Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.21
      1 /*	$NetBSD: bpfjit.c,v 1.21 2014/07/05 11:13:13 alnsn Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.21 2014/07/05 11:13:13 alnsn Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.21 2014/07/05 11:13:13 alnsn Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #else
     65 #include <sys/atomic.h>
     66 #include <sys/module.h>
     67 #endif
     68 
     69 #define	__BPF_PRIVATE
     70 #include <net/bpf.h>
     71 #include <net/bpfjit.h>
     72 #include <sljitLir.h>
     73 
     74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75 #include <stdio.h> /* for stderr */
     76 #endif
     77 
     78 /*
     79  * Arguments of generated bpfjit_func_t.
     80  * The first argument is reassigned upon entry
     81  * to a more frequently used buf argument.
     82  */
     83 #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84 #define BJ_ARGS		SLJIT_SAVED_REG2
     85 
     86 /*
     87  * Permanent register assignments.
     88  */
     89 #define BJ_BUF		SLJIT_SAVED_REG1
     90 //#define BJ_ARGS	SLJIT_SAVED_REG2
     91 #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92 #define BJ_AREG		SLJIT_SCRATCH_REG1
     93 #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94 #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95 #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96 #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97 
     98 /*
     99  * EREG registers can't be used for indirect calls, reuse BJ_BUF and
    100  * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
    101  */
    102 #define BJ_COPF_PTR	SLJIT_SAVED_REG1
    103 #define BJ_COPF_IDX	SLJIT_SAVED_REG3
    104 
    105 #ifdef _KERNEL
    106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    107 #else
    108 #define MAX_MEMWORDS BPF_MEMWORDS
    109 #endif
    110 
    111 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    113 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    114 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    115 
    116 /*
    117  * Get a number of memwords and external memwords from a bpf_ctx object.
    118  */
    119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    121 
    122 /*
    123  * Optimization hints.
    124  */
    125 typedef unsigned int bpfjit_hint_t;
    126 #define BJ_HINT_LDW  0x01 /* 32-bit packet read  */
    127 #define BJ_HINT_IND  0x02 /* packet read at a variable offset */
    128 #define BJ_HINT_COP  0x04 /* BPF_COP or BPF_COPX instruction  */
    129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed   */
    130 #define BJ_HINT_LDX  0x10 /* BPF_LDX instruction */
    131 
    132 /*
    133  * Datatype for Array Bounds Check Elimination (ABC) pass.
    134  */
    135 typedef uint64_t bpfjit_abc_length_t;
    136 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    137 
    138 struct bpfjit_stack
    139 {
    140 	bpf_ctx_t *ctx;
    141 	uint32_t *extmem; /* pointer to external memory store */
    142 #ifdef _KERNEL
    143 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    144 #endif
    145 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    146 };
    147 
    148 /*
    149  * Data for BPF_JMP instruction.
    150  * Forward declaration for struct bpfjit_jump.
    151  */
    152 struct bpfjit_jump_data;
    153 
    154 /*
    155  * Node of bjumps list.
    156  */
    157 struct bpfjit_jump {
    158 	struct sljit_jump *sjump;
    159 	SLIST_ENTRY(bpfjit_jump) entries;
    160 	struct bpfjit_jump_data *jdata;
    161 };
    162 
    163 /*
    164  * Data for BPF_JMP instruction.
    165  */
    166 struct bpfjit_jump_data {
    167 	/*
    168 	 * These entries make up bjumps list:
    169 	 * jtf[0] - when coming from jt path,
    170 	 * jtf[1] - when coming from jf path.
    171 	 */
    172 	struct bpfjit_jump jtf[2];
    173 	/*
    174 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    175 	 */
    176 	bpfjit_abc_length_t abc_length;
    177 	/*
    178 	 * Length checked by the last out-of-bounds check.
    179 	 */
    180 	bpfjit_abc_length_t checked_length;
    181 };
    182 
    183 /*
    184  * Data for "read from packet" instructions.
    185  * See also read_pkt_insn() function below.
    186  */
    187 struct bpfjit_read_pkt_data {
    188 	/*
    189 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    190 	 */
    191 	bpfjit_abc_length_t abc_length;
    192 	/*
    193 	 * If positive, emit "if (buflen < check_length) return 0"
    194 	 * out-of-bounds check.
    195 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    196 	 */
    197 	bpfjit_abc_length_t check_length;
    198 };
    199 
    200 /*
    201  * Additional (optimization-related) data for bpf_insn.
    202  */
    203 struct bpfjit_insn_data {
    204 	/* List of jumps to this insn. */
    205 	SLIST_HEAD(, bpfjit_jump) bjumps;
    206 
    207 	union {
    208 		struct bpfjit_jump_data     jdata;
    209 		struct bpfjit_read_pkt_data rdata;
    210 	} u;
    211 
    212 	bpf_memword_init_t invalid;
    213 	bool unreachable;
    214 };
    215 
    216 #ifdef _KERNEL
    217 
    218 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    219 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    220 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    221 
    222 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    223 
    224 static int
    225 bpfjit_modcmd(modcmd_t cmd, void *arg)
    226 {
    227 
    228 	switch (cmd) {
    229 	case MODULE_CMD_INIT:
    230 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    231 		membar_producer();
    232 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    233 		membar_producer();
    234 		return 0;
    235 
    236 	case MODULE_CMD_FINI:
    237 		return EOPNOTSUPP;
    238 
    239 	default:
    240 		return ENOTTY;
    241 	}
    242 }
    243 #endif
    244 
    245 /*
    246  * Return a number of scratch registers to pass
    247  * to sljit_emit_enter() function.
    248  */
    249 static sljit_si
    250 nscratches(bpfjit_hint_t hints)
    251 {
    252 	sljit_si rv = 2;
    253 
    254 	if (hints & BJ_HINT_LDW)
    255 		rv = 3; /* uses BJ_TMP2REG */
    256 
    257 	if (hints & BJ_HINT_COP)
    258 		rv = 3; /* calls copfunc with three arguments */
    259 
    260 	if (hints & BJ_HINT_XREG)
    261 		rv = 4; /* uses BJ_XREG */
    262 
    263 #ifdef _KERNEL
    264 	if (hints & BJ_HINT_LDX)
    265 		rv = 5; /* uses BJ_TMP3REG */
    266 #endif
    267 
    268 	return rv;
    269 }
    270 
    271 static uint32_t
    272 read_width(const struct bpf_insn *pc)
    273 {
    274 
    275 	switch (BPF_SIZE(pc->code)) {
    276 	case BPF_W:
    277 		return 4;
    278 	case BPF_H:
    279 		return 2;
    280 	case BPF_B:
    281 		return 1;
    282 	default:
    283 		BJ_ASSERT(false);
    284 		return 0;
    285 	}
    286 }
    287 
    288 /*
    289  * Copy buf and buflen members of bpf_args from BJ_ARGS
    290  * pointer to BJ_BUF and BJ_BUFLEN registers.
