bpfjit.c revision 1.23 1 /* $NetBSD: bpfjit.c,v 1.23 2014/07/11 20:43:33 alnsn Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 Alexander Nasonov.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef _KERNEL
34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.23 2014/07/11 20:43:33 alnsn Exp $");
35 #else
36 __RCSID("$NetBSD: bpfjit.c,v 1.23 2014/07/11 20:43:33 alnsn Exp $");
37 #endif
38
39 #include <sys/types.h>
40 #include <sys/queue.h>
41
42 #ifndef _KERNEL
43 #include <assert.h>
44 #define BJ_ASSERT(c) assert(c)
45 #else
46 #define BJ_ASSERT(c) KASSERT(c)
47 #endif
48
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #define BJ_ALLOC(sz) malloc(sz)
52 #define BJ_FREE(p, sz) free(p)
53 #else
54 #include <sys/kmem.h>
55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 #define BJ_FREE(p, sz) kmem_free(p, sz)
57 #endif
58
59 #ifndef _KERNEL
60 #include <limits.h>
61 #include <stdbool.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #else
65 #include <sys/atomic.h>
66 #include <sys/module.h>
67 #endif
68
69 #define __BPF_PRIVATE
70 #include <net/bpf.h>
71 #include <net/bpfjit.h>
72 #include <sljitLir.h>
73
74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 #include <stdio.h> /* for stderr */
76 #endif
77
78 /*
79 * Arguments of generated bpfjit_func_t.
80 * The first argument is reassigned upon entry
81 * to a more frequently used buf argument.
82 */
83 #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 #define BJ_ARGS SLJIT_SAVED_REG2
85
86 /*
87 * Permanent register assignments.
88 */
89 #define BJ_BUF SLJIT_SAVED_REG1
90 //#define BJ_ARGS SLJIT_SAVED_REG2
91 #define BJ_BUFLEN SLJIT_SAVED_REG3
92 #define BJ_AREG SLJIT_SCRATCH_REG1
93 #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97
98 /*
99 * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 */
102 #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 #define BJ_COPF_IDX SLJIT_SAVED_REG3
104
105 #ifdef _KERNEL
106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 #else
108 #define MAX_MEMWORDS BPF_MEMWORDS
109 #endif
110
111 #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115
116 /*
117 * Get a number of memwords and external memwords from a bpf_ctx object.
118 */
119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
121
122 /*
123 * Optimization hints.
124 */
125 typedef unsigned int bpfjit_hint_t;
126 #define BJ_HINT_LDW 0x01 /* 32-bit packet read */
127 #define BJ_HINT_IND 0x02 /* packet read at a variable offset */
128 #define BJ_HINT_COP 0x04 /* BPF_COP or BPF_COPX instruction */
129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed */
130 #define BJ_HINT_LDX 0x10 /* BPF_LDX instruction */
131
132 /*
133 * Datatype for Array Bounds Check Elimination (ABC) pass.
134 */
135 typedef uint64_t bpfjit_abc_length_t;
136 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
137
138 struct bpfjit_stack
139 {
140 bpf_ctx_t *ctx;
141 uint32_t *extmem; /* pointer to external memory store */
142 #ifdef _KERNEL
143 int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
144 #endif
145 uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
146 };
147
148 /*
149 * Data for BPF_JMP instruction.
150 * Forward declaration for struct bpfjit_jump.
151 */
152 struct bpfjit_jump_data;
153
154 /*
155 * Node of bjumps list.
156 */
157 struct bpfjit_jump {
158 struct sljit_jump *sjump;
159 SLIST_ENTRY(bpfjit_jump) entries;
160 struct bpfjit_jump_data *jdata;
161 };
162
163 /*
164 * Data for BPF_JMP instruction.
165 */
166 struct bpfjit_jump_data {
167 /*
168 * These entries make up bjumps list:
169 * jtf[0] - when coming from jt path,
170 * jtf[1] - when coming from jf path.
171 */
172 struct bpfjit_jump jtf[2];
173 /*
174 * Length calculated by Array Bounds Check Elimination (ABC) pass.
175 */
176 bpfjit_abc_length_t abc_length;
177 /*
178 * Length checked by the last out-of-bounds check.
179 */
180 bpfjit_abc_length_t checked_length;
181 };
182
183 /*
184 * Data for "read from packet" instructions.
185 * See also read_pkt_insn() function below.
186 */
187 struct bpfjit_read_pkt_data {
188 /*
189 * Length calculated by Array Bounds Check Elimination (ABC) pass.
190 */
191 bpfjit_abc_length_t abc_length;
192 /*
193 * If positive, emit "if (buflen < check_length) return 0"
194 * out-of-bounds check.
195 * Values greater than UINT32_MAX generate unconditional "return 0".
196 */
197 bpfjit_abc_length_t check_length;
198 };
199
200 /*
201 * Additional (optimization-related) data for bpf_insn.
202 */
203 struct bpfjit_insn_data {
204 /* List of jumps to this insn. */
205 SLIST_HEAD(, bpfjit_jump) bjumps;
206
207 union {
208 struct bpfjit_jump_data jdata;
209 struct bpfjit_read_pkt_data rdata;
210 } u;
211
212 bpf_memword_init_t invalid;
213 bool unreachable;
214 };
215
216 #ifdef _KERNEL
217
218 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
219 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
220 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
221
222 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
223
224 static int
225 bpfjit_modcmd(modcmd_t cmd, void *arg)
226 {
227
228 switch (cmd) {
229 case MODULE_CMD_INIT:
230 bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
231 membar_producer();
232 bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
233 membar_producer();
234 return 0;
235
236 case MODULE_CMD_FINI:
237 return EOPNOTSUPP;
238
239 default:
240 return ENOTTY;
241 }
242 }
243 #endif
244
245 /*
246 * Return a number of scratch registers to pass
247 * to sljit_emit_enter() function.
248 */
249 static sljit_si
250 nscratches(bpfjit_hint_t hints)
251 {
252 sljit_si rv = 2;
253
254 #ifdef _KERNEL
255 /*
256 * Most kernel programs load packet bytes and they generate
257 * m_xword/m_xhalf/m_xbyte() calls with three arguments.
258 */
259 rv = 3;
260 #endif
261
262 if (hints & BJ_HINT_LDW)
263 rv = 3; /* uses BJ_TMP2REG */
264
265 if (hints & BJ_HINT_COP)
266 rv = 3; /* calls copfunc with three arguments */
267
268 if (hints & BJ_HINT_XREG)
269 rv = 4; /* uses BJ_XREG */
270
271 #ifdef _KERNEL
272 if (hints & BJ_HINT_LDX)
273 rv = 5; /* uses BJ_TMP3REG */
274 #endif
275
276 return rv;
277 }
278
279 static uint32_t
280 read_width(const struct bpf_insn *pc)
281 {
282
283 switch (BPF_SIZE(pc->code)) {
284 case BPF_W:
285 return 4;
286 case BPF_H:
287 return 2;
288 case BPF_B:
289 return 1;
290 default:
291 BJ_ASSERT(false);
292 return 0;
293 }
294 }
295
296 /*
297 * Copy buf and buflen members of bpf_args from BJ_ARGS
298 * pointer to BJ_BUF and BJ_BUFLEN registers.
