bpfjit.c revision 1.22 1 /* $NetBSD: bpfjit.c,v 1.22 2014/07/08 11:30:31 alnsn Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 Alexander Nasonov.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef _KERNEL
34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.22 2014/07/08 11:30:31 alnsn Exp $");
35 #else
36 __RCSID("$NetBSD: bpfjit.c,v 1.22 2014/07/08 11:30:31 alnsn Exp $");
37 #endif
38
39 #include <sys/types.h>
40 #include <sys/queue.h>
41
42 #ifndef _KERNEL
43 #include <assert.h>
44 #define BJ_ASSERT(c) assert(c)
45 #else
46 #define BJ_ASSERT(c) KASSERT(c)
47 #endif
48
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #define BJ_ALLOC(sz) malloc(sz)
52 #define BJ_FREE(p, sz) free(p)
53 #else
54 #include <sys/kmem.h>
55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 #define BJ_FREE(p, sz) kmem_free(p, sz)
57 #endif
58
59 #ifndef _KERNEL
60 #include <limits.h>
61 #include <stdbool.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #else
65 #include <sys/atomic.h>
66 #include <sys/module.h>
67 #endif
68
69 #define __BPF_PRIVATE
70 #include <net/bpf.h>
71 #include <net/bpfjit.h>
72 #include <sljitLir.h>
73
74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 #include <stdio.h> /* for stderr */
76 #endif
77
78 /*
79 * Arguments of generated bpfjit_func_t.
80 * The first argument is reassigned upon entry
81 * to a more frequently used buf argument.
82 */
83 #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 #define BJ_ARGS SLJIT_SAVED_REG2
85
86 /*
87 * Permanent register assignments.
88 */
89 #define BJ_BUF SLJIT_SAVED_REG1
90 //#define BJ_ARGS SLJIT_SAVED_REG2
91 #define BJ_BUFLEN SLJIT_SAVED_REG3
92 #define BJ_AREG SLJIT_SCRATCH_REG1
93 #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97
98 /*
99 * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 */
102 #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 #define BJ_COPF_IDX SLJIT_SAVED_REG3
104
105 #ifdef _KERNEL
106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 #else
108 #define MAX_MEMWORDS BPF_MEMWORDS
109 #endif
110
111 #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115
116 /*
117 * Get a number of memwords and external memwords from a bpf_ctx object.
118 */
119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
121
122 /*
123 * Optimization hints.
124 */
125 typedef unsigned int bpfjit_hint_t;
126 #define BJ_HINT_LDW 0x01 /* 32-bit packet read */
127 #define BJ_HINT_IND 0x02 /* packet read at a variable offset */
128 #define BJ_HINT_COP 0x04 /* BPF_COP or BPF_COPX instruction */
129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed */
130 #define BJ_HINT_LDX 0x10 /* BPF_LDX instruction */
131
132 /*
133 * Datatype for Array Bounds Check Elimination (ABC) pass.
134 */
135 typedef uint64_t bpfjit_abc_length_t;
136 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
137
138 struct bpfjit_stack
139 {
140 bpf_ctx_t *ctx;
141 uint32_t *extmem; /* pointer to external memory store */
142 #ifdef _KERNEL
143 int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
144 #endif
145 uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
146 };
147
148 /*
149 * Data for BPF_JMP instruction.
150 * Forward declaration for struct bpfjit_jump.
151 */
152 struct bpfjit_jump_data;
153
154 /*
155 * Node of bjumps list.
156 */
157 struct bpfjit_jump {
158 struct sljit_jump *sjump;
159 SLIST_ENTRY(bpfjit_jump) entries;
160 struct bpfjit_jump_data *jdata;
161 };
162
163 /*
164 * Data for BPF_JMP instruction.
165 */
166 struct bpfjit_jump_data {
167 /*
168 * These entries make up bjumps list:
169 * jtf[0] - when coming from jt path,
170 * jtf[1] - when coming from jf path.
171 */
172 struct bpfjit_jump jtf[2];
173 /*
174 * Length calculated by Array Bounds Check Elimination (ABC) pass.
175 */
176 bpfjit_abc_length_t abc_length;
177 /*
178 * Length checked by the last out-of-bounds check.
179 */
180 bpfjit_abc_length_t checked_length;
181 };
182
183 /*
184 * Data for "read from packet" instructions.
185 * See also read_pkt_insn() function below.
186 */
187 struct bpfjit_read_pkt_data {
188 /*
189 * Length calculated by Array Bounds Check Elimination (ABC) pass.
190 */
191 bpfjit_abc_length_t abc_length;
192 /*
193 * If positive, emit "if (buflen < check_length) return 0"
194 * out-of-bounds check.
195 * Values greater than UINT32_MAX generate unconditional "return 0".
196 */
197 bpfjit_abc_length_t check_length;
198 };
199
200 /*
201 * Additional (optimization-related) data for bpf_insn.
202 */
203 struct bpfjit_insn_data {
204 /* List of jumps to this insn. */
205 SLIST_HEAD(, bpfjit_jump) bjumps;
206
207 union {
208 struct bpfjit_jump_data jdata;
209 struct bpfjit_read_pkt_data rdata;
210 } u;
211
212 bpf_memword_init_t invalid;
213 bool unreachable;
214 };
215
216 #ifdef _KERNEL
217
218 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
219 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
220 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
221
222 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
223
224 static int
225 bpfjit_modcmd(modcmd_t cmd, void *arg)
226 {
227
228 switch (cmd) {
229 case MODULE_CMD_INIT:
230 bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
231 membar_producer();
232 bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
233 membar_producer();
234 return 0;
235
236 case MODULE_CMD_FINI:
237 return EOPNOTSUPP;
238
239 default:
240 return ENOTTY;
241 }
242 }
243 #endif
244
245 /*
246 * Return a number of scratch registers to pass
247 * to sljit_emit_enter() function.
248 */
249 static sljit_si
250 nscratches(bpfjit_hint_t hints)
251 {
252 sljit_si rv = 2;
253
254 #ifdef _KERNEL
255 /*
256 * Most kernel programs load packet bytes and they generate
257 * m_xword/m_xhalf/m_xbyte() calls with three arguments.
258 */
259 rv = 3;
260 #endif
261
262 if (hints & BJ_HINT_LDW)
263 rv = 3; /* uses BJ_TMP2REG */
264
265 if (hints & BJ_HINT_COP)
266 rv = 3; /* calls copfunc with three arguments */
267
268 if (hints & BJ_HINT_XREG)
269 rv = 4; /* uses BJ_XREG */
270
271 #ifdef _KERNEL
272 if (hints & BJ_HINT_LDX)
273 rv = 5; /* uses BJ_TMP3REG */
274 #endif
275
276 return rv;
277 }
278
279 static uint32_t
280 read_width(const struct bpf_insn *pc)
281 {
282
283 switch (BPF_SIZE(pc->code)) {
284 case BPF_W:
285 return 4;
286 case BPF_H:
287 return 2;
288 case BPF_B:
289 return 1;
290 default:
291 BJ_ASSERT(false);
292 return 0;
293 }
294 }
295
296 /*
297 * Copy buf and buflen members of bpf_args from BJ_ARGS
298 * pointer to BJ_BUF and BJ_BUFLEN registers.
