Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.26
      1 /*	$NetBSD: bpfjit.c,v 1.26 2014/07/12 20:14:18 alnsn Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.26 2014/07/12 20:14:18 alnsn Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.26 2014/07/12 20:14:18 alnsn Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #else
     65 #include <sys/atomic.h>
     66 #include <sys/module.h>
     67 #endif
     68 
     69 #define	__BPF_PRIVATE
     70 #include <net/bpf.h>
     71 #include <net/bpfjit.h>
     72 #include <sljitLir.h>
     73 
     74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75 #include <stdio.h> /* for stderr */
     76 #endif
     77 
     78 /*
     79  * Arguments of generated bpfjit_func_t.
     80  * The first argument is reassigned upon entry
     81  * to a more frequently used buf argument.
     82  */
     83 #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84 #define BJ_ARGS		SLJIT_SAVED_REG2
     85 
     86 /*
     87  * Permanent register assignments.
     88  */
     89 #define BJ_BUF		SLJIT_SAVED_REG1
     90 //#define BJ_ARGS	SLJIT_SAVED_REG2
     91 #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92 #define BJ_AREG		SLJIT_SCRATCH_REG1
     93 #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94 #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95 #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96 #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97 
     98 /*
     99  * EREG registers can't be used for indirect calls, reuse BJ_BUF and
    100  * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
    101  */
    102 #define BJ_COPF_PTR	SLJIT_SAVED_REG1
    103 #define BJ_COPF_IDX	SLJIT_SAVED_REG3
    104 
    105 #ifdef _KERNEL
    106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    107 #else
    108 #define MAX_MEMWORDS BPF_MEMWORDS
    109 #endif
    110 
    111 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    113 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    114 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    115 
    116 /*
    117  * Get a number of memwords and external memwords from a bpf_ctx object.
    118  */
    119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    121 
    122 /*
    123  * Optimization hints.
    124  */
    125 typedef unsigned int bpfjit_hint_t;
    126 #define BJ_HINT_PKT  0x01 /* packet read         */
    127 #define BJ_HINT_LDW  0x02 /* 32-bit load         */
    128 #define BJ_HINT_COP  0x04 /* BPF_COP or BPF_COPX instruction  */
    129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed   */
    130 #define BJ_HINT_LDX  0x10 /* BPF_LDX instruction */
    131 
    132 /*
    133  * Datatype for Array Bounds Check Elimination (ABC) pass.
    134  */
    135 typedef uint64_t bpfjit_abc_length_t;
    136 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    137 
    138 struct bpfjit_stack
    139 {
    140 	bpf_ctx_t *ctx;
    141 	uint32_t *extmem; /* pointer to external memory store */
    142 #ifdef _KERNEL
    143 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    144 #endif
    145 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    146 };
    147 
    148 /*
    149  * Data for BPF_JMP instruction.
    150  * Forward declaration for struct bpfjit_jump.
    151  */
    152 struct bpfjit_jump_data;
    153 
    154 /*
    155  * Node of bjumps list.
    156  */
    157 struct bpfjit_jump {
    158 	struct sljit_jump *sjump;
    159 	SLIST_ENTRY(bpfjit_jump) entries;
    160 	struct bpfjit_jump_data *jdata;
    161 };
    162 
    163 /*
    164  * Data for BPF_JMP instruction.
    165  */
    166 struct bpfjit_jump_data {
    167 	/*
    168 	 * These entries make up bjumps list:
    169 	 * jtf[0] - when coming from jt path,
    170 	 * jtf[1] - when coming from jf path.
    171 	 */
    172 	struct bpfjit_jump jtf[2];
    173 	/*
    174 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    175 	 */
    176 	bpfjit_abc_length_t abc_length;
    177 	/*
    178 	 * Length checked by the last out-of-bounds check.
    179 	 */
    180 	bpfjit_abc_length_t checked_length;
    181 };
    182 
    183 /*
    184  * Data for "read from packet" instructions.
    185  * See also read_pkt_insn() function below.
    186  */
    187 struct bpfjit_read_pkt_data {
    188 	/*
    189 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    190 	 */
    191 	bpfjit_abc_length_t abc_length;
    192 	/*
    193 	 * If positive, emit "if (buflen < check_length) return 0"
    194 	 * out-of-bounds check.
    195 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    196 	 */
    197 	bpfjit_abc_length_t check_length;
    198 };
    199 
    200 /*
    201  * Additional (optimization-related) data for bpf_insn.
    202  */
    203 struct bpfjit_insn_data {
    204 	/* List of jumps to this insn. */
    205 	SLIST_HEAD(, bpfjit_jump) bjumps;
    206 
    207 	union {
    208 		struct bpfjit_jump_data     jdata;
    209 		struct bpfjit_read_pkt_data rdata;
    210 	} u;
    211 
    212 	bpf_memword_init_t invalid;
    213 	bool unreachable;
    214 };
    215 
    216 #ifdef _KERNEL
    217 
    218 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    219 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    220 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    221 
    222 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    223 
    224 static int
    225 bpfjit_modcmd(modcmd_t cmd, void *arg)
    226 {
    227 
    228 	switch (cmd) {
    229 	case MODULE_CMD_INIT:
    230 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    231 		membar_producer();
    232 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    233 		membar_producer();
    234 		return 0;
    235 
    236 	case MODULE_CMD_FINI:
    237 		return EOPNOTSUPP;
    238 
    239 	default:
    240 		return ENOTTY;
    241 	}
    242 }
    243 #endif
    244 
    245 /*
    246  * Return a number of scratch registers to pass
    247  * to sljit_emit_enter() function.
    248  */
    249 static sljit_si
    250 nscratches(bpfjit_hint_t hints)
    251 {
    252 	sljit_si rv = 2;
    253 
    254 #ifdef _KERNEL
    255 	if (hints & BJ_HINT_PKT)
    256 		rv = 3; /* xcall with three arguments */
    257 #endif
    258 
    259 	if (hints & (BJ_HINT_LDW|BJ_HINT_PKT))
    260 		rv = 3; /* uses BJ_TMP2REG */
    261 
    262 	if (hints & BJ_HINT_COP)
    263 		rv = 3; /* calls copfunc with three arguments */
    264 
    265 	if (hints & BJ_HINT_XREG)
    266 		rv = 4; /* uses BJ_XREG */
    267 
    268 #ifdef _KERNEL
    269 	if (hints & BJ_HINT_LDX)
    270 		rv = 5; /* uses BJ_TMP3REG */
    271 #endif
    272 
    273 	return rv;
    274 }
    275 
    276 static uint32_t
    277 read_width(const struct bpf_insn *pc)
    278 {
    279 
    280 	switch (BPF_SIZE(pc->code)) {
    281 	case BPF_W:
    282 		return 4;
    283 	case BPF_H:
    284 		return 2;
    285 	case BPF_B:
    286 		return 1;
    287 	default:
    288 		BJ_ASSERT(false);
    289 		return 0;
    290 	}
    291 }
    292 
    293 /*
    294  * Copy buf and buflen members of bpf_args from BJ_ARGS
    295  * pointer to BJ_BUF and BJ_BUFLEN registers.
