bpfjit.c revision 1.25 1 /* $NetBSD: bpfjit.c,v 1.25 2014/07/12 16:52:57 alnsn Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 Alexander Nasonov.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef _KERNEL
34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.25 2014/07/12 16:52:57 alnsn Exp $");
35 #else
36 __RCSID("$NetBSD: bpfjit.c,v 1.25 2014/07/12 16:52:57 alnsn Exp $");
37 #endif
38
39 #include <sys/types.h>
40 #include <sys/queue.h>
41
42 #ifndef _KERNEL
43 #include <assert.h>
44 #define BJ_ASSERT(c) assert(c)
45 #else
46 #define BJ_ASSERT(c) KASSERT(c)
47 #endif
48
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #define BJ_ALLOC(sz) malloc(sz)
52 #define BJ_FREE(p, sz) free(p)
53 #else
54 #include <sys/kmem.h>
55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 #define BJ_FREE(p, sz) kmem_free(p, sz)
57 #endif
58
59 #ifndef _KERNEL
60 #include <limits.h>
61 #include <stdbool.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #else
65 #include <sys/atomic.h>
66 #include <sys/module.h>
67 #endif
68
69 #define __BPF_PRIVATE
70 #include <net/bpf.h>
71 #include <net/bpfjit.h>
72 #include <sljitLir.h>
73
74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 #include <stdio.h> /* for stderr */
76 #endif
77
78 /*
79 * Arguments of generated bpfjit_func_t.
80 * The first argument is reassigned upon entry
81 * to a more frequently used buf argument.
82 */
83 #define BJ_CTX_ARG SLJIT_SAVED_REG1
84 #define BJ_ARGS SLJIT_SAVED_REG2
85
86 /*
87 * Permanent register assignments.
88 */
89 #define BJ_BUF SLJIT_SAVED_REG1
90 //#define BJ_ARGS SLJIT_SAVED_REG2
91 #define BJ_BUFLEN SLJIT_SAVED_REG3
92 #define BJ_AREG SLJIT_SCRATCH_REG1
93 #define BJ_TMP1REG SLJIT_SCRATCH_REG2
94 #define BJ_TMP2REG SLJIT_SCRATCH_REG3
95 #define BJ_XREG SLJIT_TEMPORARY_EREG1
96 #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
97
98 /*
99 * EREG registers can't be used for indirect calls, reuse BJ_BUF and
100 * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
101 */
102 #define BJ_COPF_PTR SLJIT_SAVED_REG1
103 #define BJ_COPF_IDX SLJIT_SAVED_REG3
104
105 #ifdef _KERNEL
106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
107 #else
108 #define MAX_MEMWORDS BPF_MEMWORDS
109 #endif
110
111 #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
113 #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
114 #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
115
116 /*
117 * Get a number of memwords and external memwords from a bpf_ctx object.
118 */
119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
121
122 /*
123 * Optimization hints.
124 */
125 typedef unsigned int bpfjit_hint_t;
126 #define BJ_HINT_PKT 0x01 /* packet read */
127 #define BJ_HINT_LDW 0x02 /* 32-bit load */
128 #define BJ_HINT_COP 0x04 /* BPF_COP or BPF_COPX instruction */
129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed */
130 #define BJ_HINT_LDX 0x10 /* BPF_LDX instruction */
131
132 /*
133 * Datatype for Array Bounds Check Elimination (ABC) pass.
134 */
135 typedef uint64_t bpfjit_abc_length_t;
136 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
137
138 struct bpfjit_stack
139 {
140 bpf_ctx_t *ctx;
141 uint32_t *extmem; /* pointer to external memory store */
142 #ifdef _KERNEL
143 int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
144 #endif
145 uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
146 };
147
148 /*
149 * Data for BPF_JMP instruction.
150 * Forward declaration for struct bpfjit_jump.
151 */
152 struct bpfjit_jump_data;
153
154 /*
155 * Node of bjumps list.
156 */
157 struct bpfjit_jump {
158 struct sljit_jump *sjump;
159 SLIST_ENTRY(bpfjit_jump) entries;
160 struct bpfjit_jump_data *jdata;
161 };
162
163 /*
164 * Data for BPF_JMP instruction.
165 */
166 struct bpfjit_jump_data {
167 /*
168 * These entries make up bjumps list:
169 * jtf[0] - when coming from jt path,
170 * jtf[1] - when coming from jf path.
171 */
172 struct bpfjit_jump jtf[2];
173 /*
174 * Length calculated by Array Bounds Check Elimination (ABC) pass.
175 */
176 bpfjit_abc_length_t abc_length;
177 /*
178 * Length checked by the last out-of-bounds check.
179 */
180 bpfjit_abc_length_t checked_length;
181 };
182
183 /*
184 * Data for "read from packet" instructions.
185 * See also read_pkt_insn() function below.
186 */
187 struct bpfjit_read_pkt_data {
188 /*
189 * Length calculated by Array Bounds Check Elimination (ABC) pass.
190 */
191 bpfjit_abc_length_t abc_length;
192 /*
193 * If positive, emit "if (buflen < check_length) return 0"
194 * out-of-bounds check.
195 * Values greater than UINT32_MAX generate unconditional "return 0".
196 */
197 bpfjit_abc_length_t check_length;
198 };
199
200 /*
201 * Additional (optimization-related) data for bpf_insn.
202 */
203 struct bpfjit_insn_data {
204 /* List of jumps to this insn. */
205 SLIST_HEAD(, bpfjit_jump) bjumps;
206
207 union {
208 struct bpfjit_jump_data jdata;
209 struct bpfjit_read_pkt_data rdata;
210 } u;
211
212 bpf_memword_init_t invalid;
213 bool unreachable;
214 };
215
216 #ifdef _KERNEL
217
218 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
219 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
220 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
221
222 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
223
224 static int
225 bpfjit_modcmd(modcmd_t cmd, void *arg)
226 {
227
228 switch (cmd) {
229 case MODULE_CMD_INIT:
230 bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
231 membar_producer();
232 bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
233 membar_producer();
234 return 0;
235
236 case MODULE_CMD_FINI:
237 return EOPNOTSUPP;
238
239 default:
240 return ENOTTY;
241 }
242 }
243 #endif
244
245 /*
246 * Return a number of scratch registers to pass
247 * to sljit_emit_enter() function.
248 */
249 static sljit_si
250 nscratches(bpfjit_hint_t hints)
251 {
252 sljit_si rv = 2;
253
254 #ifdef _KERNEL
255 if (hints & BJ_HINT_PKT)
256 rv = 3; /* xcall with three arguments */
257 #endif
258
259 if (hints & (BJ_HINT_LDW|BJ_HINT_PKT))
260 rv = 3; /* uses BJ_TMP2REG */
261
262 if (hints & BJ_HINT_COP)
263 rv = 3; /* calls copfunc with three arguments */
264
265 if (hints & BJ_HINT_XREG)
266 rv = 4; /* uses BJ_XREG */
267
268 #ifdef _KERNEL
269 if (hints & BJ_HINT_LDX)
270 rv = 5; /* uses BJ_TMP3REG */
271 #endif
272
273 return rv;
274 }
275
276 static uint32_t
277 read_width(const struct bpf_insn *pc)
278 {
279
280 switch (BPF_SIZE(pc->code)) {
281 case BPF_W:
282 return 4;
283 case BPF_H:
284 return 2;
285 case BPF_B:
286 return 1;
287 default:
288 BJ_ASSERT(false);
289 return 0;
290 }
291 }
292
293 /*
294 * Copy buf and buflen members of bpf_args from BJ_ARGS
295 * pointer to BJ_BUF and BJ_BUFLEN registers.