299 */
300 static int
301 load_buf_buflen(struct sljit_compiler *compiler)
302 {
303 int status;
304
305 status = sljit_emit_op1(compiler,
306 SLJIT_MOV_P,
307 BJ_BUF, 0,
308 SLJIT_MEM1(BJ_ARGS),
309 offsetof(struct bpf_args, pkt));
310 if (status != SLJIT_SUCCESS)
311 return status;
312
313 status = sljit_emit_op1(compiler,
314 SLJIT_MOV, /* size_t source */
315 BJ_BUFLEN, 0,
316 SLJIT_MEM1(BJ_ARGS),
317 offsetof(struct bpf_args, buflen));
318
319 return status;
320 }
321
322 static bool
323 grow_jumps(struct sljit_jump ***jumps, size_t *size)
324 {
325 struct sljit_jump **newptr;
326 const size_t elemsz = sizeof(struct sljit_jump *);
327 size_t old_size = *size;
328 size_t new_size = 2 * old_size;
329
330 if (new_size < old_size || new_size > SIZE_MAX / elemsz)
331 return false;
332
333 newptr = BJ_ALLOC(new_size * elemsz);
334 if (newptr == NULL)
335 return false;
336
337 memcpy(newptr, *jumps, old_size * elemsz);
338 BJ_FREE(*jumps, old_size * elemsz);
339
340 *jumps = newptr;
341 *size = new_size;
342 return true;
343 }
344
345 static bool
346 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
347 size_t *size, size_t *max_size)
348 {
349 if (*size == *max_size && !grow_jumps(jumps, max_size))
350 return false;
351
352 (*jumps)[(*size)++] = jump;
353 return true;
354 }
355
356 /*
357 * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
358 */
359 static int
360 emit_read8(struct sljit_compiler *compiler, uint32_t k)
361 {
362
363 return sljit_emit_op1(compiler,
364 SLJIT_MOV_UB,
365 BJ_AREG, 0,
366 SLJIT_MEM1(BJ_BUF), k);
367 }
368
369 /*
370 * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
371 */
372 static int
373 emit_read16(struct sljit_compiler *compiler, uint32_t k)
374 {
375 int status;
376
377 /* tmp1 = buf[k]; */
378 status = sljit_emit_op1(compiler,
379 SLJIT_MOV_UB,
380 BJ_TMP1REG, 0,
381 SLJIT_MEM1(BJ_BUF), k);
382 if (status != SLJIT_SUCCESS)
383 return status;
384
385 /* A = buf[k+1]; */
386 status = sljit_emit_op1(compiler,
387 SLJIT_MOV_UB,
388 BJ_AREG, 0,
389 SLJIT_MEM1(BJ_BUF), k+1);
390 if (status != SLJIT_SUCCESS)
391 return status;
392
393 /* tmp1 = tmp1 << 8; */
394 status = sljit_emit_op2(compiler,
395 SLJIT_SHL,
396 BJ_TMP1REG, 0,
397 BJ_TMP1REG, 0,
398 SLJIT_IMM, 8);
399 if (status != SLJIT_SUCCESS)
400 return status;
401
402 /* A = A + tmp1; */
403 status = sljit_emit_op2(compiler,
404 SLJIT_ADD,
405 BJ_AREG, 0,
406 BJ_AREG, 0,
407 BJ_TMP1REG, 0);
408 return status;
409 }
410
411 /*
412 * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
413 */
414 static int
415 emit_read32(struct sljit_compiler *compiler, uint32_t k)
416 {
417 int status;
418
419 /* tmp1 = buf[k]; */
420 status = sljit_emit_op1(compiler,
421 SLJIT_MOV_UB,
422 BJ_TMP1REG, 0,
423 SLJIT_MEM1(BJ_BUF), k);
424 if (status != SLJIT_SUCCESS)
425 return status;
426
427 /* tmp2 = buf[k+1]; */
428 status = sljit_emit_op1(compiler,
429 SLJIT_MOV_UB,
430 BJ_TMP2REG, 0,
431 SLJIT_MEM1(BJ_BUF), k+1);
432 if (status != SLJIT_SUCCESS)
433 return status;
434
435 /* A = buf[k+3]; */
436 status = sljit_emit_op1(compiler,
437 SLJIT_MOV_UB,
438 BJ_AREG, 0,
439 SLJIT_MEM1(BJ_BUF), k+3);
440 if (status != SLJIT_SUCCESS)
441 return status;
442
443 /* tmp1 = tmp1 << 24; */
444 status = sljit_emit_op2(compiler,
445 SLJIT_SHL,
446 BJ_TMP1REG, 0,
447 BJ_TMP1REG, 0,
448 SLJIT_IMM, 24);
449 if (status != SLJIT_SUCCESS)
450 return status;
451
452 /* A = A + tmp1; */
453 status = sljit_emit_op2(compiler,
454 SLJIT_ADD,
455 BJ_AREG, 0,
456 BJ_AREG, 0,
457 BJ_TMP1REG, 0);
458 if (status != SLJIT_SUCCESS)
459 return status;
460
461 /* tmp1 = buf[k+2]; */
462 status = sljit_emit_op1(compiler,
463 SLJIT_MOV_UB,
464 BJ_TMP1REG, 0,
465 SLJIT_MEM1(BJ_BUF), k+2);
466 if (status != SLJIT_SUCCESS)
467 return status;
468
469 /* tmp2 = tmp2 << 16; */
470 status = sljit_emit_op2(compiler,
471 SLJIT_SHL,
472 BJ_TMP2REG, 0,
473 BJ_TMP2REG, 0,
474 SLJIT_IMM, 16);
475 if (status != SLJIT_SUCCESS)
476 return status;
477
478 /* A = A + tmp2; */
479 status = sljit_emit_op2(compiler,
480 SLJIT_ADD,
481 BJ_AREG, 0,
482 BJ_AREG, 0,
483 BJ_TMP2REG, 0);
484 if (status != SLJIT_SUCCESS)
485 return status;
486
487 /* tmp1 = tmp1 << 8; */
488 status = sljit_emit_op2(compiler,
489 SLJIT_SHL,
490 BJ_TMP1REG, 0,
491 BJ_TMP1REG, 0,
492 SLJIT_IMM, 8);
493 if (status != SLJIT_SUCCESS)
494 return status;
495
496 /* A = A + tmp1; */
497 status = sljit_emit_op2(compiler,
498 SLJIT_ADD,
499 BJ_AREG, 0,
500 BJ_AREG, 0,
501 BJ_TMP1REG, 0);
502 return status;
503 }
504
505 #ifdef _KERNEL
506 /*
507 * Generate m_xword/m_xhalf/m_xbyte call.
508 *
509 * pc is one of:
510 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
511 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
512 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
513 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
514 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
515 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
516 * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
517 *
518 * The dst variable should be
519 * - BJ_AREG when emitting code for BPF_LD instructions,
520 * - BJ_XREG or any of BJ_TMP[1-3]REG registers when emitting
521 * code for BPF_MSH instruction.
522 */
523 static int
524 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
525 int dst, sljit_sw dstw, struct sljit_jump **ret0_jump,
526 uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
527 {
528 #if BJ_XREG == SLJIT_RETURN_REG || \
529 BJ_XREG == SLJIT_SCRATCH_REG1 || \
530 BJ_XREG == SLJIT_SCRATCH_REG2 || \
531 BJ_XREG == SLJIT_SCRATCH_REG3
532 #error "Not supported assignment of registers."
533 #endif
534 int status;
535
536 if (BPF_CLASS(pc->code) == BPF_LDX) {
537 /* save A */
538 status = sljit_emit_op1(compiler,
539 SLJIT_MOV,
540 BJ_TMP3REG, 0,
541 BJ_AREG, 0);
542 if (status != SLJIT_SUCCESS)
543 return status;
544 }
545
546 /*
547 * Prepare registers for fn(buf, k, &err) call.
548 */
549 status = sljit_emit_op1(compiler,
550 SLJIT_MOV,
551 SLJIT_SCRATCH_REG1, 0,
552 BJ_BUF, 0);
553 if (status != SLJIT_SUCCESS)
554 return status;
555
556 if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
557 status = sljit_emit_op2(compiler,
558 SLJIT_ADD,
559 SLJIT_SCRATCH_REG2, 0,
560 BJ_XREG, 0,
561 SLJIT_IMM, (uint32_t)pc->k);
562 } else {
563 status = sljit_emit_op1(compiler,
564 SLJIT_MOV,
565 SLJIT_SCRATCH_REG2, 0,
566 SLJIT_IMM, (uint32_t)pc->k);
567 }
568
569 if (status != SLJIT_SUCCESS)
570 return status;
571
572 /*
573 * The third argument of fn is an address on stack.
