bpfjit.c revision 1.8 1 1.8 alnsn /* $NetBSD: bpfjit.c,v 1.8 2014/05/22 13:35:45 alnsn Exp $ */
2 1.3 rmind
3 1.1 alnsn /*-
4 1.7 alnsn * Copyright (c) 2011-2014 Alexander Nasonov.
5 1.1 alnsn * All rights reserved.
6 1.1 alnsn *
7 1.1 alnsn * Redistribution and use in source and binary forms, with or without
8 1.1 alnsn * modification, are permitted provided that the following conditions
9 1.1 alnsn * are met:
10 1.1 alnsn *
11 1.1 alnsn * 1. Redistributions of source code must retain the above copyright
12 1.1 alnsn * notice, this list of conditions and the following disclaimer.
13 1.1 alnsn * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 alnsn * notice, this list of conditions and the following disclaimer in
15 1.1 alnsn * the documentation and/or other materials provided with the
16 1.1 alnsn * distribution.
17 1.1 alnsn *
18 1.1 alnsn * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 1.1 alnsn * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 1.1 alnsn * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 1.1 alnsn * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 1.1 alnsn * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 1.1 alnsn * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 1.1 alnsn * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 1.1 alnsn * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 1.1 alnsn * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 1.1 alnsn * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 1.1 alnsn * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 alnsn * SUCH DAMAGE.
30 1.1 alnsn */
31 1.1 alnsn
32 1.2 alnsn #include <sys/cdefs.h>
33 1.2 alnsn #ifdef _KERNEL
34 1.8 alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.8 2014/05/22 13:35:45 alnsn Exp $");
35 1.2 alnsn #else
36 1.8 alnsn __RCSID("$NetBSD: bpfjit.c,v 1.8 2014/05/22 13:35:45 alnsn Exp $");
37 1.2 alnsn #endif
38 1.2 alnsn
39 1.3 rmind #include <sys/types.h>
40 1.3 rmind #include <sys/queue.h>
41 1.1 alnsn
42 1.1 alnsn #ifndef _KERNEL
43 1.7 alnsn #include <assert.h>
44 1.7 alnsn #define BJ_ASSERT(c) assert(c)
45 1.7 alnsn #else
46 1.7 alnsn #define BJ_ASSERT(c) KASSERT(c)
47 1.7 alnsn #endif
48 1.7 alnsn
49 1.7 alnsn #ifndef _KERNEL
50 1.3 rmind #include <stdlib.h>
51 1.7 alnsn #define BJ_ALLOC(sz) malloc(sz)
52 1.7 alnsn #define BJ_FREE(p, sz) free(p)
53 1.1 alnsn #else
54 1.3 rmind #include <sys/kmem.h>
55 1.7 alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 1.7 alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
57 1.1 alnsn #endif
58 1.1 alnsn
59 1.1 alnsn #ifndef _KERNEL
60 1.1 alnsn #include <limits.h>
61 1.1 alnsn #include <stdbool.h>
62 1.1 alnsn #include <stddef.h>
63 1.1 alnsn #include <stdint.h>
64 1.1 alnsn #else
65 1.1 alnsn #include <sys/atomic.h>
66 1.1 alnsn #include <sys/module.h>
67 1.1 alnsn #endif
68 1.1 alnsn
69 1.5 rmind #define __BPF_PRIVATE
70 1.5 rmind #include <net/bpf.h>
71 1.3 rmind #include <net/bpfjit.h>
72 1.1 alnsn #include <sljitLir.h>
73 1.1 alnsn
74 1.7 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 1.7 alnsn #include <stdio.h> /* for stderr */
76 1.7 alnsn #endif
77 1.7 alnsn
78 1.7 alnsn /*
79 1.7 alnsn * Permanent register assignments.
80 1.7 alnsn */
81 1.7 alnsn #define BJ_BUF SLJIT_SAVED_REG1
82 1.7 alnsn #define BJ_WIRELEN SLJIT_SAVED_REG2
83 1.7 alnsn #define BJ_BUFLEN SLJIT_SAVED_REG3
84 1.7 alnsn #define BJ_AREG SLJIT_TEMPORARY_REG1
85 1.7 alnsn #define BJ_TMP1REG SLJIT_TEMPORARY_REG2
86 1.7 alnsn #define BJ_TMP2REG SLJIT_TEMPORARY_REG3
87 1.7 alnsn #define BJ_XREG SLJIT_TEMPORARY_EREG1
88 1.7 alnsn #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
89 1.7 alnsn
90 1.7 alnsn typedef unsigned int bpfjit_init_mask_t;
91 1.7 alnsn #define BJ_INIT_NOBITS 0u
92 1.7 alnsn #define BJ_INIT_MBIT(k) (1u << (k))
93 1.7 alnsn #define BJ_INIT_MMASK (BJ_INIT_MBIT(BPF_MEMWORDS) - 1u)
94 1.7 alnsn #define BJ_INIT_ABIT BJ_INIT_MBIT(BPF_MEMWORDS)
95 1.7 alnsn #define BJ_INIT_XBIT BJ_INIT_MBIT(BPF_MEMWORDS + 1)
96 1.1 alnsn
97 1.8 alnsn typedef uint32_t bpfjit_abc_length_t;
98 1.8 alnsn #define MAX_ABC_LENGTH UINT32_MAX
99 1.8 alnsn
100 1.7 alnsn struct bpfjit_stack
101 1.7 alnsn {
102 1.7 alnsn uint32_t mem[BPF_MEMWORDS];
103 1.7 alnsn #ifdef _KERNEL
104 1.7 alnsn void *tmp;
105 1.7 alnsn #endif
106 1.7 alnsn };
107 1.7 alnsn
108 1.7 alnsn /*
109 1.7 alnsn * Data for BPF_JMP instruction.
110 1.7 alnsn * Forward declaration for struct bpfjit_jump.
111 1.1 alnsn */
112 1.7 alnsn struct bpfjit_jump_data;
113 1.1 alnsn
114 1.1 alnsn /*
115 1.7 alnsn * Node of bjumps list.
116 1.1 alnsn */
117 1.3 rmind struct bpfjit_jump {
118 1.7 alnsn struct sljit_jump *sjump;
119 1.7 alnsn SLIST_ENTRY(bpfjit_jump) entries;
120 1.7 alnsn struct bpfjit_jump_data *jdata;
121 1.1 alnsn };
122 1.1 alnsn
123 1.1 alnsn /*
124 1.1 alnsn * Data for BPF_JMP instruction.
125 1.1 alnsn */
126 1.3 rmind struct bpfjit_jump_data {
127 1.1 alnsn /*
128 1.7 alnsn * These entries make up bjumps list:
129 1.7 alnsn * jtf[0] - when coming from jt path,
130 1.7 alnsn * jtf[1] - when coming from jf path.
131 1.1 alnsn */
132 1.7 alnsn struct bpfjit_jump jtf[2];
133 1.7 alnsn /*
134 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
135 1.7 alnsn */
136 1.8 alnsn bpfjit_abc_length_t abc_length;
137 1.7 alnsn /*
138 1.7 alnsn * Length checked by the last out-of-bounds check.
139 1.7 alnsn */
140 1.8 alnsn bpfjit_abc_length_t checked_length;
141 1.1 alnsn };
142 1.1 alnsn
143 1.1 alnsn /*
144 1.1 alnsn * Data for "read from packet" instructions.
145 1.1 alnsn * See also read_pkt_insn() function below.
146 1.1 alnsn */
147 1.3 rmind struct bpfjit_read_pkt_data {
148 1.1 alnsn /*
149 1.7 alnsn * Length calculated by Array Bounds Check Elimination (ABC) pass.
150 1.7 alnsn */
151 1.8 alnsn bpfjit_abc_length_t abc_length;
152 1.7 alnsn /*
153 1.7 alnsn * If positive, emit "if (buflen < check_length) return 0"
154 1.7 alnsn * out-of-bounds check.
155 1.1 alnsn * We assume that buflen is never equal to UINT32_MAX (otherwise,
156 1.7 alnsn * we'd need a special bool variable to emit unconditional "return 0").
157 1.1 alnsn */
158 1.8 alnsn bpfjit_abc_length_t check_length;
159 1.1 alnsn };
160 1.1 alnsn
161 1.1 alnsn /*
162 1.1 alnsn * Additional (optimization-related) data for bpf_insn.
