
    612  1.6.2.1    tls 	    SLJIT_SCRATCH_REG3, 0,
    613  1.6.2.1    tls 	    offsetof(struct bpfjit_stack, err));
    614      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    615      1.1  alnsn 		return status;
    616      1.1  alnsn 
    617      1.1  alnsn 	/* fn(buf, k, &err); */
    618      1.1  alnsn 	status = sljit_emit_ijump(compiler,
    619      1.1  alnsn 	    SLJIT_CALL3,
    620      1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    621  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    622  1.6.2.1    tls 		return status;
    623      1.1  alnsn 
    624  1.6.2.1    tls 	if (dst != SLJIT_RETURN_REG) {
    625      1.1  alnsn 		/* move return value to dst */
    626      1.1  alnsn 		status = sljit_emit_op1(compiler,
    627      1.1  alnsn 		    SLJIT_MOV,
    628  1.6.2.1    tls 		    dst, 0,
    629      1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    630      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    631      1.1  alnsn 			return status;
    632  1.6.2.1    tls 	}
    633      1.1  alnsn 
    634  1.6.2.1    tls 	/* if (*err != 0) return 0; */
    635  1.6.2.1    tls 	jump = sljit_emit_cmp(compiler,
    636  1.6.2.1    tls 	    SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
    637  1.6.2.1    tls 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    638  1.6.2.1    tls 	    offsetof(struct bpfjit_stack, err),
    639  1.6.2.1    tls 	    SLJIT_IMM, 0);
    640  1.6.2.1    tls 	if (jump == NULL)
    641  1.6.2.1    tls 		return SLJIT_ERR_ALLOC_FAILED;
    642  1.6.2.1    tls 
    643  1.6.2.1    tls 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    644  1.6.2.1    tls 		return SLJIT_ERR_ALLOC_FAILED;
    645  1.6.2.1    tls 
    646  1.6.2.1    tls 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    647  1.6.2.1    tls 		/* restore A or X */
    648      1.1  alnsn 		status = sljit_emit_op1(compiler,
    649  1.6.2.1    tls 		    SLJIT_MOV_UI, /* uint32_t source */
    650  1.6.2.1    tls 		    save_reg, 0,
    651  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    652  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, reg));
    653      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    654      1.1  alnsn 			return status;
    655  1.6.2.1    tls 	}
    656  1.6.2.1    tls 
    657  1.6.2.1    tls 	return SLJIT_SUCCESS;
    658  1.6.2.1    tls }
    659  1.6.2.1    tls #endif
    660  1.6.2.1    tls 
    661  1.6.2.1    tls /*
    662  1.6.2.1    tls  * Emit code for BPF_COP and BPF_COPX instructions.
    663  1.6.2.1    tls  */
    664  1.6.2.1    tls static int
    665  1.6.2.1    tls emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    666  1.6.2.1    tls     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    667  1.6.2.1    tls     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    668  1.6.2.1    tls {
    669  1.6.2.1    tls #if BJ_XREG    == SLJIT_RETURN_REG   || \
    670  1.6.2.1    tls     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    671  1.6.2.1    tls     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    672  1.6.2.1    tls     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    673  1.6.2.1    tls     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    674  1.6.2.1    tls     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    675  1.6.2.1    tls     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    676  1.6.2.1    tls #error "Not supported assignment of registers."
    677  1.6.2.1    tls #endif
    678      1.1  alnsn 
    679  1.6.2.1    tls 	struct sljit_jump *jump;
    680  1.6.2.1    tls 	sljit_si call_reg;
    681  1.6.2.1    tls 	sljit_sw call_off;
    682  1.6.2.1    tls 	int status;
    683  1.6.2.1    tls 
    684  1.6.2.1    tls 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    685  1.6.2.1    tls 
    686  1.6.2.1    tls 	if (hints & BJ_HINT_LDX) {
    687  1.6.2.1    tls 		/* save X */
    688  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    689  1.6.2.1    tls 		    SLJIT_MOV_UI, /* uint32_t destination */
    690  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    691  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, reg),
    692  1.6.2.1    tls 		    BJ_XREG, 0);
    693  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    694  1.6.2.1    tls 			return status;
    695  1.6.2.1    tls 	}
    696  1.6.2.1    tls 
    697  1.6.2.1    tls 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    698  1.6.2.1    tls 		call_reg = SLJIT_IMM;
    699  1.6.2.1    tls 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    700  1.6.2.1    tls 	} else {
    701  1.6.2.1    tls 		/* if (X >= bc->nfuncs) return 0; */
    702  1.6.2.1    tls 		jump = sljit_emit_cmp(compiler,
    703  1.6.2.1    tls 		    SLJIT_C_GREATER_EQUAL,
    704  1.6.2.1    tls 		    BJ_XREG, 0,
    705  1.6.2.1    tls 		    SLJIT_IMM, bc->nfuncs);
    706  1.6.2.1    tls 		if (jump == NULL)
    707  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    708  1.6.2.1    tls 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    709  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    710  1.6.2.1    tls 
    711  1.6.2.1    tls 		/* tmp1 = ctx; */
    712  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    713  1.6.2.1    tls 		    SLJIT_MOV_P,
    714  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    715  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    716  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, ctx));
    717  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    718  1.6.2.1    tls 			return status;
    719  1.6.2.1    tls 
    720  1.6.2.1    tls 		/* tmp1 = ctx->copfuncs; */
    721  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    722  1.6.2.1    tls 		    SLJIT_MOV_P,
    723  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    724  1.6.2.1    tls 		    SLJIT_MEM1(BJ_TMP1REG),
    725  1.6.2.1    tls 		    offsetof(struct bpf_ctx, copfuncs));
    726  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    727  1.6.2.1    tls 			return status;
    728  1.6.2.1    tls 
    729  1.6.2.1    tls 		/* tmp2 = X; */
    730      1.1  alnsn 		status = sljit_emit_op1(compiler,
    731      1.1  alnsn 		    SLJIT_MOV,
    732  1.6.2.1    tls 		    BJ_TMP2REG, 0,
    733  1.6.2.1    tls 		    BJ_XREG, 0);
    734  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    735  1.6.2.1    tls 			return status;
    736  1.6.2.1    tls 
    737  1.6.2.1    tls 		/* tmp3 = ctx->copfuncs[tmp2]; */
    738  1.6.2.1    tls 		call_reg = BJ_TMP3REG;
    739  1.6.2.1    tls 		call_off = 0;
    740  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    741  1.6.2.1    tls 		    SLJIT_MOV_P,
    742  1.6.2.1    tls 		    call_reg, call_off,
    743  1.6.2.1    tls 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    744  1.6.2.1    tls 		    SLJIT_WORD_SHIFT);
    745      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    746      1.1  alnsn 			return status;
    747      1.1  alnsn 	}
    748      1.1  alnsn 
    749  1.6.2.1    tls 	/*
    750  1.6.2.1    tls 	 * Copy bpf_copfunc_t arguments to registers.
    751  1.6.2.1    tls 	 */
    752  1.6.2.1    tls #if BJ_AREG != SLJIT_SCRATCH_REG3
    753      1.1  alnsn 	status = sljit_emit_op1(compiler,
    754      1.1  alnsn 	    SLJIT_MOV_UI,
    755  1.6.2.1    tls 	    SLJIT_SCRATCH_REG3, 0,
    756  1.6.2.1    tls 	    BJ_AREG, 0);
    757      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    758      1.1  alnsn 		return status;
    759  1.6.2.1    tls #endif
    760      1.1  alnsn 
    761  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    762  1.6.2.1    tls 	    SLJIT_MOV_P,
    763  1.6.2.1    tls 	    SLJIT_SCRATCH_REG1, 0,
    764  1.6.2.1    tls 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    765  1.6.2.1    tls 	    offsetof(struct bpfjit_stack, ctx));
    766  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    767  1.6.2.1    tls 		return status;
    768      1.1  alnsn 
    769  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    770  1.6.2.1    tls 	    SLJIT_MOV_P,
    771  1.6.2.1    tls 	    SLJIT_SCRATCH_REG2, 0,
    772  1.6.2.1    tls 	    BJ_ARGS, 0);
    773  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    774  1.6.2.1    tls 		return status;
    775  1.6.2.1    tls 
    776  1.6.2.1    tls 	status = sljit_emit_ijump(compiler,
    777  1.6.2.1    tls 	    SLJIT_CALL3, call_reg, call_off);
    778  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    779  1.6.2.1    tls 		return status;
    780  1.6.2.1    tls 
    781  1.6.2.1    tls #if BJ_AREG != SLJIT_RETURN_REG
    782  1.6.2.1    tls 	status = sljit_emit_op1(compiler,
    783  1.6.2.1    tls 	    SLJIT_MOV,
    784  1.6.2.1    tls 	    BJ_AREG, 0,
    785  1.6.2.1    tls 	    SLJIT_RETURN_REG, 0);
    786  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
    787  1.6.2.1    tls 		return status;
    788      1.1  alnsn #endif
    789      1.1  alnsn 
    790  1.6.2.1    tls 	if (hints & BJ_HINT_LDX) {
    791  1.6.2.1    tls 		/* restore X */
    792  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    793  1.6.2.1    tls 		    SLJIT_MOV_UI, /* uint32_t source */
    794  1.6.2.1    tls 		    BJ_XREG, 0,
    795  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    796  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, reg));
    797  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    798  1.6.2.1    tls 			return status;
    799  1.6.2.1    tls 	}
    800  1.6.2.1    tls 
    801  1.6.2.1    tls 	return SLJIT_SUCCESS;
    802  1.6.2.1    tls }
    803  1.6.2.1    tls 
    804      1.1  alnsn /*
    805      1.1  alnsn  * Generate code for
    806      1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    807      1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    808      1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    809      1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    810      1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    811      1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    812      1.1  alnsn  */
