Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.9
      1  1.9  alnsn /*	$NetBSD: bpfjit.c,v 1.9 2014/05/23 19:11:22 alnsn Exp $	*/
      2  1.3  rmind 
      3  1.1  alnsn /*-
      4  1.7  alnsn  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  1.1  alnsn  * All rights reserved.
      6  1.1  alnsn  *
      7  1.1  alnsn  * Redistribution and use in source and binary forms, with or without
      8  1.1  alnsn  * modification, are permitted provided that the following conditions
      9  1.1  alnsn  * are met:
     10  1.1  alnsn  *
     11  1.1  alnsn  * 1. Redistributions of source code must retain the above copyright
     12  1.1  alnsn  *    notice, this list of conditions and the following disclaimer.
     13  1.1  alnsn  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  alnsn  *    notice, this list of conditions and the following disclaimer in
     15  1.1  alnsn  *    the documentation and/or other materials provided with the
     16  1.1  alnsn  *    distribution.
     17  1.1  alnsn  *
     18  1.1  alnsn  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  1.1  alnsn  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  1.1  alnsn  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  1.1  alnsn  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  1.1  alnsn  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  1.1  alnsn  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  1.1  alnsn  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  1.1  alnsn  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  1.1  alnsn  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  1.1  alnsn  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  1.1  alnsn  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  1.1  alnsn  * SUCH DAMAGE.
     30  1.1  alnsn  */
     31  1.1  alnsn 
     32  1.2  alnsn #include <sys/cdefs.h>
     33  1.2  alnsn #ifdef _KERNEL
     34  1.9  alnsn __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.9 2014/05/23 19:11:22 alnsn Exp $");
     35  1.2  alnsn #else
     36  1.9  alnsn __RCSID("$NetBSD: bpfjit.c,v 1.9 2014/05/23 19:11:22 alnsn Exp $");
     37  1.2  alnsn #endif
     38  1.2  alnsn 
     39  1.3  rmind #include <sys/types.h>
     40  1.3  rmind #include <sys/queue.h>
     41  1.1  alnsn 
     42  1.1  alnsn #ifndef _KERNEL
     43  1.7  alnsn #include <assert.h>
     44  1.7  alnsn #define BJ_ASSERT(c) assert(c)
     45  1.7  alnsn #else
     46  1.7  alnsn #define BJ_ASSERT(c) KASSERT(c)
     47  1.7  alnsn #endif
     48  1.7  alnsn 
     49  1.7  alnsn #ifndef _KERNEL
     50  1.3  rmind #include <stdlib.h>
     51  1.7  alnsn #define BJ_ALLOC(sz) malloc(sz)
     52  1.7  alnsn #define BJ_FREE(p, sz) free(p)
     53  1.1  alnsn #else
     54  1.3  rmind #include <sys/kmem.h>
     55  1.7  alnsn #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56  1.7  alnsn #define BJ_FREE(p, sz) kmem_free(p, sz)
     57  1.1  alnsn #endif
     58  1.1  alnsn 
     59  1.1  alnsn #ifndef _KERNEL
     60  1.1  alnsn #include <limits.h>
     61  1.1  alnsn #include <stdbool.h>
     62  1.1  alnsn #include <stddef.h>
     63  1.1  alnsn #include <stdint.h>
     64  1.1  alnsn #else
     65  1.1  alnsn #include <sys/atomic.h>
     66  1.1  alnsn #include <sys/module.h>
     67  1.1  alnsn #endif
     68  1.1  alnsn 
     69  1.5  rmind #define	__BPF_PRIVATE
     70  1.5  rmind #include <net/bpf.h>
     71  1.3  rmind #include <net/bpfjit.h>
     72  1.1  alnsn #include <sljitLir.h>
     73  1.1  alnsn 
     74  1.7  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75  1.7  alnsn #include <stdio.h> /* for stderr */
     76  1.7  alnsn #endif
     77  1.7  alnsn 
     78  1.7  alnsn /*
     79  1.7  alnsn  * Permanent register assignments.
     80  1.7  alnsn  */
     81  1.7  alnsn #define BJ_BUF		SLJIT_SAVED_REG1
     82  1.7  alnsn #define BJ_WIRELEN	SLJIT_SAVED_REG2
     83  1.7  alnsn #define BJ_BUFLEN	SLJIT_SAVED_REG3
     84  1.7  alnsn #define BJ_AREG		SLJIT_TEMPORARY_REG1
     85  1.7  alnsn #define BJ_TMP1REG	SLJIT_TEMPORARY_REG2
     86  1.7  alnsn #define BJ_TMP2REG	SLJIT_TEMPORARY_REG3
     87  1.7  alnsn #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     88  1.7  alnsn #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     89  1.7  alnsn 
     90  1.7  alnsn typedef unsigned int bpfjit_init_mask_t;
     91  1.7  alnsn #define BJ_INIT_NOBITS  0u
     92  1.7  alnsn #define BJ_INIT_MBIT(k) (1u << (k))
     93  1.7  alnsn #define BJ_INIT_MMASK   (BJ_INIT_MBIT(BPF_MEMWORDS) - 1u)
     94  1.7  alnsn #define BJ_INIT_ABIT    BJ_INIT_MBIT(BPF_MEMWORDS)
     95  1.7  alnsn #define BJ_INIT_XBIT    BJ_INIT_MBIT(BPF_MEMWORDS + 1)
     96  1.1  alnsn 
     97  1.9  alnsn /*
     98  1.9  alnsn  * Datatype for Array Bounds Check Elimination (ABC) pass.
     99  1.9  alnsn  */
    100  1.9  alnsn typedef uint64_t bpfjit_abc_length_t;
    101  1.9  alnsn #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    102  1.8  alnsn 
    103  1.7  alnsn struct bpfjit_stack
    104  1.7  alnsn {
    105  1.7  alnsn 	uint32_t mem[BPF_MEMWORDS];
    106  1.7  alnsn #ifdef _KERNEL
    107  1.7  alnsn 	void *tmp;
    108  1.7  alnsn #endif
    109  1.7  alnsn };
    110  1.7  alnsn 
    111  1.7  alnsn /*
    112  1.7  alnsn  * Data for BPF_JMP instruction.
    113  1.7  alnsn  * Forward declaration for struct bpfjit_jump.
    114  1.1  alnsn  */
    115  1.7  alnsn struct bpfjit_jump_data;
    116  1.1  alnsn 
    117  1.1  alnsn /*
    118  1.7  alnsn  * Node of bjumps list.
    119  1.1  alnsn  */
    120  1.3  rmind struct bpfjit_jump {
    121  1.7  alnsn 	struct sljit_jump *sjump;
    122  1.7  alnsn 	SLIST_ENTRY(bpfjit_jump) entries;
    123  1.7  alnsn 	struct bpfjit_jump_data *jdata;
    124  1.1  alnsn };
    125  1.1  alnsn 
    126  1.1  alnsn /*
    127  1.1  alnsn  * Data for BPF_JMP instruction.
    128  1.1  alnsn  */
    129  1.3  rmind struct bpfjit_jump_data {
    130  1.1  alnsn 	/*
    131  1.7  alnsn 	 * These entries make up bjumps list:
    132  1.7  alnsn 	 * jtf[0] - when coming from jt path,
    133  1.7  alnsn 	 * jtf[1] - when coming from jf path.
    134  1.1  alnsn 	 */
    135  1.7  alnsn 	struct bpfjit_jump jtf[2];
    136  1.7  alnsn 	/*
    137  1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    138  1.7  alnsn 	 */
    139  1.8  alnsn 	bpfjit_abc_length_t abc_length;
    140  1.7  alnsn 	/*
    141  1.7  alnsn 	 * Length checked by the last out-of-bounds check.
    142  1.7  alnsn 	 */
    143  1.8  alnsn 	bpfjit_abc_length_t checked_length;
    144  1.1  alnsn };
    145  1.1  alnsn 
    146  1.1  alnsn /*
    147  1.1  alnsn  * Data for "read from packet" instructions.
    148  1.1  alnsn  * See also read_pkt_insn() function below.
    149  1.1  alnsn  */
    150  1.3  rmind struct bpfjit_read_pkt_data {
    151  1.1  alnsn 	/*
    152  1.7  alnsn 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    153  1.7  alnsn 	 */
    154  1.8  alnsn 	bpfjit_abc_length_t abc_length;
    155  1.7  alnsn 	/*
    156  1.7  alnsn 	 * If positive, emit "if (buflen < check_length) return 0"
    157  1.7  alnsn 	 * out-of-bounds check.
    158  1.9  alnsn 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    159  1.1  alnsn 	 */
    160  1.8  alnsn 	bpfjit_abc_length_t check_length;
    161  1.1  alnsn };
    162  1.1  alnsn 
    163  1.1  alnsn /*
    164  1.1  alnsn  * Additional (optimization-related) data for bpf_insn.