299 */
300 static int
301 load_buf_buflen(struct sljit_compiler *compiler)
302 {
303 int status;
304
305 status = sljit_emit_op1(compiler,
306 SLJIT_MOV_P,
307 BJ_BUF, 0,
308 SLJIT_MEM1(BJ_ARGS),
309 offsetof(struct bpf_args, pkt));
310 if (status != SLJIT_SUCCESS)
311 return status;
312
313 status = sljit_emit_op1(compiler,
314 SLJIT_MOV, /* size_t source */
315 BJ_BUFLEN, 0,
316 SLJIT_MEM1(BJ_ARGS),
317 offsetof(struct bpf_args, buflen));
318
319 return status;
320 }
321
322 static bool
323 grow_jumps(struct sljit_jump ***jumps, size_t *size)
324 {
325 struct sljit_jump **newptr;
326 const size_t elemsz = sizeof(struct sljit_jump *);
327 size_t old_size = *size;
328 size_t new_size = 2 * old_size;
329
330 if (new_size < old_size || new_size > SIZE_MAX / elemsz)
331 return false;
332
333 newptr = BJ_ALLOC(new_size * elemsz);
334 if (newptr == NULL)
335 return false;
336
337 memcpy(newptr, *jumps, old_size * elemsz);
338 BJ_FREE(*jumps, old_size * elemsz);
339
340 *jumps = newptr;
341 *size = new_size;
342 return true;
343 }
344
345 static bool
346 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
347 size_t *size, size_t *max_size)
348 {
349 if (*size == *max_size && !grow_jumps(jumps, max_size))
350 return false;
351
352 (*jumps)[(*size)++] = jump;
353 return true;
354 }
355
356 /*
357 * Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
358 */
359 static int
360 emit_read8(struct sljit_compiler *compiler, uint32_t k)
361 {
362
363 return sljit_emit_op1(compiler,
364 SLJIT_MOV_UB,
365 BJ_AREG, 0,
366 SLJIT_MEM1(BJ_BUF), k);
367 }
368
369 /*
370 * Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
371 */
372 static int
373 emit_read16(struct sljit_compiler *compiler, uint32_t k)
374 {
375 int status;
376
377 /* tmp1 = buf[k]; */
378 status = sljit_emit_op1(compiler,
379 SLJIT_MOV_UB,
380 BJ_TMP1REG, 0,
381 SLJIT_MEM1(BJ_BUF), k);
382 if (status != SLJIT_SUCCESS)
383 return status;
384
385 /* A = buf[k+1]; */
386 status = sljit_emit_op1(compiler,
387 SLJIT_MOV_UB,
388 BJ_AREG, 0,
389 SLJIT_MEM1(BJ_BUF), k+1);
390 if (status != SLJIT_SUCCESS)
391 return status;
392
393 /* tmp1 = tmp1 << 8; */
394 status = sljit_emit_op2(compiler,
395 SLJIT_SHL,
396 BJ_TMP1REG, 0,
397 BJ_TMP1REG, 0,
398 SLJIT_IMM, 8);
399 if (status != SLJIT_SUCCESS)
400 return status;
401
402 /* A = A + tmp1; */
403 status = sljit_emit_op2(compiler,
404 SLJIT_ADD,
405 BJ_AREG, 0,
406 BJ_AREG, 0,
407 BJ_TMP1REG, 0);
408 return status;
409 }
410
411 /*
412 * Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
413 */
414 static int
415 emit_read32(struct sljit_compiler *compiler, uint32_t k)
416 {
417 int status;
418
419 /* tmp1 = buf[k]; */
420 status = sljit_emit_op1(compiler,
421 SLJIT_MOV_UB,
422 BJ_TMP1REG, 0,
423 SLJIT_MEM1(BJ_BUF), k);
424 if (status != SLJIT_SUCCESS)
425 return status;
426
427 /* tmp2 = buf[k+1]; */
428 status = sljit_emit_op1(compiler,
429 SLJIT_MOV_UB,
430 BJ_TMP2REG, 0,
431 SLJIT_MEM1(BJ_BUF), k+1);
432 if (status != SLJIT_SUCCESS)
433 return status;
434
435 /* A = buf[k+3]; */
436 status = sljit_emit_op1(compiler,
437 SLJIT_MOV_UB,
438 BJ_AREG, 0,
439 SLJIT_MEM1(BJ_BUF), k+3);
440 if (status != SLJIT_SUCCESS)
441 return status;
442
443 /* tmp1 = tmp1 << 24; */
444 status = sljit_emit_op2(compiler,
445 SLJIT_SHL,
446 BJ_TMP1REG, 0,
447 BJ_TMP1REG, 0,
448 SLJIT_IMM, 24);
449 if (status != SLJIT_SUCCESS)
450 return status;
451
452 /* A = A + tmp1; */
453 status = sljit_emit_op2(compiler,
454 SLJIT_ADD,
455 BJ_AREG, 0,
456 BJ_AREG, 0,
457 BJ_TMP1REG, 0);
458 if (status != SLJIT_SUCCESS)
459 return status;
460
461 /* tmp1 = buf[k+2]; */
462 status = sljit_emit_op1(compiler,
463 SLJIT_MOV_UB,
464 BJ_TMP1REG, 0,
465 SLJIT_MEM1(BJ_BUF), k+2);
466 if (status != SLJIT_SUCCESS)
467 return status;
468
469 /* tmp2 = tmp2 << 16; */
470 status = sljit_emit_op2(compiler,
471 SLJIT_SHL,
472 BJ_TMP2REG, 0,
473 BJ_TMP2REG, 0,
474 SLJIT_IMM, 16);
475 if (status != SLJIT_SUCCESS)
476 return status;
477
478 /* A = A + tmp2; */
479 status = sljit_emit_op2(compiler,
480 SLJIT_ADD,
481 BJ_AREG, 0,
482 BJ_AREG, 0,
483 BJ_TMP2REG, 0);
484 if (status != SLJIT_SUCCESS)
485 return status;
486
487 /* tmp1 = tmp1 << 8; */
488 status = sljit_emit_op2(compiler,
489 SLJIT_SHL,
490 BJ_TMP1REG, 0,
491 BJ_TMP1REG, 0,
492 SLJIT_IMM, 8);
493 if (status != SLJIT_SUCCESS)
494 return status;
495
496 /* A = A + tmp1; */
497 status = sljit_emit_op2(compiler,
498 SLJIT_ADD,
499 BJ_AREG, 0,
500 BJ_AREG, 0,
501 BJ_TMP1REG, 0);
502 return status;
503 }
504
505 #ifdef _KERNEL
506 /*
507 * Generate m_xword/m_xhalf/m_xbyte call.
508 *
509 * pc is one of:
510 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
511 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
512 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
513 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
514 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
515 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
516 * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
517 *
518 * The dst variable should be
519 * - BJ_AREG when emitting code for BPF_LD instructions,
520 * - BJ_XREG or BJ_TMP1REG register when emitting code
521 * for BPF_MSH instruction.
522 */
523 static int
524 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
525 int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
526 uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
527 {
528 #if BJ_XREG == SLJIT_RETURN_REG || \
529 BJ_XREG == SLJIT_SCRATCH_REG1 || \
530 BJ_XREG == SLJIT_SCRATCH_REG2 || \
531 BJ_XREG == SLJIT_SCRATCH_REG3 || \
532 BJ_TMP3REG == SLJIT_RETURN_REG || \
533 BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
534 BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
535 BJ_TMP3REG == SLJIT_SCRATCH_REG3
536 #error "Not supported assignment of registers."
537 #endif
538 struct sljit_jump *jump;
539 int status;
540
541 BJ_ASSERT(dst != BJ_TMP2REG && dst != BJ_TMP3REG);
542
543 if (BPF_CLASS(pc->code) == BPF_LDX) {
544 /* save A */
545 status = sljit_emit_op1(compiler,
546 SLJIT_MOV,
547 BJ_TMP3REG, 0,
548 BJ_AREG, 0);
549 if (status != SLJIT_SUCCESS)
550 return status;
551 }
552
553 /*
554 * Prepare registers for fn(mbuf, k, &err) call.
555 */
556 status = sljit_emit_op1(compiler,
557 SLJIT_MOV,
558 SLJIT_SCRATCH_REG1, 0,
559 BJ_BUF, 0);
560 if (status != SLJIT_SUCCESS)
561 return status;
562
563 if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
564 /* k = X + pc->k; */
565 status = sljit_emit_op2(compiler,
566 SLJIT_ADD | SLJIT_INT_OP,
567 SLJIT_SCRATCH_REG2, 0,
568 BJ_XREG, 0,
569 SLJIT_IMM, (uint32_t)pc->k);
570
571 /* if (k < X) return 0; */
572 jump = sljit_emit_cmp(compiler,
573 SLJIT_C_LESS,
574 SLJIT_SCRATCH_REG2, 0,
575 BJ_XREG, 0);
576 if (jump == NULL)
577 return SLJIT_ERR_ALLOC_FAILED;
578
579 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
580 return SLJIT_ERR_ALLOC_FAILED;
581 } else {
582 /* k = pc->k */
583 status = sljit_emit_op1(compiler,
584 SLJIT_MOV,
585 SLJIT_SCRATCH_REG2, 0,
586 SLJIT_IMM, (uint32_t)pc->k);
587 }
588
589 if (status != SLJIT_SUCCESS)
590 return status;
591
592 /*
593 * The third argument of fn is an address on stack.
