Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.27
      1 /*	$NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.27 2014/07/13 18:48:27 alnsn Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #else
     65 #include <sys/atomic.h>
     66 #include <sys/module.h>
     67 #endif
     68 
     69 #define	__BPF_PRIVATE
     70 #include <net/bpf.h>
     71 #include <net/bpfjit.h>
     72 #include <sljitLir.h>
     73 
     74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75 #include <stdio.h> /* for stderr */
     76 #endif
     77 
     78 /*
     79  * Arguments of generated bpfjit_func_t.
     80  * The first argument is reassigned upon entry
     81  * to a more frequently used buf argument.
     82  */
     83 #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84 #define BJ_ARGS		SLJIT_SAVED_REG2
     85 
     86 /*
     87  * Permanent register assignments.
     88  */
     89 #define BJ_BUF		SLJIT_SAVED_REG1
     90 //#define BJ_ARGS	SLJIT_SAVED_REG2
     91 #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92 #define BJ_AREG		SLJIT_SCRATCH_REG1
     93 #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94 #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95 #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96 #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97 
     98 /*
     99  * EREG registers can't be used for indirect calls, reuse BJ_BUF and
    100  * BJ_BUFLEN registers. They can be easily restored from BJ_ARGS.
    101  */
    102 #define BJ_COPF_PTR	SLJIT_SAVED_REG1
    103 #define BJ_COPF_IDX	SLJIT_SAVED_REG3
    104 
    105 #ifdef _KERNEL
    106 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    107 #else
    108 #define MAX_MEMWORDS BPF_MEMWORDS
    109 #endif
    110 
    111 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    112 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    113 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    114 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    115 
    116 /*
    117  * Get a number of memwords and external memwords from a bpf_ctx object.
    118  */
    119 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    120 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    121 
    122 /*
    123  * Optimization hints.
    124  */
    125 typedef unsigned int bpfjit_hint_t;
    126 #define BJ_HINT_ABS  0x01 /* packet read at absolute offset  */
    127 #define BJ_HINT_IND  0x02 /* packet read at variable offset  */
    128 #define BJ_HINT_COP  0x04 /* BPF_COP or BPF_COPX instruction */
    129 #define BJ_HINT_XREG 0x08 /* BJ_XREG is needed   */
    130 #define BJ_HINT_LDX  0x10 /* BPF_LDX instruction */
    131 #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND) /* packet read */
    132 
    133 /*
    134  * Datatype for Array Bounds Check Elimination (ABC) pass.
    135  */
    136 typedef uint64_t bpfjit_abc_length_t;
    137 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    138 
    139 struct bpfjit_stack
    140 {
    141 	bpf_ctx_t *ctx;
    142 	uint32_t *extmem; /* pointer to external memory store */
    143 #ifdef _KERNEL
    144 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    145 #endif
    146 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    147 };
    148 
    149 /*
    150  * Data for BPF_JMP instruction.
    151  * Forward declaration for struct bpfjit_jump.
    152  */
    153 struct bpfjit_jump_data;
    154 
    155 /*
    156  * Node of bjumps list.
    157  */
    158 struct bpfjit_jump {
    159 	struct sljit_jump *sjump;
    160 	SLIST_ENTRY(bpfjit_jump) entries;
    161 	struct bpfjit_jump_data *jdata;
    162 };
    163 
    164 /*
    165  * Data for BPF_JMP instruction.
    166  */
    167 struct bpfjit_jump_data {
    168 	/*
    169 	 * These entries make up bjumps list:
    170 	 * jtf[0] - when coming from jt path,
    171 	 * jtf[1] - when coming from jf path.
    172 	 */
    173 	struct bpfjit_jump jtf[2];
    174 	/*
    175 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    176 	 */
    177 	bpfjit_abc_length_t abc_length;
    178 	/*
    179 	 * Length checked by the last out-of-bounds check.
    180 	 */
    181 	bpfjit_abc_length_t checked_length;
    182 };
    183 
    184 /*
    185  * Data for "read from packet" instructions.
    186  * See also read_pkt_insn() function below.
    187  */
    188 struct bpfjit_read_pkt_data {
    189 	/*
    190 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    191 	 */
    192 	bpfjit_abc_length_t abc_length;
    193 	/*
    194 	 * If positive, emit "if (buflen < check_length) return 0"
    195 	 * out-of-bounds check.
    196 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    197 	 */
    198 	bpfjit_abc_length_t check_length;
    199 };
    200 
    201 /*
    202  * Additional (optimization-related) data for bpf_insn.
    203  */
    204 struct bpfjit_insn_data {
    205 	/* List of jumps to this insn. */
    206 	SLIST_HEAD(, bpfjit_jump) bjumps;
    207 
    208 	union {
    209 		struct bpfjit_jump_data     jdata;
    210 		struct bpfjit_read_pkt_data rdata;
    211 	} u;
    212 
    213 	bpf_memword_init_t invalid;
    214 	bool unreachable;
    215 };
    216 
    217 #ifdef _KERNEL
    218 
    219 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    220 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    221 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    222 
    223 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    224 
    225 static int
    226 bpfjit_modcmd(modcmd_t cmd, void *arg)
    227 {
    228 
    229 	switch (cmd) {
    230 	case MODULE_CMD_INIT:
    231 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    232 		membar_producer();
    233 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    234 		membar_producer();
    235 		return 0;
    236 
    237 	case MODULE_CMD_FINI:
    238 		return EOPNOTSUPP;
    239 
    240 	default:
    241 		return ENOTTY;
    242 	}
    243 }
    244 #endif
    245 
    246 /*
    247  * Return a number of scratch registers to pass
    248  * to sljit_emit_enter() function.
    249  */
    250 static sljit_si
    251 nscratches(bpfjit_hint_t hints)
    252 {
    253 	sljit_si rv = 2;
    254 
    255 #ifdef _KERNEL
    256 	if (hints & BJ_HINT_PKT)
    257 		rv = 3; /* xcall with three arguments */
    258 #endif
    259 
    260 	if (hints & BJ_HINT_IND)
    261 		rv = 3; /* uses BJ_TMP2REG */
    262 
    263 	if (hints & BJ_HINT_COP)
    264 		rv = 3; /* calls copfunc with three arguments */
    265 
    266 	if (hints & BJ_HINT_XREG)
    267 		rv = 4; /* uses BJ_XREG */
    268 
    269 #ifdef _KERNEL
    270 	if (hints & BJ_HINT_LDX)
    271 		rv = 5; /* uses BJ_TMP3REG */
    272 #endif
    273 
    274 	return rv;
    275 }
    276 
    277 static uint32_t
    278 read_width(const struct bpf_insn *pc)
    279 {
    280 
    281 	switch (BPF_SIZE(pc->code)) {
    282 	case BPF_W:
    283 		return 4;
    284 	case BPF_H:
    285 		return 2;
    286 	case BPF_B:
    287 		return 1;
    288 	default:
    289 		BJ_ASSERT(false);
    290 		return 0;
    291 	}
    292 }
    293 
    294 /*
    295  * Copy buf and buflen members of bpf_args from BJ_ARGS
    296  * pointer to BJ_BUF and BJ_BUFLEN registers.