163 1.1 alnsn */
164 1.3 rmind struct bpfjit_insn_data {
165 1.1 alnsn /* List of jumps to this insn. */
166 1.7 alnsn SLIST_HEAD(, bpfjit_jump) bjumps;
167 1.1 alnsn
168 1.1 alnsn union {
169 1.7 alnsn struct bpfjit_jump_data jdata;
170 1.7 alnsn struct bpfjit_read_pkt_data rdata;
171 1.7 alnsn } u;
172 1.1 alnsn
173 1.7 alnsn bpfjit_init_mask_t invalid;
174 1.7 alnsn bool unreachable;
175 1.1 alnsn };
176 1.1 alnsn
177 1.1 alnsn #ifdef _KERNEL
178 1.1 alnsn
179 1.1 alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
180 1.1 alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
181 1.1 alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
182 1.1 alnsn
183 1.1 alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
184 1.1 alnsn
185 1.1 alnsn static int
186 1.1 alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
187 1.1 alnsn {
188 1.1 alnsn
189 1.1 alnsn switch (cmd) {
190 1.1 alnsn case MODULE_CMD_INIT:
191 1.1 alnsn bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
192 1.1 alnsn membar_producer();
193 1.1 alnsn bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
194 1.1 alnsn membar_producer();
195 1.1 alnsn return 0;
196 1.1 alnsn
197 1.1 alnsn case MODULE_CMD_FINI:
198 1.1 alnsn return EOPNOTSUPP;
199 1.1 alnsn
200 1.1 alnsn default:
201 1.1 alnsn return ENOTTY;
202 1.1 alnsn }
203 1.1 alnsn }
204 1.1 alnsn #endif
205 1.1 alnsn
206 1.1 alnsn static uint32_t
207 1.7 alnsn read_width(const struct bpf_insn *pc)
208 1.1 alnsn {
209 1.1 alnsn
210 1.1 alnsn switch (BPF_SIZE(pc->code)) {
211 1.1 alnsn case BPF_W:
212 1.1 alnsn return 4;
213 1.1 alnsn case BPF_H:
214 1.1 alnsn return 2;
215 1.1 alnsn case BPF_B:
216 1.1 alnsn return 1;
217 1.1 alnsn default:
218 1.7 alnsn BJ_ASSERT(false);
219 1.1 alnsn return 0;
220 1.1 alnsn }
221 1.1 alnsn }
222 1.1 alnsn
223 1.7 alnsn static bool
224 1.7 alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
225 1.7 alnsn {
226 1.7 alnsn struct sljit_jump **newptr;
227 1.7 alnsn const size_t elemsz = sizeof(struct sljit_jump *);
228 1.7 alnsn size_t old_size = *size;
229 1.7 alnsn size_t new_size = 2 * old_size;
230 1.7 alnsn
231 1.7 alnsn if (new_size < old_size || new_size > SIZE_MAX / elemsz)
232 1.7 alnsn return false;
233 1.7 alnsn
234 1.7 alnsn newptr = BJ_ALLOC(new_size * elemsz);
235 1.7 alnsn if (newptr == NULL)
236 1.7 alnsn return false;
237 1.7 alnsn
238 1.7 alnsn memcpy(newptr, *jumps, old_size * elemsz);
239 1.7 alnsn BJ_FREE(*jumps, old_size * elemsz);
240 1.7 alnsn
241 1.7 alnsn *jumps = newptr;
242 1.7 alnsn *size = new_size;
243 1.7 alnsn return true;
244 1.7 alnsn }
245 1.7 alnsn
246 1.7 alnsn static bool
247 1.7 alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
248 1.7 alnsn size_t *size, size_t *max_size)
249 1.1 alnsn {
250 1.7 alnsn if (*size == *max_size && !grow_jumps(jumps, max_size))
251 1.7 alnsn return false;
252 1.1 alnsn
253 1.7 alnsn (*jumps)[(*size)++] = jump;
254 1.7 alnsn return true;
255 1.1 alnsn }
256 1.1 alnsn
257 1.1 alnsn /*
258 1.1 alnsn * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
259 1.1 alnsn */
260 1.1 alnsn static int
261 1.1 alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
262 1.1 alnsn {
263 1.1 alnsn
264 1.1 alnsn return sljit_emit_op1(compiler,
265 1.1 alnsn SLJIT_MOV_UB,
266 1.7 alnsn BJ_AREG, 0,
267 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
268 1.1 alnsn }
269 1.1 alnsn
270 1.1 alnsn /*
271 1.1 alnsn * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
272 1.1 alnsn */
273 1.1 alnsn static int
274 1.1 alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
275 1.1 alnsn {
276 1.1 alnsn int status;
277 1.1 alnsn
278 1.1 alnsn /* tmp1 = buf[k]; */
279 1.1 alnsn status = sljit_emit_op1(compiler,
280 1.1 alnsn SLJIT_MOV_UB,
281 1.7 alnsn BJ_TMP1REG, 0,
282 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
283 1.1 alnsn if (status != SLJIT_SUCCESS)
284 1.1 alnsn return status;
285 1.1 alnsn
286 1.1 alnsn /* A = buf[k+1]; */
287 1.1 alnsn status = sljit_emit_op1(compiler,
288 1.1 alnsn SLJIT_MOV_UB,
289 1.7 alnsn BJ_AREG, 0,
290 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
291 1.1 alnsn if (status != SLJIT_SUCCESS)
292 1.1 alnsn return status;
293 1.1 alnsn
294 1.1 alnsn /* tmp1 = tmp1 << 8; */
295 1.1 alnsn status = sljit_emit_op2(compiler,
296 1.1 alnsn SLJIT_SHL,
297 1.7 alnsn BJ_TMP1REG, 0,
298 1.7 alnsn BJ_TMP1REG, 0,
299 1.1 alnsn SLJIT_IMM, 8);
300 1.1 alnsn if (status != SLJIT_SUCCESS)
301 1.1 alnsn return status;
302 1.1 alnsn
303 1.1 alnsn /* A = A + tmp1; */
304 1.1 alnsn status = sljit_emit_op2(compiler,
305 1.1 alnsn SLJIT_ADD,
306 1.7 alnsn BJ_AREG, 0,
307 1.7 alnsn BJ_AREG, 0,
308 1.7 alnsn BJ_TMP1REG, 0);
309 1.1 alnsn return status;
310 1.1 alnsn }
311 1.1 alnsn
312 1.1 alnsn /*
313 1.1 alnsn * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
314 1.1 alnsn */
315 1.1 alnsn static int
316 1.1 alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
317 1.1 alnsn {
318 1.1 alnsn int status;
319 1.1 alnsn
320 1.1 alnsn /* tmp1 = buf[k]; */
321 1.1 alnsn status = sljit_emit_op1(compiler,
322 1.1 alnsn SLJIT_MOV_UB,
323 1.7 alnsn BJ_TMP1REG, 0,
324 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
325 1.1 alnsn if (status != SLJIT_SUCCESS)
326 1.1 alnsn return status;
327 1.1 alnsn
328 1.1 alnsn /* tmp2 = buf[k+1]; */
329 1.1 alnsn status = sljit_emit_op1(compiler,
330 1.1 alnsn SLJIT_MOV_UB,
331 1.7 alnsn BJ_TMP2REG, 0,
332 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+1);
333 1.1 alnsn if (status != SLJIT_SUCCESS)
334 1.1 alnsn return status;
335 1.1 alnsn
336 1.1 alnsn /* A = buf[k+3]; */
337 1.1 alnsn status = sljit_emit_op1(compiler,
338 1.1 alnsn SLJIT_MOV_UB,
339 1.7 alnsn BJ_AREG, 0,
340 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+3);
341 1.1 alnsn if (status != SLJIT_SUCCESS)
342 1.1 alnsn return status;
343 1.1 alnsn
344 1.1 alnsn /* tmp1 = tmp1 << 24; */
345 1.1 alnsn status = sljit_emit_op2(compiler,
346 1.1 alnsn SLJIT_SHL,
347 1.7 alnsn BJ_TMP1REG, 0,
348 1.7 alnsn BJ_TMP1REG, 0,
349 1.1 alnsn SLJIT_IMM, 24);
350 1.1 alnsn if (status != SLJIT_SUCCESS)
351 1.1 alnsn return status;
352 1.1 alnsn
353 1.1 alnsn /* A = A + tmp1; */
354 1.1 alnsn status = sljit_emit_op2(compiler,
355 1.1 alnsn SLJIT_ADD,
356 1.7 alnsn BJ_AREG, 0,
357 1.7 alnsn BJ_AREG, 0,
358 1.7 alnsn BJ_TMP1REG, 0);
359 1.1 alnsn if (status != SLJIT_SUCCESS)
360 1.1 alnsn return status;
361 1.1 alnsn
362 1.1 alnsn /* tmp1 = buf[k+2]; */
363 1.1 alnsn status = sljit_emit_op1(compiler,
364 1.1 alnsn SLJIT_MOV_UB,
365 1.7 alnsn BJ_TMP1REG, 0,
366 1.7 alnsn SLJIT_MEM1(BJ_BUF), k+2);
367 1.1 alnsn if (status != SLJIT_SUCCESS)
368 1.1 alnsn return status;
369 1.1 alnsn
370 1.1 alnsn /* tmp2 = tmp2 << 16; */
371 1.1 alnsn status = sljit_emit_op2(compiler,
372 1.1 alnsn SLJIT_SHL,
373 1.7 alnsn BJ_TMP2REG, 0,
374 1.7 alnsn BJ_TMP2REG, 0,
375 1.1 alnsn SLJIT_IMM, 16);
376 1.1 alnsn if (status != SLJIT_SUCCESS)
377 1.1 alnsn return status;
378 1.1 alnsn
379 1.1 alnsn /* A = A + tmp2; */
380 1.1 alnsn status = sljit_emit_op2(compiler,
381 1.1 alnsn SLJIT_ADD,
382 1.7 alnsn BJ_AREG, 0,
383 1.7 alnsn BJ_AREG, 0,
384 1.7 alnsn BJ_TMP2REG, 0);
385 1.1 alnsn if (status != SLJIT_SUCCESS)
386 1.1 alnsn return status;
387 1.1 alnsn
388 1.1 alnsn /* tmp1 = tmp1 << 8; */
389 1.1 alnsn status = sljit_emit_op2(compiler,
390 1.1 alnsn SLJIT_SHL,
391 1.7 alnsn BJ_TMP1REG, 0,
392 1.7 alnsn BJ_TMP1REG, 0,
393 1.1 alnsn SLJIT_IMM, 8);
394 1.1 alnsn if (status != SLJIT_SUCCESS)
395 1.1 alnsn return status;
396 1.1 alnsn
397 1.1 alnsn /* A = A + tmp1; */
398 1.1 alnsn status = sljit_emit_op2(compiler,
399 1.1 alnsn SLJIT_ADD,
400 1.7 alnsn BJ_AREG, 0,
401 1.7 alnsn BJ_AREG, 0,
402 1.7 alnsn BJ_TMP1REG, 0);
403 1.1 alnsn return status;
404 1.1 alnsn }
405 1.1 alnsn
406 1.1 alnsn #ifdef _KERNEL
407 1.1 alnsn /*
408 1.1 alnsn * Generate m_xword/m_xhalf/m_xbyte call.
409 1.1 alnsn *
410 1.1 alnsn * pc is one of:
411 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
412 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
413 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
414 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
415 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
416 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
417 1.1 alnsn * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
418 1.1 alnsn *
419 1.7 alnsn * The dst variable should be
420 1.7 alnsn * - BJ_AREG when emitting code for BPF_LD instructions,
421 1.7 alnsn * - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
422 1.7 alnsn * code for BPF_MSH instruction.
423 1.1 alnsn */
424 1.1 alnsn static int
425 1.7 alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
426 1.1 alnsn int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
427 1.1 alnsn uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
428 1.1 alnsn {
429 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
430 1.7 alnsn BJ_XREG == SLJIT_TEMPORARY_REG1 || \
431 1.7 alnsn BJ_XREG == SLJIT_TEMPORARY_REG2 || \
432 1.7 alnsn BJ_XREG == SLJIT_TEMPORARY_REG3
433 1.1 alnsn #error "Not supported assignment of registers."
434 1.1 alnsn #endif
435 1.1 alnsn int status;
436 1.1 alnsn
437 1.1 alnsn /*
438 1.1 alnsn * The third argument of fn is an address on stack.
439 1.1 alnsn */
440 1.7 alnsn const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
441 1.1 alnsn
442 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
443 1.1 alnsn /* save A */
444 1.1 alnsn status = sljit_emit_op1(compiler,
445 1.1 alnsn SLJIT_MOV,
446 1.7 alnsn BJ_TMP3REG, 0,
447 1.7 alnsn BJ_AREG, 0);
448 1.1 alnsn if (status != SLJIT_SUCCESS)
449 1.1 alnsn return status;
450 1.1 alnsn }
451 1.1 alnsn
452 1.1 alnsn /*
453 1.1 alnsn * Prepare registers for fn(buf, k, &err) call.