296 */
297 static int
298 load_buf_buflen(struct sljit_compiler *compiler)
299 {
300 int status;
301
302 status = sljit_emit_op1(compiler,
303 SLJIT_MOV_P,
304 BJ_BUF, 0,
305 SLJIT_MEM1(BJ_ARGS),
306 offsetof(struct bpf_args, pkt));
307 if (status != SLJIT_SUCCESS)
308 return status;
309
310 status = sljit_emit_op1(compiler,
311 SLJIT_MOV, /* size_t source */
312 BJ_BUFLEN, 0,
313 SLJIT_MEM1(BJ_ARGS),
314 offsetof(struct bpf_args, buflen));
315
316 return status;
317 }
318
319 static bool
320 grow_jumps(struct sljit_jump ***jumps, size_t *size)
321 {
322 struct sljit_jump **newptr;
323 const size_t elemsz = sizeof(struct sljit_jump *);
324 size_t old_size = *size;
325 size_t new_size = 2 * old_size;
326
327 if (new_size < old_size || new_size > SIZE_MAX / elemsz)
328 return false;
329
330 newptr = BJ_ALLOC(new_size * elemsz);
331 if (newptr == NULL)
332 return false;
333
334 memcpy(newptr, *jumps, old_size * elemsz);
335 BJ_FREE(*jumps, old_size * elemsz);
336
337 *jumps = newptr;
338 *size = new_size;
339 return true;
340 }
341
342 static bool
343 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
344 size_t *size, size_t *max_size)
345 {
346 if (*size == *max_size && !grow_jumps(jumps, max_size))
347 return false;
348
349 (*jumps)[(*size)++] = jump;
350 return true;
351 }
352
353 /*
354 * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
355 */
356 static int
357 emit_read8(struct sljit_compiler *compiler, uint32_t k)
358 {
359
360 return sljit_emit_op1(compiler,
361 SLJIT_MOV_UB,
362 BJ_AREG, 0,
363 SLJIT_MEM1(BJ_BUF), k);
364 }
365
366 /*
367 * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
368 */
369 static int
370 emit_read16(struct sljit_compiler *compiler, uint32_t k)
371 {
372 int status;
373
374 /* tmp1 = buf[k]; */
375 status = sljit_emit_op1(compiler,
376 SLJIT_MOV_UB,
377 BJ_TMP1REG, 0,
378 SLJIT_MEM1(BJ_BUF), k);
379 if (status != SLJIT_SUCCESS)
380 return status;
381
382 /* A = buf[k+1]; */
383 status = sljit_emit_op1(compiler,
384 SLJIT_MOV_UB,
385 BJ_AREG, 0,
386 SLJIT_MEM1(BJ_BUF), k+1);
387 if (status != SLJIT_SUCCESS)
388 return status;
389
390 /* tmp1 = tmp1 << 8; */
391 status = sljit_emit_op2(compiler,
392 SLJIT_SHL,
393 BJ_TMP1REG, 0,
394 BJ_TMP1REG, 0,
395 SLJIT_IMM, 8);
396 if (status != SLJIT_SUCCESS)
397 return status;
398
399 /* A = A + tmp1; */
400 status = sljit_emit_op2(compiler,
401 SLJIT_ADD,
402 BJ_AREG, 0,
403 BJ_AREG, 0,
404 BJ_TMP1REG, 0);
405 return status;
406 }
407
408 /*
409 * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
410 */
411 static int
412 emit_read32(struct sljit_compiler *compiler, uint32_t k)
413 {
414 int status;
415
416 /* tmp1 = buf[k]; */
417 status = sljit_emit_op1(compiler,
418 SLJIT_MOV_UB,
419 BJ_TMP1REG, 0,
420 SLJIT_MEM1(BJ_BUF), k);
421 if (status != SLJIT_SUCCESS)
422 return status;
423
424 /* tmp2 = buf[k+1]; */
425 status = sljit_emit_op1(compiler,
426 SLJIT_MOV_UB,
427 BJ_TMP2REG, 0,
428 SLJIT_MEM1(BJ_BUF), k+1);
429 if (status != SLJIT_SUCCESS)
430 return status;
431
432 /* A = buf[k+3]; */
433 status = sljit_emit_op1(compiler,
434 SLJIT_MOV_UB,
435 BJ_AREG, 0,
436 SLJIT_MEM1(BJ_BUF), k+3);
437 if (status != SLJIT_SUCCESS)
438 return status;
439
440 /* tmp1 = tmp1 << 24; */
441 status = sljit_emit_op2(compiler,
442 SLJIT_SHL,
443 BJ_TMP1REG, 0,
444 BJ_TMP1REG, 0,
445 SLJIT_IMM, 24);
446 if (status != SLJIT_SUCCESS)
447 return status;
448
449 /* A = A + tmp1; */
450 status = sljit_emit_op2(compiler,
451 SLJIT_ADD,
452 BJ_AREG, 0,
453 BJ_AREG, 0,
454 BJ_TMP1REG, 0);
455 if (status != SLJIT_SUCCESS)
456 return status;
457
458 /* tmp1 = buf[k+2]; */
459 status = sljit_emit_op1(compiler,
460 SLJIT_MOV_UB,
461 BJ_TMP1REG, 0,
462 SLJIT_MEM1(BJ_BUF), k+2);
463 if (status != SLJIT_SUCCESS)
464 return status;
465
466 /* tmp2 = tmp2 << 16; */
467 status = sljit_emit_op2(compiler,
468 SLJIT_SHL,
469 BJ_TMP2REG, 0,
470 BJ_TMP2REG, 0,
471 SLJIT_IMM, 16);
472 if (status != SLJIT_SUCCESS)
473 return status;
474
475 /* A = A + tmp2; */
476 status = sljit_emit_op2(compiler,
477 SLJIT_ADD,
478 BJ_AREG, 0,
479 BJ_AREG, 0,
480 BJ_TMP2REG, 0);
481 if (status != SLJIT_SUCCESS)
482 return status;
483
484 /* tmp1 = tmp1 << 8; */
485 status = sljit_emit_op2(compiler,
486 SLJIT_SHL,
487 BJ_TMP1REG, 0,
488 BJ_TMP1REG, 0,
489 SLJIT_IMM, 8);
490 if (status != SLJIT_SUCCESS)
491 return status;
492
493 /* A = A + tmp1; */
494 status = sljit_emit_op2(compiler,
495 SLJIT_ADD,
496 BJ_AREG, 0,
497 BJ_AREG, 0,
498 BJ_TMP1REG, 0);
499 return status;
500 }
501
502 #ifdef _KERNEL
503 /*
504 * Emit code for m_xword/m_xhalf/m_xbyte call.
505 *
506 * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
507 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
508 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
509 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
510 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
511 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
512 * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
513 */
514 static int
515 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
516 int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
517 uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
518 {
519 #if BJ_XREG == SLJIT_RETURN_REG || \
520 BJ_XREG == SLJIT_SCRATCH_REG1 || \
521 BJ_XREG == SLJIT_SCRATCH_REG2 || \
522 BJ_XREG == SLJIT_SCRATCH_REG3 || \
523 BJ_TMP3REG == SLJIT_RETURN_REG || \
524 BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
525 BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
526 BJ_TMP3REG == SLJIT_SCRATCH_REG3
527 #error "Not supported assignment of registers."
528 #endif
529 struct sljit_jump *jump;
530 int status;
531
532 BJ_ASSERT(dst != BJ_TMP2REG && dst != BJ_TMP3REG);
533
534 if (BPF_CLASS(pc->code) == BPF_LDX) {
535 /* save A */
536 status = sljit_emit_op1(compiler,
537 SLJIT_MOV,
538 BJ_TMP3REG, 0,
539 BJ_AREG, 0);
540 if (status != SLJIT_SUCCESS)
541 return status;
542 }
543
544 /*
545 * Prepare registers for fn(mbuf, k, &err) call.
546 */
547 status = sljit_emit_op1(compiler,
548 SLJIT_MOV,
549 SLJIT_SCRATCH_REG1, 0,
550 BJ_BUF, 0);
551 if (status != SLJIT_SUCCESS)
552 return status;
553
554 if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
555 /* k = X + pc->k; */
556 status = sljit_emit_op2(compiler,
557 SLJIT_ADD | SLJIT_INT_OP,
558 SLJIT_SCRATCH_REG2, 0,
559 BJ_XREG, 0,
560 SLJIT_IMM, (uint32_t)pc->k);
561 if (status != SLJIT_SUCCESS)
562 return status;
563
564 /* if (k < X) return 0; */
565 jump = sljit_emit_cmp(compiler,
566 SLJIT_C_LESS,
567 SLJIT_SCRATCH_REG2, 0,
568 BJ_XREG, 0);
569 if (jump == NULL)
570 return SLJIT_ERR_ALLOC_FAILED;
571
572 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
573 return SLJIT_ERR_ALLOC_FAILED;
574 } else {
575 /* k = pc->k */
576 status = sljit_emit_op1(compiler,
577 SLJIT_MOV,
578 SLJIT_SCRATCH_REG2, 0,
579 SLJIT_IMM, (uint32_t)pc->k);
580 if (status != SLJIT_SUCCESS)
581 return status;
582 }
583
584 /*
585 * The third argument of fn is an address on stack.