    297  */
    298 static int
    299 load_buf_buflen(struct sljit_compiler *compiler)
    300 {
    301 	int status;
    302 
    303 	status = sljit_emit_op1(compiler,
    304 	    SLJIT_MOV_P,
    305 	    BJ_BUF, 0,
    306 	    SLJIT_MEM1(BJ_ARGS),
    307 	    offsetof(struct bpf_args, pkt));
    308 	if (status != SLJIT_SUCCESS)
    309 		return status;
    310 
    311 	status = sljit_emit_op1(compiler,
    312 	    SLJIT_MOV, /* size_t source */
    313 	    BJ_BUFLEN, 0,
    314 	    SLJIT_MEM1(BJ_ARGS),
    315 	    offsetof(struct bpf_args, buflen));
    316 
    317 	return status;
    318 }
    319 
    320 static bool
    321 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    322 {
    323 	struct sljit_jump **newptr;
    324 	const size_t elemsz = sizeof(struct sljit_jump *);
    325 	size_t old_size = *size;
    326 	size_t new_size = 2 * old_size;
    327 
    328 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    329 		return false;
    330 
    331 	newptr = BJ_ALLOC(new_size * elemsz);
    332 	if (newptr == NULL)
    333 		return false;
    334 
    335 	memcpy(newptr, *jumps, old_size * elemsz);
    336 	BJ_FREE(*jumps, old_size * elemsz);
    337 
    338 	*jumps = newptr;
    339 	*size = new_size;
    340 	return true;
    341 }
    342 
    343 static bool
    344 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    345     size_t *size, size_t *max_size)
    346 {
    347 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    348 		return false;
    349 
    350 	(*jumps)[(*size)++] = jump;
    351 	return true;
    352 }
    353 
    354 /*
    355  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    356  */
    357 static int
    358 emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    359 {
    360 
    361 	return sljit_emit_op1(compiler,
    362 	    SLJIT_MOV_UB,
    363 	    BJ_AREG, 0,
    364 	    SLJIT_MEM1(src), k);
    365 }
    366 
    367 /*
    368  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    369  */
    370 static int
    371 emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    372 {
    373 	int status;
    374 
    375 	BJ_ASSERT(k <= UINT32_MAX - 1);
    376 
    377 	/* A = buf[k]; */
    378 	status = sljit_emit_op1(compiler,
    379 	    SLJIT_MOV_UB,
    380 	    BJ_AREG, 0,
    381 	    SLJIT_MEM1(src), k);
    382 	if (status != SLJIT_SUCCESS)
    383 		return status;
    384 
    385 	/* tmp1 = buf[k+1]; */
    386 	status = sljit_emit_op1(compiler,
    387 	    SLJIT_MOV_UB,
    388 	    BJ_TMP1REG, 0,
    389 	    SLJIT_MEM1(src), k+1);
    390 	if (status != SLJIT_SUCCESS)
    391 		return status;
    392 
    393 	/* A = A << 8; */
    394 	status = sljit_emit_op2(compiler,
    395 	    SLJIT_SHL,
    396 	    BJ_AREG, 0,
    397 	    BJ_AREG, 0,
    398 	    SLJIT_IMM, 8);
    399 	if (status != SLJIT_SUCCESS)
    400 		return status;
    401 
    402 	/* A = A + tmp1; */
    403 	status = sljit_emit_op2(compiler,
    404 	    SLJIT_ADD,
    405 	    BJ_AREG, 0,
    406 	    BJ_AREG, 0,
    407 	    BJ_TMP1REG, 0);
    408 	return status;
    409 }
    410 
    411 /*
    412  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    413  */
    414 static int
    415 emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    416 {
    417 	int status;
    418 
    419 	BJ_ASSERT(k <= UINT32_MAX - 3);
    420 
    421 	/* A = buf[k]; */
    422 	status = sljit_emit_op1(compiler,
    423 	    SLJIT_MOV_UB,
    424 	    BJ_AREG, 0,
    425 	    SLJIT_MEM1(src), k);
    426 	if (status != SLJIT_SUCCESS)
    427 		return status;
    428 
    429 	/* tmp1 = buf[k+1]; */
    430 	status = sljit_emit_op1(compiler,
    431 	    SLJIT_MOV_UB,
    432 	    BJ_TMP1REG, 0,
    433 	    SLJIT_MEM1(src), k+1);
    434 	if (status != SLJIT_SUCCESS)
    435 		return status;
    436 
    437 	/* A = A << 8; */
    438 	status = sljit_emit_op2(compiler,
    439 	    SLJIT_SHL,
    440 	    BJ_AREG, 0,
    441 	    BJ_AREG, 0,
    442 	    SLJIT_IMM, 8);
    443 	if (status != SLJIT_SUCCESS)
    444 		return status;
    445 
    446 	/* A = A + tmp1; */
    447 	status = sljit_emit_op2(compiler,
    448 	    SLJIT_ADD,
    449 	    BJ_AREG, 0,
    450 	    BJ_AREG, 0,
    451 	    BJ_TMP1REG, 0);
    452 	if (status != SLJIT_SUCCESS)
    453 		return status;
    454 
    455 	/* tmp1 = buf[k+2]; */
    456 	status = sljit_emit_op1(compiler,
    457 	    SLJIT_MOV_UB,
    458 	    BJ_TMP1REG, 0,
    459 	    SLJIT_MEM1(src), k+2);
    460 	if (status != SLJIT_SUCCESS)
    461 		return status;
    462 
    463 	/* A = A << 8; */
    464 	status = sljit_emit_op2(compiler,
    465 	    SLJIT_SHL,
    466 	    BJ_AREG, 0,
    467 	    BJ_AREG, 0,
    468 	    SLJIT_IMM, 8);
    469 	if (status != SLJIT_SUCCESS)
    470 		return status;
    471 
    472 	/* A = A + tmp1; */
    473 	status = sljit_emit_op2(compiler,
    474 	    SLJIT_ADD,
    475 	    BJ_AREG, 0,
    476 	    BJ_AREG, 0,
    477 	    BJ_TMP1REG, 0);
    478 	if (status != SLJIT_SUCCESS)
    479 		return status;
    480 
    481 	/* tmp1 = buf[k+3]; */
    482 	status = sljit_emit_op1(compiler,
    483 	    SLJIT_MOV_UB,
    484 	    BJ_TMP1REG, 0,
    485 	    SLJIT_MEM1(src), k+3);
    486 	if (status != SLJIT_SUCCESS)
    487 		return status;
    488 
    489 	/* A = A << 8; */
    490 	status = sljit_emit_op2(compiler,
    491 	    SLJIT_SHL,
    492 	    BJ_AREG, 0,
    493 	    BJ_AREG, 0,
    494 	    SLJIT_IMM, 8);
    495 	if (status != SLJIT_SUCCESS)
    496 		return status;
    497 
    498 	/* A = A + tmp1; */
    499 	status = sljit_emit_op2(compiler,
    500 	    SLJIT_ADD,
    501 	    BJ_AREG, 0,
    502 	    BJ_AREG, 0,
    503 	    BJ_TMP1REG, 0);
    504 	return status;
    505 }
    506 
    507 #ifdef _KERNEL
    508 /*
    509  * Emit code for m_xword/m_xhalf/m_xbyte call.
    510  *
    511  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    512  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    513  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    514  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    515  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    516  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    517  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    518  */
    519 static int
    520 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
    521     int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
    522     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    523 {
    524 #if BJ_XREG    == SLJIT_RETURN_REG   || \
    525     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    526     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    527     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    528     BJ_TMP3REG == SLJIT_RETURN_REG   || \
    529     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    530     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    531     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    532 #error "Not supported assignment of registers."
    533 #endif
    534 	struct sljit_jump *jump;
    535 	int status;
    536 
    537 	BJ_ASSERT(dst != BJ_TMP2REG && dst != BJ_TMP3REG);
    538 
    539 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    540 		/* save A */
    541 		status = sljit_emit_op1(compiler,
    542 		    SLJIT_MOV,
    543 		    BJ_TMP3REG, 0,
    544 		    BJ_AREG, 0);
    545 		if (status != SLJIT_SUCCESS)
    546 			return status;
    547 	}
    548 
    549 	/*
    550 	 * Prepare registers for fn(mbuf, k, &err) call.
    551 	 */
    552 	status = sljit_emit_op1(compiler,
    553 	    SLJIT_MOV,
    554 	    SLJIT_SCRATCH_REG1, 0,
    555 	    BJ_BUF, 0);
    556 	if (status != SLJIT_SUCCESS)
    557 		return status;
    558 
    559 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    560 		/* if (X > UINT32_MAX - pc->k) return 0; */
    561 		jump = sljit_emit_cmp(compiler,
    562 		    SLJIT_C_GREATER,
    563 		    BJ_XREG, 0,
    564 		    SLJIT_IMM, UINT32_MAX - pc->k);
    565 		if (jump == NULL)
    566 			return SLJIT_ERR_ALLOC_FAILED;
    567 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    568 			return SLJIT_ERR_ALLOC_FAILED;
    569 
    570 		/* k = X + pc->k; */
    571 		status = sljit_emit_op2(compiler,
    572 		    SLJIT_ADD,
    573 		    SLJIT_SCRATCH_REG2, 0,
    574 		    BJ_XREG, 0,
    575 		    SLJIT_IMM, (uint32_t)pc->k);
    576 		if (status != SLJIT_SUCCESS)
    577 			return status;
    578 	} else {
    579 		/* k = pc->k */
    580 		status = sljit_emit_op1(compiler,
    581 		    SLJIT_MOV,
    582 		    SLJIT_SCRATCH_REG2, 0,
    583 		    SLJIT_IMM, (uint32_t)pc->k);
    584 		if (status != SLJIT_SUCCESS)
    585 			return status;
    586 	}
    587 
    588 	/*
    589 	 * The third argument of fn is an address on stack.
