bpfjit.c revision 1.33 1 /* $NetBSD: bpfjit.c,v 1.33 2014/11/19 19:34:43 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 Alexander Nasonov.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef _KERNEL
34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.33 2014/11/19 19:34:43 christos Exp $");
35 #else
36 __RCSID("$NetBSD: bpfjit.c,v 1.33 2014/11/19 19:34:43 christos Exp $");
37 #endif
38
39 #include <sys/types.h>
40 #include <sys/queue.h>
41
42 #ifndef _KERNEL
43 #include <assert.h>
44 #define BJ_ASSERT(c) assert(c)
45 #else
46 #define BJ_ASSERT(c) KASSERT(c)
47 #endif
48
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #define BJ_ALLOC(sz) malloc(sz)
52 #define BJ_FREE(p, sz) free(p)
53 #else
54 #include <sys/kmem.h>
55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 #define BJ_FREE(p, sz) kmem_free(p, sz)
57 #endif
58
59 #ifndef _KERNEL
60 #include <limits.h>
61 #include <stdbool.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #else
65 #include <sys/atomic.h>
66 #include <sys/module.h>
67 #endif
68
69 #define __BPF_PRIVATE
70 #include <net/bpf.h>
71 #include <net/bpfjit.h>
72 #include <sljitLir.h>
73
74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 #include <stdio.h> /* for stderr */
76 #endif
77
78 /*
79 * XXX: Until we support SLJIT_UMOD properly
80 */
81 #undef BPFJIT_USE_UDIV
82
83 /*
84 * Arguments of generated bpfjit_func_t.
85 * The first argument is reassigned upon entry
86 * to a more frequently used buf argument.
87 */
88 #define BJ_CTX_ARG SLJIT_SAVED_REG1
89 #define BJ_ARGS SLJIT_SAVED_REG2
90
91 /*
92 * Permanent register assignments.
93 */
94 #define BJ_BUF SLJIT_SAVED_REG1
95 //#define BJ_ARGS SLJIT_SAVED_REG2
96 #define BJ_BUFLEN SLJIT_SAVED_REG3
97 #define BJ_AREG SLJIT_SCRATCH_REG1
98 #define BJ_TMP1REG SLJIT_SCRATCH_REG2
99 #define BJ_TMP2REG SLJIT_SCRATCH_REG3
100 #define BJ_XREG SLJIT_TEMPORARY_EREG1
101 #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
102
103 #ifdef _KERNEL
104 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
105 #else
106 #define MAX_MEMWORDS BPF_MEMWORDS
107 #endif
108
109 #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
110 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
111 #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
112 #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
113
114 /*
115 * Get a number of memwords and external memwords from a bpf_ctx object.
116 */
117 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
118 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
119
120 /*
121 * Optimization hints.
122 */
123 typedef unsigned int bpfjit_hint_t;
124 #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
125 #define BJ_HINT_IND 0x02 /* packet read at variable offset */
126 #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
127 #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
128 #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
129 #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
130 #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
131 #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
132
133 /*
134 * Datatype for Array Bounds Check Elimination (ABC) pass.
135 */
136 typedef uint64_t bpfjit_abc_length_t;
137 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138
139 struct bpfjit_stack
140 {
141 bpf_ctx_t *ctx;
142 uint32_t *extmem; /* pointer to external memory store */
143 uint32_t reg; /* saved A or X register */
144 #ifdef _KERNEL
145 int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
146 #endif
147 uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
148 };
149
150 /*
151 * Data for BPF_JMP instruction.
152 * Forward declaration for struct bpfjit_jump.
153 */
154 struct bpfjit_jump_data;
155
156 /*
157 * Node of bjumps list.
158 */
159 struct bpfjit_jump {
160 struct sljit_jump *sjump;
161 SLIST_ENTRY(bpfjit_jump) entries;
162 struct bpfjit_jump_data *jdata;
163 };
164
165 /*
166 * Data for BPF_JMP instruction.
167 */
168 struct bpfjit_jump_data {
169 /*
170 * These entries make up bjumps list:
171 * jtf[0] - when coming from jt path,
172 * jtf[1] - when coming from jf path.
173 */
174 struct bpfjit_jump jtf[2];
175 /*
176 * Length calculated by Array Bounds Check Elimination (ABC) pass.
177 */
178 bpfjit_abc_length_t abc_length;
179 /*
180 * Length checked by the last out-of-bounds check.