586 */
587 status = sljit_get_local_base(compiler,
588 SLJIT_SCRATCH_REG3, 0,
589 offsetof(struct bpfjit_stack, err));
590 if (status != SLJIT_SUCCESS)
591 return status;
592
593 /* fn(buf, k, &err); */
594 status = sljit_emit_ijump(compiler,
595 SLJIT_CALL3,
596 SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
597 if (status != SLJIT_SUCCESS)
598 return status;
599
600 if (dst != SLJIT_RETURN_REG) {
601 /* move return value to dst */
602 status = sljit_emit_op1(compiler,
603 SLJIT_MOV,
604 dst, 0,
605 SLJIT_RETURN_REG, 0);
606 if (status != SLJIT_SUCCESS)
607 return status;
608 }
609
610 if (BPF_CLASS(pc->code) == BPF_LDX) {
611 /* restore A */
612 status = sljit_emit_op1(compiler,
613 SLJIT_MOV,
614 BJ_AREG, 0,
615 BJ_TMP3REG, 0);
616 if (status != SLJIT_SUCCESS)
617 return status;
618 }
619
620 /* tmp2 = *err; */
621 status = sljit_emit_op1(compiler,
622 SLJIT_MOV_UI,
623 BJ_TMP2REG, 0,
624 SLJIT_MEM1(SLJIT_LOCALS_REG),
625 offsetof(struct bpfjit_stack, err));
626 if (status != SLJIT_SUCCESS)
627 return status;
628
629 /* if (tmp2 != 0) return 0; */
630 jump = sljit_emit_cmp(compiler,
631 SLJIT_C_NOT_EQUAL,
632 BJ_TMP2REG, 0,
633 SLJIT_IMM, 0);
634 if (jump == NULL)
635 return SLJIT_ERR_ALLOC_FAILED;
636
637 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
638 return SLJIT_ERR_ALLOC_FAILED;
639
640 return SLJIT_SUCCESS;
641 }
642 #endif
643
644 /*
645 * Emit code for BPF_COP and BPF_COPX instructions.
646 */
647 static int
648 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
649 const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
650 {
651 #if BJ_XREG == SLJIT_RETURN_REG || \
652 BJ_XREG == SLJIT_SCRATCH_REG1 || \
653 BJ_XREG == SLJIT_SCRATCH_REG2 || \
654 BJ_XREG == SLJIT_SCRATCH_REG3 || \
655 BJ_COPF_PTR == BJ_ARGS || \
656 BJ_COPF_IDX == BJ_ARGS
657 #error "Not supported assignment of registers."
658 #endif
659
660 struct sljit_jump *jump;
661 int status;
662
663 jump = NULL;
664
665 BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
666
667 if (BPF_MISCOP(pc->code) == BPF_COPX) {
668 /* if (X >= bc->nfuncs) return 0; */
669 jump = sljit_emit_cmp(compiler,
670 SLJIT_C_GREATER_EQUAL,
671 BJ_XREG, 0,
672 SLJIT_IMM, bc->nfuncs);
673 if (jump == NULL)
674 return SLJIT_ERR_ALLOC_FAILED;
675 }
676
677 if (jump != NULL)
678 *ret0_jump = jump;
679
680 /*
681 * Copy bpf_copfunc_t arguments to registers.
682 */
683 #if BJ_AREG != SLJIT_SCRATCH_REG3
684 status = sljit_emit_op1(compiler,
685 SLJIT_MOV_UI,
686 SLJIT_SCRATCH_REG3, 0,
687 BJ_AREG, 0);
688 if (status != SLJIT_SUCCESS)
689 return status;
690 #endif
691
692 status = sljit_emit_op1(compiler,
693 SLJIT_MOV_P,
694 SLJIT_SCRATCH_REG1, 0,
695 SLJIT_MEM1(SLJIT_LOCALS_REG),
696 offsetof(struct bpfjit_stack, ctx));
697 if (status != SLJIT_SUCCESS)
698 return status;
699
700 status = sljit_emit_op1(compiler,
701 SLJIT_MOV_P,
702 SLJIT_SCRATCH_REG2, 0,
703 BJ_ARGS, 0);
704 if (status != SLJIT_SUCCESS)
705 return status;
706
707 if (BPF_MISCOP(pc->code) == BPF_COP) {
708 status = sljit_emit_ijump(compiler,
709 SLJIT_CALL3,
710 SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
711 if (status != SLJIT_SUCCESS)
712 return status;
713 } else if (BPF_MISCOP(pc->code) == BPF_COPX) {
714 /* load ctx->copfuncs */
715 status = sljit_emit_op1(compiler,
716 SLJIT_MOV_P,
717 BJ_COPF_PTR, 0,
718 SLJIT_MEM1(SLJIT_SCRATCH_REG1),
719 offsetof(struct bpf_ctx, copfuncs));
720 if (status != SLJIT_SUCCESS)
721 return status;
722
723 /*
724 * Load X to a register that can be used for
725 * memory addressing.
726 */
727 status = sljit_emit_op1(compiler,
728 SLJIT_MOV,
729 BJ_COPF_IDX, 0,
730 BJ_XREG, 0);
731 if (status != SLJIT_SUCCESS)
732 return status;
733
734 status = sljit_emit_ijump(compiler,
735 SLJIT_CALL3,
736 SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
737 SLJIT_WORD_SHIFT);
738 if (status != SLJIT_SUCCESS)
739 return status;
740
741 status = load_buf_buflen(compiler);
742 if (status != SLJIT_SUCCESS)
743 return status;
744 }
745
746 #if BJ_AREG != SLJIT_RETURN_REG
747 status = sljit_emit_op1(compiler,
748 SLJIT_MOV,
749 BJ_AREG, 0,
750 SLJIT_RETURN_REG, 0);
751 if (status != SLJIT_SUCCESS)
752 return status;
753 #endif
754
755 return SLJIT_SUCCESS;
756 }
757
758 /*
759 * Generate code for
760 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
761 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
762 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
763 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
764 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
765 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
766 */
767 static int
768 emit_pkt_read(struct sljit_compiler *compiler,
769 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
770 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
771 {
772 int status = SLJIT_ERR_ALLOC_FAILED;
773 uint32_t width;
774 struct sljit_jump *jump;
775 #ifdef _KERNEL
776 struct sljit_label *label;
777 struct sljit_jump *over_mchain_jump;
778 const bool check_zero_buflen = (to_mchain_jump != NULL);
779 #endif
780 const uint32_t k = pc->k;
781
782 #ifdef _KERNEL
783 if (to_mchain_jump == NULL) {
784 to_mchain_jump = sljit_emit_cmp(compiler,
785 SLJIT_C_EQUAL,
786 BJ_BUFLEN, 0,
787 SLJIT_IMM, 0);
788 if (to_mchain_jump == NULL)
789 return SLJIT_ERR_ALLOC_FAILED;
790 }
791 #endif
792
793 width = read_width(pc);
794
795 if (BPF_MODE(pc->code) == BPF_IND) {
796 /* tmp1 = buflen - (pc->k + width); */
797 status = sljit_emit_op2(compiler,
798 SLJIT_SUB,
799 BJ_TMP1REG, 0,
800 BJ_BUFLEN, 0,
801 SLJIT_IMM, k + width);
802 if (status != SLJIT_SUCCESS)
803 return status;
804
805 /* buf += X; */
806 status = sljit_emit_op2(compiler,
807 SLJIT_ADD,
808 BJ_BUF, 0,
809 BJ_BUF, 0,
810 BJ_XREG, 0);
811 if (status != SLJIT_SUCCESS)
812 return status;
813
814 /* if (tmp1 < X) return 0; */
815 jump = sljit_emit_cmp(compiler,
816 SLJIT_C_LESS,
817 BJ_TMP1REG, 0,
818 BJ_XREG, 0);
819 if (jump == NULL)
820 return SLJIT_ERR_ALLOC_FAILED;
821 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
822 return SLJIT_ERR_ALLOC_FAILED;
823 }
824
825 switch (width) {
826 case 4:
827 status = emit_read32(compiler, k);
828 break;
829 case 2:
830 status = emit_read16(compiler, k);
831 break;
832 case 1:
833 status = emit_read8(compiler, k);
834 break;
835 }
836
837 if (status != SLJIT_SUCCESS)
838 return status;
839
840 if (BPF_MODE(pc->code) == BPF_IND) {
841 /* buf -= X; */
842 status = sljit_emit_op2(compiler,
843 SLJIT_SUB,
844 BJ_BUF, 0,
845 BJ_BUF, 0,
846 BJ_XREG, 0);
847 if (status != SLJIT_SUCCESS)