    813      1.1  alnsn static int
    814  1.6.2.1    tls emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    815  1.6.2.1    tls     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    816  1.6.2.1    tls     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    817      1.1  alnsn {
    818  1.6.2.1    tls 	int status = SLJIT_ERR_ALLOC_FAILED;
    819      1.1  alnsn 	uint32_t width;
    820  1.6.2.1    tls 	sljit_si ld_reg;
    821      1.1  alnsn 	struct sljit_jump *jump;
    822      1.1  alnsn #ifdef _KERNEL
    823      1.1  alnsn 	struct sljit_label *label;
    824      1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    825      1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    826      1.1  alnsn #endif
    827      1.1  alnsn 	const uint32_t k = pc->k;
    828      1.1  alnsn 
    829      1.1  alnsn #ifdef _KERNEL
    830      1.1  alnsn 	if (to_mchain_jump == NULL) {
    831      1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    832      1.1  alnsn 		    SLJIT_C_EQUAL,
    833  1.6.2.1    tls 		    BJ_BUFLEN, 0,
    834      1.1  alnsn 		    SLJIT_IMM, 0);
    835      1.1  alnsn 		if (to_mchain_jump == NULL)
    836  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    837      1.1  alnsn 	}
    838      1.1  alnsn #endif
    839      1.1  alnsn 
    840  1.6.2.1    tls 	ld_reg = BJ_BUF;
    841      1.1  alnsn 	width = read_width(pc);
    842      1.1  alnsn 
    843      1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    844      1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    845      1.1  alnsn 		status = sljit_emit_op2(compiler,
    846      1.1  alnsn 		    SLJIT_SUB,
    847  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    848  1.6.2.1    tls 		    BJ_BUFLEN, 0,
    849      1.1  alnsn 		    SLJIT_IMM, k + width);
    850      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    851      1.1  alnsn 			return status;
    852      1.1  alnsn 
    853  1.6.2.1    tls 		/* ld_reg = buf + X; */
    854  1.6.2.1    tls 		ld_reg = BJ_TMP2REG;
    855      1.1  alnsn 		status = sljit_emit_op2(compiler,
    856      1.1  alnsn 		    SLJIT_ADD,
    857  1.6.2.1    tls 		    ld_reg, 0,
    858  1.6.2.1    tls 		    BJ_BUF, 0,
    859  1.6.2.1    tls 		    BJ_XREG, 0);
    860      1.1  alnsn 		if (status != SLJIT_SUCCESS)
    861      1.1  alnsn 			return status;
    862      1.1  alnsn 
    863      1.1  alnsn 		/* if (tmp1 < X) return 0; */
    864      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    865      1.1  alnsn 		    SLJIT_C_LESS,
    866  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    867  1.6.2.1    tls 		    BJ_XREG, 0);
    868      1.1  alnsn 		if (jump == NULL)
    869  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    870  1.6.2.1    tls 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    871  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    872      1.1  alnsn 	}
    873      1.1  alnsn 
    874      1.1  alnsn 	switch (width) {
    875      1.1  alnsn 	case 4:
    876  1.6.2.1    tls 		status = emit_read32(compiler, ld_reg, k);
    877      1.1  alnsn 		break;
    878      1.1  alnsn 	case 2:
    879  1.6.2.1    tls 		status = emit_read16(compiler, ld_reg, k);
    880      1.1  alnsn 		break;
    881      1.1  alnsn 	case 1:
    882  1.6.2.1    tls 		status = emit_read8(compiler, ld_reg, k);
    883      1.1  alnsn 		break;
    884      1.1  alnsn 	}
    885      1.1  alnsn 
    886      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    887      1.1  alnsn 		return status;
    888      1.1  alnsn 
    889      1.1  alnsn #ifdef _KERNEL
    890      1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    891      1.1  alnsn 	if (over_mchain_jump == NULL)
    892  1.6.2.1    tls 		return SLJIT_ERR_ALLOC_FAILED;
    893      1.1  alnsn 
    894      1.1  alnsn 	/* entry point to mchain handler */
    895      1.1  alnsn 	label = sljit_emit_label(compiler);
    896      1.1  alnsn 	if (label == NULL)
    897  1.6.2.1    tls 		return SLJIT_ERR_ALLOC_FAILED;
    898      1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    899      1.1  alnsn 
    900      1.1  alnsn 	if (check_zero_buflen) {
    901      1.1  alnsn 		/* if (buflen != 0) return 0; */
    902      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    903      1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    904  1.6.2.1    tls 		    BJ_BUFLEN, 0,
    905      1.1  alnsn 		    SLJIT_IMM, 0);
    906      1.1  alnsn 		if (jump == NULL)
    907      1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    908  1.6.2.1    tls 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    909  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
    910      1.1  alnsn 	}
    911      1.1  alnsn 
    912      1.1  alnsn 	switch (width) {
    913      1.1  alnsn 	case 4:
    914  1.6.2.1    tls 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    915  1.6.2.1    tls 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    916      1.1  alnsn 		break;
    917      1.1  alnsn 	case 2:
    918  1.6.2.1    tls 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    919  1.6.2.1    tls 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    920      1.1  alnsn 		break;
    921      1.1  alnsn 	case 1:
    922  1.6.2.1    tls 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    923  1.6.2.1    tls 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    924      1.1  alnsn 		break;
    925      1.1  alnsn 	}
    926      1.1  alnsn 
    927      1.1  alnsn 	if (status != SLJIT_SUCCESS)
    928      1.1  alnsn 		return status;
    929      1.1  alnsn 
    930      1.1  alnsn 	label = sljit_emit_label(compiler);
    931      1.1  alnsn 	if (label == NULL)
    932      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    933      1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    934      1.1  alnsn #endif
    935      1.1  alnsn 
    936  1.6.2.1    tls 	return SLJIT_SUCCESS;
    937  1.6.2.1    tls }
    938  1.6.2.1    tls 
    939  1.6.2.1    tls static int
    940  1.6.2.1    tls emit_memload(struct sljit_compiler *compiler,
    941  1.6.2.1    tls     sljit_si dst, uint32_t k, size_t extwords)
    942  1.6.2.1    tls {
    943  1.6.2.1    tls 	int status;
    944  1.6.2.1    tls 	sljit_si src;
    945  1.6.2.1    tls 	sljit_sw srcw;
    946  1.6.2.1    tls 
    947  1.6.2.1    tls 	srcw = k * sizeof(uint32_t);
    948  1.6.2.1    tls 
    949  1.6.2.1    tls 	if (extwords == 0) {
    950  1.6.2.1    tls 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    951  1.6.2.1    tls 		srcw += offsetof(struct bpfjit_stack, mem);
    952  1.6.2.1    tls 	} else {
    953  1.6.2.1    tls 		/* copy extmem pointer to the tmp1 register */
    954  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    955  1.6.2.1    tls 		    SLJIT_MOV_P,
    956  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    957  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    958  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, extmem));
    959  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    960  1.6.2.1    tls 			return status;
    961  1.6.2.1    tls 		src = SLJIT_MEM1(BJ_TMP1REG);
    962  1.6.2.1    tls 	}
    963  1.6.2.1    tls 
    964  1.6.2.1    tls 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    965  1.6.2.1    tls }
    966  1.6.2.1    tls 
    967  1.6.2.1    tls static int
    968  1.6.2.1    tls emit_memstore(struct sljit_compiler *compiler,
    969  1.6.2.1    tls     sljit_si src, uint32_t k, size_t extwords)
    970  1.6.2.1    tls {
    971  1.6.2.1    tls 	int status;
    972  1.6.2.1    tls 	sljit_si dst;
    973  1.6.2.1    tls 	sljit_sw dstw;
    974  1.6.2.1    tls 
    975  1.6.2.1    tls 	dstw = k * sizeof(uint32_t);
    976  1.6.2.1    tls 
    977  1.6.2.1    tls 	if (extwords == 0) {
    978  1.6.2.1    tls 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    979  1.6.2.1    tls 		dstw += offsetof(struct bpfjit_stack, mem);
    980  1.6.2.1    tls 	} else {
    981  1.6.2.1    tls 		/* copy extmem pointer to the tmp1 register */
    982  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
    983  1.6.2.1    tls 		    SLJIT_MOV_P,
    984  1.6.2.1    tls 		    BJ_TMP1REG, 0,
    985  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    986  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, extmem));
    987  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
    988  1.6.2.1    tls 			return status;
    989  1.6.2.1    tls 		dst = SLJIT_MEM1(BJ_TMP1REG);
    990  1.6.2.1    tls 	}
    991  1.6.2.1    tls 
    992  1.6.2.1    tls 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    993      1.1  alnsn }
    994      1.1  alnsn 
    995      1.1  alnsn /*
    996  1.6.2.1    tls  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    997      1.1  alnsn  */
    998      1.1  alnsn static int
    999  1.6.2.1    tls emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1000  1.6.2.1    tls     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
   1001  1.6.2.1    tls     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
   1002      1.1  alnsn {
   1003      1.1  alnsn 	int status;
   1004      1.1  alnsn #ifdef _KERNEL
   1005      1.1  alnsn 	struct sljit_label *label;
   1006      1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
   1007      1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1008      1.1  alnsn #endif
   1009      1.1  alnsn 	const uint32_t k = pc->k;
   1010      1.1  alnsn 
   1011      1.1  alnsn #ifdef _KERNEL
   1012      1.1  alnsn 	if (to_mchain_jump == NULL) {
   1013      1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
   1014      1.1  alnsn 		    SLJIT_C_EQUAL,
   1015  1.6.2.1    tls 		    BJ_BUFLEN, 0,
   1016      1.1  alnsn 		    SLJIT_IMM, 0);
   1017      1.1  alnsn 		if (to_mchain_jump == NULL)
