Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.29
      1 /*	$NetBSD: bpfjit.c,v 1.29 2014/07/22 08:20:08 alnsn Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.29 2014/07/22 08:20:08 alnsn Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.29 2014/07/22 08:20:08 alnsn Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #else
     65 #include <sys/atomic.h>
     66 #include <sys/module.h>
     67 #endif
     68 
     69 #define	__BPF_PRIVATE
     70 #include <net/bpf.h>
     71 #include <net/bpfjit.h>
     72 #include <sljitLir.h>
     73 
     74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75 #include <stdio.h> /* for stderr */
     76 #endif
     77 
     78 /*
     79  * Arguments of generated bpfjit_func_t.
     80  * The first argument is reassigned upon entry
     81  * to a more frequently used buf argument.
     82  */
     83 #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84 #define BJ_ARGS		SLJIT_SAVED_REG2
     85 
     86 /*
     87  * Permanent register assignments.
     88  */
     89 #define BJ_BUF		SLJIT_SAVED_REG1
     90 //#define BJ_ARGS	SLJIT_SAVED_REG2
     91 #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92 #define BJ_XREG		SLJIT_SAVED_EREG1
     93 #define BJ_ASAVE	SLJIT_SAVED_EREG2
     94 #define BJ_AREG		SLJIT_SCRATCH_REG1
     95 #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     96 #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     97 #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG1
     98 
     99 #ifdef _KERNEL
    100 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    101 #else
    102 #define MAX_MEMWORDS BPF_MEMWORDS
    103 #endif
    104 
    105 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    106 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    107 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    108 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    109 
    110 /*
    111  * Get a number of memwords and external memwords from a bpf_ctx object.
    112  */
    113 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    114 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    115 
    116 /*
    117  * Optimization hints.
    118  */
    119 typedef unsigned int bpfjit_hint_t;
    120 #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    121 #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    122 #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    123 #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    124 #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    125 #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    126 #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    127 #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    128 
    129 /*
    130  * Datatype for Array Bounds Check Elimination (ABC) pass.
    131  */
    132 typedef uint64_t bpfjit_abc_length_t;
    133 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    134 
    135 struct bpfjit_stack
    136 {
    137 	bpf_ctx_t *ctx;
    138 	uint32_t *extmem; /* pointer to external memory store */
    139 #ifdef _KERNEL
    140 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    141 #endif
    142 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    143 };
    144 
    145 /*
    146  * Data for BPF_JMP instruction.
    147  * Forward declaration for struct bpfjit_jump.
    148  */
    149 struct bpfjit_jump_data;
    150 
    151 /*
    152  * Node of bjumps list.
    153  */
    154 struct bpfjit_jump {
    155 	struct sljit_jump *sjump;
    156 	SLIST_ENTRY(bpfjit_jump) entries;
    157 	struct bpfjit_jump_data *jdata;
    158 };
    159 
    160 /*
    161  * Data for BPF_JMP instruction.
    162  */
    163 struct bpfjit_jump_data {
    164 	/*
    165 	 * These entries make up bjumps list:
    166 	 * jtf[0] - when coming from jt path,
    167 	 * jtf[1] - when coming from jf path.
    168 	 */
    169 	struct bpfjit_jump jtf[2];
    170 	/*
    171 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    172 	 */
    173 	bpfjit_abc_length_t abc_length;
    174 	/*
    175 	 * Length checked by the last out-of-bounds check.
    176 	 */
    177 	bpfjit_abc_length_t checked_length;
    178 };
    179 
    180 /*
    181  * Data for "read from packet" instructions.
    182  * See also read_pkt_insn() function below.
    183  */
    184 struct bpfjit_read_pkt_data {
    185 	/*
    186 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    187 	 */
    188 	bpfjit_abc_length_t abc_length;
    189 	/*
    190 	 * If positive, emit "if (buflen < check_length) return 0"
    191 	 * out-of-bounds check.
    192 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    193 	 */
    194 	bpfjit_abc_length_t check_length;
    195 };
    196 
    197 /*
    198  * Additional (optimization-related) data for bpf_insn.
    199  */
    200 struct bpfjit_insn_data {
    201 	/* List of jumps to this insn. */
    202 	SLIST_HEAD(, bpfjit_jump) bjumps;
    203 
    204 	union {
    205 		struct bpfjit_jump_data     jdata;
    206 		struct bpfjit_read_pkt_data rdata;
    207 	} u;
    208 
    209 	bpf_memword_init_t invalid;
    210 	bool unreachable;
    211 };
    212 
    213 #ifdef _KERNEL
    214 
    215 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    216 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    217 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    218 
    219 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    220 
    221 static int
    222 bpfjit_modcmd(modcmd_t cmd, void *arg)
    223 {
    224 
    225 	switch (cmd) {
    226 	case MODULE_CMD_INIT:
    227 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    228 		membar_producer();
    229 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    230 		membar_producer();
    231 		return 0;
    232 
    233 	case MODULE_CMD_FINI:
    234 		return EOPNOTSUPP;
    235 
    236 	default:
    237 		return ENOTTY;
    238 	}
    239 }
    240 #endif
    241 
    242 /*
    243  * Return a number of scratch registers to pass
    244  * to sljit_emit_enter() function.
    245  */
    246 static sljit_si
    247 nscratches(bpfjit_hint_t hints)
    248 {
    249 	sljit_si rv = 2;
    250 
    251 #ifdef _KERNEL
    252 	if (hints & BJ_HINT_PKT)
    253 		rv = 3; /* xcall with three arguments */
    254 #endif
    255 
    256 	if (hints & BJ_HINT_IND)
    257 		rv = 3; /* uses BJ_TMP2REG */
    258 
    259 	if (hints & BJ_HINT_COP)
    260 		rv = 3; /* calls copfunc with three arguments */
    261 
    262 	if (hints & BJ_HINT_COPX)
    263 		rv = 4; /* uses BJ_TMP3REG */
    264 
    265 	return rv;
    266 }
    267 
    268 /*
    269  * Return a number of saved registers to pass
    270  * to sljit_emit_enter() function.
    271  */
    272 static sljit_si
    273 nsaveds(bpfjit_hint_t hints)
    274 {
    275 	sljit_si rv = 3;
    276 
    277 	if (hints & BJ_HINT_XREG)
    278 		rv = 4; /* uses BJ_XREG */
    279 
    280 #ifdef _KERNEL
    281 	if (hints & BJ_HINT_LDX)
    282 		rv = 5; /* uses BJ_ASAVE */
    283 #endif
    284 
    285 	return rv;
    286 }
    287 
    288 static uint32_t
    289 read_width(const struct bpf_insn *pc)
    290 {
    291 
    292 	switch (BPF_SIZE(pc->code)) {
    293 	case BPF_W:
    294 		return 4;
    295 	case BPF_H:
    296 		return 2;
    297 	case BPF_B:
    298 		return 1;
    299 	default:
    300 		BJ_ASSERT(false);
    301 		return 0;
    302 	}
    303 }
    304 
    305 /*
    306  * Copy buf and buflen members of bpf_args from BJ_ARGS
    307  * pointer to BJ_BUF and BJ_BUFLEN registers.