    296  */
    297 static int
    298 load_buf_buflen(struct sljit_compiler *compiler)
    299 {
    300 	int status;
    301 
    302 	status = sljit_emit_op1(compiler,
    303 	    SLJIT_MOV_P,
    304 	    BJ_BUF, 0,
    305 	    SLJIT_MEM1(BJ_ARGS),
    306 	    offsetof(struct bpf_args, pkt));
    307 	if (status != SLJIT_SUCCESS)
    308 		return status;
    309 
    310 	status = sljit_emit_op1(compiler,
    311 	    SLJIT_MOV, /* size_t source */
    312 	    BJ_BUFLEN, 0,
    313 	    SLJIT_MEM1(BJ_ARGS),
    314 	    offsetof(struct bpf_args, buflen));
    315 
    316 	return status;
    317 }
    318 
    319 static bool
    320 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    321 {
    322 	struct sljit_jump **newptr;
    323 	const size_t elemsz = sizeof(struct sljit_jump *);
    324 	size_t old_size = *size;
    325 	size_t new_size = 2 * old_size;
    326 
    327 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    328 		return false;
    329 
    330 	newptr = BJ_ALLOC(new_size * elemsz);
    331 	if (newptr == NULL)
    332 		return false;
    333 
    334 	memcpy(newptr, *jumps, old_size * elemsz);
    335 	BJ_FREE(*jumps, old_size * elemsz);
    336 
    337 	*jumps = newptr;
    338 	*size = new_size;
    339 	return true;
    340 }
    341 
    342 static bool
    343 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    344     size_t *size, size_t *max_size)
    345 {
    346 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    347 		return false;
    348 
    349 	(*jumps)[(*size)++] = jump;
    350 	return true;
    351 }
    352 
    353 /*
    354  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    355  */
    356 static int
    357 emit_read8(struct sljit_compiler *compiler, uint32_t k)
    358 {
    359 
    360 	return sljit_emit_op1(compiler,
    361 	    SLJIT_MOV_UB,
    362 	    BJ_AREG, 0,
    363 	    SLJIT_MEM1(BJ_BUF), k);
    364 }
    365 
    366 /*
    367  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    368  */
    369 static int
    370 emit_read16(struct sljit_compiler *compiler, uint32_t k)
    371 {
    372 	int status;
    373 
    374 	/* tmp1 = buf[k]; */
    375 	status = sljit_emit_op1(compiler,
    376 	    SLJIT_MOV_UB,
    377 	    BJ_TMP1REG, 0,
    378 	    SLJIT_MEM1(BJ_BUF), k);
    379 	if (status != SLJIT_SUCCESS)
    380 		return status;
    381 
    382 	/* A = buf[k+1]; */
    383 	status = sljit_emit_op1(compiler,
    384 	    SLJIT_MOV_UB,
    385 	    BJ_AREG, 0,
    386 	    SLJIT_MEM1(BJ_BUF), k+1);
    387 	if (status != SLJIT_SUCCESS)
    388 		return status;
    389 
    390 	/* tmp1 = tmp1 << 8; */
    391 	status = sljit_emit_op2(compiler,
    392 	    SLJIT_SHL,
    393 	    BJ_TMP1REG, 0,
    394 	    BJ_TMP1REG, 0,
    395 	    SLJIT_IMM, 8);
    396 	if (status != SLJIT_SUCCESS)
    397 		return status;
    398 
    399 	/* A = A + tmp1; */
    400 	status = sljit_emit_op2(compiler,
    401 	    SLJIT_ADD,
    402 	    BJ_AREG, 0,
    403 	    BJ_AREG, 0,
    404 	    BJ_TMP1REG, 0);
    405 	return status;
    406 }
    407 
    408 /*
    409  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    410  */
    411 static int
    412 emit_read32(struct sljit_compiler *compiler, uint32_t k)
    413 {
    414 	int status;
    415 
    416 	/* tmp1 = buf[k]; */
    417 	status = sljit_emit_op1(compiler,
    418 	    SLJIT_MOV_UB,
    419 	    BJ_TMP1REG, 0,
    420 	    SLJIT_MEM1(BJ_BUF), k);
    421 	if (status != SLJIT_SUCCESS)
    422 		return status;
    423 
    424 	/* tmp2 = buf[k+1]; */
    425 	status = sljit_emit_op1(compiler,
    426 	    SLJIT_MOV_UB,
    427 	    BJ_TMP2REG, 0,
    428 	    SLJIT_MEM1(BJ_BUF), k+1);
    429 	if (status != SLJIT_SUCCESS)
    430 		return status;
    431 
    432 	/* A = buf[k+3]; */
    433 	status = sljit_emit_op1(compiler,
    434 	    SLJIT_MOV_UB,
    435 	    BJ_AREG, 0,
    436 	    SLJIT_MEM1(BJ_BUF), k+3);
    437 	if (status != SLJIT_SUCCESS)
    438 		return status;
    439 
    440 	/* tmp1 = tmp1 << 24; */
    441 	status = sljit_emit_op2(compiler,
    442 	    SLJIT_SHL,
    443 	    BJ_TMP1REG, 0,
    444 	    BJ_TMP1REG, 0,
    445 	    SLJIT_IMM, 24);
    446 	if (status != SLJIT_SUCCESS)
    447 		return status;
    448 
    449 	/* A = A + tmp1; */
    450 	status = sljit_emit_op2(compiler,
    451 	    SLJIT_ADD,
    452 	    BJ_AREG, 0,
    453 	    BJ_AREG, 0,
    454 	    BJ_TMP1REG, 0);
    455 	if (status != SLJIT_SUCCESS)
    456 		return status;
    457 
    458 	/* tmp1 = buf[k+2]; */
    459 	status = sljit_emit_op1(compiler,
    460 	    SLJIT_MOV_UB,
    461 	    BJ_TMP1REG, 0,
    462 	    SLJIT_MEM1(BJ_BUF), k+2);
    463 	if (status != SLJIT_SUCCESS)
    464 		return status;
    465 
    466 	/* tmp2 = tmp2 << 16; */
    467 	status = sljit_emit_op2(compiler,
    468 	    SLJIT_SHL,
    469 	    BJ_TMP2REG, 0,
    470 	    BJ_TMP2REG, 0,
    471 	    SLJIT_IMM, 16);
    472 	if (status != SLJIT_SUCCESS)
    473 		return status;
    474 
    475 	/* A = A + tmp2; */
    476 	status = sljit_emit_op2(compiler,
    477 	    SLJIT_ADD,
    478 	    BJ_AREG, 0,
    479 	    BJ_AREG, 0,
    480 	    BJ_TMP2REG, 0);
    481 	if (status != SLJIT_SUCCESS)
    482 		return status;
    483 
    484 	/* tmp1 = tmp1 << 8; */
    485 	status = sljit_emit_op2(compiler,
    486 	    SLJIT_SHL,
    487 	    BJ_TMP1REG, 0,
    488 	    BJ_TMP1REG, 0,
    489 	    SLJIT_IMM, 8);
    490 	if (status != SLJIT_SUCCESS)
    491 		return status;
    492 
    493 	/* A = A + tmp1; */
    494 	status = sljit_emit_op2(compiler,
    495 	    SLJIT_ADD,
    496 	    BJ_AREG, 0,
    497 	    BJ_AREG, 0,
    498 	    BJ_TMP1REG, 0);
    499 	return status;
    500 }
    501 
    502 #ifdef _KERNEL
    503 /*
    504  * Emit code for m_xword/m_xhalf/m_xbyte call.
    505  *
    506  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    507  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    508  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    509  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    510  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    511  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    512  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    513  */
    514 static int
    515 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
    516     int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
    517     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    518 {
    519 #if BJ_XREG    == SLJIT_RETURN_REG   || \
    520     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    521     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    522     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    523     BJ_TMP3REG == SLJIT_RETURN_REG   || \
    524     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    525     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    526     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    527 #error "Not supported assignment of registers."
    528 #endif
    529 	struct sljit_jump *jump;
    530 	int status;
    531 
    532 	BJ_ASSERT(dst != BJ_TMP2REG && dst != BJ_TMP3REG);
    533 
    534 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    535 		/* save A */
    536 		status = sljit_emit_op1(compiler,
    537 		    SLJIT_MOV,
    538 		    BJ_TMP3REG, 0,
    539 		    BJ_AREG, 0);
    540 		if (status != SLJIT_SUCCESS)
    541 			return status;
    542 	}
    543 
    544 	/*
    545 	 * Prepare registers for fn(mbuf, k, &err) call.
    546 	 */
    547 	status = sljit_emit_op1(compiler,
    548 	    SLJIT_MOV,
    549 	    SLJIT_SCRATCH_REG1, 0,
    550 	    BJ_BUF, 0);
    551 	if (status != SLJIT_SUCCESS)
    552 		return status;
    553 
    554 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    555 		/* if (X > UINT32_MAX - pc->k) return 0; */
    556 		jump = sljit_emit_cmp(compiler,
    557 		    SLJIT_C_GREATER,
    558 		    BJ_XREG, 0,
    559 		    SLJIT_IMM, UINT32_MAX - pc->k);
    560 		if (jump == NULL)
    561 			return SLJIT_ERR_ALLOC_FAILED;
    562 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    563 			return SLJIT_ERR_ALLOC_FAILED;
    564 
    565 		/* k = X + pc->k; */
    566 		status = sljit_emit_op2(compiler,
    567 		    SLJIT_ADD,
    568 		    SLJIT_SCRATCH_REG2, 0,
    569 		    BJ_XREG, 0,
    570 		    SLJIT_IMM, (uint32_t)pc->k);
    571 		if (status != SLJIT_SUCCESS)
    572 			return status;
    573 	} else {
    574 		/* k = pc->k */
    575 		status = sljit_emit_op1(compiler,
    576 		    SLJIT_MOV,
    577 		    SLJIT_SCRATCH_REG2, 0,
    578 		    SLJIT_IMM, (uint32_t)pc->k);
    579 		if (status != SLJIT_SUCCESS)
    580 			return status;
    581 	}
    582 
    583 	/*
    584 	 * The third argument of fn is an address on stack.