    590 	 */
    591 	status = sljit_get_local_base(compiler,
    592 	    SLJIT_SCRATCH_REG3, 0,
    593 	    offsetof(struct bpfjit_stack, err));
    594 	if (status != SLJIT_SUCCESS)
    595 		return status;
    596 
    597 	/* fn(buf, k, &err); */
    598 	status = sljit_emit_ijump(compiler,
    599 	    SLJIT_CALL3,
    600 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    601 	if (status != SLJIT_SUCCESS)
    602 		return status;
    603 
    604 	if (dst != SLJIT_RETURN_REG) {
    605 		/* move return value to dst */
    606 		status = sljit_emit_op1(compiler,
    607 		    SLJIT_MOV,
    608 		    dst, 0,
    609 		    SLJIT_RETURN_REG, 0);
    610 		if (status != SLJIT_SUCCESS)
    611 			return status;
    612 	}
    613 
    614 	/* tmp2 = *err; */
    615 	status = sljit_emit_op1(compiler,
    616 	    SLJIT_MOV_UI,
    617 	    BJ_TMP2REG, 0,
    618 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    619 	    offsetof(struct bpfjit_stack, err));
    620 	if (status != SLJIT_SUCCESS)
    621 		return status;
    622 
    623 	/* if (tmp2 != 0) return 0; */
    624 	jump = sljit_emit_cmp(compiler,
    625 	    SLJIT_C_NOT_EQUAL,
    626 	    BJ_TMP2REG, 0,
    627 	    SLJIT_IMM, 0);
    628 	if (jump == NULL)
    629 		return SLJIT_ERR_ALLOC_FAILED;
    630 
    631 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    632 		return SLJIT_ERR_ALLOC_FAILED;
    633 
    634 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    635 		/* restore A */
    636 		status = sljit_emit_op1(compiler,
    637 		    SLJIT_MOV,
    638 		    BJ_AREG, 0,
    639 		    BJ_TMP3REG, 0);
    640 		if (status != SLJIT_SUCCESS)
    641 			return status;
    642 	}
    643 
    644 	return SLJIT_SUCCESS;
    645 }
    646 #endif
    647 
    648 /*
    649  * Emit code for BPF_COP and BPF_COPX instructions.
    650  */
    651 static int
    652 emit_cop(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
    653     const struct bpf_insn *pc, struct sljit_jump **ret0_jump)
    654 {
    655 #if BJ_XREG == SLJIT_RETURN_REG   || \
    656     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    657     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    658     BJ_XREG == SLJIT_SCRATCH_REG3 || \
    659     BJ_COPF_PTR == BJ_ARGS        || \
    660     BJ_COPF_IDX	== BJ_ARGS
    661 #error "Not supported assignment of registers."
    662 #endif
    663 
    664 	struct sljit_jump *jump;
    665 	int status;
    666 
    667 	jump = NULL;
    668 
    669 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    670 
    671 	if (BPF_MISCOP(pc->code) == BPF_COPX) {
    672 		/* if (X >= bc->nfuncs) return 0; */
    673 		jump = sljit_emit_cmp(compiler,
    674 		    SLJIT_C_GREATER_EQUAL,
    675 		    BJ_XREG, 0,
    676 		    SLJIT_IMM, bc->nfuncs);
    677 		if (jump == NULL)
    678 			return SLJIT_ERR_ALLOC_FAILED;
    679 	}
    680 
    681 	if (jump != NULL)
    682 		*ret0_jump = jump;
    683 
    684 	/*
    685 	 * Copy bpf_copfunc_t arguments to registers.
    686 	 */
    687 #if BJ_AREG != SLJIT_SCRATCH_REG3
    688 	status = sljit_emit_op1(compiler,
    689 	    SLJIT_MOV_UI,
    690 	    SLJIT_SCRATCH_REG3, 0,
    691 	    BJ_AREG, 0);
    692 	if (status != SLJIT_SUCCESS)
    693 		return status;
    694 #endif
    695 
    696 	status = sljit_emit_op1(compiler,
    697 	    SLJIT_MOV_P,
    698 	    SLJIT_SCRATCH_REG1, 0,
    699 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    700 	    offsetof(struct bpfjit_stack, ctx));
    701 	if (status != SLJIT_SUCCESS)
    702 		return status;
    703 
    704 	status = sljit_emit_op1(compiler,
    705 	    SLJIT_MOV_P,
    706 	    SLJIT_SCRATCH_REG2, 0,
    707 	    BJ_ARGS, 0);
    708 	if (status != SLJIT_SUCCESS)
    709 		return status;
    710 
    711 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    712 		status = sljit_emit_ijump(compiler,
    713 		    SLJIT_CALL3,
    714 		    SLJIT_IMM, SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]));
    715 		if (status != SLJIT_SUCCESS)
    716 			return status;
    717 	} else if (BPF_MISCOP(pc->code) == BPF_COPX) {
    718 		/* load ctx->copfuncs */
    719 		status = sljit_emit_op1(compiler,
    720 		    SLJIT_MOV_P,
    721 		    BJ_COPF_PTR, 0,
    722 		    SLJIT_MEM1(SLJIT_SCRATCH_REG1),
    723 		    offsetof(struct bpf_ctx, copfuncs));
    724 		if (status != SLJIT_SUCCESS)
    725 			return status;
    726 
    727 		/*
    728 		 * Load X to a register that can be used for
    729 		 * memory addressing.
    730 		 */
    731 		status = sljit_emit_op1(compiler,
    732 		    SLJIT_MOV,
    733 		    BJ_COPF_IDX, 0,
    734 		    BJ_XREG, 0);
    735 		if (status != SLJIT_SUCCESS)
    736 			return status;
    737 
    738 		status = sljit_emit_ijump(compiler,
    739 		    SLJIT_CALL3,
    740 		    SLJIT_MEM2(BJ_COPF_PTR, BJ_COPF_IDX),
    741 		    SLJIT_WORD_SHIFT);
    742 		if (status != SLJIT_SUCCESS)
    743 			return status;
    744 
    745 		status = load_buf_buflen(compiler);
    746 		if (status != SLJIT_SUCCESS)
    747 			return status;
    748 	}
    749 
    750 #if BJ_AREG != SLJIT_RETURN_REG
    751 	status = sljit_emit_op1(compiler,
    752 	    SLJIT_MOV,
    753 	    BJ_AREG, 0,
    754 	    SLJIT_RETURN_REG, 0);
    755 	if (status != SLJIT_SUCCESS)
    756 		return status;
    757 #endif
    758 
    759 	return SLJIT_SUCCESS;
    760 }
    761 
    762 /*
    763  * Generate code for
    764  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    765  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    766  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    767  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    768  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    769  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    770  */
    771 static int
    772 emit_pkt_read(struct sljit_compiler *compiler,
    773     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    774     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    775 {
    776 	int status = SLJIT_ERR_ALLOC_FAILED;
    777 	uint32_t width;
    778 	sljit_si ld_reg;
    779 	struct sljit_jump *jump;
    780 #ifdef _KERNEL
    781 	struct sljit_label *label;
    782 	struct sljit_jump *over_mchain_jump;
    783 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    784 #endif
    785 	const uint32_t k = pc->k;
    786 
    787 #ifdef _KERNEL
    788 	if (to_mchain_jump == NULL) {
    789 		to_mchain_jump = sljit_emit_cmp(compiler,
    790 		    SLJIT_C_EQUAL,
    791 		    BJ_BUFLEN, 0,
    792 		    SLJIT_IMM, 0);
    793 		if (to_mchain_jump == NULL)
    794 			return SLJIT_ERR_ALLOC_FAILED;
    795 	}
    796 #endif
    797 
    798 	ld_reg = BJ_BUF;
    799 	width = read_width(pc);
    800 
    801 	if (BPF_MODE(pc->code) == BPF_IND) {
    802 		/* tmp1 = buflen - (pc->k + width); */
    803 		status = sljit_emit_op2(compiler,
    804 		    SLJIT_SUB,
    805 		    BJ_TMP1REG, 0,
    806 		    BJ_BUFLEN, 0,
    807 		    SLJIT_IMM, k + width);
    808 		if (status != SLJIT_SUCCESS)
    809 			return status;
    810 
    811 		/* ld_reg = buf + X; */
    812 		ld_reg = BJ_TMP2REG;
    813 		status = sljit_emit_op2(compiler,
    814 		    SLJIT_ADD,
    815 		    ld_reg, 0,
    816 		    BJ_BUF, 0,
    817 		    BJ_XREG, 0);
    818 		if (status != SLJIT_SUCCESS)
    819 			return status;
    820 
    821 		/* if (tmp1 < X) return 0; */
    822 		jump = sljit_emit_cmp(compiler,
    823 		    SLJIT_C_LESS,
    824 		    BJ_TMP1REG, 0,
    825 		    BJ_XREG, 0);
    826 		if (jump == NULL)
    827 			return SLJIT_ERR_ALLOC_FAILED;
    828 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    829 			return SLJIT_ERR_ALLOC_FAILED;
    830 	}
    831 
    832 	switch (width) {
    833 	case 4:
    834 		status = emit_read32(compiler, ld_reg, k);
    835 		break;
    836 	case 2:
    837 		status = emit_read16(compiler, ld_reg, k);
    838 		break;
    839 	case 1:
    840 		status = emit_read8(compiler, ld_reg, k);
    841 		break;