    291  */
    292 static int
    293 load_buf_buflen(struct sljit_compiler *compiler)
    294 {
    295 	int status;
    296 
    297 	status = sljit_emit_op1(compiler,
    298 	    SLJIT_MOV_P,
    299 	    BJ_BUF, 0,
    300 	    SLJIT_MEM1(BJ_ARGS),
    301 	    offsetof(struct bpf_args, pkt));
    302 	if (status != SLJIT_SUCCESS)
    303 		return status;
    304 
    305 	status = sljit_emit_op1(compiler,
    306 	    SLJIT_MOV, /* size_t source */
    307 	    BJ_BUFLEN, 0,
    308 	    SLJIT_MEM1(BJ_ARGS),
    309 	    offsetof(struct bpf_args, buflen));
    310 
    311 	return status;
    312 }
    313 
    314 static bool
    315 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    316 {
    317 	struct sljit_jump **newptr;
    318 	const size_t elemsz = sizeof(struct sljit_jump *);
    319 	size_t old_size = *size;
    320 	size_t new_size = 2 * old_size;
    321 
    322 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    323 		return false;
    324 
    325 	newptr = BJ_ALLOC(new_size * elemsz);
    326 	if (newptr == NULL)
    327 		return false;
    328 
    329 	memcpy(newptr, *jumps, old_size * elemsz);
    330 	BJ_FREE(*jumps, old_size * elemsz);
    331 
    332 	*jumps = newptr;
    333 	*size = new_size;
    334 	return true;
    335 }
    336 
    337 static bool
    338 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    339     size_t *size, size_t *max_size)
    340 {
    341 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    342 		return false;
    343 
    344 	(*jumps)[(*size)++] = jump;
    345 	return true;
    346 }
    347 
    348 /*
    349  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    350  */
    351 static int
    352 emit_read8(struct sljit_compiler *compiler, uint32_t k)
    353 {
    354 
    355 	return sljit_emit_op1(compiler,
    356 	    SLJIT_MOV_UB,
    357 	    BJ_AREG, 0,
    358 	    SLJIT_MEM1(BJ_BUF), k);
    359 }
    360 
    361 /*
    362  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    363  */
    364 static int
    365 emit_read16(struct sljit_compiler *compiler, uint32_t k)
    366 {
    367 	int status;
    368 
    369 	/* tmp1 = buf[k]; */
    370 	status = sljit_emit_op1(compiler,
    371 	    SLJIT_MOV_UB,
    372 	    BJ_TMP1REG, 0,
    373 	    SLJIT_MEM1(BJ_BUF), k);
    374 	if (status != SLJIT_SUCCESS)
    375 		return status;
    376 
    377 	/* A = buf[k+1]; */
    378 	status = sljit_emit_op1(compiler,
    379 	    SLJIT_MOV_UB,
    380 	    BJ_AREG, 0,
    381 	    SLJIT_MEM1(BJ_BUF), k+1);
    382 	if (status != SLJIT_SUCCESS)
    383 		return status;
    384 
    385 	/* tmp1 = tmp1 << 8; */
    386 	status = sljit_emit_op2(compiler,
    387 	    SLJIT_SHL,
    388 	    BJ_TMP1REG, 0,
    389 	    BJ_TMP1REG, 0,
    390 	    SLJIT_IMM, 8);
    391 	if (status != SLJIT_SUCCESS)
    392 		return status;
    393 
    394 	/* A = A + tmp1; */
    395 	status = sljit_emit_op2(compiler,
    396 	    SLJIT_ADD,
    397 	    BJ_AREG, 0,
    398 	    BJ_AREG, 0,
    399 	    BJ_TMP1REG, 0);
    400 	return status;
    401 }
    402 
    403 /*
    404  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    405  */
    406 static int
    407 emit_read32(struct sljit_compiler *compiler, uint32_t k)
    408 {
    409 	int status;
    410 
    411 	/* tmp1 = buf[k]; */
    412 	status = sljit_emit_op1(compiler,
    413 	    SLJIT_MOV_UB,
    414 	    BJ_TMP1REG, 0,
    415 	    SLJIT_MEM1(BJ_BUF), k);
    416 	if (status != SLJIT_SUCCESS)
    417 		return status;
    418 
    419 	/* tmp2 = buf[k+1]; */
    420 	status = sljit_emit_op1(compiler,
    421 	    SLJIT_MOV_UB,
    422 	    BJ_TMP2REG, 0,
    423 	    SLJIT_MEM1(BJ_BUF), k+1);
    424 	if (status != SLJIT_SUCCESS)
    425 		return status;
    426 
    427 	/* A = buf[k+3]; */
    428 	status = sljit_emit_op1(compiler,
    429 	    SLJIT_MOV_UB,
    430 	    BJ_AREG, 0,
    431 	    SLJIT_MEM1(BJ_BUF), k+3);
    432 	if (status != SLJIT_SUCCESS)
    433 		return status;
    434 
    435 	/* tmp1 = tmp1 << 24; */
    436 	status = sljit_emit_op2(compiler,
    437 	    SLJIT_SHL,
    438 	    BJ_TMP1REG, 0,
    439 	    BJ_TMP1REG, 0,
    440 	    SLJIT_IMM, 24);
    441 	if (status != SLJIT_SUCCESS)
    442 		return status;
    443 
    444 	/* A = A + tmp1; */
    445 	status = sljit_emit_op2(compiler,
    446 	    SLJIT_ADD,
    447 	    BJ_AREG, 0,
    448 	    BJ_AREG, 0,
    449 	    BJ_TMP1REG, 0);
    450 	if (status != SLJIT_SUCCESS)
    451 		return status;
    452 
    453 	/* tmp1 = buf[k+2]; */
    454 	status = sljit_emit_op1(compiler,
    455 	    SLJIT_MOV_UB,
    456 	    BJ_TMP1REG, 0,
    457 	    SLJIT_MEM1(BJ_BUF), k+2);
    458 	if (status != SLJIT_SUCCESS)
    459 		return status;
    460 
    461 	/* tmp2 = tmp2 << 16; */
    462 	status = sljit_emit_op2(compiler,
    463 	    SLJIT_SHL,
    464 	    BJ_TMP2REG, 0,
    465 	    BJ_TMP2REG, 0,
    466 	    SLJIT_IMM, 16);
    467 	if (status != SLJIT_SUCCESS)
    468 		return status;
    469 
    470 	/* A = A + tmp2; */
    471 	status = sljit_emit_op2(compiler,
    472 	    SLJIT_ADD,
    473 	    BJ_AREG, 0,
    474 	    BJ_AREG, 0,
    475 	    BJ_TMP2REG, 0);
    476 	if (status != SLJIT_SUCCESS)
    477 		return status;
    478 
    479 	/* tmp1 = tmp1 << 8; */
    480 	status = sljit_emit_op2(compiler,
    481 	    SLJIT_SHL,
    482 	    BJ_TMP1REG, 0,
    483 	    BJ_TMP1REG, 0,
    484 	    SLJIT_IMM, 8);
    485 	if (status != SLJIT_SUCCESS)
    486 		return status;
    487 
    488 	/* A = A + tmp1; */
    489 	status = sljit_emit_op2(compiler,
    490 	    SLJIT_ADD,
    491 	    BJ_AREG, 0,
    492 	    BJ_AREG, 0,
    493 	    BJ_TMP1REG, 0);
    494 	return status;
    495 }
    496 
    497 #ifdef _KERNEL
    498 /*
    499  * Generate m_xword/m_xhalf/m_xbyte call.
    500  *
    501  * pc is one of:
    502  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    503  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    504  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    505  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    506  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    507  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    508  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    509  *
    510  * The dst variable should be
    511  *  - BJ_AREG when emitting code for BPF_LD instructions,
    512  *  - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
    513  *    code for BPF_MSH instruction.
    514  */
    515 static int
    516 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
    517     int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
    518     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    519 {
    520 #if BJ_XREG == SLJIT_RETURN_REG   || \
    521     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    522     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    523     BJ_XREG == SLJIT_SCRATCH_REG3
    524 #error "Not supported assignment of registers."
    525 #endif
    526 	int status;
    527 
    528 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    529 		/* save A */
    530 		status = sljit_emit_op1(compiler,
    531 		    SLJIT_MOV,
    532 		    BJ_TMP3REG, 0,
    533 		    BJ_AREG, 0);
    534 		if (status != SLJIT_SUCCESS)
    535 			return status;
    536 	}
    537 
    538 	/*
    539 	 * Prepare registers for fn(buf, k, &err) call.
    540 	 */
    541 	status = sljit_emit_op1(compiler,
    542 	    SLJIT_MOV,
    543 	    SLJIT_SCRATCH_REG1, 0,
    544 	    BJ_BUF, 0);
    545 	if (status != SLJIT_SUCCESS)
    546 		return status;
    547 
    548 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    549 		status = sljit_emit_op2(compiler,
    550 		    SLJIT_ADD,
    551 		    SLJIT_SCRATCH_REG2, 0,
    552 		    BJ_XREG, 0,
    553 		    SLJIT_IMM, (uint32_t)pc->k);
    554 	} else {
    555 		status = sljit_emit_op1(compiler,
    556 		    SLJIT_MOV,
    557 		    SLJIT_SCRATCH_REG2, 0,
    558 		    SLJIT_IMM, (uint32_t)pc->k);
    559 	}
    560 
    561 	if (status != SLJIT_SUCCESS)
    562 		return status;
    563 
    564 	/*
    565 	 * The third argument of fn is an address on stack.
    566 	 */
    567 	status = sljit_get_local_base(compiler,
    568 	    SLJIT_SCRATCH_REG3, 0,
    569 	    offsetof(struct bpfjit_stack, err));
    570 	if (status != SLJIT_SUCCESS)
    571 		return status;
    572 
    573 	/* fn(buf, k, &err); */
    574 	status = sljit_emit_ijump(compiler,
    575 	    SLJIT_CALL3,
    576 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    577 
    578 	if (dst != SLJIT_RETURN_REG) {
    579 		/* move return value to dst */
    580 		status = sljit_emit_op1(compiler,
    581 		    SLJIT_MOV,
    582 		    dst, dstw,
    583 		    SLJIT_RETURN_REG, 0);
    584 		if (status != SLJIT_SUCCESS)
    585 			return status;
    586 	}
    587 
    588 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    589 		/* restore A */
    590 		status = sljit_emit_op1(compiler,
    591 		    SLJIT_MOV,
    592 		    BJ_AREG, 0,
    593 		    BJ_TMP3REG, 0);
    594 		if (status != SLJIT_SUCCESS)
    595 			return status;
    596 	}
    597 
    598 	/* tmp3 = *err; */
    599 	status = sljit_emit_op1(compiler,
    600 	    SLJIT_MOV_UI,
    601 	    SLJIT_SCRATCH_REG3, 0,
    602 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    603 	    offsetof(struct bpfjit_stack, err));
    604 	if (status != SLJIT_SUCCESS)
    605 		return status;
    606 
    607 	/* if (tmp3 != 0) return 0; */
    608 	*ret0_jump = sljit_emit_cmp(compiler,
    609 	    SLJIT_C_NOT_EQUAL,
    610 	    SLJIT_SCRATCH_REG3, 0,
    611 	    SLJIT_IMM, 0);
    612 	if (*ret0_jump == NULL)
    613 		return SLJIT_ERR_ALLOC_FAILED;
    614 
    615 	return status;
    616 }
    617 #endif
    618 
    619 /*
    620  * Emit code for BPF_COP and BPF_COPX instructions.