    585 	 */
    586 	status = sljit_get_local_base(compiler,
    587 	    SLJIT_SCRATCH_REG3, 0,
    588 	    offsetof(struct bpfjit_stack, err));
    589 	if (status != SLJIT_SUCCESS)
    590 		return status;
    591 
    592 	/* fn(buf, k, &err); */
    593 	status = sljit_emit_ijump(compiler,
    594 	    SLJIT_CALL3,
    595 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    596 	if (status != SLJIT_SUCCESS)
    597 		return status;
    598 
    599 	if (dst != SLJIT_RETURN_REG) {
    600 		/* move return value to dst */
    601 		status = sljit_emit_op1(compiler,
    602 		    SLJIT_MOV,
    603 		    dst, 0,
    604 		    SLJIT_RETURN_REG, 0);
    605 		if (status != SLJIT_SUCCESS)
    606 			return status;
    607 	}
    608 
    609 	/* tmp2 = *err; */
    610 	status = sljit_emit_op1(compiler,
    611 	    SLJIT_MOV_UI,
    612 	    BJ_TMP2REG, 0,
    613 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    614 	    offsetof(struct bpfjit_stack, err));
    615 	if (status != SLJIT_SUCCESS)
    616 		return status;
    617 
    618 	/* if (tmp2 != 0) return 0; */
    619 	jump = sljit_emit_cmp(compiler,
    620 	    SLJIT_C_NOT_EQUAL,
    621 	    BJ_TMP2REG, 0,
    622 	    SLJIT_IMM, 0);
    623 	if (jump == NULL)
    624 		return SLJIT_ERR_ALLOC_FAILED;
    625 
    626 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    627 		return SLJIT_ERR_ALLOC_FAILED;
    628 
    629 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    630 		/* restore A */
    631 		status = sljit_emit_op1(compiler,
    632 		    SLJIT_MOV,
    633 		    BJ_AREG, 0,
    634 		    BJ_TMP3REG, 0);
    635 		if (status != SLJIT_SUCCESS)
    636 			return status;
    637 	}
    638 
    639 	return SLJIT_SUCCESS;
    640 }
    641 #endif
    642 
    643 /*
    644  * Emit code for BPF_COP and BPF_COPX instructions.
    645  */
    646 static int
    647 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
    648     const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
    649 {
    650 #if BJ_XREG == SLJIT_RETURN_REG   || \
    651     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    652     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    653     BJ_XREG == SLJIT_SCRATCH_REG3 || \
    654     BJ_COPF_PTR == BJ_ARGS        || \
    655     BJ_COPF_IDX	== BJ_ARGS
    656 #error "Not supported assignment of registers."
    657 #endif
    658 
    659 	struct sljit_jump *jump;
    660 	int status;
    661 
    662 	jump = NULL;
    663 
    664 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    665 
    666 	if (BPF_MISCOP(pc->code) == BPF_COPX) {
    667 		/* if (X >= bc->nfuncs) return 0; */
    668 		jump = sljit_emit_cmp(compiler,
    669 		    SLJIT_C_GREATER_EQUAL,
    670 		    BJ_XREG, 0,
    671 		    SLJIT_IMM, bc->nfuncs);
    672 		if (jump == NULL)
    673 			return SLJIT_ERR_ALLOC_FAILED;
    674 	}
    675 
    676 	if (jump != NULL)
    677 		*ret0_jump = jump;
    678 
    679 	/*
    680 	 * Copy bpf_copfunc_t arguments to registers.
    681 	 */
    682 #if BJ_AREG != SLJIT_SCRATCH_REG3
    683 	status = sljit_emit_op1(compiler,
    684 	    SLJIT_MOV_UI,
    685 	    SLJIT_SCRATCH_REG3, 0,
    686 	    BJ_AREG, 0);
    687 	if (status != SLJIT_SUCCESS)
    688 		return status;
    689 #endif
    690 
    691 	status = sljit_emit_op1(compiler,
    692 	    SLJIT_MOV_P,
    693 	    SLJIT_SCRATCH_REG1, 0,
    694 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    695 	    offsetof(struct bpfjit_stack, ctx));
    696 	if (status != SLJIT_SUCCESS)
    697 		return status;
    698 
    699 	status = sljit_emit_op1(compiler,
    700 	    SLJIT_MOV_P,
    701 	    SLJIT_SCRATCH_REG2, 0,
    702 	    BJ_ARGS, 0);
    703 	if (status != SLJIT_SUCCESS)
    704 		return status;
    705 
    706 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    707 		status = sljit_emit_ijump(compiler,
    708 		    SLJIT_CALL3,
    709 		    SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
    710 		if (status != SLJIT_SUCCESS)
    711 			return status;
    712 	} else if (BPF_MISCOP(pc->code) == BPF_COPX) {
    713 		/* load ctx->copfuncs */
    714 		status = sljit_emit_op1(compiler,
    715 		    SLJIT_MOV_P,
    716 		    BJ_COPF_PTR, 0,
    717 		    SLJIT_MEM1(SLJIT_SCRATCH_REG1),
    718 		    offsetof(struct bpf_ctx, copfuncs));
    719 		if (status != SLJIT_SUCCESS)
    720 			return status;
    721 
    722 		/*
    723 		 * Load X to a register that can be used for
    724 		 * memory addressing.
    725 		 */
    726 		status = sljit_emit_op1(compiler,
    727 		    SLJIT_MOV,
    728 		    BJ_COPF_IDX, 0,
    729 		    BJ_XREG, 0);
    730 		if (status != SLJIT_SUCCESS)
    731 			return status;
    732 
    733 		status = sljit_emit_ijump(compiler,
    734 		    SLJIT_CALL3,
    735 		    SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
    736 		    SLJIT_WORD_SHIFT);
    737 		if (status != SLJIT_SUCCESS)
    738 			return status;
    739 
    740 		status = load_buf_buflen(compiler);
    741 		if (status != SLJIT_SUCCESS)
    742 			return status;
    743 	}
    744 
    745 #if BJ_AREG != SLJIT_RETURN_REG
    746 	status = sljit_emit_op1(compiler,
    747 	    SLJIT_MOV,
    748 	    BJ_AREG, 0,
    749 	    SLJIT_RETURN_REG, 0);
    750 	if (status != SLJIT_SUCCESS)
    751 		return status;
    752 #endif
    753 
    754 	return SLJIT_SUCCESS;
    755 }
    756 
    757 /*
    758  * Generate code for
    759  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    760  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    761  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    762  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    763  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    764  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    765  */
    766 static int
    767 emit_pkt_read(struct sljit_compiler *compiler,
    768     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    769     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    770 {
    771 	int status = SLJIT_ERR_ALLOC_FAILED;
    772 	uint32_t width;
    773 	struct sljit_jump *jump;
    774 #ifdef _KERNEL
    775 	struct sljit_label *label;
    776 	struct sljit_jump *over_mchain_jump;
    777 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    778 #endif
    779 	const uint32_t k = pc->k;
    780 
    781 #ifdef _KERNEL
    782 	if (to_mchain_jump == NULL) {
    783 		to_mchain_jump = sljit_emit_cmp(compiler,
    784 		    SLJIT_C_EQUAL,
    785 		    BJ_BUFLEN, 0,
    786 		    SLJIT_IMM, 0);
    787 		if (to_mchain_jump == NULL)
    788 			return SLJIT_ERR_ALLOC_FAILED;
    789 	}
    790 #endif
    791 
    792 	width = read_width(pc);
    793 
    794 	if (BPF_MODE(pc->code) == BPF_IND) {
    795 		/* tmp1 = buflen - (pc->k + width); */
    796 		status = sljit_emit_op2(compiler,
    797 		    SLJIT_SUB,
    798 		    BJ_TMP1REG, 0,
    799 		    BJ_BUFLEN, 0,
    800 		    SLJIT_IMM, k + width);
    801 		if (status != SLJIT_SUCCESS)
    802 			return status;
    803 
    804 		/* buf += X; */
    805 		status = sljit_emit_op2(compiler,
    806 		    SLJIT_ADD,
    807 		    BJ_BUF, 0,
    808 		    BJ_BUF, 0,
    809 		    BJ_XREG, 0);
    810 		if (status != SLJIT_SUCCESS)
    811 			return status;
    812 
    813 		/* if (tmp1 < X) return 0; */
    814 		jump = sljit_emit_cmp(compiler,
    815 		    SLJIT_C_LESS,
    816 		    BJ_TMP1REG, 0,
    817 		    BJ_XREG, 0);
    818 		if (jump == NULL)
    819 			return SLJIT_ERR_ALLOC_FAILED;
    820 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    821 			return SLJIT_ERR_ALLOC_FAILED;
    822 	}
    823 
    824 	switch (width) {
    825 	case 4:
    826 		status = emit_read32(compiler, k);
    827 		break;
    828 	case 2:
    829 		status = emit_read16(compiler, k);
    830 		break;
    831 	case 1:
    832 		status = emit_read8(compiler, k);
    833 		break;
    834 	}
    835 
    836 	if (status != SLJIT_SUCCESS)
    837 		return status;
    838 
    839 	if (BPF_MODE(pc->code) == BPF_IND) {
    840 		/* buf -= X; */
    841 		status = sljit_emit_op2(compiler,