    308  */
    309 static int
    310 load_buf_buflen(struct sljit_compiler *compiler)
    311 {
    312 	int status;
    313 
    314 	status = sljit_emit_op1(compiler,
    315 	    SLJIT_MOV_P,
    316 	    BJ_BUF, 0,
    317 	    SLJIT_MEM1(BJ_ARGS),
    318 	    offsetof(struct bpf_args, pkt));
    319 	if (status != SLJIT_SUCCESS)
    320 		return status;
    321 
    322 	status = sljit_emit_op1(compiler,
    323 	    SLJIT_MOV, /* size_t source */
    324 	    BJ_BUFLEN, 0,
    325 	    SLJIT_MEM1(BJ_ARGS),
    326 	    offsetof(struct bpf_args, buflen));
    327 
    328 	return status;
    329 }
    330 
    331 static bool
    332 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    333 {
    334 	struct sljit_jump **newptr;
    335 	const size_t elemsz = sizeof(struct sljit_jump *);
    336 	size_t old_size = *size;
    337 	size_t new_size = 2 * old_size;
    338 
    339 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    340 		return false;
    341 
    342 	newptr = BJ_ALLOC(new_size * elemsz);
    343 	if (newptr == NULL)
    344 		return false;
    345 
    346 	memcpy(newptr, *jumps, old_size * elemsz);
    347 	BJ_FREE(*jumps, old_size * elemsz);
    348 
    349 	*jumps = newptr;
    350 	*size = new_size;
    351 	return true;
    352 }
    353 
    354 static bool
    355 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    356     size_t *size, size_t *max_size)
    357 {
    358 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    359 		return false;
    360 
    361 	(*jumps)[(*size)++] = jump;
    362 	return true;
    363 }
    364 
    365 /*
    366  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    367  */
    368 static int
    369 emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    370 {
    371 
    372 	return sljit_emit_op1(compiler,
    373 	    SLJIT_MOV_UB,
    374 	    BJ_AREG, 0,
    375 	    SLJIT_MEM1(src), k);
    376 }
    377 
    378 /*
    379  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    380  */
    381 static int
    382 emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    383 {
    384 	int status;
    385 
    386 	BJ_ASSERT(k <= UINT32_MAX - 1);
    387 
    388 	/* A = buf[k]; */
    389 	status = sljit_emit_op1(compiler,
    390 	    SLJIT_MOV_UB,
    391 	    BJ_AREG, 0,
    392 	    SLJIT_MEM1(src), k);
    393 	if (status != SLJIT_SUCCESS)
    394 		return status;
    395 
    396 	/* tmp1 = buf[k+1]; */
    397 	status = sljit_emit_op1(compiler,
    398 	    SLJIT_MOV_UB,
    399 	    BJ_TMP1REG, 0,
    400 	    SLJIT_MEM1(src), k+1);
    401 	if (status != SLJIT_SUCCESS)
    402 		return status;
    403 
    404 	/* A = A << 8; */
    405 	status = sljit_emit_op2(compiler,
    406 	    SLJIT_SHL,
    407 	    BJ_AREG, 0,
    408 	    BJ_AREG, 0,
    409 	    SLJIT_IMM, 8);
    410 	if (status != SLJIT_SUCCESS)
    411 		return status;
    412 
    413 	/* A = A + tmp1; */
    414 	status = sljit_emit_op2(compiler,
    415 	    SLJIT_ADD,
    416 	    BJ_AREG, 0,
    417 	    BJ_AREG, 0,
    418 	    BJ_TMP1REG, 0);
    419 	return status;
    420 }
    421 
    422 /*
    423  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    424  */
    425 static int
    426 emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    427 {
    428 	int status;
    429 
    430 	BJ_ASSERT(k <= UINT32_MAX - 3);
    431 
    432 	/* A = buf[k]; */
    433 	status = sljit_emit_op1(compiler,
    434 	    SLJIT_MOV_UB,
    435 	    BJ_AREG, 0,
    436 	    SLJIT_MEM1(src), k);
    437 	if (status != SLJIT_SUCCESS)
    438 		return status;
    439 
    440 	/* tmp1 = buf[k+1]; */
    441 	status = sljit_emit_op1(compiler,
    442 	    SLJIT_MOV_UB,
    443 	    BJ_TMP1REG, 0,
    444 	    SLJIT_MEM1(src), k+1);
    445 	if (status != SLJIT_SUCCESS)
    446 		return status;
    447 
    448 	/* A = A << 8; */
    449 	status = sljit_emit_op2(compiler,
    450 	    SLJIT_SHL,
    451 	    BJ_AREG, 0,
    452 	    BJ_AREG, 0,
    453 	    SLJIT_IMM, 8);
    454 	if (status != SLJIT_SUCCESS)
    455 		return status;
    456 
    457 	/* A = A + tmp1; */
    458 	status = sljit_emit_op2(compiler,
    459 	    SLJIT_ADD,
    460 	    BJ_AREG, 0,
    461 	    BJ_AREG, 0,
    462 	    BJ_TMP1REG, 0);
    463 	if (status != SLJIT_SUCCESS)
    464 		return status;
    465 
    466 	/* tmp1 = buf[k+2]; */
    467 	status = sljit_emit_op1(compiler,
    468 	    SLJIT_MOV_UB,
    469 	    BJ_TMP1REG, 0,
    470 	    SLJIT_MEM1(src), k+2);
    471 	if (status != SLJIT_SUCCESS)
    472 		return status;
    473 
    474 	/* A = A << 8; */
    475 	status = sljit_emit_op2(compiler,
    476 	    SLJIT_SHL,
    477 	    BJ_AREG, 0,
    478 	    BJ_AREG, 0,
    479 	    SLJIT_IMM, 8);
    480 	if (status != SLJIT_SUCCESS)
    481 		return status;
    482 
    483 	/* A = A + tmp1; */
    484 	status = sljit_emit_op2(compiler,
    485 	    SLJIT_ADD,
    486 	    BJ_AREG, 0,
    487 	    BJ_AREG, 0,
    488 	    BJ_TMP1REG, 0);
    489 	if (status != SLJIT_SUCCESS)
    490 		return status;
    491 
    492 	/* tmp1 = buf[k+3]; */
    493 	status = sljit_emit_op1(compiler,
    494 	    SLJIT_MOV_UB,
    495 	    BJ_TMP1REG, 0,
    496 	    SLJIT_MEM1(src), k+3);
    497 	if (status != SLJIT_SUCCESS)
    498 		return status;
    499 
    500 	/* A = A << 8; */
    501 	status = sljit_emit_op2(compiler,
    502 	    SLJIT_SHL,
    503 	    BJ_AREG, 0,
    504 	    BJ_AREG, 0,
    505 	    SLJIT_IMM, 8);
    506 	if (status != SLJIT_SUCCESS)
    507 		return status;
    508 
    509 	/* A = A + tmp1; */
    510 	status = sljit_emit_op2(compiler,
    511 	    SLJIT_ADD,
    512 	    BJ_AREG, 0,
    513 	    BJ_AREG, 0,
    514 	    BJ_TMP1REG, 0);
    515 	return status;
    516 }
    517 
    518 #ifdef _KERNEL
    519 /*
    520  * Emit code for m_xword/m_xhalf/m_xbyte call.
    521  *
    522  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    523  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    524  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    525  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    526  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    527  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    528  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    529  */
    530 static int
    531 emit_xcall(struct sljit_compiler *compiler, const struct bpf_insn *pc,
    532     int dst, struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize,
    533     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    534 {
    535 	struct sljit_jump *jump;
    536 	int status;
    537 
    538 	BJ_ASSERT(dst != BJ_ASAVE);
    539 
    540 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    541 		/* save A */
    542 		status = sljit_emit_op1(compiler,
    543 		    SLJIT_MOV,
    544 		    BJ_ASAVE, 0,
    545 		    BJ_AREG, 0);
    546 		if (status != SLJIT_SUCCESS)
    547 			return status;
    548 	}
    549 
    550 	/*
    551 	 * Prepare registers for fn(mbuf, k, &err) call.
    552 	 */
    553 	status = sljit_emit_op1(compiler,
    554 	    SLJIT_MOV,
    555 	    SLJIT_SCRATCH_REG1, 0,
    556 	    BJ_BUF, 0);
    557 	if (status != SLJIT_SUCCESS)
    558 		return status;
    559 
    560 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    561 		/* if (X > UINT32_MAX - pc->k) return 0; */
    562 		jump = sljit_emit_cmp(compiler,
    563 		    SLJIT_C_GREATER,
    564 		    BJ_XREG, 0,
    565 		    SLJIT_IMM, UINT32_MAX - pc->k);
    566 		if (jump == NULL)
    567 			return SLJIT_ERR_ALLOC_FAILED;
    568 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    569 			return SLJIT_ERR_ALLOC_FAILED;
    570 
    571 		/* k = X + pc->k; */
    572 		status = sljit_emit_op2(compiler,
    573 		    SLJIT_ADD,
    574 		    SLJIT_SCRATCH_REG2, 0,
    575 		    BJ_XREG, 0,
    576 		    SLJIT_IMM, (uint32_t)pc->k);
    577 		if (status != SLJIT_SUCCESS)
    578 			return status;
    579 	} else {
    580 		/* k = pc->k */
    581 		status = sljit_emit_op1(compiler,
    582 		    SLJIT_MOV,
    583 		    SLJIT_SCRATCH_REG2, 0,
    584 		    SLJIT_IMM, (uint32_t)pc->k);
    585 		if (status != SLJIT_SUCCESS)
    586 			return status;
    587 	}
    588 
    589 	/*
    590 	 * The third argument of fn is an address on stack.
    591 	 */
    592 	status = sljit_get_local_base(compiler,
    593 	    SLJIT_SCRATCH_REG3, 0,
    594 	    offsetof(struct bpfjit_stack, err));
    595 	if (status != SLJIT_SUCCESS)
    596 		return status;
    597 
    598 	/* fn(buf, k, &err); */
    599 	status = sljit_emit_ijump(compiler,
    600 	    SLJIT_CALL3,
    601 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    602 	if (status != SLJIT_SUCCESS)
    603 		return status;
    604 
    605 	if (dst != SLJIT_RETURN_REG) {
    606 		/* move return value to dst */
    607 		status = sljit_emit_op1(compiler,
    608 		    SLJIT_MOV,
    609 		    dst, 0,
    610 		    SLJIT_RETURN_REG, 0);
    611 		if (status != SLJIT_SUCCESS)
    612 			return status;
    613 	}
    614 
    615 	/* tmp2 = *err; */
    616 	status = sljit_emit_op1(compiler,
    617 	    SLJIT_MOV_UI,
    618 	    BJ_TMP2REG, 0,
    619 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    620 	    offsetof(struct bpfjit_stack, err));
    621 	if (status != SLJIT_SUCCESS)
    622 		return status;
    623 
    624 	/* if (tmp2 != 0) return 0; */
    625 	jump = sljit_emit_cmp(compiler,
    626 	    SLJIT_C_NOT_EQUAL,
    627 	    BJ_TMP2REG, 0,
    628 	    SLJIT_IMM, 0);
    629 	if (jump == NULL)
    630 		return SLJIT_ERR_ALLOC_FAILED;
    631 
    632 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    633 		return SLJIT_ERR_ALLOC_FAILED;
    634 
    635 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    636 		/* restore A */
    637 		status = sljit_emit_op1(compiler,
    638 		    SLJIT_MOV,
    639 		    BJ_AREG, 0,
    640 		    BJ_ASAVE, 0);
    641 		if (status != SLJIT_SUCCESS)
    642 			return status;
    643 	}
    644 
    645 	return SLJIT_SUCCESS;
    646 }
    647 #endif
    648 
    649 /*
    650  * Emit code for BPF_COP and BPF_COPX instructions.