848 return status;
849 }
850
851 #ifdef _KERNEL
852 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
853 if (over_mchain_jump == NULL)
854 return SLJIT_ERR_ALLOC_FAILED;
855
856 /* entry point to mchain handler */
857 label = sljit_emit_label(compiler);
858 if (label == NULL)
859 return SLJIT_ERR_ALLOC_FAILED;
860 sljit_set_label(to_mchain_jump, label);
861
862 if (check_zero_buflen) {
863 /* if (buflen != 0) return 0; */
864 jump = sljit_emit_cmp(compiler,
865 SLJIT_C_NOT_EQUAL,
866 BJ_BUFLEN, 0,
867 SLJIT_IMM, 0);
868 if (jump == NULL)
869 return SLJIT_ERR_ALLOC_FAILED;
870 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
871 return SLJIT_ERR_ALLOC_FAILED;
872 }
873
874 switch (width) {
875 case 4:
876 status = emit_xcall(compiler, pc, BJ_AREG,
877 ret0, ret0_size, ret0_maxsize, &m_xword);
878 break;
879 case 2:
880 status = emit_xcall(compiler, pc, BJ_AREG,
881 ret0, ret0_size, ret0_maxsize, &m_xhalf);
882 break;
883 case 1:
884 status = emit_xcall(compiler, pc, BJ_AREG,
885 ret0, ret0_size, ret0_maxsize, &m_xbyte);
886 break;
887 }
888
889 if (status != SLJIT_SUCCESS)
890 return status;
891
892 label = sljit_emit_label(compiler);
893 if (label == NULL)
894 return SLJIT_ERR_ALLOC_FAILED;
895 sljit_set_label(over_mchain_jump, label);
896 #endif
897
898 return SLJIT_SUCCESS;
899 }
900
901 static int
902 emit_memload(struct sljit_compiler *compiler,
903 sljit_si dst, uint32_t k, size_t extwords)
904 {
905 int status;
906 sljit_si src;
907 sljit_sw srcw;
908
909 srcw = k * sizeof(uint32_t);
910
911 if (extwords == 0) {
912 src = SLJIT_MEM1(SLJIT_LOCALS_REG);
913 srcw += offsetof(struct bpfjit_stack, mem);
914 } else {
915 /* copy extmem pointer to the tmp1 register */
916 status = sljit_emit_op1(compiler,
917 SLJIT_MOV_P,
918 BJ_TMP1REG, 0,
919 SLJIT_MEM1(SLJIT_LOCALS_REG),
920 offsetof(struct bpfjit_stack, extmem));
921 if (status != SLJIT_SUCCESS)
922 return status;
923 src = SLJIT_MEM1(BJ_TMP1REG);
924 }
925
926 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
927 }
928
929 static int
930 emit_memstore(struct sljit_compiler *compiler,
931 sljit_si src, uint32_t k, size_t extwords)
932 {
933 int status;
934 sljit_si dst;
935 sljit_sw dstw;
936
937 dstw = k * sizeof(uint32_t);
938
939 if (extwords == 0) {
940 dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
941 dstw += offsetof(struct bpfjit_stack, mem);
942 } else {
943 /* copy extmem pointer to the tmp1 register */
944 status = sljit_emit_op1(compiler,
945 SLJIT_MOV_P,
946 BJ_TMP1REG, 0,
947 SLJIT_MEM1(SLJIT_LOCALS_REG),
948 offsetof(struct bpfjit_stack, extmem));
949 if (status != SLJIT_SUCCESS)
950 return status;
951 dst = SLJIT_MEM1(BJ_TMP1REG);
952 }
953
954 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
955 }
956
957 /*
958 * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
959 */
960 static int
961 emit_msh(struct sljit_compiler *compiler,
962 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
963 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
964 {
965 int status;
966 #ifdef _KERNEL
967 struct sljit_label *label;
968 struct sljit_jump *jump, *over_mchain_jump;
969 const bool check_zero_buflen = (to_mchain_jump != NULL);
970 #endif
971 const uint32_t k = pc->k;
972
973 #ifdef _KERNEL
974 if (to_mchain_jump == NULL) {
975 to_mchain_jump = sljit_emit_cmp(compiler,
976 SLJIT_C_EQUAL,
977 BJ_BUFLEN, 0,
978 SLJIT_IMM, 0);
979 if (to_mchain_jump == NULL)
980 return SLJIT_ERR_ALLOC_FAILED;
981 }
982 #endif
983
984 /* tmp1 = buf[k] */
985 status = sljit_emit_op1(compiler,
986 SLJIT_MOV_UB,
987 BJ_TMP1REG, 0,
988 SLJIT_MEM1(BJ_BUF), k);
989 if (status != SLJIT_SUCCESS)
990 return status;
991
992 /* tmp1 &= 0xf */
993 status = sljit_emit_op2(compiler,
994 SLJIT_AND,
995 BJ_TMP1REG, 0,
996 BJ_TMP1REG, 0,
997 SLJIT_IMM, 0xf);
998 if (status != SLJIT_SUCCESS)
999 return status;
1000
1001 /* tmp1 = tmp1 << 2 */
1002 status = sljit_emit_op2(compiler,
1003 SLJIT_SHL,
1004 BJ_XREG, 0,
1005 BJ_TMP1REG, 0,
1006 SLJIT_IMM, 2);
1007 if (status != SLJIT_SUCCESS)
1008 return status;
1009
1010 #ifdef _KERNEL
1011 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1012 if (over_mchain_jump == NULL)
1013 return SLJIT_ERR_ALLOC_FAILED;
1014
1015 /* entry point to mchain handler */
1016 label = sljit_emit_label(compiler);
1017 if (label == NULL)
1018 return SLJIT_ERR_ALLOC_FAILED;
1019 sljit_set_label(to_mchain_jump, label);
1020
1021 if (check_zero_buflen) {
1022 /* if (buflen != 0) return 0; */
1023 jump = sljit_emit_cmp(compiler,
1024 SLJIT_C_NOT_EQUAL,
1025 BJ_BUFLEN, 0,
1026 SLJIT_IMM, 0);
1027 if (jump == NULL)
1028 return SLJIT_ERR_ALLOC_FAILED;
1029 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1030 return SLJIT_ERR_ALLOC_FAILED;
1031 }
1032
1033 status = emit_xcall(compiler, pc, BJ_TMP1REG,
1034 ret0, ret0_size, ret0_maxsize, &m_xbyte);
1035 if (status != SLJIT_SUCCESS)
1036 return status;
1037
1038 /* tmp1 &= 0xf */
1039 status = sljit_emit_op2(compiler,
1040 SLJIT_AND,
1041 BJ_TMP1REG, 0,
1042 BJ_TMP1REG, 0,
1043 SLJIT_IMM, 0xf);
1044 if (status != SLJIT_SUCCESS)
1045 return status;
1046
1047 /* tmp1 = tmp1 << 2 */
1048 status = sljit_emit_op2(compiler,
1049 SLJIT_SHL,
1050 BJ_XREG, 0,
1051 BJ_TMP1REG, 0,
1052 SLJIT_IMM, 2);
1053 if (status != SLJIT_SUCCESS)
1054 return status;
1055
1056
1057 label = sljit_emit_label(compiler);
1058 if (label == NULL)
1059 return SLJIT_ERR_ALLOC_FAILED;
1060 sljit_set_label(over_mchain_jump, label);
1061 #endif
1062
1063 return SLJIT_SUCCESS;
1064 }
1065
1066 static int
1067 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1068 {
1069 int shift = 0;
1070 int status = SLJIT_SUCCESS;
1071
1072 while (k > 1) {
1073 k >>= 1;
1074 shift++;
1075 }
1076
1077 BJ_ASSERT(k == 1 && shift < 32);
1078
1079 if (shift != 0) {
1080 status = sljit_emit_op2(compiler,
1081 SLJIT_LSHR|SLJIT_INT_OP,
1082 BJ_AREG, 0,
1083 BJ_AREG, 0,
1084 SLJIT_IMM, shift);
1085 }
1086
1087 return status;
1088 }
1089
1090 #if !defined(BPFJIT_USE_UDIV)
1091 static sljit_uw
1092 divide(sljit_uw x, sljit_uw y)
1093 {
1094
1095 return (uint32_t)x / (uint32_t)y;
1096 }
1097 #endif
1098
1099 /*
1100 * Emit code for A = A / div.
1101 * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1102 */
1103 static int
1104 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
1105 {
1106 int status;
1107
1108 #if BJ_XREG == SLJIT_RETURN_REG || \
1109 BJ_XREG == SLJIT_SCRATCH_REG1 || \
1110 BJ_XREG == SLJIT_SCRATCH_REG2 || \
1111 BJ_AREG == SLJIT_SCRATCH_REG2
1112 #error "Not supported assignment of registers."