    621  */
    622 static int
    623 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
    624     const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
    625 {
    626 #if BJ_XREG == SLJIT_RETURN_REG   || \
    627     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    628     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    629     BJ_XREG == SLJIT_SCRATCH_REG3 || \
    630     BJ_COPF_PTR == BJ_ARGS        || \
    631     BJ_COPF_IDX	== BJ_ARGS
    632 #error "Not supported assignment of registers."
    633 #endif
    634 
    635 	struct sljit_jump *jump;
    636 	int status;
    637 
    638 	jump = NULL;
    639 
    640 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    641 
    642 	if (BPF_MISCOP(pc->code) == BPF_COPX) {
    643 		/* if (X >= bc->nfuncs) return 0; */
    644 		jump = sljit_emit_cmp(compiler,
    645 		    SLJIT_C_GREATER_EQUAL,
    646 		    BJ_XREG, 0,
    647 		    SLJIT_IMM, bc->nfuncs);
    648 		if (jump == NULL)
    649 			return SLJIT_ERR_ALLOC_FAILED;
    650 	}
    651 
    652 	if (jump != NULL)
    653 		*ret0_jump = jump;
    654 
    655 	/*
    656 	 * Copy bpf_copfunc_t arguments to registers.
    657 	 */
    658 #if BJ_AREG != SLJIT_SCRATCH_REG3
    659 	status = sljit_emit_op1(compiler,
    660 	    SLJIT_MOV_UI,
    661 	    SLJIT_SCRATCH_REG3, 0,
    662 	    BJ_AREG, 0);
    663 	if (status != SLJIT_SUCCESS)
    664 		return status;
    665 #endif
    666 
    667 	status = sljit_emit_op1(compiler,
    668 	    SLJIT_MOV_P,
    669 	    SLJIT_SCRATCH_REG1, 0,
    670 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    671 	    offsetof(struct bpfjit_stack, ctx));
    672 	if (status != SLJIT_SUCCESS)
    673 		return status;
    674 
    675 	status = sljit_emit_op1(compiler,
    676 	    SLJIT_MOV_P,
    677 	    SLJIT_SCRATCH_REG2, 0,
    678 	    BJ_ARGS, 0);
    679 	if (status != SLJIT_SUCCESS)
    680 		return status;
    681 
    682 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    683 		status = sljit_emit_ijump(compiler,
    684 		    SLJIT_CALL3,
    685 		    SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
    686 		if (status != SLJIT_SUCCESS)
    687 			return status;
    688 	} else if (BPF_MISCOP(pc->code) == BPF_COPX) {
    689 		/* load ctx->copfuncs */
    690 		status = sljit_emit_op1(compiler,
    691 		    SLJIT_MOV_P,
    692 		    BJ_COPF_PTR, 0,
    693 		    SLJIT_MEM1(SLJIT_SCRATCH_REG1),
    694 		    offsetof(struct bpf_ctx, copfuncs));
    695 		if (status != SLJIT_SUCCESS)
    696 			return status;
    697 
    698 		/*
    699 		 * Load X to a register that can be used for
    700 		 * memory addressing.
    701 		 */
    702 		status = sljit_emit_op1(compiler,
    703 		    SLJIT_MOV,
    704 		    BJ_COPF_IDX, 0,
    705 		    BJ_XREG, 0);
    706 		if (status != SLJIT_SUCCESS)
    707 			return status;
    708 
    709 		status = sljit_emit_ijump(compiler,
    710 		    SLJIT_CALL3,
    711 		    SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
    712 		    SLJIT_WORD_SHIFT);
    713 		if (status != SLJIT_SUCCESS)
    714 			return status;
    715 
    716 		status = load_buf_buflen(compiler);
    717 		if (status != SLJIT_SUCCESS)
    718 			return status;
    719 	}
    720 
    721 #if BJ_AREG != SLJIT_RETURN_REG
    722 	status = sljit_emit_op1(compiler,
    723 	    SLJIT_MOV,
    724 	    BJ_AREG, 0,
    725 	    SLJIT_RETURN_REG, 0);
    726 	if (status != SLJIT_SUCCESS)
    727 		return status;
    728 #endif
    729 
    730 	return status;
    731 }
    732 
    733 /*
    734  * Generate code for
    735  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    736  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    737  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    738  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    739  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    740  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    741  */
    742 static int
    743 emit_pkt_read(struct sljit_compiler *compiler,
    744     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    745     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    746 {
    747 	int status = 0; /* XXX gcc 4.1 */
    748 	uint32_t width;
    749 	struct sljit_jump *jump;
    750 #ifdef _KERNEL
    751 	struct sljit_label *label;
    752 	struct sljit_jump *over_mchain_jump;
    753 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    754 #endif
    755 	const uint32_t k = pc->k;
    756 
    757 #ifdef _KERNEL
    758 	if (to_mchain_jump == NULL) {
    759 		to_mchain_jump = sljit_emit_cmp(compiler,
    760 		    SLJIT_C_EQUAL,
    761 		    BJ_BUFLEN, 0,
    762 		    SLJIT_IMM, 0);
    763 		if (to_mchain_jump == NULL)
    764 			return SLJIT_ERR_ALLOC_FAILED;
    765 	}
    766 #endif
    767 
    768 	width = read_width(pc);
    769 
    770 	if (BPF_MODE(pc->code) == BPF_IND) {
    771 		/* tmp1 = buflen - (pc->k + width); */
    772 		status = sljit_emit_op2(compiler,
    773 		    SLJIT_SUB,
    774 		    BJ_TMP1REG, 0,
    775 		    BJ_BUFLEN, 0,
    776 		    SLJIT_IMM, k + width);
    777 		if (status != SLJIT_SUCCESS)
    778 			return status;
    779 
    780 		/* buf += X; */
    781 		status = sljit_emit_op2(compiler,
    782 		    SLJIT_ADD,
    783 		    BJ_BUF, 0,
    784 		    BJ_BUF, 0,
    785 		    BJ_XREG, 0);
    786 		if (status != SLJIT_SUCCESS)
    787 			return status;
    788 
    789 		/* if (tmp1 < X) return 0; */
    790 		jump = sljit_emit_cmp(compiler,
    791 		    SLJIT_C_LESS,
    792 		    BJ_TMP1REG, 0,
    793 		    BJ_XREG, 0);
    794 		if (jump == NULL)
    795 			return SLJIT_ERR_ALLOC_FAILED;
    796 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    797 			return SLJIT_ERR_ALLOC_FAILED;
    798 	}
    799 
    800 	switch (width) {
    801 	case 4:
    802 		status = emit_read32(compiler, k);
    803 		break;
    804 	case 2:
    805 		status = emit_read16(compiler, k);
    806 		break;
    807 	case 1:
    808 		status = emit_read8(compiler, k);
    809 		break;
    810 	}
    811 
    812 	if (status != SLJIT_SUCCESS)
    813 		return status;
    814 
    815 	if (BPF_MODE(pc->code) == BPF_IND) {
    816 		/* buf -= X; */
    817 		status = sljit_emit_op2(compiler,
    818 		    SLJIT_SUB,
    819 		    BJ_BUF, 0,
    820 		    BJ_BUF, 0,
    821 		    BJ_XREG, 0);
    822 		if (status != SLJIT_SUCCESS)
    823 			return status;
    824 	}
    825 
    826 #ifdef _KERNEL
    827 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    828 	if (over_mchain_jump == NULL)
    829 		return SLJIT_ERR_ALLOC_FAILED;
    830 
    831 	/* entry point to mchain handler */
    832 	label = sljit_emit_label(compiler);
    833 	if (label == NULL)
    834 		return SLJIT_ERR_ALLOC_FAILED;
    835 	sljit_set_label(to_mchain_jump, label);
    836 
    837 	if (check_zero_buflen) {
    838 		/* if (buflen != 0) return 0; */
    839 		jump = sljit_emit_cmp(compiler,
    840 		    SLJIT_C_NOT_EQUAL,
    841 		    BJ_BUFLEN, 0,
    842 		    SLJIT_IMM, 0);
    843 		if (jump == NULL)
    844 			return SLJIT_ERR_ALLOC_FAILED;
    845 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    846 			return SLJIT_ERR_ALLOC_FAILED;