    842 		    SLJIT_SUB,
    843 		    BJ_BUF, 0,
    844 		    BJ_BUF, 0,
    845 		    BJ_XREG, 0);
    846 		if (status != SLJIT_SUCCESS)
    847 			return status;
    848 	}
    849 
    850 #ifdef _KERNEL
    851 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    852 	if (over_mchain_jump == NULL)
    853 		return SLJIT_ERR_ALLOC_FAILED;
    854 
    855 	/* entry point to mchain handler */
    856 	label = sljit_emit_label(compiler);
    857 	if (label == NULL)
    858 		return SLJIT_ERR_ALLOC_FAILED;
    859 	sljit_set_label(to_mchain_jump, label);
    860 
    861 	if (check_zero_buflen) {
    862 		/* if (buflen != 0) return 0; */
    863 		jump = sljit_emit_cmp(compiler,
    864 		    SLJIT_C_NOT_EQUAL,
    865 		    BJ_BUFLEN, 0,
    866 		    SLJIT_IMM, 0);
    867 		if (jump == NULL)
    868 			return SLJIT_ERR_ALLOC_FAILED;
    869 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    870 			return SLJIT_ERR_ALLOC_FAILED;
    871 	}
    872 
    873 	switch (width) {
    874 	case 4:
    875 		status = emit_xcall(compiler, pc, BJ_AREG,
    876 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    877 		break;
    878 	case 2:
    879 		status = emit_xcall(compiler, pc, BJ_AREG,
    880 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    881 		break;
    882 	case 1:
    883 		status = emit_xcall(compiler, pc, BJ_AREG,
    884 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    885 		break;
    886 	}
    887 
    888 	if (status != SLJIT_SUCCESS)
    889 		return status;
    890 
    891 	label = sljit_emit_label(compiler);
    892 	if (label == NULL)
    893 		return SLJIT_ERR_ALLOC_FAILED;
    894 	sljit_set_label(over_mchain_jump, label);
    895 #endif
    896 
    897 	return SLJIT_SUCCESS;
    898 }
    899 
    900 static int
    901 emit_memload(struct sljit_compiler *compiler,
    902     sljit_si dst, uint32_t k, size_t extwords)
    903 {
    904 	int status;
    905 	sljit_si src;
    906 	sljit_sw srcw;
    907 
    908 	srcw = k * sizeof(uint32_t);
    909 
    910 	if (extwords == 0) {
    911 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    912 		srcw += offsetof(struct bpfjit_stack, mem);
    913 	} else {
    914 		/* copy extmem pointer to the tmp1 register */
    915 		status = sljit_emit_op1(compiler,
    916 		    SLJIT_MOV_P,
    917 		    BJ_TMP1REG, 0,
    918 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    919 		    offsetof(struct bpfjit_stack, extmem));
    920 		if (status != SLJIT_SUCCESS)
    921 			return status;
    922 		src = SLJIT_MEM1(BJ_TMP1REG);
    923 	}
    924 
    925 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    926 }
    927 
    928 static int
    929 emit_memstore(struct sljit_compiler *compiler,
    930     sljit_si src, uint32_t k, size_t extwords)
    931 {
    932 	int status;
    933 	sljit_si dst;
    934 	sljit_sw dstw;
    935 
    936 	dstw = k * sizeof(uint32_t);
    937 
    938 	if (extwords == 0) {
    939 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    940 		dstw += offsetof(struct bpfjit_stack, mem);
    941 	} else {
    942 		/* copy extmem pointer to the tmp1 register */
    943 		status = sljit_emit_op1(compiler,
    944 		    SLJIT_MOV_P,
    945 		    BJ_TMP1REG, 0,
    946 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    947 		    offsetof(struct bpfjit_stack, extmem));
    948 		if (status != SLJIT_SUCCESS)
    949 			return status;
    950 		dst = SLJIT_MEM1(BJ_TMP1REG);
    951 	}
    952 
    953 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    954 }
    955 
    956 /*
    957  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    958  */
    959 static int
    960 emit_msh(struct sljit_compiler *compiler,
    961     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    962     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    963 {
    964 	int status;
    965 #ifdef _KERNEL
    966 	struct sljit_label *label;
    967 	struct sljit_jump *jump, *over_mchain_jump;
    968 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    969 #endif
    970 	const uint32_t k = pc->k;
    971 
    972 #ifdef _KERNEL
    973 	if (to_mchain_jump == NULL) {
    974 		to_mchain_jump = sljit_emit_cmp(compiler,
    975 		    SLJIT_C_EQUAL,
    976 		    BJ_BUFLEN, 0,
    977 		    SLJIT_IMM, 0);
    978 		if (to_mchain_jump == NULL)
    979 			return SLJIT_ERR_ALLOC_FAILED;
    980 	}
    981 #endif
    982 
    983 	/* tmp1 = buf[k] */
    984 	status = sljit_emit_op1(compiler,
    985 	    SLJIT_MOV_UB,
    986 	    BJ_TMP1REG, 0,
    987 	    SLJIT_MEM1(BJ_BUF), k);
    988 	if (status != SLJIT_SUCCESS)
    989 		return status;
    990 
    991 	/* tmp1 &= 0xf */
    992 	status = sljit_emit_op2(compiler,
    993 	    SLJIT_AND,
    994 	    BJ_TMP1REG, 0,
    995 	    BJ_TMP1REG, 0,
    996 	    SLJIT_IMM, 0xf);
    997 	if (status != SLJIT_SUCCESS)
    998 		return status;
    999 
   1000 	/* tmp1 = tmp1 << 2 */
   1001 	status = sljit_emit_op2(compiler,
   1002 	    SLJIT_SHL,
   1003 	    BJ_XREG, 0,
   1004 	    BJ_TMP1REG, 0,
   1005 	    SLJIT_IMM, 2);
   1006 	if (status != SLJIT_SUCCESS)
   1007 		return status;
   1008 
   1009 #ifdef _KERNEL
   1010 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1011 	if (over_mchain_jump == NULL)
   1012 		return SLJIT_ERR_ALLOC_FAILED;
   1013 
   1014 	/* entry point to mchain handler */
   1015 	label = sljit_emit_label(compiler);
   1016 	if (label == NULL)
   1017 		return SLJIT_ERR_ALLOC_FAILED;
   1018 	sljit_set_label(to_mchain_jump, label);
   1019 
   1020 	if (check_zero_buflen) {
   1021 		/* if (buflen != 0) return 0; */
   1022 		jump = sljit_emit_cmp(compiler,
   1023 		    SLJIT_C_NOT_EQUAL,
   1024 		    BJ_BUFLEN, 0,
   1025 		    SLJIT_IMM, 0);
   1026 		if (jump == NULL)
   1027 			return SLJIT_ERR_ALLOC_FAILED;
   1028 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1029 			return SLJIT_ERR_ALLOC_FAILED;
   1030 	}
   1031 
   1032 	status = emit_xcall(compiler, pc, BJ_TMP1REG,
   1033 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1034 	if (status != SLJIT_SUCCESS)
   1035 		return status;
   1036 
   1037 	/* tmp1 &= 0xf */
   1038 	status = sljit_emit_op2(compiler,
   1039 	    SLJIT_AND,
   1040 	    BJ_TMP1REG, 0,
   1041 	    BJ_TMP1REG, 0,
   1042 	    SLJIT_IMM, 0xf);
   1043 	if (status != SLJIT_SUCCESS)
   1044 		return status;
   1045 
   1046 	/* tmp1 = tmp1 << 2 */
   1047 	status = sljit_emit_op2(compiler,
   1048 	    SLJIT_SHL,
   1049 	    BJ_XREG, 0,
   1050 	    BJ_TMP1REG, 0,
   1051 	    SLJIT_IMM, 2);
   1052 	if (status != SLJIT_SUCCESS)
   1053 		return status;
   1054 
   1055 
   1056 	label = sljit_emit_label(compiler);
   1057 	if (label == NULL)
   1058 		return SLJIT_ERR_ALLOC_FAILED;
   1059 	sljit_set_label(over_mchain_jump, label);
   1060 #endif
   1061 
   1062 	return SLJIT_SUCCESS;
   1063 }
   1064 
   1065 static int
   1066 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1067 {
   1068 	int shift = 0;
   1069 	int status = SLJIT_SUCCESS;
   1070 
   1071 	while (k > 1) {
   1072 		k >>= 1;
   1073 		shift++;
   1074 	}
   1075 
   1076 	BJ_ASSERT(k == 1 && shift < 32);
   1077 
   1078 	if (shift != 0) {
   1079 		status = sljit_emit_op2(compiler,
   1080 		    SLJIT_LSHR|SLJIT_INT_OP,
   1081 		    BJ_AREG, 0,
   1082 		    BJ_AREG, 0,
   1083 		    SLJIT_IMM, shift);
   1084 	}
   1085 
   1086 	return status;
   1087 }
   1088 
   1089 #if !defined(BPFJIT_USE_UDIV)
   1090 static sljit_uw
   1091 divide(sljit_uw x, sljit_uw y)
   1092 {
   1093 
   1094 	return (uint32_t)x / (uint32_t)y;
   1095 }
   1096 #endif
   1097 
   1098 /*
   1099  * Emit code for A = A / div.
   1100  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1101  */
   1102 static int
   1103 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1104 {
   1105 	int status;
   1106 
   1107 #if BJ_XREG == SLJIT_RETURN_REG   || \
   1108     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1109     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1110     BJ_AREG == SLJIT_SCRATCH_REG2
   1111 #error "Not supported assignment of registers."