1113 #endif
1114
1115 #if BJ_AREG != SLJIT_SCRATCH_REG1
1116 status = sljit_emit_op1(compiler,
1117 SLJIT_MOV,
1118 SLJIT_SCRATCH_REG1, 0,
1119 BJ_AREG, 0);
1120 if (status != SLJIT_SUCCESS)
1121 return status;
1122 #endif
1123
1124 status = sljit_emit_op1(compiler,
1125 SLJIT_MOV,
1126 SLJIT_SCRATCH_REG2, 0,
1127 divt, divw);
1128 if (status != SLJIT_SUCCESS)
1129 return status;
1130
1131 #if defined(BPFJIT_USE_UDIV)
1132 status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1133
1134 #if BJ_AREG != SLJIT_SCRATCH_REG1
1135 status = sljit_emit_op1(compiler,
1136 SLJIT_MOV,
1137 BJ_AREG, 0,
1138 SLJIT_SCRATCH_REG1, 0);
1139 if (status != SLJIT_SUCCESS)
1140 return status;
1141 #endif
1142 #else
1143 status = sljit_emit_ijump(compiler,
1144 SLJIT_CALL2,
1145 SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
1146
1147 #if BJ_AREG != SLJIT_RETURN_REG
1148 status = sljit_emit_op1(compiler,
1149 SLJIT_MOV,
1150 BJ_AREG, 0,
1151 SLJIT_RETURN_REG, 0);
1152 if (status != SLJIT_SUCCESS)
1153 return status;
1154 #endif
1155 #endif
1156
1157 return status;
1158 }
1159
1160 /*
1161 * Return true if pc is a "read from packet" instruction.
1162 * If length is not NULL and return value is true, *length will
1163 * be set to a safe length required to read a packet.
1164 */
1165 static bool
1166 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1167 {
1168 bool rv;
1169 bpfjit_abc_length_t width;
1170
1171 switch (BPF_CLASS(pc->code)) {
1172 default:
1173 rv = false;
1174 break;
1175
1176 case BPF_LD:
1177 rv = BPF_MODE(pc->code) == BPF_ABS ||
1178 BPF_MODE(pc->code) == BPF_IND;
1179 if (rv)
1180 width = read_width(pc);
1181 break;
1182
1183 case BPF_LDX:
1184 rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1185 width = 1;
1186 break;
1187 }
1188
1189 if (rv && length != NULL) {
1190 /*
1191 * Values greater than UINT32_MAX will generate
1192 * unconditional "return 0".
1193 */
1194 *length = (uint32_t)pc->k + width;
1195 }
1196
1197 return rv;
1198 }
1199
1200 static void
1201 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1202 {
1203 size_t i;
1204
1205 for (i = 0; i < insn_count; i++) {
1206 SLIST_INIT(&insn_dat[i].bjumps);
1207 insn_dat[i].invalid = BJ_INIT_NOBITS;
1208 }
1209 }
1210
1211 /*
1212 * The function divides instructions into blocks. Destination of a jump
1213 * instruction starts a new block. BPF_RET and BPF_JMP instructions
1214 * terminate a block. Blocks are linear, that is, there are no jumps out
1215 * from the middle of a block and there are no jumps in to the middle of
1216 * a block.
1217 *
1218 * The function also sets bits in *initmask for memwords that
1219 * need to be initialized to zero. Note that this set should be empty
1220 * for any valid kernel filter program.
1221 */
1222 static bool
1223 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1224 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1225 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1226 {
1227 struct bpfjit_jump *jtf;
1228 size_t i;
1229 uint32_t jt, jf;
1230 bpfjit_abc_length_t length;
1231 bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1232 bool unreachable;
1233
1234 const size_t memwords = GET_MEMWORDS(bc);
1235
1236 *hints = 0;
1237 *initmask = BJ_INIT_NOBITS;
1238
1239 unreachable = false;
1240 invalid = ~BJ_INIT_NOBITS;
1241
1242 for (i = 0; i < insn_count; i++) {
1243 if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1244 unreachable = false;
1245 insn_dat[i].unreachable = unreachable;
1246
1247 if (unreachable)
1248 continue;
1249
1250 invalid |= insn_dat[i].invalid;
1251
1252 if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1253 unreachable = true;
1254
1255 switch (BPF_CLASS(insns[i].code)) {
1256 case BPF_RET:
1257 if (BPF_RVAL(insns[i].code) == BPF_A)
1258 *initmask |= invalid & BJ_INIT_ABIT;
1259
1260 unreachable = true;
1261 continue;
1262
1263 case BPF_LD:
1264 if (BPF_MODE(insns[i].code) == BPF_IND ||
1265 BPF_MODE(insns[i].code) == BPF_ABS) {
1266 *hints |= BJ_HINT_PKT;
1267 }
1268
1269 if (BPF_SIZE(insns[i].code) == BPF_W)
1270 *hints |= BJ_HINT_LDW;
1271
1272 if (BPF_MODE(insns[i].code) == BPF_IND) {
1273 *hints |= BJ_HINT_XREG;
1274 *initmask |= invalid & BJ_INIT_XBIT;
1275 }
1276
1277 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1278 (uint32_t)insns[i].k < memwords) {
1279 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1280 }
1281
1282 invalid &= ~BJ_INIT_ABIT;
1283 continue;
1284
1285 case BPF_LDX:
1286 *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1287
1288 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1289 (uint32_t)insns[i].k < memwords) {
1290 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1291 }
1292
1293 invalid &= ~BJ_INIT_XBIT;
1294 continue;
1295
1296 case BPF_ST:
1297 *initmask |= invalid & BJ_INIT_ABIT;
1298
1299 if ((uint32_t)insns[i].k < memwords)
1300 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1301
1302 continue;
1303
1304 case BPF_STX:
1305 *hints |= BJ_HINT_XREG;
1306 *initmask |= invalid & BJ_INIT_XBIT;
1307
1308 if ((uint32_t)insns[i].k < memwords)
1309 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1310
1311 continue;
1312
1313 case BPF_ALU:
1314 *initmask |= invalid & BJ_INIT_ABIT;
1315
1316 if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1317 BPF_SRC(insns[i].code) == BPF_X) {
1318 *hints |= BJ_HINT_XREG;
1319 *initmask |= invalid & BJ_INIT_XBIT;
1320 }
1321
1322 invalid &= ~BJ_INIT_ABIT;
1323 continue;
1324
1325 case BPF_MISC:
1326 switch (BPF_MISCOP(insns[i].code)) {
1327 case BPF_TAX: // X <- A
1328 *hints |= BJ_HINT_XREG;
1329 *initmask |= invalid & BJ_INIT_ABIT;
1330 invalid &= ~BJ_INIT_XBIT;
1331 continue;
1332
1333 case BPF_TXA: // A <- X
1334 *hints |= BJ_HINT_XREG;
1335 *initmask |= invalid & BJ_INIT_XBIT;
1336 invalid &= ~BJ_INIT_ABIT;
1337 continue;
1338
1339 case BPF_COPX:
1340 *hints |= BJ_HINT_XREG;
1341 /* FALLTHROUGH */
1342
1343 case BPF_COP:
1344 *hints |= BJ_HINT_COP;
1345 *initmask |= invalid & BJ_INIT_ABIT;
1346 invalid &= ~BJ_INIT_ABIT;
1347 continue;
1348 }
1349
1350 continue;
1351
1352 case BPF_JMP:
1353 /* Initialize abc_length for ABC pass. */
1354 insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1355
1356 if (BPF_OP(insns[i].code) == BPF_JA) {
1357 jt = jf = insns[i].k;
1358 } else {
1359 jt = insns[i].jt;
1360 jf = insns[i].jf;
1361 }
1362
1363 if (jt >= insn_count - (i + 1) ||
1364 jf >= insn_count - (i + 1)) {
1365 return false;
1366 }
1367
1368 if (jt > 0 && jf > 0)
1369 unreachable = true;
1370
1371 jt += i + 1;
1372 jf += i + 1;
1373
1374 jtf = insn_dat[i].u.jdata.jtf;
1375
1376 jtf[0].jdata = &insn_dat[i].u.jdata;
1377 SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1378 &jtf[0], entries);
1379
1380 if (jf != jt) {
1381 jtf[1].jdata = &insn_dat[i].u.jdata;
1382 SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1383 &jtf[1], entries);
1384 }
1385
1386 insn_dat[jf].invalid |= invalid;
1387 insn_dat[jt].invalid |= invalid;
1388 invalid = 0;
1389
1390 continue;
1391 }
1392 }
1393
1394 return true;
1395 }
1396
1397 /*
1398 * Array Bounds Check Elimination (ABC) pass.