    847 	}
    848 
    849 	switch (width) {
    850 	case 4:
    851 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
    852 		break;
    853 	case 2:
    854 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
    855 		break;
    856 	case 1:
    857 		status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
    858 		break;
    859 	}
    860 
    861 	if (status != SLJIT_SUCCESS)
    862 		return status;
    863 
    864 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    865 		return SLJIT_ERR_ALLOC_FAILED;
    866 
    867 	label = sljit_emit_label(compiler);
    868 	if (label == NULL)
    869 		return SLJIT_ERR_ALLOC_FAILED;
    870 	sljit_set_label(over_mchain_jump, label);
    871 #endif
    872 
    873 	return status;
    874 }
    875 
    876 static int
    877 emit_memload(struct sljit_compiler *compiler,
    878     sljit_si dst, uint32_t k, size_t extwords)
    879 {
    880 	int status;
    881 	sljit_si src;
    882 	sljit_sw srcw;
    883 
    884 	srcw = k * sizeof(uint32_t);
    885 
    886 	if (extwords == 0) {
    887 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    888 		srcw += offsetof(struct bpfjit_stack, mem);
    889 	} else {
    890 		/* copy extmem pointer to the tmp1 register */
    891 		status = sljit_emit_op1(compiler,
    892 		    SLJIT_MOV_P,
    893 		    BJ_TMP1REG, 0,
    894 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    895 		    offsetof(struct bpfjit_stack, extmem));
    896 		if (status != SLJIT_SUCCESS)
    897 			return status;
    898 		src = SLJIT_MEM1(BJ_TMP1REG);
    899 	}
    900 
    901 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    902 }
    903 
    904 static int
    905 emit_memstore(struct sljit_compiler *compiler,
    906     sljit_si src, uint32_t k, size_t extwords)
    907 {
    908 	int status;
    909 	sljit_si dst;
    910 	sljit_sw dstw;
    911 
    912 	dstw = k * sizeof(uint32_t);
    913 
    914 	if (extwords == 0) {
    915 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    916 		dstw += offsetof(struct bpfjit_stack, mem);
    917 	} else {
    918 		/* copy extmem pointer to the tmp1 register */
    919 		status = sljit_emit_op1(compiler,
    920 		    SLJIT_MOV_P,
    921 		    BJ_TMP1REG, 0,
    922 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    923 		    offsetof(struct bpfjit_stack, extmem));
    924 		if (status != SLJIT_SUCCESS)
    925 			return status;
    926 		dst = SLJIT_MEM1(BJ_TMP1REG);
    927 	}
    928 
    929 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    930 }
    931 
    932 /*
    933  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    934  */
    935 static int
    936 emit_msh(struct sljit_compiler *compiler,
    937     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    938     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    939 {
    940 	int status;
    941 #ifdef _KERNEL
    942 	struct sljit_label *label;
    943 	struct sljit_jump *jump, *over_mchain_jump;
    944 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    945 #endif
    946 	const uint32_t k = pc->k;
    947 
    948 #ifdef _KERNEL
    949 	if (to_mchain_jump == NULL) {
    950 		to_mchain_jump = sljit_emit_cmp(compiler,
    951 		    SLJIT_C_EQUAL,
    952 		    BJ_BUFLEN, 0,
    953 		    SLJIT_IMM, 0);
    954 		if (to_mchain_jump == NULL)
    955 			return SLJIT_ERR_ALLOC_FAILED;
    956 	}
    957 #endif
    958 
    959 	/* tmp1 = buf[k] */
    960 	status = sljit_emit_op1(compiler,
    961 	    SLJIT_MOV_UB,
    962 	    BJ_TMP1REG, 0,
    963 	    SLJIT_MEM1(BJ_BUF), k);
    964 	if (status != SLJIT_SUCCESS)
    965 		return status;
    966 
    967 	/* tmp1 &= 0xf */
    968 	status = sljit_emit_op2(compiler,
    969 	    SLJIT_AND,
    970 	    BJ_TMP1REG, 0,
    971 	    BJ_TMP1REG, 0,
    972 	    SLJIT_IMM, 0xf);
    973 	if (status != SLJIT_SUCCESS)
    974 		return status;
    975 
    976 	/* tmp1 = tmp1 << 2 */
    977 	status = sljit_emit_op2(compiler,
    978 	    SLJIT_SHL,
    979 	    BJ_XREG, 0,
    980 	    BJ_TMP1REG, 0,
    981 	    SLJIT_IMM, 2);
    982 	if (status != SLJIT_SUCCESS)
    983 		return status;
    984 
    985 #ifdef _KERNEL
    986 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    987 	if (over_mchain_jump == NULL)
    988 		return SLJIT_ERR_ALLOC_FAILED;
    989 
    990 	/* entry point to mchain handler */
    991 	label = sljit_emit_label(compiler);
    992 	if (label == NULL)
    993 		return SLJIT_ERR_ALLOC_FAILED;
    994 	sljit_set_label(to_mchain_jump, label);
    995 
    996 	if (check_zero_buflen) {
    997 		/* if (buflen != 0) return 0; */
    998 		jump = sljit_emit_cmp(compiler,
    999 		    SLJIT_C_NOT_EQUAL,
   1000 		    BJ_BUFLEN, 0,
   1001 		    SLJIT_IMM, 0);
   1002 		if (jump == NULL)
   1003 			return SLJIT_ERR_ALLOC_FAILED;
   1004 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1005 			return SLJIT_ERR_ALLOC_FAILED;
   1006 	}
   1007 
   1008 	status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
   1009 	if (status != SLJIT_SUCCESS)
   1010 		return status;
   1011 
   1012 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1013 		return SLJIT_ERR_ALLOC_FAILED;
   1014 
   1015 	/* tmp1 &= 0xf */
   1016 	status = sljit_emit_op2(compiler,
   1017 	    SLJIT_AND,
   1018 	    BJ_TMP1REG, 0,
   1019 	    BJ_TMP1REG, 0,
   1020 	    SLJIT_IMM, 0xf);
   1021 	if (status != SLJIT_SUCCESS)
   1022 		return status;
   1023 
   1024 	/* tmp1 = tmp1 << 2 */
   1025 	status = sljit_emit_op2(compiler,
   1026 	    SLJIT_SHL,
   1027 	    BJ_XREG, 0,
   1028 	    BJ_TMP1REG, 0,
   1029 	    SLJIT_IMM, 2);
   1030 	if (status != SLJIT_SUCCESS)
   1031 		return status;
   1032 
   1033 
   1034 	label = sljit_emit_label(compiler);
   1035 	if (label == NULL)
   1036 		return SLJIT_ERR_ALLOC_FAILED;
   1037 	sljit_set_label(over_mchain_jump, label);
   1038 #endif
   1039 
   1040 	return status;
   1041 }
   1042 
   1043 static int
   1044 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1045 {
   1046 	int shift = 0;
   1047 	int status = SLJIT_SUCCESS;
   1048 
   1049 	while (k > 1) {
   1050 		k >>= 1;
   1051 		shift++;
   1052 	}
   1053 
   1054 	BJ_ASSERT(k == 1 && shift < 32);
   1055 
   1056 	if (shift != 0) {
   1057 		status = sljit_emit_op2(compiler,
   1058 		    SLJIT_LSHR|SLJIT_INT_OP,
   1059 		    BJ_AREG, 0,
   1060 		    BJ_AREG, 0,
   1061 		    SLJIT_IMM, shift);
   1062 	}
   1063 
   1064 	return status;
   1065 }
   1066 
   1067 #if !defined(BPFJIT_USE_UDIV)
   1068 static sljit_uw
   1069 divide(sljit_uw x, sljit_uw y)
   1070 {
   1071 
   1072 	return (uint32_t)x / (uint32_t)y;
   1073 }
   1074 #endif
   1075 
   1076 /*
   1077  * Generate A = A / div.
   1078  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1079  */
   1080 static int
   1081 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1082 {
   1083 	int status;
   1084 
   1085 #if BJ_XREG == SLJIT_RETURN_REG   || \
   1086     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1087     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1088     BJ_AREG == SLJIT_SCRATCH_REG2
   1089 #error "Not supported assignment of registers."