    842 	}
    843 
    844 	if (status != SLJIT_SUCCESS)
    845 		return status;
    846 
    847 #ifdef _KERNEL
    848 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    849 	if (over_mchain_jump == NULL)
    850 		return SLJIT_ERR_ALLOC_FAILED;
    851 
    852 	/* entry point to mchain handler */
    853 	label = sljit_emit_label(compiler);
    854 	if (label == NULL)
    855 		return SLJIT_ERR_ALLOC_FAILED;
    856 	sljit_set_label(to_mchain_jump, label);
    857 
    858 	if (check_zero_buflen) {
    859 		/* if (buflen != 0) return 0; */
    860 		jump = sljit_emit_cmp(compiler,
    861 		    SLJIT_C_NOT_EQUAL,
    862 		    BJ_BUFLEN, 0,
    863 		    SLJIT_IMM, 0);
    864 		if (jump == NULL)
    865 			return SLJIT_ERR_ALLOC_FAILED;
    866 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    867 			return SLJIT_ERR_ALLOC_FAILED;
    868 	}
    869 
    870 	switch (width) {
    871 	case 4:
    872 		status = emit_xcall(compiler, pc, BJ_AREG,
    873 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    874 		break;
    875 	case 2:
    876 		status = emit_xcall(compiler, pc, BJ_AREG,
    877 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    878 		break;
    879 	case 1:
    880 		status = emit_xcall(compiler, pc, BJ_AREG,
    881 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    882 		break;
    883 	}
    884 
    885 	if (status != SLJIT_SUCCESS)
    886 		return status;
    887 
    888 	label = sljit_emit_label(compiler);
    889 	if (label == NULL)
    890 		return SLJIT_ERR_ALLOC_FAILED;
    891 	sljit_set_label(over_mchain_jump, label);
    892 #endif
    893 
    894 	return SLJIT_SUCCESS;
    895 }
    896 
    897 static int
    898 emit_memload(struct sljit_compiler *compiler,
    899     sljit_si dst, uint32_t k, size_t extwords)
    900 {
    901 	int status;
    902 	sljit_si src;
    903 	sljit_sw srcw;
    904 
    905 	srcw = k * sizeof(uint32_t);
    906 
    907 	if (extwords == 0) {
    908 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    909 		srcw += offsetof(struct bpfjit_stack, mem);
    910 	} else {
    911 		/* copy extmem pointer to the tmp1 register */
    912 		status = sljit_emit_op1(compiler,
    913 		    SLJIT_MOV_P,
    914 		    BJ_TMP1REG, 0,
    915 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    916 		    offsetof(struct bpfjit_stack, extmem));
    917 		if (status != SLJIT_SUCCESS)
    918 			return status;
    919 		src = SLJIT_MEM1(BJ_TMP1REG);
    920 	}
    921 
    922 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    923 }
    924 
    925 static int
    926 emit_memstore(struct sljit_compiler *compiler,
    927     sljit_si src, uint32_t k, size_t extwords)
    928 {
    929 	int status;
    930 	sljit_si dst;
    931 	sljit_sw dstw;
    932 
    933 	dstw = k * sizeof(uint32_t);
    934 
    935 	if (extwords == 0) {
    936 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    937 		dstw += offsetof(struct bpfjit_stack, mem);
    938 	} else {
    939 		/* copy extmem pointer to the tmp1 register */
    940 		status = sljit_emit_op1(compiler,
    941 		    SLJIT_MOV_P,
    942 		    BJ_TMP1REG, 0,
    943 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    944 		    offsetof(struct bpfjit_stack, extmem));
    945 		if (status != SLJIT_SUCCESS)
    946 			return status;
    947 		dst = SLJIT_MEM1(BJ_TMP1REG);
    948 	}
    949 
    950 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    951 }
    952 
    953 /*
    954  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    955  */
    956 static int
    957 emit_msh(struct sljit_compiler *compiler,
    958     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    959     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    960 {
    961 	int status;
    962 #ifdef _KERNEL
    963 	struct sljit_label *label;
    964 	struct sljit_jump *jump, *over_mchain_jump;
    965 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    966 #endif
    967 	const uint32_t k = pc->k;
    968 
    969 #ifdef _KERNEL
    970 	if (to_mchain_jump == NULL) {
    971 		to_mchain_jump = sljit_emit_cmp(compiler,
    972 		    SLJIT_C_EQUAL,
    973 		    BJ_BUFLEN, 0,
    974 		    SLJIT_IMM, 0);
    975 		if (to_mchain_jump == NULL)
    976 			return SLJIT_ERR_ALLOC_FAILED;
    977 	}
    978 #endif
    979 
    980 	/* tmp1 = buf[k] */
    981 	status = sljit_emit_op1(compiler,
    982 	    SLJIT_MOV_UB,
    983 	    BJ_TMP1REG, 0,
    984 	    SLJIT_MEM1(BJ_BUF), k);
    985 	if (status != SLJIT_SUCCESS)
    986 		return status;
    987 
    988 	/* tmp1 &= 0xf */
    989 	status = sljit_emit_op2(compiler,
    990 	    SLJIT_AND,
    991 	    BJ_TMP1REG, 0,
    992 	    BJ_TMP1REG, 0,
    993 	    SLJIT_IMM, 0xf);
    994 	if (status != SLJIT_SUCCESS)
    995 		return status;
    996 
    997 	/* tmp1 = tmp1 << 2 */
    998 	status = sljit_emit_op2(compiler,
    999 	    SLJIT_SHL,
   1000 	    BJ_XREG, 0,
   1001 	    BJ_TMP1REG, 0,
   1002 	    SLJIT_IMM, 2);
   1003 	if (status != SLJIT_SUCCESS)
   1004 		return status;
   1005 
   1006 #ifdef _KERNEL
   1007 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1008 	if (over_mchain_jump == NULL)
   1009 		return SLJIT_ERR_ALLOC_FAILED;
   1010 
   1011 	/* entry point to mchain handler */
   1012 	label = sljit_emit_label(compiler);
   1013 	if (label == NULL)
   1014 		return SLJIT_ERR_ALLOC_FAILED;
   1015 	sljit_set_label(to_mchain_jump, label);
   1016 
   1017 	if (check_zero_buflen) {
   1018 		/* if (buflen != 0) return 0; */
   1019 		jump = sljit_emit_cmp(compiler,
   1020 		    SLJIT_C_NOT_EQUAL,
   1021 		    BJ_BUFLEN, 0,
   1022 		    SLJIT_IMM, 0);
   1023 		if (jump == NULL)
   1024 			return SLJIT_ERR_ALLOC_FAILED;
   1025 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1026 			return SLJIT_ERR_ALLOC_FAILED;
   1027 	}
   1028 
   1029 	status = emit_xcall(compiler, pc, BJ_TMP1REG,
   1030 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1031 	if (status != SLJIT_SUCCESS)
   1032 		return status;
   1033 
   1034 	/* tmp1 &= 0xf */
   1035 	status = sljit_emit_op2(compiler,
   1036 	    SLJIT_AND,
   1037 	    BJ_TMP1REG, 0,
   1038 	    BJ_TMP1REG, 0,
   1039 	    SLJIT_IMM, 0xf);
   1040 	if (status != SLJIT_SUCCESS)
   1041 		return status;
   1042 
   1043 	/* tmp1 = tmp1 << 2 */
   1044 	status = sljit_emit_op2(compiler,
   1045 	    SLJIT_SHL,
   1046 	    BJ_XREG, 0,
   1047 	    BJ_TMP1REG, 0,
   1048 	    SLJIT_IMM, 2);
   1049 	if (status != SLJIT_SUCCESS)
   1050 		return status;
   1051 
   1052 
   1053 	label = sljit_emit_label(compiler);
   1054 	if (label == NULL)
   1055 		return SLJIT_ERR_ALLOC_FAILED;
   1056 	sljit_set_label(over_mchain_jump, label);
   1057 #endif
   1058 
   1059 	return SLJIT_SUCCESS;
   1060 }
   1061 
   1062 static int
   1063 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1064 {
   1065 	int shift = 0;
   1066 	int status = SLJIT_SUCCESS;
   1067 
   1068 	while (k > 1) {
   1069 		k >>= 1;
   1070 		shift++;
   1071 	}
   1072 
   1073 	BJ_ASSERT(k == 1 && shift < 32);
   1074 
   1075 	if (shift != 0) {
   1076 		status = sljit_emit_op2(compiler,
   1077 		    SLJIT_LSHR|SLJIT_INT_OP,
   1078 		    BJ_AREG, 0,
   1079 		    BJ_AREG, 0,
   1080 		    SLJIT_IMM, shift);
   1081 	}
   1082 
   1083 	return status;
   1084 }
   1085 
   1086 #if !defined(BPFJIT_USE_UDIV)
   1087 static sljit_uw
   1088 divide(sljit_uw x, sljit_uw y)
   1089 {
   1090 
   1091 	return (uint32_t)x / (uint32_t)y;
   1092 }
   1093 #endif
   1094 
   1095 /*
   1096  * Emit code for A = A / div.
   1097  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1098  */
   1099 static int
   1100 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1101 {
   1102 	int status;
   1103 
   1104 #if BJ_XREG == SLJIT_RETURN_REG   || \
   1105     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1106     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1107     BJ_AREG == SLJIT_SCRATCH_REG2
   1108 #error "Not supported assignment of registers."