   1112 #endif
   1113 
   1114 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1115 	status = sljit_emit_op1(compiler,
   1116 	    SLJIT_MOV,
   1117 	    SLJIT_SCRATCH_REG1, 0,
   1118 	    BJ_AREG, 0);
   1119 	if (status != SLJIT_SUCCESS)
   1120 		return status;
   1121 #endif
   1122 
   1123 	status = sljit_emit_op1(compiler,
   1124 	    SLJIT_MOV,
   1125 	    SLJIT_SCRATCH_REG2, 0,
   1126 	    divt, divw);
   1127 	if (status != SLJIT_SUCCESS)
   1128 		return status;
   1129 
   1130 #if defined(BPFJIT_USE_UDIV)
   1131 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1132 
   1133 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1134 	status = sljit_emit_op1(compiler,
   1135 	    SLJIT_MOV,
   1136 	    BJ_AREG, 0,
   1137 	    SLJIT_SCRATCH_REG1, 0);
   1138 	if (status != SLJIT_SUCCESS)
   1139 		return status;
   1140 #endif
   1141 #else
   1142 	status = sljit_emit_ijump(compiler,
   1143 	    SLJIT_CALL2,
   1144 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1145 
   1146 #if BJ_AREG != SLJIT_RETURN_REG
   1147 	status = sljit_emit_op1(compiler,
   1148 	    SLJIT_MOV,
   1149 	    BJ_AREG, 0,
   1150 	    SLJIT_RETURN_REG, 0);
   1151 	if (status != SLJIT_SUCCESS)
   1152 		return status;
   1153 #endif
   1154 #endif
   1155 
   1156 	return status;
   1157 }
   1158 
   1159 /*
   1160  * Return true if pc is a "read from packet" instruction.
   1161  * If length is not NULL and return value is true, *length will
   1162  * be set to a safe length required to read a packet.
   1163  */
   1164 static bool
   1165 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1166 {
   1167 	bool rv;
   1168 	bpfjit_abc_length_t width;
   1169 
   1170 	switch (BPF_CLASS(pc->code)) {
   1171 	default:
   1172 		rv = false;
   1173 		break;
   1174 
   1175 	case BPF_LD:
   1176 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1177 		     BPF_MODE(pc->code) == BPF_IND;
   1178 		if (rv)
   1179 			width = read_width(pc);
   1180 		break;
   1181 
   1182 	case BPF_LDX:
   1183 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1184 		width = 1;
   1185 		break;
   1186 	}
   1187 
   1188 	if (rv && length != NULL) {
   1189 		/*
   1190 		 * Values greater than UINT32_MAX will generate
   1191 		 * unconditional "return 0".
   1192 		 */
   1193 		*length = (uint32_t)pc->k + width;
   1194 	}
   1195 
   1196 	return rv;
   1197 }
   1198 
   1199 static void
   1200 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1201 {
   1202 	size_t i;
   1203 
   1204 	for (i = 0; i < insn_count; i++) {
   1205 		SLIST_INIT(&insn_dat[i].bjumps);
   1206 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1207 	}
   1208 }
   1209 
   1210 /*
   1211  * The function divides instructions into blocks. Destination of a jump
   1212  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1213  * terminate a block. Blocks are linear, that is, there are no jumps out
   1214  * from the middle of a block and there are no jumps in to the middle of
   1215  * a block.
   1216  *
   1217  * The function also sets bits in *initmask for memwords that
   1218  * need to be initialized to zero. Note that this set should be empty
   1219  * for any valid kernel filter program.
   1220  */
   1221 static bool
   1222 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1223     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1224     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1225 {
   1226 	struct bpfjit_jump *jtf;
   1227 	size_t i;
   1228 	uint32_t jt, jf;
   1229 	bpfjit_abc_length_t length;
   1230 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1231 	bool unreachable;
   1232 
   1233 	const size_t memwords = GET_MEMWORDS(bc);
   1234 
   1235 	*hints = 0;
   1236 	*initmask = BJ_INIT_NOBITS;
   1237 
   1238 	unreachable = false;
   1239 	invalid = ~BJ_INIT_NOBITS;
   1240 
   1241 	for (i = 0; i < insn_count; i++) {
   1242 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1243 			unreachable = false;
   1244 		insn_dat[i].unreachable = unreachable;
   1245 
   1246 		if (unreachable)
   1247 			continue;
   1248 
   1249 		invalid |= insn_dat[i].invalid;
   1250 
   1251 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1252 			unreachable = true;
   1253 
   1254 		switch (BPF_CLASS(insns[i].code)) {
   1255 		case BPF_RET:
   1256 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1257 				*initmask |= invalid & BJ_INIT_ABIT;
   1258 
   1259 			unreachable = true;
   1260 			continue;
   1261 
   1262 		case BPF_LD:
   1263 			if (BPF_MODE(insns[i].code) == BPF_IND ||
   1264 			    BPF_MODE(insns[i].code) == BPF_ABS) {
   1265 				*hints |= BJ_HINT_PKT;
   1266 			}
   1267 
   1268 			if (BPF_SIZE(insns[i].code) == BPF_W)
   1269 				*hints |= BJ_HINT_LDW;
   1270 
   1271 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1272 				*hints |= BJ_HINT_XREG;
   1273 				*initmask |= invalid & BJ_INIT_XBIT;
   1274 			}
   1275 
   1276 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1277 			    (uint32_t)insns[i].k < memwords) {
   1278 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1279 			}
   1280 
   1281 			invalid &= ~BJ_INIT_ABIT;
   1282 			continue;
   1283 
   1284 		case BPF_LDX:
   1285 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1286 
   1287 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1288 			    (uint32_t)insns[i].k < memwords) {
   1289 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1290 			}
   1291 
   1292 			invalid &= ~BJ_INIT_XBIT;
   1293 			continue;
   1294 
   1295 		case BPF_ST:
   1296 			*initmask |= invalid & BJ_INIT_ABIT;
   1297 
   1298 			if ((uint32_t)insns[i].k < memwords)
   1299 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1300 
   1301 			continue;
   1302 
   1303 		case BPF_STX:
   1304 			*hints |= BJ_HINT_XREG;
   1305 			*initmask |= invalid & BJ_INIT_XBIT;
   1306 
   1307 			if ((uint32_t)insns[i].k < memwords)
   1308 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1309 
   1310 			continue;
   1311 
   1312 		case BPF_ALU:
   1313 			*initmask |= invalid & BJ_INIT_ABIT;
   1314 
   1315 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1316 			    BPF_SRC(insns[i].code) == BPF_X) {
   1317 				*hints |= BJ_HINT_XREG;
   1318 				*initmask |= invalid & BJ_INIT_XBIT;
   1319 			}
   1320 
   1321 			invalid &= ~BJ_INIT_ABIT;
   1322 			continue;
   1323 
   1324 		case BPF_MISC:
   1325 			switch (BPF_MISCOP(insns[i].code)) {
   1326 			case BPF_TAX: // X <- A
   1327 				*hints |= BJ_HINT_XREG;
   1328 				*initmask |= invalid & BJ_INIT_ABIT;
   1329 				invalid &= ~BJ_INIT_XBIT;
   1330 				continue;
   1331 
   1332 			case BPF_TXA: // A <- X
   1333 				*hints |= BJ_HINT_XREG;
   1334 				*initmask |= invalid & BJ_INIT_XBIT;
   1335 				invalid &= ~BJ_INIT_ABIT;
   1336 				continue;
   1337 
   1338 			case BPF_COPX:
   1339 				*hints |= BJ_HINT_XREG;
   1340 				/* FALLTHROUGH */
   1341 
   1342 			case BPF_COP:
   1343 				*hints |= BJ_HINT_COP;
   1344 				*initmask |= invalid & BJ_INIT_ABIT;
   1345 				invalid &= ~BJ_INIT_ABIT;
   1346 				continue;
   1347 			}
   1348 
   1349 			continue;
   1350 
   1351 		case BPF_JMP:
   1352 			/* Initialize abc_length for ABC pass. */
   1353 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1354 
   1355 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1356 				jt = jf = insns[i].k;
   1357 			} else {
   1358 				jt = insns[i].jt;
   1359 				jf = insns[i].jf;
   1360 			}
   1361 
   1362 			if (jt >= insn_count - (i + 1) ||
   1363 			    jf >= insn_count - (i + 1)) {
   1364 				return false;
   1365 			}
   1366 
   1367 			if (jt > 0 && jf > 0)
   1368 				unreachable = true;
   1369 
   1370 			jt += i + 1;
   1371 			jf += i + 1;
   1372 
   1373 			jtf = insn_dat[i].u.jdata.jtf;
   1374 
   1375 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1376 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1377 			    &jtf[0], entries);
   1378 
   1379 			if (jf != jt) {
   1380 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1381 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1382 				    &jtf[1], entries);
   1383 			}
   1384 
   1385 			insn_dat[jf].invalid |= invalid;
   1386 			insn_dat[jt].invalid |= invalid;
   1387 			invalid = 0;
   1388 
   1389 			continue;
   1390 		}
   1391 	}
   1392 
   1393 	return true;
   1394 }
   1395 
   1396 /*
   1397  * Array Bounds Check Elimination (ABC) pass.