574 */
575 status = sljit_get_local_base(compiler,
576 SLJIT_SCRATCH_REG3, 0,
577 offsetof(struct bpfjit_stack, err));
578 if (status != SLJIT_SUCCESS)
579 return status;
580
581 /* fn(buf, k, &err); */
582 status = sljit_emit_ijump(compiler,
583 SLJIT_CALL3,
584 SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
585
586 if (dst != SLJIT_RETURN_REG) {
587 /* move return value to dst */
588 status = sljit_emit_op1(compiler,
589 SLJIT_MOV,
590 dst, dstw,
591 SLJIT_RETURN_REG, 0);
592 if (status != SLJIT_SUCCESS)
593 return status;
594 }
595
596 if (BPF_CLASS(pc->code) == BPF_LDX) {
597 /* restore A */
598 status = sljit_emit_op1(compiler,
599 SLJIT_MOV,
600 BJ_AREG, 0,
601 BJ_TMP3REG, 0);
602 if (status != SLJIT_SUCCESS)
603 return status;
604 }
605
606 /* tmp3 = *err; */
607 status = sljit_emit_op1(compiler,
608 SLJIT_MOV_UI,
609 SLJIT_SCRATCH_REG3, 0,
610 SLJIT_MEM1(SLJIT_LOCALS_REG),
611 offsetof(struct bpfjit_stack, err));
612 if (status != SLJIT_SUCCESS)
613 return status;
614
615 /* if (tmp3 != 0) return 0; */
616 *ret0_jump = sljit_emit_cmp(compiler,
617 SLJIT_C_NOT_EQUAL,
618 SLJIT_SCRATCH_REG3, 0,
619 SLJIT_IMM, 0);
620 if (*ret0_jump == NULL)
621 return SLJIT_ERR_ALLOC_FAILED;
622
623 return status;
624 }
625 #endif
626
627 /*
628 * Emit code for BPF_COP and BPF_COPX instructions.
629 */
630 static int
631 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
632 const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
633 {
634 #if BJ_XREG == SLJIT_RETURN_REG || \
635 BJ_XREG == SLJIT_SCRATCH_REG1 || \
636 BJ_XREG == SLJIT_SCRATCH_REG2 || \
637 BJ_XREG == SLJIT_SCRATCH_REG3 || \
638 BJ_COPF_PTR == BJ_ARGS || \
639 BJ_COPF_IDX == BJ_ARGS
640 #error "Not supported assignment of registers."
641 #endif
642
643 struct sljit_jump *jump;
644 int status;
645
646 jump = NULL;
647
648 BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
649
650 if (BPF_MISCOP(pc->code) == BPF_COPX) {
651 /* if (X >= bc->nfuncs) return 0; */
652 jump = sljit_emit_cmp(compiler,
653 SLJIT_C_GREATER_EQUAL,
654 BJ_XREG, 0,
655 SLJIT_IMM, bc->nfuncs);
656 if (jump == NULL)
657 return SLJIT_ERR_ALLOC_FAILED;
658 }
659
660 if (jump != NULL)
661 *ret0_jump = jump;
662
663 /*
664 * Copy bpf_copfunc_t arguments to registers.
665 */
666 #if BJ_AREG != SLJIT_SCRATCH_REG3
667 status = sljit_emit_op1(compiler,
668 SLJIT_MOV_UI,
669 SLJIT_SCRATCH_REG3, 0,
670 BJ_AREG, 0);
671 if (status != SLJIT_SUCCESS)
672 return status;
673 #endif
674
675 status = sljit_emit_op1(compiler,
676 SLJIT_MOV_P,
677 SLJIT_SCRATCH_REG1, 0,
678 SLJIT_MEM1(SLJIT_LOCALS_REG),
679 offsetof(struct bpfjit_stack, ctx));
680 if (status != SLJIT_SUCCESS)
681 return status;
682
683 status = sljit_emit_op1(compiler,
684 SLJIT_MOV_P,
685 SLJIT_SCRATCH_REG2, 0,
686 BJ_ARGS, 0);
687 if (status != SLJIT_SUCCESS)
688 return status;
689
690 if (BPF_MISCOP(pc->code) == BPF_COP) {
691 status = sljit_emit_ijump(compiler,
692 SLJIT_CALL3,
693 SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
694 if (status != SLJIT_SUCCESS)
695 return status;
696 } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
697 /* load ctx->copfuncs */
698 status = sljit_emit_op1(compiler,
699 SLJIT_MOV_P,
700 BJ_COPF_PTR, 0,
701 SLJIT_MEM1(SLJIT_SCRATCH_REG1),
702 offsetof(struct bpf_ctx, copfuncs));
703 if (status != SLJIT_SUCCESS)
704 return status;
705
706 /*
707 * Load X to a register that can be used for
708 * memory addressing.
709 */
710 status = sljit_emit_op1(compiler,
711 SLJIT_MOV,
712 BJ_COPF_IDX, 0,
713 BJ_XREG, 0);
714 if (status != SLJIT_SUCCESS)
715 return status;
716
717 status = sljit_emit_ijump(compiler,
718 SLJIT_CALL3,
719 SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
720 SLJIT_WORD_SHIFT);
721 if (status != SLJIT_SUCCESS)
722 return status;
723
724 status = load_buf_buflen(compiler);
725 if (status != SLJIT_SUCCESS)
726 return status;
727 }
728
729 #if BJ_AREG != SLJIT_RETURN_REG
730 status = sljit_emit_op1(compiler,
731 SLJIT_MOV,
732 BJ_AREG, 0,
733 SLJIT_RETURN_REG, 0);
734 if (status != SLJIT_SUCCESS)
735 return status;
736 #endif
737
738 return status;
739 }
740
741 /*
742 * Generate code for
743 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
744 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
745 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
746 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
747 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
748 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
749 */
750 static int
751 emit_pkt_read(struct sljit_compiler *compiler,
752 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
753 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
754 {
755 int status = 0; /* XXX gcc 4.1 */
756 uint32_t width;
757 struct sljit_jump *jump;
758 #ifdef _KERNEL
759 struct sljit_label *label;
760 struct sljit_jump *over_mchain_jump;
761 const bool check_zero_buflen = (to_mchain_jump != NULL);
762 #endif
763 const uint32_t k = pc->k;
764
765 #ifdef _KERNEL
766 if (to_mchain_jump == NULL) {
767 to_mchain_jump = sljit_emit_cmp(compiler,
768 SLJIT_C_EQUAL,
769 BJ_BUFLEN, 0,
770 SLJIT_IMM, 0);
771 if (to_mchain_jump == NULL)
772 return SLJIT_ERR_ALLOC_FAILED;
773 }
774 #endif
775
776 width = read_width(pc);
777
778 if (BPF_MODE(pc->code) == BPF_IND) {
779 /* tmp1 = buflen - (pc->k + width); */
780 status = sljit_emit_op2(compiler,
781 SLJIT_SUB,
782 BJ_TMP1REG, 0,
783 BJ_BUFLEN, 0,
784 SLJIT_IMM, k + width);
785 if (status != SLJIT_SUCCESS)
786 return status;
787
788 /* buf += X; */
789 status = sljit_emit_op2(compiler,
790 SLJIT_ADD,
791 BJ_BUF, 0,
792 BJ_BUF, 0,
793 BJ_XREG, 0);
794 if (status != SLJIT_SUCCESS)
795 return status;
796
797 /* if (tmp1 < X) return 0; */
798 jump = sljit_emit_cmp(compiler,
799 SLJIT_C_LESS,
800 BJ_TMP1REG, 0,
801 BJ_XREG, 0);
802 if (jump == NULL)
803 return SLJIT_ERR_ALLOC_FAILED;
804 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
805 return SLJIT_ERR_ALLOC_FAILED;
806 }
807
808 switch (width) {
809 case 4:
810 status = emit_read32(compiler, k);
811 break;
812 case 2:
813 status = emit_read16(compiler, k);
814 break;
815 case 1:
816 status = emit_read8(compiler, k);
817 break;
818 }
819
820 if (status != SLJIT_SUCCESS)
821 return status;
822
823 if (BPF_MODE(pc->code) == BPF_IND) {
824 /* buf -= X; */
825 status = sljit_emit_op2(compiler,
826 SLJIT_SUB,
827 BJ_BUF, 0,
828 BJ_BUF, 0,
829 BJ_XREG, 0);
830 if (status != SLJIT_SUCCESS)
831 return status;
832 }
833
834 #ifdef _KERNEL
835 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