   1109 #endif
   1110 
   1111 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1112 	status = sljit_emit_op1(compiler,
   1113 	    SLJIT_MOV,
   1114 	    SLJIT_SCRATCH_REG1, 0,
   1115 	    BJ_AREG, 0);
   1116 	if (status != SLJIT_SUCCESS)
   1117 		return status;
   1118 #endif
   1119 
   1120 	status = sljit_emit_op1(compiler,
   1121 	    SLJIT_MOV,
   1122 	    SLJIT_SCRATCH_REG2, 0,
   1123 	    divt, divw);
   1124 	if (status != SLJIT_SUCCESS)
   1125 		return status;
   1126 
   1127 #if defined(BPFJIT_USE_UDIV)
   1128 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1129 
   1130 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1131 	status = sljit_emit_op1(compiler,
   1132 	    SLJIT_MOV,
   1133 	    BJ_AREG, 0,
   1134 	    SLJIT_SCRATCH_REG1, 0);
   1135 	if (status != SLJIT_SUCCESS)
   1136 		return status;
   1137 #endif
   1138 #else
   1139 	status = sljit_emit_ijump(compiler,
   1140 	    SLJIT_CALL2,
   1141 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1142 
   1143 #if BJ_AREG != SLJIT_RETURN_REG
   1144 	status = sljit_emit_op1(compiler,
   1145 	    SLJIT_MOV,
   1146 	    BJ_AREG, 0,
   1147 	    SLJIT_RETURN_REG, 0);
   1148 	if (status != SLJIT_SUCCESS)
   1149 		return status;
   1150 #endif
   1151 #endif
   1152 
   1153 	return status;
   1154 }
   1155 
   1156 /*
   1157  * Return true if pc is a "read from packet" instruction.
   1158  * If length is not NULL and return value is true, *length will
   1159  * be set to a safe length required to read a packet.
   1160  */
   1161 static bool
   1162 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1163 {
   1164 	bool rv;
   1165 	bpfjit_abc_length_t width;
   1166 
   1167 	switch (BPF_CLASS(pc->code)) {
   1168 	default:
   1169 		rv = false;
   1170 		break;
   1171 
   1172 	case BPF_LD:
   1173 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1174 		     BPF_MODE(pc->code) == BPF_IND;
   1175 		if (rv)
   1176 			width = read_width(pc);
   1177 		break;
   1178 
   1179 	case BPF_LDX:
   1180 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1181 		width = 1;
   1182 		break;
   1183 	}
   1184 
   1185 	if (rv && length != NULL) {
   1186 		/*
   1187 		 * Values greater than UINT32_MAX will generate
   1188 		 * unconditional "return 0".
   1189 		 */
   1190 		*length = (uint32_t)pc->k + width;
   1191 	}
   1192 
   1193 	return rv;
   1194 }
   1195 
   1196 static void
   1197 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1198 {
   1199 	size_t i;
   1200 
   1201 	for (i = 0; i < insn_count; i++) {
   1202 		SLIST_INIT(&insn_dat[i].bjumps);
   1203 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1204 	}
   1205 }
   1206 
   1207 /*
   1208  * The function divides instructions into blocks. Destination of a jump
   1209  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1210  * terminate a block. Blocks are linear, that is, there are no jumps out
   1211  * from the middle of a block and there are no jumps in to the middle of
   1212  * a block.
   1213  *
   1214  * The function also sets bits in *initmask for memwords that
   1215  * need to be initialized to zero. Note that this set should be empty
   1216  * for any valid kernel filter program.
   1217  */
   1218 static bool
   1219 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1220     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1221     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1222 {
   1223 	struct bpfjit_jump *jtf;
   1224 	size_t i;
   1225 	uint32_t jt, jf;
   1226 	bpfjit_abc_length_t length;
   1227 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1228 	bool unreachable;
   1229 
   1230 	const size_t memwords = GET_MEMWORDS(bc);
   1231 
   1232 	*hints = 0;
   1233 	*initmask = BJ_INIT_NOBITS;
   1234 
   1235 	unreachable = false;
   1236 	invalid = ~BJ_INIT_NOBITS;
   1237 
   1238 	for (i = 0; i < insn_count; i++) {
   1239 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1240 			unreachable = false;
   1241 		insn_dat[i].unreachable = unreachable;
   1242 
   1243 		if (unreachable)
   1244 			continue;
   1245 
   1246 		invalid |= insn_dat[i].invalid;
   1247 
   1248 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1249 			unreachable = true;
   1250 
   1251 		switch (BPF_CLASS(insns[i].code)) {
   1252 		case BPF_RET:
   1253 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1254 				*initmask |= invalid & BJ_INIT_ABIT;
   1255 
   1256 			unreachable = true;
   1257 			continue;
   1258 
   1259 		case BPF_LD:
   1260 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1261 				*hints |= BJ_HINT_ABS;
   1262 
   1263 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1264 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1265 				*initmask |= invalid & BJ_INIT_XBIT;
   1266 			}
   1267 
   1268 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1269 			    (uint32_t)insns[i].k < memwords) {
   1270 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1271 			}
   1272 
   1273 			invalid &= ~BJ_INIT_ABIT;
   1274 			continue;
   1275 
   1276 		case BPF_LDX:
   1277 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1278 
   1279 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1280 			    (uint32_t)insns[i].k < memwords) {
   1281 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1282 			}
   1283 
   1284 			invalid &= ~BJ_INIT_XBIT;
   1285 			continue;
   1286 
   1287 		case BPF_ST:
   1288 			*initmask |= invalid & BJ_INIT_ABIT;
   1289 
   1290 			if ((uint32_t)insns[i].k < memwords)
   1291 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1292 
   1293 			continue;
   1294 
   1295 		case BPF_STX:
   1296 			*hints |= BJ_HINT_XREG;
   1297 			*initmask |= invalid & BJ_INIT_XBIT;
   1298 
   1299 			if ((uint32_t)insns[i].k < memwords)
   1300 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1301 
   1302 			continue;
   1303 
   1304 		case BPF_ALU:
   1305 			*initmask |= invalid & BJ_INIT_ABIT;
   1306 
   1307 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1308 			    BPF_SRC(insns[i].code) == BPF_X) {
   1309 				*hints |= BJ_HINT_XREG;
   1310 				*initmask |= invalid & BJ_INIT_XBIT;
   1311 			}
   1312 
   1313 			invalid &= ~BJ_INIT_ABIT;
   1314 			continue;
   1315 
   1316 		case BPF_MISC:
   1317 			switch (BPF_MISCOP(insns[i].code)) {
   1318 			case BPF_TAX: // X <- A
   1319 				*hints |= BJ_HINT_XREG;
   1320 				*initmask |= invalid & BJ_INIT_ABIT;
   1321 				invalid &= ~BJ_INIT_XBIT;
   1322 				continue;
   1323 
   1324 			case BPF_TXA: // A <- X
   1325 				*hints |= BJ_HINT_XREG;
   1326 				*initmask |= invalid & BJ_INIT_XBIT;
   1327 				invalid &= ~BJ_INIT_ABIT;
   1328 				continue;
   1329 
   1330 			case BPF_COPX:
   1331 				*hints |= BJ_HINT_XREG;
   1332 				/* FALLTHROUGH */
   1333 
   1334 			case BPF_COP:
   1335 				*hints |= BJ_HINT_COP;
   1336 				*initmask |= invalid & BJ_INIT_ABIT;
   1337 				invalid &= ~BJ_INIT_ABIT;
   1338 				continue;
   1339 			}
   1340 
   1341 			continue;
   1342 
   1343 		case BPF_JMP:
   1344 			/* Initialize abc_length for ABC pass. */
   1345 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1346 
   1347 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1348 				jt = jf = insns[i].k;
   1349 			} else {
   1350 				jt = insns[i].jt;
   1351 				jf = insns[i].jf;
   1352 			}
   1353 
   1354 			if (jt >= insn_count - (i + 1) ||
   1355 			    jf >= insn_count - (i + 1)) {
   1356 				return false;
   1357 			}
   1358 
   1359 			if (jt > 0 && jf > 0)
   1360 				unreachable = true;
   1361 
   1362 			jt += i + 1;
   1363 			jf += i + 1;
   1364 
   1365 			jtf = insn_dat[i].u.jdata.jtf;
   1366 
   1367 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1368 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1369 			    &jtf[0], entries);
   1370 
   1371 			if (jf != jt) {
   1372 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1373 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1374 				    &jtf[1], entries);
   1375 			}
   1376 
   1377 			insn_dat[jf].invalid |= invalid;
   1378 			insn_dat[jt].invalid |= invalid;
   1379 			invalid = 0;
   1380 
   1381 			continue;
   1382 		}
   1383 	}
   1384 
   1385 	return true;
   1386 }
   1387 
   1388 /*
   1389  * Array Bounds Check Elimination (ABC) pass.
   1390  */
   1391 static void
   1392 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1393     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1394 {
   1395 	struct bpfjit_jump *jmp;
   1396 	const struct bpf_insn *pc;
   1397 	struct bpfjit_insn_data *pd;
   1398 	size_t i;
   1399 	bpfjit_abc_length_t length, abc_length = 0;
   1400 
   1401 	const size_t extwords = GET_EXTWORDS(bc);
   1402 
   1403 	for (i = insn_count; i != 0; i--) {
   1404 		pc = &insns[i-1];
   1405 		pd = &insn_dat[i-1];
   1406 
   1407 		if (pd->unreachable)
   1408 			continue;
   1409 
   1410 		switch (BPF_CLASS(pc->code)) {
   1411 		case BPF_RET:
   1412 			/*
   1413 			 * It's quite common for bpf programs to
   1414 			 * check packet bytes in increasing order
   1415 			 * and return zero if bytes don't match
   1416 			 * specified critetion. Such programs disable
   1417 			 * ABC optimization completely because for
   1418 			 * every jump there is a branch with no read
   1419 			 * instruction.