    651  */
    652 static int
    653 emit_cop(struct sljit_compiler *compiler,
    654     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    655     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    656 {
    657 #if BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    658     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    659     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    660 #error "Not supported assignment of registers."
    661 #endif
    662 
    663 	struct sljit_jump *jump;
    664 	sljit_si call_reg;
    665 	sljit_sw call_off;
    666 	int status;
    667 
    668 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    669 
    670 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    671 		call_reg = SLJIT_IMM;
    672 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    673 	} else {
    674 		/* if (X >= bc->nfuncs) return 0; */
    675 		jump = sljit_emit_cmp(compiler,
    676 		    SLJIT_C_GREATER_EQUAL,
    677 		    BJ_XREG, 0,
    678 		    SLJIT_IMM, bc->nfuncs);
    679 		if (jump == NULL)
    680 			return SLJIT_ERR_ALLOC_FAILED;
    681 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    682 			return SLJIT_ERR_ALLOC_FAILED;
    683 
    684 		/* tmp1 = ctx; */
    685 		status = sljit_emit_op1(compiler,
    686 		    SLJIT_MOV_P,
    687 		    BJ_TMP1REG, 0,
    688 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    689 		    offsetof(struct bpfjit_stack, ctx));
    690 		if (status != SLJIT_SUCCESS)
    691 			return status;
    692 
    693 		/* tmp1 = ctx->copfuncs; */
    694 		status = sljit_emit_op1(compiler,
    695 		    SLJIT_MOV_P,
    696 		    BJ_TMP1REG, 0,
    697 		    SLJIT_MEM1(BJ_TMP1REG),
    698 		    offsetof(struct bpf_ctx, copfuncs));
    699 		if (status != SLJIT_SUCCESS)
    700 			return status;
    701 
    702 		/* tmp2 = X; */
    703 		status = sljit_emit_op1(compiler,
    704 		    SLJIT_MOV,
    705 		    BJ_TMP2REG, 0,
    706 		    BJ_XREG, 0);
    707 		if (status != SLJIT_SUCCESS)
    708 			return status;
    709 
    710 		/* tmp3 = ctx->copfuncs[tmp2]; */
    711 		call_reg = BJ_TMP3REG;
    712 		call_off = 0;
    713 		status = sljit_emit_op1(compiler,
    714 		    SLJIT_MOV_P,
    715 		    call_reg, call_off,
    716 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    717 		    SLJIT_WORD_SHIFT);
    718 		if (status != SLJIT_SUCCESS)
    719 			return status;
    720 	}
    721 
    722 	/*
    723 	 * Copy bpf_copfunc_t arguments to registers.
    724 	 */
    725 #if BJ_AREG != SLJIT_SCRATCH_REG3
    726 	status = sljit_emit_op1(compiler,
    727 	    SLJIT_MOV_UI,
    728 	    SLJIT_SCRATCH_REG3, 0,
    729 	    BJ_AREG, 0);
    730 	if (status != SLJIT_SUCCESS)
    731 		return status;
    732 #endif
    733 
    734 	status = sljit_emit_op1(compiler,
    735 	    SLJIT_MOV_P,
    736 	    SLJIT_SCRATCH_REG1, 0,
    737 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    738 	    offsetof(struct bpfjit_stack, ctx));
    739 	if (status != SLJIT_SUCCESS)
    740 		return status;
    741 
    742 	status = sljit_emit_op1(compiler,
    743 	    SLJIT_MOV_P,
    744 	    SLJIT_SCRATCH_REG2, 0,
    745 	    BJ_ARGS, 0);
    746 	if (status != SLJIT_SUCCESS)
    747 		return status;
    748 
    749 	status = sljit_emit_ijump(compiler,
    750 	    SLJIT_CALL3, call_reg, call_off);
    751 	if (status != SLJIT_SUCCESS)
    752 		return status;
    753 
    754 #if BJ_AREG != SLJIT_RETURN_REG
    755 	status = sljit_emit_op1(compiler,
    756 	    SLJIT_MOV,
    757 	    BJ_AREG, 0,
    758 	    SLJIT_RETURN_REG, 0);
    759 	if (status != SLJIT_SUCCESS)
    760 		return status;
    761 #endif
    762 
    763 	return SLJIT_SUCCESS;
    764 }
    765 
    766 /*
    767  * Generate code for
    768  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    769  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    770  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    771  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    772  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    773  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    774  */
    775 static int
    776 emit_pkt_read(struct sljit_compiler *compiler,
    777     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    778     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    779 {
    780 	int status = SLJIT_ERR_ALLOC_FAILED;
    781 	uint32_t width;
    782 	sljit_si ld_reg;
    783 	struct sljit_jump *jump;
    784 #ifdef _KERNEL
    785 	struct sljit_label *label;
    786 	struct sljit_jump *over_mchain_jump;
    787 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    788 #endif
    789 	const uint32_t k = pc->k;
    790 
    791 #ifdef _KERNEL
    792 	if (to_mchain_jump == NULL) {
    793 		to_mchain_jump = sljit_emit_cmp(compiler,
    794 		    SLJIT_C_EQUAL,
    795 		    BJ_BUFLEN, 0,
    796 		    SLJIT_IMM, 0);
    797 		if (to_mchain_jump == NULL)
    798 			return SLJIT_ERR_ALLOC_FAILED;
    799 	}
    800 #endif
    801 
    802 	ld_reg = BJ_BUF;
    803 	width = read_width(pc);
    804 
    805 	if (BPF_MODE(pc->code) == BPF_IND) {
    806 		/* tmp1 = buflen - (pc->k + width); */
    807 		status = sljit_emit_op2(compiler,
    808 		    SLJIT_SUB,
    809 		    BJ_TMP1REG, 0,
    810 		    BJ_BUFLEN, 0,
    811 		    SLJIT_IMM, k + width);
    812 		if (status != SLJIT_SUCCESS)
    813 			return status;
    814 
    815 		/* ld_reg = buf + X; */
    816 		ld_reg = BJ_TMP2REG;
    817 		status = sljit_emit_op2(compiler,
    818 		    SLJIT_ADD,
    819 		    ld_reg, 0,
    820 		    BJ_BUF, 0,
    821 		    BJ_XREG, 0);
    822 		if (status != SLJIT_SUCCESS)
    823 			return status;
    824 
    825 		/* if (tmp1 < X) return 0; */
    826 		jump = sljit_emit_cmp(compiler,
    827 		    SLJIT_C_LESS,
    828 		    BJ_TMP1REG, 0,
    829 		    BJ_XREG, 0);
    830 		if (jump == NULL)
    831 			return SLJIT_ERR_ALLOC_FAILED;
    832 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    833 			return SLJIT_ERR_ALLOC_FAILED;
    834 	}
    835 
    836 	switch (width) {
    837 	case 4:
    838 		status = emit_read32(compiler, ld_reg, k);
    839 		break;
    840 	case 2:
    841 		status = emit_read16(compiler, ld_reg, k);
    842 		break;
    843 	case 1:
    844 		status = emit_read8(compiler, ld_reg, k);
    845 		break;
    846 	}
    847 
    848 	if (status != SLJIT_SUCCESS)
    849 		return status;
    850 
    851 #ifdef _KERNEL
    852 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    853 	if (over_mchain_jump == NULL)
    854 		return SLJIT_ERR_ALLOC_FAILED;
    855 
    856 	/* entry point to mchain handler */
    857 	label = sljit_emit_label(compiler);
    858 	if (label == NULL)
    859 		return SLJIT_ERR_ALLOC_FAILED;
    860 	sljit_set_label(to_mchain_jump, label);
    861 
    862 	if (check_zero_buflen) {
    863 		/* if (buflen != 0) return 0; */
    864 		jump = sljit_emit_cmp(compiler,