594 */
595 status = sljit_get_local_base(compiler,
596 SLJIT_SCRATCH_REG3, 0,
597 offsetof(struct bpfjit_stack, err));
598 if (status != SLJIT_SUCCESS)
599 return status;
600
601 /* fn(buf, k, &err); */
602 status = sljit_emit_ijump(compiler,
603 SLJIT_CALL3,
604 SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
605
606 if (dst != SLJIT_RETURN_REG) {
607 /* move return value to dst */
608 status = sljit_emit_op1(compiler,
609 SLJIT_MOV,
610 dst, 0,
611 SLJIT_RETURN_REG, 0);
612 if (status != SLJIT_SUCCESS)
613 return status;
614 }
615
616 if (BPF_CLASS(pc->code) == BPF_LDX) {
617 /* restore A */
618 status = sljit_emit_op1(compiler,
619 SLJIT_MOV,
620 BJ_AREG, 0,
621 BJ_TMP3REG, 0);
622 if (status != SLJIT_SUCCESS)
623 return status;
624 }
625
626 /* tmp2 = *err; */
627 status = sljit_emit_op1(compiler,
628 SLJIT_MOV_UI,
629 BJ_TMP2REG, 0,
630 SLJIT_MEM1(SLJIT_LOCALS_REG),
631 offsetof(struct bpfjit_stack, err));
632 if (status != SLJIT_SUCCESS)
633 return status;
634
635 /* if (tmp2 != 0) return 0; */
636 jump = sljit_emit_cmp(compiler,
637 SLJIT_C_NOT_EQUAL,
638 BJ_TMP2REG, 0,
639 SLJIT_IMM, 0);
640 if (jump == NULL)
641 return SLJIT_ERR_ALLOC_FAILED;
642
643 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
644 return SLJIT_ERR_ALLOC_FAILED;
645
646 return status;
647 }
648 #endif
649
650 /*
651 * Emit code for BPF_COP and BPF_COPX instructions.
652 */
653 static int
654 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
655 const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
656 {
657 #if BJ_XREG == SLJIT_RETURN_REG || \
658 BJ_XREG == SLJIT_SCRATCH_REG1 || \
659 BJ_XREG == SLJIT_SCRATCH_REG2 || \
660 BJ_XREG == SLJIT_SCRATCH_REG3 || \
661 BJ_COPF_PTR == BJ_ARGS || \
662 BJ_COPF_IDX == BJ_ARGS
663 #error "Not supported assignment of registers."
664 #endif
665
666 struct sljit_jump *jump;
667 int status;
668
669 jump = NULL;
670
671 BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
672
673 if (BPF_MISCOP(pc->code) == BPF_COPX) {
674 /* if (X >= bc->nfuncs) return 0; */
675 jump = sljit_emit_cmp(compiler,
676 SLJIT_C_GREATER_EQUAL,
677 BJ_XREG, 0,
678 SLJIT_IMM, bc->nfuncs);
679 if (jump == NULL)
680 return SLJIT_ERR_ALLOC_FAILED;
681 }
682
683 if (jump != NULL)
684 *ret0_jump = jump;
685
686 /*
687 * Copy bpf_copfunc_t arguments to registers.
688 */
689 #if BJ_AREG != SLJIT_SCRATCH_REG3
690 status = sljit_emit_op1(compiler,
691 SLJIT_MOV_UI,
692 SLJIT_SCRATCH_REG3, 0,
693 BJ_AREG, 0);
694 if (status != SLJIT_SUCCESS)
695 return status;
696 #endif
697
698 status = sljit_emit_op1(compiler,
699 SLJIT_MOV_P,
700 SLJIT_SCRATCH_REG1, 0,
701 SLJIT_MEM1(SLJIT_LOCALS_REG),
702 offsetof(struct bpfjit_stack, ctx));
703 if (status != SLJIT_SUCCESS)
704 return status;
705
706 status = sljit_emit_op1(compiler,
707 SLJIT_MOV_P,
708 SLJIT_SCRATCH_REG2, 0,
709 BJ_ARGS, 0);
710 if (status != SLJIT_SUCCESS)
711 return status;
712
713 if (BPF_MISCOP(pc->code) == BPF_COP) {
714 status = sljit_emit_ijump(compiler,
715 SLJIT_CALL3,
716 SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
717 if (status != SLJIT_SUCCESS)
718 return status;
719 } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
720 /* load ctx->copfuncs */
721 status = sljit_emit_op1(compiler,
722 SLJIT_MOV_P,
723 BJ_COPF_PTR, 0,
724 SLJIT_MEM1(SLJIT_SCRATCH_REG1),
725 offsetof(struct bpf_ctx, copfuncs));
726 if (status != SLJIT_SUCCESS)
727 return status;
728
729 /*
730 * Load X to a register that can be used for
731 * memory addressing.
732 */
733 status = sljit_emit_op1(compiler,
734 SLJIT_MOV,
735 BJ_COPF_IDX, 0,
736 BJ_XREG, 0);
737 if (status != SLJIT_SUCCESS)
738 return status;
739
740 status = sljit_emit_ijump(compiler,
741 SLJIT_CALL3,
742 SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
743 SLJIT_WORD_SHIFT);
744 if (status != SLJIT_SUCCESS)
745 return status;
746
747 status = load_buf_buflen(compiler);
748 if (status != SLJIT_SUCCESS)
749 return status;
750 }
751
752 #if BJ_AREG != SLJIT_RETURN_REG
753 status = sljit_emit_op1(compiler,
754 SLJIT_MOV,
755 BJ_AREG, 0,
756 SLJIT_RETURN_REG, 0);
757 if (status != SLJIT_SUCCESS)
758 return status;
759 #endif
760
761 return status;
762 }
763
764 /*
765 * Generate code for
766 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
767 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
768 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
769 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
770 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
771 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
772 */
773 static int
774 emit_pkt_read(struct sljit_compiler *compiler,
775 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
776 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
777 {
778 int status = 0; /* XXX gcc 4.1 */
779 uint32_t width;
780 struct sljit_jump *jump;
781 #ifdef _KERNEL
782 struct sljit_label *label;
783 struct sljit_jump *over_mchain_jump;
784 const bool check_zero_buflen = (to_mchain_jump != NULL);
785 #endif
786 const uint32_t k = pc->k;
787
788 #ifdef _KERNEL
789 if (to_mchain_jump == NULL) {
790 to_mchain_jump = sljit_emit_cmp(compiler,
791 SLJIT_C_EQUAL,
792 BJ_BUFLEN, 0,
793 SLJIT_IMM, 0);
794 if (to_mchain_jump == NULL)
795 return SLJIT_ERR_ALLOC_FAILED;
796 }
797 #endif
798
799 width = read_width(pc);
800
801 if (BPF_MODE(pc->code) == BPF_IND) {
802 /* tmp1 = buflen - (pc->k + width); */
803 status = sljit_emit_op2(compiler,
804 SLJIT_SUB,
805 BJ_TMP1REG, 0,
806 BJ_BUFLEN, 0,
807 SLJIT_IMM, k + width);
808 if (status != SLJIT_SUCCESS)
809 return status;
810
811 /* buf += X; */
812 status = sljit_emit_op2(compiler,
813 SLJIT_ADD,
814 BJ_BUF, 0,
815 BJ_BUF, 0,
816 BJ_XREG, 0);
817 if (status != SLJIT_SUCCESS)
818 return status;
819
820 /* if (tmp1 < X) return 0; */
821 jump = sljit_emit_cmp(compiler,
822 SLJIT_C_LESS,
823 BJ_TMP1REG, 0,
824 BJ_XREG, 0);
825 if (jump == NULL)
826 return SLJIT_ERR_ALLOC_FAILED;
827 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
828 return SLJIT_ERR_ALLOC_FAILED;
829 }
830
831 switch (width) {
832 case 4:
833 status = emit_read32(compiler, k);
834 break;
835 case 2:
836 status = emit_read16(compiler, k);
837 break;
838 case 1:
839 status = emit_read8(compiler, k);
840 break;
841 }
842
843 if (status != SLJIT_SUCCESS)
844 return status;
845
846 if (BPF_MODE(pc->code) == BPF_IND) {
847 /* buf -= X; */
848 status = sljit_emit_op2(compiler,
849 SLJIT_SUB,
850 BJ_BUF, 0,
851 BJ_BUF, 0,
852 BJ_XREG, 0);
853 if (status != SLJIT_SUCCESS)
854 return status;