    165  1.1  alnsn  */
    166  1.3  rmind struct bpfjit_insn_data {
    167  1.1  alnsn 	/* List of jumps to this insn. */
    168  1.7  alnsn 	SLIST_HEAD(, bpfjit_jump) bjumps;
    169  1.1  alnsn 
    170  1.1  alnsn 	union {
    171  1.7  alnsn 		struct bpfjit_jump_data     jdata;
    172  1.7  alnsn 		struct bpfjit_read_pkt_data rdata;
    173  1.7  alnsn 	} u;
    174  1.1  alnsn 
    175  1.7  alnsn 	bpfjit_init_mask_t invalid;
    176  1.7  alnsn 	bool unreachable;
    177  1.1  alnsn };
    178  1.1  alnsn 
    179  1.1  alnsn #ifdef _KERNEL
    180  1.1  alnsn 
    181  1.1  alnsn uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    182  1.1  alnsn uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    183  1.1  alnsn uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    184  1.1  alnsn 
    185  1.1  alnsn MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    186  1.1  alnsn 
    187  1.1  alnsn static int
    188  1.1  alnsn bpfjit_modcmd(modcmd_t cmd, void *arg)
    189  1.1  alnsn {
    190  1.1  alnsn 
    191  1.1  alnsn 	switch (cmd) {
    192  1.1  alnsn 	case MODULE_CMD_INIT:
    193  1.1  alnsn 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    194  1.1  alnsn 		membar_producer();
    195  1.1  alnsn 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    196  1.1  alnsn 		membar_producer();
    197  1.1  alnsn 		return 0;
    198  1.1  alnsn 
    199  1.1  alnsn 	case MODULE_CMD_FINI:
    200  1.1  alnsn 		return EOPNOTSUPP;
    201  1.1  alnsn 
    202  1.1  alnsn 	default:
    203  1.1  alnsn 		return ENOTTY;
    204  1.1  alnsn 	}
    205  1.1  alnsn }
    206  1.1  alnsn #endif
    207  1.1  alnsn 
    208  1.1  alnsn static uint32_t
    209  1.7  alnsn read_width(const struct bpf_insn *pc)
    210  1.1  alnsn {
    211  1.1  alnsn 
    212  1.1  alnsn 	switch (BPF_SIZE(pc->code)) {
    213  1.1  alnsn 	case BPF_W:
    214  1.1  alnsn 		return 4;
    215  1.1  alnsn 	case BPF_H:
    216  1.1  alnsn 		return 2;
    217  1.1  alnsn 	case BPF_B:
    218  1.1  alnsn 		return 1;
    219  1.1  alnsn 	default:
    220  1.7  alnsn 		BJ_ASSERT(false);
    221  1.1  alnsn 		return 0;
    222  1.1  alnsn 	}
    223  1.1  alnsn }
    224  1.1  alnsn 
    225  1.7  alnsn static bool
    226  1.7  alnsn grow_jumps(struct sljit_jump ***jumps, size_t *size)
    227  1.7  alnsn {
    228  1.7  alnsn 	struct sljit_jump **newptr;
    229  1.7  alnsn 	const size_t elemsz = sizeof(struct sljit_jump *);
    230  1.7  alnsn 	size_t old_size = *size;
    231  1.7  alnsn 	size_t new_size = 2 * old_size;
    232  1.7  alnsn 
    233  1.7  alnsn 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    234  1.7  alnsn 		return false;
    235  1.7  alnsn 
    236  1.7  alnsn 	newptr = BJ_ALLOC(new_size * elemsz);
    237  1.7  alnsn 	if (newptr == NULL)
    238  1.7  alnsn 		return false;
    239  1.7  alnsn 
    240  1.7  alnsn 	memcpy(newptr, *jumps, old_size * elemsz);
    241  1.7  alnsn 	BJ_FREE(*jumps, old_size * elemsz);
    242  1.7  alnsn 
    243  1.7  alnsn 	*jumps = newptr;
    244  1.7  alnsn 	*size = new_size;
    245  1.7  alnsn 	return true;
    246  1.7  alnsn }
    247  1.7  alnsn 
    248  1.7  alnsn static bool
    249  1.7  alnsn append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    250  1.7  alnsn     size_t *size, size_t *max_size)
    251  1.1  alnsn {
    252  1.7  alnsn 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    253  1.7  alnsn 		return false;
    254  1.1  alnsn 
    255  1.7  alnsn 	(*jumps)[(*size)++] = jump;
    256  1.7  alnsn 	return true;
    257  1.1  alnsn }
    258  1.1  alnsn 
    259  1.1  alnsn /*
    260  1.1  alnsn  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    261  1.1  alnsn  */
    262  1.1  alnsn static int
    263  1.1  alnsn emit_read8(struct sljit_compiler* compiler, uint32_t k)
    264  1.1  alnsn {
    265  1.1  alnsn 
    266  1.1  alnsn 	return sljit_emit_op1(compiler,
    267  1.1  alnsn 	    SLJIT_MOV_UB,
    268  1.7  alnsn 	    BJ_AREG, 0,
    269  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    270  1.1  alnsn }
    271  1.1  alnsn 
    272  1.1  alnsn /*
    273  1.1  alnsn  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    274  1.1  alnsn  */
    275  1.1  alnsn static int
    276  1.1  alnsn emit_read16(struct sljit_compiler* compiler, uint32_t k)
    277  1.1  alnsn {
    278  1.1  alnsn 	int status;
    279  1.1  alnsn 
    280  1.1  alnsn 	/* tmp1 = buf[k]; */
    281  1.1  alnsn 	status = sljit_emit_op1(compiler,
    282  1.1  alnsn 	    SLJIT_MOV_UB,
    283  1.7  alnsn 	    BJ_TMP1REG, 0,
    284  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    285  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    286  1.1  alnsn 		return status;
    287  1.1  alnsn 
    288  1.1  alnsn 	/* A = buf[k+1]; */
    289  1.1  alnsn 	status = sljit_emit_op1(compiler,
    290  1.1  alnsn 	    SLJIT_MOV_UB,
    291  1.7  alnsn 	    BJ_AREG, 0,
    292  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    293  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    294  1.1  alnsn 		return status;
    295  1.1  alnsn 
    296  1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    297  1.1  alnsn 	status = sljit_emit_op2(compiler,
    298  1.1  alnsn 	    SLJIT_SHL,
    299  1.7  alnsn 	    BJ_TMP1REG, 0,
    300  1.7  alnsn 	    BJ_TMP1REG, 0,
    301  1.1  alnsn 	    SLJIT_IMM, 8);
    302  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    303  1.1  alnsn 		return status;
    304  1.1  alnsn 
    305  1.1  alnsn 	/* A = A + tmp1; */
    306  1.1  alnsn 	status = sljit_emit_op2(compiler,
    307  1.1  alnsn 	    SLJIT_ADD,
    308  1.7  alnsn 	    BJ_AREG, 0,
    309  1.7  alnsn 	    BJ_AREG, 0,
    310  1.7  alnsn 	    BJ_TMP1REG, 0);
    311  1.1  alnsn 	return status;
    312  1.1  alnsn }
    313  1.1  alnsn 
    314  1.1  alnsn /*
    315  1.1  alnsn  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    316  1.1  alnsn  */
    317  1.1  alnsn static int
    318  1.1  alnsn emit_read32(struct sljit_compiler* compiler, uint32_t k)
    319  1.1  alnsn {
    320  1.1  alnsn 	int status;
    321  1.1  alnsn 
    322  1.1  alnsn 	/* tmp1 = buf[k]; */
    323  1.1  alnsn 	status = sljit_emit_op1(compiler,
    324  1.1  alnsn 	    SLJIT_MOV_UB,
    325  1.7  alnsn 	    BJ_TMP1REG, 0,
    326  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    327  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    328  1.1  alnsn 		return status;
    329  1.1  alnsn 
    330  1.1  alnsn 	/* tmp2 = buf[k+1]; */
    331  1.1  alnsn 	status = sljit_emit_op1(compiler,
    332  1.1  alnsn 	    SLJIT_MOV_UB,
    333  1.7  alnsn 	    BJ_TMP2REG, 0,
    334  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+1);
    335  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    336  1.1  alnsn 		return status;
    337  1.1  alnsn 
    338  1.1  alnsn 	/* A = buf[k+3]; */
    339  1.1  alnsn 	status = sljit_emit_op1(compiler,
    340  1.1  alnsn 	    SLJIT_MOV_UB,
    341  1.7  alnsn 	    BJ_AREG, 0,
    342  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+3);
    343  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    344  1.1  alnsn 		return status;
    345  1.1  alnsn 
    346  1.1  alnsn 	/* tmp1 = tmp1 << 24; */
    347  1.1  alnsn 	status = sljit_emit_op2(compiler,
    348  1.1  alnsn 	    SLJIT_SHL,
    349  1.7  alnsn 	    BJ_TMP1REG, 0,
    350  1.7  alnsn 	    BJ_TMP1REG, 0,
    351  1.1  alnsn 	    SLJIT_IMM, 24);
    352  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    353  1.1  alnsn 		return status;
    354  1.1  alnsn 
    355  1.1  alnsn 	/* A = A + tmp1; */
    356  1.1  alnsn 	status = sljit_emit_op2(compiler,
    357  1.1  alnsn 	    SLJIT_ADD,
    358  1.7  alnsn 	    BJ_AREG, 0,
    359  1.7  alnsn 	    BJ_AREG, 0,
    360  1.7  alnsn 	    BJ_TMP1REG, 0);
    361  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    362  1.1  alnsn 		return status;
    363  1.1  alnsn 
    364  1.1  alnsn 	/* tmp1 = buf[k+2]; */
    365  1.1  alnsn 	status = sljit_emit_op1(compiler,
    366  1.1  alnsn 	    SLJIT_MOV_UB,
    367  1.7  alnsn 	    BJ_TMP1REG, 0,
    368  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k+2);
    369  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    370  1.1  alnsn 		return status;
    371  1.1  alnsn 
    372  1.1  alnsn 	/* tmp2 = tmp2 << 16; */
    373  1.1  alnsn 	status = sljit_emit_op2(compiler,
    374  1.1  alnsn 	    SLJIT_SHL,
    375  1.7  alnsn 	    BJ_TMP2REG, 0,
    376  1.7  alnsn 	    BJ_TMP2REG, 0,
    377  1.1  alnsn 	    SLJIT_IMM, 16);
    378  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    379  1.1  alnsn 		return status;
    380  1.1  alnsn 
    381  1.1  alnsn 	/* A = A + tmp2; */
    382  1.1  alnsn 	status = sljit_emit_op2(compiler,
    383  1.1  alnsn 	    SLJIT_ADD,
    384  1.7  alnsn 	    BJ_AREG, 0,
    385  1.7  alnsn 	    BJ_AREG, 0,
    386  1.7  alnsn 	    BJ_TMP2REG, 0);
    387  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    388  1.1  alnsn 		return status;
    389  1.1  alnsn 
    390  1.1  alnsn 	/* tmp1 = tmp1 << 8; */
    391  1.1  alnsn 	status = sljit_emit_op2(compiler,
    392  1.1  alnsn 	    SLJIT_SHL,
    393  1.7  alnsn 	    BJ_TMP1REG, 0,
    394  1.7  alnsn 	    BJ_TMP1REG, 0,
    395  1.1  alnsn 	    SLJIT_IMM, 8);
    396  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    397  1.1  alnsn 		return status;
    398  1.1  alnsn 
    399  1.1  alnsn 	/* A = A + tmp1; */
    400  1.1  alnsn 	status = sljit_emit_op2(compiler,
    401  1.1  alnsn 	    SLJIT_ADD,
    402  1.7  alnsn 	    BJ_AREG, 0,
    403  1.7  alnsn 	    BJ_AREG, 0,
    404  1.7  alnsn 	    BJ_TMP1REG, 0);
    405  1.1  alnsn 	return status;
    406  1.1  alnsn }
    407  1.1  alnsn 
    408  1.1  alnsn #ifdef _KERNEL
    409  1.1  alnsn /*
    410  1.1  alnsn  * Generate m_xword/m_xhalf/m_xbyte call.
    411  1.1  alnsn  *
    412  1.1  alnsn  * pc is one of:
    413  1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    414  1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    415  1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    416  1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    417  1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    418  1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    419  1.1  alnsn  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    420  1.1  alnsn  *
    421  1.7  alnsn  * The dst variable should be
    422  1.7  alnsn  *  - BJ_AREG when emitting code for BPF_LD instructions,
    423  1.7  alnsn  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    424  1.7  alnsn  *    code for BPF_MSH instruction.
    425  1.1  alnsn  */
    426  1.1  alnsn static int
    427  1.7  alnsn emit_xcall(struct sljit_compiler* compiler, const struct bpf_insn *pc,
    428  1.1  alnsn     int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
    429  1.1  alnsn     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    430  1.1  alnsn {
    431  1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    432  1.7  alnsn     BJ_XREG == SLJIT_TEMPORARY_REG1 || \
    433  1.7  alnsn     BJ_XREG == SLJIT_TEMPORARY_REG2 || \
    434  1.7  alnsn     BJ_XREG == SLJIT_TEMPORARY_REG3
    435  1.1  alnsn #error "Not supported assignment of registers."
    436  1.1  alnsn #endif
    437  1.1  alnsn 	int status;
    438  1.1  alnsn 
    439  1.1  alnsn 	/*
    440  1.1  alnsn 	 * The third argument of fn is an address on stack.
    441  1.1  alnsn 	 */
    442  1.7  alnsn 	const int arg3_offset = offsetof(struct bpfjit_stack, tmp);
    443  1.1  alnsn 
    444  1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    445  1.1  alnsn 		/* save A */
    446  1.1  alnsn 		status = sljit_emit_op1(compiler,
    447  1.1  alnsn 		    SLJIT_MOV,
    448  1.7  alnsn 		    BJ_TMP3REG, 0,
    449  1.7  alnsn 		    BJ_AREG, 0);
    450  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    451  1.1  alnsn 			return status;
    452  1.1  alnsn 	}
    453  1.1  alnsn 
    454  1.1  alnsn 	/*
    455  1.1  alnsn 	 * Prepare registers for fn(buf, k, &err) call.