    865 		    SLJIT_C_NOT_EQUAL,
    866 		    BJ_BUFLEN, 0,
    867 		    SLJIT_IMM, 0);
    868 		if (jump == NULL)
    869 			return SLJIT_ERR_ALLOC_FAILED;
    870 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    871 			return SLJIT_ERR_ALLOC_FAILED;
    872 	}
    873 
    874 	switch (width) {
    875 	case 4:
    876 		status = emit_xcall(compiler, pc, BJ_AREG,
    877 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    878 		break;
    879 	case 2:
    880 		status = emit_xcall(compiler, pc, BJ_AREG,
    881 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    882 		break;
    883 	case 1:
    884 		status = emit_xcall(compiler, pc, BJ_AREG,
    885 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    886 		break;
    887 	}
    888 
    889 	if (status != SLJIT_SUCCESS)
    890 		return status;
    891 
    892 	label = sljit_emit_label(compiler);
    893 	if (label == NULL)
    894 		return SLJIT_ERR_ALLOC_FAILED;
    895 	sljit_set_label(over_mchain_jump, label);
    896 #endif
    897 
    898 	return SLJIT_SUCCESS;
    899 }
    900 
    901 static int
    902 emit_memload(struct sljit_compiler *compiler,
    903     sljit_si dst, uint32_t k, size_t extwords)
    904 {
    905 	int status;
    906 	sljit_si src;
    907 	sljit_sw srcw;
    908 
    909 	srcw = k * sizeof(uint32_t);
    910 
    911 	if (extwords == 0) {
    912 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    913 		srcw += offsetof(struct bpfjit_stack, mem);
    914 	} else {
    915 		/* copy extmem pointer to the tmp1 register */
    916 		status = sljit_emit_op1(compiler,
    917 		    SLJIT_MOV_P,
    918 		    BJ_TMP1REG, 0,
    919 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    920 		    offsetof(struct bpfjit_stack, extmem));
    921 		if (status != SLJIT_SUCCESS)
    922 			return status;
    923 		src = SLJIT_MEM1(BJ_TMP1REG);
    924 	}
    925 
    926 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    927 }
    928 
    929 static int
    930 emit_memstore(struct sljit_compiler *compiler,
    931     sljit_si src, uint32_t k, size_t extwords)
    932 {
    933 	int status;
    934 	sljit_si dst;
    935 	sljit_sw dstw;
    936 
    937 	dstw = k * sizeof(uint32_t);
    938 
    939 	if (extwords == 0) {
    940 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    941 		dstw += offsetof(struct bpfjit_stack, mem);
    942 	} else {
    943 		/* copy extmem pointer to the tmp1 register */
    944 		status = sljit_emit_op1(compiler,
    945 		    SLJIT_MOV_P,
    946 		    BJ_TMP1REG, 0,
    947 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    948 		    offsetof(struct bpfjit_stack, extmem));
    949 		if (status != SLJIT_SUCCESS)
    950 			return status;
    951 		dst = SLJIT_MEM1(BJ_TMP1REG);
    952 	}
    953 
    954 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    955 }
    956 
    957 /*
    958  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    959  */
    960 static int
    961 emit_msh(struct sljit_compiler *compiler,
    962     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    963     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    964 {
    965 	int status;
    966 #ifdef _KERNEL
    967 	struct sljit_label *label;
    968 	struct sljit_jump *jump, *over_mchain_jump;
    969 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    970 #endif
    971 	const uint32_t k = pc->k;
    972 
    973 #ifdef _KERNEL
    974 	if (to_mchain_jump == NULL) {
    975 		to_mchain_jump = sljit_emit_cmp(compiler,
    976 		    SLJIT_C_EQUAL,
    977 		    BJ_BUFLEN, 0,
    978 		    SLJIT_IMM, 0);
    979 		if (to_mchain_jump == NULL)
    980 			return SLJIT_ERR_ALLOC_FAILED;
    981 	}
    982 #endif
    983 
    984 	/* tmp1 = buf[k] */
    985 	status = sljit_emit_op1(compiler,
    986 	    SLJIT_MOV_UB,
    987 	    BJ_TMP1REG, 0,
    988 	    SLJIT_MEM1(BJ_BUF), k);
    989 	if (status != SLJIT_SUCCESS)
    990 		return status;
    991 
    992 	/* tmp1 &= 0xf */
    993 	status = sljit_emit_op2(compiler,
    994 	    SLJIT_AND,
    995 	    BJ_TMP1REG, 0,
    996 	    BJ_TMP1REG, 0,
    997 	    SLJIT_IMM, 0xf);
    998 	if (status != SLJIT_SUCCESS)
    999 		return status;
   1000 
   1001 	/* tmp1 = tmp1 << 2 */
   1002 	status = sljit_emit_op2(compiler,
   1003 	    SLJIT_SHL,
   1004 	    BJ_XREG, 0,
   1005 	    BJ_TMP1REG, 0,
   1006 	    SLJIT_IMM, 2);
   1007 	if (status != SLJIT_SUCCESS)
   1008 		return status;
   1009 
   1010 #ifdef _KERNEL
   1011 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1012 	if (over_mchain_jump == NULL)
   1013 		return SLJIT_ERR_ALLOC_FAILED;
   1014 
   1015 	/* entry point to mchain handler */
   1016 	label = sljit_emit_label(compiler);
   1017 	if (label == NULL)
   1018 		return SLJIT_ERR_ALLOC_FAILED;
   1019 	sljit_set_label(to_mchain_jump, label);
   1020 
   1021 	if (check_zero_buflen) {
   1022 		/* if (buflen != 0) return 0; */
   1023 		jump = sljit_emit_cmp(compiler,
   1024 		    SLJIT_C_NOT_EQUAL,
   1025 		    BJ_BUFLEN, 0,
   1026 		    SLJIT_IMM, 0);
   1027 		if (jump == NULL)
   1028 			return SLJIT_ERR_ALLOC_FAILED;
   1029 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1030 			return SLJIT_ERR_ALLOC_FAILED;
   1031 	}
   1032 
   1033 	status = emit_xcall(compiler, pc, BJ_TMP1REG,
   1034 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1035 	if (status != SLJIT_SUCCESS)
   1036 		return status;
   1037 
   1038 	/* tmp1 &= 0xf */
   1039 	status = sljit_emit_op2(compiler,
   1040 	    SLJIT_AND,
   1041 	    BJ_TMP1REG, 0,
   1042 	    BJ_TMP1REG, 0,
   1043 	    SLJIT_IMM, 0xf);
   1044 	if (status != SLJIT_SUCCESS)
   1045 		return status;
   1046 
   1047 	/* tmp1 = tmp1 << 2 */
   1048 	status = sljit_emit_op2(compiler,
   1049 	    SLJIT_SHL,
   1050 	    BJ_XREG, 0,
   1051 	    BJ_TMP1REG, 0,
   1052 	    SLJIT_IMM, 2);
   1053 	if (status != SLJIT_SUCCESS)
   1054 		return status;
   1055 
   1056 
   1057 	label = sljit_emit_label(compiler);
   1058 	if (label == NULL)
   1059 		return SLJIT_ERR_ALLOC_FAILED;
   1060 	sljit_set_label(over_mchain_jump, label);
   1061 #endif
   1062 
   1063 	return SLJIT_SUCCESS;
   1064 }
   1065 
   1066 static int
   1067 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
   1068 {
   1069 	int shift = 0;
   1070 	int status = SLJIT_SUCCESS;
   1071 
   1072 	while (k > 1) {
   1073 		k >>= 1;
   1074 		shift++;
   1075 	}
   1076 
   1077 	BJ_ASSERT(k == 1 && shift < 32);
   1078 
   1079 	if (shift != 0) {
   1080 		status = sljit_emit_op2(compiler,
   1081 		    SLJIT_LSHR|SLJIT_INT_OP,
   1082 		    BJ_AREG, 0,
   1083 		    BJ_AREG, 0,
   1084 		    SLJIT_IMM, shift);
   1085 	}
   1086 
   1087 	return status;
   1088 }
   1089 
   1090 #if !defined(BPFJIT_USE_UDIV)
   1091 static sljit_uw
   1092 divide(sljit_uw x, sljit_uw y)
   1093 {
   1094 
   1095 	return (uint32_t)x / (uint32_t)y;
   1096 }
   1097 #endif
   1098 
   1099 /*
   1100  * Emit code for A = A / div.