855 }
856
857 #ifdef _KERNEL
858 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
859 if (over_mchain_jump == NULL)
860 return SLJIT_ERR_ALLOC_FAILED;
861
862 /* entry point to mchain handler */
863 label = sljit_emit_label(compiler);
864 if (label == NULL)
865 return SLJIT_ERR_ALLOC_FAILED;
866 sljit_set_label(to_mchain_jump, label);
867
868 if (check_zero_buflen) {
869 /* if (buflen != 0) return 0; */
870 jump = sljit_emit_cmp(compiler,
871 SLJIT_C_NOT_EQUAL,
872 BJ_BUFLEN, 0,
873 SLJIT_IMM, 0);
874 if (jump == NULL)
875 return SLJIT_ERR_ALLOC_FAILED;
876 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
877 return SLJIT_ERR_ALLOC_FAILED;
878 }
879
880 switch (width) {
881 case 4:
882 status = emit_xcall(compiler, pc, BJ_AREG,
883 ret0, ret0_size, ret0_maxsize, &m_xword);
884 break;
885 case 2:
886 status = emit_xcall(compiler, pc, BJ_AREG,
887 ret0, ret0_size, ret0_maxsize, &m_xhalf);
888 break;
889 case 1:
890 status = emit_xcall(compiler, pc, BJ_AREG,
891 ret0, ret0_size, ret0_maxsize, &m_xbyte);
892 break;
893 }
894
895 if (status != SLJIT_SUCCESS)
896 return status;
897
898 label = sljit_emit_label(compiler);
899 if (label == NULL)
900 return SLJIT_ERR_ALLOC_FAILED;
901 sljit_set_label(over_mchain_jump, label);
902 #endif
903
904 return status;
905 }
906
907 static int
908 emit_memload(struct sljit_compiler *compiler,
909 sljit_si dst, uint32_t k, size_t extwords)
910 {
911 int status;
912 sljit_si src;
913 sljit_sw srcw;
914
915 srcw = k * sizeof(uint32_t);
916
917 if (extwords == 0) {
918 src = SLJIT_MEM1(SLJIT_LOCALS_REG);
919 srcw += offsetof(struct bpfjit_stack, mem);
920 } else {
921 /* copy extmem pointer to the tmp1 register */
922 status = sljit_emit_op1(compiler,
923 SLJIT_MOV_P,
924 BJ_TMP1REG, 0,
925 SLJIT_MEM1(SLJIT_LOCALS_REG),
926 offsetof(struct bpfjit_stack, extmem));
927 if (status != SLJIT_SUCCESS)
928 return status;
929 src = SLJIT_MEM1(BJ_TMP1REG);
930 }
931
932 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
933 }
934
935 static int
936 emit_memstore(struct sljit_compiler *compiler,
937 sljit_si src, uint32_t k, size_t extwords)
938 {
939 int status;
940 sljit_si dst;
941 sljit_sw dstw;
942
943 dstw = k * sizeof(uint32_t);
944
945 if (extwords == 0) {
946 dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
947 dstw += offsetof(struct bpfjit_stack, mem);
948 } else {
949 /* copy extmem pointer to the tmp1 register */
950 status = sljit_emit_op1(compiler,
951 SLJIT_MOV_P,
952 BJ_TMP1REG, 0,
953 SLJIT_MEM1(SLJIT_LOCALS_REG),
954 offsetof(struct bpfjit_stack, extmem));
955 if (status != SLJIT_SUCCESS)
956 return status;
957 dst = SLJIT_MEM1(BJ_TMP1REG);
958 }
959
960 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
961 }
962
963 /*
964 * Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
965 */
966 static int
967 emit_msh(struct sljit_compiler *compiler,
968 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
969 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
970 {
971 int status;
972 #ifdef _KERNEL
973 struct sljit_label *label;
974 struct sljit_jump *jump, *over_mchain_jump;
975 const bool check_zero_buflen = (to_mchain_jump != NULL);
976 #endif
977 const uint32_t k = pc->k;
978
979 #ifdef _KERNEL
980 if (to_mchain_jump == NULL) {
981 to_mchain_jump = sljit_emit_cmp(compiler,
982 SLJIT_C_EQUAL,
983 BJ_BUFLEN, 0,
984 SLJIT_IMM, 0);
985 if (to_mchain_jump == NULL)
986 return SLJIT_ERR_ALLOC_FAILED;
987 }
988 #endif
989
990 /* tmp1 = buf[k] */
991 status = sljit_emit_op1(compiler,
992 SLJIT_MOV_UB,
993 BJ_TMP1REG, 0,
994 SLJIT_MEM1(BJ_BUF), k);
995 if (status != SLJIT_SUCCESS)
996 return status;
997
998 /* tmp1 &= 0xf */
999 status = sljit_emit_op2(compiler,
1000 SLJIT_AND,
1001 BJ_TMP1REG, 0,
1002 BJ_TMP1REG, 0,
1003 SLJIT_IMM, 0xf);
1004 if (status != SLJIT_SUCCESS)
1005 return status;
1006
1007 /* tmp1 = tmp1 << 2 */
1008 status = sljit_emit_op2(compiler,
1009 SLJIT_SHL,
1010 BJ_XREG, 0,
1011 BJ_TMP1REG, 0,
1012 SLJIT_IMM, 2);
1013 if (status != SLJIT_SUCCESS)
1014 return status;
1015
1016 #ifdef _KERNEL
1017 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1018 if (over_mchain_jump == NULL)
1019 return SLJIT_ERR_ALLOC_FAILED;
1020
1021 /* entry point to mchain handler */
1022 label = sljit_emit_label(compiler);
1023 if (label == NULL)
1024 return SLJIT_ERR_ALLOC_FAILED;
1025 sljit_set_label(to_mchain_jump, label);
1026
1027 if (check_zero_buflen) {
1028 /* if (buflen != 0) return 0; */
1029 jump = sljit_emit_cmp(compiler,
1030 SLJIT_C_NOT_EQUAL,
1031 BJ_BUFLEN, 0,
1032 SLJIT_IMM, 0);
1033 if (jump == NULL)
1034 return SLJIT_ERR_ALLOC_FAILED;
1035 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1036 return SLJIT_ERR_ALLOC_FAILED;
1037 }
1038
1039 status = emit_xcall(compiler, pc, BJ_TMP1REG,
1040 ret0, ret0_size, ret0_maxsize, &m_xbyte);
1041 if (status != SLJIT_SUCCESS)
1042 return status;
1043
1044 /* tmp1 &= 0xf */
1045 status = sljit_emit_op2(compiler,
1046 SLJIT_AND,
1047 BJ_TMP1REG, 0,
1048 BJ_TMP1REG, 0,
1049 SLJIT_IMM, 0xf);
1050 if (status != SLJIT_SUCCESS)
1051 return status;
1052
1053 /* tmp1 = tmp1 << 2 */
1054 status = sljit_emit_op2(compiler,
1055 SLJIT_SHL,
1056 BJ_XREG, 0,
1057 BJ_TMP1REG, 0,
1058 SLJIT_IMM, 2);
1059 if (status != SLJIT_SUCCESS)
1060 return status;
1061
1062
1063 label = sljit_emit_label(compiler);
1064 if (label == NULL)
1065 return SLJIT_ERR_ALLOC_FAILED;
1066 sljit_set_label(over_mchain_jump, label);
1067 #endif
1068
1069 return status;
1070 }
1071
1072 static int
1073 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1074 {
1075 int shift = 0;
1076 int status = SLJIT_SUCCESS;
1077
1078 while (k > 1) {
1079 k >>= 1;
1080 shift++;
1081 }
1082
1083 BJ_ASSERT(k == 1 && shift < 32);
1084
1085 if (shift != 0) {
1086 status = sljit_emit_op2(compiler,
1087 SLJIT_LSHR|SLJIT_INT_OP,
1088 BJ_AREG, 0,
1089 BJ_AREG, 0,
1090 SLJIT_IMM, shift);
1091 }
1092
1093 return status;
1094 }
1095
1096 #if !defined(BPFJIT_USE_UDIV)
1097 static sljit_uw
1098 divide(sljit_uw x, sljit_uw y)
1099 {
1100
1101 return (uint32_t)x / (uint32_t)y;
1102 }
1103 #endif
1104
1105 /*
1106 * Generate A = A / div.
1107 * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1108 */
1109 static int
1110 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1111 {
1112 int status;
1113
1114 #if BJ_XREG == SLJIT_RETURN_REG || \
1115 BJ_XREG == SLJIT_SCRATCH_REG1 || \
1116 BJ_XREG == SLJIT_SCRATCH_REG2 || \
1117 BJ_AREG == SLJIT_SCRATCH_REG2
1118 #error "Not supported assignment of registers."