   1420 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1421 			 * is indistinguishable from out-of-bound load.
   1422 			 * Therefore, abc_length can be set to
   1423 			 * MAX_ABC_LENGTH and enable ABC for many
   1424 			 * bpf programs.
   1425 			 * If this optimization encounters any
   1426 			 * instruction with a side effect, it will
   1427 			 * reset abc_length.
   1428 			 */
   1429 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1430 				abc_length = MAX_ABC_LENGTH;
   1431 			else
   1432 				abc_length = 0;
   1433 			break;
   1434 
   1435 		case BPF_MISC:
   1436 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1437 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1438 				/* COP instructions can have side effects. */
   1439 				abc_length = 0;
   1440 			}
   1441 			break;
   1442 
   1443 		case BPF_ST:
   1444 		case BPF_STX:
   1445 			if (extwords != 0) {
   1446 				/* Write to memory is visible after a call. */
   1447 				abc_length = 0;
   1448 			}
   1449 			break;
   1450 
   1451 		case BPF_JMP:
   1452 			abc_length = pd->u.jdata.abc_length;
   1453 			break;
   1454 
   1455 		default:
   1456 			if (read_pkt_insn(pc, &length)) {
   1457 				if (abc_length < length)
   1458 					abc_length = length;
   1459 				pd->u.rdata.abc_length = abc_length;
   1460 			}
   1461 			break;
   1462 		}
   1463 
   1464 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1465 			if (jmp->jdata->abc_length > abc_length)
   1466 				jmp->jdata->abc_length = abc_length;
   1467 		}
   1468 	}
   1469 }
   1470 
   1471 static void
   1472 optimize_pass3(const struct bpf_insn *insns,
   1473     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1474 {
   1475 	struct bpfjit_jump *jmp;
   1476 	size_t i;
   1477 	bpfjit_abc_length_t checked_length = 0;
   1478 
   1479 	for (i = 0; i < insn_count; i++) {
   1480 		if (insn_dat[i].unreachable)
   1481 			continue;
   1482 
   1483 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1484 			if (jmp->jdata->checked_length < checked_length)
   1485 				checked_length = jmp->jdata->checked_length;
   1486 		}
   1487 
   1488 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1489 			insn_dat[i].u.jdata.checked_length = checked_length;
   1490 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1491 			struct bpfjit_read_pkt_data *rdata =
   1492 			    &insn_dat[i].u.rdata;
   1493 			rdata->check_length = 0;
   1494 			if (checked_length < rdata->abc_length) {
   1495 				checked_length = rdata->abc_length;
   1496 				rdata->check_length = checked_length;
   1497 			}
   1498 		}
   1499 	}
   1500 }
   1501 
   1502 static bool
   1503 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1504     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1505     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1506 {
   1507 
   1508 	optimize_init(insn_dat, insn_count);
   1509 
   1510 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1511 		return false;
   1512 
   1513 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1514 	optimize_pass3(insns, insn_dat, insn_count);
   1515 
   1516 	return true;
   1517 }
   1518 
   1519 /*
   1520  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1521  */
   1522 static int
   1523 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1524 {
   1525 
   1526 	/*
   1527 	 * Note: all supported 64bit arches have 32bit multiply
   1528 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1529 	 */
   1530 	switch (BPF_OP(pc->code)) {
   1531 	case BPF_ADD: return SLJIT_ADD;
   1532 	case BPF_SUB: return SLJIT_SUB;
   1533 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1534 	case BPF_OR:  return SLJIT_OR;
   1535 	case BPF_AND: return SLJIT_AND;
   1536 	case BPF_LSH: return SLJIT_SHL;
   1537 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1538 	default:
   1539 		BJ_ASSERT(false);
   1540 		return 0;
   1541 	}
   1542 }
   1543 
   1544 /*
   1545  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1546  */
   1547 static int
   1548 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1549 {
   1550 	/*
   1551 	 * Note: all supported 64bit arches have 32bit comparison
   1552 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1553 	 */
   1554 	int rv = SLJIT_INT_OP;
   1555 
   1556 	switch (BPF_OP(pc->code)) {
   1557 	case BPF_JGT:
   1558 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1559 		break;
   1560 	case BPF_JGE:
   1561 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1562 		break;
   1563 	case BPF_JEQ:
   1564 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1565 		break;
   1566 	case BPF_JSET:
   1567 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1568 		break;
   1569 	default:
   1570 		BJ_ASSERT(false);
   1571 	}
   1572 
   1573 	return rv;
   1574 }
   1575 
   1576 /*
   1577  * Convert BPF_K and BPF_X to sljit register.
   1578  */
   1579 static int
   1580 kx_to_reg(const struct bpf_insn *pc)
   1581 {
   1582 
   1583 	switch (BPF_SRC(pc->code)) {
   1584 	case BPF_K: return SLJIT_IMM;
   1585 	case BPF_X: return BJ_XREG;
   1586 	default:
   1587 		BJ_ASSERT(false);
   1588 		return 0;
   1589 	}
   1590 }
   1591 
   1592 static sljit_sw
   1593 kx_to_reg_arg(const struct bpf_insn *pc)
   1594 {
   1595 
   1596 	switch (BPF_SRC(pc->code)) {
   1597 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1598 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1599 	default:
   1600 		BJ_ASSERT(false);
   1601 		return 0;
   1602 	}
   1603 }
   1604 
   1605 static bool
   1606 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
   1607     const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
   1608     size_t insn_count)
   1609 {
   1610 	/* a list of jumps to out-of-bound return from a generated function */
   1611 	struct sljit_jump **ret0;
   1612 	size_t ret0_size, ret0_maxsize;
   1613 
   1614 	struct sljit_jump *jump;
   1615 	struct sljit_label *label;
   1616 	const struct bpf_insn *pc;
   1617 	struct bpfjit_jump *bjump, *jtf;
   1618 	struct sljit_jump *to_mchain_jump;
   1619 
   1620 	size_t i;
   1621 	int status;
   1622 	int branching, negate;
   1623 	unsigned int rval, mode, src;
   1624 	uint32_t jt, jf;
   1625 
   1626 	bool unconditional_ret;
   1627 	bool rv;
   1628 
   1629 	const size_t extwords = GET_EXTWORDS(bc);
   1630 	const size_t memwords = GET_MEMWORDS(bc);
   1631 
   1632 	ret0 = NULL;
   1633 	rv = false;
   1634 
   1635 	ret0_size = 0;
   1636 	ret0_maxsize = 64;
   1637 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1638 	if (ret0 == NULL)
   1639 		goto fail;
   1640 
   1641 	/* reset sjump members of jdata */
   1642 	for (i = 0; i < insn_count; i++) {
   1643 		if (insn_dat[i].unreachable ||
   1644 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1645 			continue;
   1646 		}
   1647 
   1648 		jtf = insn_dat[i].u.jdata.jtf;
   1649 		jtf[0].sjump = jtf[1].sjump = NULL;
   1650 	}
   1651 
   1652 	/* main loop */
   1653 	for (i = 0; i < insn_count; i++) {
   1654 		if (insn_dat[i].unreachable)
   1655 			continue;
   1656 
   1657 		/*
   1658 		 * Resolve jumps to the current insn.