   1018  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
   1019      1.1  alnsn 	}
   1020      1.1  alnsn #endif
   1021      1.1  alnsn 
   1022      1.1  alnsn 	/* tmp1 = buf[k] */
   1023      1.1  alnsn 	status = sljit_emit_op1(compiler,
   1024      1.1  alnsn 	    SLJIT_MOV_UB,
   1025  1.6.2.1    tls 	    BJ_TMP1REG, 0,
   1026  1.6.2.1    tls 	    SLJIT_MEM1(BJ_BUF), k);
   1027      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1028      1.1  alnsn 		return status;
   1029      1.1  alnsn 
   1030      1.1  alnsn #ifdef _KERNEL
   1031      1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1032      1.1  alnsn 	if (over_mchain_jump == NULL)
   1033      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1034      1.1  alnsn 
   1035      1.1  alnsn 	/* entry point to mchain handler */
   1036      1.1  alnsn 	label = sljit_emit_label(compiler);
   1037      1.1  alnsn 	if (label == NULL)
   1038      1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
   1039      1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
   1040      1.1  alnsn 
   1041      1.1  alnsn 	if (check_zero_buflen) {
   1042      1.1  alnsn 		/* if (buflen != 0) return 0; */
   1043      1.1  alnsn 		jump = sljit_emit_cmp(compiler,
   1044      1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
   1045  1.6.2.1    tls 		    BJ_BUFLEN, 0,
   1046      1.1  alnsn 		    SLJIT_IMM, 0);
   1047      1.1  alnsn 		if (jump == NULL)
   1048  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
   1049  1.6.2.1    tls 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1050  1.6.2.1    tls 			return SLJIT_ERR_ALLOC_FAILED;
   1051      1.1  alnsn 	}
   1052      1.1  alnsn 
   1053  1.6.2.1    tls 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1054  1.6.2.1    tls 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1055      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1056      1.1  alnsn 		return status;
   1057  1.6.2.1    tls 
   1058  1.6.2.1    tls 	label = sljit_emit_label(compiler);
   1059  1.6.2.1    tls 	if (label == NULL)
   1060  1.6.2.1    tls 		return SLJIT_ERR_ALLOC_FAILED;
   1061  1.6.2.1    tls 	sljit_set_label(over_mchain_jump, label);
   1062  1.6.2.1    tls #endif
   1063      1.1  alnsn 
   1064      1.1  alnsn 	/* tmp1 &= 0xf */
   1065      1.1  alnsn 	status = sljit_emit_op2(compiler,
   1066      1.1  alnsn 	    SLJIT_AND,
   1067  1.6.2.1    tls 	    BJ_TMP1REG, 0,
   1068  1.6.2.1    tls 	    BJ_TMP1REG, 0,
   1069      1.1  alnsn 	    SLJIT_IMM, 0xf);
   1070      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1071      1.1  alnsn 		return status;
   1072      1.1  alnsn 
   1073  1.6.2.1    tls 	/* X = tmp1 << 2 */
   1074      1.1  alnsn 	status = sljit_emit_op2(compiler,
   1075      1.1  alnsn 	    SLJIT_SHL,
   1076  1.6.2.1    tls 	    BJ_XREG, 0,
   1077  1.6.2.1    tls 	    BJ_TMP1REG, 0,
   1078      1.1  alnsn 	    SLJIT_IMM, 2);
   1079      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1080      1.1  alnsn 		return status;
   1081      1.1  alnsn 
   1082  1.6.2.1    tls 	return SLJIT_SUCCESS;
   1083      1.1  alnsn }
   1084      1.1  alnsn 
   1085      1.1  alnsn static int
   1086  1.6.2.1    tls emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1087      1.1  alnsn {
   1088      1.1  alnsn 	int shift = 0;
   1089      1.1  alnsn 	int status = SLJIT_SUCCESS;
   1090      1.1  alnsn 
   1091      1.1  alnsn 	while (k > 1) {
   1092      1.1  alnsn 		k >>= 1;
   1093      1.1  alnsn 		shift++;
   1094      1.1  alnsn 	}
   1095      1.1  alnsn 
   1096  1.6.2.1    tls 	BJ_ASSERT(k == 1 && shift < 32);
   1097      1.1  alnsn 
   1098      1.1  alnsn 	if (shift != 0) {
   1099      1.1  alnsn 		status = sljit_emit_op2(compiler,
   1100      1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
   1101  1.6.2.1    tls 		    BJ_AREG, 0,
   1102  1.6.2.1    tls 		    BJ_AREG, 0,
   1103      1.1  alnsn 		    SLJIT_IMM, shift);
   1104      1.1  alnsn 	}
   1105      1.1  alnsn 
   1106      1.1  alnsn 	return status;
   1107      1.1  alnsn }
   1108      1.1  alnsn 
   1109      1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
   1110      1.1  alnsn static sljit_uw
   1111      1.1  alnsn divide(sljit_uw x, sljit_uw y)
   1112      1.1  alnsn {
   1113      1.1  alnsn 
   1114      1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
   1115      1.1  alnsn }
   1116      1.1  alnsn #endif
   1117      1.1  alnsn 
   1118      1.1  alnsn /*
   1119  1.6.2.1    tls  * Emit code for A = A / div.
   1120  1.6.2.1    tls  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1121      1.1  alnsn  */
   1122      1.1  alnsn static int
   1123  1.6.2.1    tls emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1124      1.1  alnsn {
   1125      1.1  alnsn 	int status;
   1126      1.1  alnsn 
   1127  1.6.2.1    tls #if BJ_XREG == SLJIT_RETURN_REG   || \
   1128  1.6.2.1    tls     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1129  1.6.2.1    tls     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1130  1.6.2.1    tls     BJ_AREG == SLJIT_SCRATCH_REG2
   1131      1.1  alnsn #error "Not supported assignment of registers."
   1132      1.1  alnsn #endif
   1133      1.1  alnsn 
   1134  1.6.2.1    tls #if BJ_AREG != SLJIT_SCRATCH_REG1
   1135      1.1  alnsn 	status = sljit_emit_op1(compiler,
   1136      1.1  alnsn 	    SLJIT_MOV,
   1137  1.6.2.1    tls 	    SLJIT_SCRATCH_REG1, 0,
   1138  1.6.2.1    tls 	    BJ_AREG, 0);
   1139      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1140      1.1  alnsn 		return status;
   1141      1.1  alnsn #endif
   1142      1.1  alnsn 
   1143      1.1  alnsn 	status = sljit_emit_op1(compiler,
   1144      1.1  alnsn 	    SLJIT_MOV,
   1145  1.6.2.1    tls 	    SLJIT_SCRATCH_REG2, 0,
   1146      1.1  alnsn 	    divt, divw);
   1147      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1148      1.1  alnsn 		return status;
   1149      1.1  alnsn 
   1150      1.1  alnsn #if defined(BPFJIT_USE_UDIV)
   1151      1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1152      1.1  alnsn 
   1153  1.6.2.1    tls #if BJ_AREG != SLJIT_SCRATCH_REG1
   1154      1.1  alnsn 	status = sljit_emit_op1(compiler,
   1155      1.1  alnsn 	    SLJIT_MOV,
   1156  1.6.2.1    tls 	    BJ_AREG, 0,
   1157  1.6.2.1    tls 	    SLJIT_SCRATCH_REG1, 0);
   1158      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1159      1.1  alnsn 		return status;
   1160      1.1  alnsn #endif
   1161      1.1  alnsn #else
   1162      1.1  alnsn 	status = sljit_emit_ijump(compiler,
   1163      1.1  alnsn 	    SLJIT_CALL2,
   1164      1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1165      1.1  alnsn 
   1166  1.6.2.1    tls #if BJ_AREG != SLJIT_RETURN_REG
   1167      1.1  alnsn 	status = sljit_emit_op1(compiler,
   1168      1.1  alnsn 	    SLJIT_MOV,
   1169  1.6.2.1    tls 	    BJ_AREG, 0,
   1170      1.1  alnsn 	    SLJIT_RETURN_REG, 0);
   1171      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1172      1.1  alnsn 		return status;
   1173      1.1  alnsn #endif
   1174      1.1  alnsn #endif
   1175      1.1  alnsn 
   1176      1.1  alnsn 	return status;
   1177      1.1  alnsn }
   1178      1.1  alnsn 
   1179      1.1  alnsn /*
   1180      1.1  alnsn  * Return true if pc is a "read from packet" instruction.
   1181      1.1  alnsn  * If length is not NULL and return value is true, *length will
   1182      1.1  alnsn  * be set to a safe length required to read a packet.
   1183      1.1  alnsn  */
   1184      1.1  alnsn static bool
   1185  1.6.2.1    tls read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1186      1.1  alnsn {
   1187      1.1  alnsn 	bool rv;
   1188  1.6.2.1    tls 	bpfjit_abc_length_t width;
   1189      1.1  alnsn 
   1190      1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
   1191      1.1  alnsn 	default:
   1192      1.1  alnsn 		rv = false;
   1193      1.1  alnsn 		break;
   1194      1.1  alnsn 
   1195      1.1  alnsn 	case BPF_LD:
   1196      1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1197      1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
   1198      1.1  alnsn 		if (rv)
   1199      1.1  alnsn 			width = read_width(pc);
   1200      1.1  alnsn 		break;
   1201      1.1  alnsn 
   1202      1.1  alnsn 	case BPF_LDX:
   1203      1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1204      1.1  alnsn 		width = 1;
   1205      1.1  alnsn 		break;
   1206      1.1  alnsn 	}
   1207      1.1  alnsn 
   1208      1.1  alnsn 	if (rv && length != NULL) {
   1209  1.6.2.1    tls 		/*
   1210  1.6.2.1    tls 		 * Values greater than UINT32_MAX will generate
   1211  1.6.2.1    tls 		 * unconditional "return 0".
   1212  1.6.2.1    tls 		 */
   1213  1.6.2.1    tls 		*length = (uint32_t)pc->k + width;
   1214      1.1  alnsn 	}
   1215      1.1  alnsn 
   1216      1.1  alnsn 	return rv;
   1217      1.1  alnsn }
   1218      1.1  alnsn 
   1219      1.1  alnsn static void
   1220  1.6.2.1    tls optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1221      1.1  alnsn {
   1222  1.6.2.1    tls 	size_t i;
   1223      1.1  alnsn 
   1224  1.6.2.1    tls 	for (i = 0; i < insn_count; i++) {
   1225  1.6.2.1    tls 		SLIST_INIT(&insn_dat[i].bjumps);
   1226  1.6.2.1    tls 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1227      1.1  alnsn 	}
   1228      1.1  alnsn }
   1229      1.1  alnsn 
   1230      1.1  alnsn /*
   1231      1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
   1232      1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1233      1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
   1234      1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
   1235      1.1  alnsn  * a block.
   1236  1.6.2.1    tls  *
   1237  1.6.2.1    tls  * The function also sets bits in *initmask for memwords that
   1238  1.6.2.1    tls  * need to be initialized to zero. Note that this set should be empty
   1239  1.6.2.1    tls  * for any valid kernel filter program.