1119 #endif
1120
1121 #if BJ_AREG != SLJIT_SCRATCH_REG1
1122 status = sljit_emit_op1(compiler,
1123 SLJIT_MOV,
1124 SLJIT_SCRATCH_REG1, 0,
1125 BJ_AREG, 0);
1126 if (status != SLJIT_SUCCESS)
1127 return status;
1128 #endif
1129
1130 status = sljit_emit_op1(compiler,
1131 SLJIT_MOV,
1132 SLJIT_SCRATCH_REG2, 0,
1133 divt, divw);
1134 if (status != SLJIT_SUCCESS)
1135 return status;
1136
1137 #if defined(BPFJIT_USE_UDIV)
1138 status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1139
1140 #if BJ_AREG != SLJIT_SCRATCH_REG1
1141 status = sljit_emit_op1(compiler,
1142 SLJIT_MOV,
1143 BJ_AREG, 0,
1144 SLJIT_SCRATCH_REG1, 0);
1145 if (status != SLJIT_SUCCESS)
1146 return status;
1147 #endif
1148 #else
1149 status = sljit_emit_ijump(compiler,
1150 SLJIT_CALL2,
1151 SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1152
1153 #if BJ_AREG != SLJIT_RETURN_REG
1154 status = sljit_emit_op1(compiler,
1155 SLJIT_MOV,
1156 BJ_AREG, 0,
1157 SLJIT_RETURN_REG, 0);
1158 if (status != SLJIT_SUCCESS)
1159 return status;
1160 #endif
1161 #endif
1162
1163 return status;
1164 }
1165
1166 /*
1167 * Return true if pc is a "read from packet" instruction.
1168 * If length is not NULL and return value is true, *length will
1169 * be set to a safe length required to read a packet.
1170 */
1171 static bool
1172 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1173 {
1174 bool rv;
1175 bpfjit_abc_length_t width;
1176
1177 switch (BPF_CLASS(pc->code)) {
1178 default:
1179 rv = false;
1180 break;
1181
1182 case BPF_LD:
1183 rv = BPF_MODE(pc->code) == BPF_ABS ||
1184 BPF_MODE(pc->code) == BPF_IND;
1185 if (rv)
1186 width = read_width(pc);
1187 break;
1188
1189 case BPF_LDX:
1190 rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1191 width = 1;
1192 break;
1193 }
1194
1195 if (rv && length != NULL) {
1196 /*
1197 * Values greater than UINT32_MAX will generate
1198 * unconditional "return 0".
1199 */
1200 *length = (uint32_t)pc->k + width;
1201 }
1202
1203 return rv;
1204 }
1205
1206 static void
1207 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1208 {
1209 size_t i;
1210
1211 for (i = 0; i < insn_count; i++) {
1212 SLIST_INIT(&insn_dat[i].bjumps);
1213 insn_dat[i].invalid = BJ_INIT_NOBITS;
1214 }
1215 }
1216
1217 /*
1218 * The function divides instructions into blocks. Destination of a jump
1219 * instruction starts a new block. BPF_RET and BPF_JMP instructions
1220 * terminate a block. Blocks are linear, that is, there are no jumps out
1221 * from the middle of a block and there are no jumps in to the middle of
1222 * a block.
1223 *
1224 * The function also sets bits in *initmask for memwords that
1225 * need to be initialized to zero. Note that this set should be empty
1226 * for any valid kernel filter program.
1227 */
1228 static bool
1229 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1230 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1231 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1232 {
1233 struct bpfjit_jump *jtf;
1234 size_t i;
1235 uint32_t jt, jf;
1236 bpfjit_abc_length_t length;
1237 bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1238 bool unreachable;
1239
1240 const size_t memwords = GET_MEMWORDS(bc);
1241
1242 *hints = 0;
1243 *initmask = BJ_INIT_NOBITS;
1244
1245 unreachable = false;
1246 invalid = ~BJ_INIT_NOBITS;
1247
1248 for (i = 0; i < insn_count; i++) {
1249 if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1250 unreachable = false;
1251 insn_dat[i].unreachable = unreachable;
1252
1253 if (unreachable)
1254 continue;
1255
1256 invalid |= insn_dat[i].invalid;
1257
1258 if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1259 unreachable = true;
1260
1261 switch (BPF_CLASS(insns[i].code)) {
1262 case BPF_RET:
1263 if (BPF_RVAL(insns[i].code) == BPF_A)
1264 *initmask |= invalid & BJ_INIT_ABIT;
1265
1266 unreachable = true;
1267 continue;
1268
1269 case BPF_LD:
1270 if ((BPF_MODE(insns[i].code) == BPF_IND ||
1271 BPF_MODE(insns[i].code) == BPF_ABS) &&
1272 read_width(&insns[i]) == 4) {
1273 *hints |= BJ_HINT_LDW;
1274 }
1275
1276 if (BPF_MODE(insns[i].code) == BPF_IND) {
1277 *hints |= BJ_HINT_XREG | BJ_HINT_IND;
1278 *initmask |= invalid & BJ_INIT_XBIT;
1279 }
1280
1281 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1282 (uint32_t)insns[i].k < memwords) {
1283 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1284 }
1285
1286 invalid &= ~BJ_INIT_ABIT;
1287 continue;
1288
1289 case BPF_LDX:
1290 *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1291
1292 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1293 (uint32_t)insns[i].k < memwords) {
1294 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1295 }
1296
1297 invalid &= ~BJ_INIT_XBIT;
1298 continue;
1299
1300 case BPF_ST:
1301 *initmask |= invalid & BJ_INIT_ABIT;
1302
1303 if ((uint32_t)insns[i].k < memwords)
1304 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1305
1306 continue;
1307
1308 case BPF_STX:
1309 *hints |= BJ_HINT_XREG;
1310 *initmask |= invalid & BJ_INIT_XBIT;
1311
1312 if ((uint32_t)insns[i].k < memwords)
1313 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1314
1315 continue;
1316
1317 case BPF_ALU:
1318 *initmask |= invalid & BJ_INIT_ABIT;
1319
1320 if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1321 BPF_SRC(insns[i].code) == BPF_X) {
1322 *hints |= BJ_HINT_XREG;
1323 *initmask |= invalid & BJ_INIT_XBIT;
1324 }
1325
1326 invalid &= ~BJ_INIT_ABIT;
1327 continue;
1328
1329 case BPF_MISC:
1330 switch (BPF_MISCOP(insns[i].code)) {
1331 case BPF_TAX: // X <- A
1332 *hints |= BJ_HINT_XREG;
1333 *initmask |= invalid & BJ_INIT_ABIT;
1334 invalid &= ~BJ_INIT_XBIT;
1335 continue;
1336
1337 case BPF_TXA: // A <- X
1338 *hints |= BJ_HINT_XREG;
1339 *initmask |= invalid & BJ_INIT_XBIT;
1340 invalid &= ~BJ_INIT_ABIT;
1341 continue;
1342
1343 case BPF_COPX:
1344 *hints |= BJ_HINT_XREG;
1345 /* FALLTHROUGH */
1346
1347 case BPF_COP:
1348 *hints |= BJ_HINT_COP;
1349 *initmask |= invalid & BJ_INIT_ABIT;
1350 invalid &= ~BJ_INIT_ABIT;
1351 continue;
1352 }
1353
1354 continue;
1355
1356 case BPF_JMP:
1357 /* Initialize abc_length for ABC pass. */
1358 insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1359
1360 if (BPF_OP(insns[i].code) == BPF_JA) {
1361 jt = jf = insns[i].k;
1362 } else {
1363 jt = insns[i].jt;
1364 jf = insns[i].jf;
1365 }
1366
1367 if (jt >= insn_count - (i + 1) ||
1368 jf >= insn_count - (i + 1)) {
1369 return false;
1370 }
1371
1372 if (jt > 0 && jf > 0)
1373 unreachable = true;
1374
1375 jt += i + 1;
1376 jf += i + 1;
1377
1378 jtf = insn_dat[i].u.jdata.jtf;
1379
1380 jtf[0].sjump = NULL;
1381 jtf[0].jdata = &insn_dat[i].u.jdata;
1382 SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1383 &jtf[0], entries);
1384
1385 if (jf != jt) {
1386 jtf[1].sjump = NULL;
1387 jtf[1].jdata = &insn_dat[i].u.jdata;
1388 SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1389 &jtf[1], entries);
1390 }
1391
1392 insn_dat[jf].invalid |= invalid;
1393 insn_dat[jt].invalid |= invalid;
1394 invalid = 0;
1395
1396 continue;
1397 }
1398 }
1399
1400 return true;
1401 }
1402
1403 /*
1404 * Array Bounds Check Elimination (ABC) pass.