1399 */
1400 static void
1401 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1402 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1403 {
1404 struct bpfjit_jump *jmp;
1405 const struct bpf_insn *pc;
1406 struct bpfjit_insn_data *pd;
1407 size_t i;
1408 bpfjit_abc_length_t length, abc_length = 0;
1409
1410 const size_t extwords = GET_EXTWORDS(bc);
1411
1412 for (i = insn_count; i != 0; i--) {
1413 pc = &insns[i-1];
1414 pd = &insn_dat[i-1];
1415
1416 if (pd->unreachable)
1417 continue;
1418
1419 switch (BPF_CLASS(pc->code)) {
1420 case BPF_RET:
1421 /*
1422 * It's quite common for bpf programs to
1423 * check packet bytes in increasing order
1424 * and return zero if bytes don't match
1425 * specified critetion. Such programs disable
1426 * ABC optimization completely because for
1427 * every jump there is a branch with no read
1428 * instruction.
1429 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1430 * is indistinguishable from out-of-bound load.
1431 * Therefore, abc_length can be set to
1432 * MAX_ABC_LENGTH and enable ABC for many
1433 * bpf programs.
1434 * If this optimization encounters any
1435 * instruction with a side effect, it will
1436 * reset abc_length.
1437 */
1438 if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1439 abc_length = MAX_ABC_LENGTH;
1440 else
1441 abc_length = 0;
1442 break;
1443
1444 case BPF_MISC:
1445 if (BPF_MISCOP(pc->code) == BPF_COP ||
1446 BPF_MISCOP(pc->code) == BPF_COPX) {
1447 /* COP instructions can have side effects. */
1448 abc_length = 0;
1449 }
1450 break;
1451
1452 case BPF_ST:
1453 case BPF_STX:
1454 if (extwords != 0) {
1455 /* Write to memory is visible after a call. */
1456 abc_length = 0;
1457 }
1458 break;
1459
1460 case BPF_JMP:
1461 abc_length = pd->u.jdata.abc_length;
1462 break;
1463
1464 default:
1465 if (read_pkt_insn(pc, &length)) {
1466 if (abc_length < length)
1467 abc_length = length;
1468 pd->u.rdata.abc_length = abc_length;
1469 }
1470 break;
1471 }
1472
1473 SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1474 if (jmp->jdata->abc_length > abc_length)
1475 jmp->jdata->abc_length = abc_length;
1476 }
1477 }
1478 }
1479
1480 static void
1481 optimize_pass3(const struct bpf_insn *insns,
1482 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1483 {
1484 struct bpfjit_jump *jmp;
1485 size_t i;
1486 bpfjit_abc_length_t checked_length = 0;
1487
1488 for (i = 0; i < insn_count; i++) {
1489 if (insn_dat[i].unreachable)
1490 continue;
1491
1492 SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1493 if (jmp->jdata->checked_length < checked_length)
1494 checked_length = jmp->jdata->checked_length;
1495 }
1496
1497 if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1498 insn_dat[i].u.jdata.checked_length = checked_length;
1499 } else if (read_pkt_insn(&insns[i], NULL)) {
1500 struct bpfjit_read_pkt_data *rdata =
1501 &insn_dat[i].u.rdata;
1502 rdata->check_length = 0;
1503 if (checked_length < rdata->abc_length) {
1504 checked_length = rdata->abc_length;
1505 rdata->check_length = checked_length;
1506 }
1507 }
1508 }
1509 }
1510
1511 static bool
1512 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1513 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1514 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1515 {
1516
1517 optimize_init(insn_dat, insn_count);
1518
1519 if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1520 return false;
1521
1522 optimize_pass2(bc, insns, insn_dat, insn_count);
1523 optimize_pass3(insns, insn_dat, insn_count);
1524
1525 return true;
1526 }
1527
1528 /*
1529 * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1530 */
1531 static int
1532 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1533 {
1534
1535 /*
1536 * Note: all supported 64bit arches have 32bit multiply
1537 * instruction so SLJIT_INT_OP doesn't have any overhead.
1538 */
1539 switch (BPF_OP(pc->code)) {
1540 case BPF_ADD: return SLJIT_ADD;
1541 case BPF_SUB: return SLJIT_SUB;
1542 case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1543 case BPF_OR: return SLJIT_OR;
1544 case BPF_AND: return SLJIT_AND;
1545 case BPF_LSH: return SLJIT_SHL;
1546 case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1547 default:
1548 BJ_ASSERT(false);
1549 return 0;
1550 }
1551 }
1552
1553 /*
1554 * Convert BPF_JMP operations except BPF_JA to sljit condition.
1555 */
1556 static int
1557 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1558 {
1559 /*
1560 * Note: all supported 64bit arches have 32bit comparison
1561 * instructions so SLJIT_INT_OP doesn't have any overhead.
1562 */
1563 int rv = SLJIT_INT_OP;
1564
1565 switch (BPF_OP(pc->code)) {
1566 case BPF_JGT:
1567 rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1568 break;
1569 case BPF_JGE:
1570 rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1571 break;
1572 case BPF_JEQ:
1573 rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1574 break;
1575 case BPF_JSET:
1576 rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1577 break;
1578 default:
1579 BJ_ASSERT(false);
1580 }
1581
1582 return rv;
1583 }
1584
1585 /*
1586 * Convert BPF_K and BPF_X to sljit register.
1587 */
1588 static int
1589 kx_to_reg(const struct bpf_insn *pc)
1590 {
1591
1592 switch (BPF_SRC(pc->code)) {
1593 case BPF_K: return SLJIT_IMM;
1594 case BPF_X: return BJ_XREG;
1595 default:
1596 BJ_ASSERT(false);
1597 return 0;
1598 }
1599 }
1600
1601 static sljit_sw
1602 kx_to_reg_arg(const struct bpf_insn *pc)
1603 {
1604
1605 switch (BPF_SRC(pc->code)) {
1606 case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1607 case BPF_X: return 0; /* BJ_XREG, 0, */
1608 default:
1609 BJ_ASSERT(false);
1610 return 0;
1611 }
1612 }
1613
1614 static bool
1615 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
1616 const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
1617 size_t insn_count)
1618 {
1619 /* a list of jumps to out-of-bound return from a generated function */
1620 struct sljit_jump **ret0;
1621 size_t ret0_size, ret0_maxsize;
1622
1623 struct sljit_jump *jump;
1624 struct sljit_label *label;
1625 const struct bpf_insn *pc;
1626 struct bpfjit_jump *bjump, *jtf;
1627 struct sljit_jump *to_mchain_jump;
1628
1629 size_t i;
1630 int status;
1631 int branching, negate;
1632 unsigned int rval, mode, src;
1633 uint32_t jt, jf;
1634
1635 bool unconditional_ret;
1636 bool rv;
1637
1638 const size_t extwords = GET_EXTWORDS(bc);
1639 const size_t memwords = GET_MEMWORDS(bc);
1640
1641 ret0 = NULL;
1642 rv = false;
1643
1644 ret0_size = 0;
1645 ret0_maxsize = 64;
1646 ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1647 if (ret0 == NULL)
1648 goto fail;
1649
1650 /* reset sjump members of jdata */
1651 for (i = 0; i < insn_count; i++) {
1652 if (insn_dat[i].unreachable ||
1653 BPF_CLASS(insns[i].code) != BPF_JMP) {
1654 continue;
1655 }
1656
1657 jtf = insn_dat[i].u.jdata.jtf;
1658 jtf[0].sjump = jtf[1].sjump = NULL;
1659 }
1660
1661 /* main loop */
1662 for (i = 0; i < insn_count; i++) {
1663 if (insn_dat[i].unreachable)
1664 continue;
1665
1666 /*
1667 * Resolve jumps to the current insn.