454 1.1 alnsn */
455 1.1 alnsn status = sljit_emit_op1(compiler,
456 1.1 alnsn SLJIT_MOV,
457 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
458 1.7 alnsn BJ_BUF, 0);
459 1.1 alnsn if (status != SLJIT_SUCCESS)
460 1.1 alnsn return status;
461 1.1 alnsn
462 1.1 alnsn if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
463 1.1 alnsn status = sljit_emit_op2(compiler,
464 1.1 alnsn SLJIT_ADD,
465 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
466 1.7 alnsn BJ_XREG, 0,
467 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
468 1.1 alnsn } else {
469 1.1 alnsn status = sljit_emit_op1(compiler,
470 1.1 alnsn SLJIT_MOV,
471 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
472 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
473 1.1 alnsn }
474 1.1 alnsn
475 1.1 alnsn if (status != SLJIT_SUCCESS)
476 1.1 alnsn return status;
477 1.1 alnsn
478 1.1 alnsn status = sljit_get_local_base(compiler,
479 1.1 alnsn SLJIT_TEMPORARY_REG3, 0, arg3_offset);
480 1.1 alnsn if (status != SLJIT_SUCCESS)
481 1.1 alnsn return status;
482 1.1 alnsn
483 1.1 alnsn /* fn(buf, k, &err); */
484 1.1 alnsn status = sljit_emit_ijump(compiler,
485 1.1 alnsn SLJIT_CALL3,
486 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
487 1.1 alnsn
488 1.7 alnsn if (dst != SLJIT_RETURN_REG) {
489 1.1 alnsn /* move return value to dst */
490 1.1 alnsn status = sljit_emit_op1(compiler,
491 1.1 alnsn SLJIT_MOV,
492 1.1 alnsn dst, dstw,
493 1.1 alnsn SLJIT_RETURN_REG, 0);
494 1.1 alnsn if (status != SLJIT_SUCCESS)
495 1.1 alnsn return status;
496 1.7 alnsn }
497 1.1 alnsn
498 1.7 alnsn if (BPF_CLASS(pc->code) == BPF_LDX) {
499 1.1 alnsn /* restore A */
500 1.1 alnsn status = sljit_emit_op1(compiler,
501 1.1 alnsn SLJIT_MOV,
502 1.7 alnsn BJ_AREG, 0,
503 1.7 alnsn BJ_TMP3REG, 0);
504 1.1 alnsn if (status != SLJIT_SUCCESS)
505 1.1 alnsn return status;
506 1.1 alnsn }
507 1.1 alnsn
508 1.1 alnsn /* tmp3 = *err; */
509 1.1 alnsn status = sljit_emit_op1(compiler,
510 1.1 alnsn SLJIT_MOV_UI,
511 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
512 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
513 1.1 alnsn if (status != SLJIT_SUCCESS)
514 1.1 alnsn return status;
515 1.1 alnsn
516 1.1 alnsn /* if (tmp3 != 0) return 0; */
517 1.1 alnsn *ret0_jump = sljit_emit_cmp(compiler,
518 1.1 alnsn SLJIT_C_NOT_EQUAL,
519 1.1 alnsn SLJIT_TEMPORARY_REG3, 0,
520 1.1 alnsn SLJIT_IMM, 0);
521 1.1 alnsn if (*ret0_jump == NULL)
522 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
523 1.1 alnsn
524 1.1 alnsn return status;
525 1.1 alnsn }
526 1.1 alnsn #endif
527 1.1 alnsn
528 1.1 alnsn /*
529 1.1 alnsn * Generate code for
530 1.1 alnsn * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
531 1.1 alnsn * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
532 1.1 alnsn * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
533 1.1 alnsn * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
534 1.1 alnsn * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
535 1.1 alnsn * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
536 1.1 alnsn */
537 1.1 alnsn static int
538 1.1 alnsn emit_pkt_read(struct sljit_compiler* compiler,
539 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
540 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
541 1.1 alnsn {
542 1.6 pooka int status = 0; /* XXX gcc 4.1 */
543 1.1 alnsn uint32_t width;
544 1.1 alnsn struct sljit_jump *jump;
545 1.1 alnsn #ifdef _KERNEL
546 1.1 alnsn struct sljit_label *label;
547 1.1 alnsn struct sljit_jump *over_mchain_jump;
548 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
549 1.1 alnsn #endif
550 1.1 alnsn const uint32_t k = pc->k;
551 1.1 alnsn
552 1.1 alnsn #ifdef _KERNEL
553 1.1 alnsn if (to_mchain_jump == NULL) {
554 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
555 1.1 alnsn SLJIT_C_EQUAL,
556 1.7 alnsn BJ_BUFLEN, 0,
557 1.1 alnsn SLJIT_IMM, 0);
558 1.1 alnsn if (to_mchain_jump == NULL)
559 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
560 1.1 alnsn }
561 1.1 alnsn #endif
562 1.1 alnsn
563 1.1 alnsn width = read_width(pc);
564 1.1 alnsn
565 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
566 1.1 alnsn /* tmp1 = buflen - (pc->k + width); */
567 1.1 alnsn status = sljit_emit_op2(compiler,
568 1.1 alnsn SLJIT_SUB,
569 1.7 alnsn BJ_TMP1REG, 0,
570 1.7 alnsn BJ_BUFLEN, 0,
571 1.1 alnsn SLJIT_IMM, k + width);
572 1.1 alnsn if (status != SLJIT_SUCCESS)
573 1.1 alnsn return status;
574 1.1 alnsn
575 1.1 alnsn /* buf += X; */
576 1.1 alnsn status = sljit_emit_op2(compiler,
577 1.1 alnsn SLJIT_ADD,
578 1.7 alnsn BJ_BUF, 0,
579 1.7 alnsn BJ_BUF, 0,
580 1.7 alnsn BJ_XREG, 0);
581 1.1 alnsn if (status != SLJIT_SUCCESS)
582 1.1 alnsn return status;
583 1.1 alnsn
584 1.1 alnsn /* if (tmp1 < X) return 0; */
585 1.1 alnsn jump = sljit_emit_cmp(compiler,
586 1.1 alnsn SLJIT_C_LESS,
587 1.7 alnsn BJ_TMP1REG, 0,
588 1.7 alnsn BJ_XREG, 0);
589 1.1 alnsn if (jump == NULL)
590 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
591 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
592 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
593 1.1 alnsn }
594 1.1 alnsn
595 1.1 alnsn switch (width) {
596 1.1 alnsn case 4:
597 1.1 alnsn status = emit_read32(compiler, k);
598 1.1 alnsn break;
599 1.1 alnsn case 2:
600 1.1 alnsn status = emit_read16(compiler, k);
601 1.1 alnsn break;
602 1.1 alnsn case 1:
603 1.1 alnsn status = emit_read8(compiler, k);
604 1.1 alnsn break;
605 1.1 alnsn }
606 1.1 alnsn
607 1.1 alnsn if (status != SLJIT_SUCCESS)
608 1.1 alnsn return status;
609 1.1 alnsn
610 1.1 alnsn if (BPF_MODE(pc->code) == BPF_IND) {
611 1.1 alnsn /* buf -= X; */
612 1.1 alnsn status = sljit_emit_op2(compiler,
613 1.1 alnsn SLJIT_SUB,
614 1.7 alnsn BJ_BUF, 0,
615 1.7 alnsn BJ_BUF, 0,
616 1.7 alnsn BJ_XREG, 0);
617 1.1 alnsn if (status != SLJIT_SUCCESS)
618 1.1 alnsn return status;
619 1.1 alnsn }
620 1.1 alnsn
621 1.1 alnsn #ifdef _KERNEL
622 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
623 1.1 alnsn if (over_mchain_jump == NULL)
624 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
625 1.1 alnsn
626 1.1 alnsn /* entry point to mchain handler */
627 1.1 alnsn label = sljit_emit_label(compiler);
628 1.1 alnsn if (label == NULL)
629 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
630 1.1 alnsn sljit_set_label(to_mchain_jump, label);
631 1.1 alnsn
632 1.1 alnsn if (check_zero_buflen) {
633 1.1 alnsn /* if (buflen != 0) return 0; */
634 1.1 alnsn jump = sljit_emit_cmp(compiler,
635 1.1 alnsn SLJIT_C_NOT_EQUAL,
636 1.7 alnsn BJ_BUFLEN, 0,
637 1.1 alnsn SLJIT_IMM, 0);
638 1.1 alnsn if (jump == NULL)
639 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
640 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
641 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
642 1.1 alnsn }
643 1.1 alnsn
644 1.1 alnsn switch (width) {
645 1.1 alnsn case 4:
646 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
647 1.1 alnsn break;
648 1.1 alnsn case 2:
649 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
650 1.1 alnsn break;
651 1.1 alnsn case 1:
652 1.7 alnsn status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
653 1.1 alnsn break;
654 1.1 alnsn }
655 1.1 alnsn
656 1.1 alnsn if (status != SLJIT_SUCCESS)
657 1.1 alnsn return status;
658 1.1 alnsn
659 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
660 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
661 1.1 alnsn
662 1.1 alnsn label = sljit_emit_label(compiler);
663 1.1 alnsn if (label == NULL)
664 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
665 1.1 alnsn sljit_set_label(over_mchain_jump, label);
666 1.1 alnsn #endif
667 1.1 alnsn
668 1.1 alnsn return status;
669 1.1 alnsn }
670 1.1 alnsn
671 1.1 alnsn /*
672 1.1 alnsn * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
673 1.1 alnsn */
674 1.1 alnsn static int
675 1.1 alnsn emit_msh(struct sljit_compiler* compiler,
676 1.7 alnsn const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
677 1.7 alnsn struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
678 1.1 alnsn {
679 1.1 alnsn int status;
680 1.1 alnsn #ifdef _KERNEL
681 1.1 alnsn struct sljit_label *label;
682 1.1 alnsn struct sljit_jump *jump, *over_mchain_jump;
683 1.1 alnsn const bool check_zero_buflen = (to_mchain_jump != NULL);