1405 */
1406 static void
1407 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1408 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1409 {
1410 struct bpfjit_jump *jmp;
1411 const struct bpf_insn *pc;
1412 struct bpfjit_insn_data *pd;
1413 size_t i;
1414 bpfjit_abc_length_t length, abc_length = 0;
1415
1416 const size_t extwords = GET_EXTWORDS(bc);
1417
1418 for (i = insn_count; i != 0; i--) {
1419 pc = &insns[i-1];
1420 pd = &insn_dat[i-1];
1421
1422 if (pd->unreachable)
1423 continue;
1424
1425 switch (BPF_CLASS(pc->code)) {
1426 case BPF_RET:
1427 /*
1428 * It's quite common for bpf programs to
1429 * check packet bytes in increasing order
1430 * and return zero if bytes don't match
1431 * specified critetion. Such programs disable
1432 * ABC optimization completely because for
1433 * every jump there is a branch with no read
1434 * instruction.
1435 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1436 * is indistinguishable from out-of-bound load.
1437 * Therefore, abc_length can be set to
1438 * MAX_ABC_LENGTH and enable ABC for many
1439 * bpf programs.
1440 * If this optimization encounters any
1441 * instruction with a side effect, it will
1442 * reset abc_length.
1443 */
1444 if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1445 abc_length = MAX_ABC_LENGTH;
1446 else
1447 abc_length = 0;
1448 break;
1449
1450 case BPF_MISC:
1451 if (BPF_MISCOP(pc->code) == BPF_COP ||
1452 BPF_MISCOP(pc->code) == BPF_COPX) {
1453 /* COP instructions can have side effects. */
1454 abc_length = 0;
1455 }
1456 break;
1457
1458 case BPF_ST:
1459 case BPF_STX:
1460 if (extwords != 0) {
1461 /* Write to memory is visible after a call. */
1462 abc_length = 0;
1463 }
1464 break;
1465
1466 case BPF_JMP:
1467 abc_length = pd->u.jdata.abc_length;
1468 break;
1469
1470 default:
1471 if (read_pkt_insn(pc, &length)) {
1472 if (abc_length < length)
1473 abc_length = length;
1474 pd->u.rdata.abc_length = abc_length;
1475 }
1476 break;
1477 }
1478
1479 SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1480 if (jmp->jdata->abc_length > abc_length)
1481 jmp->jdata->abc_length = abc_length;
1482 }
1483 }
1484 }
1485
1486 static void
1487 optimize_pass3(const struct bpf_insn *insns,
1488 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1489 {
1490 struct bpfjit_jump *jmp;
1491 size_t i;
1492 bpfjit_abc_length_t checked_length = 0;
1493
1494 for (i = 0; i < insn_count; i++) {
1495 if (insn_dat[i].unreachable)
1496 continue;
1497
1498 SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1499 if (jmp->jdata->checked_length < checked_length)
1500 checked_length = jmp->jdata->checked_length;
1501 }
1502
1503 if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1504 insn_dat[i].u.jdata.checked_length = checked_length;
1505 } else if (read_pkt_insn(&insns[i], NULL)) {
1506 struct bpfjit_read_pkt_data *rdata =
1507 &insn_dat[i].u.rdata;
1508 rdata->check_length = 0;
1509 if (checked_length < rdata->abc_length) {
1510 checked_length = rdata->abc_length;
1511 rdata->check_length = checked_length;
1512 }
1513 }
1514 }
1515 }
1516
1517 static bool
1518 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1519 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1520 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1521 {
1522
1523 optimize_init(insn_dat, insn_count);
1524
1525 if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1526 return false;
1527
1528 optimize_pass2(bc, insns, insn_dat, insn_count);
1529 optimize_pass3(insns, insn_dat, insn_count);
1530
1531 return true;
1532 }
1533
1534 /*
1535 * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1536 */
1537 static int
1538 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1539 {
1540
1541 /*
1542 * Note: all supported 64bit arches have 32bit multiply
1543 * instruction so SLJIT_INT_OP doesn't have any overhead.
1544 */
1545 switch (BPF_OP(pc->code)) {
1546 case BPF_ADD: return SLJIT_ADD;
1547 case BPF_SUB: return SLJIT_SUB;
1548 case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1549 case BPF_OR: return SLJIT_OR;
1550 case BPF_AND: return SLJIT_AND;
1551 case BPF_LSH: return SLJIT_SHL;
1552 case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1553 default:
1554 BJ_ASSERT(false);
1555 return 0;
1556 }
1557 }
1558
1559 /*
1560 * Convert BPF_JMP operations except BPF_JA to sljit condition.
1561 */
1562 static int
1563 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1564 {
1565 /*
1566 * Note: all supported 64bit arches have 32bit comparison
1567 * instructions so SLJIT_INT_OP doesn't have any overhead.
1568 */
1569 int rv = SLJIT_INT_OP;
1570
1571 switch (BPF_OP(pc->code)) {
1572 case BPF_JGT:
1573 rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1574 break;
1575 case BPF_JGE:
1576 rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1577 break;
1578 case BPF_JEQ:
1579 rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1580 break;
1581 case BPF_JSET:
1582 rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1583 break;
1584 default:
1585 BJ_ASSERT(false);
1586 }
1587
1588 return rv;
1589 }
1590
1591 /*
1592 * Convert BPF_K and BPF_X to sljit register.
1593 */
1594 static int
1595 kx_to_reg(const struct bpf_insn *pc)
1596 {
1597
1598 switch (BPF_SRC(pc->code)) {
1599 case BPF_K: return SLJIT_IMM;
1600 case BPF_X: return BJ_XREG;
1601 default:
1602 BJ_ASSERT(false);
1603 return 0;
1604 }
1605 }
1606
1607 static sljit_sw
1608 kx_to_reg_arg(const struct bpf_insn *pc)
1609 {
1610
1611 switch (BPF_SRC(pc->code)) {
1612 case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1613 case BPF_X: return 0; /* BJ_XREG, 0, */
1614 default:
1615 BJ_ASSERT(false);
1616 return 0;
1617 }
1618 }
1619
1620 static bool
1621 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
1622 const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
1623 size_t insn_count)
1624 {
1625 /* a list of jumps to out-of-bound return from a generated function */
1626 struct sljit_jump **ret0;
1627 size_t ret0_size, ret0_maxsize;
1628
1629 struct sljit_jump *jump;
1630 struct sljit_label *label;
1631 const struct bpf_insn *pc;
1632 struct bpfjit_jump *bjump, *jtf;
1633 struct sljit_jump *to_mchain_jump;
1634
1635 size_t i;
1636 int status;
1637 int branching, negate;
1638 unsigned int rval, mode, src;
1639 uint32_t jt, jf;
1640
1641 bool unconditional_ret;
1642 bool rv;
1643
1644 const size_t extwords = GET_EXTWORDS(bc);
1645 const size_t memwords = GET_MEMWORDS(bc);
1646
1647 ret0 = NULL;
1648 rv = false;
1649
1650 ret0_size = 0;
1651 ret0_maxsize = 64;
1652 ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1653 if (ret0 == NULL)
1654 goto fail;
1655
1656 for (i = 0; i < insn_count; i++) {
1657 if (insn_dat[i].unreachable)
1658 continue;
1659
1660 /*
1661 * Resolve jumps to the current insn.