   1101  * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
   1102  */
   1103 static int
   1104 emit_division(struct sljit_compiler *compiler, int divt, sljit_sw divw)
   1105 {
   1106 	int status;
   1107 
   1108 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1109 	status = sljit_emit_op1(compiler,
   1110 	    SLJIT_MOV,
   1111 	    SLJIT_SCRATCH_REG1, 0,
   1112 	    BJ_AREG, 0);
   1113 	if (status != SLJIT_SUCCESS)
   1114 		return status;
   1115 #endif
   1116 
   1117 	status = sljit_emit_op1(compiler,
   1118 	    SLJIT_MOV,
   1119 	    SLJIT_SCRATCH_REG2, 0,
   1120 	    divt, divw);
   1121 	if (status != SLJIT_SUCCESS)
   1122 		return status;
   1123 
   1124 #if defined(BPFJIT_USE_UDIV)
   1125 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1126 
   1127 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1128 	status = sljit_emit_op1(compiler,
   1129 	    SLJIT_MOV,
   1130 	    BJ_AREG, 0,
   1131 	    SLJIT_SCRATCH_REG1, 0);
   1132 	if (status != SLJIT_SUCCESS)
   1133 		return status;
   1134 #endif
   1135 #else
   1136 	status = sljit_emit_ijump(compiler,
   1137 	    SLJIT_CALL2,
   1138 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
   1139 
   1140 #if BJ_AREG != SLJIT_RETURN_REG
   1141 	status = sljit_emit_op1(compiler,
   1142 	    SLJIT_MOV,
   1143 	    BJ_AREG, 0,
   1144 	    SLJIT_RETURN_REG, 0);
   1145 	if (status != SLJIT_SUCCESS)
   1146 		return status;
   1147 #endif
   1148 #endif
   1149 
   1150 	return status;
   1151 }
   1152 
   1153 /*
   1154  * Return true if pc is a "read from packet" instruction.
   1155  * If length is not NULL and return value is true, *length will
   1156  * be set to a safe length required to read a packet.
   1157  */
   1158 static bool
   1159 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1160 {
   1161 	bool rv;
   1162 	bpfjit_abc_length_t width;
   1163 
   1164 	switch (BPF_CLASS(pc->code)) {
   1165 	default:
   1166 		rv = false;
   1167 		break;
   1168 
   1169 	case BPF_LD:
   1170 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1171 		     BPF_MODE(pc->code) == BPF_IND;
   1172 		if (rv)
   1173 			width = read_width(pc);
   1174 		break;
   1175 
   1176 	case BPF_LDX:
   1177 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1178 		width = 1;
   1179 		break;
   1180 	}
   1181 
   1182 	if (rv && length != NULL) {
   1183 		/*
   1184 		 * Values greater than UINT32_MAX will generate
   1185 		 * unconditional "return 0".
   1186 		 */
   1187 		*length = (uint32_t)pc->k + width;
   1188 	}
   1189 
   1190 	return rv;
   1191 }
   1192 
   1193 static void
   1194 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1195 {
   1196 	size_t i;
   1197 
   1198 	for (i = 0; i < insn_count; i++) {
   1199 		SLIST_INIT(&insn_dat[i].bjumps);
   1200 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1201 	}
   1202 }
   1203 
   1204 /*
   1205  * The function divides instructions into blocks. Destination of a jump
   1206  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1207  * terminate a block. Blocks are linear, that is, there are no jumps out
   1208  * from the middle of a block and there are no jumps in to the middle of
   1209  * a block.
   1210  *
   1211  * The function also sets bits in *initmask for memwords that
   1212  * need to be initialized to zero. Note that this set should be empty
   1213  * for any valid kernel filter program.
   1214  */
   1215 static bool
   1216 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1217     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1218     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1219 {
   1220 	struct bpfjit_jump *jtf;
   1221 	size_t i;
   1222 	uint32_t jt, jf;
   1223 	bpfjit_abc_length_t length;
   1224 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1225 	bool unreachable;
   1226 
   1227 	const size_t memwords = GET_MEMWORDS(bc);
   1228 
   1229 	*hints = 0;
   1230 	*initmask = BJ_INIT_NOBITS;
   1231 
   1232 	unreachable = false;
   1233 	invalid = ~BJ_INIT_NOBITS;
   1234 
   1235 	for (i = 0; i < insn_count; i++) {
   1236 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1237 			unreachable = false;
   1238 		insn_dat[i].unreachable = unreachable;
   1239 
   1240 		if (unreachable)
   1241 			continue;
   1242 
   1243 		invalid |= insn_dat[i].invalid;
   1244 
   1245 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1246 			unreachable = true;
   1247 
   1248 		switch (BPF_CLASS(insns[i].code)) {
   1249 		case BPF_RET:
   1250 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1251 				*initmask |= invalid & BJ_INIT_ABIT;
   1252 
   1253 			unreachable = true;
   1254 			continue;
   1255 
   1256 		case BPF_LD:
   1257 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1258 				*hints |= BJ_HINT_ABS;
   1259 
   1260 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1261 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1262 				*initmask |= invalid & BJ_INIT_XBIT;
   1263 			}
   1264 
   1265 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1266 			    (uint32_t)insns[i].k < memwords) {
   1267 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1268 			}
   1269 
   1270 			invalid &= ~BJ_INIT_ABIT;
   1271 			continue;
   1272 
   1273 		case BPF_LDX:
   1274 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1275 
   1276 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1277 			    (uint32_t)insns[i].k < memwords) {
   1278 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1279 			}
   1280 
   1281 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1282 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1283 				*hints |= BJ_HINT_MSH;
   1284 			}
   1285 
   1286 			invalid &= ~BJ_INIT_XBIT;
   1287 			continue;
   1288 
   1289 		case BPF_ST:
   1290 			*initmask |= invalid & BJ_INIT_ABIT;
   1291 
   1292 			if ((uint32_t)insns[i].k < memwords)
   1293 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1294 
   1295 			continue;
   1296 
   1297 		case BPF_STX:
   1298 			*hints |= BJ_HINT_XREG;
   1299 			*initmask |= invalid & BJ_INIT_XBIT;
   1300 
   1301 			if ((uint32_t)insns[i].k < memwords)
   1302 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1303 
   1304 			continue;
   1305 
   1306 		case BPF_ALU:
   1307 			*initmask |= invalid & BJ_INIT_ABIT;
   1308 
   1309 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1310 			    BPF_SRC(insns[i].code) == BPF_X) {
   1311 				*hints |= BJ_HINT_XREG;
   1312 				*initmask |= invalid & BJ_INIT_XBIT;
   1313 			}
   1314 
   1315 			invalid &= ~BJ_INIT_ABIT;
   1316 			continue;
   1317 
   1318 		case BPF_MISC:
   1319 			switch (BPF_MISCOP(insns[i].code)) {
   1320 			case BPF_TAX: // X <- A
   1321 				*hints |= BJ_HINT_XREG;
   1322 				*initmask |= invalid & BJ_INIT_ABIT;
   1323 				invalid &= ~BJ_INIT_XBIT;
   1324 				continue;
   1325 
   1326 			case BPF_TXA: // A <- X
   1327 				*hints |= BJ_HINT_XREG;
   1328 				*initmask |= invalid & BJ_INIT_XBIT;
   1329 				invalid &= ~BJ_INIT_ABIT;
   1330 				continue;
   1331 
   1332 			case BPF_COPX:
   1333 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1334 				/* FALLTHROUGH */
   1335 
   1336 			case BPF_COP:
   1337 				*hints |= BJ_HINT_COP;
   1338 				*initmask |= invalid & BJ_INIT_ABIT;
   1339 				invalid &= ~BJ_INIT_ABIT;
   1340 				continue;
   1341 			}
   1342 
   1343 			continue;
   1344 
   1345 		case BPF_JMP:
   1346 			/* Initialize abc_length for ABC pass. */
   1347 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1348 
   1349 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1350 				jt = jf = insns[i].k;
   1351 			} else {
   1352 				jt = insns[i].jt;
   1353 				jf = insns[i].jf;
   1354 			}
   1355 
   1356 			if (jt >= insn_count - (i + 1) ||
   1357 			    jf >= insn_count - (i + 1)) {
   1358 				return false;
   1359 			}
   1360 
   1361 			if (jt > 0 && jf > 0)
   1362 				unreachable = true;
   1363 
   1364 			jt += i + 1;
   1365 			jf += i + 1;
   1366 
   1367 			jtf = insn_dat[i].u.jdata.jtf;
   1368 
   1369 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1370 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1371 			    &jtf[0], entries);
   1372 
   1373 			if (jf != jt) {
   1374 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1375 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1376 				    &jtf[1], entries);
   1377 			}
   1378 
   1379 			insn_dat[jf].invalid |= invalid;
   1380 			insn_dat[jt].invalid |= invalid;
   1381 			invalid = 0;
   1382 
   1383 			continue;
   1384 		}
   1385 	}
   1386 
   1387 	return true;
   1388 }
   1389 
   1390 /*
   1391  * Array Bounds Check Elimination (ABC) pass.
   1392  */
   1393 static void
   1394 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1395     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1396 {
   1397 	struct bpfjit_jump *jmp;
   1398 	const struct bpf_insn *pc;
   1399 	struct bpfjit_insn_data *pd;
   1400 	size_t i;
   1401 	bpfjit_abc_length_t length, abc_length = 0;
   1402 
   1403 	const size_t extwords = GET_EXTWORDS(bc);
   1404 
   1405 	for (i = insn_count; i != 0; i--) {
   1406 		pc = &insns[i-1];
   1407 		pd = &insn_dat[i-1];
   1408 
   1409 		if (pd->unreachable)
   1410 			continue;
   1411 
   1412 		switch (BPF_CLASS(pc->code)) {
   1413 		case BPF_RET:
   1414 			/*
   1415 			 * It's quite common for bpf programs to
   1416 			 * check packet bytes in increasing order
   1417 			 * and return zero if bytes don't match
   1418 			 * specified critetion. Such programs disable
   1419 			 * ABC optimization completely because for
   1420 			 * every jump there is a branch with no read
   1421 			 * instruction.