684 1.1 alnsn #endif
685 1.1 alnsn const uint32_t k = pc->k;
686 1.1 alnsn
687 1.1 alnsn #ifdef _KERNEL
688 1.1 alnsn if (to_mchain_jump == NULL) {
689 1.1 alnsn to_mchain_jump = sljit_emit_cmp(compiler,
690 1.1 alnsn SLJIT_C_EQUAL,
691 1.7 alnsn BJ_BUFLEN, 0,
692 1.1 alnsn SLJIT_IMM, 0);
693 1.1 alnsn if (to_mchain_jump == NULL)
694 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
695 1.1 alnsn }
696 1.1 alnsn #endif
697 1.1 alnsn
698 1.1 alnsn /* tmp1 = buf[k] */
699 1.1 alnsn status = sljit_emit_op1(compiler,
700 1.1 alnsn SLJIT_MOV_UB,
701 1.7 alnsn BJ_TMP1REG, 0,
702 1.7 alnsn SLJIT_MEM1(BJ_BUF), k);
703 1.1 alnsn if (status != SLJIT_SUCCESS)
704 1.1 alnsn return status;
705 1.1 alnsn
706 1.1 alnsn /* tmp1 &= 0xf */
707 1.1 alnsn status = sljit_emit_op2(compiler,
708 1.1 alnsn SLJIT_AND,
709 1.7 alnsn BJ_TMP1REG, 0,
710 1.7 alnsn BJ_TMP1REG, 0,
711 1.1 alnsn SLJIT_IMM, 0xf);
712 1.1 alnsn if (status != SLJIT_SUCCESS)
713 1.1 alnsn return status;
714 1.1 alnsn
715 1.1 alnsn /* tmp1 = tmp1 << 2 */
716 1.1 alnsn status = sljit_emit_op2(compiler,
717 1.1 alnsn SLJIT_SHL,
718 1.7 alnsn BJ_XREG, 0,
719 1.7 alnsn BJ_TMP1REG, 0,
720 1.1 alnsn SLJIT_IMM, 2);
721 1.1 alnsn if (status != SLJIT_SUCCESS)
722 1.1 alnsn return status;
723 1.1 alnsn
724 1.1 alnsn #ifdef _KERNEL
725 1.1 alnsn over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
726 1.1 alnsn if (over_mchain_jump == NULL)
727 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
728 1.1 alnsn
729 1.1 alnsn /* entry point to mchain handler */
730 1.1 alnsn label = sljit_emit_label(compiler);
731 1.1 alnsn if (label == NULL)
732 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
733 1.1 alnsn sljit_set_label(to_mchain_jump, label);
734 1.1 alnsn
735 1.1 alnsn if (check_zero_buflen) {
736 1.1 alnsn /* if (buflen != 0) return 0; */
737 1.1 alnsn jump = sljit_emit_cmp(compiler,
738 1.1 alnsn SLJIT_C_NOT_EQUAL,
739 1.7 alnsn BJ_BUFLEN, 0,
740 1.1 alnsn SLJIT_IMM, 0);
741 1.1 alnsn if (jump == NULL)
742 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
743 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
744 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
745 1.1 alnsn }
746 1.1 alnsn
747 1.7 alnsn status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
748 1.1 alnsn if (status != SLJIT_SUCCESS)
749 1.1 alnsn return status;
750 1.7 alnsn
751 1.7 alnsn if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
752 1.7 alnsn return SLJIT_ERR_ALLOC_FAILED;
753 1.1 alnsn
754 1.1 alnsn /* tmp1 &= 0xf */
755 1.1 alnsn status = sljit_emit_op2(compiler,
756 1.1 alnsn SLJIT_AND,
757 1.7 alnsn BJ_TMP1REG, 0,
758 1.7 alnsn BJ_TMP1REG, 0,
759 1.1 alnsn SLJIT_IMM, 0xf);
760 1.1 alnsn if (status != SLJIT_SUCCESS)
761 1.1 alnsn return status;
762 1.1 alnsn
763 1.1 alnsn /* tmp1 = tmp1 << 2 */
764 1.1 alnsn status = sljit_emit_op2(compiler,
765 1.1 alnsn SLJIT_SHL,
766 1.7 alnsn BJ_XREG, 0,
767 1.7 alnsn BJ_TMP1REG, 0,
768 1.1 alnsn SLJIT_IMM, 2);
769 1.1 alnsn if (status != SLJIT_SUCCESS)
770 1.1 alnsn return status;
771 1.1 alnsn
772 1.1 alnsn
773 1.1 alnsn label = sljit_emit_label(compiler);
774 1.1 alnsn if (label == NULL)
775 1.1 alnsn return SLJIT_ERR_ALLOC_FAILED;
776 1.1 alnsn sljit_set_label(over_mchain_jump, label);
777 1.1 alnsn #endif
778 1.1 alnsn
779 1.1 alnsn return status;
780 1.1 alnsn }
781 1.1 alnsn
782 1.1 alnsn static int
783 1.1 alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
784 1.1 alnsn {
785 1.1 alnsn int shift = 0;
786 1.1 alnsn int status = SLJIT_SUCCESS;
787 1.1 alnsn
788 1.1 alnsn while (k > 1) {
789 1.1 alnsn k >>= 1;
790 1.1 alnsn shift++;
791 1.1 alnsn }
792 1.1 alnsn
793 1.7 alnsn BJ_ASSERT(k == 1 && shift < 32);
794 1.1 alnsn
795 1.1 alnsn if (shift != 0) {
796 1.1 alnsn status = sljit_emit_op2(compiler,
797 1.1 alnsn SLJIT_LSHR|SLJIT_INT_OP,
798 1.7 alnsn BJ_AREG, 0,
799 1.7 alnsn BJ_AREG, 0,
800 1.1 alnsn SLJIT_IMM, shift);
801 1.1 alnsn }
802 1.1 alnsn
803 1.1 alnsn return status;
804 1.1 alnsn }
805 1.1 alnsn
806 1.1 alnsn #if !defined(BPFJIT_USE_UDIV)
807 1.1 alnsn static sljit_uw
808 1.1 alnsn divide(sljit_uw x, sljit_uw y)
809 1.1 alnsn {
810 1.1 alnsn
811 1.1 alnsn return (uint32_t)x / (uint32_t)y;
812 1.1 alnsn }
813 1.1 alnsn #endif
814 1.1 alnsn
815 1.1 alnsn /*
816 1.1 alnsn * Generate A = A / div.
817 1.7 alnsn * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
818 1.1 alnsn */
819 1.1 alnsn static int
820 1.1 alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
821 1.1 alnsn {
822 1.1 alnsn int status;
823 1.1 alnsn
824 1.7 alnsn #if BJ_XREG == SLJIT_RETURN_REG || \
825 1.7 alnsn BJ_XREG == SLJIT_TEMPORARY_REG1 || \
826 1.7 alnsn BJ_XREG == SLJIT_TEMPORARY_REG2 || \
827 1.7 alnsn BJ_AREG == SLJIT_TEMPORARY_REG2
828 1.1 alnsn #error "Not supported assignment of registers."
829 1.1 alnsn #endif
830 1.1 alnsn
831 1.7 alnsn #if BJ_AREG != SLJIT_TEMPORARY_REG1
832 1.1 alnsn status = sljit_emit_op1(compiler,
833 1.1 alnsn SLJIT_MOV,
834 1.1 alnsn SLJIT_TEMPORARY_REG1, 0,
835 1.7 alnsn BJ_AREG, 0);
836 1.1 alnsn if (status != SLJIT_SUCCESS)
837 1.1 alnsn return status;
838 1.1 alnsn #endif
839 1.1 alnsn
840 1.1 alnsn status = sljit_emit_op1(compiler,
841 1.1 alnsn SLJIT_MOV,
842 1.1 alnsn SLJIT_TEMPORARY_REG2, 0,
843 1.1 alnsn divt, divw);
844 1.1 alnsn if (status != SLJIT_SUCCESS)
845 1.1 alnsn return status;
846 1.1 alnsn
847 1.1 alnsn #if defined(BPFJIT_USE_UDIV)
848 1.1 alnsn status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
849 1.1 alnsn
850 1.7 alnsn #if BJ_AREG != SLJIT_TEMPORARY_REG1
851 1.1 alnsn status = sljit_emit_op1(compiler,
852 1.1 alnsn SLJIT_MOV,
853 1.7 alnsn BJ_AREG, 0,
854 1.1 alnsn SLJIT_TEMPORARY_REG1, 0);
855 1.1 alnsn if (status != SLJIT_SUCCESS)
856 1.1 alnsn return status;
857 1.1 alnsn #endif
858 1.1 alnsn #else
859 1.1 alnsn status = sljit_emit_ijump(compiler,
860 1.1 alnsn SLJIT_CALL2,
861 1.1 alnsn SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
862 1.1 alnsn
863 1.7 alnsn #if BJ_AREG != SLJIT_RETURN_REG
864 1.1 alnsn status = sljit_emit_op1(compiler,
865 1.1 alnsn SLJIT_MOV,
866 1.7 alnsn BJ_AREG, 0,
867 1.1 alnsn SLJIT_RETURN_REG, 0);
868 1.1 alnsn if (status != SLJIT_SUCCESS)
869 1.1 alnsn return status;
870 1.1 alnsn #endif
871 1.1 alnsn #endif
872 1.1 alnsn
873 1.1 alnsn return status;
874 1.1 alnsn }
875 1.1 alnsn
876 1.1 alnsn /*
877 1.1 alnsn * Return true if pc is a "read from packet" instruction.
878 1.1 alnsn * If length is not NULL and return value is true, *length will
879 1.1 alnsn * be set to a safe length required to read a packet.
880 1.1 alnsn */
881 1.1 alnsn static bool
882 1.8 alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
883 1.1 alnsn {
884 1.1 alnsn bool rv;
885 1.8 alnsn bpfjit_abc_length_t width;
886 1.1 alnsn
887 1.1 alnsn switch (BPF_CLASS(pc->code)) {
888 1.1 alnsn default:
889 1.1 alnsn rv = false;
890 1.1 alnsn break;
891 1.1 alnsn
892 1.1 alnsn case BPF_LD:
893 1.1 alnsn rv = BPF_MODE(pc->code) == BPF_ABS ||
894 1.1 alnsn BPF_MODE(pc->code) == BPF_IND;
895 1.1 alnsn if (rv)
896 1.1 alnsn width = read_width(pc);
897 1.1 alnsn break;
898 1.1 alnsn
899 1.1 alnsn case BPF_LDX:
900 1.1 alnsn rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
901 1.1 alnsn width = 1;
902 1.1 alnsn break;
903 1.1 alnsn }
904 1.1 alnsn
905 1.1 alnsn if (rv && length != NULL) {
906 1.1 alnsn *length = (pc->k > UINT32_MAX - width) ?
907 1.1 alnsn UINT32_MAX : pc->k + width;
908 1.1 alnsn }
909 1.1 alnsn
910 1.1 alnsn return rv;
911 1.1 alnsn }
912 1.1 alnsn
913 1.1 alnsn static void
914 1.7 alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
915 1.1 alnsn {
916 1.7 alnsn size_t i;
917 1.1 alnsn
918 1.7 alnsn for (i = 0; i < insn_count; i++) {
919 1.7 alnsn SLIST_INIT(&insn_dat[i].bjumps);
920 1.7 alnsn insn_dat[i].invalid = BJ_INIT_NOBITS;
921 1.1 alnsn }
922 1.1 alnsn }
923 1.1 alnsn
924 1.1 alnsn /*
925 1.1 alnsn * The function divides instructions into blocks. Destination of a jump
926 1.1 alnsn * instruction starts a new block. BPF_RET and BPF_JMP instructions
927 1.1 alnsn * terminate a block. Blocks are linear, that is, there are no jumps out
928 1.1 alnsn * from the middle of a block and there are no jumps in to the middle of
929 1.1 alnsn * a block.