1662 */
1663 label = NULL;
1664 SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1665 if (bjump->sjump != NULL) {
1666 if (label == NULL)
1667 label = sljit_emit_label(compiler);
1668 if (label == NULL)
1669 goto fail;
1670 sljit_set_label(bjump->sjump, label);
1671 }
1672 }
1673
1674 to_mchain_jump = NULL;
1675 unconditional_ret = false;
1676
1677 if (read_pkt_insn(&insns[i], NULL)) {
1678 if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1679 /* Jump to "return 0" unconditionally. */
1680 unconditional_ret = true;
1681 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1682 if (jump == NULL)
1683 goto fail;
1684 if (!append_jump(jump, &ret0,
1685 &ret0_size, &ret0_maxsize))
1686 goto fail;
1687 } else if (insn_dat[i].u.rdata.check_length > 0) {
1688 /* if (buflen < check_length) return 0; */
1689 jump = sljit_emit_cmp(compiler,
1690 SLJIT_C_LESS,
1691 BJ_BUFLEN, 0,
1692 SLJIT_IMM,
1693 insn_dat[i].u.rdata.check_length);
1694 if (jump == NULL)
1695 goto fail;
1696 #ifdef _KERNEL
1697 to_mchain_jump = jump;
1698 #else
1699 if (!append_jump(jump, &ret0,
1700 &ret0_size, &ret0_maxsize))
1701 goto fail;
1702 #endif
1703 }
1704 }
1705
1706 pc = &insns[i];
1707 switch (BPF_CLASS(pc->code)) {
1708
1709 default:
1710 goto fail;
1711
1712 case BPF_LD:
1713 /* BPF_LD+BPF_IMM A <- k */
1714 if (pc->code == (BPF_LD|BPF_IMM)) {
1715 status = sljit_emit_op1(compiler,
1716 SLJIT_MOV,
1717 BJ_AREG, 0,
1718 SLJIT_IMM, (uint32_t)pc->k);
1719 if (status != SLJIT_SUCCESS)
1720 goto fail;
1721
1722 continue;
1723 }
1724
1725 /* BPF_LD+BPF_MEM A <- M[k] */
1726 if (pc->code == (BPF_LD|BPF_MEM)) {
1727 if ((uint32_t)pc->k >= memwords)
1728 goto fail;
1729 status = emit_memload(compiler,
1730 BJ_AREG, pc->k, extwords);
1731 if (status != SLJIT_SUCCESS)
1732 goto fail;
1733
1734 continue;
1735 }
1736
1737 /* BPF_LD+BPF_W+BPF_LEN A <- len */
1738 if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1739 status = sljit_emit_op1(compiler,
1740 SLJIT_MOV, /* size_t source */
1741 BJ_AREG, 0,
1742 SLJIT_MEM1(BJ_ARGS),
1743 offsetof(struct bpf_args, wirelen));
1744 if (status != SLJIT_SUCCESS)
1745 goto fail;
1746
1747 continue;
1748 }
1749
1750 mode = BPF_MODE(pc->code);
1751 if (mode != BPF_ABS && mode != BPF_IND)
1752 goto fail;
1753
1754 if (unconditional_ret)
1755 continue;
1756
1757 status = emit_pkt_read(compiler, pc,
1758 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1759 if (status != SLJIT_SUCCESS)
1760 goto fail;
1761
1762 continue;
1763
1764 case BPF_LDX:
1765 mode = BPF_MODE(pc->code);
1766
1767 /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1768 if (mode == BPF_IMM) {
1769 if (BPF_SIZE(pc->code) != BPF_W)
1770 goto fail;
1771 status = sljit_emit_op1(compiler,
1772 SLJIT_MOV,
1773 BJ_XREG, 0,
1774 SLJIT_IMM, (uint32_t)pc->k);
1775 if (status != SLJIT_SUCCESS)
1776 goto fail;
1777
1778 continue;
1779 }
1780
1781 /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1782 if (mode == BPF_LEN) {
1783 if (BPF_SIZE(pc->code) != BPF_W)
1784 goto fail;
1785 status = sljit_emit_op1(compiler,
1786 SLJIT_MOV, /* size_t source */
1787 BJ_XREG, 0,
1788 SLJIT_MEM1(BJ_ARGS),
1789 offsetof(struct bpf_args, wirelen));
1790 if (status != SLJIT_SUCCESS)
1791 goto fail;
1792
1793 continue;
1794 }
1795
1796 /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1797 if (mode == BPF_MEM) {
1798 if (BPF_SIZE(pc->code) != BPF_W)
1799 goto fail;
1800 if ((uint32_t)pc->k >= memwords)
1801 goto fail;
1802 status = emit_memload(compiler,
1803 BJ_XREG, pc->k, extwords);
1804 if (status != SLJIT_SUCCESS)
1805 goto fail;
1806
1807 continue;
1808 }
1809
1810 /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1811 if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1812 goto fail;
1813
1814 if (unconditional_ret)
1815 continue;
1816
1817 status = emit_msh(compiler, pc,
1818 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1819 if (status != SLJIT_SUCCESS)
1820 goto fail;
1821
1822 continue;
1823
1824 case BPF_ST:
1825 if (pc->code != BPF_ST ||
1826 (uint32_t)pc->k >= memwords) {
1827 goto fail;
1828 }
1829
1830 status = emit_memstore(compiler,
1831 BJ_AREG, pc->k, extwords);
1832 if (status != SLJIT_SUCCESS)
1833 goto fail;
1834
1835 continue;
1836
1837 case BPF_STX:
1838 if (pc->code != BPF_STX ||
1839 (uint32_t)pc->k >= memwords) {
1840 goto fail;
1841 }
1842
1843 status = emit_memstore(compiler,
1844 BJ_XREG, pc->k, extwords);
1845 if (status != SLJIT_SUCCESS)
1846 goto fail;
1847
1848 continue;
1849
1850 case BPF_ALU:
1851 if (pc->code == (BPF_ALU|BPF_NEG)) {
1852 status = sljit_emit_op1(compiler,
1853 SLJIT_NEG,
1854 BJ_AREG, 0,
1855 BJ_AREG, 0);
1856 if (status != SLJIT_SUCCESS)
1857 goto fail;
1858
1859 continue;
1860 }
1861
1862 if (BPF_OP(pc->code) != BPF_DIV) {
1863 status = sljit_emit_op2(compiler,
1864 bpf_alu_to_sljit_op(pc),
1865 BJ_AREG, 0,
1866 BJ_AREG, 0,
1867 kx_to_reg(pc), kx_to_reg_arg(pc));
1868 if (status != SLJIT_SUCCESS)
1869 goto fail;
1870
1871 continue;
1872 }
1873
1874 /* BPF_DIV */
1875
1876 src = BPF_SRC(pc->code);
1877 if (src != BPF_X && src != BPF_K)
1878 goto fail;
1879
1880 /* division by zero? */
1881 if (src == BPF_X) {
1882 jump = sljit_emit_cmp(compiler,
1883 SLJIT_C_EQUAL|SLJIT_INT_OP,
1884 BJ_XREG, 0,
1885 SLJIT_IMM, 0);
1886 if (jump == NULL)
1887 goto fail;
1888 if (!append_jump(jump, &ret0,
1889 &ret0_size, &ret0_maxsize))
1890 goto fail;
1891 } else if (pc->k == 0) {
1892 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1893 if (jump == NULL)
1894 goto fail;
1895 if (!append_jump(jump, &ret0,
1896 &ret0_size, &ret0_maxsize))
1897 goto fail;
1898 }
1899
1900 if (src == BPF_X) {
1901 status = emit_division(compiler, BJ_XREG, 0);
1902 if (status != SLJIT_SUCCESS)
1903 goto fail;
1904 } else if (pc->k != 0) {
1905 if (pc->k & (pc->k - 1)) {
1906 status = emit_division(compiler,
1907 SLJIT_IMM, (uint32_t)pc->k);
1908 } else {
1909 status = emit_pow2_division(compiler,
1910 (uint32_t)pc->k);
1911 }
1912 if (status != SLJIT_SUCCESS)
1913 goto fail;
1914 }
1915
1916 continue;
1917
1918 case BPF_JMP:
1919 if (BPF_OP(pc->code) == BPF_JA) {
1920 jt = jf = pc->k;
1921 } else {
1922 jt = pc->jt;
1923 jf = pc->jf;
1924 }
1925
1926 negate = (jt == 0) ? 1 : 0;
1927 branching = (jt == jf) ? 0 : 1;
1928 jtf = insn_dat[i].u.jdata.jtf;
1929
1930 if (branching) {
1931 if (BPF_OP(pc->code) != BPF_JSET) {
1932 jump = sljit_emit_cmp(compiler,
1933 bpf_jmp_to_sljit_cond(pc, negate),
1934 BJ_AREG, 0,
1935 kx_to_reg(pc), kx_to_reg_arg(pc));
1936 } else {
1937 status = sljit_emit_op2(compiler,
1938 SLJIT_AND,
1939 BJ_TMP1REG, 0,
1940 BJ_AREG, 0,
1941 kx_to_reg(pc), kx_to_reg_arg(pc));