   1422 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1423 			 * is indistinguishable from out-of-bound load.
   1424 			 * Therefore, abc_length can be set to
   1425 			 * MAX_ABC_LENGTH and enable ABC for many
   1426 			 * bpf programs.
   1427 			 * If this optimization encounters any
   1428 			 * instruction with a side effect, it will
   1429 			 * reset abc_length.
   1430 			 */
   1431 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1432 				abc_length = MAX_ABC_LENGTH;
   1433 			else
   1434 				abc_length = 0;
   1435 			break;
   1436 
   1437 		case BPF_MISC:
   1438 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1439 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1440 				/* COP instructions can have side effects. */
   1441 				abc_length = 0;
   1442 			}
   1443 			break;
   1444 
   1445 		case BPF_ST:
   1446 		case BPF_STX:
   1447 			if (extwords != 0) {
   1448 				/* Write to memory is visible after a call. */
   1449 				abc_length = 0;
   1450 			}
   1451 			break;
   1452 
   1453 		case BPF_JMP:
   1454 			abc_length = pd->u.jdata.abc_length;
   1455 			break;
   1456 
   1457 		default:
   1458 			if (read_pkt_insn(pc, &length)) {
   1459 				if (abc_length < length)
   1460 					abc_length = length;
   1461 				pd->u.rdata.abc_length = abc_length;
   1462 			}
   1463 			break;
   1464 		}
   1465 
   1466 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1467 			if (jmp->jdata->abc_length > abc_length)
   1468 				jmp->jdata->abc_length = abc_length;
   1469 		}
   1470 	}
   1471 }
   1472 
   1473 static void
   1474 optimize_pass3(const struct bpf_insn *insns,
   1475     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1476 {
   1477 	struct bpfjit_jump *jmp;
   1478 	size_t i;
   1479 	bpfjit_abc_length_t checked_length = 0;
   1480 
   1481 	for (i = 0; i < insn_count; i++) {
   1482 		if (insn_dat[i].unreachable)
   1483 			continue;
   1484 
   1485 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1486 			if (jmp->jdata->checked_length < checked_length)
   1487 				checked_length = jmp->jdata->checked_length;
   1488 		}
   1489 
   1490 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1491 			insn_dat[i].u.jdata.checked_length = checked_length;
   1492 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1493 			struct bpfjit_read_pkt_data *rdata =
   1494 			    &insn_dat[i].u.rdata;
   1495 			rdata->check_length = 0;
   1496 			if (checked_length < rdata->abc_length) {
   1497 				checked_length = rdata->abc_length;
   1498 				rdata->check_length = checked_length;
   1499 			}
   1500 		}
   1501 	}
   1502 }
   1503 
   1504 static bool
   1505 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1506     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1507     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1508 {
   1509 
   1510 	optimize_init(insn_dat, insn_count);
   1511 
   1512 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1513 		return false;
   1514 
   1515 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1516 	optimize_pass3(insns, insn_dat, insn_count);
   1517 
   1518 	return true;
   1519 }
   1520 
   1521 /*
   1522  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1523  */
   1524 static int
   1525 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1526 {
   1527 
   1528 	/*
   1529 	 * Note: all supported 64bit arches have 32bit multiply
   1530 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1531 	 */
   1532 	switch (BPF_OP(pc->code)) {
   1533 	case BPF_ADD: return SLJIT_ADD;
   1534 	case BPF_SUB: return SLJIT_SUB;
   1535 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1536 	case BPF_OR:  return SLJIT_OR;
   1537 	case BPF_AND: return SLJIT_AND;
   1538 	case BPF_LSH: return SLJIT_SHL;
   1539 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1540 	default:
   1541 		BJ_ASSERT(false);
   1542 		return 0;
   1543 	}
   1544 }
   1545 
   1546 /*
   1547  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1548  */
   1549 static int
   1550 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1551 {
   1552 	/*
   1553 	 * Note: all supported 64bit arches have 32bit comparison
   1554 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1555 	 */
   1556 	int rv = SLJIT_INT_OP;
   1557 
   1558 	switch (BPF_OP(pc->code)) {
   1559 	case BPF_JGT:
   1560 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1561 		break;
   1562 	case BPF_JGE:
   1563 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1564 		break;
   1565 	case BPF_JEQ:
   1566 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1567 		break;
   1568 	case BPF_JSET:
   1569 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1570 		break;
   1571 	default:
   1572 		BJ_ASSERT(false);
   1573 	}
   1574 
   1575 	return rv;
   1576 }
   1577 
   1578 /*
   1579  * Convert BPF_K and BPF_X to sljit register.
   1580  */
   1581 static int
   1582 kx_to_reg(const struct bpf_insn *pc)
   1583 {
   1584 
   1585 	switch (BPF_SRC(pc->code)) {
   1586 	case BPF_K: return SLJIT_IMM;
   1587 	case BPF_X: return BJ_XREG;
   1588 	default:
   1589 		BJ_ASSERT(false);
   1590 		return 0;
   1591 	}
   1592 }
   1593 
   1594 static sljit_sw
   1595 kx_to_reg_arg(const struct bpf_insn *pc)
   1596 {
   1597 
   1598 	switch (BPF_SRC(pc->code)) {
   1599 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1600 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1601 	default:
   1602 		BJ_ASSERT(false);
   1603 		return 0;
   1604 	}
   1605 }
   1606 
   1607 static bool
   1608 generate_insn_code(struct sljit_compiler *compiler, const bpf_ctx_t *bc,
   1609     const struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
   1610     size_t insn_count)
   1611 {
   1612 	/* a list of jumps to out-of-bound return from a generated function */
   1613 	struct sljit_jump **ret0;
   1614 	size_t ret0_size, ret0_maxsize;
   1615 
   1616 	struct sljit_jump *jump;
   1617 	struct sljit_label *label;
   1618 	const struct bpf_insn *pc;
   1619 	struct bpfjit_jump *bjump, *jtf;
   1620 	struct sljit_jump *to_mchain_jump;
   1621 
   1622 	size_t i;
   1623 	int status;
   1624 	int branching, negate;
   1625 	unsigned int rval, mode, src;
   1626 	uint32_t jt, jf;
   1627 
   1628 	bool unconditional_ret;
   1629 	bool rv;
   1630 
   1631 	const size_t extwords = GET_EXTWORDS(bc);
   1632 	const size_t memwords = GET_MEMWORDS(bc);
   1633 
   1634 	ret0 = NULL;
   1635 	rv = false;
   1636 
   1637 	ret0_size = 0;
   1638 	ret0_maxsize = 64;
   1639 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1640 	if (ret0 == NULL)
   1641 		goto fail;
   1642 
   1643 	/* reset sjump members of jdata */
   1644 	for (i = 0; i < insn_count; i++) {
   1645 		if (insn_dat[i].unreachable ||
   1646 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1647 			continue;
   1648 		}
   1649 
   1650 		jtf = insn_dat[i].u.jdata.jtf;
   1651 		jtf[0].sjump = jtf[1].sjump = NULL;
   1652 	}
   1653 
   1654 	/* main loop */
   1655 	for (i = 0; i < insn_count; i++) {
   1656 		if (insn_dat[i].unreachable)
   1657 			continue;
   1658 
   1659 		/*
   1660 		 * Resolve jumps to the current insn.