930 1.7 alnsn *
931 1.7 alnsn * The function also sets bits in *initmask for memwords that
932 1.7 alnsn * need to be initialized to zero. Note that this set should be empty
933 1.7 alnsn * for any valid kernel filter program.
934 1.1 alnsn */
935 1.7 alnsn static bool
936 1.7 alnsn optimize_pass1(const struct bpf_insn *insns,
937 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
938 1.7 alnsn bpfjit_init_mask_t *initmask, int *nscratches)
939 1.1 alnsn {
940 1.7 alnsn struct bpfjit_jump *jtf;
941 1.1 alnsn size_t i;
942 1.7 alnsn uint32_t jt, jf;
943 1.7 alnsn bpfjit_init_mask_t invalid; /* borrowed from bpf_filter() */
944 1.1 alnsn bool unreachable;
945 1.1 alnsn
946 1.7 alnsn *nscratches = 2;
947 1.7 alnsn *initmask = BJ_INIT_NOBITS;
948 1.1 alnsn
949 1.1 alnsn unreachable = false;
950 1.7 alnsn invalid = ~BJ_INIT_NOBITS;
951 1.1 alnsn
952 1.1 alnsn for (i = 0; i < insn_count; i++) {
953 1.7 alnsn if (!SLIST_EMPTY(&insn_dat[i].bjumps))
954 1.1 alnsn unreachable = false;
955 1.7 alnsn insn_dat[i].unreachable = unreachable;
956 1.1 alnsn
957 1.1 alnsn if (unreachable)
958 1.1 alnsn continue;
959 1.1 alnsn
960 1.7 alnsn invalid |= insn_dat[i].invalid;
961 1.1 alnsn
962 1.1 alnsn switch (BPF_CLASS(insns[i].code)) {
963 1.1 alnsn case BPF_RET:
964 1.7 alnsn if (BPF_RVAL(insns[i].code) == BPF_A)
965 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
966 1.7 alnsn
967 1.1 alnsn unreachable = true;
968 1.1 alnsn continue;
969 1.1 alnsn
970 1.7 alnsn case BPF_LD:
971 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND ||
972 1.7 alnsn BPF_MODE(insns[i].code) == BPF_ABS) {
973 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND &&
974 1.7 alnsn *nscratches < 4) {
975 1.7 alnsn /* uses BJ_XREG */
976 1.7 alnsn *nscratches = 4;
977 1.7 alnsn }
978 1.7 alnsn if (*nscratches < 3 &&
979 1.7 alnsn read_width(&insns[i]) == 4) {
980 1.7 alnsn /* uses BJ_TMP2REG */
981 1.7 alnsn *nscratches = 3;
982 1.7 alnsn }
983 1.7 alnsn }
984 1.7 alnsn
985 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_IND)
986 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
987 1.7 alnsn
988 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
989 1.7 alnsn (uint32_t)insns[i].k < BPF_MEMWORDS) {
990 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
991 1.7 alnsn }
992 1.7 alnsn
993 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
994 1.7 alnsn continue;
995 1.7 alnsn
996 1.7 alnsn case BPF_LDX:
997 1.7 alnsn #if defined(_KERNEL)
998 1.7 alnsn /* uses BJ_TMP3REG */
999 1.7 alnsn *nscratches = 5;
1000 1.7 alnsn #endif
1001 1.7 alnsn /* uses BJ_XREG */
1002 1.7 alnsn if (*nscratches < 4)
1003 1.7 alnsn *nscratches = 4;
1004 1.7 alnsn
1005 1.7 alnsn if (BPF_MODE(insns[i].code) == BPF_MEM &&
1006 1.7 alnsn (uint32_t)insns[i].k < BPF_MEMWORDS) {
1007 1.7 alnsn *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1008 1.7 alnsn }
1009 1.7 alnsn
1010 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1011 1.7 alnsn continue;
1012 1.7 alnsn
1013 1.7 alnsn case BPF_ST:
1014 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1015 1.7 alnsn
1016 1.7 alnsn if ((uint32_t)insns[i].k < BPF_MEMWORDS)
1017 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1018 1.7 alnsn
1019 1.7 alnsn continue;
1020 1.7 alnsn
1021 1.7 alnsn case BPF_STX:
1022 1.7 alnsn /* uses BJ_XREG */
1023 1.7 alnsn if (*nscratches < 4)
1024 1.7 alnsn *nscratches = 4;
1025 1.7 alnsn
1026 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1027 1.7 alnsn
1028 1.7 alnsn if ((uint32_t)insns[i].k < BPF_MEMWORDS)
1029 1.7 alnsn invalid &= ~BJ_INIT_MBIT(insns[i].k);
1030 1.7 alnsn
1031 1.7 alnsn continue;
1032 1.7 alnsn
1033 1.7 alnsn case BPF_ALU:
1034 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1035 1.7 alnsn
1036 1.7 alnsn if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1037 1.7 alnsn BPF_SRC(insns[i].code) == BPF_X) {
1038 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1039 1.7 alnsn /* uses BJ_XREG */
1040 1.7 alnsn if (*nscratches < 4)
1041 1.7 alnsn *nscratches = 4;
1042 1.7 alnsn
1043 1.7 alnsn }
1044 1.7 alnsn
1045 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1046 1.7 alnsn continue;
1047 1.7 alnsn
1048 1.7 alnsn case BPF_MISC:
1049 1.7 alnsn switch (BPF_MISCOP(insns[i].code)) {
1050 1.7 alnsn case BPF_TAX: // X <- A
1051 1.7 alnsn /* uses BJ_XREG */
1052 1.7 alnsn if (*nscratches < 4)
1053 1.7 alnsn *nscratches = 4;
1054 1.7 alnsn
1055 1.7 alnsn *initmask |= invalid & BJ_INIT_ABIT;
1056 1.7 alnsn invalid &= ~BJ_INIT_XBIT;
1057 1.7 alnsn continue;
1058 1.7 alnsn
1059 1.7 alnsn case BPF_TXA: // A <- X
1060 1.7 alnsn /* uses BJ_XREG */
1061 1.7 alnsn if (*nscratches < 4)
1062 1.7 alnsn *nscratches = 4;
1063 1.7 alnsn
1064 1.7 alnsn *initmask |= invalid & BJ_INIT_XBIT;
1065 1.7 alnsn invalid &= ~BJ_INIT_ABIT;
1066 1.7 alnsn continue;
1067 1.7 alnsn }
1068 1.7 alnsn
1069 1.7 alnsn continue;
1070 1.7 alnsn
1071 1.1 alnsn case BPF_JMP:
1072 1.7 alnsn /* Initialize abc_length for ABC pass. */
1073 1.8 alnsn insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1074 1.7 alnsn
1075 1.7 alnsn if (BPF_OP(insns[i].code) == BPF_JA) {
1076 1.1 alnsn jt = jf = insns[i].k;
1077 1.1 alnsn } else {
1078 1.1 alnsn jt = insns[i].jt;
1079 1.1 alnsn jf = insns[i].jf;
1080 1.1 alnsn }
1081 1.1 alnsn
1082 1.1 alnsn if (jt >= insn_count - (i + 1) ||
1083 1.1 alnsn jf >= insn_count - (i + 1)) {
1084 1.7 alnsn return false;
1085 1.1 alnsn }
1086 1.1 alnsn
1087 1.1 alnsn if (jt > 0 && jf > 0)
1088 1.1 alnsn unreachable = true;
1089 1.1 alnsn
1090 1.7 alnsn jt += i + 1;
1091 1.7 alnsn jf += i + 1;
1092 1.7 alnsn
1093 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1094 1.1 alnsn
1095 1.7 alnsn jtf[0].sjump = NULL;
1096 1.7 alnsn jtf[0].jdata = &insn_dat[i].u.jdata;
1097 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1098 1.7 alnsn &jtf[0], entries);
1099 1.1 alnsn
1100 1.1 alnsn if (jf != jt) {
1101 1.7 alnsn jtf[1].sjump = NULL;
1102 1.7 alnsn jtf[1].jdata = &insn_dat[i].u.jdata;
1103 1.7 alnsn SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1104 1.7 alnsn &jtf[1], entries);
1105 1.1 alnsn }
1106 1.1 alnsn
1107 1.7 alnsn insn_dat[jf].invalid |= invalid;
1108 1.7 alnsn insn_dat[jt].invalid |= invalid;
1109 1.7 alnsn invalid = 0;
1110 1.7 alnsn
1111 1.1 alnsn continue;
1112 1.1 alnsn }
1113 1.1 alnsn }
1114 1.1 alnsn
1115 1.7 alnsn return true;
1116 1.1 alnsn }
1117 1.1 alnsn
1118 1.1 alnsn /*
1119 1.7 alnsn * Array Bounds Check Elimination (ABC) pass.