    456  1.1  alnsn 	 */
    457  1.1  alnsn 	status = sljit_emit_op1(compiler,
    458  1.1  alnsn 	    SLJIT_MOV,
    459  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    460  1.7  alnsn 	    BJ_BUF, 0);
    461  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    462  1.1  alnsn 		return status;
    463  1.1  alnsn 
    464  1.1  alnsn 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    465  1.1  alnsn 		status = sljit_emit_op2(compiler,
    466  1.1  alnsn 		    SLJIT_ADD,
    467  1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    468  1.7  alnsn 		    BJ_XREG, 0,
    469  1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    470  1.1  alnsn 	} else {
    471  1.1  alnsn 		status = sljit_emit_op1(compiler,
    472  1.1  alnsn 		    SLJIT_MOV,
    473  1.1  alnsn 		    SLJIT_TEMPORARY_REG2, 0,
    474  1.1  alnsn 		    SLJIT_IMM, (uint32_t)pc->k);
    475  1.1  alnsn 	}
    476  1.1  alnsn 
    477  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    478  1.1  alnsn 		return status;
    479  1.1  alnsn 
    480  1.1  alnsn 	status = sljit_get_local_base(compiler,
    481  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0, arg3_offset);
    482  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    483  1.1  alnsn 		return status;
    484  1.1  alnsn 
    485  1.1  alnsn 	/* fn(buf, k, &err); */
    486  1.1  alnsn 	status = sljit_emit_ijump(compiler,
    487  1.1  alnsn 	    SLJIT_CALL3,
    488  1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    489  1.1  alnsn 
    490  1.7  alnsn 	if (dst != SLJIT_RETURN_REG) {
    491  1.1  alnsn 		/* move return value to dst */
    492  1.1  alnsn 		status = sljit_emit_op1(compiler,
    493  1.1  alnsn 		    SLJIT_MOV,
    494  1.1  alnsn 		    dst, dstw,
    495  1.1  alnsn 		    SLJIT_RETURN_REG, 0);
    496  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    497  1.1  alnsn 			return status;
    498  1.7  alnsn 	}
    499  1.1  alnsn 
    500  1.7  alnsn 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    501  1.1  alnsn 		/* restore A */
    502  1.1  alnsn 		status = sljit_emit_op1(compiler,
    503  1.1  alnsn 		    SLJIT_MOV,
    504  1.7  alnsn 		    BJ_AREG, 0,
    505  1.7  alnsn 		    BJ_TMP3REG, 0);
    506  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    507  1.1  alnsn 			return status;
    508  1.1  alnsn 	}
    509  1.1  alnsn 
    510  1.1  alnsn 	/* tmp3 = *err; */
    511  1.1  alnsn 	status = sljit_emit_op1(compiler,
    512  1.1  alnsn 	    SLJIT_MOV_UI,
    513  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    514  1.1  alnsn 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    515  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    516  1.1  alnsn 		return status;
    517  1.1  alnsn 
    518  1.1  alnsn 	/* if (tmp3 != 0) return 0; */
    519  1.1  alnsn 	*ret0_jump = sljit_emit_cmp(compiler,
    520  1.1  alnsn 	    SLJIT_C_NOT_EQUAL,
    521  1.1  alnsn 	    SLJIT_TEMPORARY_REG3, 0,
    522  1.1  alnsn 	    SLJIT_IMM, 0);
    523  1.1  alnsn 	if (*ret0_jump == NULL)
    524  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    525  1.1  alnsn 
    526  1.1  alnsn 	return status;
    527  1.1  alnsn }
    528  1.1  alnsn #endif
    529  1.1  alnsn 
    530  1.1  alnsn /*
    531  1.1  alnsn  * Generate code for
    532  1.1  alnsn  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    533  1.1  alnsn  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    534  1.1  alnsn  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    535  1.1  alnsn  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    536  1.1  alnsn  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    537  1.1  alnsn  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    538  1.1  alnsn  */
    539  1.1  alnsn static int
    540  1.1  alnsn emit_pkt_read(struct sljit_compiler* compiler,
    541  1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    542  1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    543  1.1  alnsn {
    544  1.6  pooka 	int status = 0; /* XXX gcc 4.1 */
    545  1.1  alnsn 	uint32_t width;
    546  1.1  alnsn 	struct sljit_jump *jump;
    547  1.1  alnsn #ifdef _KERNEL
    548  1.1  alnsn 	struct sljit_label *label;
    549  1.1  alnsn 	struct sljit_jump *over_mchain_jump;
    550  1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    551  1.1  alnsn #endif
    552  1.1  alnsn 	const uint32_t k = pc->k;
    553  1.1  alnsn 
    554  1.1  alnsn #ifdef _KERNEL
    555  1.1  alnsn 	if (to_mchain_jump == NULL) {
    556  1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    557  1.1  alnsn 		    SLJIT_C_EQUAL,
    558  1.7  alnsn 		    BJ_BUFLEN, 0,
    559  1.1  alnsn 		    SLJIT_IMM, 0);
    560  1.1  alnsn 		if (to_mchain_jump == NULL)
    561  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    562  1.1  alnsn 	}
    563  1.1  alnsn #endif
    564  1.1  alnsn 
    565  1.1  alnsn 	width = read_width(pc);
    566  1.1  alnsn 
    567  1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    568  1.1  alnsn 		/* tmp1 = buflen - (pc->k + width); */
    569  1.1  alnsn 		status = sljit_emit_op2(compiler,
    570  1.1  alnsn 		    SLJIT_SUB,
    571  1.7  alnsn 		    BJ_TMP1REG, 0,
    572  1.7  alnsn 		    BJ_BUFLEN, 0,
    573  1.1  alnsn 		    SLJIT_IMM, k + width);
    574  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    575  1.1  alnsn 			return status;
    576  1.1  alnsn 
    577  1.1  alnsn 		/* buf += X; */
    578  1.1  alnsn 		status = sljit_emit_op2(compiler,
    579  1.1  alnsn 		    SLJIT_ADD,
    580  1.7  alnsn 		    BJ_BUF, 0,
    581  1.7  alnsn 		    BJ_BUF, 0,
    582  1.7  alnsn 		    BJ_XREG, 0);
    583  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    584  1.1  alnsn 			return status;
    585  1.1  alnsn 
    586  1.1  alnsn 		/* if (tmp1 < X) return 0; */
    587  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    588  1.1  alnsn 		    SLJIT_C_LESS,
    589  1.7  alnsn 		    BJ_TMP1REG, 0,
    590  1.7  alnsn 		    BJ_XREG, 0);
    591  1.1  alnsn 		if (jump == NULL)
    592  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    593  1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    594  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    595  1.1  alnsn 	}
    596  1.1  alnsn 
    597  1.1  alnsn 	switch (width) {
    598  1.1  alnsn 	case 4:
    599  1.1  alnsn 		status = emit_read32(compiler, k);
    600  1.1  alnsn 		break;
    601  1.1  alnsn 	case 2:
    602  1.1  alnsn 		status = emit_read16(compiler, k);
    603  1.1  alnsn 		break;
    604  1.1  alnsn 	case 1:
    605  1.1  alnsn 		status = emit_read8(compiler, k);
    606  1.1  alnsn 		break;
    607  1.1  alnsn 	}
    608  1.1  alnsn 
    609  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    610  1.1  alnsn 		return status;
    611  1.1  alnsn 
    612  1.1  alnsn 	if (BPF_MODE(pc->code) == BPF_IND) {
    613  1.1  alnsn 		/* buf -= X; */
    614  1.1  alnsn 		status = sljit_emit_op2(compiler,
    615  1.1  alnsn 		    SLJIT_SUB,
    616  1.7  alnsn 		    BJ_BUF, 0,
    617  1.7  alnsn 		    BJ_BUF, 0,
    618  1.7  alnsn 		    BJ_XREG, 0);
    619  1.1  alnsn 		if (status != SLJIT_SUCCESS)
    620  1.1  alnsn 			return status;
    621  1.1  alnsn 	}
    622  1.1  alnsn 
    623  1.1  alnsn #ifdef _KERNEL
    624  1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    625  1.1  alnsn 	if (over_mchain_jump == NULL)
    626  1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    627  1.1  alnsn 
    628  1.1  alnsn 	/* entry point to mchain handler */
    629  1.1  alnsn 	label = sljit_emit_label(compiler);
    630  1.1  alnsn 	if (label == NULL)
    631  1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    632  1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    633  1.1  alnsn 
    634  1.1  alnsn 	if (check_zero_buflen) {
    635  1.1  alnsn 		/* if (buflen != 0) return 0; */
    636  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    637  1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    638  1.7  alnsn 		    BJ_BUFLEN, 0,
    639  1.1  alnsn 		    SLJIT_IMM, 0);
    640  1.1  alnsn 		if (jump == NULL)
    641  1.1  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    642  1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    643  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    644  1.1  alnsn 	}
    645  1.1  alnsn 
    646  1.1  alnsn 	switch (width) {
    647  1.1  alnsn 	case 4:
    648  1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    649  1.1  alnsn 		break;
    650  1.1  alnsn 	case 2:
    651  1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    652  1.1  alnsn 		break;
    653  1.1  alnsn 	case 1:
    654  1.7  alnsn 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    655  1.1  alnsn 		break;
    656  1.1  alnsn 	}
    657  1.1  alnsn 
    658  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    659  1.1  alnsn 		return status;
    660  1.1  alnsn 
    661  1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    662  1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    663  1.1  alnsn 
    664  1.1  alnsn 	label = sljit_emit_label(compiler);
    665  1.1  alnsn 	if (label == NULL)
    666  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    667  1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    668  1.1  alnsn #endif
    669  1.1  alnsn 
    670  1.1  alnsn 	return status;
    671  1.1  alnsn }
    672  1.1  alnsn 
    673  1.1  alnsn /*
    674  1.1  alnsn  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    675  1.1  alnsn  */
    676  1.1  alnsn static int
    677  1.1  alnsn emit_msh(struct sljit_compiler* compiler,
    678  1.7  alnsn     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    679  1.7  alnsn     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    680  1.1  alnsn {
    681  1.1  alnsn 	int status;
    682  1.1  alnsn #ifdef _KERNEL
    683  1.1  alnsn 	struct sljit_label *label;
    684  1.1  alnsn 	struct sljit_jump *jump, *over_mchain_jump;
    685  1.1  alnsn 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    686  1.1  alnsn #endif
    687  1.1  alnsn 	const uint32_t k = pc->k;
    688  1.1  alnsn 