1668 */
1669 label = NULL;
1670 SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1671 if (bjump->sjump != NULL) {
1672 if (label == NULL)
1673 label = sljit_emit_label(compiler);
1674 if (label == NULL)
1675 goto fail;
1676 sljit_set_label(bjump->sjump, label);
1677 }
1678 }
1679
1680 to_mchain_jump = NULL;
1681 unconditional_ret = false;
1682
1683 if (read_pkt_insn(&insns[i], NULL)) {
1684 if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1685 /* Jump to "return 0" unconditionally. */
1686 unconditional_ret = true;
1687 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1688 if (jump == NULL)
1689 goto fail;
1690 if (!append_jump(jump, &ret0,
1691 &ret0_size, &ret0_maxsize))
1692 goto fail;
1693 } else if (insn_dat[i].u.rdata.check_length > 0) {
1694 /* if (buflen < check_length) return 0; */
1695 jump = sljit_emit_cmp(compiler,
1696 SLJIT_C_LESS,
1697 BJ_BUFLEN, 0,
1698 SLJIT_IMM,
1699 insn_dat[i].u.rdata.check_length);
1700 if (jump == NULL)
1701 goto fail;
1702 #ifdef _KERNEL
1703 to_mchain_jump = jump;
1704 #else
1705 if (!append_jump(jump, &ret0,
1706 &ret0_size, &ret0_maxsize))
1707 goto fail;
1708 #endif
1709 }
1710 }
1711
1712 pc = &insns[i];
1713 switch (BPF_CLASS(pc->code)) {
1714
1715 default:
1716 goto fail;
1717
1718 case BPF_LD:
1719 /* BPF_LD+BPF_IMM A <- k */
1720 if (pc->code == (BPF_LD|BPF_IMM)) {
1721 status = sljit_emit_op1(compiler,
1722 SLJIT_MOV,
1723 BJ_AREG, 0,
1724 SLJIT_IMM, (uint32_t)pc->k);
1725 if (status != SLJIT_SUCCESS)
1726 goto fail;
1727
1728 continue;
1729 }
1730
1731 /* BPF_LD+BPF_MEM A <- M[k] */
1732 if (pc->code == (BPF_LD|BPF_MEM)) {
1733 if ((uint32_t)pc->k >= memwords)
1734 goto fail;
1735 status = emit_memload(compiler,
1736 BJ_AREG, pc->k, extwords);
1737 if (status != SLJIT_SUCCESS)
1738 goto fail;
1739
1740 continue;
1741 }
1742
1743 /* BPF_LD+BPF_W+BPF_LEN A <- len */
1744 if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1745 status = sljit_emit_op1(compiler,
1746 SLJIT_MOV, /* size_t source */
1747 BJ_AREG, 0,
1748 SLJIT_MEM1(BJ_ARGS),
1749 offsetof(struct bpf_args, wirelen));
1750 if (status != SLJIT_SUCCESS)
1751 goto fail;
1752
1753 continue;
1754 }
1755
1756 mode = BPF_MODE(pc->code);
1757 if (mode != BPF_ABS && mode != BPF_IND)
1758 goto fail;
1759
1760 if (unconditional_ret)
1761 continue;
1762
1763 status = emit_pkt_read(compiler, pc,
1764 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1765 if (status != SLJIT_SUCCESS)
1766 goto fail;
1767
1768 continue;
1769
1770 case BPF_LDX:
1771 mode = BPF_MODE(pc->code);
1772
1773 /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1774 if (mode == BPF_IMM) {
1775 if (BPF_SIZE(pc->code) != BPF_W)
1776 goto fail;
1777 status = sljit_emit_op1(compiler,
1778 SLJIT_MOV,
1779 BJ_XREG, 0,
1780 SLJIT_IMM, (uint32_t)pc->k);
1781 if (status != SLJIT_SUCCESS)
1782 goto fail;
1783
1784 continue;
1785 }
1786
1787 /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1788 if (mode == BPF_LEN) {
1789 if (BPF_SIZE(pc->code) != BPF_W)
1790 goto fail;
1791 status = sljit_emit_op1(compiler,
1792 SLJIT_MOV, /* size_t source */
1793 BJ_XREG, 0,
1794 SLJIT_MEM1(BJ_ARGS),
1795 offsetof(struct bpf_args, wirelen));
1796 if (status != SLJIT_SUCCESS)
1797 goto fail;
1798
1799 continue;
1800 }
1801
1802 /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1803 if (mode == BPF_MEM) {
1804 if (BPF_SIZE(pc->code) != BPF_W)
1805 goto fail;
1806 if ((uint32_t)pc->k >= memwords)
1807 goto fail;
1808 status = emit_memload(compiler,
1809 BJ_XREG, pc->k, extwords);
1810 if (status != SLJIT_SUCCESS)
1811 goto fail;
1812
1813 continue;
1814 }
1815
1816 /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1817 if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1818 goto fail;
1819
1820 if (unconditional_ret)
1821 continue;
1822
1823 status = emit_msh(compiler, pc,
1824 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1825 if (status != SLJIT_SUCCESS)
1826 goto fail;
1827
1828 continue;
1829
1830 case BPF_ST:
1831 if (pc->code != BPF_ST ||
1832 (uint32_t)pc->k >= memwords) {
1833 goto fail;
1834 }
1835
1836 status = emit_memstore(compiler,
1837 BJ_AREG, pc->k, extwords);
1838 if (status != SLJIT_SUCCESS)
1839 goto fail;
1840
1841 continue;
1842
1843 case BPF_STX:
1844 if (pc->code != BPF_STX ||
1845 (uint32_t)pc->k >= memwords) {
1846 goto fail;
1847 }
1848
1849 status = emit_memstore(compiler,
1850 BJ_XREG, pc->k, extwords);
1851 if (status != SLJIT_SUCCESS)
1852 goto fail;
1853
1854 continue;
1855
1856 case BPF_ALU:
1857 if (pc->code == (BPF_ALU|BPF_NEG)) {
1858 status = sljit_emit_op1(compiler,
1859 SLJIT_NEG,
1860 BJ_AREG, 0,
1861 BJ_AREG, 0);
1862 if (status != SLJIT_SUCCESS)
1863 goto fail;
1864
1865 continue;
1866 }
1867
1868 if (BPF_OP(pc->code) != BPF_DIV) {
1869 status = sljit_emit_op2(compiler,
1870 bpf_alu_to_sljit_op(pc),
1871 BJ_AREG, 0,
1872 BJ_AREG, 0,
1873 kx_to_reg(pc), kx_to_reg_arg(pc));
1874 if (status != SLJIT_SUCCESS)
1875 goto fail;
1876
1877 continue;
1878 }
1879
1880 /* BPF_DIV */
1881
1882 src = BPF_SRC(pc->code);
1883 if (src != BPF_X && src != BPF_K)
1884 goto fail;
1885
1886 /* division by zero? */
1887 if (src == BPF_X) {
1888 jump = sljit_emit_cmp(compiler,
1889 SLJIT_C_EQUAL|SLJIT_INT_OP,
1890 BJ_XREG, 0,
1891 SLJIT_IMM, 0);
1892 if (jump == NULL)
1893 goto fail;
1894 if (!append_jump(jump, &ret0,
1895 &ret0_size, &ret0_maxsize))
1896 goto fail;
1897 } else if (pc->k == 0) {
1898 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1899 if (jump == NULL)
1900 goto fail;
1901 if (!append_jump(jump, &ret0,
1902 &ret0_size, &ret0_maxsize))
1903 goto fail;
1904 }
1905
1906 if (src == BPF_X) {
1907 status = emit_division(compiler, BJ_XREG, 0);
1908 if (status != SLJIT_SUCCESS)
1909 goto fail;
1910 } else if (pc->k != 0) {
1911 if (pc->k & (pc->k - 1)) {
1912 status = emit_division(compiler,
1913 SLJIT_IMM, (uint32_t)pc->k);
1914 } else {
1915 status = emit_pow2_division(compiler,
1916 (uint32_t)pc->k);
1917 }
1918 if (status != SLJIT_SUCCESS)
1919 goto fail;
1920 }
1921
1922 continue;
1923
1924 case BPF_JMP:
1925 if (BPF_OP(pc->code) == BPF_JA) {
1926 jt = jf = pc->k;
1927 } else {
1928 jt = pc->jt;
1929 jf = pc->jf;
1930 }
1931
1932 negate = (jt == 0) ? 1 : 0;
1933 branching = (jt == jf) ? 0 : 1;
1934 jtf = insn_dat[i].u.jdata.jtf;
1935
1936 if (branching) {
1937 if (BPF_OP(pc->code) != BPF_JSET) {
1938 jump = sljit_emit_cmp(compiler,
1939 bpf_jmp_to_sljit_cond(pc, negate),
1940 BJ_AREG, 0,
1941 kx_to_reg(pc), kx_to_reg_arg(pc));
1942 } else {
1943 status = sljit_emit_op2(compiler,
1944 SLJIT_AND,
1945 BJ_TMP1REG, 0,
1946 BJ_AREG, 0,
1947 kx_to_reg(pc), kx_to_reg_arg(pc));