1942 if (status != SLJIT_SUCCESS)
1943 goto fail;
1944
1945 jump = sljit_emit_cmp(compiler,
1946 bpf_jmp_to_sljit_cond(pc, negate),
1947 BJ_TMP1REG, 0,
1948 SLJIT_IMM, 0);
1949 }
1950
1951 if (jump == NULL)
1952 goto fail;
1953
1954 BJ_ASSERT(jtf[negate].sjump == NULL);
1955 jtf[negate].sjump = jump;
1956 }
1957
1958 if (!branching || (jt != 0 && jf != 0)) {
1959 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1960 if (jump == NULL)
1961 goto fail;
1962
1963 BJ_ASSERT(jtf[branching].sjump == NULL);
1964 jtf[branching].sjump = jump;
1965 }
1966
1967 continue;
1968
1969 case BPF_RET:
1970 rval = BPF_RVAL(pc->code);
1971 if (rval == BPF_X)
1972 goto fail;
1973
1974 /* BPF_RET+BPF_K accept k bytes */
1975 if (rval == BPF_K) {
1976 status = sljit_emit_return(compiler,
1977 SLJIT_MOV_UI,
1978 SLJIT_IMM, (uint32_t)pc->k);
1979 if (status != SLJIT_SUCCESS)
1980 goto fail;
1981 }
1982
1983 /* BPF_RET+BPF_A accept A bytes */
1984 if (rval == BPF_A) {
1985 status = sljit_emit_return(compiler,
1986 SLJIT_MOV_UI,
1987 BJ_AREG, 0);
1988 if (status != SLJIT_SUCCESS)
1989 goto fail;
1990 }
1991
1992 continue;
1993
1994 case BPF_MISC:
1995 switch (BPF_MISCOP(pc->code)) {
1996 case BPF_TAX:
1997 status = sljit_emit_op1(compiler,
1998 SLJIT_MOV_UI,
1999 BJ_XREG, 0,
2000 BJ_AREG, 0);
2001 if (status != SLJIT_SUCCESS)
2002 goto fail;
2003
2004 continue;
2005
2006 case BPF_TXA:
2007 status = sljit_emit_op1(compiler,
2008 SLJIT_MOV,
2009 BJ_AREG, 0,
2010 BJ_XREG, 0);
2011 if (status != SLJIT_SUCCESS)
2012 goto fail;
2013
2014 continue;
2015
2016 case BPF_COP:
2017 case BPF_COPX:
2018 if (bc == NULL || bc->copfuncs == NULL)
2019 goto fail;
2020 if (BPF_MISCOP(pc->code) == BPF_COP &&
2021 (uint32_t)pc->k >= bc->nfuncs) {
2022 goto fail;
2023 }
2024
2025 jump = NULL;
2026 status = emit_cop(compiler, bc, pc, &jump);
2027 if (status != SLJIT_SUCCESS)
2028 goto fail;
2029
2030 if (jump != NULL && !append_jump(jump,
2031 &ret0, &ret0_size, &ret0_maxsize))
2032 goto fail;
2033
2034 continue;
2035 }
2036
2037 goto fail;
2038 } /* switch */
2039 } /* main loop */
2040
2041 BJ_ASSERT(ret0_size <= ret0_maxsize);
2042
2043 if (ret0_size > 0) {
2044 label = sljit_emit_label(compiler);
2045 if (label == NULL)
2046 goto fail;
2047 for (i = 0; i < ret0_size; i++)
2048 sljit_set_label(ret0[i], label);
2049 }
2050
2051 status = sljit_emit_return(compiler,
2052 SLJIT_MOV_UI,
2053 SLJIT_IMM, 0);
2054 if (status != SLJIT_SUCCESS)
2055 goto fail;
2056
2057 rv = true;
2058
2059 fail:
2060 if (ret0 != NULL)
2061 BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2062
2063 return rv;
2064 }
2065
2066 bpfjit_func_t
2067 bpfjit_generate_code(const bpf_ctx_t *bc,
2068 const struct bpf_insn *insns, size_t insn_count)
2069 {
2070 void *rv;
2071 struct sljit_compiler *compiler;
2072
2073 size_t i;
2074 int status;
2075
2076 /* optimization related */
2077 bpf_memword_init_t initmask;
2078 bpfjit_hint_t hints;
2079
2080 /* memory store location for initial zero initialization */
2081 sljit_si mem_reg;
2082 sljit_sw mem_off;
2083
2084 struct bpfjit_insn_data *insn_dat;
2085
2086 const size_t extwords = GET_EXTWORDS(bc);
2087 const size_t memwords = GET_MEMWORDS(bc);
2088 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2089
2090 rv = NULL;
2091 compiler = NULL;
2092 insn_dat = NULL;
2093
2094 if (memwords > MAX_MEMWORDS)
2095 goto fail;
2096
2097 if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2098 goto fail;
2099
2100 insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2101 if (insn_dat == NULL)
2102 goto fail;
2103
2104 if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2105 goto fail;
2106
2107 compiler = sljit_create_compiler();
2108 if (compiler == NULL)
2109 goto fail;
2110
2111 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2112 sljit_compiler_verbose(compiler, stderr);
2113 #endif
2114
2115 status = sljit_emit_enter(compiler,
2116 2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
2117 if (status != SLJIT_SUCCESS)
2118 goto fail;
2119
2120 if (hints & BJ_HINT_COP) {
2121 /* save ctx argument */
2122 status = sljit_emit_op1(compiler,
2123 SLJIT_MOV_P,
2124 SLJIT_MEM1(SLJIT_LOCALS_REG),
2125 offsetof(struct bpfjit_stack, ctx),
2126 BJ_CTX_ARG, 0);
2127 if (status != SLJIT_SUCCESS)
2128 goto fail;
2129 }
2130
2131 if (extwords == 0) {
2132 mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2133 mem_off = offsetof(struct bpfjit_stack, mem);
2134 } else {
2135 /* copy "mem" argument from bpf_args to bpfjit_stack */
2136 status = sljit_emit_op1(compiler,
2137 SLJIT_MOV_P,
2138 BJ_TMP1REG, 0,
2139 SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2140 if (status != SLJIT_SUCCESS)
2141 goto fail;
2142
2143 status = sljit_emit_op1(compiler,
2144 SLJIT_MOV_P,
2145 SLJIT_MEM1(SLJIT_LOCALS_REG),
2146 offsetof(struct bpfjit_stack, extmem),
2147 BJ_TMP1REG, 0);
2148 if (status != SLJIT_SUCCESS)
2149 goto fail;
2150
2151 mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2152 mem_off = 0;
2153 }
2154
2155 /*
2156 * Exclude pre-initialised external memory words but keep
2157 * initialization statuses of A and X registers in case
2158 * bc->preinited wrongly sets those two bits.
2159 */
2160 initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2161
2162 #if defined(_KERNEL)
2163 /* bpf_filter() checks initialization of memwords. */
2164 BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2165 #endif
2166 for (i = 0; i < memwords; i++) {
2167 if (initmask & BJ_INIT_MBIT(i)) {
2168 /* M[i] = 0; */
2169 status = sljit_emit_op1(compiler,
2170 SLJIT_MOV_UI,
2171 mem_reg, mem_off + i * sizeof(uint32_t),
2172 SLJIT_IMM, 0);
2173 if (status != SLJIT_SUCCESS)
2174 goto fail;
2175 }
2176 }
2177
2178 if (initmask & BJ_INIT_ABIT) {
2179 /* A = 0; */
2180 status = sljit_emit_op1(compiler,
2181 SLJIT_MOV,
2182 BJ_AREG, 0,
2183 SLJIT_IMM, 0);
2184 if (status != SLJIT_SUCCESS)
2185 goto fail;
2186 }
2187
2188 if (initmask & BJ_INIT_XBIT) {
2189 /* X = 0; */
2190 status = sljit_emit_op1(compiler,
2191 SLJIT_MOV,
2192 BJ_XREG, 0,
2193 SLJIT_IMM, 0);
2194 if (status != SLJIT_SUCCESS)
2195 goto fail;
2196 }
2197
2198 status = load_buf_buflen(compiler);
2199 if (status != SLJIT_SUCCESS)
2200 goto fail;
2201
2202 if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
2203 goto fail;
2204
2205 rv = sljit_generate_code(compiler);
2206
2207 fail:
2208 if (compiler != NULL)
2209 sljit_free_compiler(compiler);
2210
2211 if (insn_dat != NULL)
2212 BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2213
2214 return (bpfjit_func_t)rv;
2215 }
2216
2217 void
2218 bpfjit_free_code(bpfjit_func_t code)
2219 {
2220
2221 sljit_free_code((void *)code);
2222 }
2223