   1398  */
   1399 static void
   1400 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1401     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1402 {
   1403 	struct bpfjit_jump *jmp;
   1404 	const struct bpf_insn *pc;
   1405 	struct bpfjit_insn_data *pd;
   1406 	size_t i;
   1407 	bpfjit_abc_length_t length, abc_length = 0;
   1408 
   1409 	const size_t extwords = GET_EXTWORDS(bc);
   1410 
   1411 	for (i = insn_count; i != 0; i--) {
   1412 		pc = &insns[i-1];
   1413 		pd = &insn_dat[i-1];
   1414 
   1415 		if (pd->unreachable)
   1416 			continue;
   1417 
   1418 		switch (BPF_CLASS(pc->code)) {
   1419 		case BPF_RET:
   1420 			/*
   1421 			 * It's quite common for bpf programs to
   1422 			 * check packet bytes in increasing order
   1423 			 * and return zero if bytes don't match
   1424 			 * specified critetion. Such programs disable
   1425 			 * ABC optimization completely because for
   1426 			 * every jump there is a branch with no read
   1427 			 * instruction.
   1428 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1429 			 * is indistinguishable from out-of-bound load.
   1430 			 * Therefore, abc_length can be set to
   1431 			 * MAX_ABC_LENGTH and enable ABC for many
   1432 			 * bpf programs.
   1433 			 * If this optimization encounters any
   1434 			 * instruction with a side effect, it will
   1435 			 * reset abc_length.
   1436 			 */
   1437 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1438 				abc_length = MAX_ABC_LENGTH;
   1439 			else
   1440 				abc_length = 0;
   1441 			break;
   1442 
   1443 		case BPF_MISC:
   1444 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1445 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1446 				/* COP instructions can have side effects. */
   1447 				abc_length = 0;
   1448 			}
   1449 			break;
   1450 
   1451 		case BPF_ST:
   1452 		case BPF_STX:
   1453 			if (extwords != 0) {
   1454 				/* Write to memory is visible after a call. */
   1455 				abc_length = 0;
   1456 			}
   1457 			break;
   1458 
   1459 		case BPF_JMP:
   1460 			abc_length = pd->u.jdata.abc_length;
   1461 			break;
   1462 
   1463 		default:
   1464 			if (read_pkt_insn(pc, &length)) {
   1465 				if (abc_length < length)
   1466 					abc_length = length;
   1467 				pd->u.rdata.abc_length = abc_length;
   1468 			}
   1469 			break;
   1470 		}
   1471 
   1472 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1473 			if (jmp->jdata->abc_length > abc_length)
   1474 				jmp->jdata->abc_length = abc_length;
   1475 		}
   1476 	}
   1477 }
   1478 
   1479 static void
   1480 optimize_pass3(const struct bpf_insn *insns,
   1481     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1482 {
   1483 	struct bpfjit_jump *jmp;
   1484 	size_t i;
   1485 	bpfjit_abc_length_t checked_length = 0;
   1486 
   1487 	for (i = 0; i < insn_count; i++) {
   1488 		if (insn_dat[i].unreachable)
   1489 			continue;
   1490 
   1491 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1492 			if (jmp->jdata->checked_length < checked_length)
   1493 				checked_length = jmp->jdata->checked_length;
   1494 		}
   1495 
   1496 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1497 			insn_dat[i].u.jdata.checked_length = checked_length;
   1498 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1499 			struct bpfjit_read_pkt_data *rdata =
   1500 			    &insn_dat[i].u.rdata;
   1501 			rdata->check_length = 0;
   1502 			if (checked_length < rdata->abc_length) {
   1503 				checked_length = rdata->abc_length;
   1504 				rdata->check_length = checked_length;
   1505 			}
   1506 		}
   1507 	}
   1508 }
   1509 
   1510 static bool
   1511 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1512     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1513     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1514 {
   1515 
   1516 	optimize_init(insn_dat, insn_count);
   1517 
   1518 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1519 		return false;
   1520 
   1521 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1522 	optimize_pass3(insns, insn_dat, insn_count);
   1523 
   1524 	return true;
   1525 }
   1526 
   1527 /*
   1528  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1529  */
   1530 static int
   1531 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1532 {
   1533 
   1534 	/*
   1535 	 * Note: all supported 64bit arches have 32bit multiply
   1536 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1537 	 */
   1538 	switch (BPF_OP(pc->code)) {
   1539 	case BPF_ADD: return SLJIT_ADD;
   1540 	case BPF_SUB: return SLJIT_SUB;
   1541 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1542 	case BPF_OR:  return SLJIT_OR;
   1543 	case BPF_AND: return SLJIT_AND;
   1544 	case BPF_LSH: return SLJIT_SHL;
   1545 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1546 	default:
   1547 		BJ_ASSERT(false);
   1548 		return 0;
   1549 	}
   1550 }
   1551 
   1552 /*
   1553  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1554  */
   1555 static int
   1556 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1557 {
   1558 	/*
   1559 	 * Note: all supported 64bit arches have 32bit comparison
   1560 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1561 	 */
   1562 	int rv = SLJIT_INT_OP;
   1563 
   1564 	switch (BPF_OP(pc->code)) {
   1565 	case BPF_JGT:
   1566 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1567 		break;
   1568 	case BPF_JGE:
   1569 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1570 		break;
   1571 	case BPF_JEQ:
   1572 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1573 		break;
   1574 	case BPF_JSET:
   1575 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1576 		break;
   1577 	default:
   1578 		BJ_ASSERT(false);
   1579 	}
   1580 
   1581 	return rv;
   1582 }
   1583 
   1584 /*
   1585  * Convert BPF_K and BPF_X to sljit register.
   1586  */
   1587 static int
   1588 kx_to_reg(const struct bpf_insn *pc)
   1589 {
   1590 
   1591 	switch (BPF_SRC(pc->code)) {
   1592 	case BPF_K: return SLJIT_IMM;
   1593 	case BPF_X: return BJ_XREG;
   1594 	default:
   1595 		BJ_ASSERT(false);
   1596 		return 0;
   1597 	}
   1598 }
   1599 
   1600 static sljit_sw
   1601 kx_to_reg_arg(const struct bpf_insn *pc)
   1602 {
   1603 
   1604 	switch (BPF_SRC(pc->code)) {
   1605 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1606 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1607 	default:
   1608 		BJ_ASSERT(false);
   1609 		return 0;
   1610 	}
   1611 }
   1612 
   1613 static bool
   1614 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
   1615     const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
   1616     size_t insn_count)
   1617 {
   1618 	/* a list of jumps to out-of-bound return from a generated function */
   1619 	struct sljit_jump **ret0;
   1620 	size_t ret0_size, ret0_maxsize;
   1621 
   1622 	struct sljit_jump *jump;
   1623 	struct sljit_label *label;
   1624 	const struct bpf_insn *pc;
   1625 	struct bpfjit_jump *bjump, *jtf;
   1626 	struct sljit_jump *to_mchain_jump;
   1627 
   1628 	size_t i;
   1629 	int status;
   1630 	int branching, negate;
   1631 	unsigned int rval, mode, src;
   1632 	uint32_t jt, jf;
   1633 
   1634 	bool unconditional_ret;
   1635 	bool rv;
   1636 
   1637 	const size_t extwords = GET_EXTWORDS(bc);
   1638 	const size_t memwords = GET_MEMWORDS(bc);
   1639 
   1640 	ret0 = NULL;
   1641 	rv = false;
   1642 
   1643 	ret0_size = 0;
   1644 	ret0_maxsize = 64;
   1645 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1646 	if (ret0 == NULL)
   1647 		goto fail;
   1648 
   1649 	/* reset sjump members of jdata */
   1650 	for (i = 0; i < insn_count; i++) {
   1651 		if (insn_dat[i].unreachable ||
   1652 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1653 			continue;
   1654 		}
   1655 
   1656 		jtf = insn_dat[i].u.jdata.jtf;
   1657 		jtf[0].sjump = jtf[1].sjump = NULL;
   1658 	}
   1659 
   1660 	/* main loop */
   1661 	for (i = 0; i < insn_count; i++) {
   1662 		if (insn_dat[i].unreachable)
   1663 			continue;
   1664 
   1665 		/*
   1666 		 * Resolve jumps to the current insn.