    689  1.1  alnsn #ifdef _KERNEL
    690  1.1  alnsn 	if (to_mchain_jump == NULL) {
    691  1.1  alnsn 		to_mchain_jump = sljit_emit_cmp(compiler,
    692  1.1  alnsn 		    SLJIT_C_EQUAL,
    693  1.7  alnsn 		    BJ_BUFLEN, 0,
    694  1.1  alnsn 		    SLJIT_IMM, 0);
    695  1.1  alnsn 		if (to_mchain_jump == NULL)
    696  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    697  1.1  alnsn 	}
    698  1.1  alnsn #endif
    699  1.1  alnsn 
    700  1.1  alnsn 	/* tmp1 = buf[k] */
    701  1.1  alnsn 	status = sljit_emit_op1(compiler,
    702  1.1  alnsn 	    SLJIT_MOV_UB,
    703  1.7  alnsn 	    BJ_TMP1REG, 0,
    704  1.7  alnsn 	    SLJIT_MEM1(BJ_BUF), k);
    705  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    706  1.1  alnsn 		return status;
    707  1.1  alnsn 
    708  1.1  alnsn 	/* tmp1 &= 0xf */
    709  1.1  alnsn 	status = sljit_emit_op2(compiler,
    710  1.1  alnsn 	    SLJIT_AND,
    711  1.7  alnsn 	    BJ_TMP1REG, 0,
    712  1.7  alnsn 	    BJ_TMP1REG, 0,
    713  1.1  alnsn 	    SLJIT_IMM, 0xf);
    714  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    715  1.1  alnsn 		return status;
    716  1.1  alnsn 
    717  1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    718  1.1  alnsn 	status = sljit_emit_op2(compiler,
    719  1.1  alnsn 	    SLJIT_SHL,
    720  1.7  alnsn 	    BJ_XREG, 0,
    721  1.7  alnsn 	    BJ_TMP1REG, 0,
    722  1.1  alnsn 	    SLJIT_IMM, 2);
    723  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    724  1.1  alnsn 		return status;
    725  1.1  alnsn 
    726  1.1  alnsn #ifdef _KERNEL
    727  1.1  alnsn 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    728  1.1  alnsn 	if (over_mchain_jump == NULL)
    729  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    730  1.1  alnsn 
    731  1.1  alnsn 	/* entry point to mchain handler */
    732  1.1  alnsn 	label = sljit_emit_label(compiler);
    733  1.1  alnsn 	if (label == NULL)
    734  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    735  1.1  alnsn 	sljit_set_label(to_mchain_jump, label);
    736  1.1  alnsn 
    737  1.1  alnsn 	if (check_zero_buflen) {
    738  1.1  alnsn 		/* if (buflen != 0) return 0; */
    739  1.1  alnsn 		jump = sljit_emit_cmp(compiler,
    740  1.1  alnsn 		    SLJIT_C_NOT_EQUAL,
    741  1.7  alnsn 		    BJ_BUFLEN, 0,
    742  1.1  alnsn 		    SLJIT_IMM, 0);
    743  1.1  alnsn 		if (jump == NULL)
    744  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    745  1.7  alnsn 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    746  1.7  alnsn 			return SLJIT_ERR_ALLOC_FAILED;
    747  1.1  alnsn 	}
    748  1.1  alnsn 
    749  1.7  alnsn 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
    750  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    751  1.1  alnsn 		return status;
    752  1.7  alnsn 
    753  1.7  alnsn 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    754  1.7  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    755  1.1  alnsn 
    756  1.1  alnsn 	/* tmp1 &= 0xf */
    757  1.1  alnsn 	status = sljit_emit_op2(compiler,
    758  1.1  alnsn 	    SLJIT_AND,
    759  1.7  alnsn 	    BJ_TMP1REG, 0,
    760  1.7  alnsn 	    BJ_TMP1REG, 0,
    761  1.1  alnsn 	    SLJIT_IMM, 0xf);
    762  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    763  1.1  alnsn 		return status;
    764  1.1  alnsn 
    765  1.1  alnsn 	/* tmp1 = tmp1 << 2 */
    766  1.1  alnsn 	status = sljit_emit_op2(compiler,
    767  1.1  alnsn 	    SLJIT_SHL,
    768  1.7  alnsn 	    BJ_XREG, 0,
    769  1.7  alnsn 	    BJ_TMP1REG, 0,
    770  1.1  alnsn 	    SLJIT_IMM, 2);
    771  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    772  1.1  alnsn 		return status;
    773  1.1  alnsn 
    774  1.1  alnsn 
    775  1.1  alnsn 	label = sljit_emit_label(compiler);
    776  1.1  alnsn 	if (label == NULL)
    777  1.1  alnsn 		return SLJIT_ERR_ALLOC_FAILED;
    778  1.1  alnsn 	sljit_set_label(over_mchain_jump, label);
    779  1.1  alnsn #endif
    780  1.1  alnsn 
    781  1.1  alnsn 	return status;
    782  1.1  alnsn }
    783  1.1  alnsn 
    784  1.1  alnsn static int
    785  1.1  alnsn emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
    786  1.1  alnsn {
    787  1.1  alnsn 	int shift = 0;
    788  1.1  alnsn 	int status = SLJIT_SUCCESS;
    789  1.1  alnsn 
    790  1.1  alnsn 	while (k > 1) {
    791  1.1  alnsn 		k >>= 1;
    792  1.1  alnsn 		shift++;
    793  1.1  alnsn 	}
    794  1.1  alnsn 
    795  1.7  alnsn 	BJ_ASSERT(k == 1 && shift < 32);
    796  1.1  alnsn 
    797  1.1  alnsn 	if (shift != 0) {
    798  1.1  alnsn 		status = sljit_emit_op2(compiler,
    799  1.1  alnsn 		    SLJIT_LSHR|SLJIT_INT_OP,
    800  1.7  alnsn 		    BJ_AREG, 0,
    801  1.7  alnsn 		    BJ_AREG, 0,
    802  1.1  alnsn 		    SLJIT_IMM, shift);
    803  1.1  alnsn 	}
    804  1.1  alnsn 
    805  1.1  alnsn 	return status;
    806  1.1  alnsn }
    807  1.1  alnsn 
    808  1.1  alnsn #if !defined(BPFJIT_USE_UDIV)
    809  1.1  alnsn static sljit_uw
    810  1.1  alnsn divide(sljit_uw x, sljit_uw y)
    811  1.1  alnsn {
    812  1.1  alnsn 
    813  1.1  alnsn 	return (uint32_t)x / (uint32_t)y;
    814  1.1  alnsn }
    815  1.1  alnsn #endif
    816  1.1  alnsn 
    817  1.1  alnsn /*
    818  1.1  alnsn  * Generate A = A / div.
    819  1.7  alnsn  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
    820  1.1  alnsn  */
    821  1.1  alnsn static int
    822  1.1  alnsn emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
    823  1.1  alnsn {
    824  1.1  alnsn 	int status;
    825  1.1  alnsn 
    826  1.7  alnsn #if BJ_XREG == SLJIT_RETURN_REG   || \
    827  1.7  alnsn     BJ_XREG == SLJIT_TEMPORARY_REG1 || \
    828  1.7  alnsn     BJ_XREG == SLJIT_TEMPORARY_REG2 || \
    829  1.7  alnsn     BJ_AREG == SLJIT_TEMPORARY_REG2
    830  1.1  alnsn #error "Not supported assignment of registers."
    831  1.1  alnsn #endif
    832  1.1  alnsn 
    833  1.7  alnsn #if BJ_AREG != SLJIT_TEMPORARY_REG1
    834  1.1  alnsn 	status = sljit_emit_op1(compiler,
    835  1.1  alnsn 	    SLJIT_MOV,
    836  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0,
    837  1.7  alnsn 	    BJ_AREG, 0);
    838  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    839  1.1  alnsn 		return status;
    840  1.1  alnsn #endif
    841  1.1  alnsn 
    842  1.1  alnsn 	status = sljit_emit_op1(compiler,
    843  1.1  alnsn 	    SLJIT_MOV,
    844  1.1  alnsn 	    SLJIT_TEMPORARY_REG2, 0,
    845  1.1  alnsn 	    divt, divw);
    846  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    847  1.1  alnsn 		return status;
    848  1.1  alnsn 
    849  1.1  alnsn #if defined(BPFJIT_USE_UDIV)
    850  1.1  alnsn 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
    851  1.1  alnsn 
    852  1.7  alnsn #if BJ_AREG != SLJIT_TEMPORARY_REG1
    853  1.1  alnsn 	status = sljit_emit_op1(compiler,
    854  1.1  alnsn 	    SLJIT_MOV,
    855  1.7  alnsn 	    BJ_AREG, 0,
    856  1.1  alnsn 	    SLJIT_TEMPORARY_REG1, 0);
    857  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    858  1.1  alnsn 		return status;
    859  1.1  alnsn #endif
    860  1.1  alnsn #else
    861  1.1  alnsn 	status = sljit_emit_ijump(compiler,
    862  1.1  alnsn 	    SLJIT_CALL2,
    863  1.1  alnsn 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
    864  1.1  alnsn 
    865  1.7  alnsn #if BJ_AREG != SLJIT_RETURN_REG
    866  1.1  alnsn 	status = sljit_emit_op1(compiler,
    867  1.1  alnsn 	    SLJIT_MOV,
    868  1.7  alnsn 	    BJ_AREG, 0,
    869  1.1  alnsn 	    SLJIT_RETURN_REG, 0);
    870  1.1  alnsn 	if (status != SLJIT_SUCCESS)
    871  1.1  alnsn 		return status;
    872  1.1  alnsn #endif
    873  1.1  alnsn #endif
    874  1.1  alnsn 
    875  1.1  alnsn 	return status;
    876  1.1  alnsn }
    877  1.1  alnsn 
    878  1.1  alnsn /*
    879  1.1  alnsn  * Return true if pc is a "read from packet" instruction.
    880  1.1  alnsn  * If length is not NULL and return value is true, *length will
    881  1.1  alnsn  * be set to a safe length required to read a packet.
    882  1.1  alnsn  */
    883  1.1  alnsn static bool
    884  1.8  alnsn read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
    885  1.1  alnsn {
    886  1.1  alnsn 	bool rv;
    887  1.8  alnsn 	bpfjit_abc_length_t width;
    888  1.1  alnsn 
    889  1.1  alnsn 	switch (BPF_CLASS(pc->code)) {
    890  1.1  alnsn 	default:
    891  1.1  alnsn 		rv = false;
    892  1.1  alnsn 		break;
    893  1.1  alnsn 
    894  1.1  alnsn 	case BPF_LD:
    895  1.1  alnsn 		rv = BPF_MODE(pc->code) == BPF_ABS ||
    896  1.1  alnsn 		     BPF_MODE(pc->code) == BPF_IND;
    897  1.1  alnsn 		if (rv)
    898  1.1  alnsn 			width = read_width(pc);
    899  1.1  alnsn 		break;
    900  1.1  alnsn 
    901  1.1  alnsn 	case BPF_LDX:
    902  1.1  alnsn 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
    903  1.1  alnsn 		width = 1;
    904  1.1  alnsn 		break;
    905  1.1  alnsn 	}
    906  1.1  alnsn 
    907  1.1  alnsn 	if (rv && length != NULL) {
    908  1.9  alnsn 		/*
    909  1.9  alnsn 		 * Values greater than UINT32_MAX will generate
    910  1.9  alnsn 		 * unconditional "return 0".
    911  1.9  alnsn 		 */
    912  1.9  alnsn 		*length = (uint32_t)pc->k + width;
    913  1.1  alnsn 	}
    914  1.1  alnsn 
    915  1.1  alnsn 	return rv;
    916  1.1  alnsn }
    917  1.1  alnsn 
    918  1.1  alnsn static void
    919  1.7  alnsn optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
    920  1.1  alnsn {
    921  1.7  alnsn 	size_t i;
    922  1.1  alnsn 
    923  1.7  alnsn 	for (i = 0; i < insn_count; i++) {
    924  1.7  alnsn 		SLIST_INIT(&insn_dat[i].bjumps);
    925  1.7  alnsn 		insn_dat[i].invalid = BJ_INIT_NOBITS;
    926  1.1  alnsn 	}
    927  1.1  alnsn }
    928  1.1  alnsn 
    929  1.1  alnsn /*
    930  1.1  alnsn  * The function divides instructions into blocks. Destination of a jump
    931  1.1  alnsn  * instruction starts a new block. BPF_RET and BPF_JMP instructions
    932  1.1  alnsn  * terminate a block. Blocks are linear, that is, there are no jumps out
    933  1.1  alnsn  * from the middle of a block and there are no jumps in to the middle of
    934  1.1  alnsn  * a block.