1120 1.1 alnsn */
1121 1.7 alnsn static void
1122 1.7 alnsn optimize_pass2(const struct bpf_insn *insns,
1123 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1124 1.7 alnsn {
1125 1.7 alnsn struct bpfjit_jump *jmp;
1126 1.7 alnsn const struct bpf_insn *pc;
1127 1.7 alnsn struct bpfjit_insn_data *pd;
1128 1.7 alnsn size_t i;
1129 1.8 alnsn bpfjit_abc_length_t length, abc_length = 0;
1130 1.7 alnsn
1131 1.7 alnsn for (i = insn_count; i != 0; i--) {
1132 1.7 alnsn pc = &insns[i-1];
1133 1.7 alnsn pd = &insn_dat[i-1];
1134 1.7 alnsn
1135 1.7 alnsn if (pd->unreachable)
1136 1.7 alnsn continue;
1137 1.7 alnsn
1138 1.7 alnsn switch (BPF_CLASS(pc->code)) {
1139 1.7 alnsn case BPF_RET:
1140 1.7 alnsn abc_length = 0;
1141 1.7 alnsn break;
1142 1.7 alnsn
1143 1.7 alnsn case BPF_JMP:
1144 1.7 alnsn abc_length = pd->u.jdata.abc_length;
1145 1.7 alnsn break;
1146 1.7 alnsn
1147 1.7 alnsn default:
1148 1.7 alnsn if (read_pkt_insn(pc, &length)) {
1149 1.7 alnsn if (abc_length < length)
1150 1.7 alnsn abc_length = length;
1151 1.7 alnsn pd->u.rdata.abc_length = abc_length;
1152 1.7 alnsn }
1153 1.7 alnsn break;
1154 1.7 alnsn }
1155 1.7 alnsn
1156 1.7 alnsn SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1157 1.7 alnsn if (jmp->jdata->abc_length > abc_length)
1158 1.7 alnsn jmp->jdata->abc_length = abc_length;
1159 1.7 alnsn }
1160 1.7 alnsn }
1161 1.7 alnsn }
1162 1.7 alnsn
1163 1.7 alnsn static void
1164 1.7 alnsn optimize_pass3(const struct bpf_insn *insns,
1165 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count)
1166 1.1 alnsn {
1167 1.7 alnsn struct bpfjit_jump *jmp;
1168 1.1 alnsn size_t i;
1169 1.8 alnsn bpfjit_abc_length_t checked_length = 0;
1170 1.1 alnsn
1171 1.1 alnsn for (i = 0; i < insn_count; i++) {
1172 1.7 alnsn if (insn_dat[i].unreachable)
1173 1.7 alnsn continue;
1174 1.1 alnsn
1175 1.7 alnsn SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1176 1.7 alnsn if (jmp->jdata->checked_length < checked_length)
1177 1.7 alnsn checked_length = jmp->jdata->checked_length;
1178 1.1 alnsn }
1179 1.1 alnsn
1180 1.7 alnsn if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1181 1.7 alnsn insn_dat[i].u.jdata.checked_length = checked_length;
1182 1.8 alnsn } else if (read_pkt_insn(&insns[i], NULL)) {
1183 1.7 alnsn struct bpfjit_read_pkt_data *rdata =
1184 1.7 alnsn &insn_dat[i].u.rdata;
1185 1.7 alnsn rdata->check_length = 0;
1186 1.7 alnsn if (checked_length < rdata->abc_length) {
1187 1.7 alnsn checked_length = rdata->abc_length;
1188 1.7 alnsn rdata->check_length = checked_length;
1189 1.7 alnsn }
1190 1.1 alnsn }
1191 1.7 alnsn }
1192 1.7 alnsn }
1193 1.1 alnsn
1194 1.7 alnsn static bool
1195 1.7 alnsn optimize(const struct bpf_insn *insns,
1196 1.7 alnsn struct bpfjit_insn_data *insn_dat, size_t insn_count,
1197 1.7 alnsn bpfjit_init_mask_t *initmask, int *nscratches)
1198 1.7 alnsn {
1199 1.1 alnsn
1200 1.7 alnsn optimize_init(insn_dat, insn_count);
1201 1.7 alnsn
1202 1.7 alnsn if (!optimize_pass1(insns, insn_dat, insn_count,
1203 1.7 alnsn initmask, nscratches)) {
1204 1.7 alnsn return false;
1205 1.1 alnsn }
1206 1.1 alnsn
1207 1.7 alnsn optimize_pass2(insns, insn_dat, insn_count);
1208 1.7 alnsn optimize_pass3(insns, insn_dat, insn_count);
1209 1.7 alnsn
1210 1.7 alnsn return true;
1211 1.1 alnsn }
1212 1.1 alnsn
1213 1.1 alnsn /*
1214 1.1 alnsn * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1215 1.1 alnsn */
1216 1.1 alnsn static int
1217 1.7 alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1218 1.1 alnsn {
1219 1.1 alnsn
1220 1.1 alnsn /*
1221 1.1 alnsn * Note: all supported 64bit arches have 32bit multiply
1222 1.1 alnsn * instruction so SLJIT_INT_OP doesn't have any overhead.
1223 1.1 alnsn */
1224 1.1 alnsn switch (BPF_OP(pc->code)) {
1225 1.1 alnsn case BPF_ADD: return SLJIT_ADD;
1226 1.1 alnsn case BPF_SUB: return SLJIT_SUB;
1227 1.1 alnsn case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1228 1.1 alnsn case BPF_OR: return SLJIT_OR;
1229 1.1 alnsn case BPF_AND: return SLJIT_AND;
1230 1.1 alnsn case BPF_LSH: return SLJIT_SHL;
1231 1.1 alnsn case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1232 1.1 alnsn default:
1233 1.7 alnsn BJ_ASSERT(false);
1234 1.1 alnsn return 0;
1235 1.1 alnsn }
1236 1.1 alnsn }
1237 1.1 alnsn
1238 1.1 alnsn /*
1239 1.1 alnsn * Convert BPF_JMP operations except BPF_JA to sljit condition.
1240 1.1 alnsn */
1241 1.1 alnsn static int
1242 1.7 alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1243 1.1 alnsn {
1244 1.1 alnsn /*
1245 1.1 alnsn * Note: all supported 64bit arches have 32bit comparison
1246 1.1 alnsn * instructions so SLJIT_INT_OP doesn't have any overhead.
1247 1.1 alnsn */
1248 1.1 alnsn int rv = SLJIT_INT_OP;
1249 1.1 alnsn
1250 1.1 alnsn switch (BPF_OP(pc->code)) {
1251 1.1 alnsn case BPF_JGT:
1252 1.1 alnsn rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1253 1.1 alnsn break;
1254 1.1 alnsn case BPF_JGE:
1255 1.1 alnsn rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1256 1.1 alnsn break;
1257 1.1 alnsn case BPF_JEQ:
1258 1.1 alnsn rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1259 1.1 alnsn break;
1260 1.1 alnsn case BPF_JSET:
1261 1.1 alnsn rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1262 1.1 alnsn break;
1263 1.1 alnsn default:
1264 1.7 alnsn BJ_ASSERT(false);
1265 1.1 alnsn }
1266 1.1 alnsn
1267 1.1 alnsn return rv;
1268 1.1 alnsn }
1269 1.1 alnsn
1270 1.1 alnsn /*
1271 1.1 alnsn * Convert BPF_K and BPF_X to sljit register.
1272 1.1 alnsn */
1273 1.1 alnsn static int
1274 1.7 alnsn kx_to_reg(const struct bpf_insn *pc)
1275 1.1 alnsn {
1276 1.1 alnsn
1277 1.1 alnsn switch (BPF_SRC(pc->code)) {
1278 1.1 alnsn case BPF_K: return SLJIT_IMM;
1279 1.7 alnsn case BPF_X: return BJ_XREG;
1280 1.1 alnsn default:
1281 1.7 alnsn BJ_ASSERT(false);
1282 1.1 alnsn return 0;
1283 1.1 alnsn }
1284 1.1 alnsn }
1285 1.1 alnsn
1286 1.1 alnsn static sljit_w
1287 1.7 alnsn kx_to_reg_arg(const struct bpf_insn *pc)
1288 1.1 alnsn {
1289 1.1 alnsn
1290 1.1 alnsn switch (BPF_SRC(pc->code)) {
1291 1.1 alnsn case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1292 1.7 alnsn case BPF_X: return 0; /* BJ_XREG, 0, */
1293 1.1 alnsn default:
1294 1.7 alnsn BJ_ASSERT(false);
1295 1.1 alnsn return 0;
1296 1.1 alnsn }
1297 1.1 alnsn }
1298 1.1 alnsn
1299 1.4 rmind bpfjit_func_t
1300 1.4 rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
1301 1.1 alnsn {
1302 1.1 alnsn void *rv;
1303 1.7 alnsn struct sljit_compiler *compiler;
1304 1.7 alnsn
1305 1.1 alnsn size_t i;
1306 1.1 alnsn int status;
1307 1.1 alnsn int branching, negate;
1308 1.1 alnsn unsigned int rval, mode, src;
1309 1.7 alnsn
1310 1.7 alnsn /* optimization related */
1311 1.7 alnsn bpfjit_init_mask_t initmask;
1312 1.7 alnsn int nscratches;
1313 1.1 alnsn
1314 1.1 alnsn /* a list of jumps to out-of-bound return from a generated function */
1315 1.1 alnsn struct sljit_jump **ret0;
1316 1.7 alnsn size_t ret0_size, ret0_maxsize;
1317 1.1 alnsn
1318 1.7 alnsn const struct bpf_insn *pc;
1319 1.1 alnsn struct bpfjit_insn_data *insn_dat;
1320 1.1 alnsn
1321 1.1 alnsn /* for local use */
1322 1.1 alnsn struct sljit_label *label;
1323 1.1 alnsn struct sljit_jump *jump;
1324 1.1 alnsn struct bpfjit_jump *bjump, *jtf;
1325 1.1 alnsn
1326 1.1 alnsn struct sljit_jump *to_mchain_jump;
1327 1.1 alnsn
1328 1.1 alnsn uint32_t jt, jf;
1329 1.1 alnsn
1330 1.1 alnsn rv = NULL;
1331 1.1 alnsn compiler = NULL;
1332 1.1 alnsn insn_dat = NULL;
1333 1.1 alnsn ret0 = NULL;
1334 1.1 alnsn
1335 1.7 alnsn if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
1336 1.1 alnsn goto fail;
1337 1.1 alnsn
1338 1.7 alnsn insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
1339 1.1 alnsn if (insn_dat == NULL)
1340 1.1 alnsn goto fail;
1341 1.1 alnsn
1342 1.7 alnsn if (!optimize(insns, insn_dat, insn_count,
1343 1.7 alnsn &initmask, &nscratches)) {
1344 1.1 alnsn goto fail;
1345 1.7 alnsn }
1346 1.7 alnsn
1347 1.7 alnsn #if defined(_KERNEL)
1348 1.7 alnsn /* bpf_filter() checks initialization of memwords. */
1349 1.7 alnsn BJ_ASSERT((initmask & BJ_INIT_MMASK) == 0);
1350 1.7 alnsn #endif
1351 1.1 alnsn
1352 1.1 alnsn ret0_size = 0;
1353 1.7 alnsn ret0_maxsize = 64;
1354 1.7 alnsn ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1355 1.7 alnsn if (ret0 == NULL)
1356 1.1 alnsn goto fail;
1357 1.1 alnsn
1358 1.1 alnsn compiler = sljit_create_compiler();
1359 1.1 alnsn if (compiler == NULL)
1360 1.1 alnsn goto fail;
1361 1.1 alnsn
1362 1.1 alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
1363 1.1 alnsn sljit_compiler_verbose(compiler, stderr);
1364 1.1 alnsn #endif
1365 1.1 alnsn
1366 1.7 alnsn status = sljit_emit_enter(compiler,
1367 1.7 alnsn 3, nscratches, 3, sizeof(struct bpfjit_stack));
1368 1.1 alnsn if (status != SLJIT_SUCCESS)
1369 1.1 alnsn goto fail;
1370 1.1 alnsn
1371 1.7 alnsn for (i = 0; i < BPF_MEMWORDS; i++) {
1372 1.7 alnsn if (initmask & BJ_INIT_MBIT(i)) {
1373 1.7 alnsn status = sljit_emit_op1(compiler,
1374 1.7 alnsn SLJIT_MOV_UI,
1375 1.7 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1376 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1377 1.7 alnsn i * sizeof(uint32_t),
1378 1.7 alnsn SLJIT_IMM, 0);
1379 1.7 alnsn if (status != SLJIT_SUCCESS)
1380 1.7 alnsn goto fail;
1381 1.7 alnsn }
1382 1.1 alnsn }
1383 1.1 alnsn
1384 1.7 alnsn if (initmask & BJ_INIT_ABIT) {
1385 1.1 alnsn /* A = 0; */
1386 1.1 alnsn status = sljit_emit_op1(compiler,
1387 1.1 alnsn SLJIT_MOV,
1388 1.7 alnsn BJ_AREG, 0,
1389 1.1 alnsn SLJIT_IMM, 0);
1390 1.1 alnsn if (status != SLJIT_SUCCESS)
1391 1.1 alnsn goto fail;
1392 1.1 alnsn }
1393 1.1 alnsn
1394 1.7 alnsn if (initmask & BJ_INIT_XBIT) {
1395 1.1 alnsn /* X = 0; */
1396 1.1 alnsn status = sljit_emit_op1(compiler,
1397 1.1 alnsn SLJIT_MOV,
1398 1.7 alnsn BJ_XREG, 0,
1399 1.1 alnsn SLJIT_IMM, 0);
1400 1.1 alnsn if (status != SLJIT_SUCCESS)
1401 1.1 alnsn goto fail;
1402 1.1 alnsn }
1403 1.1 alnsn
1404 1.1 alnsn for (i = 0; i < insn_count; i++) {
1405 1.7 alnsn if (insn_dat[i].unreachable)
1406 1.1 alnsn continue;
1407 1.1 alnsn
1408 1.1 alnsn to_mchain_jump = NULL;
1409 1.1 alnsn
1410 1.1 alnsn /*
1411 1.1 alnsn * Resolve jumps to the current insn.