836 if (over_mchain_jump == NULL)
837 return SLJIT_ERR_ALLOC_FAILED;
838
839 /* entry point to mchain handler */
840 label = sljit_emit_label(compiler);
841 if (label == NULL)
842 return SLJIT_ERR_ALLOC_FAILED;
843 sljit_set_label(to_mchain_jump, label);
844
845 if (check_zero_buflen) {
846 /* if (buflen != 0) return 0; */
847 jump = sljit_emit_cmp(compiler,
848 SLJIT_C_NOT_EQUAL,
849 BJ_BUFLEN, 0,
850 SLJIT_IMM, 0);
851 if (jump == NULL)
852 return SLJIT_ERR_ALLOC_FAILED;
853 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
854 return SLJIT_ERR_ALLOC_FAILED;
855 }
856
857 switch (width) {
858 case 4:
859 status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xword);
860 break;
861 case 2:
862 status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xhalf);
863 break;
864 case 1:
865 status = emit_xcall(compiler, pc, BJ_AREG, 0, &jump, &m_xbyte);
866 break;
867 }
868
869 if (status != SLJIT_SUCCESS)
870 return status;
871
872 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
873 return SLJIT_ERR_ALLOC_FAILED;
874
875 label = sljit_emit_label(compiler);
876 if (label == NULL)
877 return SLJIT_ERR_ALLOC_FAILED;
878 sljit_set_label(over_mchain_jump, label);
879 #endif
880
881 return status;
882 }
883
884 static int
885 emit_memload(struct sljit_compiler *compiler,
886 sljit_si dst, uint32_t k, size_t extwords)
887 {
888 int status;
889 sljit_si src;
890 sljit_sw srcw;
891
892 srcw = k * sizeof(uint32_t);
893
894 if (extwords == 0) {
895 src = SLJIT_MEM1(SLJIT_LOCALS_REG);
896 srcw += offsetof(struct bpfjit_stack, mem);
897 } else {
898 /* copy extmem pointer to the tmp1 register */
899 status = sljit_emit_op1(compiler,
900 SLJIT_MOV_P,
901 BJ_TMP1REG, 0,
902 SLJIT_MEM1(SLJIT_LOCALS_REG),
903 offsetof(struct bpfjit_stack, extmem));
904 if (status != SLJIT_SUCCESS)
905 return status;
906 src = SLJIT_MEM1(BJ_TMP1REG);
907 }
908
909 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
910 }
911
912 static int
913 emit_memstore(struct sljit_compiler *compiler,
914 sljit_si src, uint32_t k, size_t extwords)
915 {
916 int status;
917 sljit_si dst;
918 sljit_sw dstw;
919
920 dstw = k * sizeof(uint32_t);
921
922 if (extwords == 0) {
923 dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
924 dstw += offsetof(struct bpfjit_stack, mem);
925 } else {
926 /* copy extmem pointer to the tmp1 register */
927 status = sljit_emit_op1(compiler,
928 SLJIT_MOV_P,
929 BJ_TMP1REG, 0,
930 SLJIT_MEM1(SLJIT_LOCALS_REG),
931 offsetof(struct bpfjit_stack, extmem));
932 if (status != SLJIT_SUCCESS)
933 return status;
934 dst = SLJIT_MEM1(BJ_TMP1REG);
935 }
936
937 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
938 }
939
940 /*
941 * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
942 */
943 static int
944 emit_msh(struct sljit_compiler *compiler,
945 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
946 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
947 {
948 int status;
949 #ifdef _KERNEL
950 struct sljit_label *label;
951 struct sljit_jump *jump, *over_mchain_jump;
952 const bool check_zero_buflen = (to_mchain_jump != NULL);
953 #endif
954 const uint32_t k = pc->k;
955
956 #ifdef _KERNEL
957 if (to_mchain_jump == NULL) {
958 to_mchain_jump = sljit_emit_cmp(compiler,
959 SLJIT_C_EQUAL,
960 BJ_BUFLEN, 0,
961 SLJIT_IMM, 0);
962 if (to_mchain_jump == NULL)
963 return SLJIT_ERR_ALLOC_FAILED;
964 }
965 #endif
966
967 /* tmp1 = buf[k] */
968 status = sljit_emit_op1(compiler,
969 SLJIT_MOV_UB,
970 BJ_TMP1REG, 0,
971 SLJIT_MEM1(BJ_BUF), k);
972 if (status != SLJIT_SUCCESS)
973 return status;
974
975 /* tmp1 &= 0xf */
976 status = sljit_emit_op2(compiler,
977 SLJIT_AND,
978 BJ_TMP1REG, 0,
979 BJ_TMP1REG, 0,
980 SLJIT_IMM, 0xf);
981 if (status != SLJIT_SUCCESS)
982 return status;
983
984 /* tmp1 = tmp1 << 2 */
985 status = sljit_emit_op2(compiler,
986 SLJIT_SHL,
987 BJ_XREG, 0,
988 BJ_TMP1REG, 0,
989 SLJIT_IMM, 2);
990 if (status != SLJIT_SUCCESS)
991 return status;
992
993 #ifdef _KERNEL
994 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
995 if (over_mchain_jump == NULL)
996 return SLJIT_ERR_ALLOC_FAILED;
997
998 /* entry point to mchain handler */
999 label = sljit_emit_label(compiler);
1000 if (label == NULL)
1001 return SLJIT_ERR_ALLOC_FAILED;
1002 sljit_set_label(to_mchain_jump, label);
1003
1004 if (check_zero_buflen) {
1005 /* if (buflen != 0) return 0; */
1006 jump = sljit_emit_cmp(compiler,
1007 SLJIT_C_NOT_EQUAL,
1008 BJ_BUFLEN, 0,
1009 SLJIT_IMM, 0);
1010 if (jump == NULL)
1011 return SLJIT_ERR_ALLOC_FAILED;
1012 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1013 return SLJIT_ERR_ALLOC_FAILED;
1014 }
1015
1016 status = emit_xcall(compiler, pc, BJ_TMP1REG, 0, &jump, &m_xbyte);
1017 if (status != SLJIT_SUCCESS)
1018 return status;
1019
1020 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1021 return SLJIT_ERR_ALLOC_FAILED;
1022
1023 /* tmp1 &= 0xf */
1024 status = sljit_emit_op2(compiler,
1025 SLJIT_AND,
1026 BJ_TMP1REG, 0,
1027 BJ_TMP1REG, 0,
1028 SLJIT_IMM, 0xf);
1029 if (status != SLJIT_SUCCESS)
1030 return status;
1031
1032 /* tmp1 = tmp1 << 2 */
1033 status = sljit_emit_op2(compiler,
1034 SLJIT_SHL,
1035 BJ_XREG, 0,
1036 BJ_TMP1REG, 0,
1037 SLJIT_IMM, 2);
1038 if (status != SLJIT_SUCCESS)
1039 return status;
1040
1041
1042 label = sljit_emit_label(compiler);
1043 if (label == NULL)
1044 return SLJIT_ERR_ALLOC_FAILED;
1045 sljit_set_label(over_mchain_jump, label);
1046 #endif
1047
1048 return status;
1049 }
1050
1051 static int
1052 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1053 {
1054 int shift = 0;
1055 int status = SLJIT_SUCCESS;
1056
1057 while (k > 1) {
1058 k >>= 1;
1059 shift++;
1060 }
1061
1062 BJ_ASSERT(k == 1 && shift < 32);
1063
1064 if (shift != 0) {
1065 status = sljit_emit_op2(compiler,
1066 SLJIT_LSHR|SLJIT_INT_OP,
1067 BJ_AREG, 0,
1068 BJ_AREG, 0,
1069 SLJIT_IMM, shift);
1070 }
1071
1072 return status;
1073 }
1074
1075 #if !defined(BPFJIT_USE_UDIV)
1076 static sljit_uw
1077 divide(sljit_uw x, sljit_uw y)
1078 {
1079
1080 return (uint32_t)x / (uint32_t)y;
1081 }
1082 #endif
1083
1084 /*
1085 * Generate A = A / div.
1086 * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1087 */
1088 static int
1089 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1090 {
1091 int status;
1092
1093 #if BJ_XREG == SLJIT_RETURN_REG || \
1094 BJ_XREG == SLJIT_SCRATCH_REG1 || \
1095 BJ_XREG == SLJIT_SCRATCH_REG2 || \
1096 BJ_AREG == SLJIT_SCRATCH_REG2
1097 #error "Not supported assignment of registers."