    935  1.7  alnsn  *
    936  1.7  alnsn  * The function also sets bits in *initmask for memwords that
    937  1.7  alnsn  * need to be initialized to zero. Note that this set should be empty
    938  1.7  alnsn  * for any valid kernel filter program.
    939  1.1  alnsn  */
    940  1.7  alnsn static bool
    941  1.7  alnsn optimize_pass1(const struct bpf_insn *insns,
    942  1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
    943  1.7  alnsn     bpfjit_init_mask_t *initmask, int *nscratches)
    944  1.1  alnsn {
    945  1.7  alnsn 	struct bpfjit_jump *jtf;
    946  1.1  alnsn 	size_t i;
    947  1.7  alnsn 	uint32_t jt, jf;
    948  1.7  alnsn 	bpfjit_init_mask_t invalid; /* borrowed from bpf_filter() */
    949  1.1  alnsn 	bool unreachable;
    950  1.1  alnsn 
    951  1.7  alnsn 	*nscratches = 2;
    952  1.7  alnsn 	*initmask = BJ_INIT_NOBITS;
    953  1.1  alnsn 
    954  1.1  alnsn 	unreachable = false;
    955  1.7  alnsn 	invalid = ~BJ_INIT_NOBITS;
    956  1.1  alnsn 
    957  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
    958  1.7  alnsn 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
    959  1.1  alnsn 			unreachable = false;
    960  1.7  alnsn 		insn_dat[i].unreachable = unreachable;
    961  1.1  alnsn 
    962  1.1  alnsn 		if (unreachable)
    963  1.1  alnsn 			continue;
    964  1.1  alnsn 
    965  1.7  alnsn 		invalid |= insn_dat[i].invalid;
    966  1.1  alnsn 
    967  1.1  alnsn 		switch (BPF_CLASS(insns[i].code)) {
    968  1.1  alnsn 		case BPF_RET:
    969  1.7  alnsn 			if (BPF_RVAL(insns[i].code) == BPF_A)
    970  1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
    971  1.7  alnsn 
    972  1.1  alnsn 			unreachable = true;
    973  1.1  alnsn 			continue;
    974  1.1  alnsn 
    975  1.7  alnsn 		case BPF_LD:
    976  1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND ||
    977  1.7  alnsn 			    BPF_MODE(insns[i].code) == BPF_ABS) {
    978  1.7  alnsn 				if (BPF_MODE(insns[i].code) == BPF_IND &&
    979  1.7  alnsn 				    *nscratches < 4) {
    980  1.7  alnsn 					/* uses BJ_XREG */
    981  1.7  alnsn 					*nscratches = 4;
    982  1.7  alnsn 				}
    983  1.7  alnsn 				if (*nscratches < 3 &&
    984  1.7  alnsn 				    read_width(&insns[i]) == 4) {
    985  1.7  alnsn 					/* uses BJ_TMP2REG */
    986  1.7  alnsn 					*nscratches = 3;
    987  1.7  alnsn 				}
    988  1.7  alnsn 			}
    989  1.7  alnsn 
    990  1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_IND)
    991  1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
    992  1.7  alnsn 
    993  1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
    994  1.7  alnsn 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
    995  1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
    996  1.7  alnsn 			}
    997  1.7  alnsn 
    998  1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
    999  1.7  alnsn 			continue;
   1000  1.7  alnsn 
   1001  1.7  alnsn 		case BPF_LDX:
   1002  1.7  alnsn #if defined(_KERNEL)
   1003  1.7  alnsn 			/* uses BJ_TMP3REG */
   1004  1.7  alnsn 			*nscratches = 5;
   1005  1.7  alnsn #endif
   1006  1.7  alnsn 			/* uses BJ_XREG */
   1007  1.7  alnsn 			if (*nscratches < 4)
   1008  1.7  alnsn 				*nscratches = 4;
   1009  1.7  alnsn 
   1010  1.7  alnsn 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1011  1.7  alnsn 			    (uint32_t)insns[i].k < BPF_MEMWORDS) {
   1012  1.7  alnsn 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1013  1.7  alnsn 			}
   1014  1.7  alnsn 
   1015  1.7  alnsn 			invalid &= ~BJ_INIT_XBIT;
   1016  1.7  alnsn 			continue;
   1017  1.7  alnsn 
   1018  1.7  alnsn 		case BPF_ST:
   1019  1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1020  1.7  alnsn 
   1021  1.7  alnsn 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1022  1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1023  1.7  alnsn 
   1024  1.7  alnsn 			continue;
   1025  1.7  alnsn 
   1026  1.7  alnsn 		case BPF_STX:
   1027  1.7  alnsn 			/* uses BJ_XREG */
   1028  1.7  alnsn 			if (*nscratches < 4)
   1029  1.7  alnsn 				*nscratches = 4;
   1030  1.7  alnsn 
   1031  1.7  alnsn 			*initmask |= invalid & BJ_INIT_XBIT;
   1032  1.7  alnsn 
   1033  1.7  alnsn 			if ((uint32_t)insns[i].k < BPF_MEMWORDS)
   1034  1.7  alnsn 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1035  1.7  alnsn 
   1036  1.7  alnsn 			continue;
   1037  1.7  alnsn 
   1038  1.7  alnsn 		case BPF_ALU:
   1039  1.7  alnsn 			*initmask |= invalid & BJ_INIT_ABIT;
   1040  1.7  alnsn 
   1041  1.7  alnsn 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1042  1.7  alnsn 			    BPF_SRC(insns[i].code) == BPF_X) {
   1043  1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1044  1.7  alnsn 				/* uses BJ_XREG */
   1045  1.7  alnsn 				if (*nscratches < 4)
   1046  1.7  alnsn 					*nscratches = 4;
   1047  1.7  alnsn 
   1048  1.7  alnsn 			}
   1049  1.7  alnsn 
   1050  1.7  alnsn 			invalid &= ~BJ_INIT_ABIT;
   1051  1.7  alnsn 			continue;
   1052  1.7  alnsn 
   1053  1.7  alnsn 		case BPF_MISC:
   1054  1.7  alnsn 			switch (BPF_MISCOP(insns[i].code)) {
   1055  1.7  alnsn 			case BPF_TAX: // X <- A
   1056  1.7  alnsn 				/* uses BJ_XREG */
   1057  1.7  alnsn 				if (*nscratches < 4)
   1058  1.7  alnsn 					*nscratches = 4;
   1059  1.7  alnsn 
   1060  1.7  alnsn 				*initmask |= invalid & BJ_INIT_ABIT;
   1061  1.7  alnsn 				invalid &= ~BJ_INIT_XBIT;
   1062  1.7  alnsn 				continue;
   1063  1.7  alnsn 
   1064  1.7  alnsn 			case BPF_TXA: // A <- X
   1065  1.7  alnsn 				/* uses BJ_XREG */
   1066  1.7  alnsn 				if (*nscratches < 4)
   1067  1.7  alnsn 					*nscratches = 4;
   1068  1.7  alnsn 
   1069  1.7  alnsn 				*initmask |= invalid & BJ_INIT_XBIT;
   1070  1.7  alnsn 				invalid &= ~BJ_INIT_ABIT;
   1071  1.7  alnsn 				continue;
   1072  1.7  alnsn 			}
   1073  1.7  alnsn 
   1074  1.7  alnsn 			continue;
   1075  1.7  alnsn 
   1076  1.1  alnsn 		case BPF_JMP:
   1077  1.7  alnsn 			/* Initialize abc_length for ABC pass. */
   1078  1.8  alnsn 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1079  1.7  alnsn 
   1080  1.7  alnsn 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1081  1.1  alnsn 				jt = jf = insns[i].k;
   1082  1.1  alnsn 			} else {
   1083  1.1  alnsn 				jt = insns[i].jt;
   1084  1.1  alnsn 				jf = insns[i].jf;
   1085  1.1  alnsn 			}
   1086  1.1  alnsn 
   1087  1.1  alnsn 			if (jt >= insn_count - (i + 1) ||
   1088  1.1  alnsn 			    jf >= insn_count - (i + 1)) {
   1089  1.7  alnsn 				return false;
   1090  1.1  alnsn 			}
   1091  1.1  alnsn 
   1092  1.1  alnsn 			if (jt > 0 && jf > 0)
   1093  1.1  alnsn 				unreachable = true;
   1094  1.1  alnsn 
   1095  1.7  alnsn 			jt += i + 1;
   1096  1.7  alnsn 			jf += i + 1;
   1097  1.7  alnsn 
   1098  1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1099  1.1  alnsn 
   1100  1.7  alnsn 			jtf[0].sjump = NULL;
   1101  1.7  alnsn 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1102  1.7  alnsn 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1103  1.7  alnsn 			    &jtf[0], entries);
   1104  1.1  alnsn 
   1105  1.1  alnsn 			if (jf != jt) {
   1106  1.7  alnsn 				jtf[1].sjump = NULL;
   1107  1.7  alnsn 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1108  1.7  alnsn 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1109  1.7  alnsn 				    &jtf[1], entries);
   1110  1.1  alnsn 			}
   1111  1.1  alnsn 
   1112  1.7  alnsn 			insn_dat[jf].invalid |= invalid;
   1113  1.7  alnsn 			insn_dat[jt].invalid |= invalid;
   1114  1.7  alnsn 			invalid = 0;
   1115  1.7  alnsn 
   1116  1.1  alnsn 			continue;
   1117  1.1  alnsn 		}
   1118  1.1  alnsn 	}
   1119  1.1  alnsn 
   1120  1.7  alnsn 	return true;
   1121  1.1  alnsn }
   1122  1.1  alnsn 
   1123  1.1  alnsn /*
   1124  1.7  alnsn  * Array Bounds Check Elimination (ABC) pass.