   1661 		 */
   1662 		label = NULL;
   1663 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1664 			if (bjump->sjump != NULL) {
   1665 				if (label == NULL)
   1666 					label = sljit_emit_label(compiler);
   1667 				if (label == NULL)
   1668 					goto fail;
   1669 				sljit_set_label(bjump->sjump, label);
   1670 			}
   1671 		}
   1672 
   1673 		to_mchain_jump = NULL;
   1674 		unconditional_ret = false;
   1675 
   1676 		if (read_pkt_insn(&insns[i], NULL)) {
   1677 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1678 				/* Jump to "return 0" unconditionally. */
   1679 				unconditional_ret = true;
   1680 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1681 				if (jump == NULL)
   1682 					goto fail;
   1683 				if (!append_jump(jump, &ret0,
   1684 				    &ret0_size, &ret0_maxsize))
   1685 					goto fail;
   1686 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1687 				/* if (buflen < check_length) return 0; */
   1688 				jump = sljit_emit_cmp(compiler,
   1689 				    SLJIT_C_LESS,
   1690 				    BJ_BUFLEN, 0,
   1691 				    SLJIT_IMM,
   1692 				    insn_dat[i].u.rdata.check_length);
   1693 				if (jump == NULL)
   1694 					goto fail;
   1695 #ifdef _KERNEL
   1696 				to_mchain_jump = jump;
   1697 #else
   1698 				if (!append_jump(jump, &ret0,
   1699 				    &ret0_size, &ret0_maxsize))
   1700 					goto fail;
   1701 #endif
   1702 			}
   1703 		}
   1704 
   1705 		pc = &insns[i];
   1706 		switch (BPF_CLASS(pc->code)) {
   1707 
   1708 		default:
   1709 			goto fail;
   1710 
   1711 		case BPF_LD:
   1712 			/* BPF_LD+BPF_IMM          A <- k */
   1713 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1714 				status = sljit_emit_op1(compiler,
   1715 				    SLJIT_MOV,
   1716 				    BJ_AREG, 0,
   1717 				    SLJIT_IMM, (uint32_t)pc->k);
   1718 				if (status != SLJIT_SUCCESS)
   1719 					goto fail;
   1720 
   1721 				continue;
   1722 			}
   1723 
   1724 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1725 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1726 				if ((uint32_t)pc->k >= memwords)
   1727 					goto fail;
   1728 				status = emit_memload(compiler,
   1729 				    BJ_AREG, pc->k, extwords);
   1730 				if (status != SLJIT_SUCCESS)
   1731 					goto fail;
   1732 
   1733 				continue;
   1734 			}
   1735 
   1736 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1737 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1738 				status = sljit_emit_op1(compiler,
   1739 				    SLJIT_MOV, /* size_t source */
   1740 				    BJ_AREG, 0,
   1741 				    SLJIT_MEM1(BJ_ARGS),
   1742 				    offsetof(struct bpf_args, wirelen));
   1743 				if (status != SLJIT_SUCCESS)
   1744 					goto fail;
   1745 
   1746 				continue;
   1747 			}
   1748 
   1749 			mode = BPF_MODE(pc->code);
   1750 			if (mode != BPF_ABS && mode != BPF_IND)
   1751 				goto fail;
   1752 
   1753 			if (unconditional_ret)
   1754 				continue;
   1755 
   1756 			status = emit_pkt_read(compiler, pc,
   1757 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1758 			if (status != SLJIT_SUCCESS)
   1759 				goto fail;
   1760 
   1761 			continue;
   1762 
   1763 		case BPF_LDX:
   1764 			mode = BPF_MODE(pc->code);
   1765 
   1766 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1767 			if (mode == BPF_IMM) {
   1768 				if (BPF_SIZE(pc->code) != BPF_W)
   1769 					goto fail;
   1770 				status = sljit_emit_op1(compiler,
   1771 				    SLJIT_MOV,
   1772 				    BJ_XREG, 0,
   1773 				    SLJIT_IMM, (uint32_t)pc->k);
   1774 				if (status != SLJIT_SUCCESS)
   1775 					goto fail;
   1776 
   1777 				continue;
   1778 			}
   1779 
   1780 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1781 			if (mode == BPF_LEN) {
   1782 				if (BPF_SIZE(pc->code) != BPF_W)
   1783 					goto fail;
   1784 				status = sljit_emit_op1(compiler,
   1785 				    SLJIT_MOV, /* size_t source */
   1786 				    BJ_XREG, 0,
   1787 				    SLJIT_MEM1(BJ_ARGS),
   1788 				    offsetof(struct bpf_args, wirelen));
   1789 				if (status != SLJIT_SUCCESS)
   1790 					goto fail;
   1791 
   1792 				continue;
   1793 			}
   1794 
   1795 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1796 			if (mode == BPF_MEM) {
   1797 				if (BPF_SIZE(pc->code) != BPF_W)
   1798 					goto fail;
   1799 				if ((uint32_t)pc->k >= memwords)
   1800 					goto fail;
   1801 				status = emit_memload(compiler,
   1802 				    BJ_XREG, pc->k, extwords);
   1803 				if (status != SLJIT_SUCCESS)
   1804 					goto fail;
   1805 
   1806 				continue;
   1807 			}
   1808 
   1809 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1810 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1811 				goto fail;
   1812 
   1813 			if (unconditional_ret)
   1814 				continue;
   1815 
   1816 			status = emit_msh(compiler, pc,
   1817 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1818 			if (status != SLJIT_SUCCESS)
   1819 				goto fail;
   1820 
   1821 			continue;
   1822 
   1823 		case BPF_ST:
   1824 			if (pc->code != BPF_ST ||
   1825 			    (uint32_t)pc->k >= memwords) {
   1826 				goto fail;
   1827 			}
   1828 
   1829 			status = emit_memstore(compiler,
   1830 			    BJ_AREG, pc->k, extwords);
   1831 			if (status != SLJIT_SUCCESS)
   1832 				goto fail;
   1833 
   1834 			continue;
   1835 
   1836 		case BPF_STX:
   1837 			if (pc->code != BPF_STX ||
   1838 			    (uint32_t)pc->k >= memwords) {
   1839 				goto fail;
   1840 			}
   1841 
   1842 			status = emit_memstore(compiler,
   1843 			    BJ_XREG, pc->k, extwords);
   1844 			if (status != SLJIT_SUCCESS)
   1845 				goto fail;
   1846 
   1847 			continue;
   1848 
   1849 		case BPF_ALU:
   1850 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1851 				status = sljit_emit_op1(compiler,
   1852 				    SLJIT_NEG,
   1853 				    BJ_AREG, 0,
   1854 				    BJ_AREG, 0);
   1855 				if (status != SLJIT_SUCCESS)
   1856 					goto fail;
   1857 
   1858 				continue;
   1859 			}
   1860 
   1861 			if (BPF_OP(pc->code) != BPF_DIV) {
   1862 				status = sljit_emit_op2(compiler,
   1863 				    bpf_alu_to_sljit_op(pc),
   1864 				    BJ_AREG, 0,
   1865 				    BJ_AREG, 0,
   1866 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1867 				if (status != SLJIT_SUCCESS)
   1868 					goto fail;
   1869 
   1870 				continue;
   1871 			}
   1872 
   1873 			/* BPF_DIV */
   1874 
   1875 			src = BPF_SRC(pc->code);
   1876 			if (src != BPF_X && src != BPF_K)
   1877 				goto fail;
   1878 
   1879 			/* division by zero? */
   1880 			if (src == BPF_X) {
   1881 				jump = sljit_emit_cmp(compiler,
   1882 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1883 				    BJ_XREG, 0,
   1884 				    SLJIT_IMM, 0);
   1885 				if (jump == NULL)
   1886 					goto fail;
   1887 				if (!append_jump(jump, &ret0,
   1888 				    &ret0_size, &ret0_maxsize))
   1889 					goto fail;
   1890 			} else if (pc->k == 0) {
   1891 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1892 				if (jump == NULL)
   1893 					goto fail;
   1894 				if (!append_jump(jump, &ret0,
   1895 				    &ret0_size, &ret0_maxsize))
   1896 					goto fail;
   1897 			}
   1898 
   1899 			if (src == BPF_X) {
   1900 				status = emit_division(compiler, BJ_XREG, 0);
   1901 				if (status != SLJIT_SUCCESS)
   1902 					goto fail;
   1903 			} else if (pc->k != 0) {
   1904 				if (pc->k & (pc->k - 1)) {
   1905 				    status = emit_division(compiler,
   1906 				        SLJIT_IMM, (uint32_t)pc->k);
   1907 				} else {
   1908 				    status = emit_pow2_division(compiler,
   1909 				        (uint32_t)pc->k);
   1910 				}
   1911 				if (status != SLJIT_SUCCESS)
   1912 					goto fail;
   1913 			}
   1914 
   1915 			continue;
   1916 
   1917 		case BPF_JMP:
   1918 			if (BPF_OP(pc->code) == BPF_JA) {
   1919 				jt = jf = pc->k;
   1920 			} else {
   1921 				jt = pc->jt;
   1922 				jf = pc->jf;
   1923 			}
   1924 
   1925 			negate = (jt == 0) ? 1 : 0;
   1926 			branching = (jt == jf) ? 0 : 1;
   1927 			jtf = insn_dat[i].u.jdata.jtf;
   1928 
   1929 			if (branching) {
   1930 				if (BPF_OP(pc->code) != BPF_JSET) {
   1931 					jump = sljit_emit_cmp(compiler,
   1932 					    bpf_jmp_to_sljit_cond(pc, negate),
   1933 					    BJ_AREG, 0,