1098 #endif
1099
1100 #if BJ_AREG != SLJIT_SCRATCH_REG1
1101 status = sljit_emit_op1(compiler,
1102 SLJIT_MOV,
1103 SLJIT_SCRATCH_REG1, 0,
1104 BJ_AREG, 0);
1105 if (status != SLJIT_SUCCESS)
1106 return status;
1107 #endif
1108
1109 status = sljit_emit_op1(compiler,
1110 SLJIT_MOV,
1111 SLJIT_SCRATCH_REG2, 0,
1112 divt, divw);
1113 if (status != SLJIT_SUCCESS)
1114 return status;
1115
1116 #if defined(BPFJIT_USE_UDIV)
1117 status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1118
1119 #if BJ_AREG != SLJIT_SCRATCH_REG1
1120 status = sljit_emit_op1(compiler,
1121 SLJIT_MOV,
1122 BJ_AREG, 0,
1123 SLJIT_SCRATCH_REG1, 0);
1124 if (status != SLJIT_SUCCESS)
1125 return status;
1126 #endif
1127 #else
1128 status = sljit_emit_ijump(compiler,
1129 SLJIT_CALL2,
1130 SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1131
1132 #if BJ_AREG != SLJIT_RETURN_REG
1133 status = sljit_emit_op1(compiler,
1134 SLJIT_MOV,
1135 BJ_AREG, 0,
1136 SLJIT_RETURN_REG, 0);
1137 if (status != SLJIT_SUCCESS)
1138 return status;
1139 #endif
1140 #endif
1141
1142 return status;
1143 }
1144
1145 /*
1146 * Return true if pc is a "read from packet" instruction.
1147 * If length is not NULL and return value is true, *length will
1148 * be set to a safe length required to read a packet.
1149 */
1150 static bool
1151 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1152 {
1153 bool rv;
1154 bpfjit_abc_length_t width;
1155
1156 switch (BPF_CLASS(pc->code)) {
1157 default:
1158 rv = false;
1159 break;
1160
1161 case BPF_LD:
1162 rv = BPF_MODE(pc->code) == BPF_ABS ||
1163 BPF_MODE(pc->code) == BPF_IND;
1164 if (rv)
1165 width = read_width(pc);
1166 break;
1167
1168 case BPF_LDX:
1169 rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1170 width = 1;
1171 break;
1172 }
1173
1174 if (rv && length != NULL) {
1175 /*
1176 * Values greater than UINT32_MAX will generate
1177 * unconditional "return 0".
1178 */
1179 *length = (uint32_t)pc->k + width;
1180 }
1181
1182 return rv;
1183 }
1184
1185 static void
1186 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1187 {
1188 size_t i;
1189
1190 for (i = 0; i < insn_count; i++) {
1191 SLIST_INIT(&insn_dat[i].bjumps);
1192 insn_dat[i].invalid = BJ_INIT_NOBITS;
1193 }
1194 }
1195
1196 /*
1197 * The function divides instructions into blocks. Destination of a jump
1198 * instruction starts a new block. BPF_RET and BPF_JMP instructions
1199 * terminate a block. Blocks are linear, that is, there are no jumps out
1200 * from the middle of a block and there are no jumps in to the middle of
1201 * a block.
1202 *
1203 * The function also sets bits in *initmask for memwords that
1204 * need to be initialized to zero. Note that this set should be empty
1205 * for any valid kernel filter program.
1206 */
1207 static bool
1208 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1209 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1210 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1211 {
1212 struct bpfjit_jump *jtf;
1213 size_t i;
1214 uint32_t jt, jf;
1215 bpfjit_abc_length_t length;
1216 bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1217 bool unreachable;
1218
1219 const size_t memwords = GET_MEMWORDS(bc);
1220
1221 *hints = 0;
1222 *initmask = BJ_INIT_NOBITS;
1223
1224 unreachable = false;
1225 invalid = ~BJ_INIT_NOBITS;
1226
1227 for (i = 0; i < insn_count; i++) {
1228 if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1229 unreachable = false;
1230 insn_dat[i].unreachable = unreachable;
1231
1232 if (unreachable)
1233 continue;
1234
1235 invalid |= insn_dat[i].invalid;
1236
1237 if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1238 unreachable = true;
1239
1240 switch (BPF_CLASS(insns[i].code)) {
1241 case BPF_RET:
1242 if (BPF_RVAL(insns[i].code) == BPF_A)
1243 *initmask |= invalid & BJ_INIT_ABIT;
1244
1245 unreachable = true;
1246 continue;
1247
1248 case BPF_LD:
1249 if ((BPF_MODE(insns[i].code) == BPF_IND ||
1250 BPF_MODE(insns[i].code) == BPF_ABS) &&
1251 read_width(&insns[i]) == 4) {
1252 *hints |= BJ_HINT_LDW;
1253 }
1254
1255 if (BPF_MODE(insns[i].code) == BPF_IND) {
1256 *hints |= BJ_HINT_XREG | BJ_HINT_IND;
1257 *initmask |= invalid & BJ_INIT_XBIT;
1258 }
1259
1260 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1261 (uint32_t)insns[i].k < memwords) {
1262 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1263 }
1264
1265 invalid &= ~BJ_INIT_ABIT;
1266 continue;
1267
1268 case BPF_LDX:
1269 *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1270
1271 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1272 (uint32_t)insns[i].k < memwords) {
1273 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1274 }
1275
1276 invalid &= ~BJ_INIT_XBIT;
1277 continue;
1278
1279 case BPF_ST:
1280 *initmask |= invalid & BJ_INIT_ABIT;
1281
1282 if ((uint32_t)insns[i].k < memwords)
1283 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1284
1285 continue;
1286
1287 case BPF_STX:
1288 *hints |= BJ_HINT_XREG;
1289 *initmask |= invalid & BJ_INIT_XBIT;
1290
1291 if ((uint32_t)insns[i].k < memwords)
1292 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1293
1294 continue;
1295
1296 case BPF_ALU:
1297 *initmask |= invalid & BJ_INIT_ABIT;
1298
1299 if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1300 BPF_SRC(insns[i].code) == BPF_X) {
1301 *hints |= BJ_HINT_XREG;
1302 *initmask |= invalid & BJ_INIT_XBIT;
1303 }
1304
1305 invalid &= ~BJ_INIT_ABIT;
1306 continue;
1307
1308 case BPF_MISC:
1309 switch (BPF_MISCOP(insns[i].code)) {
1310 case BPF_TAX: // X <- A
1311 *hints |= BJ_HINT_XREG;
1312 *initmask |= invalid & BJ_INIT_ABIT;
1313 invalid &= ~BJ_INIT_XBIT;
1314 continue;
1315
1316 case BPF_TXA: // A <- X
1317 *hints |= BJ_HINT_XREG;
1318 *initmask |= invalid & BJ_INIT_XBIT;
1319 invalid &= ~BJ_INIT_ABIT;
1320 continue;
1321
1322 case BPF_COPX:
1323 *hints |= BJ_HINT_XREG;
1324 /* FALLTHROUGH */
1325
1326 case BPF_COP:
1327 *hints |= BJ_HINT_COP;
1328 *initmask |= invalid & BJ_INIT_ABIT;
1329 invalid &= ~BJ_INIT_ABIT;
1330 continue;
1331 }
1332
1333 continue;
1334
1335 case BPF_JMP:
1336 /* Initialize abc_length for ABC pass. */
1337 insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1338
1339 if (BPF_OP(insns[i].code) == BPF_JA) {
1340 jt = jf = insns[i].k;
1341 } else {
1342 jt = insns[i].jt;
1343 jf = insns[i].jf;
1344 }
1345
1346 if (jt >= insn_count - (i + 1) ||
1347 jf >= insn_count - (i + 1)) {
1348 return false;
1349 }
1350
1351 if (jt > 0 && jf > 0)
1352 unreachable = true;
1353
1354 jt += i + 1;
1355 jf += i + 1;
1356
1357 jtf = insn_dat[i].u.jdata.jtf;
1358
1359 jtf[0].sjump = NULL;
1360 jtf[0].jdata = &insn_dat[i].u.jdata;
1361 SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1362 &jtf[0], entries);
1363
1364 if (jf != jt) {
1365 jtf[1].sjump = NULL;
1366 jtf[1].jdata = &insn_dat[i].u.jdata;
1367 SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1368 &jtf[1], entries);
1369 }
1370
1371 insn_dat[jf].invalid |= invalid;
1372 insn_dat[jt].invalid |= invalid;
1373 invalid = 0;
1374
1375 continue;
1376 }
1377 }
1378
1379 return true;
1380 }
1381
1382 /*
1383 * Array Bounds Check Elimination (ABC) pass.