   1125  1.1  alnsn  */
   1126  1.7  alnsn static void
   1127  1.7  alnsn optimize_pass2(const struct bpf_insn *insns,
   1128  1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1129  1.7  alnsn {
   1130  1.7  alnsn 	struct bpfjit_jump *jmp;
   1131  1.7  alnsn 	const struct bpf_insn *pc;
   1132  1.7  alnsn 	struct bpfjit_insn_data *pd;
   1133  1.7  alnsn 	size_t i;
   1134  1.8  alnsn 	bpfjit_abc_length_t length, abc_length = 0;
   1135  1.7  alnsn 
   1136  1.7  alnsn 	for (i = insn_count; i != 0; i--) {
   1137  1.7  alnsn 		pc = &insns[i-1];
   1138  1.7  alnsn 		pd = &insn_dat[i-1];
   1139  1.7  alnsn 
   1140  1.7  alnsn 		if (pd->unreachable)
   1141  1.7  alnsn 			continue;
   1142  1.7  alnsn 
   1143  1.7  alnsn 		switch (BPF_CLASS(pc->code)) {
   1144  1.7  alnsn 		case BPF_RET:
   1145  1.7  alnsn 			abc_length = 0;
   1146  1.7  alnsn 			break;
   1147  1.7  alnsn 
   1148  1.7  alnsn 		case BPF_JMP:
   1149  1.7  alnsn 			abc_length = pd->u.jdata.abc_length;
   1150  1.7  alnsn 			break;
   1151  1.7  alnsn 
   1152  1.7  alnsn 		default:
   1153  1.7  alnsn 			if (read_pkt_insn(pc, &length)) {
   1154  1.7  alnsn 				if (abc_length < length)
   1155  1.7  alnsn 					abc_length = length;
   1156  1.7  alnsn 				pd->u.rdata.abc_length = abc_length;
   1157  1.7  alnsn 			}
   1158  1.7  alnsn 			break;
   1159  1.7  alnsn 		}
   1160  1.7  alnsn 
   1161  1.7  alnsn 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1162  1.7  alnsn 			if (jmp->jdata->abc_length > abc_length)
   1163  1.7  alnsn 				jmp->jdata->abc_length = abc_length;
   1164  1.7  alnsn 		}
   1165  1.7  alnsn 	}
   1166  1.7  alnsn }
   1167  1.7  alnsn 
   1168  1.7  alnsn static void
   1169  1.7  alnsn optimize_pass3(const struct bpf_insn *insns,
   1170  1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1171  1.1  alnsn {
   1172  1.7  alnsn 	struct bpfjit_jump *jmp;
   1173  1.1  alnsn 	size_t i;
   1174  1.8  alnsn 	bpfjit_abc_length_t checked_length = 0;
   1175  1.1  alnsn 
   1176  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1177  1.7  alnsn 		if (insn_dat[i].unreachable)
   1178  1.7  alnsn 			continue;
   1179  1.1  alnsn 
   1180  1.7  alnsn 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1181  1.7  alnsn 			if (jmp->jdata->checked_length < checked_length)
   1182  1.7  alnsn 				checked_length = jmp->jdata->checked_length;
   1183  1.1  alnsn 		}
   1184  1.1  alnsn 
   1185  1.7  alnsn 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1186  1.7  alnsn 			insn_dat[i].u.jdata.checked_length = checked_length;
   1187  1.8  alnsn 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1188  1.7  alnsn 			struct bpfjit_read_pkt_data *rdata =
   1189  1.7  alnsn 			    &insn_dat[i].u.rdata;
   1190  1.7  alnsn 			rdata->check_length = 0;
   1191  1.7  alnsn 			if (checked_length < rdata->abc_length) {
   1192  1.7  alnsn 				checked_length = rdata->abc_length;
   1193  1.7  alnsn 				rdata->check_length = checked_length;
   1194  1.7  alnsn 			}
   1195  1.1  alnsn 		}
   1196  1.7  alnsn 	}
   1197  1.7  alnsn }
   1198  1.1  alnsn 
   1199  1.7  alnsn static bool
   1200  1.7  alnsn optimize(const struct bpf_insn *insns,
   1201  1.7  alnsn     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1202  1.7  alnsn     bpfjit_init_mask_t *initmask, int *nscratches)
   1203  1.7  alnsn {
   1204  1.1  alnsn 
   1205  1.7  alnsn 	optimize_init(insn_dat, insn_count);
   1206  1.7  alnsn 
   1207  1.7  alnsn 	if (!optimize_pass1(insns, insn_dat, insn_count,
   1208  1.7  alnsn 	    initmask, nscratches)) {
   1209  1.7  alnsn 		return false;
   1210  1.1  alnsn 	}
   1211  1.1  alnsn 
   1212  1.7  alnsn 	optimize_pass2(insns, insn_dat, insn_count);
   1213  1.7  alnsn 	optimize_pass3(insns, insn_dat, insn_count);
   1214  1.7  alnsn 
   1215  1.7  alnsn 	return true;
   1216  1.1  alnsn }
   1217  1.1  alnsn 
   1218  1.1  alnsn /*
   1219  1.1  alnsn  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1220  1.1  alnsn  */
   1221  1.1  alnsn static int
   1222  1.7  alnsn bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1223  1.1  alnsn {
   1224  1.1  alnsn 
   1225  1.1  alnsn 	/*
   1226  1.1  alnsn 	 * Note: all supported 64bit arches have 32bit multiply
   1227  1.1  alnsn 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1228  1.1  alnsn 	 */
   1229  1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1230  1.1  alnsn 	case BPF_ADD: return SLJIT_ADD;
   1231  1.1  alnsn 	case BPF_SUB: return SLJIT_SUB;
   1232  1.1  alnsn 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1233  1.1  alnsn 	case BPF_OR:  return SLJIT_OR;
   1234  1.1  alnsn 	case BPF_AND: return SLJIT_AND;
   1235  1.1  alnsn 	case BPF_LSH: return SLJIT_SHL;
   1236  1.1  alnsn 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1237  1.1  alnsn 	default:
   1238  1.7  alnsn 		BJ_ASSERT(false);
   1239  1.1  alnsn 		return 0;
   1240  1.1  alnsn 	}
   1241  1.1  alnsn }
   1242  1.1  alnsn 
   1243  1.1  alnsn /*
   1244  1.1  alnsn  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1245  1.1  alnsn  */
   1246  1.1  alnsn static int
   1247  1.7  alnsn bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1248  1.1  alnsn {
   1249  1.1  alnsn 	/*
   1250  1.1  alnsn 	 * Note: all supported 64bit arches have 32bit comparison
   1251  1.1  alnsn 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1252  1.1  alnsn 	 */
   1253  1.1  alnsn 	int rv = SLJIT_INT_OP;
   1254  1.1  alnsn 
   1255  1.1  alnsn 	switch (BPF_OP(pc->code)) {
   1256  1.1  alnsn 	case BPF_JGT:
   1257  1.1  alnsn 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1258  1.1  alnsn 		break;
   1259  1.1  alnsn 	case BPF_JGE:
   1260  1.1  alnsn 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1261  1.1  alnsn 		break;
   1262  1.1  alnsn 	case BPF_JEQ:
   1263  1.1  alnsn 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1264  1.1  alnsn 		break;
   1265  1.1  alnsn 	case BPF_JSET:
   1266  1.1  alnsn 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1267  1.1  alnsn 		break;
   1268  1.1  alnsn 	default:
   1269  1.7  alnsn 		BJ_ASSERT(false);
   1270  1.1  alnsn 	}
   1271  1.1  alnsn 
   1272  1.1  alnsn 	return rv;
   1273  1.1  alnsn }
   1274  1.1  alnsn 
   1275  1.1  alnsn /*
   1276  1.1  alnsn  * Convert BPF_K and BPF_X to sljit register.
   1277  1.1  alnsn  */
   1278  1.1  alnsn static int
   1279  1.7  alnsn kx_to_reg(const struct bpf_insn *pc)
   1280  1.1  alnsn {
   1281  1.1  alnsn 
   1282  1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1283  1.1  alnsn 	case BPF_K: return SLJIT_IMM;
   1284  1.7  alnsn 	case BPF_X: return BJ_XREG;
   1285  1.1  alnsn 	default:
   1286  1.7  alnsn 		BJ_ASSERT(false);
   1287  1.1  alnsn 		return 0;
   1288  1.1  alnsn 	}
   1289  1.1  alnsn }
   1290  1.1  alnsn 
   1291  1.1  alnsn static sljit_w
   1292  1.7  alnsn kx_to_reg_arg(const struct bpf_insn *pc)
   1293  1.1  alnsn {
   1294  1.1  alnsn 
   1295  1.1  alnsn 	switch (BPF_SRC(pc->code)) {
   1296  1.1  alnsn 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1297  1.7  alnsn 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1298  1.1  alnsn 	default:
   1299  1.7  alnsn 		BJ_ASSERT(false);
   1300  1.1  alnsn 		return 0;
   1301  1.1  alnsn 	}
   1302  1.1  alnsn }
   1303  1.1  alnsn 
   1304  1.4  rmind bpfjit_func_t
   1305  1.4  rmind bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
   1306  1.1  alnsn {
   1307  1.1  alnsn 	void *rv;
   1308  1.7  alnsn 	struct sljit_compiler *compiler;
   1309  1.7  alnsn 
   1310  1.1  alnsn 	size_t i;
   1311  1.1  alnsn 	int status;
   1312  1.1  alnsn 	int branching, negate;
   1313  1.1  alnsn 	unsigned int rval, mode, src;
   1314  1.7  alnsn 
   1315  1.7  alnsn 	/* optimization related */
   1316  1.7  alnsn 	bpfjit_init_mask_t initmask;
   1317  1.7  alnsn 	int nscratches;
   1318  1.1  alnsn 
   1319  1.1  alnsn 	/* a list of jumps to out-of-bound return from a generated function */
   1320  1.1  alnsn 	struct sljit_jump **ret0;
   1321  1.7  alnsn 	size_t ret0_size, ret0_maxsize;
   1322  1.1  alnsn 
   1323  1.7  alnsn 	const struct bpf_insn *pc;
   1324  1.1  alnsn 	struct bpfjit_insn_data *insn_dat;
   1325  1.1  alnsn 
   1326  1.1  alnsn 	/* for local use */
   1327  1.1  alnsn 	struct sljit_label *label;
   1328  1.1  alnsn 	struct sljit_jump *jump;
   1329  1.1  alnsn 	struct bpfjit_jump *bjump, *jtf;
   1330  1.1  alnsn 
   1331  1.1  alnsn 	struct sljit_jump *to_mchain_jump;
   1332  1.9  alnsn 	bool unconditional_ret;
   1333  1.1  alnsn 
   1334  1.1  alnsn 	uint32_t jt, jf;
   1335  1.1  alnsn 
   1336  1.1  alnsn 	rv = NULL;
   1337  1.1  alnsn 	compiler = NULL;
   1338  1.1  alnsn 	insn_dat = NULL;
   1339  1.1  alnsn 	ret0 = NULL;
   1340  1.1  alnsn 
   1341  1.7  alnsn 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   1342  1.1  alnsn 		goto fail;
   1343  1.1  alnsn 
   1344  1.7  alnsn 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   1345  1.1  alnsn 	if (insn_dat == NULL)
   1346  1.1  alnsn 		goto fail;
   1347  1.1  alnsn 
   1348  1.7  alnsn 	if (!optimize(insns, insn_dat, insn_count,
   1349  1.7  alnsn 	    &initmask, &nscratches)) {
   1350  1.1  alnsn 		goto fail;
   1351  1.7  alnsn 	}
   1352  1.7  alnsn 
   1353  1.7  alnsn #if defined(_KERNEL)
   1354  1.7  alnsn 	/* bpf_filter() checks initialization of memwords. */
   1355  1.7  alnsn 	BJ_ASSERT((initmask & BJ_INIT_MMASK) == 0);
   1356  1.7  alnsn #endif
   1357  1.1  alnsn 
   1358  1.1  alnsn 	ret0_size = 0;
   1359  1.7  alnsn 	ret0_maxsize = 64;
   1360  1.7  alnsn 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1361  1.7  alnsn 	if (ret0 == NULL)
   1362  1.1  alnsn 		goto fail;
   1363  1.1  alnsn 
   1364  1.1  alnsn 	compiler = sljit_create_compiler();
   1365  1.1  alnsn 	if (compiler == NULL)
   1366  1.1  alnsn 		goto fail;
   1367  1.1  alnsn 
   1368  1.1  alnsn #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1369  1.1  alnsn 	sljit_compiler_verbose(compiler, stderr);
   1370  1.1  alnsn #endif
   1371  1.1  alnsn 
   1372  1.7  alnsn 	status = sljit_emit_enter(compiler,
   1373  1.7  alnsn 	    3, nscratches, 3, sizeof(struct bpfjit_stack));
   1374  1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1375  1.1  alnsn 		goto fail;
   1376  1.1  alnsn 
   1377  1.7  alnsn 	for (i = 0; i < BPF_MEMWORDS; i++) {
   1378  1.7  alnsn 		if (initmask & BJ_INIT_MBIT(i)) {
   1379  1.7  alnsn 			status = sljit_emit_op1(compiler,
   1380  1.7  alnsn 			    SLJIT_MOV_UI,
   1381  1.7  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1382  1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1383  1.7  alnsn 			        i * sizeof(uint32_t),
   1384  1.7  alnsn 			    SLJIT_IMM, 0);
   1385  1.7  alnsn 			if (status != SLJIT_SUCCESS)
   1386  1.7  alnsn 				goto fail;
   1387  1.7  alnsn 		}
   1388  1.1  alnsn 	}
   1389  1.1  alnsn 
   1390  1.7  alnsn 	if (initmask & BJ_INIT_ABIT) {
   1391  1.1  alnsn 		/* A = 0; */
   1392  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1393  1.1  alnsn 		    SLJIT_MOV,
   1394  1.7  alnsn 		    BJ_AREG, 0,
   1395  1.1  alnsn 		    SLJIT_IMM, 0);
   1396  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1397  1.1  alnsn 			goto fail;
   1398  1.1  alnsn 	}
   1399  1.1  alnsn 
   1400  1.7  alnsn 	if (initmask & BJ_INIT_XBIT) {
   1401  1.1  alnsn 		/* X = 0; */
   1402  1.1  alnsn 		status = sljit_emit_op1(compiler,
   1403  1.1  alnsn 		    SLJIT_MOV,
   1404  1.7  alnsn 		    BJ_XREG, 0,
   1405  1.1  alnsn 		    SLJIT_IMM, 0);
   1406  1.1  alnsn 		if (status != SLJIT_SUCCESS)
   1407  1.1  alnsn 			goto fail;
   1408  1.1  alnsn 	}
   1409  1.1  alnsn 
   1410  1.1  alnsn 	for (i = 0; i < insn_count; i++) {
   1411  1.7  alnsn 		if (insn_dat[i].unreachable)
   1412  1.1  alnsn 			continue;
   1413  1.1  alnsn 
   1414  1.1  alnsn 		/*
   1415  1.1  alnsn 		 * Resolve jumps to the current insn.