   1667 		 */
   1668 		label = NULL;
   1669 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1670 			if (bjump->sjump != NULL) {
   1671 				if (label == NULL)
   1672 					label = sljit_emit_label(compiler);
   1673 				if (label == NULL)
   1674 					goto fail;
   1675 				sljit_set_label(bjump->sjump, label);
   1676 			}
   1677 		}
   1678 
   1679 		to_mchain_jump = NULL;
   1680 		unconditional_ret = false;
   1681 
   1682 		if (read_pkt_insn(&insns[i], NULL)) {
   1683 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1684 				/* Jump to "return 0" unconditionally. */
   1685 				unconditional_ret = true;
   1686 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1687 				if (jump == NULL)
   1688 					goto fail;
   1689 				if (!append_jump(jump, &ret0,
   1690 				    &ret0_size, &ret0_maxsize))
   1691 					goto fail;
   1692 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1693 				/* if (buflen < check_length) return 0; */
   1694 				jump = sljit_emit_cmp(compiler,
   1695 				    SLJIT_C_LESS,
   1696 				    BJ_BUFLEN, 0,
   1697 				    SLJIT_IMM,
   1698 				    insn_dat[i].u.rdata.check_length);
   1699 				if (jump == NULL)
   1700 					goto fail;
   1701 #ifdef _KERNEL
   1702 				to_mchain_jump = jump;
   1703 #else
   1704 				if (!append_jump(jump, &ret0,
   1705 				    &ret0_size, &ret0_maxsize))
   1706 					goto fail;
   1707 #endif
   1708 			}
   1709 		}
   1710 
   1711 		pc = &insns[i];
   1712 		switch (BPF_CLASS(pc->code)) {
   1713 
   1714 		default:
   1715 			goto fail;
   1716 
   1717 		case BPF_LD:
   1718 			/* BPF_LD+BPF_IMM          A <- k */
   1719 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1720 				status = sljit_emit_op1(compiler,
   1721 				    SLJIT_MOV,
   1722 				    BJ_AREG, 0,
   1723 				    SLJIT_IMM, (uint32_t)pc->k);
   1724 				if (status != SLJIT_SUCCESS)
   1725 					goto fail;
   1726 
   1727 				continue;
   1728 			}
   1729 
   1730 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1731 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1732 				if ((uint32_t)pc->k >= memwords)
   1733 					goto fail;
   1734 				status = emit_memload(compiler,
   1735 				    BJ_AREG, pc->k, extwords);
   1736 				if (status != SLJIT_SUCCESS)
   1737 					goto fail;
   1738 
   1739 				continue;
   1740 			}
   1741 
   1742 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1743 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1744 				status = sljit_emit_op1(compiler,
   1745 				    SLJIT_MOV, /* size_t source */
   1746 				    BJ_AREG, 0,
   1747 				    SLJIT_MEM1(BJ_ARGS),
   1748 				    offsetof(struct bpf_args, wirelen));
   1749 				if (status != SLJIT_SUCCESS)
   1750 					goto fail;
   1751 
   1752 				continue;
   1753 			}
   1754 
   1755 			mode = BPF_MODE(pc->code);
   1756 			if (mode != BPF_ABS && mode != BPF_IND)
   1757 				goto fail;
   1758 
   1759 			if (unconditional_ret)
   1760 				continue;
   1761 
   1762 			status = emit_pkt_read(compiler, pc,
   1763 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1764 			if (status != SLJIT_SUCCESS)
   1765 				goto fail;
   1766 
   1767 			continue;
   1768 
   1769 		case BPF_LDX:
   1770 			mode = BPF_MODE(pc->code);
   1771 
   1772 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1773 			if (mode == BPF_IMM) {
   1774 				if (BPF_SIZE(pc->code) != BPF_W)
   1775 					goto fail;
   1776 				status = sljit_emit_op1(compiler,
   1777 				    SLJIT_MOV,
   1778 				    BJ_XREG, 0,
   1779 				    SLJIT_IMM, (uint32_t)pc->k);
   1780 				if (status != SLJIT_SUCCESS)
   1781 					goto fail;
   1782 
   1783 				continue;
   1784 			}
   1785 
   1786 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1787 			if (mode == BPF_LEN) {
   1788 				if (BPF_SIZE(pc->code) != BPF_W)
   1789 					goto fail;
   1790 				status = sljit_emit_op1(compiler,
   1791 				    SLJIT_MOV, /* size_t source */
   1792 				    BJ_XREG, 0,
   1793 				    SLJIT_MEM1(BJ_ARGS),
   1794 				    offsetof(struct bpf_args, wirelen));
   1795 				if (status != SLJIT_SUCCESS)
   1796 					goto fail;
   1797 
   1798 				continue;
   1799 			}
   1800 
   1801 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1802 			if (mode == BPF_MEM) {
   1803 				if (BPF_SIZE(pc->code) != BPF_W)
   1804 					goto fail;
   1805 				if ((uint32_t)pc->k >= memwords)
   1806 					goto fail;
   1807 				status = emit_memload(compiler,
   1808 				    BJ_XREG, pc->k, extwords);
   1809 				if (status != SLJIT_SUCCESS)
   1810 					goto fail;
   1811 
   1812 				continue;
   1813 			}
   1814 
   1815 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1816 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1817 				goto fail;
   1818 
   1819 			if (unconditional_ret)
   1820 				continue;
   1821 
   1822 			status = emit_msh(compiler, pc,
   1823 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1824 			if (status != SLJIT_SUCCESS)
   1825 				goto fail;
   1826 
   1827 			continue;
   1828 
   1829 		case BPF_ST:
   1830 			if (pc->code != BPF_ST ||
   1831 			    (uint32_t)pc->k >= memwords) {
   1832 				goto fail;
   1833 			}
   1834 
   1835 			status = emit_memstore(compiler,
   1836 			    BJ_AREG, pc->k, extwords);
   1837 			if (status != SLJIT_SUCCESS)
   1838 				goto fail;
   1839 
   1840 			continue;
   1841 
   1842 		case BPF_STX:
   1843 			if (pc->code != BPF_STX ||
   1844 			    (uint32_t)pc->k >= memwords) {
   1845 				goto fail;
   1846 			}
   1847 
   1848 			status = emit_memstore(compiler,
   1849 			    BJ_XREG, pc->k, extwords);
   1850 			if (status != SLJIT_SUCCESS)
   1851 				goto fail;
   1852 
   1853 			continue;
   1854 
   1855 		case BPF_ALU:
   1856 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1857 				status = sljit_emit_op1(compiler,
   1858 				    SLJIT_NEG,
   1859 				    BJ_AREG, 0,
   1860 				    BJ_AREG, 0);
   1861 				if (status != SLJIT_SUCCESS)
   1862 					goto fail;
   1863 
   1864 				continue;
   1865 			}
   1866 
   1867 			if (BPF_OP(pc->code) != BPF_DIV) {
   1868 				status = sljit_emit_op2(compiler,
   1869 				    bpf_alu_to_sljit_op(pc),
   1870 				    BJ_AREG, 0,
   1871 				    BJ_AREG, 0,
   1872 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1873 				if (status != SLJIT_SUCCESS)
   1874 					goto fail;
   1875 
   1876 				continue;
   1877 			}
   1878 
   1879 			/* BPF_DIV */
   1880 
   1881 			src = BPF_SRC(pc->code);
   1882 			if (src != BPF_X && src != BPF_K)
   1883 				goto fail;
   1884 
   1885 			/* division by zero? */
   1886 			if (src == BPF_X) {
   1887 				jump = sljit_emit_cmp(compiler,
   1888 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1889 				    BJ_XREG, 0,
   1890 				    SLJIT_IMM, 0);
   1891 				if (jump == NULL)
   1892 					goto fail;
   1893 				if (!append_jump(jump, &ret0,
   1894 				    &ret0_size, &ret0_maxsize))
   1895 					goto fail;
   1896 			} else if (pc->k == 0) {
   1897 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1898 				if (jump == NULL)
   1899 					goto fail;
   1900 				if (!append_jump(jump, &ret0,
   1901 				    &ret0_size, &ret0_maxsize))
   1902 					goto fail;
   1903 			}
   1904 
   1905 			if (src == BPF_X) {
   1906 				status = emit_division(compiler, BJ_XREG, 0);
   1907 				if (status != SLJIT_SUCCESS)
   1908 					goto fail;
   1909 			} else if (pc->k != 0) {
   1910 				if (pc->k & (pc->k - 1)) {
   1911 				    status = emit_division(compiler,
   1912 				        SLJIT_IMM, (uint32_t)pc->k);
   1913 				} else {
   1914 				    status = emit_pow2_division(compiler,
   1915 				        (uint32_t)pc->k);
   1916 				}
   1917 				if (status != SLJIT_SUCCESS)
   1918 					goto fail;
   1919 			}
   1920 
   1921 			continue;
   1922 
   1923 		case BPF_JMP:
   1924 			if (BPF_OP(pc->code) == BPF_JA) {
   1925 				jt = jf = pc->k;
   1926 			} else {
   1927 				jt = pc->jt;
   1928 				jf = pc->jf;
   1929 			}
   1930 
   1931 			negate = (jt == 0) ? 1 : 0;
   1932 			branching = (jt == jf) ? 0 : 1;
   1933 			jtf = insn_dat[i].u.jdata.jtf;
   1934 
   1935 			if (branching) {
   1936 				if (BPF_OP(pc->code) != BPF_JSET) {
   1937 					jump = sljit_emit_cmp(compiler,
   1938 					    bpf_jmp_to_sljit_cond(pc, negate),
   1939 					    BJ_AREG, 0,
   1940 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1941 				} else {