1384 */
1385 static void
1386 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1387 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1388 {
1389 struct bpfjit_jump *jmp;
1390 const struct bpf_insn *pc;
1391 struct bpfjit_insn_data *pd;
1392 size_t i;
1393 bpfjit_abc_length_t length, abc_length = 0;
1394
1395 const size_t extwords = GET_EXTWORDS(bc);
1396
1397 for (i = insn_count; i != 0; i--) {
1398 pc = &insns[i-1];
1399 pd = &insn_dat[i-1];
1400
1401 if (pd->unreachable)
1402 continue;
1403
1404 switch (BPF_CLASS(pc->code)) {
1405 case BPF_RET:
1406 /*
1407 * It's quite common for bpf programs to
1408 * check packet bytes in increasing order
1409 * and return zero if bytes don't match
1410 * specified critetion. Such programs disable
1411 * ABC optimization completely because for
1412 * every jump there is a branch with no read
1413 * instruction.
1414 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1415 * is indistinguishable from out-of-bound load.
1416 * Therefore, abc_length can be set to
1417 * MAX_ABC_LENGTH and enable ABC for many
1418 * bpf programs.
1419 * If this optimization encounters any
1420 * instruction with a side effect, it will
1421 * reset abc_length.
1422 */
1423 if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1424 abc_length = MAX_ABC_LENGTH;
1425 else
1426 abc_length = 0;
1427 break;
1428
1429 case BPF_MISC:
1430 if (BPF_MISCOP(pc->code) == BPF_COP ||
1431 BPF_MISCOP(pc->code) == BPF_COPX) {
1432 /* COP instructions can have side effects. */
1433 abc_length = 0;
1434 }
1435 break;
1436
1437 case BPF_ST:
1438 case BPF_STX:
1439 if (extwords != 0) {
1440 /* Write to memory is visible after a call. */
1441 abc_length = 0;
1442 }
1443 break;
1444
1445 case BPF_JMP:
1446 abc_length = pd->u.jdata.abc_length;
1447 break;
1448
1449 default:
1450 if (read_pkt_insn(pc, &length)) {
1451 if (abc_length < length)
1452 abc_length = length;
1453 pd->u.rdata.abc_length = abc_length;
1454 }
1455 break;
1456 }
1457
1458 SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1459 if (jmp->jdata->abc_length > abc_length)
1460 jmp->jdata->abc_length = abc_length;
1461 }
1462 }
1463 }
1464
1465 static void
1466 optimize_pass3(const struct bpf_insn *insns,
1467 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1468 {
1469 struct bpfjit_jump *jmp;
1470 size_t i;
1471 bpfjit_abc_length_t checked_length = 0;
1472
1473 for (i = 0; i < insn_count; i++) {
1474 if (insn_dat[i].unreachable)
1475 continue;
1476
1477 SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1478 if (jmp->jdata->checked_length < checked_length)
1479 checked_length = jmp->jdata->checked_length;
1480 }
1481
1482 if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1483 insn_dat[i].u.jdata.checked_length = checked_length;
1484 } else if (read_pkt_insn(&insns[i], NULL)) {
1485 struct bpfjit_read_pkt_data *rdata =
1486 &insn_dat[i].u.rdata;
1487 rdata->check_length = 0;
1488 if (checked_length < rdata->abc_length) {
1489 checked_length = rdata->abc_length;
1490 rdata->check_length = checked_length;
1491 }
1492 }
1493 }
1494 }
1495
1496 static bool
1497 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1498 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1499 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1500 {
1501
1502 optimize_init(insn_dat, insn_count);
1503
1504 if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1505 return false;
1506
1507 optimize_pass2(bc, insns, insn_dat, insn_count);
1508 optimize_pass3(insns, insn_dat, insn_count);
1509
1510 return true;
1511 }
1512
1513 /*
1514 * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1515 */
1516 static int
1517 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1518 {
1519
1520 /*
1521 * Note: all supported 64bit arches have 32bit multiply
1522 * instruction so SLJIT_INT_OP doesn't have any overhead.
1523 */
1524 switch (BPF_OP(pc->code)) {
1525 case BPF_ADD: return SLJIT_ADD;
1526 case BPF_SUB: return SLJIT_SUB;
1527 case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1528 case BPF_OR: return SLJIT_OR;
1529 case BPF_AND: return SLJIT_AND;
1530 case BPF_LSH: return SLJIT_SHL;
1531 case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1532 default:
1533 BJ_ASSERT(false);
1534 return 0;
1535 }
1536 }
1537
1538 /*
1539 * Convert BPF_JMP operations except BPF_JA to sljit condition.
1540 */
1541 static int
1542 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1543 {
1544 /*
1545 * Note: all supported 64bit arches have 32bit comparison
1546 * instructions so SLJIT_INT_OP doesn't have any overhead.
1547 */
1548 int rv = SLJIT_INT_OP;
1549
1550 switch (BPF_OP(pc->code)) {
1551 case BPF_JGT:
1552 rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1553 break;
1554 case BPF_JGE:
1555 rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1556 break;
1557 case BPF_JEQ:
1558 rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1559 break;
1560 case BPF_JSET:
1561 rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1562 break;
1563 default:
1564 BJ_ASSERT(false);
1565 }
1566
1567 return rv;
1568 }
1569
1570 /*
1571 * Convert BPF_K and BPF_X to sljit register.
1572 */
1573 static int
1574 kx_to_reg(const struct bpf_insn *pc)
1575 {
1576
1577 switch (BPF_SRC(pc->code)) {
1578 case BPF_K: return SLJIT_IMM;
1579 case BPF_X: return BJ_XREG;
1580 default:
1581 BJ_ASSERT(false);
1582 return 0;
1583 }
1584 }
1585
1586 static sljit_sw
1587 kx_to_reg_arg(const struct bpf_insn *pc)
1588 {
1589
1590 switch (BPF_SRC(pc->code)) {
1591 case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1592 case BPF_X: return 0; /* BJ_XREG, 0, */
1593 default:
1594 BJ_ASSERT(false);
1595 return 0;
1596 }
1597 }
1598
1599 static bool
1600 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
1601 const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
1602 size_t insn_count)
1603 {
1604 /* a list of jumps to out-of-bound return from a generated function */
1605 struct sljit_jump **ret0;
1606 size_t ret0_size, ret0_maxsize;
1607
1608 struct sljit_jump *jump;
1609 struct sljit_label *label;
1610 const struct bpf_insn *pc;
1611 struct bpfjit_jump *bjump, *jtf;
1612 struct sljit_jump *to_mchain_jump;
1613
1614 size_t i;
1615 int status;
1616 int branching, negate;
1617 unsigned int rval, mode, src;
1618 uint32_t jt, jf;
1619
1620 bool unconditional_ret;
1621 bool rv;
1622
1623 const size_t extwords = GET_EXTWORDS(bc);
1624 const size_t memwords = GET_MEMWORDS(bc);
1625
1626 ret0 = NULL;
1627 rv = false;
1628
1629 ret0_size = 0;
1630 ret0_maxsize = 64;
1631 ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1632 if (ret0 == NULL)
1633 goto fail;
1634
1635 for (i = 0; i < insn_count; i++) {
1636 if (insn_dat[i].unreachable)
1637 continue;
1638
1639 /*
1640 * Resolve jumps to the current insn.