   1416  1.1  alnsn 		 */
   1417  1.1  alnsn 		label = NULL;
   1418  1.7  alnsn 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1419  1.7  alnsn 			if (bjump->sjump != NULL) {
   1420  1.1  alnsn 				if (label == NULL)
   1421  1.1  alnsn 					label = sljit_emit_label(compiler);
   1422  1.1  alnsn 				if (label == NULL)
   1423  1.1  alnsn 					goto fail;
   1424  1.7  alnsn 				sljit_set_label(bjump->sjump, label);
   1425  1.1  alnsn 			}
   1426  1.1  alnsn 		}
   1427  1.1  alnsn 
   1428  1.9  alnsn 		to_mchain_jump = NULL;
   1429  1.9  alnsn 		unconditional_ret = false;
   1430  1.9  alnsn 
   1431  1.9  alnsn 		if (read_pkt_insn(&insns[i], NULL)) {
   1432  1.9  alnsn 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1433  1.9  alnsn 				/* Jump to "return 0" unconditionally. */
   1434  1.9  alnsn 				unconditional_ret = true;
   1435  1.9  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1436  1.9  alnsn 				if (jump == NULL)
   1437  1.9  alnsn 					goto fail;
   1438  1.9  alnsn 				if (!append_jump(jump, &ret0,
   1439  1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1440  1.9  alnsn 					goto fail;
   1441  1.9  alnsn 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1442  1.9  alnsn 				/* if (buflen < check_length) return 0; */
   1443  1.9  alnsn 				jump = sljit_emit_cmp(compiler,
   1444  1.9  alnsn 				    SLJIT_C_LESS,
   1445  1.9  alnsn 				    BJ_BUFLEN, 0,
   1446  1.9  alnsn 				    SLJIT_IMM,
   1447  1.9  alnsn 				    insn_dat[i].u.rdata.check_length);
   1448  1.9  alnsn 				if (jump == NULL)
   1449  1.9  alnsn 					goto fail;
   1450  1.1  alnsn #ifdef _KERNEL
   1451  1.9  alnsn 				to_mchain_jump = jump;
   1452  1.1  alnsn #else
   1453  1.9  alnsn 				if (!append_jump(jump, &ret0,
   1454  1.9  alnsn 				    &ret0_size, &ret0_maxsize))
   1455  1.9  alnsn 					goto fail;
   1456  1.1  alnsn #endif
   1457  1.9  alnsn 			}
   1458  1.1  alnsn 		}
   1459  1.1  alnsn 
   1460  1.1  alnsn 		pc = &insns[i];
   1461  1.1  alnsn 		switch (BPF_CLASS(pc->code)) {
   1462  1.1  alnsn 
   1463  1.1  alnsn 		default:
   1464  1.1  alnsn 			goto fail;
   1465  1.1  alnsn 
   1466  1.1  alnsn 		case BPF_LD:
   1467  1.1  alnsn 			/* BPF_LD+BPF_IMM          A <- k */
   1468  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1469  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1470  1.1  alnsn 				    SLJIT_MOV,
   1471  1.7  alnsn 				    BJ_AREG, 0,
   1472  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1473  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1474  1.1  alnsn 					goto fail;
   1475  1.1  alnsn 
   1476  1.1  alnsn 				continue;
   1477  1.1  alnsn 			}
   1478  1.1  alnsn 
   1479  1.1  alnsn 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1480  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1481  1.8  alnsn 				if ((uint32_t)pc->k >= BPF_MEMWORDS)
   1482  1.1  alnsn 					goto fail;
   1483  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1484  1.1  alnsn 				    SLJIT_MOV_UI,
   1485  1.7  alnsn 				    BJ_AREG, 0,
   1486  1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1487  1.7  alnsn 				    offsetof(struct bpfjit_stack, mem) +
   1488  1.7  alnsn 				        pc->k * sizeof(uint32_t));
   1489  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1490  1.1  alnsn 					goto fail;
   1491  1.1  alnsn 
   1492  1.1  alnsn 				continue;
   1493  1.1  alnsn 			}
   1494  1.1  alnsn 
   1495  1.1  alnsn 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1496  1.1  alnsn 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1497  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1498  1.1  alnsn 				    SLJIT_MOV,
   1499  1.7  alnsn 				    BJ_AREG, 0,
   1500  1.7  alnsn 				    BJ_WIRELEN, 0);
   1501  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1502  1.1  alnsn 					goto fail;
   1503  1.1  alnsn 
   1504  1.1  alnsn 				continue;
   1505  1.1  alnsn 			}
   1506  1.1  alnsn 
   1507  1.1  alnsn 			mode = BPF_MODE(pc->code);
   1508  1.1  alnsn 			if (mode != BPF_ABS && mode != BPF_IND)
   1509  1.1  alnsn 				goto fail;
   1510  1.1  alnsn 
   1511  1.9  alnsn 			if (unconditional_ret)
   1512  1.9  alnsn 				continue;
   1513  1.9  alnsn 
   1514  1.1  alnsn 			status = emit_pkt_read(compiler, pc,
   1515  1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1516  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1517  1.1  alnsn 				goto fail;
   1518  1.1  alnsn 
   1519  1.1  alnsn 			continue;
   1520  1.1  alnsn 
   1521  1.1  alnsn 		case BPF_LDX:
   1522  1.1  alnsn 			mode = BPF_MODE(pc->code);
   1523  1.1  alnsn 
   1524  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1525  1.1  alnsn 			if (mode == BPF_IMM) {
   1526  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1527  1.1  alnsn 					goto fail;
   1528  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1529  1.1  alnsn 				    SLJIT_MOV,
   1530  1.7  alnsn 				    BJ_XREG, 0,
   1531  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1532  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1533  1.1  alnsn 					goto fail;
   1534  1.1  alnsn 
   1535  1.1  alnsn 				continue;
   1536  1.1  alnsn 			}
   1537  1.1  alnsn 
   1538  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1539  1.1  alnsn 			if (mode == BPF_LEN) {
   1540  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1541  1.1  alnsn 					goto fail;
   1542  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1543  1.1  alnsn 				    SLJIT_MOV,
   1544  1.7  alnsn 				    BJ_XREG, 0,
   1545  1.7  alnsn 				    BJ_WIRELEN, 0);
   1546  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1547  1.1  alnsn 					goto fail;
   1548  1.1  alnsn 
   1549  1.1  alnsn 				continue;
   1550  1.1  alnsn 			}
   1551  1.1  alnsn 
   1552  1.1  alnsn 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1553  1.1  alnsn 			if (mode == BPF_MEM) {
   1554  1.1  alnsn 				if (BPF_SIZE(pc->code) != BPF_W)
   1555  1.1  alnsn 					goto fail;
   1556  1.8  alnsn 				if ((uint32_t)pc->k >= BPF_MEMWORDS)
   1557  1.1  alnsn 					goto fail;
   1558  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1559  1.1  alnsn 				    SLJIT_MOV_UI,
   1560  1.7  alnsn 				    BJ_XREG, 0,
   1561  1.1  alnsn 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1562  1.7  alnsn 				    offsetof(struct bpfjit_stack, mem) +
   1563  1.7  alnsn 				        pc->k * sizeof(uint32_t));
   1564  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1565  1.1  alnsn 					goto fail;
   1566  1.1  alnsn 
   1567  1.1  alnsn 				continue;
   1568  1.1  alnsn 			}
   1569  1.1  alnsn 
   1570  1.1  alnsn 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1571  1.1  alnsn 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1572  1.1  alnsn 				goto fail;
   1573  1.1  alnsn 
   1574  1.9  alnsn 			if (unconditional_ret)
   1575  1.9  alnsn 				continue;
   1576  1.9  alnsn 
   1577  1.1  alnsn 			status = emit_msh(compiler, pc,
   1578  1.7  alnsn 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1579  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1580  1.1  alnsn 				goto fail;
   1581  1.1  alnsn 
   1582  1.1  alnsn 			continue;
   1583  1.1  alnsn 
   1584  1.1  alnsn 		case BPF_ST:
   1585  1.8  alnsn 			if (pc->code != BPF_ST ||
   1586  1.8  alnsn 			    (uint32_t)pc->k >= BPF_MEMWORDS) {
   1587  1.1  alnsn 				goto fail;
   1588  1.8  alnsn 			}
   1589  1.1  alnsn 
   1590  1.1  alnsn 			status = sljit_emit_op1(compiler,
   1591  1.1  alnsn 			    SLJIT_MOV_UI,
   1592  1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1593  1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1594  1.7  alnsn 			        pc->k * sizeof(uint32_t),
   1595  1.7  alnsn 			    BJ_AREG, 0);
   1596  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1597  1.1  alnsn 				goto fail;
   1598  1.1  alnsn 
   1599  1.1  alnsn 			continue;
   1600  1.1  alnsn 
   1601  1.1  alnsn 		case BPF_STX:
   1602  1.8  alnsn 			if (pc->code != BPF_STX ||
   1603  1.8  alnsn 			    (uint32_t)pc->k >= BPF_MEMWORDS) {
   1604  1.1  alnsn 				goto fail;
   1605  1.8  alnsn 			}
   1606  1.1  alnsn 
   1607  1.1  alnsn 			status = sljit_emit_op1(compiler,
   1608  1.1  alnsn 			    SLJIT_MOV_UI,
   1609  1.1  alnsn 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1610  1.7  alnsn 			    offsetof(struct bpfjit_stack, mem) +
   1611  1.7  alnsn 			        pc->k * sizeof(uint32_t),
   1612  1.7  alnsn 			    BJ_XREG, 0);
   1613  1.1  alnsn 			if (status != SLJIT_SUCCESS)
   1614  1.1  alnsn 				goto fail;
   1615  1.1  alnsn 