   1090 #endif
   1091 
   1092 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1093 	status = sljit_emit_op1(compiler,
   1094 	    SLJIT_MOV,
   1095 	    SLJIT_SCRATCH_REG1, 0,
   1096 	    BJ_AREG, 0);
   1097 	if (status != SLJIT_SUCCESS)
   1098 		return status;
   1099 #endif
   1100 
   1101 	status = sljit_emit_op1(compiler,
   1102 	    SLJIT_MOV,
   1103 	    SLJIT_SCRATCH_REG2, 0,
   1104 	    divt, divw);
   1105 	if (status != SLJIT_SUCCESS)
   1106 		return status;
   1107 
   1108 #if defined(BPFJIT_USE_UDIV)
   1109 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1110 
   1111 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1112 	status = sljit_emit_op1(compiler,
   1113 	    SLJIT_MOV,
   1114 	    BJ_AREG, 0,
   1115 	    SLJIT_SCRATCH_REG1, 0);
   1116 	if (status != SLJIT_SUCCESS)
   1117 		return status;
   1118 #endif
   1119 #else
   1120 	status = sljit_emit_ijump(compiler,
   1121 	    SLJIT_CALL2,
   1122 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1123 
   1124 #if BJ_AREG != SLJIT_RETURN_REG
   1125 	status = sljit_emit_op1(compiler,
   1126 	    SLJIT_MOV,
   1127 	    BJ_AREG, 0,
   1128 	    SLJIT_RETURN_REG, 0);
   1129 	if (status != SLJIT_SUCCESS)
   1130 		return status;
   1131 #endif
   1132 #endif
   1133 
   1134 	return status;
   1135 }
   1136 
   1137 /*
   1138  * Return true if pc is a "read from packet" instruction.
   1139  * If length is not NULL and return value is true, *length will
   1140  * be set to a safe length required to read a packet.
   1141  */
   1142 static bool
   1143 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1144 {
   1145 	bool rv;
   1146 	bpfjit_abc_length_t width;
   1147 
   1148 	switch (BPF_CLASS(pc->code)) {
   1149 	default:
   1150 		rv = false;
   1151 		break;
   1152 
   1153 	case BPF_LD:
   1154 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1155 		     BPF_MODE(pc->code) == BPF_IND;
   1156 		if (rv)
   1157 			width = read_width(pc);
   1158 		break;
   1159 
   1160 	case BPF_LDX:
   1161 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1162 		width = 1;
   1163 		break;
   1164 	}
   1165 
   1166 	if (rv && length != NULL) {
   1167 		/*
   1168 		 * Values greater than UINT32_MAX will generate
   1169 		 * unconditional "return 0".
   1170 		 */
   1171 		*length = (uint32_t)pc->k + width;
   1172 	}
   1173 
   1174 	return rv;
   1175 }
   1176 
   1177 static void
   1178 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1179 {
   1180 	size_t i;
   1181 
   1182 	for (i = 0; i < insn_count; i++) {
   1183 		SLIST_INIT(&insn_dat[i].bjumps);
   1184 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1185 	}
   1186 }
   1187 
   1188 /*
   1189  * The function divides instructions into blocks. Destination of a jump
   1190  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1191  * terminate a block. Blocks are linear, that is, there are no jumps out
   1192  * from the middle of a block and there are no jumps in to the middle of
   1193  * a block.
   1194  *
   1195  * The function also sets bits in *initmask for memwords that
   1196  * need to be initialized to zero. Note that this set should be empty
   1197  * for any valid kernel filter program.
   1198  */
   1199 static bool
   1200 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1201     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1202     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1203 {
   1204 	struct bpfjit_jump *jtf;
   1205 	size_t i;
   1206 	uint32_t jt, jf;
   1207 	bpfjit_abc_length_t length;
   1208 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1209 	bool unreachable;
   1210 
   1211 	const size_t memwords = GET_MEMWORDS(bc);
   1212 
   1213 	*hints = 0;
   1214 	*initmask = BJ_INIT_NOBITS;
   1215 
   1216 	unreachable = false;
   1217 	invalid = ~BJ_INIT_NOBITS;
   1218 
   1219 	for (i = 0; i < insn_count; i++) {
   1220 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1221 			unreachable = false;
   1222 		insn_dat[i].unreachable = unreachable;
   1223 
   1224 		if (unreachable)
   1225 			continue;
   1226 
   1227 		invalid |= insn_dat[i].invalid;
   1228 
   1229 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1230 			unreachable = true;
   1231 
   1232 		switch (BPF_CLASS(insns[i].code)) {
   1233 		case BPF_RET:
   1234 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1235 				*initmask |= invalid & BJ_INIT_ABIT;
   1236 
   1237 			unreachable = true;
   1238 			continue;
   1239 
   1240 		case BPF_LD:
   1241 			if ((BPF_MODE(insns[i].code) == BPF_IND ||
   1242 			    BPF_MODE(insns[i].code) == BPF_ABS) &&
   1243 			    read_width(&insns[i]) == 4) {
   1244 				*hints |= BJ_HINT_LDW;
   1245 			}
   1246 
   1247 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1248 				*hints |= BJ_HINT_XREG | BJ_HINT_IND;
   1249 				*initmask |= invalid & BJ_INIT_XBIT;
   1250 			}
   1251 
   1252 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1253 			    (uint32_t)insns[i].k < memwords) {
   1254 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1255 			}
   1256 
   1257 			invalid &= ~BJ_INIT_ABIT;
   1258 			continue;
   1259 
   1260 		case BPF_LDX:
   1261 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1262 
   1263 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1264 			    (uint32_t)insns[i].k < memwords) {
   1265 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1266 			}
   1267 
   1268 			invalid &= ~BJ_INIT_XBIT;
   1269 			continue;
   1270 
   1271 		case BPF_ST:
   1272 			*initmask |= invalid & BJ_INIT_ABIT;
   1273 
   1274 			if ((uint32_t)insns[i].k < memwords)
   1275 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1276 
   1277 			continue;
   1278 
   1279 		case BPF_STX:
   1280 			*hints |= BJ_HINT_XREG;
   1281 			*initmask |= invalid & BJ_INIT_XBIT;
   1282 
   1283 			if ((uint32_t)insns[i].k < memwords)
   1284 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1285 
   1286 			continue;
   1287 
   1288 		case BPF_ALU:
   1289 			*initmask |= invalid & BJ_INIT_ABIT;
   1290 
   1291 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1292 			    BPF_SRC(insns[i].code) == BPF_X) {
   1293 				*hints |= BJ_HINT_XREG;
   1294 				*initmask |= invalid & BJ_INIT_XBIT;
   1295 			}
   1296 
   1297 			invalid &= ~BJ_INIT_ABIT;
   1298 			continue;
   1299 
   1300 		case BPF_MISC:
   1301 			switch (BPF_MISCOP(insns[i].code)) {
   1302 			case BPF_TAX: // X <- A
   1303 				*hints |= BJ_HINT_XREG;
   1304 				*initmask |= invalid & BJ_INIT_ABIT;
   1305 				invalid &= ~BJ_INIT_XBIT;
   1306 				continue;
   1307 
   1308 			case BPF_TXA: // A <- X
   1309 				*hints |= BJ_HINT_XREG;
   1310 				*initmask |= invalid & BJ_INIT_XBIT;
   1311 				invalid &= ~BJ_INIT_ABIT;
   1312 				continue;
   1313 
   1314 			case BPF_COPX:
   1315 				*hints |= BJ_HINT_XREG;
   1316 				/* FALLTHROUGH */
   1317 
   1318 			case BPF_COP:
   1319 				*hints |= BJ_HINT_COP;
   1320 				*initmask |= invalid & BJ_INIT_ABIT;
   1321 				invalid &= ~BJ_INIT_ABIT;
   1322 				continue;
   1323 			}
   1324 
   1325 			continue;
   1326 
   1327 		case BPF_JMP:
   1328 			/* Initialize abc_length for ABC pass. */
   1329 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1330 
   1331 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1332 				jt = jf = insns[i].k;
   1333 			} else {
   1334 				jt = insns[i].jt;
   1335 				jf = insns[i].jf;
   1336 			}
   1337 
   1338 			if (jt >= insn_count - (i + 1) ||
   1339 			    jf >= insn_count - (i + 1)) {
   1340 				return false;
   1341 			}
   1342 
   1343 			if (jt > 0 && jf > 0)
   1344 				unreachable = true;
   1345 
   1346 			jt += i + 1;
   1347 			jf += i + 1;
   1348 
   1349 			jtf = insn_dat[i].u.jdata.jtf;
   1350 
   1351 			jtf[0].sjump = NULL;
   1352 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1353 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1354 			    &jtf[0], entries);
   1355 
   1356 			if (jf != jt) {
   1357 				jtf[1].sjump = NULL;
   1358 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1359 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1360 				    &jtf[1], entries);
   1361 			}
   1362 
   1363 			insn_dat[jf].invalid |= invalid;
   1364 			insn_dat[jt].invalid |= invalid;
   1365 			invalid = 0;
   1366 
   1367 			continue;
   1368 		}
   1369 	}
   1370 
   1371 	return true;
   1372 }
   1373 
   1374 /*
   1375  * Array Bounds Check Elimination (ABC) pass.