   1240      1.1  alnsn  */
   1241  1.6.2.1    tls static bool
   1242  1.6.2.1    tls optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1243  1.6.2.1    tls     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1244  1.6.2.1    tls     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1245      1.1  alnsn {
   1246  1.6.2.1    tls 	struct bpfjit_jump *jtf;
   1247      1.1  alnsn 	size_t i;
   1248      1.1  alnsn 	uint32_t jt, jf;
   1249  1.6.2.1    tls 	bpfjit_abc_length_t length;
   1250  1.6.2.1    tls 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1251  1.6.2.1    tls 	bool unreachable;
   1252  1.6.2.1    tls 
   1253  1.6.2.1    tls 	const size_t memwords = GET_MEMWORDS(bc);
   1254      1.1  alnsn 
   1255  1.6.2.1    tls 	*hints = 0;
   1256  1.6.2.1    tls 	*initmask = BJ_INIT_NOBITS;
   1257      1.1  alnsn 
   1258      1.1  alnsn 	unreachable = false;
   1259  1.6.2.1    tls 	invalid = ~BJ_INIT_NOBITS;
   1260      1.1  alnsn 
   1261      1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1262  1.6.2.1    tls 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1263      1.1  alnsn 			unreachable = false;
   1264  1.6.2.1    tls 		insn_dat[i].unreachable = unreachable;
   1265      1.1  alnsn 
   1266      1.1  alnsn 		if (unreachable)
   1267      1.1  alnsn 			continue;
   1268      1.1  alnsn 
   1269  1.6.2.1    tls 		invalid |= insn_dat[i].invalid;
   1270  1.6.2.1    tls 
   1271  1.6.2.1    tls 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1272  1.6.2.1    tls 			unreachable = true;
   1273      1.1  alnsn 
   1274      1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
   1275      1.1  alnsn 		case BPF_RET:
   1276  1.6.2.1    tls 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1277  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_ABIT;
   1278  1.6.2.1    tls 
   1279      1.1  alnsn 			unreachable = true;
   1280      1.1  alnsn 			continue;
   1281      1.1  alnsn 
   1282  1.6.2.1    tls 		case BPF_LD:
   1283  1.6.2.1    tls 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1284  1.6.2.1    tls 				*hints |= BJ_HINT_ABS;
   1285  1.6.2.1    tls 
   1286  1.6.2.1    tls 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1287  1.6.2.1    tls 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1288  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_XBIT;
   1289  1.6.2.1    tls 			}
   1290  1.6.2.1    tls 
   1291  1.6.2.1    tls 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1292  1.6.2.1    tls 			    (uint32_t)insns[i].k < memwords) {
   1293  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1294  1.6.2.1    tls 			}
   1295  1.6.2.1    tls 
   1296  1.6.2.1    tls 			invalid &= ~BJ_INIT_ABIT;
   1297  1.6.2.1    tls 			continue;
   1298  1.6.2.1    tls 
   1299  1.6.2.1    tls 		case BPF_LDX:
   1300  1.6.2.1    tls 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1301  1.6.2.1    tls 
   1302  1.6.2.1    tls 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1303  1.6.2.1    tls 			    (uint32_t)insns[i].k < memwords) {
   1304  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1305  1.6.2.1    tls 			}
   1306  1.6.2.1    tls 
   1307  1.6.2.1    tls 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1308  1.6.2.1    tls 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1309  1.6.2.1    tls 				*hints |= BJ_HINT_MSH;
   1310  1.6.2.1    tls 			}
   1311  1.6.2.1    tls 
   1312  1.6.2.1    tls 			invalid &= ~BJ_INIT_XBIT;
   1313  1.6.2.1    tls 			continue;
   1314  1.6.2.1    tls 
   1315  1.6.2.1    tls 		case BPF_ST:
   1316  1.6.2.1    tls 			*initmask |= invalid & BJ_INIT_ABIT;
   1317  1.6.2.1    tls 
   1318  1.6.2.1    tls 			if ((uint32_t)insns[i].k < memwords)
   1319  1.6.2.1    tls 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1320  1.6.2.1    tls 
   1321  1.6.2.1    tls 			continue;
   1322  1.6.2.1    tls 
   1323  1.6.2.1    tls 		case BPF_STX:
   1324  1.6.2.1    tls 			*hints |= BJ_HINT_XREG;
   1325  1.6.2.1    tls 			*initmask |= invalid & BJ_INIT_XBIT;
   1326  1.6.2.1    tls 
   1327  1.6.2.1    tls 			if ((uint32_t)insns[i].k < memwords)
   1328  1.6.2.1    tls 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1329  1.6.2.1    tls 
   1330  1.6.2.1    tls 			continue;
   1331  1.6.2.1    tls 
   1332  1.6.2.1    tls 		case BPF_ALU:
   1333  1.6.2.1    tls 			*initmask |= invalid & BJ_INIT_ABIT;
   1334  1.6.2.1    tls 
   1335  1.6.2.1    tls 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1336  1.6.2.1    tls 			    BPF_SRC(insns[i].code) == BPF_X) {
   1337  1.6.2.1    tls 				*hints |= BJ_HINT_XREG;
   1338  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_XBIT;
   1339  1.6.2.1    tls 			}
   1340  1.6.2.1    tls 
   1341  1.6.2.1    tls 			invalid &= ~BJ_INIT_ABIT;
   1342  1.6.2.1    tls 			continue;
   1343  1.6.2.1    tls 
   1344  1.6.2.1    tls 		case BPF_MISC:
   1345  1.6.2.1    tls 			switch (BPF_MISCOP(insns[i].code)) {
   1346  1.6.2.1    tls 			case BPF_TAX: // X <- A
   1347  1.6.2.1    tls 				*hints |= BJ_HINT_XREG;
   1348  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_ABIT;
   1349  1.6.2.1    tls 				invalid &= ~BJ_INIT_XBIT;
   1350  1.6.2.1    tls 				continue;
   1351  1.6.2.1    tls 
   1352  1.6.2.1    tls 			case BPF_TXA: // A <- X
   1353  1.6.2.1    tls 				*hints |= BJ_HINT_XREG;
   1354  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_XBIT;
   1355  1.6.2.1    tls 				invalid &= ~BJ_INIT_ABIT;
   1356  1.6.2.1    tls 				continue;
   1357  1.6.2.1    tls 
   1358  1.6.2.1    tls 			case BPF_COPX:
   1359  1.6.2.1    tls 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1360  1.6.2.1    tls 				/* FALLTHROUGH */
   1361  1.6.2.1    tls 
   1362  1.6.2.1    tls 			case BPF_COP:
   1363  1.6.2.1    tls 				*hints |= BJ_HINT_COP;
   1364  1.6.2.1    tls 				*initmask |= invalid & BJ_INIT_ABIT;
   1365  1.6.2.1    tls 				invalid &= ~BJ_INIT_ABIT;
   1366  1.6.2.1    tls 				continue;
   1367  1.6.2.1    tls 			}
   1368  1.6.2.1    tls 
   1369  1.6.2.1    tls 			continue;
   1370  1.6.2.1    tls 
   1371      1.1  alnsn 		case BPF_JMP:
   1372  1.6.2.1    tls 			/* Initialize abc_length for ABC pass. */
   1373  1.6.2.1    tls 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1374  1.6.2.1    tls 
   1375  1.6.2.1    tls 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1376      1.1  alnsn 				jt = jf = insns[i].k;
   1377      1.1  alnsn 			} else {
   1378      1.1  alnsn 				jt = insns[i].jt;
   1379      1.1  alnsn 				jf = insns[i].jf;
   1380      1.1  alnsn 			}
   1381      1.1  alnsn 
   1382      1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1383      1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1384  1.6.2.1    tls 				return false;
   1385      1.1  alnsn 			}
   1386      1.1  alnsn 
   1387      1.1  alnsn 			if (jt > 0 && jf > 0)
   1388      1.1  alnsn 				unreachable = true;
   1389      1.1  alnsn 
   1390  1.6.2.1    tls 			jt += i + 1;
   1391  1.6.2.1    tls 			jf += i + 1;
   1392      1.1  alnsn 
   1393  1.6.2.1    tls 			jtf = insn_dat[i].u.jdata.jtf;
   1394  1.6.2.1    tls 
   1395  1.6.2.1    tls 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1396  1.6.2.1    tls 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1397  1.6.2.1    tls 			    &jtf[0], entries);
   1398      1.1  alnsn 
   1399      1.1  alnsn 			if (jf != jt) {
   1400  1.6.2.1    tls 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1401  1.6.2.1    tls 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1402  1.6.2.1    tls 				    &jtf[1], entries);
   1403      1.1  alnsn 			}
   1404      1.1  alnsn 
   1405  1.6.2.1    tls 			insn_dat[jf].invalid |= invalid;
   1406  1.6.2.1    tls 			insn_dat[jt].invalid |= invalid;
   1407  1.6.2.1    tls 			invalid = 0;
   1408  1.6.2.1    tls 
   1409      1.1  alnsn 			continue;
   1410      1.1  alnsn 		}
   1411      1.1  alnsn 	}
   1412      1.1  alnsn 
   1413  1.6.2.1    tls 	return true;
   1414      1.1  alnsn }
   1415      1.1  alnsn 
   1416      1.1  alnsn /*
   1417  1.6.2.1    tls  * Array Bounds Check Elimination (ABC) pass.
   1418      1.1  alnsn  */
   1419  1.6.2.1    tls static void
   1420  1.6.2.1    tls optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1421  1.6.2.1    tls     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1422      1.1  alnsn {
   1423  1.6.2.1    tls 	struct bpfjit_jump *jmp;
   1424  1.6.2.1    tls 	const struct bpf_insn *pc;
   1425  1.6.2.1    tls 	struct bpfjit_insn_data *pd;
   1426      1.1  alnsn 	size_t i;
   1427  1.6.2.1    tls 	bpfjit_abc_length_t length, abc_length = 0;
   1428      1.1  alnsn 
   1429  1.6.2.1    tls 	const size_t extwords = GET_EXTWORDS(bc);
   1430      1.1  alnsn 
   1431  1.6.2.1    tls 	for (i = insn_count; i != 0; i--) {
   1432  1.6.2.1    tls 		pc = &insns[i-1];
   1433  1.6.2.1    tls 		pd = &insn_dat[i-1];
   1434  1.6.2.1    tls 
   1435  1.6.2.1    tls 		if (pd->unreachable)
   1436  1.6.2.1    tls 			continue;
   1437  1.6.2.1    tls 
   1438  1.6.2.1    tls 		switch (BPF_CLASS(pc->code)) {
   1439  1.6.2.1    tls 		case BPF_RET:
   1440  1.6.2.1    tls 			/*
   1441  1.6.2.1    tls 			 * It's quite common for bpf programs to
   1442  1.6.2.1    tls 			 * check packet bytes in increasing order
   1443  1.6.2.1    tls 			 * and return zero if bytes don't match
   1444  1.6.2.1    tls 			 * specified critetion. Such programs disable
   1445  1.6.2.1    tls 			 * ABC optimization completely because for
   1446  1.6.2.1    tls 			 * every jump there is a branch with no read
   1447  1.6.2.1    tls 			 * instruction.