   1659 		 */
   1660 		label = NULL;
   1661 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1662 			if (bjump->sjump != NULL) {
   1663 				if (label == NULL)
   1664 					label = sljit_emit_label(compiler);
   1665 				if (label == NULL)
   1666 					goto fail;
   1667 				sljit_set_label(bjump->sjump, label);
   1668 			}
   1669 		}
   1670 
   1671 		to_mchain_jump = NULL;
   1672 		unconditional_ret = false;
   1673 
   1674 		if (read_pkt_insn(&insns[i], NULL)) {
   1675 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1676 				/* Jump to "return 0" unconditionally. */
   1677 				unconditional_ret = true;
   1678 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1679 				if (jump == NULL)
   1680 					goto fail;
   1681 				if (!append_jump(jump, &ret0,
   1682 				    &ret0_size, &ret0_maxsize))
   1683 					goto fail;
   1684 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1685 				/* if (buflen < check_length) return 0; */
   1686 				jump = sljit_emit_cmp(compiler,
   1687 				    SLJIT_C_LESS,
   1688 				    BJ_BUFLEN, 0,
   1689 				    SLJIT_IMM,
   1690 				    insn_dat[i].u.rdata.check_length);
   1691 				if (jump == NULL)
   1692 					goto fail;
   1693 #ifdef _KERNEL
   1694 				to_mchain_jump = jump;
   1695 #else
   1696 				if (!append_jump(jump, &ret0,
   1697 				    &ret0_size, &ret0_maxsize))
   1698 					goto fail;
   1699 #endif
   1700 			}
   1701 		}
   1702 
   1703 		pc = &insns[i];
   1704 		switch (BPF_CLASS(pc->code)) {
   1705 
   1706 		default:
   1707 			goto fail;
   1708 
   1709 		case BPF_LD:
   1710 			/* BPF_LD+BPF_IMM          A <- k */
   1711 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1712 				status = sljit_emit_op1(compiler,
   1713 				    SLJIT_MOV,
   1714 				    BJ_AREG, 0,
   1715 				    SLJIT_IMM, (uint32_t)pc->k);
   1716 				if (status != SLJIT_SUCCESS)
   1717 					goto fail;
   1718 
   1719 				continue;
   1720 			}
   1721 
   1722 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1723 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1724 				if ((uint32_t)pc->k >= memwords)
   1725 					goto fail;
   1726 				status = emit_memload(compiler,
   1727 				    BJ_AREG, pc->k, extwords);
   1728 				if (status != SLJIT_SUCCESS)
   1729 					goto fail;
   1730 
   1731 				continue;
   1732 			}
   1733 
   1734 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1735 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1736 				status = sljit_emit_op1(compiler,
   1737 				    SLJIT_MOV, /* size_t source */
   1738 				    BJ_AREG, 0,
   1739 				    SLJIT_MEM1(BJ_ARGS),
   1740 				    offsetof(struct bpf_args, wirelen));
   1741 				if (status != SLJIT_SUCCESS)
   1742 					goto fail;
   1743 
   1744 				continue;
   1745 			}
   1746 
   1747 			mode = BPF_MODE(pc->code);
   1748 			if (mode != BPF_ABS && mode != BPF_IND)
   1749 				goto fail;
   1750 
   1751 			if (unconditional_ret)
   1752 				continue;
   1753 
   1754 			status = emit_pkt_read(compiler, pc,
   1755 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1756 			if (status != SLJIT_SUCCESS)
   1757 				goto fail;
   1758 
   1759 			continue;
   1760 
   1761 		case BPF_LDX:
   1762 			mode = BPF_MODE(pc->code);
   1763 
   1764 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1765 			if (mode == BPF_IMM) {
   1766 				if (BPF_SIZE(pc->code) != BPF_W)
   1767 					goto fail;
   1768 				status = sljit_emit_op1(compiler,
   1769 				    SLJIT_MOV,
   1770 				    BJ_XREG, 0,
   1771 				    SLJIT_IMM, (uint32_t)pc->k);
   1772 				if (status != SLJIT_SUCCESS)
   1773 					goto fail;
   1774 
   1775 				continue;
   1776 			}
   1777 
   1778 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1779 			if (mode == BPF_LEN) {
   1780 				if (BPF_SIZE(pc->code) != BPF_W)
   1781 					goto fail;
   1782 				status = sljit_emit_op1(compiler,
   1783 				    SLJIT_MOV, /* size_t source */
   1784 				    BJ_XREG, 0,
   1785 				    SLJIT_MEM1(BJ_ARGS),
   1786 				    offsetof(struct bpf_args, wirelen));
   1787 				if (status != SLJIT_SUCCESS)
   1788 					goto fail;
   1789 
   1790 				continue;
   1791 			}
   1792 
   1793 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1794 			if (mode == BPF_MEM) {
   1795 				if (BPF_SIZE(pc->code) != BPF_W)
   1796 					goto fail;
   1797 				if ((uint32_t)pc->k >= memwords)
   1798 					goto fail;
   1799 				status = emit_memload(compiler,
   1800 				    BJ_XREG, pc->k, extwords);
   1801 				if (status != SLJIT_SUCCESS)
   1802 					goto fail;
   1803 
   1804 				continue;
   1805 			}
   1806 
   1807 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1808 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1809 				goto fail;
   1810 
   1811 			if (unconditional_ret)
   1812 				continue;
   1813 
   1814 			status = emit_msh(compiler, pc,
   1815 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1816 			if (status != SLJIT_SUCCESS)
   1817 				goto fail;
   1818 
   1819 			continue;
   1820 
   1821 		case BPF_ST:
   1822 			if (pc->code != BPF_ST ||
   1823 			    (uint32_t)pc->k >= memwords) {
   1824 				goto fail;
   1825 			}
   1826 
   1827 			status = emit_memstore(compiler,
   1828 			    BJ_AREG, pc->k, extwords);
   1829 			if (status != SLJIT_SUCCESS)
   1830 				goto fail;
   1831 
   1832 			continue;
   1833 
   1834 		case BPF_STX:
   1835 			if (pc->code != BPF_STX ||
   1836 			    (uint32_t)pc->k >= memwords) {
   1837 				goto fail;
   1838 			}
   1839 
   1840 			status = emit_memstore(compiler,
   1841 			    BJ_XREG, pc->k, extwords);
   1842 			if (status != SLJIT_SUCCESS)
   1843 				goto fail;
   1844 
   1845 			continue;
   1846 
   1847 		case BPF_ALU:
   1848 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1849 				status = sljit_emit_op1(compiler,
   1850 				    SLJIT_NEG,
   1851 				    BJ_AREG, 0,
   1852 				    BJ_AREG, 0);
   1853 				if (status != SLJIT_SUCCESS)
   1854 					goto fail;
   1855 
   1856 				continue;
   1857 			}
   1858 
   1859 			if (BPF_OP(pc->code) != BPF_DIV) {
   1860 				status = sljit_emit_op2(compiler,
   1861 				    bpf_alu_to_sljit_op(pc),
   1862 				    BJ_AREG, 0,
   1863 				    BJ_AREG, 0,
   1864 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1865 				if (status != SLJIT_SUCCESS)
   1866 					goto fail;
   1867 
   1868 				continue;
   1869 			}
   1870 
   1871 			/* BPF_DIV */
   1872 
   1873 			src = BPF_SRC(pc->code);
   1874 			if (src != BPF_X && src != BPF_K)
   1875 				goto fail;
   1876 
   1877 			/* division by zero? */
   1878 			if (src == BPF_X) {
   1879 				jump = sljit_emit_cmp(compiler,
   1880 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1881 				    BJ_XREG, 0,
   1882 				    SLJIT_IMM, 0);
   1883 				if (jump == NULL)
   1884 					goto fail;
   1885 				if (!append_jump(jump, &ret0,
   1886 				    &ret0_size, &ret0_maxsize))
   1887 					goto fail;
   1888 			} else if (pc->k == 0) {
   1889 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1890 				if (jump == NULL)
   1891 					goto fail;
   1892 				if (!append_jump(jump, &ret0,
   1893 				    &ret0_size, &ret0_maxsize))
   1894 					goto fail;
   1895 			}
   1896 
   1897 			if (src == BPF_X) {
   1898 				status = emit_division(compiler, BJ_XREG, 0);
   1899 				if (status != SLJIT_SUCCESS)
   1900 					goto fail;
   1901 			} else if (pc->k != 0) {
   1902 				if (pc->k & (pc->k - 1)) {
   1903 				    status = emit_division(compiler,
   1904 				        SLJIT_IMM, (uint32_t)pc->k);
   1905 				} else {
   1906 				    status = emit_pow2_division(compiler,
   1907 				        (uint32_t)pc->k);
   1908 				}
   1909 				if (status != SLJIT_SUCCESS)
   1910 					goto fail;
   1911 			}
   1912 
   1913 			continue;
   1914 
   1915 		case BPF_JMP:
   1916 			if (BPF_OP(pc->code) == BPF_JA) {
   1917 				jt = jf = pc->k;
   1918 			} else {
   1919 				jt = pc->jt;
   1920 				jf = pc->jf;
   1921 			}
   1922 
   1923 			negate = (jt == 0) ? 1 : 0;
   1924 			branching = (jt == jf) ? 0 : 1;
   1925 			jtf = insn_dat[i].u.jdata.jtf;
   1926 
   1927 			if (branching) {
   1928 				if (BPF_OP(pc->code) != BPF_JSET) {
   1929 					jump = sljit_emit_cmp(compiler,
   1930 					    bpf_jmp_to_sljit_cond(pc, negate),
   1931 					    BJ_AREG, 0,
   1932 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1933 				} else {