   1376  */
   1377 static void
   1378 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1379     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1380 {
   1381 	struct bpfjit_jump *jmp;
   1382 	const struct bpf_insn *pc;
   1383 	struct bpfjit_insn_data *pd;
   1384 	size_t i;
   1385 	bpfjit_abc_length_t length, abc_length = 0;
   1386 
   1387 	const size_t extwords = GET_EXTWORDS(bc);
   1388 
   1389 	for (i = insn_count; i != 0; i--) {
   1390 		pc = &insns[i-1];
   1391 		pd = &insn_dat[i-1];
   1392 
   1393 		if (pd->unreachable)
   1394 			continue;
   1395 
   1396 		switch (BPF_CLASS(pc->code)) {
   1397 		case BPF_RET:
   1398 			/*
   1399 			 * It's quite common for bpf programs to
   1400 			 * check packet bytes in increasing order
   1401 			 * and return zero if bytes don't match
   1402 			 * specified critetion. Such programs disable
   1403 			 * ABC optimization completely because for
   1404 			 * every jump there is a branch with no read
   1405 			 * instruction.
   1406 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1407 			 * is indistinguishable from out-of-bound load.
   1408 			 * Therefore, abc_length can be set to
   1409 			 * MAX_ABC_LENGTH and enable ABC for many
   1410 			 * bpf programs.
   1411 			 * If this optimization encounters any
   1412 			 * instruction with a side effect, it will
   1413 			 * reset abc_length.
   1414 			 */
   1415 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1416 				abc_length = MAX_ABC_LENGTH;
   1417 			else
   1418 				abc_length = 0;
   1419 			break;
   1420 
   1421 		case BPF_MISC:
   1422 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1423 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1424 				/* COP instructions can have side effects. */
   1425 				abc_length = 0;
   1426 			}
   1427 			break;
   1428 
   1429 		case BPF_ST:
   1430 		case BPF_STX:
   1431 			if (extwords != 0) {
   1432 				/* Write to memory is visible after a call. */
   1433 				abc_length = 0;
   1434 			}
   1435 			break;
   1436 
   1437 		case BPF_JMP:
   1438 			abc_length = pd->u.jdata.abc_length;
   1439 			break;
   1440 
   1441 		default:
   1442 			if (read_pkt_insn(pc, &length)) {
   1443 				if (abc_length < length)
   1444 					abc_length = length;
   1445 				pd->u.rdata.abc_length = abc_length;
   1446 			}
   1447 			break;
   1448 		}
   1449 
   1450 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1451 			if (jmp->jdata->abc_length > abc_length)
   1452 				jmp->jdata->abc_length = abc_length;
   1453 		}
   1454 	}
   1455 }
   1456 
   1457 static void
   1458 optimize_pass3(const struct bpf_insn *insns,
   1459     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1460 {
   1461 	struct bpfjit_jump *jmp;
   1462 	size_t i;
   1463 	bpfjit_abc_length_t checked_length = 0;
   1464 
   1465 	for (i = 0; i < insn_count; i++) {
   1466 		if (insn_dat[i].unreachable)
   1467 			continue;
   1468 
   1469 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1470 			if (jmp->jdata->checked_length < checked_length)
   1471 				checked_length = jmp->jdata->checked_length;
   1472 		}
   1473 
   1474 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1475 			insn_dat[i].u.jdata.checked_length = checked_length;
   1476 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1477 			struct bpfjit_read_pkt_data *rdata =
   1478 			    &insn_dat[i].u.rdata;
   1479 			rdata->check_length = 0;
   1480 			if (checked_length < rdata->abc_length) {
   1481 				checked_length = rdata->abc_length;
   1482 				rdata->check_length = checked_length;
   1483 			}
   1484 		}
   1485 	}
   1486 }
   1487 
   1488 static bool
   1489 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1490     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1491     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1492 {
   1493 
   1494 	optimize_init(insn_dat, insn_count);
   1495 
   1496 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1497 		return false;
   1498 
   1499 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1500 	optimize_pass3(insns, insn_dat, insn_count);
   1501 
   1502 	return true;
   1503 }
   1504 
   1505 /*
   1506  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1507  */
   1508 static int
   1509 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1510 {
   1511 
   1512 	/*
   1513 	 * Note: all supported 64bit arches have 32bit multiply
   1514 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1515 	 */
   1516 	switch (BPF_OP(pc->code)) {
   1517 	case BPF_ADD: return SLJIT_ADD;
   1518 	case BPF_SUB: return SLJIT_SUB;
   1519 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1520 	case BPF_OR:  return SLJIT_OR;
   1521 	case BPF_AND: return SLJIT_AND;
   1522 	case BPF_LSH: return SLJIT_SHL;
   1523 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1524 	default:
   1525 		BJ_ASSERT(false);
   1526 		return 0;
   1527 	}
   1528 }
   1529 
   1530 /*
   1531  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1532  */
   1533 static int
   1534 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1535 {
   1536 	/*
   1537 	 * Note: all supported 64bit arches have 32bit comparison
   1538 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1539 	 */
   1540 	int rv = SLJIT_INT_OP;
   1541 
   1542 	switch (BPF_OP(pc->code)) {
   1543 	case BPF_JGT:
   1544 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1545 		break;
   1546 	case BPF_JGE:
   1547 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1548 		break;
   1549 	case BPF_JEQ:
   1550 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1551 		break;
   1552 	case BPF_JSET:
   1553 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1554 		break;
   1555 	default:
   1556 		BJ_ASSERT(false);
   1557 	}
   1558 
   1559 	return rv;
   1560 }
   1561 
   1562 /*
   1563  * Convert BPF_K and BPF_X to sljit register.
   1564  */
   1565 static int
   1566 kx_to_reg(const struct bpf_insn *pc)
   1567 {
   1568 
   1569 	switch (BPF_SRC(pc->code)) {
   1570 	case BPF_K: return SLJIT_IMM;
   1571 	case BPF_X: return BJ_XREG;
   1572 	default:
   1573 		BJ_ASSERT(false);
   1574 		return 0;
   1575 	}
   1576 }
   1577 
   1578 static sljit_sw
   1579 kx_to_reg_arg(const struct bpf_insn *pc)
   1580 {
   1581 
   1582 	switch (BPF_SRC(pc->code)) {
   1583 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1584 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1585 	default:
   1586 		BJ_ASSERT(false);
   1587 		return 0;
   1588 	}
   1589 }
   1590 
   1591 static bool
   1592 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
   1593     const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
   1594     size_t insn_count)
   1595 {
   1596 	/* a list of jumps to out-of-bound return from a generated function */
   1597 	struct sljit_jump **ret0;
   1598 	size_t ret0_size, ret0_maxsize;
   1599 
   1600 	struct sljit_jump *jump;
   1601 	struct sljit_label *label;
   1602 	const struct bpf_insn *pc;
   1603 	struct bpfjit_jump *bjump, *jtf;
   1604 	struct sljit_jump *to_mchain_jump;
   1605 
   1606 	size_t i;
   1607 	int status;
   1608 	int branching, negate;
   1609 	unsigned int rval, mode, src;
   1610 	uint32_t jt, jf;
   1611 
   1612 	bool unconditional_ret;
   1613 	bool rv;
   1614 
   1615 	const size_t extwords = GET_EXTWORDS(bc);
   1616 	const size_t memwords = GET_MEMWORDS(bc);
   1617 
   1618 	ret0 = NULL;
   1619 	rv = false;
   1620 
   1621 	ret0_size = 0;
   1622 	ret0_maxsize = 64;
   1623 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1624 	if (ret0 == NULL)
   1625 		goto fail;
   1626 
   1627 	for (i = 0; i < insn_count; i++) {
   1628 		if (insn_dat[i].unreachable)
   1629 			continue;
   1630 
   1631 		/*
   1632 		 * Resolve jumps to the current insn.