1641 */
1642 label = NULL;
1643 SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1644 if (bjump->sjump != NULL) {
1645 if (label == NULL)
1646 label = sljit_emit_label(compiler);
1647 if (label == NULL)
1648 goto fail;
1649 sljit_set_label(bjump->sjump, label);
1650 }
1651 }
1652
1653 to_mchain_jump = NULL;
1654 unconditional_ret = false;
1655
1656 if (read_pkt_insn(&insns[i], NULL)) {
1657 if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1658 /* Jump to "return 0" unconditionally. */
1659 unconditional_ret = true;
1660 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1661 if (jump == NULL)
1662 goto fail;
1663 if (!append_jump(jump, &ret0,
1664 &ret0_size, &ret0_maxsize))
1665 goto fail;
1666 } else if (insn_dat[i].u.rdata.check_length > 0) {
1667 /* if (buflen < check_length) return 0; */
1668 jump = sljit_emit_cmp(compiler,
1669 SLJIT_C_LESS,
1670 BJ_BUFLEN, 0,
1671 SLJIT_IMM,
1672 insn_dat[i].u.rdata.check_length);
1673 if (jump == NULL)
1674 goto fail;
1675 #ifdef _KERNEL
1676 to_mchain_jump = jump;
1677 #else
1678 if (!append_jump(jump, &ret0,
1679 &ret0_size, &ret0_maxsize))
1680 goto fail;
1681 #endif
1682 }
1683 }
1684
1685 pc = &insns[i];
1686 switch (BPF_CLASS(pc->code)) {
1687
1688 default:
1689 goto fail;
1690
1691 case BPF_LD:
1692 /* BPF_LD+BPF_IMM A <- k */
1693 if (pc->code == (BPF_LD|BPF_IMM)) {
1694 status = sljit_emit_op1(compiler,
1695 SLJIT_MOV,
1696 BJ_AREG, 0,
1697 SLJIT_IMM, (uint32_t)pc->k);
1698 if (status != SLJIT_SUCCESS)
1699 goto fail;
1700
1701 continue;
1702 }
1703
1704 /* BPF_LD+BPF_MEM A <- M[k] */
1705 if (pc->code == (BPF_LD|BPF_MEM)) {
1706 if ((uint32_t)pc->k >= memwords)
1707 goto fail;
1708 status = emit_memload(compiler,
1709 BJ_AREG, pc->k, extwords);
1710 if (status != SLJIT_SUCCESS)
1711 goto fail;
1712
1713 continue;
1714 }
1715
1716 /* BPF_LD+BPF_W+BPF_LEN A <- len */
1717 if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1718 status = sljit_emit_op1(compiler,
1719 SLJIT_MOV, /* size_t source */
1720 BJ_AREG, 0,
1721 SLJIT_MEM1(BJ_ARGS),
1722 offsetof(struct bpf_args, wirelen));
1723 if (status != SLJIT_SUCCESS)
1724 goto fail;
1725
1726 continue;
1727 }
1728
1729 mode = BPF_MODE(pc->code);
1730 if (mode != BPF_ABS && mode != BPF_IND)
1731 goto fail;
1732
1733 if (unconditional_ret)
1734 continue;
1735
1736 status = emit_pkt_read(compiler, pc,
1737 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1738 if (status != SLJIT_SUCCESS)
1739 goto fail;
1740
1741 continue;
1742
1743 case BPF_LDX:
1744 mode = BPF_MODE(pc->code);
1745
1746 /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1747 if (mode == BPF_IMM) {
1748 if (BPF_SIZE(pc->code) != BPF_W)
1749 goto fail;
1750 status = sljit_emit_op1(compiler,
1751 SLJIT_MOV,
1752 BJ_XREG, 0,
1753 SLJIT_IMM, (uint32_t)pc->k);
1754 if (status != SLJIT_SUCCESS)
1755 goto fail;
1756
1757 continue;
1758 }
1759
1760 /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1761 if (mode == BPF_LEN) {
1762 if (BPF_SIZE(pc->code) != BPF_W)
1763 goto fail;
1764 status = sljit_emit_op1(compiler,
1765 SLJIT_MOV, /* size_t source */
1766 BJ_XREG, 0,
1767 SLJIT_MEM1(BJ_ARGS),
1768 offsetof(struct bpf_args, wirelen));
1769 if (status != SLJIT_SUCCESS)
1770 goto fail;
1771
1772 continue;
1773 }
1774
1775 /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1776 if (mode == BPF_MEM) {
1777 if (BPF_SIZE(pc->code) != BPF_W)
1778 goto fail;
1779 if ((uint32_t)pc->k >= memwords)
1780 goto fail;
1781 status = emit_memload(compiler,
1782 BJ_XREG, pc->k, extwords);
1783 if (status != SLJIT_SUCCESS)
1784 goto fail;
1785
1786 continue;
1787 }
1788
1789 /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1790 if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1791 goto fail;
1792
1793 if (unconditional_ret)
1794 continue;
1795
1796 status = emit_msh(compiler, pc,
1797 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1798 if (status != SLJIT_SUCCESS)
1799 goto fail;
1800
1801 continue;
1802
1803 case BPF_ST:
1804 if (pc->code != BPF_ST ||
1805 (uint32_t)pc->k >= memwords) {
1806 goto fail;
1807 }
1808
1809 status = emit_memstore(compiler,
1810 BJ_AREG, pc->k, extwords);
1811 if (status != SLJIT_SUCCESS)
1812 goto fail;
1813
1814 continue;
1815
1816 case BPF_STX:
1817 if (pc->code != BPF_STX ||
1818 (uint32_t)pc->k >= memwords) {
1819 goto fail;
1820 }
1821
1822 status = emit_memstore(compiler,
1823 BJ_XREG, pc->k, extwords);
1824 if (status != SLJIT_SUCCESS)
1825 goto fail;
1826
1827 continue;
1828
1829 case BPF_ALU:
1830 if (pc->code == (BPF_ALU|BPF_NEG)) {
1831 status = sljit_emit_op1(compiler,
1832 SLJIT_NEG,
1833 BJ_AREG, 0,
1834 BJ_AREG, 0);
1835 if (status != SLJIT_SUCCESS)
1836 goto fail;
1837
1838 continue;
1839 }
1840
1841 if (BPF_OP(pc->code) != BPF_DIV) {
1842 status = sljit_emit_op2(compiler,
1843 bpf_alu_to_sljit_op(pc),
1844 BJ_AREG, 0,
1845 BJ_AREG, 0,
1846 kx_to_reg(pc), kx_to_reg_arg(pc));
1847 if (status != SLJIT_SUCCESS)
1848 goto fail;
1849
1850 continue;
1851 }
1852
1853 /* BPF_DIV */
1854
1855 src = BPF_SRC(pc->code);
1856 if (src != BPF_X && src != BPF_K)
1857 goto fail;
1858
1859 /* division by zero? */
1860 if (src == BPF_X) {
1861 jump = sljit_emit_cmp(compiler,
1862 SLJIT_C_EQUAL|SLJIT_INT_OP,
1863 BJ_XREG, 0,
1864 SLJIT_IMM, 0);
1865 if (jump == NULL)
1866 goto fail;
1867 if (!append_jump(jump, &ret0,
1868 &ret0_size, &ret0_maxsize))
1869 goto fail;
1870 } else if (pc->k == 0) {
1871 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1872 if (jump == NULL)
1873 goto fail;
1874 if (!append_jump(jump, &ret0,
1875 &ret0_size, &ret0_maxsize))
1876 goto fail;
1877 }
1878
1879 if (src == BPF_X) {
1880 status = emit_division(compiler, BJ_XREG, 0);
1881 if (status != SLJIT_SUCCESS)
1882 goto fail;
1883 } else if (pc->k != 0) {
1884 if (pc->k & (pc->k - 1)) {
1885 status = emit_division(compiler,
1886 SLJIT_IMM, (uint32_t)pc->k);
1887 } else {
1888 status = emit_pow2_division(compiler,
1889 (uint32_t)pc->k);
1890 }
1891 if (status != SLJIT_SUCCESS)
1892 goto fail;
1893 }
1894
1895 continue;
1896
1897 case BPF_JMP:
1898 if (BPF_OP(pc->code) == BPF_JA) {
1899 jt = jf = pc->k;
1900 } else {
1901 jt = pc->jt;
1902 jf = pc->jf;
1903 }
1904
1905 negate = (jt == 0) ? 1 : 0;
1906 branching = (jt == jf) ? 0 : 1;
1907 jtf = insn_dat[i].u.jdata.jtf;
1908
1909 if (branching) {
1910 if (BPF_OP(pc->code) != BPF_JSET) {
1911 jump = sljit_emit_cmp(compiler,
1912 bpf_jmp_to_sljit_cond(pc, negate),
1913 BJ_AREG, 0,
1914 kx_to_reg(pc), kx_to_reg_arg(pc));
1915 } else {
1916 status = sljit_emit_op2(compiler,
1917 SLJIT_AND,
1918 BJ_TMP1REG, 0,
1919 BJ_AREG, 0,
1920 kx_to_reg(pc), kx_to_reg_arg(pc));