   1942 					status = sljit_emit_op2(compiler,
   1943 					    SLJIT_AND,
   1944 					    BJ_TMP1REG, 0,
   1945 					    BJ_AREG, 0,
   1946 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1947 					if (status != SLJIT_SUCCESS)
   1948 						goto fail;
   1949 
   1950 					jump = sljit_emit_cmp(compiler,
   1951 					    bpf_jmp_to_sljit_cond(pc, negate),
   1952 					    BJ_TMP1REG, 0,
   1953 					    SLJIT_IMM, 0);
   1954 				}
   1955 
   1956 				if (jump == NULL)
   1957 					goto fail;
   1958 
   1959 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1960 				jtf[negate].sjump = jump;
   1961 			}
   1962 
   1963 			if (!branching || (jt != 0 && jf != 0)) {
   1964 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1965 				if (jump == NULL)
   1966 					goto fail;
   1967 
   1968 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1969 				jtf[branching].sjump = jump;
   1970 			}
   1971 
   1972 			continue;
   1973 
   1974 		case BPF_RET:
   1975 			rval = BPF_RVAL(pc->code);
   1976 			if (rval == BPF_X)
   1977 				goto fail;
   1978 
   1979 			/* BPF_RET+BPF_K    accept k bytes */
   1980 			if (rval == BPF_K) {
   1981 				status = sljit_emit_return(compiler,
   1982 				    SLJIT_MOV_UI,
   1983 				    SLJIT_IMM, (uint32_t)pc->k);
   1984 				if (status != SLJIT_SUCCESS)
   1985 					goto fail;
   1986 			}
   1987 
   1988 			/* BPF_RET+BPF_A    accept A bytes */
   1989 			if (rval == BPF_A) {
   1990 				status = sljit_emit_return(compiler,
   1991 				    SLJIT_MOV_UI,
   1992 				    BJ_AREG, 0);
   1993 				if (status != SLJIT_SUCCESS)
   1994 					goto fail;
   1995 			}
   1996 
   1997 			continue;
   1998 
   1999 		case BPF_MISC:
   2000 			switch (BPF_MISCOP(pc->code)) {
   2001 			case BPF_TAX:
   2002 				status = sljit_emit_op1(compiler,
   2003 				    SLJIT_MOV_UI,
   2004 				    BJ_XREG, 0,
   2005 				    BJ_AREG, 0);
   2006 				if (status != SLJIT_SUCCESS)
   2007 					goto fail;
   2008 
   2009 				continue;
   2010 
   2011 			case BPF_TXA:
   2012 				status = sljit_emit_op1(compiler,
   2013 				    SLJIT_MOV,
   2014 				    BJ_AREG, 0,
   2015 				    BJ_XREG, 0);
   2016 				if (status != SLJIT_SUCCESS)
   2017 					goto fail;
   2018 
   2019 				continue;
   2020 
   2021 			case BPF_COP:
   2022 			case BPF_COPX:
   2023 				if (bc == NULL || bc->copfuncs == NULL)
   2024 					goto fail;
   2025 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2026 				    (uint32_t)pc->k >= bc->nfuncs) {
   2027 					goto fail;
   2028 				}
   2029 
   2030 				jump = NULL;
   2031 				status = emit_cop(compiler, bc, pc, &jump);
   2032 				if (status != SLJIT_SUCCESS)
   2033 					goto fail;
   2034 
   2035 				if (jump != NULL && !append_jump(jump,
   2036 				    &ret0, &ret0_size, &ret0_maxsize))
   2037 					goto fail;
   2038 
   2039 				continue;
   2040 			}
   2041 
   2042 			goto fail;
   2043 		} /* switch */
   2044 	} /* main loop */
   2045 
   2046 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2047 
   2048 	if (ret0_size > 0) {
   2049 		label = sljit_emit_label(compiler);
   2050 		if (label == NULL)
   2051 			goto fail;
   2052 		for (i = 0; i < ret0_size; i++)
   2053 			sljit_set_label(ret0[i], label);
   2054 	}
   2055 
   2056 	status = sljit_emit_return(compiler,
   2057 	    SLJIT_MOV_UI,
   2058 	    SLJIT_IMM, 0);
   2059 	if (status != SLJIT_SUCCESS)
   2060 		goto fail;
   2061 
   2062 	rv = true;
   2063 
   2064 fail:
   2065 	if (ret0 != NULL)
   2066 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2067 
   2068 	return rv;
   2069 }
   2070 
   2071 bpfjit_func_t
   2072 bpfjit_generate_code(const bpf_ctx_t *bc,
   2073     const struct bpf_insn *insns, size_t insn_count)
   2074 {
   2075 	void *rv;
   2076 	struct sljit_compiler *compiler;
   2077 
   2078 	size_t i;
   2079 	int status;
   2080 
   2081 	/* optimization related */
   2082 	bpf_memword_init_t initmask;
   2083 	bpfjit_hint_t hints;
   2084 
   2085 	/* memory store location for initial zero initialization */
   2086 	sljit_si mem_reg;
   2087 	sljit_sw mem_off;
   2088 
   2089 	struct bpfjit_insn_data *insn_dat;
   2090 
   2091 	const size_t extwords = GET_EXTWORDS(bc);
   2092 	const size_t memwords = GET_MEMWORDS(bc);
   2093 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2094 
   2095 	rv = NULL;
   2096 	compiler = NULL;
   2097 	insn_dat = NULL;
   2098 
   2099 	if (memwords > MAX_MEMWORDS)
   2100 		goto fail;
   2101 
   2102 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2103 		goto fail;
   2104 
   2105 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2106 	if (insn_dat == NULL)
   2107 		goto fail;
   2108 
   2109 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2110 		goto fail;
   2111 
   2112 	compiler = sljit_create_compiler();
   2113 	if (compiler == NULL)
   2114 		goto fail;
   2115 
   2116 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2117 	sljit_compiler_verbose(compiler, stderr);
   2118 #endif
   2119 
   2120 	status = sljit_emit_enter(compiler,
   2121 	    2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
   2122 	if (status != SLJIT_SUCCESS)
   2123 		goto fail;
   2124 
   2125 	if (hints & BJ_HINT_COP) {
   2126 		/* save ctx argument */
   2127 		status = sljit_emit_op1(compiler,
   2128 		    SLJIT_MOV_P,
   2129 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2130 		    offsetof(struct bpfjit_stack, ctx),
   2131 		    BJ_CTX_ARG, 0);
   2132 		if (status != SLJIT_SUCCESS)
   2133 			goto fail;
   2134 	}
   2135 
   2136 	if (extwords == 0) {
   2137 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2138 		mem_off = offsetof(struct bpfjit_stack, mem);
   2139 	} else {
   2140 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2141 		status = sljit_emit_op1(compiler,
   2142 		    SLJIT_MOV_P,
   2143 		    BJ_TMP1REG, 0,
   2144 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2145 		if (status != SLJIT_SUCCESS)
   2146 			goto fail;
   2147 
   2148 		status = sljit_emit_op1(compiler,
   2149 		    SLJIT_MOV_P,
   2150 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2151 		    offsetof(struct bpfjit_stack, extmem),
   2152 		    BJ_TMP1REG, 0);
   2153 		if (status != SLJIT_SUCCESS)
   2154 			goto fail;
   2155 
   2156 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2157 		mem_off = 0;
   2158 	}
   2159 
   2160 	/*
   2161 	 * Exclude pre-initialised external memory words but keep
   2162 	 * initialization statuses of A and X registers in case
   2163 	 * bc->preinited wrongly sets those two bits.
   2164 	 */
   2165 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2166 
   2167 #if defined(_KERNEL)
   2168 	/* bpf_filter() checks initialization of memwords. */
   2169 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2170 #endif
   2171 	for (i = 0; i < memwords; i++) {
   2172 		if (initmask & BJ_INIT_MBIT(i)) {
   2173 			/* M[i] = 0; */
   2174 			status = sljit_emit_op1(compiler,
   2175 			    SLJIT_MOV_UI,
   2176 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2177 			    SLJIT_IMM, 0);
   2178 			if (status != SLJIT_SUCCESS)
   2179 				goto fail;
   2180 		}
   2181 	}
   2182 
   2183 	if (initmask & BJ_INIT_ABIT) {
   2184 		/* A = 0; */
   2185 		status = sljit_emit_op1(compiler,
   2186 		    SLJIT_MOV,
   2187 		    BJ_AREG, 0,
   2188 		    SLJIT_IMM, 0);
   2189 		if (status != SLJIT_SUCCESS)
   2190 			goto fail;
   2191 	}
   2192 
   2193 	if (initmask & BJ_INIT_XBIT) {
   2194 		/* X = 0; */
   2195 		status = sljit_emit_op1(compiler,
   2196 		    SLJIT_MOV,
   2197 		    BJ_XREG, 0,
   2198 		    SLJIT_IMM, 0);
   2199 		if (status != SLJIT_SUCCESS)
   2200 			goto fail;
   2201 	}
   2202 
   2203 	status = load_buf_buflen(compiler);
   2204 	if (status != SLJIT_SUCCESS)
   2205 		goto fail;
   2206 
   2207 	if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
   2208 		goto fail;
   2209 
   2210 	rv = sljit_generate_code(compiler);
   2211 
   2212 fail:
   2213 	if (compiler != NULL)
   2214 		sljit_free_compiler(compiler);
   2215 
   2216 	if (insn_dat != NULL)
   2217 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2218 
   2219 	return (bpfjit_func_t)rv;
   2220 }
   2221 
   2222 void
   2223 bpfjit_free_code(bpfjit_func_t code)
   2224 {
   2225 
   2226 	sljit_free_code((void *)code);
   2227 }
   2228