   1633 		 */
   1634 		label = NULL;
   1635 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1636 			if (bjump->sjump != NULL) {
   1637 				if (label == NULL)
   1638 					label = sljit_emit_label(compiler);
   1639 				if (label == NULL)
   1640 					goto fail;
   1641 				sljit_set_label(bjump->sjump, label);
   1642 			}
   1643 		}
   1644 
   1645 		to_mchain_jump = NULL;
   1646 		unconditional_ret = false;
   1647 
   1648 		if (read_pkt_insn(&insns[i], NULL)) {
   1649 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1650 				/* Jump to "return 0" unconditionally. */
   1651 				unconditional_ret = true;
   1652 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1653 				if (jump == NULL)
   1654 					goto fail;
   1655 				if (!append_jump(jump, &ret0,
   1656 				    &ret0_size, &ret0_maxsize))
   1657 					goto fail;
   1658 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1659 				/* if (buflen < check_length) return 0; */
   1660 				jump = sljit_emit_cmp(compiler,
   1661 				    SLJIT_C_LESS,
   1662 				    BJ_BUFLEN, 0,
   1663 				    SLJIT_IMM,
   1664 				    insn_dat[i].u.rdata.check_length);
   1665 				if (jump == NULL)
   1666 					goto fail;
   1667 #ifdef _KERNEL
   1668 				to_mchain_jump = jump;
   1669 #else
   1670 				if (!append_jump(jump, &ret0,
   1671 				    &ret0_size, &ret0_maxsize))
   1672 					goto fail;
   1673 #endif
   1674 			}
   1675 		}
   1676 
   1677 		pc = &insns[i];
   1678 		switch (BPF_CLASS(pc->code)) {
   1679 
   1680 		default:
   1681 			goto fail;
   1682 
   1683 		case BPF_LD:
   1684 			/* BPF_LD+BPF_IMM          A <- k */
   1685 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1686 				status = sljit_emit_op1(compiler,
   1687 				    SLJIT_MOV,
   1688 				    BJ_AREG, 0,
   1689 				    SLJIT_IMM, (uint32_t)pc->k);
   1690 				if (status != SLJIT_SUCCESS)
   1691 					goto fail;
   1692 
   1693 				continue;
   1694 			}
   1695 
   1696 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1697 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1698 				if ((uint32_t)pc->k >= memwords)
   1699 					goto fail;
   1700 				status = emit_memload(compiler,
   1701 				    BJ_AREG, pc->k, extwords);
   1702 				if (status != SLJIT_SUCCESS)
   1703 					goto fail;
   1704 
   1705 				continue;
   1706 			}
   1707 
   1708 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1709 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1710 				status = sljit_emit_op1(compiler,
   1711 				    SLJIT_MOV, /* size_t source */
   1712 				    BJ_AREG, 0,
   1713 				    SLJIT_MEM1(BJ_ARGS),
   1714 				    offsetof(struct bpf_args, wirelen));
   1715 				if (status != SLJIT_SUCCESS)
   1716 					goto fail;
   1717 
   1718 				continue;
   1719 			}
   1720 
   1721 			mode = BPF_MODE(pc->code);
   1722 			if (mode != BPF_ABS && mode != BPF_IND)
   1723 				goto fail;
   1724 
   1725 			if (unconditional_ret)
   1726 				continue;
   1727 
   1728 			status = emit_pkt_read(compiler, pc,
   1729 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1730 			if (status != SLJIT_SUCCESS)
   1731 				goto fail;
   1732 
   1733 			continue;
   1734 
   1735 		case BPF_LDX:
   1736 			mode = BPF_MODE(pc->code);
   1737 
   1738 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1739 			if (mode == BPF_IMM) {
   1740 				if (BPF_SIZE(pc->code) != BPF_W)
   1741 					goto fail;
   1742 				status = sljit_emit_op1(compiler,
   1743 				    SLJIT_MOV,
   1744 				    BJ_XREG, 0,
   1745 				    SLJIT_IMM, (uint32_t)pc->k);
   1746 				if (status != SLJIT_SUCCESS)
   1747 					goto fail;
   1748 
   1749 				continue;
   1750 			}
   1751 
   1752 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1753 			if (mode == BPF_LEN) {
   1754 				if (BPF_SIZE(pc->code) != BPF_W)
   1755 					goto fail;
   1756 				status = sljit_emit_op1(compiler,
   1757 				    SLJIT_MOV, /* size_t source */
   1758 				    BJ_XREG, 0,
   1759 				    SLJIT_MEM1(BJ_ARGS),
   1760 				    offsetof(struct bpf_args, wirelen));
   1761 				if (status != SLJIT_SUCCESS)
   1762 					goto fail;
   1763 
   1764 				continue;
   1765 			}
   1766 
   1767 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1768 			if (mode == BPF_MEM) {
   1769 				if (BPF_SIZE(pc->code) != BPF_W)
   1770 					goto fail;
   1771 				if ((uint32_t)pc->k >= memwords)
   1772 					goto fail;
   1773 				status = emit_memload(compiler,
   1774 				    BJ_XREG, pc->k, extwords);
   1775 				if (status != SLJIT_SUCCESS)
   1776 					goto fail;
   1777 
   1778 				continue;
   1779 			}
   1780 
   1781 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1782 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1783 				goto fail;
   1784 
   1785 			if (unconditional_ret)
   1786 				continue;
   1787 
   1788 			status = emit_msh(compiler, pc,
   1789 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1790 			if (status != SLJIT_SUCCESS)
   1791 				goto fail;
   1792 
   1793 			continue;
   1794 
   1795 		case BPF_ST:
   1796 			if (pc->code != BPF_ST ||
   1797 			    (uint32_t)pc->k >= memwords) {
   1798 				goto fail;
   1799 			}
   1800 
   1801 			status = emit_memstore(compiler,
   1802 			    BJ_AREG, pc->k, extwords);
   1803 			if (status != SLJIT_SUCCESS)
   1804 				goto fail;
   1805 
   1806 			continue;
   1807 
   1808 		case BPF_STX:
   1809 			if (pc->code != BPF_STX ||
   1810 			    (uint32_t)pc->k >= memwords) {
   1811 				goto fail;
   1812 			}
   1813 
   1814 			status = emit_memstore(compiler,
   1815 			    BJ_XREG, pc->k, extwords);
   1816 			if (status != SLJIT_SUCCESS)
   1817 				goto fail;
   1818 
   1819 			continue;
   1820 
   1821 		case BPF_ALU:
   1822 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1823 				status = sljit_emit_op1(compiler,
   1824 				    SLJIT_NEG,
   1825 				    BJ_AREG, 0,
   1826 				    BJ_AREG, 0);
   1827 				if (status != SLJIT_SUCCESS)
   1828 					goto fail;
   1829 
   1830 				continue;
   1831 			}
   1832 
   1833 			if (BPF_OP(pc->code) != BPF_DIV) {
   1834 				status = sljit_emit_op2(compiler,
   1835 				    bpf_alu_to_sljit_op(pc),
   1836 				    BJ_AREG, 0,
   1837 				    BJ_AREG, 0,
   1838 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1839 				if (status != SLJIT_SUCCESS)
   1840 					goto fail;
   1841 
   1842 				continue;
   1843 			}
   1844 
   1845 			/* BPF_DIV */
   1846 
   1847 			src = BPF_SRC(pc->code);
   1848 			if (src != BPF_X && src != BPF_K)
   1849 				goto fail;
   1850 
   1851 			/* division by zero? */
   1852 			if (src == BPF_X) {
   1853 				jump = sljit_emit_cmp(compiler,
   1854 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1855 				    BJ_XREG, 0,
   1856 				    SLJIT_IMM, 0);
   1857 				if (jump == NULL)
   1858 					goto fail;
   1859 				if (!append_jump(jump, &ret0,
   1860 				    &ret0_size, &ret0_maxsize))
   1861 					goto fail;
   1862 			} else if (pc->k == 0) {
   1863 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1864 				if (jump == NULL)
   1865 					goto fail;
   1866 				if (!append_jump(jump, &ret0,
   1867 				    &ret0_size, &ret0_maxsize))
   1868 					goto fail;
   1869 			}
   1870 
   1871 			if (src == BPF_X) {
   1872 				status = emit_division(compiler, BJ_XREG, 0);
   1873 				if (status != SLJIT_SUCCESS)
   1874 					goto fail;
   1875 			} else if (pc->k != 0) {
   1876 				if (pc->k & (pc->k - 1)) {
   1877 				    status = emit_division(compiler,
   1878 				        SLJIT_IMM, (uint32_t)pc->k);
   1879 				} else {
   1880 				    status = emit_pow2_division(compiler,
   1881 				        (uint32_t)pc->k);
   1882 				}
   1883 				if (status != SLJIT_SUCCESS)
   1884 					goto fail;
   1885 			}
   1886 
   1887 			continue;
   1888 
   1889 		case BPF_JMP:
   1890 			if (BPF_OP(pc->code) == BPF_JA) {
   1891 				jt = jf = pc->k;
   1892 			} else {
   1893 				jt = pc->jt;
   1894 				jf = pc->jf;
   1895 			}
   1896 
   1897 			negate = (jt == 0) ? 1 : 0;
   1898 			branching = (jt == jf) ? 0 : 1;
   1899 			jtf = insn_dat[i].u.jdata.jtf;
   1900 
   1901 			if (branching) {
   1902 				if (BPF_OP(pc->code) != BPF_JSET) {
   1903 					jump = sljit_emit_cmp(compiler,
   1904 					    bpf_jmp_to_sljit_cond(pc, negate),
   1905 					    BJ_AREG, 0,
   1906 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1907 				} else {