1412 1.1 alnsn */
1413 1.1 alnsn label = NULL;
1414 1.7 alnsn SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1415 1.7 alnsn if (bjump->sjump != NULL) {
1416 1.1 alnsn if (label == NULL)
1417 1.1 alnsn label = sljit_emit_label(compiler);
1418 1.1 alnsn if (label == NULL)
1419 1.1 alnsn goto fail;
1420 1.7 alnsn sljit_set_label(bjump->sjump, label);
1421 1.1 alnsn }
1422 1.1 alnsn }
1423 1.1 alnsn
1424 1.1 alnsn if (read_pkt_insn(&insns[i], NULL) &&
1425 1.7 alnsn insn_dat[i].u.rdata.check_length > 0) {
1426 1.7 alnsn /* if (buflen < check_length) return 0; */
1427 1.1 alnsn jump = sljit_emit_cmp(compiler,
1428 1.1 alnsn SLJIT_C_LESS,
1429 1.7 alnsn BJ_BUFLEN, 0,
1430 1.1 alnsn SLJIT_IMM,
1431 1.7 alnsn insn_dat[i].u.rdata.check_length);
1432 1.1 alnsn if (jump == NULL)
1433 1.8 alnsn goto fail;
1434 1.1 alnsn #ifdef _KERNEL
1435 1.1 alnsn to_mchain_jump = jump;
1436 1.1 alnsn #else
1437 1.7 alnsn if (!append_jump(jump, &ret0,
1438 1.7 alnsn &ret0_size, &ret0_maxsize))
1439 1.7 alnsn goto fail;
1440 1.1 alnsn #endif
1441 1.1 alnsn }
1442 1.1 alnsn
1443 1.1 alnsn pc = &insns[i];
1444 1.1 alnsn switch (BPF_CLASS(pc->code)) {
1445 1.1 alnsn
1446 1.1 alnsn default:
1447 1.1 alnsn goto fail;
1448 1.1 alnsn
1449 1.1 alnsn case BPF_LD:
1450 1.1 alnsn /* BPF_LD+BPF_IMM A <- k */
1451 1.1 alnsn if (pc->code == (BPF_LD|BPF_IMM)) {
1452 1.1 alnsn status = sljit_emit_op1(compiler,
1453 1.1 alnsn SLJIT_MOV,
1454 1.7 alnsn BJ_AREG, 0,
1455 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1456 1.1 alnsn if (status != SLJIT_SUCCESS)
1457 1.1 alnsn goto fail;
1458 1.1 alnsn
1459 1.1 alnsn continue;
1460 1.1 alnsn }
1461 1.1 alnsn
1462 1.1 alnsn /* BPF_LD+BPF_MEM A <- M[k] */
1463 1.1 alnsn if (pc->code == (BPF_LD|BPF_MEM)) {
1464 1.8 alnsn if ((uint32_t)pc->k >= BPF_MEMWORDS)
1465 1.1 alnsn goto fail;
1466 1.1 alnsn status = sljit_emit_op1(compiler,
1467 1.1 alnsn SLJIT_MOV_UI,
1468 1.7 alnsn BJ_AREG, 0,
1469 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1470 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1471 1.7 alnsn pc->k * sizeof(uint32_t));
1472 1.1 alnsn if (status != SLJIT_SUCCESS)
1473 1.1 alnsn goto fail;
1474 1.1 alnsn
1475 1.1 alnsn continue;
1476 1.1 alnsn }
1477 1.1 alnsn
1478 1.1 alnsn /* BPF_LD+BPF_W+BPF_LEN A <- len */
1479 1.1 alnsn if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1480 1.1 alnsn status = sljit_emit_op1(compiler,
1481 1.1 alnsn SLJIT_MOV,
1482 1.7 alnsn BJ_AREG, 0,
1483 1.7 alnsn BJ_WIRELEN, 0);
1484 1.1 alnsn if (status != SLJIT_SUCCESS)
1485 1.1 alnsn goto fail;
1486 1.1 alnsn
1487 1.1 alnsn continue;
1488 1.1 alnsn }
1489 1.1 alnsn
1490 1.1 alnsn mode = BPF_MODE(pc->code);
1491 1.1 alnsn if (mode != BPF_ABS && mode != BPF_IND)
1492 1.1 alnsn goto fail;
1493 1.1 alnsn
1494 1.1 alnsn status = emit_pkt_read(compiler, pc,
1495 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1496 1.1 alnsn if (status != SLJIT_SUCCESS)
1497 1.1 alnsn goto fail;
1498 1.1 alnsn
1499 1.1 alnsn continue;
1500 1.1 alnsn
1501 1.1 alnsn case BPF_LDX:
1502 1.1 alnsn mode = BPF_MODE(pc->code);
1503 1.1 alnsn
1504 1.1 alnsn /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1505 1.1 alnsn if (mode == BPF_IMM) {
1506 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1507 1.1 alnsn goto fail;
1508 1.1 alnsn status = sljit_emit_op1(compiler,
1509 1.1 alnsn SLJIT_MOV,
1510 1.7 alnsn BJ_XREG, 0,
1511 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1512 1.1 alnsn if (status != SLJIT_SUCCESS)
1513 1.1 alnsn goto fail;
1514 1.1 alnsn
1515 1.1 alnsn continue;
1516 1.1 alnsn }
1517 1.1 alnsn
1518 1.1 alnsn /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1519 1.1 alnsn if (mode == BPF_LEN) {
1520 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1521 1.1 alnsn goto fail;
1522 1.1 alnsn status = sljit_emit_op1(compiler,
1523 1.1 alnsn SLJIT_MOV,
1524 1.7 alnsn BJ_XREG, 0,
1525 1.7 alnsn BJ_WIRELEN, 0);
1526 1.1 alnsn if (status != SLJIT_SUCCESS)
1527 1.1 alnsn goto fail;
1528 1.1 alnsn
1529 1.1 alnsn continue;
1530 1.1 alnsn }
1531 1.1 alnsn
1532 1.1 alnsn /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1533 1.1 alnsn if (mode == BPF_MEM) {
1534 1.1 alnsn if (BPF_SIZE(pc->code) != BPF_W)
1535 1.1 alnsn goto fail;
1536 1.8 alnsn if ((uint32_t)pc->k >= BPF_MEMWORDS)
1537 1.1 alnsn goto fail;
1538 1.1 alnsn status = sljit_emit_op1(compiler,
1539 1.1 alnsn SLJIT_MOV_UI,
1540 1.7 alnsn BJ_XREG, 0,
1541 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1542 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1543 1.7 alnsn pc->k * sizeof(uint32_t));
1544 1.1 alnsn if (status != SLJIT_SUCCESS)
1545 1.1 alnsn goto fail;
1546 1.1 alnsn
1547 1.1 alnsn continue;
1548 1.1 alnsn }
1549 1.1 alnsn
1550 1.1 alnsn /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1551 1.1 alnsn if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1552 1.1 alnsn goto fail;
1553 1.1 alnsn
1554 1.1 alnsn status = emit_msh(compiler, pc,
1555 1.7 alnsn to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1556 1.1 alnsn if (status != SLJIT_SUCCESS)
1557 1.1 alnsn goto fail;
1558 1.1 alnsn
1559 1.1 alnsn continue;
1560 1.1 alnsn
1561 1.1 alnsn case BPF_ST:
1562 1.8 alnsn if (pc->code != BPF_ST ||
1563 1.8 alnsn (uint32_t)pc->k >= BPF_MEMWORDS) {
1564 1.1 alnsn goto fail;
1565 1.8 alnsn }
1566 1.1 alnsn
1567 1.1 alnsn status = sljit_emit_op1(compiler,
1568 1.1 alnsn SLJIT_MOV_UI,
1569 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1570 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1571 1.7 alnsn pc->k * sizeof(uint32_t),
1572 1.7 alnsn BJ_AREG, 0);
1573 1.1 alnsn if (status != SLJIT_SUCCESS)
1574 1.1 alnsn goto fail;
1575 1.1 alnsn
1576 1.1 alnsn continue;
1577 1.1 alnsn
1578 1.1 alnsn case BPF_STX:
1579 1.8 alnsn if (pc->code != BPF_STX ||
1580 1.8 alnsn (uint32_t)pc->k >= BPF_MEMWORDS) {
1581 1.1 alnsn goto fail;
1582 1.8 alnsn }
1583 1.1 alnsn
1584 1.1 alnsn status = sljit_emit_op1(compiler,
1585 1.1 alnsn SLJIT_MOV_UI,
1586 1.1 alnsn SLJIT_MEM1(SLJIT_LOCALS_REG),
1587 1.7 alnsn offsetof(struct bpfjit_stack, mem) +
1588 1.7 alnsn pc->k * sizeof(uint32_t),
1589 1.7 alnsn BJ_XREG, 0);
1590 1.1 alnsn if (status != SLJIT_SUCCESS)
1591 1.1 alnsn goto fail;
1592 1.1 alnsn
1593 1.1 alnsn continue;
1594 1.1 alnsn
1595 1.1 alnsn case BPF_ALU:
1596 1.1 alnsn if (pc->code == (BPF_ALU|BPF_NEG)) {
1597 1.1 alnsn status = sljit_emit_op1(compiler,
1598 1.1 alnsn SLJIT_NEG,
1599 1.7 alnsn BJ_AREG, 0,
1600 1.7 alnsn BJ_AREG, 0);
1601 1.1 alnsn if (status != SLJIT_SUCCESS)