   1934 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1935 				} else {
   1936 					status = sljit_emit_op2(compiler,
   1937 					    SLJIT_AND,
   1938 					    BJ_TMP1REG, 0,
   1939 					    BJ_AREG, 0,
   1940 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1941 					if (status != SLJIT_SUCCESS)
   1942 						goto fail;
   1943 
   1944 					jump = sljit_emit_cmp(compiler,
   1945 					    bpf_jmp_to_sljit_cond(pc, negate),
   1946 					    BJ_TMP1REG, 0,
   1947 					    SLJIT_IMM, 0);
   1948 				}
   1949 
   1950 				if (jump == NULL)
   1951 					goto fail;
   1952 
   1953 				BJ_ASSERT(jtf[negate].sjump == NULL);
   1954 				jtf[negate].sjump = jump;
   1955 			}
   1956 
   1957 			if (!branching || (jt != 0 && jf != 0)) {
   1958 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1959 				if (jump == NULL)
   1960 					goto fail;
   1961 
   1962 				BJ_ASSERT(jtf[branching].sjump == NULL);
   1963 				jtf[branching].sjump = jump;
   1964 			}
   1965 
   1966 			continue;
   1967 
   1968 		case BPF_RET:
   1969 			rval = BPF_RVAL(pc->code);
   1970 			if (rval == BPF_X)
   1971 				goto fail;
   1972 
   1973 			/* BPF_RET+BPF_K    accept k bytes */
   1974 			if (rval == BPF_K) {
   1975 				status = sljit_emit_return(compiler,
   1976 				    SLJIT_MOV_UI,
   1977 				    SLJIT_IMM, (uint32_t)pc->k);
   1978 				if (status != SLJIT_SUCCESS)
   1979 					goto fail;
   1980 			}
   1981 
   1982 			/* BPF_RET+BPF_A    accept A bytes */
   1983 			if (rval == BPF_A) {
   1984 				status = sljit_emit_return(compiler,
   1985 				    SLJIT_MOV_UI,
   1986 				    BJ_AREG, 0);
   1987 				if (status != SLJIT_SUCCESS)
   1988 					goto fail;
   1989 			}
   1990 
   1991 			continue;
   1992 
   1993 		case BPF_MISC:
   1994 			switch (BPF_MISCOP(pc->code)) {
   1995 			case BPF_TAX:
   1996 				status = sljit_emit_op1(compiler,
   1997 				    SLJIT_MOV_UI,
   1998 				    BJ_XREG, 0,
   1999 				    BJ_AREG, 0);
   2000 				if (status != SLJIT_SUCCESS)
   2001 					goto fail;
   2002 
   2003 				continue;
   2004 
   2005 			case BPF_TXA:
   2006 				status = sljit_emit_op1(compiler,
   2007 				    SLJIT_MOV,
   2008 				    BJ_AREG, 0,
   2009 				    BJ_XREG, 0);
   2010 				if (status != SLJIT_SUCCESS)
   2011 					goto fail;
   2012 
   2013 				continue;
   2014 
   2015 			case BPF_COP:
   2016 			case BPF_COPX:
   2017 				if (bc == NULL || bc->copfuncs == NULL)
   2018 					goto fail;
   2019 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2020 				    (uint32_t)pc->k >= bc->nfuncs) {
   2021 					goto fail;
   2022 				}
   2023 
   2024 				status = emit_cop(compiler, bc, pc,
   2025 				    &ret0, &ret0_size, &ret0_maxsize);
   2026 				if (status != SLJIT_SUCCESS)
   2027 					goto fail;
   2028 
   2029 				continue;
   2030 			}
   2031 
   2032 			goto fail;
   2033 		} /* switch */
   2034 	} /* main loop */
   2035 
   2036 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2037 
   2038 	if (ret0_size > 0) {
   2039 		label = sljit_emit_label(compiler);
   2040 		if (label == NULL)
   2041 			goto fail;
   2042 		for (i = 0; i < ret0_size; i++)
   2043 			sljit_set_label(ret0[i], label);
   2044 	}
   2045 
   2046 	status = sljit_emit_return(compiler,
   2047 	    SLJIT_MOV_UI,
   2048 	    SLJIT_IMM, 0);
   2049 	if (status != SLJIT_SUCCESS)
   2050 		goto fail;
   2051 
   2052 	rv = true;
   2053 
   2054 fail:
   2055 	if (ret0 != NULL)
   2056 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2057 
   2058 	return rv;
   2059 }
   2060 
   2061 bpfjit_func_t
   2062 bpfjit_generate_code(const bpf_ctx_t *bc,
   2063     const struct bpf_insn *insns, size_t insn_count)
   2064 {
   2065 	void *rv;
   2066 	struct sljit_compiler *compiler;
   2067 
   2068 	size_t i;
   2069 	int status;
   2070 
   2071 	/* optimization related */
   2072 	bpf_memword_init_t initmask;
   2073 	bpfjit_hint_t hints;
   2074 
   2075 	/* memory store location for initial zero initialization */
   2076 	sljit_si mem_reg;
   2077 	sljit_sw mem_off;
   2078 
   2079 	struct bpfjit_insn_data *insn_dat;
   2080 
   2081 	const size_t extwords = GET_EXTWORDS(bc);
   2082 	const size_t memwords = GET_MEMWORDS(bc);
   2083 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2084 
   2085 	rv = NULL;
   2086 	compiler = NULL;
   2087 	insn_dat = NULL;
   2088 
   2089 	if (memwords > MAX_MEMWORDS)
   2090 		goto fail;
   2091 
   2092 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2093 		goto fail;
   2094 
   2095 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2096 	if (insn_dat == NULL)
   2097 		goto fail;
   2098 
   2099 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2100 		goto fail;
   2101 
   2102 	compiler = sljit_create_compiler();
   2103 	if (compiler == NULL)
   2104 		goto fail;
   2105 
   2106 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2107 	sljit_compiler_verbose(compiler, stderr);
   2108 #endif
   2109 
   2110 	status = sljit_emit_enter(compiler, 2, nscratches(hints),
   2111 	    nsaveds(hints), sizeof(struct bpfjit_stack));
   2112 	if (status != SLJIT_SUCCESS)
   2113 		goto fail;
   2114 
   2115 	if (hints & BJ_HINT_COP) {
   2116 		/* save ctx argument */
   2117 		status = sljit_emit_op1(compiler,
   2118 		    SLJIT_MOV_P,
   2119 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2120 		    offsetof(struct bpfjit_stack, ctx),
   2121 		    BJ_CTX_ARG, 0);
   2122 		if (status != SLJIT_SUCCESS)
   2123 			goto fail;
   2124 	}
   2125 
   2126 	if (extwords == 0) {
   2127 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2128 		mem_off = offsetof(struct bpfjit_stack, mem);
   2129 	} else {
   2130 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2131 		status = sljit_emit_op1(compiler,
   2132 		    SLJIT_MOV_P,
   2133 		    BJ_TMP1REG, 0,
   2134 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2135 		if (status != SLJIT_SUCCESS)
   2136 			goto fail;
   2137 
   2138 		status = sljit_emit_op1(compiler,
   2139 		    SLJIT_MOV_P,
   2140 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2141 		    offsetof(struct bpfjit_stack, extmem),
   2142 		    BJ_TMP1REG, 0);
   2143 		if (status != SLJIT_SUCCESS)
   2144 			goto fail;
   2145 
   2146 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2147 		mem_off = 0;
   2148 	}
   2149 
   2150 	/*
   2151 	 * Exclude pre-initialised external memory words but keep
   2152 	 * initialization statuses of A and X registers in case
   2153 	 * bc->preinited wrongly sets those two bits.
   2154 	 */
   2155 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2156 
   2157 #if defined(_KERNEL)
   2158 	/* bpf_filter() checks initialization of memwords. */
   2159 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2160 #endif
   2161 	for (i = 0; i < memwords; i++) {
   2162 		if (initmask & BJ_INIT_MBIT(i)) {
   2163 			/* M[i] = 0; */
   2164 			status = sljit_emit_op1(compiler,
   2165 			    SLJIT_MOV_UI,
   2166 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2167 			    SLJIT_IMM, 0);
   2168 			if (status != SLJIT_SUCCESS)
   2169 				goto fail;
   2170 		}
   2171 	}
   2172 
   2173 	if (initmask & BJ_INIT_ABIT) {
   2174 		/* A = 0; */
   2175 		status = sljit_emit_op1(compiler,
   2176 		    SLJIT_MOV,
   2177 		    BJ_AREG, 0,
   2178 		    SLJIT_IMM, 0);
   2179 		if (status != SLJIT_SUCCESS)
   2180 			goto fail;
   2181 	}
   2182 
   2183 	if (initmask & BJ_INIT_XBIT) {
   2184 		/* X = 0; */
   2185 		status = sljit_emit_op1(compiler,
   2186 		    SLJIT_MOV,
   2187 		    BJ_XREG, 0,
   2188 		    SLJIT_IMM, 0);
   2189 		if (status != SLJIT_SUCCESS)
   2190 			goto fail;
   2191 	}
   2192 
   2193 	status = load_buf_buflen(compiler);
   2194 	if (status != SLJIT_SUCCESS)
   2195 		goto fail;
   2196 
   2197 	if (!generate_insn_code(compiler, bc, insns, insn_dat, insn_count))
   2198 		goto fail;
   2199 
   2200 	rv = sljit_generate_code(compiler);
   2201 
   2202 fail:
   2203 	if (compiler != NULL)
   2204 		sljit_free_compiler(compiler);
   2205 
   2206 	if (insn_dat != NULL)
   2207 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2208 
   2209 	return (bpfjit_func_t)rv;
   2210 }
   2211 
   2212 void
   2213 bpfjit_free_code(bpfjit_func_t code)
   2214 {
   2215 
   2216 	sljit_free_code((void *)code);
   2217 }
   2218