1948 if (status != SLJIT_SUCCESS)
1949 goto fail;
1950
1951 jump = sljit_emit_cmp(compiler,
1952 bpf_jmp_to_sljit_cond(pc, negate),
1953 BJ_TMP1REG, 0,
1954 SLJIT_IMM, 0);
1955 }
1956
1957 if (jump == NULL)
1958 goto fail;
1959
1960 BJ_ASSERT(jtf[negate].sjump == NULL);
1961 jtf[negate].sjump = jump;
1962 }
1963
1964 if (!branching || (jt != 0 && jf != 0)) {
1965 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1966 if (jump == NULL)
1967 goto fail;
1968
1969 BJ_ASSERT(jtf[branching].sjump == NULL);
1970 jtf[branching].sjump = jump;
1971 }
1972
1973 continue;
1974
1975 case BPF_RET:
1976 rval = BPF_RVAL(pc->code);
1977 if (rval == BPF_X)
1978 goto fail;
1979
1980 /* BPF_RET+BPF_K accept k bytes */
1981 if (rval == BPF_K) {
1982 status = sljit_emit_return(compiler,
1983 SLJIT_MOV_UI,
1984 SLJIT_IMM, (uint32_t)pc->k);
1985 if (status != SLJIT_SUCCESS)
1986 goto fail;
1987 }
1988
1989 /* BPF_RET+BPF_A accept A bytes */
1990 if (rval == BPF_A) {
1991 status = sljit_emit_return(compiler,
1992 SLJIT_MOV_UI,
1993 BJ_AREG, 0);
1994 if (status != SLJIT_SUCCESS)
1995 goto fail;
1996 }
1997
1998 continue;
1999
2000 case BPF_MISC:
2001 switch (BPF_MISCOP(pc->code)) {
2002 case BPF_TAX:
2003 status = sljit_emit_op1(compiler,
2004 SLJIT_MOV_UI,
2005 BJ_XREG, 0,
2006 BJ_AREG, 0);
2007 if (status != SLJIT_SUCCESS)
2008 goto fail;
2009
2010 continue;
2011
2012 case BPF_TXA:
2013 status = sljit_emit_op1(compiler,
2014 SLJIT_MOV,
2015 BJ_AREG, 0,
2016 BJ_XREG, 0);
2017 if (status != SLJIT_SUCCESS)
2018 goto fail;
2019
2020 continue;
2021
2022 case BPF_COP:
2023 case BPF_COPX:
2024 if (bc == NULL || bc->copfuncs == NULL)
2025 goto fail;
2026 if (BPF_MISCOP(pc->code) == BPF_COP &&
2027 (uint32_t)pc->k >= bc->nfuncs) {
2028 goto fail;
2029 }
2030
2031 jump = NULL;
2032 status = emit_cop(compiler, bc, pc, &jump);
2033 if (status != SLJIT_SUCCESS)
2034 goto fail;
2035
2036 if (jump != NULL && !append_jump(jump,
2037 &ret0, &ret0_size, &ret0_maxsize))
2038 goto fail;
2039
2040 continue;
2041 }
2042
2043 goto fail;
2044 } /* switch */
2045 } /* main loop */
2046
2047 BJ_ASSERT(ret0_size <= ret0_maxsize);
2048
2049 if (ret0_size > 0) {
2050 label = sljit_emit_label(compiler);
2051 if (label == NULL)
2052 goto fail;
2053 for (i = 0; i < ret0_size; i++)
2054 sljit_set_label(ret0[i], label);
2055 }
2056
2057 status = sljit_emit_return(compiler,
2058 SLJIT_MOV_UI,
2059 SLJIT_IMM, 0);
2060 if (status != SLJIT_SUCCESS)
2061 goto fail;
2062
2063 rv = true;
2064
2065 fail:
2066 if (ret0 != NULL)
2067 BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2068
2069 return rv;
2070 }
2071
2072 bpfjit_func_t
2073 bpfjit_generate_code(const bpf_ctx_t *bc,
2074 const struct bpf_insn *insns, size_t insn_count)
2075 {
2076 void *rv;
2077 struct sljit_compiler *compiler;
2078
2079 size_t i;
2080 int status;
2081
2082 /* optimization related */
2083 bpf_memword_init_t initmask;
2084 bpfjit_hint_t hints;
2085
2086 /* memory store location for initial zero initialization */
2087 sljit_si mem_reg;
2088 sljit_sw mem_off;
2089
2090 struct bpfjit_insn_data *insn_dat;
2091
2092 const size_t extwords = GET_EXTWORDS(bc);
2093 const size_t memwords = GET_MEMWORDS(bc);
2094 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2095
2096 rv = NULL;
2097 compiler = NULL;
2098 insn_dat = NULL;
2099
2100 if (memwords > MAX_MEMWORDS)
2101 goto fail;
2102
2103 if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2104 goto fail;
2105
2106 insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2107 if (insn_dat == NULL)
2108 goto fail;
2109
2110 if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2111 goto fail;
2112
2113 compiler = sljit_create_compiler();
2114 if (compiler == NULL)
2115 goto fail;
2116
2117 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2118 sljit_compiler_verbose(compiler, stderr);
2119 #endif
2120
2121 status = sljit_emit_enter(compiler,
2122 2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
2123 if (status != SLJIT_SUCCESS)
2124 goto fail;
2125
2126 if (hints & BJ_HINT_COP) {
2127 /* save ctx argument */
2128 status = sljit_emit_op1(compiler,
2129 SLJIT_MOV_P,
2130 SLJIT_MEM1(SLJIT_LOCALS_REG),
2131 offsetof(struct bpfjit_stack, ctx),
2132 BJ_CTX_ARG, 0);
2133 if (status != SLJIT_SUCCESS)
2134 goto fail;
2135 }
2136
2137 if (extwords == 0) {
2138 mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2139 mem_off = offsetof(struct bpfjit_stack, mem);
2140 } else {
2141 /* copy "mem" argument from bpf_args to bpfjit_stack */
2142 status = sljit_emit_op1(compiler,
2143 SLJIT_MOV_P,
2144 BJ_TMP1REG, 0,
2145 SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2146 if (status != SLJIT_SUCCESS)
2147 goto fail;
2148
2149 status = sljit_emit_op1(compiler,
2150 SLJIT_MOV_P,
2151 SLJIT_MEM1(SLJIT_LOCALS_REG),
2152 offsetof(struct bpfjit_stack, extmem),
2153 BJ_TMP1REG, 0);
2154 if (status != SLJIT_SUCCESS)
2155 goto fail;
2156
2157 mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2158 mem_off = 0;
2159 }
2160
2161 /*
2162 * Exclude pre-initialised external memory words but keep
2163 * initialization statuses of A and X registers in case
2164 * bc->preinited wrongly sets those two bits.
2165 */
2166 initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2167
2168 #if defined(_KERNEL)
2169 /* bpf_filter() checks initialization of memwords. */
2170 BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2171 #endif
2172 for (i = 0; i < memwords; i++) {
2173 if (initmask & BJ_INIT_MBIT(i)) {
2174 /* M[i] = 0; */
2175 status = sljit_emit_op1(compiler,
2176 SLJIT_MOV_UI,
2177 mem_reg, mem_off + i * sizeof(uint32_t),
2178 SLJIT_IMM, 0);
2179 if (status != SLJIT_SUCCESS)
2180 goto fail;
2181 }
2182 }
2183
2184 if (initmask & BJ_INIT_ABIT) {
2185 /* A = 0; */
2186 status = sljit_emit_op1(compiler,
2187 SLJIT_MOV,
2188 BJ_AREG, 0,
2189 SLJIT_IMM, 0);
2190 if (status != SLJIT_SUCCESS)
2191 goto fail;
2192 }
2193
2194 if (initmask & BJ_INIT_XBIT) {
2195 /* X = 0; */
2196 status = sljit_emit_op1(compiler,
2197 SLJIT_MOV,
2198 BJ_XREG, 0,
2199 SLJIT_IMM, 0);
2200 if (status != SLJIT_SUCCESS)
2201 goto fail;
2202 }
2203
2204 status = load_buf_buflen(compiler);
2205 if (status != SLJIT_SUCCESS)
2206 goto fail;
2207
2208 if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
2209 goto fail;
2210
2211 rv = sljit_generate_code(compiler);
2212
2213 fail:
2214 if (compiler != NULL)
2215 sljit_free_compiler(compiler);
2216
2217 if (insn_dat != NULL)
2218 BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2219
2220 return (bpfjit_func_t)rv;
2221 }
2222
2223 void
2224 bpfjit_free_code(bpfjit_func_t code)
2225 {
2226
2227 sljit_free_code((void *)code);
2228 }
2229