   1448  1.6.2.1    tls 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1449  1.6.2.1    tls 			 * is indistinguishable from out-of-bound load.
   1450  1.6.2.1    tls 			 * Therefore, abc_length can be set to
   1451  1.6.2.1    tls 			 * MAX_ABC_LENGTH and enable ABC for many
   1452  1.6.2.1    tls 			 * bpf programs.
   1453  1.6.2.1    tls 			 * If this optimization encounters any
   1454  1.6.2.1    tls 			 * instruction with a side effect, it will
   1455  1.6.2.1    tls 			 * reset abc_length.
   1456  1.6.2.1    tls 			 */
   1457  1.6.2.1    tls 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1458  1.6.2.1    tls 				abc_length = MAX_ABC_LENGTH;
   1459  1.6.2.1    tls 			else
   1460  1.6.2.1    tls 				abc_length = 0;
   1461  1.6.2.1    tls 			break;
   1462  1.6.2.1    tls 
   1463  1.6.2.1    tls 		case BPF_MISC:
   1464  1.6.2.1    tls 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1465  1.6.2.1    tls 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1466  1.6.2.1    tls 				/* COP instructions can have side effects. */
   1467  1.6.2.1    tls 				abc_length = 0;
   1468  1.6.2.1    tls 			}
   1469  1.6.2.1    tls 			break;
   1470  1.6.2.1    tls 
   1471  1.6.2.1    tls 		case BPF_ST:
   1472  1.6.2.1    tls 		case BPF_STX:
   1473  1.6.2.1    tls 			if (extwords != 0) {
   1474  1.6.2.1    tls 				/* Write to memory is visible after a call. */
   1475  1.6.2.1    tls 				abc_length = 0;
   1476  1.6.2.1    tls 			}
   1477  1.6.2.1    tls 			break;
   1478  1.6.2.1    tls 
   1479  1.6.2.1    tls 		case BPF_JMP:
   1480  1.6.2.1    tls 			abc_length = pd->u.jdata.abc_length;
   1481  1.6.2.1    tls 			break;
   1482  1.6.2.1    tls 
   1483  1.6.2.1    tls 		default:
   1484  1.6.2.1    tls 			if (read_pkt_insn(pc, &length)) {
   1485  1.6.2.1    tls 				if (abc_length < length)
   1486  1.6.2.1    tls 					abc_length = length;
   1487  1.6.2.1    tls 				pd->u.rdata.abc_length = abc_length;
   1488  1.6.2.1    tls 			}
   1489  1.6.2.1    tls 			break;
   1490      1.1  alnsn 		}
   1491      1.1  alnsn 
   1492  1.6.2.1    tls 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1493  1.6.2.1    tls 			if (jmp->jdata->abc_length > abc_length)
   1494  1.6.2.1    tls 				jmp->jdata->abc_length = abc_length;
   1495      1.1  alnsn 		}
   1496  1.6.2.1    tls 	}
   1497  1.6.2.1    tls }
   1498      1.1  alnsn 
   1499  1.6.2.1    tls static void
   1500  1.6.2.1    tls optimize_pass3(const struct bpf_insn *insns,
   1501  1.6.2.1    tls     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1502  1.6.2.1    tls {
   1503  1.6.2.1    tls 	struct bpfjit_jump *jmp;
   1504  1.6.2.1    tls 	size_t i;
   1505  1.6.2.1    tls 	bpfjit_abc_length_t checked_length = 0;
   1506      1.1  alnsn 
   1507  1.6.2.1    tls 	for (i = 0; i < insn_count; i++) {
   1508  1.6.2.1    tls 		if (insn_dat[i].unreachable)
   1509  1.6.2.1    tls 			continue;
   1510  1.6.2.1    tls 
   1511  1.6.2.1    tls 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1512  1.6.2.1    tls 			if (jmp->jdata->checked_length < checked_length)
   1513  1.6.2.1    tls 				checked_length = jmp->jdata->checked_length;
   1514  1.6.2.1    tls 		}
   1515  1.6.2.1    tls 
   1516  1.6.2.1    tls 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1517  1.6.2.1    tls 			insn_dat[i].u.jdata.checked_length = checked_length;
   1518  1.6.2.1    tls 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1519  1.6.2.1    tls 			struct bpfjit_read_pkt_data *rdata =
   1520  1.6.2.1    tls 			    &insn_dat[i].u.rdata;
   1521  1.6.2.1    tls 			rdata->check_length = 0;
   1522  1.6.2.1    tls 			if (checked_length < rdata->abc_length) {
   1523  1.6.2.1    tls 				checked_length = rdata->abc_length;
   1524  1.6.2.1    tls 				rdata->check_length = checked_length;
   1525  1.6.2.1    tls 			}
   1526      1.1  alnsn 		}
   1527      1.1  alnsn 	}
   1528  1.6.2.1    tls }
   1529  1.6.2.1    tls 
   1530  1.6.2.1    tls static bool
   1531  1.6.2.1    tls optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1532  1.6.2.1    tls     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1533  1.6.2.1    tls     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1534  1.6.2.1    tls {
   1535  1.6.2.1    tls 
   1536  1.6.2.1    tls 	optimize_init(insn_dat, insn_count);
   1537  1.6.2.1    tls 
   1538  1.6.2.1    tls 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1539  1.6.2.1    tls 		return false;
   1540  1.6.2.1    tls 
   1541  1.6.2.1    tls 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1542  1.6.2.1    tls 	optimize_pass3(insns, insn_dat, insn_count);
   1543      1.1  alnsn 
   1544  1.6.2.1    tls 	return true;
   1545      1.1  alnsn }
   1546      1.1  alnsn 
   1547      1.1  alnsn /*
   1548      1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1549      1.1  alnsn  */
   1550      1.1  alnsn static int
   1551  1.6.2.1    tls bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1552      1.1  alnsn {
   1553      1.1  alnsn 
   1554      1.1  alnsn 	/*
   1555      1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1556      1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1557      1.1  alnsn 	 */
   1558      1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1559      1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1560      1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1561      1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1562      1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1563      1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1564      1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1565      1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1566      1.1  alnsn 	default:
   1567  1.6.2.1    tls 		BJ_ASSERT(false);
   1568      1.1  alnsn 		return 0;
   1569      1.1  alnsn 	}
   1570      1.1  alnsn }
   1571      1.1  alnsn 
   1572      1.1  alnsn /*
   1573      1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1574      1.1  alnsn  */
   1575      1.1  alnsn static int
   1576  1.6.2.1    tls bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1577      1.1  alnsn {
   1578      1.1  alnsn 	/*
   1579      1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1580      1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1581      1.1  alnsn 	 */
   1582      1.1  alnsn 	int rv = SLJIT_INT_OP;
   1583      1.1  alnsn 
   1584      1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1585      1.1  alnsn 	case BPF_JGT:
   1586      1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1587      1.1  alnsn 		break;
   1588      1.1  alnsn 	case BPF_JGE:
   1589      1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1590      1.1  alnsn 		break;
   1591      1.1  alnsn 	case BPF_JEQ:
   1592      1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1593      1.1  alnsn 		break;
   1594      1.1  alnsn 	case BPF_JSET:
   1595      1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1596      1.1  alnsn 		break;
   1597      1.1  alnsn 	default:
   1598  1.6.2.1    tls 		BJ_ASSERT(false);
   1599      1.1  alnsn 	}
   1600      1.1  alnsn 
   1601      1.1  alnsn 	return rv;
   1602      1.1  alnsn }
   1603      1.1  alnsn 
   1604      1.1  alnsn /*
   1605      1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1606      1.1  alnsn  */
   1607      1.1  alnsn static int
   1608  1.6.2.1    tls kx_to_reg(const struct bpf_insn *pc)
   1609      1.1  alnsn {
   1610      1.1  alnsn 
   1611      1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1612      1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1613  1.6.2.1    tls 	case BPF_X: return BJ_XREG;
   1614      1.1  alnsn 	default:
   1615  1.6.2.1    tls 		BJ_ASSERT(false);
   1616      1.1  alnsn 		return 0;
   1617      1.1  alnsn 	}
   1618      1.1  alnsn }
   1619      1.1  alnsn 
   1620  1.6.2.1    tls static sljit_sw
   1621  1.6.2.1    tls kx_to_reg_arg(const struct bpf_insn *pc)
   1622      1.1  alnsn {
   1623      1.1  alnsn 
   1624      1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1625      1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1626  1.6.2.1    tls 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1627      1.1  alnsn 	default:
   1628  1.6.2.1    tls 		BJ_ASSERT(false);
   1629      1.1  alnsn 		return 0;
   1630      1.1  alnsn 	}
   1631      1.1  alnsn }
   1632      1.1  alnsn 
   1633  1.6.2.1    tls static bool
   1634  1.6.2.1    tls generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1635  1.6.2.1    tls     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1636  1.6.2.1    tls     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1637      1.1  alnsn {
   1638      1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1639      1.1  alnsn 	struct sljit_jump **ret0;
   1640  1.6.2.1    tls 	size_t ret0_size, ret0_maxsize;
   1641      1.1  alnsn 
   1642      1.1  alnsn 	struct sljit_jump *jump;
   1643  1.6.2.1    tls 	struct sljit_label *label;
   1644  1.6.2.1    tls 	const struct bpf_insn *pc;
   1645      1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1646      1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1647      1.1  alnsn 
   1648  1.6.2.1    tls 	size_t i;
   1649  1.6.2.1    tls 	int status;
   1650  1.6.2.1    tls 	int branching, negate;
   1651  1.6.2.1    tls 	unsigned int rval, mode, src;
   1652      1.1  alnsn 	uint32_t jt, jf;
   1653      1.1  alnsn 
   1654  1.6.2.1    tls 	bool unconditional_ret;
   1655  1.6.2.1    tls 	bool rv;
   1656      1.1  alnsn 
   1657  1.6.2.1    tls 	const size_t extwords = GET_EXTWORDS(bc);
   1658  1.6.2.1    tls 	const size_t memwords = GET_MEMWORDS(bc);
   1659      1.1  alnsn 
   1660  1.6.2.1    tls 	ret0 = NULL;
   1661  1.6.2.1    tls 	rv = false;
   1662      1.1  alnsn 
   1663      1.1  alnsn 	ret0_size = 0;
   1664  1.6.2.1    tls 	ret0_maxsize = 64;
   1665  1.6.2.1    tls 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1666  1.6.2.1    tls 	if (ret0 == NULL)
   1667      1.1  alnsn 		goto fail;
   1668      1.1  alnsn 
   1669  1.6.2.1    tls 	/* reset sjump members of jdata */
   1670  1.6.2.1    tls 	for (i = 0; i < insn_count; i++) {
   1671  1.6.2.1    tls 		if (insn_dat[i].unreachable ||
   1672  1.6.2.1    tls 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1673  1.6.2.1    tls 			continue;
   1674  1.6.2.1    tls 		}
   1675      1.1  alnsn 
   1676  1.6.2.1    tls 		jtf = insn_dat[i].u.jdata.jtf;
   1677  1.6.2.1    tls 		jtf[0].sjump = jtf[1].sjump = NULL;
   1678      1.1  alnsn 	}
   1679      1.1  alnsn 
   1680  1.6.2.1    tls 	/* main loop */
   1681      1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1682  1.6.2.1    tls 		if (insn_dat[i].unreachable)
   1683      1.1  alnsn 			continue;
   1684      1.1  alnsn 
   1685      1.1  alnsn 		/*
   1686      1.1  alnsn 		 * Resolve jumps to the current insn.