   1908 					status = sljit_emit_op2(compiler,
   1909 					    SLJIT_AND,
   1910 					    BJ_TMP1REG, 0,
   1911 					    BJ_AREG, 0,
   1912 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1913 					if (status != SLJIT_SUCCESS)
   1914 						goto fail;
   1915 
   1916 					jump = sljit_emit_cmp(compiler,
   1917 					    bpf_jmp_to_sljit_cond(pc, negate),
   1918 					    BJ_TMP1REG, 0,
   1919 					    SLJIT_IMM, 0);
   1920 				}
   1921 
   1922 				if (jump == NULL)
   1923 					goto fail;
   1924 
   1925 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1926 				jtf[negate].sjump = jump;
   1927 			}
   1928 
   1929 			if (!branching || (jt != 0 && jf != 0)) {
   1930 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1931 				if (jump == NULL)
   1932 					goto fail;
   1933 
   1934 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1935 				jtf[branching].sjump = jump;
   1936 			}
   1937 
   1938 			continue;
   1939 
   1940 		case BPF_RET:
   1941 			rval = BPF_RVAL(pc->code);
   1942 			if (rval == BPF_X)
   1943 				goto fail;
   1944 
   1945 			/* BPF_RET+BPF_K    accept k bytes */
   1946 			if (rval == BPF_K) {
   1947 				status = sljit_emit_return(compiler,
   1948 				    SLJIT_MOV_UI,
   1949 				    SLJIT_IMM, (uint32_t)pc->k);
   1950 				if (status != SLJIT_SUCCESS)
   1951 					goto fail;
   1952 			}
   1953 
   1954 			/* BPF_RET+BPF_A    accept A bytes */
   1955 			if (rval == BPF_A) {
   1956 				status = sljit_emit_return(compiler,
   1957 				    SLJIT_MOV_UI,
   1958 				    BJ_AREG, 0);
   1959 				if (status != SLJIT_SUCCESS)
   1960 					goto fail;
   1961 			}
   1962 
   1963 			continue;
   1964 
   1965 		case BPF_MISC:
   1966 			switch (BPF_MISCOP(pc->code)) {
   1967 			case BPF_TAX:
   1968 				status = sljit_emit_op1(compiler,
   1969 				    SLJIT_MOV_UI,
   1970 				    BJ_XREG, 0,
   1971 				    BJ_AREG, 0);
   1972 				if (status != SLJIT_SUCCESS)
   1973 					goto fail;
   1974 
   1975 				continue;
   1976 
   1977 			case BPF_TXA:
   1978 				status = sljit_emit_op1(compiler,
   1979 				    SLJIT_MOV,
   1980 				    BJ_AREG, 0,
   1981 				    BJ_XREG, 0);
   1982 				if (status != SLJIT_SUCCESS)
   1983 					goto fail;
   1984 
   1985 				continue;
   1986 
   1987 			case BPF_COP:
   1988 			case BPF_COPX:
   1989 				if (bc == NULL || bc->copfuncs == NULL)
   1990 					goto fail;
   1991 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   1992 				    (uint32_t)pc->k >= bc->nfuncs) {
   1993 					goto fail;
   1994 				}
   1995 
   1996 				jump = NULL;
   1997 				status = emit_cop(compiler, bc, pc, &jump);
   1998 				if (status != SLJIT_SUCCESS)
   1999 					goto fail;
   2000 
   2001 				if (jump != NULL && !append_jump(jump,
   2002 				    &ret0, &ret0_size, &ret0_maxsize))
   2003 					goto fail;
   2004 
   2005 				continue;
   2006 			}
   2007 
   2008 			goto fail;
   2009 		} /* switch */
   2010 	} /* main loop */
   2011 
   2012 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2013 
   2014 	if (ret0_size > 0) {
   2015 		label = sljit_emit_label(compiler);
   2016 		if (label == NULL)
   2017 			goto fail;
   2018 		for (i = 0; i < ret0_size; i++)
   2019 			sljit_set_label(ret0[i], label);
   2020 	}
   2021 
   2022 	rv = true;
   2023 
   2024 fail:
   2025 	if (ret0 != NULL)
   2026 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2027 
   2028 	return rv;
   2029 }
   2030 
   2031 bpfjit_func_t
   2032 bpfjit_generate_code(const bpf_ctx_t *bc,
   2033     const struct bpf_insn *insns, size_t insn_count)
   2034 {
   2035 	void *rv;
   2036 	struct sljit_compiler *compiler;
   2037 
   2038 	size_t i;
   2039 	int status;
   2040 
   2041 	/* optimization related */
   2042 	bpf_memword_init_t initmask;
   2043 	bpfjit_hint_t hints;
   2044 
   2045 	/* memory store location for initial zero initialization */
   2046 	sljit_si mem_reg;
   2047 	sljit_sw mem_off;
   2048 
   2049 	struct bpfjit_insn_data *insn_dat;
   2050 
   2051 	const size_t extwords = GET_EXTWORDS(bc);
   2052 	const size_t memwords = GET_MEMWORDS(bc);
   2053 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2054 
   2055 	rv = NULL;
   2056 	compiler = NULL;
   2057 	insn_dat = NULL;
   2058 
   2059 	if (memwords > MAX_MEMWORDS)
   2060 		goto fail;
   2061 
   2062 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2063 		goto fail;
   2064 
   2065 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2066 	if (insn_dat == NULL)
   2067 		goto fail;
   2068 
   2069 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2070 		goto fail;
   2071 
   2072 	compiler = sljit_create_compiler();
   2073 	if (compiler == NULL)
   2074 		goto fail;
   2075 
   2076 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2077 	sljit_compiler_verbose(compiler, stderr);
   2078 #endif
   2079 
   2080 	status = sljit_emit_enter(compiler,
   2081 	    2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
   2082 	if (status != SLJIT_SUCCESS)
   2083 		goto fail;
   2084 
   2085 	if (hints & BJ_HINT_COP) {
   2086 		/* save ctx argument */
   2087 		status = sljit_emit_op1(compiler,
   2088 		    SLJIT_MOV_P,
   2089 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2090 		    offsetof(struct bpfjit_stack, ctx),
   2091 		    BJ_CTX_ARG, 0);
   2092 		if (status != SLJIT_SUCCESS)
   2093 			goto fail;
   2094 	}
   2095 
   2096 	if (extwords == 0) {
   2097 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2098 		mem_off = offsetof(struct bpfjit_stack, mem);
   2099 	} else {
   2100 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2101 		status = sljit_emit_op1(compiler,
   2102 		    SLJIT_MOV_P,
   2103 		    BJ_TMP1REG, 0,
   2104 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2105 		if (status != SLJIT_SUCCESS)
   2106 			goto fail;
   2107 
   2108 		status = sljit_emit_op1(compiler,
   2109 		    SLJIT_MOV_P,
   2110 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2111 		    offsetof(struct bpfjit_stack, extmem),
   2112 		    BJ_TMP1REG, 0);
   2113 		if (status != SLJIT_SUCCESS)
   2114 			goto fail;
   2115 
   2116 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2117 		mem_off = 0;
   2118 	}
   2119 
   2120 	/*
   2121 	 * Exclude pre-initialised external memory words but keep
   2122 	 * initialization statuses of A and X registers in case
   2123 	 * bc->preinited wrongly sets those two bits.
   2124 	 */
   2125 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2126 
   2127 #if defined(_KERNEL)
   2128 	/* bpf_filter() checks initialization of memwords. */
   2129 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2130 #endif
   2131 	for (i = 0; i < memwords; i++) {
   2132 		if (initmask & BJ_INIT_MBIT(i)) {
   2133 			/* M[i] = 0; */
   2134 			status = sljit_emit_op1(compiler,
   2135 			    SLJIT_MOV_UI,
   2136 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2137 			    SLJIT_IMM, 0);
   2138 			if (status != SLJIT_SUCCESS)
   2139 				goto fail;
   2140 		}
   2141 	}
   2142 
   2143 	if (initmask & BJ_INIT_ABIT) {
   2144 		/* A = 0; */
   2145 		status = sljit_emit_op1(compiler,
   2146 		    SLJIT_MOV,
   2147 		    BJ_AREG, 0,
   2148 		    SLJIT_IMM, 0);
   2149 		if (status != SLJIT_SUCCESS)
   2150 			goto fail;
   2151 	}
   2152 
   2153 	if (initmask & BJ_INIT_XBIT) {
   2154 		/* X = 0; */
   2155 		status = sljit_emit_op1(compiler,
   2156 		    SLJIT_MOV,
   2157 		    BJ_XREG, 0,
   2158 		    SLJIT_IMM, 0);
   2159 		if (status != SLJIT_SUCCESS)
   2160 			goto fail;
   2161 	}
   2162 
   2163 	status = load_buf_buflen(compiler);
   2164 	if (status != SLJIT_SUCCESS)
   2165 		goto fail;
   2166 
   2167 	if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
   2168 		goto fail;
   2169 
   2170 	status = sljit_emit_return(compiler,
   2171 	    SLJIT_MOV_UI,
   2172 	    SLJIT_IMM, 0);
   2173 	if (status != SLJIT_SUCCESS)
   2174 		goto fail;
   2175 
   2176 	rv = sljit_generate_code(compiler);
   2177 
   2178 fail:
   2179 	if (compiler != NULL)
   2180 		sljit_free_compiler(compiler);
   2181 
   2182 	if (insn_dat != NULL)
   2183 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2184 
   2185 	return (bpfjit_func_t)rv;
   2186 }
   2187 
   2188 void
   2189 bpfjit_free_code(bpfjit_func_t code)
   2190 {
   2191 
   2192 	sljit_free_code((void *)code);
   2193 }
   2194