1602 1.1 alnsn goto fail;
1603 1.1 alnsn
1604 1.1 alnsn continue;
1605 1.1 alnsn }
1606 1.1 alnsn
1607 1.1 alnsn if (BPF_OP(pc->code) != BPF_DIV) {
1608 1.1 alnsn status = sljit_emit_op2(compiler,
1609 1.1 alnsn bpf_alu_to_sljit_op(pc),
1610 1.7 alnsn BJ_AREG, 0,
1611 1.7 alnsn BJ_AREG, 0,
1612 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1613 1.1 alnsn if (status != SLJIT_SUCCESS)
1614 1.1 alnsn goto fail;
1615 1.1 alnsn
1616 1.1 alnsn continue;
1617 1.1 alnsn }
1618 1.1 alnsn
1619 1.1 alnsn /* BPF_DIV */
1620 1.1 alnsn
1621 1.1 alnsn src = BPF_SRC(pc->code);
1622 1.1 alnsn if (src != BPF_X && src != BPF_K)
1623 1.1 alnsn goto fail;
1624 1.1 alnsn
1625 1.1 alnsn /* division by zero? */
1626 1.1 alnsn if (src == BPF_X) {
1627 1.1 alnsn jump = sljit_emit_cmp(compiler,
1628 1.1 alnsn SLJIT_C_EQUAL|SLJIT_INT_OP,
1629 1.8 alnsn BJ_XREG, 0,
1630 1.1 alnsn SLJIT_IMM, 0);
1631 1.1 alnsn if (jump == NULL)
1632 1.1 alnsn goto fail;
1633 1.7 alnsn if (!append_jump(jump, &ret0,
1634 1.7 alnsn &ret0_size, &ret0_maxsize))
1635 1.7 alnsn goto fail;
1636 1.1 alnsn } else if (pc->k == 0) {
1637 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1638 1.1 alnsn if (jump == NULL)
1639 1.1 alnsn goto fail;
1640 1.7 alnsn if (!append_jump(jump, &ret0,
1641 1.7 alnsn &ret0_size, &ret0_maxsize))
1642 1.7 alnsn goto fail;
1643 1.1 alnsn }
1644 1.1 alnsn
1645 1.1 alnsn if (src == BPF_X) {
1646 1.7 alnsn status = emit_division(compiler, BJ_XREG, 0);
1647 1.1 alnsn if (status != SLJIT_SUCCESS)
1648 1.1 alnsn goto fail;
1649 1.1 alnsn } else if (pc->k != 0) {
1650 1.1 alnsn if (pc->k & (pc->k - 1)) {
1651 1.1 alnsn status = emit_division(compiler,
1652 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1653 1.1 alnsn } else {
1654 1.7 alnsn status = emit_pow2_division(compiler,
1655 1.1 alnsn (uint32_t)pc->k);
1656 1.1 alnsn }
1657 1.1 alnsn if (status != SLJIT_SUCCESS)
1658 1.1 alnsn goto fail;
1659 1.1 alnsn }
1660 1.1 alnsn
1661 1.1 alnsn continue;
1662 1.1 alnsn
1663 1.1 alnsn case BPF_JMP:
1664 1.7 alnsn if (BPF_OP(pc->code) == BPF_JA) {
1665 1.1 alnsn jt = jf = pc->k;
1666 1.1 alnsn } else {
1667 1.1 alnsn jt = pc->jt;
1668 1.1 alnsn jf = pc->jf;
1669 1.1 alnsn }
1670 1.1 alnsn
1671 1.1 alnsn negate = (jt == 0) ? 1 : 0;
1672 1.1 alnsn branching = (jt == jf) ? 0 : 1;
1673 1.7 alnsn jtf = insn_dat[i].u.jdata.jtf;
1674 1.1 alnsn
1675 1.1 alnsn if (branching) {
1676 1.1 alnsn if (BPF_OP(pc->code) != BPF_JSET) {
1677 1.1 alnsn jump = sljit_emit_cmp(compiler,
1678 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1679 1.7 alnsn BJ_AREG, 0,
1680 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1681 1.1 alnsn } else {
1682 1.1 alnsn status = sljit_emit_op2(compiler,
1683 1.1 alnsn SLJIT_AND,
1684 1.7 alnsn BJ_TMP1REG, 0,
1685 1.7 alnsn BJ_AREG, 0,
1686 1.1 alnsn kx_to_reg(pc), kx_to_reg_arg(pc));
1687 1.1 alnsn if (status != SLJIT_SUCCESS)
1688 1.1 alnsn goto fail;
1689 1.1 alnsn
1690 1.1 alnsn jump = sljit_emit_cmp(compiler,
1691 1.1 alnsn bpf_jmp_to_sljit_cond(pc, negate),
1692 1.7 alnsn BJ_TMP1REG, 0,
1693 1.1 alnsn SLJIT_IMM, 0);
1694 1.1 alnsn }
1695 1.1 alnsn
1696 1.1 alnsn if (jump == NULL)
1697 1.1 alnsn goto fail;
1698 1.1 alnsn
1699 1.7 alnsn BJ_ASSERT(jtf[negate].sjump == NULL);
1700 1.7 alnsn jtf[negate].sjump = jump;
1701 1.1 alnsn }
1702 1.1 alnsn
1703 1.1 alnsn if (!branching || (jt != 0 && jf != 0)) {
1704 1.1 alnsn jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1705 1.1 alnsn if (jump == NULL)
1706 1.1 alnsn goto fail;
1707 1.1 alnsn
1708 1.7 alnsn BJ_ASSERT(jtf[branching].sjump == NULL);
1709 1.7 alnsn jtf[branching].sjump = jump;
1710 1.1 alnsn }
1711 1.1 alnsn
1712 1.1 alnsn continue;
1713 1.1 alnsn
1714 1.1 alnsn case BPF_RET:
1715 1.1 alnsn rval = BPF_RVAL(pc->code);
1716 1.1 alnsn if (rval == BPF_X)
1717 1.1 alnsn goto fail;
1718 1.1 alnsn
1719 1.1 alnsn /* BPF_RET+BPF_K accept k bytes */
1720 1.1 alnsn if (rval == BPF_K) {
1721 1.7 alnsn status = sljit_emit_return(compiler,
1722 1.7 alnsn SLJIT_MOV_UI,
1723 1.1 alnsn SLJIT_IMM, (uint32_t)pc->k);
1724 1.1 alnsn if (status != SLJIT_SUCCESS)
1725 1.1 alnsn goto fail;
1726 1.1 alnsn }
1727 1.1 alnsn
1728 1.1 alnsn /* BPF_RET+BPF_A accept A bytes */
1729 1.1 alnsn if (rval == BPF_A) {
1730 1.7 alnsn status = sljit_emit_return(compiler,
1731 1.7 alnsn SLJIT_MOV_UI,
1732 1.7 alnsn BJ_AREG, 0);
1733 1.1 alnsn if (status != SLJIT_SUCCESS)
1734 1.1 alnsn goto fail;
1735 1.1 alnsn }
1736 1.1 alnsn
1737 1.1 alnsn continue;
1738 1.1 alnsn
1739 1.1 alnsn case BPF_MISC:
1740 1.7 alnsn switch (BPF_MISCOP(pc->code)) {
1741 1.7 alnsn case BPF_TAX:
1742 1.1 alnsn status = sljit_emit_op1(compiler,
1743 1.1 alnsn SLJIT_MOV_UI,
1744 1.7 alnsn BJ_XREG, 0,
1745 1.7 alnsn BJ_AREG, 0);
1746 1.1 alnsn if (status != SLJIT_SUCCESS)
1747 1.1 alnsn goto fail;
1748 1.1 alnsn
1749 1.1 alnsn continue;
1750 1.1 alnsn
1751 1.7 alnsn case BPF_TXA:
1752 1.1 alnsn status = sljit_emit_op1(compiler,
1753 1.1 alnsn SLJIT_MOV,
1754 1.7 alnsn BJ_AREG, 0,
1755 1.7 alnsn BJ_XREG, 0);
1756 1.1 alnsn if (status != SLJIT_SUCCESS)
1757 1.1 alnsn goto fail;
1758 1.1 alnsn
1759 1.1 alnsn continue;
1760 1.1 alnsn }
1761 1.1 alnsn
1762 1.1 alnsn goto fail;
1763 1.1 alnsn } /* switch */
1764 1.1 alnsn } /* main loop */
1765 1.1 alnsn
1766 1.7 alnsn BJ_ASSERT(ret0_size <= ret0_maxsize);
1767 1.1 alnsn
1768 1.7 alnsn if (ret0_size > 0) {
1769 1.1 alnsn label = sljit_emit_label(compiler);
1770 1.1 alnsn if (label == NULL)
1771 1.1 alnsn goto fail;
1772 1.7 alnsn for (i = 0; i < ret0_size; i++)
1773 1.7 alnsn sljit_set_label(ret0[i], label);
1774 1.1 alnsn }
1775 1.1 alnsn
1776 1.1 alnsn status = sljit_emit_return(compiler,
1777 1.1 alnsn SLJIT_MOV_UI,
1778 1.7 alnsn SLJIT_IMM, 0);
1779 1.1 alnsn if (status != SLJIT_SUCCESS)
1780 1.1 alnsn goto fail;
1781 1.1 alnsn
1782 1.1 alnsn rv = sljit_generate_code(compiler);
1783 1.1 alnsn
1784 1.1 alnsn fail:
1785 1.1 alnsn if (compiler != NULL)
1786 1.1 alnsn sljit_free_compiler(compiler);
1787 1.1 alnsn
1788 1.1 alnsn if (insn_dat != NULL)
1789 1.7 alnsn BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
1790 1.1 alnsn
1791 1.1 alnsn if (ret0 != NULL)
1792 1.7 alnsn BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
1793 1.1 alnsn
1794 1.4 rmind return (bpfjit_func_t)rv;
1795 1.1 alnsn }
1796 1.1 alnsn
1797 1.1 alnsn void
1798 1.4 rmind bpfjit_free_code(bpfjit_func_t code)
1799 1.1 alnsn {
1800 1.7 alnsn
1801 1.1 alnsn sljit_free_code((void *)code);
1802 1.1 alnsn }
1803