   1934 					status = sljit_emit_op2(compiler,
   1935 					    SLJIT_AND,
   1936 					    BJ_TMP1REG, 0,
   1937 					    BJ_AREG, 0,
   1938 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1939 					if (status != SLJIT_SUCCESS)
   1940 						goto fail;
   1941 
   1942 					jump = sljit_emit_cmp(compiler,
   1943 					    bpf_jmp_to_sljit_cond(pc, negate),
   1944 					    BJ_TMP1REG, 0,
   1945 					    SLJIT_IMM, 0);
   1946 				}
   1947 
   1948 				if (jump == NULL)
   1949 					goto fail;
   1950 
   1951 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1952 				jtf[negate].sjump = jump;
   1953 			}
   1954 
   1955 			if (!branching || (jt != 0 && jf != 0)) {
   1956 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1957 				if (jump == NULL)
   1958 					goto fail;
   1959 
   1960 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1961 				jtf[branching].sjump = jump;
   1962 			}
   1963 
   1964 			continue;
   1965 
   1966 		case BPF_RET:
   1967 			rval = BPF_RVAL(pc->code);
   1968 			if (rval == BPF_X)
   1969 				goto fail;
   1970 
   1971 			/* BPF_RET+BPF_K    accept k bytes */
   1972 			if (rval == BPF_K) {
   1973 				status = sljit_emit_return(compiler,
   1974 				    SLJIT_MOV_UI,
   1975 				    SLJIT_IMM, (uint32_t)pc->k);
   1976 				if (status != SLJIT_SUCCESS)
   1977 					goto fail;
   1978 			}
   1979 
   1980 			/* BPF_RET+BPF_A    accept A bytes */
   1981 			if (rval == BPF_A) {
   1982 				status = sljit_emit_return(compiler,
   1983 				    SLJIT_MOV_UI,
   1984 				    BJ_AREG, 0);
   1985 				if (status != SLJIT_SUCCESS)
   1986 					goto fail;
   1987 			}
   1988 
   1989 			continue;
   1990 
   1991 		case BPF_MISC:
   1992 			switch (BPF_MISCOP(pc->code)) {
   1993 			case BPF_TAX:
   1994 				status = sljit_emit_op1(compiler,
   1995 				    SLJIT_MOV_UI,
   1996 				    BJ_XREG, 0,
   1997 				    BJ_AREG, 0);
   1998 				if (status != SLJIT_SUCCESS)
   1999 					goto fail;
   2000 
   2001 				continue;
   2002 
   2003 			case BPF_TXA:
   2004 				status = sljit_emit_op1(compiler,
   2005 				    SLJIT_MOV,
   2006 				    BJ_AREG, 0,
   2007 				    BJ_XREG, 0);
   2008 				if (status != SLJIT_SUCCESS)
   2009 					goto fail;
   2010 
   2011 				continue;
   2012 
   2013 			case BPF_COP:
   2014 			case BPF_COPX:
   2015 				if (bc == NULL || bc->copfuncs == NULL)
   2016 					goto fail;
   2017 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2018 				    (uint32_t)pc->k >= bc->nfuncs) {
   2019 					goto fail;
   2020 				}
   2021 
   2022 				jump = NULL;
   2023 				status = emit_cop(compiler, bc, pc, &jump);
   2024 				if (status != SLJIT_SUCCESS)
   2025 					goto fail;
   2026 
   2027 				if (jump != NULL && !append_jump(jump,
   2028 				    &ret0, &ret0_size, &ret0_maxsize))
   2029 					goto fail;
   2030 
   2031 				continue;
   2032 			}
   2033 
   2034 			goto fail;
   2035 		} /* switch */
   2036 	} /* main loop */
   2037 
   2038 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2039 
   2040 	if (ret0_size > 0) {
   2041 		label = sljit_emit_label(compiler);
   2042 		if (label == NULL)
   2043 			goto fail;
   2044 		for (i = 0; i < ret0_size; i++)
   2045 			sljit_set_label(ret0[i], label);
   2046 	}
   2047 
   2048 	status = sljit_emit_return(compiler,
   2049 	    SLJIT_MOV_UI,
   2050 	    SLJIT_IMM, 0);
   2051 	if (status != SLJIT_SUCCESS)
   2052 		goto fail;
   2053 
   2054 	rv = true;
   2055 
   2056 fail:
   2057 	if (ret0 != NULL)
   2058 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2059 
   2060 	return rv;
   2061 }
   2062 
   2063 bpfjit_func_t
   2064 bpfjit_generate_code(const bpf_ctx_t *bc,
   2065     const struct bpf_insn *insns, size_t insn_count)
   2066 {
   2067 	void *rv;
   2068 	struct sljit_compiler *compiler;
   2069 
   2070 	size_t i;
   2071 	int status;
   2072 
   2073 	/* optimization related */
   2074 	bpf_memword_init_t initmask;
   2075 	bpfjit_hint_t hints;
   2076 
   2077 	/* memory store location for initial zero initialization */
   2078 	sljit_si mem_reg;
   2079 	sljit_sw mem_off;
   2080 
   2081 	struct bpfjit_insn_data *insn_dat;
   2082 
   2083 	const size_t extwords = GET_EXTWORDS(bc);
   2084 	const size_t memwords = GET_MEMWORDS(bc);
   2085 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2086 
   2087 	rv = NULL;
   2088 	compiler = NULL;
   2089 	insn_dat = NULL;
   2090 
   2091 	if (memwords > MAX_MEMWORDS)
   2092 		goto fail;
   2093 
   2094 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2095 		goto fail;
   2096 
   2097 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2098 	if (insn_dat == NULL)
   2099 		goto fail;
   2100 
   2101 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2102 		goto fail;
   2103 
   2104 	compiler = sljit_create_compiler();
   2105 	if (compiler == NULL)
   2106 		goto fail;
   2107 
   2108 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2109 	sljit_compiler_verbose(compiler, stderr);
   2110 #endif
   2111 
   2112 	status = sljit_emit_enter(compiler,
   2113 	    2, nscratches(hints), 3, sizeof(struct bpfjit_stack));
   2114 	if (status != SLJIT_SUCCESS)
   2115 		goto fail;
   2116 
   2117 	if (hints & BJ_HINT_COP) {
   2118 		/* save ctx argument */
   2119 		status = sljit_emit_op1(compiler,
   2120 		    SLJIT_MOV_P,
   2121 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2122 		    offsetof(struct bpfjit_stack, ctx),
   2123 		    BJ_CTX_ARG, 0);
   2124 		if (status != SLJIT_SUCCESS)
   2125 			goto fail;
   2126 	}
   2127 
   2128 	if (extwords == 0) {
   2129 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2130 		mem_off = offsetof(struct bpfjit_stack, mem);
   2131 	} else {
   2132 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2133 		status = sljit_emit_op1(compiler,
   2134 		    SLJIT_MOV_P,
   2135 		    BJ_TMP1REG, 0,
   2136 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2137 		if (status != SLJIT_SUCCESS)
   2138 			goto fail;
   2139 
   2140 		status = sljit_emit_op1(compiler,
   2141 		    SLJIT_MOV_P,
   2142 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2143 		    offsetof(struct bpfjit_stack, extmem),
   2144 		    BJ_TMP1REG, 0);
   2145 		if (status != SLJIT_SUCCESS)
   2146 			goto fail;
   2147 
   2148 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2149 		mem_off = 0;
   2150 	}
   2151 
   2152 	/*
   2153 	 * Exclude pre-initialised external memory words but keep
   2154 	 * initialization statuses of A and X registers in case
   2155 	 * bc->preinited wrongly sets those two bits.
   2156 	 */
   2157 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2158 
   2159 #if defined(_KERNEL)
   2160 	/* bpf_filter() checks initialization of memwords. */
   2161 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2162 #endif
   2163 	for (i = 0; i < memwords; i++) {
   2164 		if (initmask & BJ_INIT_MBIT(i)) {
   2165 			/* M[i] = 0; */
   2166 			status = sljit_emit_op1(compiler,
   2167 			    SLJIT_MOV_UI,
   2168 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2169 			    SLJIT_IMM, 0);
   2170 			if (status != SLJIT_SUCCESS)
   2171 				goto fail;
   2172 		}
   2173 	}
   2174 
   2175 	if (initmask & BJ_INIT_ABIT) {
   2176 		/* A = 0; */
   2177 		status = sljit_emit_op1(compiler,
   2178 		    SLJIT_MOV,
   2179 		    BJ_AREG, 0,
   2180 		    SLJIT_IMM, 0);
   2181 		if (status != SLJIT_SUCCESS)
   2182 			goto fail;
   2183 	}
   2184 
   2185 	if (initmask & BJ_INIT_XBIT) {
   2186 		/* X = 0; */
   2187 		status = sljit_emit_op1(compiler,
   2188 		    SLJIT_MOV,
   2189 		    BJ_XREG, 0,
   2190 		    SLJIT_IMM, 0);
   2191 		if (status != SLJIT_SUCCESS)
   2192 			goto fail;
   2193 	}
   2194 
   2195 	status = load_buf_buflen(compiler);
   2196 	if (status != SLJIT_SUCCESS)
   2197 		goto fail;
   2198 
   2199 	if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
   2200 		goto fail;
   2201 
   2202 	rv = sljit_generate_code(compiler);
   2203 
   2204 fail:
   2205 	if (compiler != NULL)
   2206 		sljit_free_compiler(compiler);
   2207 
   2208 	if (insn_dat != NULL)
   2209 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2210 
   2211 	return (bpfjit_func_t)rv;
   2212 }
   2213 
   2214 void
   2215 bpfjit_free_code(bpfjit_func_t code)
   2216 {
   2217 
   2218 	sljit_free_code((void *)code);
   2219 }
   2220