   1687      1.1  alnsn 		 */
   1688      1.1  alnsn 		label = NULL;
   1689  1.6.2.1    tls 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1690  1.6.2.1    tls 			if (bjump->sjump != NULL) {
   1691      1.1  alnsn 				if (label == NULL)
   1692      1.1  alnsn 					label = sljit_emit_label(compiler);
   1693      1.1  alnsn 				if (label == NULL)
   1694      1.1  alnsn 					goto fail;
   1695  1.6.2.1    tls 				sljit_set_label(bjump->sjump, label);
   1696      1.1  alnsn 			}
   1697      1.1  alnsn 		}
   1698      1.1  alnsn 
   1699  1.6.2.1    tls 		to_mchain_jump = NULL;
   1700  1.6.2.1    tls 		unconditional_ret = false;
   1701  1.6.2.1    tls 
   1702  1.6.2.1    tls 		if (read_pkt_insn(&insns[i], NULL)) {
   1703  1.6.2.1    tls 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1704  1.6.2.1    tls 				/* Jump to "return 0" unconditionally. */
   1705  1.6.2.1    tls 				unconditional_ret = true;
   1706  1.6.2.1    tls 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1707  1.6.2.1    tls 				if (jump == NULL)
   1708  1.6.2.1    tls 					goto fail;
   1709  1.6.2.1    tls 				if (!append_jump(jump, &ret0,
   1710  1.6.2.1    tls 				    &ret0_size, &ret0_maxsize))
   1711  1.6.2.1    tls 					goto fail;
   1712  1.6.2.1    tls 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1713  1.6.2.1    tls 				/* if (buflen < check_length) return 0; */
   1714  1.6.2.1    tls 				jump = sljit_emit_cmp(compiler,
   1715  1.6.2.1    tls 				    SLJIT_C_LESS,
   1716  1.6.2.1    tls 				    BJ_BUFLEN, 0,
   1717  1.6.2.1    tls 				    SLJIT_IMM,
   1718  1.6.2.1    tls 				    insn_dat[i].u.rdata.check_length);
   1719  1.6.2.1    tls 				if (jump == NULL)
   1720  1.6.2.1    tls 					goto fail;
   1721      1.1  alnsn #ifdef _KERNEL
   1722  1.6.2.1    tls 				to_mchain_jump = jump;
   1723      1.1  alnsn #else
   1724  1.6.2.1    tls 				if (!append_jump(jump, &ret0,
   1725  1.6.2.1    tls 				    &ret0_size, &ret0_maxsize))
   1726  1.6.2.1    tls 					goto fail;
   1727      1.1  alnsn #endif
   1728  1.6.2.1    tls 			}
   1729      1.1  alnsn 		}
   1730      1.1  alnsn 
   1731      1.1  alnsn 		pc = &insns[i];
   1732      1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1733      1.1  alnsn 
   1734      1.1  alnsn 		default:
   1735      1.1  alnsn 			goto fail;
   1736      1.1  alnsn 
   1737      1.1  alnsn 		case BPF_LD:
   1738      1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1739      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1740      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1741      1.1  alnsn 				    SLJIT_MOV,
   1742  1.6.2.1    tls 				    BJ_AREG, 0,
   1743      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1744      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1745      1.1  alnsn 					goto fail;
   1746      1.1  alnsn 
   1747      1.1  alnsn 				continue;
   1748      1.1  alnsn 			}
   1749      1.1  alnsn 
   1750      1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1751      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1752  1.6.2.1    tls 				if ((uint32_t)pc->k >= memwords)
   1753      1.1  alnsn 					goto fail;
   1754  1.6.2.1    tls 				status = emit_memload(compiler,
   1755  1.6.2.1    tls 				    BJ_AREG, pc->k, extwords);
   1756      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1757      1.1  alnsn 					goto fail;
   1758      1.1  alnsn 
   1759      1.1  alnsn 				continue;
   1760      1.1  alnsn 			}
   1761      1.1  alnsn 
   1762      1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1763      1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1764      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1765  1.6.2.1    tls 				    SLJIT_MOV, /* size_t source */
   1766  1.6.2.1    tls 				    BJ_AREG, 0,
   1767  1.6.2.1    tls 				    SLJIT_MEM1(BJ_ARGS),
   1768  1.6.2.1    tls 				    offsetof(struct bpf_args, wirelen));
   1769      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1770      1.1  alnsn 					goto fail;
   1771      1.1  alnsn 
   1772      1.1  alnsn 				continue;
   1773      1.1  alnsn 			}
   1774      1.1  alnsn 
   1775      1.1  alnsn 			mode = BPF_MODE(pc->code);
   1776      1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1777      1.1  alnsn 				goto fail;
   1778      1.1  alnsn 
   1779  1.6.2.1    tls 			if (unconditional_ret)
   1780  1.6.2.1    tls 				continue;
   1781  1.6.2.1    tls 
   1782  1.6.2.1    tls 			status = emit_pkt_read(compiler, hints, pc,
   1783  1.6.2.1    tls 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1784      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1785      1.1  alnsn 				goto fail;
   1786      1.1  alnsn 
   1787      1.1  alnsn 			continue;
   1788      1.1  alnsn 
   1789      1.1  alnsn 		case BPF_LDX:
   1790      1.1  alnsn 			mode = BPF_MODE(pc->code);
   1791      1.1  alnsn 
   1792      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1793      1.1  alnsn 			if (mode == BPF_IMM) {
   1794      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1795      1.1  alnsn 					goto fail;
   1796      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1797      1.1  alnsn 				    SLJIT_MOV,
   1798  1.6.2.1    tls 				    BJ_XREG, 0,
   1799      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1800      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1801      1.1  alnsn 					goto fail;
   1802      1.1  alnsn 
   1803      1.1  alnsn 				continue;
   1804      1.1  alnsn 			}
   1805      1.1  alnsn 
   1806      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1807      1.1  alnsn 			if (mode == BPF_LEN) {
   1808      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1809      1.1  alnsn 					goto fail;
   1810      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1811  1.6.2.1    tls 				    SLJIT_MOV, /* size_t source */
   1812  1.6.2.1    tls 				    BJ_XREG, 0,
   1813  1.6.2.1    tls 				    SLJIT_MEM1(BJ_ARGS),
   1814  1.6.2.1    tls 				    offsetof(struct bpf_args, wirelen));
   1815      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1816      1.1  alnsn 					goto fail;
   1817      1.1  alnsn 
   1818      1.1  alnsn 				continue;
   1819      1.1  alnsn 			}
   1820      1.1  alnsn 
   1821      1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1822      1.1  alnsn 			if (mode == BPF_MEM) {
   1823      1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1824      1.1  alnsn 					goto fail;
   1825  1.6.2.1    tls 				if ((uint32_t)pc->k >= memwords)
   1826      1.1  alnsn 					goto fail;
   1827  1.6.2.1    tls 				status = emit_memload(compiler,
   1828  1.6.2.1    tls 				    BJ_XREG, pc->k, extwords);
   1829      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1830      1.1  alnsn 					goto fail;
   1831      1.1  alnsn 
   1832      1.1  alnsn 				continue;
   1833      1.1  alnsn 			}
   1834      1.1  alnsn 
   1835      1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1836      1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1837      1.1  alnsn 				goto fail;
   1838      1.1  alnsn 
   1839  1.6.2.1    tls 			if (unconditional_ret)
   1840  1.6.2.1    tls 				continue;
   1841  1.6.2.1    tls 
   1842  1.6.2.1    tls 			status = emit_msh(compiler, hints, pc,
   1843  1.6.2.1    tls 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1844      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1845      1.1  alnsn 				goto fail;
   1846      1.1  alnsn 
   1847      1.1  alnsn 			continue;
   1848      1.1  alnsn 
   1849      1.1  alnsn 		case BPF_ST:
   1850  1.6.2.1    tls 			if (pc->code != BPF_ST ||
   1851  1.6.2.1    tls 			    (uint32_t)pc->k >= memwords) {
   1852      1.1  alnsn 				goto fail;
   1853  1.6.2.1    tls 			}
   1854      1.1  alnsn 
   1855  1.6.2.1    tls 			status = emit_memstore(compiler,
   1856  1.6.2.1    tls 			    BJ_AREG, pc->k, extwords);
   1857      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1858      1.1  alnsn 				goto fail;
   1859      1.1  alnsn 
   1860      1.1  alnsn 			continue;
   1861      1.1  alnsn 
   1862      1.1  alnsn 		case BPF_STX:
   1863  1.6.2.1    tls 			if (pc->code != BPF_STX ||
   1864  1.6.2.1    tls 			    (uint32_t)pc->k >= memwords) {
   1865      1.1  alnsn 				goto fail;
   1866  1.6.2.1    tls 			}
   1867      1.1  alnsn 
   1868  1.6.2.1    tls 			status = emit_memstore(compiler,
   1869  1.6.2.1    tls 			    BJ_XREG, pc->k, extwords);
   1870      1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1871      1.1  alnsn 				goto fail;