   1616  1.1  alnsn 			continue;
   1617  1.1  alnsn 
   1618  1.1  alnsn 		case BPF_ALU:
   1619  1.1  alnsn 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1620  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1621  1.1  alnsn 				    SLJIT_NEG,
   1622  1.7  alnsn 				    BJ_AREG, 0,
   1623  1.7  alnsn 				    BJ_AREG, 0);
   1624  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1625  1.1  alnsn 					goto fail;
   1626  1.1  alnsn 
   1627  1.1  alnsn 				continue;
   1628  1.1  alnsn 			}
   1629  1.1  alnsn 
   1630  1.1  alnsn 			if (BPF_OP(pc->code) != BPF_DIV) {
   1631  1.1  alnsn 				status = sljit_emit_op2(compiler,
   1632  1.1  alnsn 				    bpf_alu_to_sljit_op(pc),
   1633  1.7  alnsn 				    BJ_AREG, 0,
   1634  1.7  alnsn 				    BJ_AREG, 0,
   1635  1.1  alnsn 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1636  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1637  1.1  alnsn 					goto fail;
   1638  1.1  alnsn 
   1639  1.1  alnsn 				continue;
   1640  1.1  alnsn 			}
   1641  1.1  alnsn 
   1642  1.1  alnsn 			/* BPF_DIV */
   1643  1.1  alnsn 
   1644  1.1  alnsn 			src = BPF_SRC(pc->code);
   1645  1.1  alnsn 			if (src != BPF_X && src != BPF_K)
   1646  1.1  alnsn 				goto fail;
   1647  1.1  alnsn 
   1648  1.1  alnsn 			/* division by zero? */
   1649  1.1  alnsn 			if (src == BPF_X) {
   1650  1.1  alnsn 				jump = sljit_emit_cmp(compiler,
   1651  1.1  alnsn 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1652  1.8  alnsn 				    BJ_XREG, 0,
   1653  1.1  alnsn 				    SLJIT_IMM, 0);
   1654  1.1  alnsn 				if (jump == NULL)
   1655  1.1  alnsn 					goto fail;
   1656  1.7  alnsn 				if (!append_jump(jump, &ret0,
   1657  1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1658  1.7  alnsn 					goto fail;
   1659  1.1  alnsn 			} else if (pc->k == 0) {
   1660  1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1661  1.1  alnsn 				if (jump == NULL)
   1662  1.1  alnsn 					goto fail;
   1663  1.7  alnsn 				if (!append_jump(jump, &ret0,
   1664  1.7  alnsn 				    &ret0_size, &ret0_maxsize))
   1665  1.7  alnsn 					goto fail;
   1666  1.1  alnsn 			}
   1667  1.1  alnsn 
   1668  1.1  alnsn 			if (src == BPF_X) {
   1669  1.7  alnsn 				status = emit_division(compiler, BJ_XREG, 0);
   1670  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1671  1.1  alnsn 					goto fail;
   1672  1.1  alnsn 			} else if (pc->k != 0) {
   1673  1.1  alnsn 				if (pc->k & (pc->k - 1)) {
   1674  1.1  alnsn 				    status = emit_division(compiler,
   1675  1.1  alnsn 				        SLJIT_IMM, (uint32_t)pc->k);
   1676  1.1  alnsn 				} else {
   1677  1.7  alnsn 				    status = emit_pow2_division(compiler,
   1678  1.1  alnsn 				        (uint32_t)pc->k);
   1679  1.1  alnsn 				}
   1680  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1681  1.1  alnsn 					goto fail;
   1682  1.1  alnsn 			}
   1683  1.1  alnsn 
   1684  1.1  alnsn 			continue;
   1685  1.1  alnsn 
   1686  1.1  alnsn 		case BPF_JMP:
   1687  1.7  alnsn 			if (BPF_OP(pc->code) == BPF_JA) {
   1688  1.1  alnsn 				jt = jf = pc->k;
   1689  1.1  alnsn 			} else {
   1690  1.1  alnsn 				jt = pc->jt;
   1691  1.1  alnsn 				jf = pc->jf;
   1692  1.1  alnsn 			}
   1693  1.1  alnsn 
   1694  1.1  alnsn 			negate = (jt == 0) ? 1 : 0;
   1695  1.1  alnsn 			branching = (jt == jf) ? 0 : 1;
   1696  1.7  alnsn 			jtf = insn_dat[i].u.jdata.jtf;
   1697  1.1  alnsn 
   1698  1.1  alnsn 			if (branching) {
   1699  1.1  alnsn 				if (BPF_OP(pc->code) != BPF_JSET) {
   1700  1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1701  1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1702  1.7  alnsn 					    BJ_AREG, 0,
   1703  1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1704  1.1  alnsn 				} else {
   1705  1.1  alnsn 					status = sljit_emit_op2(compiler,
   1706  1.1  alnsn 					    SLJIT_AND,
   1707  1.7  alnsn 					    BJ_TMP1REG, 0,
   1708  1.7  alnsn 					    BJ_AREG, 0,
   1709  1.1  alnsn 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1710  1.1  alnsn 					if (status != SLJIT_SUCCESS)
   1711  1.1  alnsn 						goto fail;
   1712  1.1  alnsn 
   1713  1.1  alnsn 					jump = sljit_emit_cmp(compiler,
   1714  1.1  alnsn 					    bpf_jmp_to_sljit_cond(pc, negate),
   1715  1.7  alnsn 					    BJ_TMP1REG, 0,
   1716  1.1  alnsn 					    SLJIT_IMM, 0);
   1717  1.1  alnsn 				}
   1718  1.1  alnsn 
   1719  1.1  alnsn 				if (jump == NULL)
   1720  1.1  alnsn 					goto fail;
   1721  1.1  alnsn 
   1722  1.7  alnsn 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1723  1.7  alnsn 				jtf[negate].sjump = jump;
   1724  1.1  alnsn 			}
   1725  1.1  alnsn 
   1726  1.1  alnsn 			if (!branching || (jt != 0 && jf != 0)) {
   1727  1.1  alnsn 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1728  1.1  alnsn 				if (jump == NULL)
   1729  1.1  alnsn 					goto fail;
   1730  1.1  alnsn 
   1731  1.7  alnsn 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1732  1.7  alnsn 				jtf[branching].sjump = jump;
   1733  1.1  alnsn 			}
   1734  1.1  alnsn 
   1735  1.1  alnsn 			continue;
   1736  1.1  alnsn 
   1737  1.1  alnsn 		case BPF_RET:
   1738  1.1  alnsn 			rval = BPF_RVAL(pc->code);
   1739  1.1  alnsn 			if (rval == BPF_X)
   1740  1.1  alnsn 				goto fail;
   1741  1.1  alnsn 
   1742  1.1  alnsn 			/* BPF_RET+BPF_K    accept k bytes */
   1743  1.1  alnsn 			if (rval == BPF_K) {
   1744  1.7  alnsn 				status = sljit_emit_return(compiler,
   1745  1.7  alnsn 				    SLJIT_MOV_UI,
   1746  1.1  alnsn 				    SLJIT_IMM, (uint32_t)pc->k);
   1747  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1748  1.1  alnsn 					goto fail;
   1749  1.1  alnsn 			}
   1750  1.1  alnsn 
   1751  1.1  alnsn 			/* BPF_RET+BPF_A    accept A bytes */
   1752  1.1  alnsn 			if (rval == BPF_A) {
   1753  1.7  alnsn 				status = sljit_emit_return(compiler,
   1754  1.7  alnsn 				    SLJIT_MOV_UI,
   1755  1.7  alnsn 				    BJ_AREG, 0);
   1756  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1757  1.1  alnsn 					goto fail;
   1758  1.1  alnsn 			}
   1759  1.1  alnsn 
   1760  1.1  alnsn 			continue;
   1761  1.1  alnsn 
   1762  1.1  alnsn 		case BPF_MISC:
   1763  1.7  alnsn 			switch (BPF_MISCOP(pc->code)) {
   1764  1.7  alnsn 			case BPF_TAX:
   1765  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1766  1.1  alnsn 				    SLJIT_MOV_UI,
   1767  1.7  alnsn 				    BJ_XREG, 0,
   1768  1.7  alnsn 				    BJ_AREG, 0);
   1769  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1770  1.1  alnsn 					goto fail;
   1771  1.1  alnsn 
   1772  1.1  alnsn 				continue;
   1773  1.1  alnsn 
   1774  1.7  alnsn 			case BPF_TXA:
   1775  1.1  alnsn 				status = sljit_emit_op1(compiler,
   1776  1.1  alnsn 				    SLJIT_MOV,
   1777  1.7  alnsn 				    BJ_AREG, 0,
   1778  1.7  alnsn 				    BJ_XREG, 0);
   1779  1.1  alnsn 				if (status != SLJIT_SUCCESS)
   1780  1.1  alnsn 					goto fail;
   1781  1.1  alnsn 
   1782  1.1  alnsn 				continue;
   1783  1.1  alnsn 			}
   1784  1.1  alnsn 
   1785  1.1  alnsn 			goto fail;
   1786  1.1  alnsn 		} /* switch */
   1787  1.1  alnsn 	} /* main loop */
   1788  1.1  alnsn 
   1789  1.7  alnsn 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   1790  1.1  alnsn 
   1791  1.7  alnsn 	if (ret0_size > 0) {
   1792  1.1  alnsn 		label = sljit_emit_label(compiler);
   1793  1.1  alnsn 		if (label == NULL)
   1794  1.1  alnsn 			goto fail;
   1795  1.7  alnsn 		for (i = 0; i < ret0_size; i++)
   1796  1.7  alnsn 			sljit_set_label(ret0[i], label);
   1797  1.1  alnsn 	}
   1798  1.1  alnsn 
   1799  1.1  alnsn 	status = sljit_emit_return(compiler,
   1800  1.1  alnsn 	    SLJIT_MOV_UI,
   1801  1.7  alnsn 	    SLJIT_IMM, 0);
   1802  1.1  alnsn 	if (status != SLJIT_SUCCESS)
   1803  1.1  alnsn 		goto fail;
   1804  1.1  alnsn 
   1805  1.1  alnsn 	rv = sljit_generate_code(compiler);
   1806  1.1  alnsn 
   1807  1.1  alnsn fail:
   1808  1.1  alnsn 	if (compiler != NULL)
   1809  1.1  alnsn 		sljit_free_compiler(compiler);
   1810  1.1  alnsn 
   1811  1.1  alnsn 	if (insn_dat != NULL)
   1812  1.7  alnsn 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   1813  1.1  alnsn 
   1814  1.1  alnsn 	if (ret0 != NULL)
   1815  1.7  alnsn 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   1816  1.1  alnsn 
   1817  1.4  rmind 	return (bpfjit_func_t)rv;
   1818  1.1  alnsn }
   1819  1.1  alnsn 
   1820  1.1  alnsn void
   1821  1.4  rmind bpfjit_free_code(bpfjit_func_t code)
   1822  1.1  alnsn {
   1823  1.7  alnsn 
   1824  1.1  alnsn 	sljit_free_code((void *)code);
   1825  1.1  alnsn }
   1826