1921 if (status != SLJIT_SUCCESS)
1922 goto fail;
1923
1924 jump = sljit_emit_cmp(compiler,
1925 bpf_jmp_to_sljit_cond(pc, negate),
1926 BJ_TMP1REG, 0,
1927 SLJIT_IMM, 0);
1928 }
1929
1930 if (jump == NULL)
1931 goto fail;
1932
1933 BJ_ASSERT(jtf[negate].sjump == NULL);
1934 jtf[negate].sjump = jump;
1935 }
1936
1937 if (!branching || (jt != 0 && jf != 0)) {
1938 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1939 if (jump == NULL)
1940 goto fail;
1941
1942 BJ_ASSERT(jtf[branching].sjump == NULL);
1943 jtf[branching].sjump = jump;
1944 }
1945
1946 continue;
1947
1948 case BPF_RET:
1949 rval = BPF_RVAL(pc->code);
1950 if (rval == BPF_X)
1951 goto fail;
1952
1953 /* BPF_RET+BPF_K accept k bytes */
1954 if (rval == BPF_K) {
1955 status = sljit_emit_return(compiler,
1956 SLJIT_MOV_UI,
1957 SLJIT_IMM, (uint32_t)pc->k);
1958 if (status != SLJIT_SUCCESS)
1959 goto fail;
1960 }
1961
1962 /* BPF_RET+BPF_A accept A bytes */
1963 if (rval == BPF_A) {
1964 status = sljit_emit_return(compiler,
1965 SLJIT_MOV_UI,
1966 BJ_AREG, 0);
1967 if (status != SLJIT_SUCCESS)
1968 goto fail;
1969 }
1970
1971 continue;
1972
1973 case BPF_MISC:
1974 switch (BPF_MISCOP(pc->code)) {
1975 case BPF_TAX:
1976 status = sljit_emit_op1(compiler,
1977 SLJIT_MOV_UI,
1978 BJ_XREG, 0,
1979 BJ_AREG, 0);
1980 if (status != SLJIT_SUCCESS)
1981 goto fail;
1982
1983 continue;
1984
1985 case BPF_TXA:
1986 status = sljit_emit_op1(compiler,
1987 SLJIT_MOV,
1988 BJ_AREG, 0,
1989 BJ_XREG, 0);
1990 if (status != SLJIT_SUCCESS)
1991 goto fail;
1992
1993 continue;
1994
1995 case BPF_COP:
1996 case BPF_COPX:
1997 if (bc == NULL || bc->copfuncs == NULL)
1998 goto fail;
1999 if (BPF_MISCOP(pc->code) == BPF_COP &&
2000 (uint32_t)pc->k >= bc->nfuncs) {
2001 goto fail;
2002 }
2003
2004 jump = NULL;
2005 status = emit_cop(compiler, bc, pc, &jump);
2006 if (status != SLJIT_SUCCESS)
2007 goto fail;
2008
2009 if (jump != NULL && !append_jump(jump,
2010 &ret0, &ret0_size, &ret0_maxsize))
2011 goto fail;
2012
2013 continue;
2014 }
2015
2016 goto fail;
2017 } /* switch */
2018 } /* main loop */
2019
2020 BJ_ASSERT(ret0_size <= ret0_maxsize);
2021
2022 if (ret0_size > 0) {
2023 label = sljit_emit_label(compiler);
2024 if (label == NULL)
2025 goto fail;
2026 for (i = 0; i < ret0_size; i++)
2027 sljit_set_label(ret0[i], label);
2028 }
2029
2030 rv = true;
2031
2032 fail:
2033 if (ret0 != NULL)
2034 BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2035
2036 return rv;
2037 }
2038
2039 bpfjit_func_t
2040 bpfjit_generate_code(const bpf_ctx_t *bc,
2041 const struct bpf_insn *insns, size_t insn_count)
2042 {
2043 void *rv;
2044 struct sljit_compiler *compiler;
2045
2046 size_t i;
2047 int status;
2048
2049 /* optimization related */
2050 bpf_memword_init_t initmask;
2051 bpfjit_hint_t hints;
2052
2053 /* memory store location for initial zero initialization */
2054 sljit_si mem_reg;
2055 sljit_sw mem_off;
2056
2057 struct bpfjit_insn_data *insn_dat;
2058
2059 const size_t extwords = GET_EXTWORDS(bc);
2060 const size_t memwords = GET_MEMWORDS(bc);
2061 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2062
2063 rv = NULL;
2064 compiler = NULL;
2065 insn_dat = NULL;
2066
2067 if (memwords > MAX_MEMWORDS)
2068 goto fail;
2069
2070 if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2071 goto fail;
2072
2073 insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2074 if (insn_dat == NULL)
2075 goto fail;
2076
2077 if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2078 goto fail;
2079
2080 compiler = sljit_create_compiler();
2081 if (compiler == NULL)
2082 goto fail;
2083
2084 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2085 sljit_compiler_verbose(compiler, stderr);
2086 #endif
2087
2088 status = sljit_emit_enter(compiler,
2089 2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
2090 if (status != SLJIT_SUCCESS)
2091 goto fail;
2092
2093 if (hints & BJ_HINT_COP) {
2094 /* save ctx argument */
2095 status = sljit_emit_op1(compiler,
2096 SLJIT_MOV_P,
2097 SLJIT_MEM1(SLJIT_LOCALS_REG),
2098 offsetof(struct bpfjit_stack, ctx),
2099 BJ_CTX_ARG, 0);
2100 if (status != SLJIT_SUCCESS)
2101 goto fail;
2102 }
2103
2104 if (extwords == 0) {
2105 mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2106 mem_off = offsetof(struct bpfjit_stack, mem);
2107 } else {
2108 /* copy "mem" argument from bpf_args to bpfjit_stack */
2109 status = sljit_emit_op1(compiler,
2110 SLJIT_MOV_P,
2111 BJ_TMP1REG, 0,
2112 SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2113 if (status != SLJIT_SUCCESS)
2114 goto fail;
2115
2116 status = sljit_emit_op1(compiler,
2117 SLJIT_MOV_P,
2118 SLJIT_MEM1(SLJIT_LOCALS_REG),
2119 offsetof(struct bpfjit_stack, extmem),
2120 BJ_TMP1REG, 0);
2121 if (status != SLJIT_SUCCESS)
2122 goto fail;
2123
2124 mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2125 mem_off = 0;
2126 }
2127
2128 /*
2129 * Exclude pre-initialised external memory words but keep
2130 * initialization statuses of A and X registers in case
2131 * bc->preinited wrongly sets those two bits.
2132 */
2133 initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2134
2135 #if defined(_KERNEL)
2136 /* bpf_filter() checks initialization of memwords. */
2137 BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2138 #endif
2139 for (i = 0; i < memwords; i++) {
2140 if (initmask & BJ_INIT_MBIT(i)) {
2141 /* M[i] = 0; */
2142 status = sljit_emit_op1(compiler,
2143 SLJIT_MOV_UI,
2144 mem_reg, mem_off + i * sizeof(uint32_t),
2145 SLJIT_IMM, 0);
2146 if (status != SLJIT_SUCCESS)
2147 goto fail;
2148 }
2149 }
2150
2151 if (initmask & BJ_INIT_ABIT) {
2152 /* A = 0; */
2153 status = sljit_emit_op1(compiler,
2154 SLJIT_MOV,
2155 BJ_AREG, 0,
2156 SLJIT_IMM, 0);
2157 if (status != SLJIT_SUCCESS)
2158 goto fail;
2159 }
2160
2161 if (initmask & BJ_INIT_XBIT) {
2162 /* X = 0; */
2163 status = sljit_emit_op1(compiler,
2164 SLJIT_MOV,
2165 BJ_XREG, 0,
2166 SLJIT_IMM, 0);
2167 if (status != SLJIT_SUCCESS)
2168 goto fail;
2169 }
2170
2171 status = load_buf_buflen(compiler);
2172 if (status != SLJIT_SUCCESS)
2173 goto fail;
2174
2175 if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
2176 goto fail;
2177
2178 status = sljit_emit_return(compiler,
2179 SLJIT_MOV_UI,
2180 SLJIT_IMM, 0);
2181 if (status != SLJIT_SUCCESS)
2182 goto fail;
2183
2184 rv = sljit_generate_code(compiler);
2185
2186 fail:
2187 if (compiler != NULL)
2188 sljit_free_compiler(compiler);
2189
2190 if (insn_dat != NULL)
2191 BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2192
2193 return (bpfjit_func_t)rv;
2194 }
2195
2196 void
2197 bpfjit_free_code(bpfjit_func_t code)
2198 {
2199
2200 sljit_free_code((void *)code);
2201 }
2202