   1872      1.1  alnsn 
   1873      1.1  alnsn 			continue;
   1874      1.1  alnsn 
   1875      1.1  alnsn 		case BPF_ALU:
   1876      1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1877      1.1  alnsn 				status = sljit_emit_op1(compiler,
   1878      1.1  alnsn 				    SLJIT_NEG,
   1879  1.6.2.1    tls 				    BJ_AREG, 0,
   1880  1.6.2.1    tls 				    BJ_AREG, 0);
   1881      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1882      1.1  alnsn 					goto fail;
   1883      1.1  alnsn 
   1884      1.1  alnsn 				continue;
   1885      1.1  alnsn 			}
   1886      1.1  alnsn 
   1887      1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1888      1.1  alnsn 				status = sljit_emit_op2(compiler,
   1889      1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1890  1.6.2.1    tls 				    BJ_AREG, 0,
   1891  1.6.2.1    tls 				    BJ_AREG, 0,
   1892      1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1893      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1894      1.1  alnsn 					goto fail;
   1895      1.1  alnsn 
   1896      1.1  alnsn 				continue;
   1897      1.1  alnsn 			}
   1898      1.1  alnsn 
   1899      1.1  alnsn 			/* BPF_DIV */
   1900      1.1  alnsn 
   1901      1.1  alnsn 			src = BPF_SRC(pc->code);
   1902      1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1903      1.1  alnsn 				goto fail;
   1904      1.1  alnsn 
   1905      1.1  alnsn 			/* division by zero? */
   1906      1.1  alnsn 			if (src == BPF_X) {
   1907      1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1908      1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1909  1.6.2.1    tls 				    BJ_XREG, 0,
   1910      1.1  alnsn 				    SLJIT_IMM, 0);
   1911      1.1  alnsn 				if (jump == NULL)
   1912      1.1  alnsn 					goto fail;
   1913  1.6.2.1    tls 				if (!append_jump(jump, &ret0,
   1914  1.6.2.1    tls 				    &ret0_size, &ret0_maxsize))
   1915  1.6.2.1    tls 					goto fail;
   1916      1.1  alnsn 			} else if (pc->k == 0) {
   1917      1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1918      1.1  alnsn 				if (jump == NULL)
   1919      1.1  alnsn 					goto fail;
   1920  1.6.2.1    tls 				if (!append_jump(jump, &ret0,
   1921  1.6.2.1    tls 				    &ret0_size, &ret0_maxsize))
   1922  1.6.2.1    tls 					goto fail;
   1923      1.1  alnsn 			}
   1924      1.1  alnsn 
   1925      1.1  alnsn 			if (src == BPF_X) {
   1926  1.6.2.1    tls 				status = emit_division(compiler, BJ_XREG, 0);
   1927      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1928      1.1  alnsn 					goto fail;
   1929      1.1  alnsn 			} else if (pc->k != 0) {
   1930      1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1931      1.1  alnsn 				    status = emit_division(compiler,
   1932      1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1933      1.1  alnsn 				} else {
   1934  1.6.2.1    tls 				    status = emit_pow2_division(compiler,
   1935      1.1  alnsn 				        (uint32_t)pc->k);
   1936      1.1  alnsn 				}
   1937      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1938      1.1  alnsn 					goto fail;
   1939      1.1  alnsn 			}
   1940      1.1  alnsn 
   1941      1.1  alnsn 			continue;
   1942      1.1  alnsn 
   1943      1.1  alnsn 		case BPF_JMP:
   1944  1.6.2.1    tls 			if (BPF_OP(pc->code) == BPF_JA) {
   1945      1.1  alnsn 				jt = jf = pc->k;
   1946      1.1  alnsn 			} else {
   1947      1.1  alnsn 				jt = pc->jt;
   1948      1.1  alnsn 				jf = pc->jf;
   1949      1.1  alnsn 			}
   1950      1.1  alnsn 
   1951      1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1952      1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1953  1.6.2.1    tls 			jtf = insn_dat[i].u.jdata.jtf;
   1954      1.1  alnsn 
   1955      1.1  alnsn 			if (branching) {
   1956      1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1957      1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1958      1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1959  1.6.2.1    tls 					    BJ_AREG, 0,
   1960      1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1961      1.1  alnsn 				} else {
   1962      1.1  alnsn 					status = sljit_emit_op2(compiler,
   1963      1.1  alnsn 					    SLJIT_AND,
   1964  1.6.2.1    tls 					    BJ_TMP1REG, 0,
   1965  1.6.2.1    tls 					    BJ_AREG, 0,
   1966      1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1967      1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1968      1.1  alnsn 						goto fail;
   1969      1.1  alnsn 
   1970      1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1971      1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1972  1.6.2.1    tls 					    BJ_TMP1REG, 0,
   1973      1.1  alnsn 					    SLJIT_IMM, 0);
   1974      1.1  alnsn 				}
   1975      1.1  alnsn 
   1976      1.1  alnsn 				if (jump == NULL)
   1977      1.1  alnsn 					goto fail;
   1978      1.1  alnsn 
   1979  1.6.2.1    tls 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1980  1.6.2.1    tls 				jtf[negate].sjump = jump;
   1981      1.1  alnsn 			}
   1982      1.1  alnsn 
   1983      1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1984      1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1985      1.1  alnsn 				if (jump == NULL)
   1986      1.1  alnsn 					goto fail;
   1987      1.1  alnsn 
   1988  1.6.2.1    tls 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1989  1.6.2.1    tls 				jtf[branching].sjump = jump;
   1990      1.1  alnsn 			}
   1991      1.1  alnsn 
   1992      1.1  alnsn 			continue;
   1993      1.1  alnsn 
   1994      1.1  alnsn 		case BPF_RET:
   1995      1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1996      1.1  alnsn 			if (rval == BPF_X)
   1997      1.1  alnsn 				goto fail;
   1998      1.1  alnsn 
   1999      1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   2000      1.1  alnsn 			if (rval == BPF_K) {
   2001  1.6.2.1    tls 				status = sljit_emit_return(compiler,
   2002  1.6.2.1    tls 				    SLJIT_MOV_UI,
   2003      1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   2004      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2005      1.1  alnsn 					goto fail;
   2006      1.1  alnsn 			}
   2007      1.1  alnsn 
   2008      1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   2009      1.1  alnsn 			if (rval == BPF_A) {
   2010  1.6.2.1    tls 				status = sljit_emit_return(compiler,
   2011  1.6.2.1    tls 				    SLJIT_MOV_UI,
   2012  1.6.2.1    tls 				    BJ_AREG, 0);
   2013      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2014      1.1  alnsn 					goto fail;
   2015      1.1  alnsn 			}
   2016      1.1  alnsn 
   2017      1.1  alnsn 			continue;
   2018      1.1  alnsn 
   2019      1.1  alnsn 		case BPF_MISC:
   2020  1.6.2.1    tls 			switch (BPF_MISCOP(pc->code)) {
   2021  1.6.2.1    tls 			case BPF_TAX:
   2022      1.1  alnsn 				status = sljit_emit_op1(compiler,
   2023      1.1  alnsn 				    SLJIT_MOV_UI,
   2024  1.6.2.1    tls 				    BJ_XREG, 0,
   2025  1.6.2.1    tls 				    BJ_AREG, 0);
   2026      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2027      1.1  alnsn 					goto fail;
   2028      1.1  alnsn 
   2029      1.1  alnsn 				continue;
   2030      1.1  alnsn 
   2031  1.6.2.1    tls 			case BPF_TXA:
   2032      1.1  alnsn 				status = sljit_emit_op1(compiler,
   2033      1.1  alnsn 				    SLJIT_MOV,
   2034  1.6.2.1    tls 				    BJ_AREG, 0,
   2035  1.6.2.1    tls 				    BJ_XREG, 0);
   2036  1.6.2.1    tls 				if (status != SLJIT_SUCCESS)
   2037  1.6.2.1    tls 					goto fail;
   2038  1.6.2.1    tls 
   2039  1.6.2.1    tls 				continue;
   2040  1.6.2.1    tls 
   2041  1.6.2.1    tls 			case BPF_COP:
   2042  1.6.2.1    tls 			case BPF_COPX:
   2043  1.6.2.1    tls 				if (bc == NULL || bc->copfuncs == NULL)
   2044  1.6.2.1    tls 					goto fail;
   2045  1.6.2.1    tls 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2046  1.6.2.1    tls 				    (uint32_t)pc->k >= bc->nfuncs) {
   2047  1.6.2.1    tls 					goto fail;
   2048  1.6.2.1    tls 				}
   2049  1.6.2.1    tls 
   2050  1.6.2.1    tls 				status = emit_cop(compiler, hints, bc, pc,
   2051  1.6.2.1    tls 				    &ret0, &ret0_size, &ret0_maxsize);
   2052      1.1  alnsn 				if (status != SLJIT_SUCCESS)
   2053      1.1  alnsn 					goto fail;
   2054      1.1  alnsn 
   2055      1.1  alnsn 				continue;
   2056      1.1  alnsn 			}
   2057      1.1  alnsn 
   2058      1.1  alnsn 			goto fail;
   2059      1.1  alnsn 		} /* switch */
   2060      1.1  alnsn 	} /* main loop */
   2061      1.1  alnsn 
   2062  1.6.2.1    tls 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2063      1.1  alnsn 
   2064  1.6.2.1    tls 	if (ret0_size > 0) {
   2065      1.1  alnsn 		label = sljit_emit_label(compiler);
   2066      1.1  alnsn 		if (label == NULL)
   2067      1.1  alnsn 			goto fail;
   2068  1.6.2.1    tls 		for (i = 0; i < ret0_size; i++)
   2069  1.6.2.1    tls 			sljit_set_label(ret0[i], label);
   2070      1.1  alnsn 	}
   2071      1.1  alnsn 
   2072      1.1  alnsn 	status = sljit_emit_return(compiler,
   2073      1.1  alnsn 	    SLJIT_MOV_UI,
   2074  1.6.2.1    tls 	    SLJIT_IMM, 0);
   2075      1.1  alnsn 	if (status != SLJIT_SUCCESS)
   2076      1.1  alnsn 		goto fail;
   2077      1.1  alnsn 
   2078  1.6.2.1    tls 	rv = true;
   2079  1.6.2.1    tls 
   2080  1.6.2.1    tls fail:
   2081  1.6.2.1    tls 	if (ret0 != NULL)
   2082  1.6.2.1    tls 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2083  1.6.2.1    tls 
   2084  1.6.2.1    tls 	return rv;
   2085  1.6.2.1    tls }
   2086  1.6.2.1    tls 
   2087  1.6.2.1    tls bpfjit_func_t
   2088  1.6.2.1    tls bpfjit_generate_code(const bpf_ctx_t *bc,
   2089  1.6.2.1    tls     const struct bpf_insn *insns, size_t insn_count)
   2090  1.6.2.1    tls {
   2091  1.6.2.1    tls 	void *rv;
   2092  1.6.2.1    tls 	struct sljit_compiler *compiler;
   2093  1.6.2.1    tls 
   2094  1.6.2.1    tls 	size_t i;
   2095  1.6.2.1    tls 	int status;
   2096  1.6.2.1    tls 
   2097  1.6.2.1    tls 	/* optimization related */
   2098  1.6.2.1    tls 	bpf_memword_init_t initmask;
   2099  1.6.2.1    tls 	bpfjit_hint_t hints;
   2100  1.6.2.1    tls 
   2101  1.6.2.1    tls 	/* memory store location for initial zero initialization */
   2102  1.6.2.1    tls 	sljit_si mem_reg;
   2103  1.6.2.1    tls 	sljit_sw mem_off;
   2104  1.6.2.1    tls 
   2105  1.6.2.1    tls 	struct bpfjit_insn_data *insn_dat;
   2106  1.6.2.1    tls 
   2107  1.6.2.1    tls 	const size_t extwords = GET_EXTWORDS(bc);
   2108  1.6.2.1    tls 	const size_t memwords = GET_MEMWORDS(bc);
   2109  1.6.2.1    tls 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2110  1.6.2.1    tls 
   2111  1.6.2.1    tls 	rv = NULL;
   2112  1.6.2.1    tls 	compiler = NULL;
   2113  1.6.2.1    tls 	insn_dat = NULL;
   2114  1.6.2.1    tls 
   2115  1.6.2.1    tls 	if (memwords > MAX_MEMWORDS)
   2116  1.6.2.1    tls 		goto fail;
   2117  1.6.2.1    tls 
   2118  1.6.2.1    tls 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2119  1.6.2.1    tls 		goto fail;
   2120  1.6.2.1    tls 
   2121  1.6.2.1    tls 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2122  1.6.2.1    tls 	if (insn_dat == NULL)
   2123  1.6.2.1    tls 		goto fail;
   2124  1.6.2.1    tls 
   2125  1.6.2.1    tls 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2126  1.6.2.1    tls 		goto fail;
   2127  1.6.2.1    tls 
   2128  1.6.2.1    tls 	compiler = sljit_create_compiler();
   2129  1.6.2.1    tls 	if (compiler == NULL)
   2130  1.6.2.1    tls 		goto fail;
   2131  1.6.2.1    tls 
   2132  1.6.2.1    tls #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2133  1.6.2.1    tls 	sljit_compiler_verbose(compiler, stderr);
   2134  1.6.2.1    tls #endif
   2135  1.6.2.1    tls 
   2136  1.6.2.1    tls 	status = sljit_emit_enter(compiler,
   2137  1.6.2.1    tls 	    2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
   2138  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
   2139  1.6.2.1    tls 		goto fail;
   2140  1.6.2.1    tls 
   2141  1.6.2.1    tls 	if (hints & BJ_HINT_COP) {
   2142  1.6.2.1    tls 		/* save ctx argument */
   2143  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
   2144  1.6.2.1    tls 		    SLJIT_MOV_P,
   2145  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2146  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, ctx),
   2147  1.6.2.1    tls 		    BJ_CTX_ARG, 0);
   2148  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
   2149      1.1  alnsn 			goto fail;
   2150  1.6.2.1    tls 	}
   2151      1.1  alnsn 
   2152  1.6.2.1    tls 	if (extwords == 0) {
   2153  1.6.2.1    tls 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2154  1.6.2.1    tls 		mem_off = offsetof(struct bpfjit_stack, mem);
   2155  1.6.2.1    tls 	} else {
   2156  1.6.2.1    tls 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2157  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
   2158  1.6.2.1    tls 		    SLJIT_MOV_P,
   2159  1.6.2.1    tls 		    BJ_TMP1REG, 0,
   2160  1.6.2.1    tls 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2161  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
   2162  1.6.2.1    tls 			goto fail;
   2163  1.6.2.1    tls 
   2164  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
   2165  1.6.2.1    tls 		    SLJIT_MOV_P,
   2166  1.6.2.1    tls 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2167  1.6.2.1    tls 		    offsetof(struct bpfjit_stack, extmem),
   2168  1.6.2.1    tls 		    BJ_TMP1REG, 0);
   2169  1.6.2.1    tls 		if (status != SLJIT_SUCCESS)
   2170  1.6.2.1    tls 			goto fail;
   2171  1.6.2.1    tls 
   2172  1.6.2.1    tls 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2173  1.6.2.1    tls 		mem_off = 0;
   2174  1.6.2.1    tls 	}
   2175  1.6.2.1    tls 
   2176  1.6.2.1    tls 	/*
   2177  1.6.2.1    tls 	 * Exclude pre-initialised external memory words but keep
   2178  1.6.2.1    tls 	 * initialization statuses of A and X registers in case
   2179  1.6.2.1    tls 	 * bc->preinited wrongly sets those two bits.
   2180  1.6.2.1    tls 	 */
   2181  1.6.2.1    tls 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2182      1.1  alnsn 
   2183  1.6.2.1    tls #if defined(_KERNEL)
   2184  1.6.2.1    tls 	/* bpf_filter() checks initialization of memwords. */
   2185  1.6.2.1    tls 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2186  1.6.2.1    tls #endif
   2187  1.6.2.1    tls 	for (i = 0; i < memwords; i++) {
   2188  1.6.2.1    tls 		if (initmask & BJ_INIT_MBIT(i)) {
   2189  1.6.2.1    tls 			/* M[i] = 0; */
   2190  1.6.2.1    tls 			status = sljit_emit_op1(compiler,
   2191  1.6.2.1    tls 			    SLJIT_MOV_UI,
   2192  1.6.2.1    tls 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2193  1.6.2.1    tls 			    SLJIT_IMM, 0);
   2194  1.6.2.1    tls 			if (status != SLJIT_SUCCESS)
   2195  1.6.2.1    tls 				goto fail;
   2196  1.6.2.1    tls 		}
   2197  1.6.2.1    tls 	}
   2198  1.6.2.1    tls 
   2199  1.6.2.1    tls 	if (initmask & BJ_INIT_ABIT) {
   2200  1.6.2.1    tls 		/* A = 0; */
   2201      1.1  alnsn 		status = sljit_emit_op1(compiler,
   2202      1.1  alnsn 		    SLJIT_MOV,
   2203  1.6.2.1    tls 		    BJ_AREG, 0,
   2204      1.1  alnsn 		    SLJIT_IMM, 0);
   2205      1.1  alnsn 		if (status != SLJIT_SUCCESS)
   2206      1.1  alnsn 			goto fail;
   2207  1.6.2.1    tls 	}
   2208      1.1  alnsn 
   2209  1.6.2.1    tls 	if (initmask & BJ_INIT_XBIT) {
   2210  1.6.2.1    tls 		/* X = 0; */
   2211  1.6.2.1    tls 		status = sljit_emit_op1(compiler,
   2212  1.6.2.1    tls 		    SLJIT_MOV,
   2213  1.6.2.1    tls 		    BJ_XREG, 0,
   2214  1.6.2.1    tls 		    SLJIT_IMM, 0);
   2215      1.1  alnsn 		if (status != SLJIT_SUCCESS)
   2216      1.1  alnsn 			goto fail;
   2217      1.1  alnsn 	}
   2218      1.1  alnsn 
   2219  1.6.2.1    tls 	status = load_buf_buflen(compiler);
   2220  1.6.2.1    tls 	if (status != SLJIT_SUCCESS)
   2221  1.6.2.1    tls 		goto fail;
   2222  1.6.2.1    tls 
   2223  1.6.2.1    tls 	if (!generate_insn_code(compiler, hints,
   2224  1.6.2.1    tls 	    bc, insns, insn_dat, insn_count)) {
   2225  1.6.2.1    tls 		goto fail;
   2226  1.6.2.1    tls 	}
   2227  1.6.2.1    tls 
   2228      1.1  alnsn 	rv = sljit_generate_code(compiler);
   2229      1.1  alnsn 
   2230      1.1  alnsn fail:
   2231      1.1  alnsn 	if (compiler != NULL)
   2232      1.1  alnsn 		sljit_free_compiler(compiler);
   2233      1.1  alnsn 
   2234      1.1  alnsn 	if (insn_dat != NULL)
   2235  1.6.2.1    tls 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2236      1.1  alnsn 
   2237      1.4  rmind 	return (bpfjit_func_t)rv;
   2238      1.1  alnsn }
   2239      1.1  alnsn 
   2240      1.1  alnsn void
   2241      1.4  rmind bpfjit_free_code(bpfjit_func_t code)
   2242      1.1  alnsn {
   2243  1.6.2.1    tls 
   2244      1.1  alnsn 	sljit_free_code((void *)code);
   2245      1.1  alnsn }
   2246