181 */
182 bpfjit_abc_length_t checked_length;
183 };
184
185 /*
186 * Data for "read from packet" instructions.
187 * See also read_pkt_insn() function below.
188 */
189 struct bpfjit_read_pkt_data {
190 /*
191 * Length calculated by Array Bounds Check Elimination (ABC) pass.
192 */
193 bpfjit_abc_length_t abc_length;
194 /*
195 * If positive, emit "if (buflen < check_length) return 0"
196 * out-of-bounds check.
197 * Values greater than UINT32_MAX generate unconditional "return 0".
198 */
199 bpfjit_abc_length_t check_length;
200 };
201
202 /*
203 * Additional (optimization-related) data for bpf_insn.
204 */
205 struct bpfjit_insn_data {
206 /* List of jumps to this insn. */
207 SLIST_HEAD(, bpfjit_jump) bjumps;
208
209 union {
210 struct bpfjit_jump_data jdata;
211 struct bpfjit_read_pkt_data rdata;
212 } u;
213
214 bpf_memword_init_t invalid;
215 bool unreachable;
216 };
217
218 #ifdef _KERNEL
219
220 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
221 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
222 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
223
224 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
225
226 static int
227 bpfjit_modcmd(modcmd_t cmd, void *arg)
228 {
229
230 switch (cmd) {
231 case MODULE_CMD_INIT:
232 bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
233 membar_producer();
234 bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
235 membar_producer();
236 return 0;
237
238 case MODULE_CMD_FINI:
239 return EOPNOTSUPP;
240
241 default:
242 return ENOTTY;
243 }
244 }
245 #endif
246
247 /*
248 * Return a number of scratch registers to pass
249 * to sljit_emit_enter() function.
250 */
251 static sljit_si
252 nscratches(bpfjit_hint_t hints)
253 {
254 sljit_si rv = 2;
255
256 #ifdef _KERNEL
257 if (hints & BJ_HINT_PKT)
258 rv = 3; /* xcall with three arguments */
259 #endif
260
261 if (hints & BJ_HINT_IND)
262 rv = 3; /* uses BJ_TMP2REG */
263
264 if (hints & BJ_HINT_COP)
265 rv = 3; /* calls copfunc with three arguments */
266
267 if (hints & BJ_HINT_XREG)
268 rv = 4; /* uses BJ_XREG */
269
270 #ifdef _KERNEL
271 if (hints & BJ_HINT_LDX)
272 rv = 5; /* uses BJ_TMP3REG */
273 #endif
274
275 if (hints & BJ_HINT_COPX)
276 rv = 5; /* uses BJ_TMP3REG */
277
278 return rv;
279 }
280
281 /*
282 * Return a number of saved registers to pass
283 * to sljit_emit_enter() function.
284 */
285 static sljit_si
286 nsaveds(bpfjit_hint_t hints)
287 {
288 sljit_si rv = 3;
289
290 return rv;
291 }
292
293 static uint32_t
294 read_width(const struct bpf_insn *pc)
295 {
296
297 switch (BPF_SIZE(pc->code)) {
298 case BPF_W:
299 return 4;
300 case BPF_H:
301 return 2;
302 case BPF_B:
303 return 1;
304 default:
305 BJ_ASSERT(false);
306 return 0;
307 }
308 }
309
310 /*
311 * Copy buf and buflen members of bpf_args from BJ_ARGS
312 * pointer to BJ_BUF and BJ_BUFLEN registers.
313 */
314 static int
315 load_buf_buflen(struct sljit_compiler *compiler)
316 {
317 int status;
318
319 status = sljit_emit_op1(compiler,
320 SLJIT_MOV_P,
321 BJ_BUF, 0,
322 SLJIT_MEM1(BJ_ARGS),
323 offsetof(struct bpf_args, pkt));
324 if (status != SLJIT_SUCCESS)
325 return status;
326
327 status = sljit_emit_op1(compiler,
328 SLJIT_MOV, /* size_t source */
329 BJ_BUFLEN, 0,
330 SLJIT_MEM1(BJ_ARGS),
331 offsetof(struct bpf_args, buflen));
332
333 return status;
334 }
335
336 static bool
337 grow_jumps(struct sljit_jump ***jumps, size_t *size)
338 {
339 struct sljit_jump **newptr;
340 const size_t elemsz = sizeof(struct sljit_jump *);
341 size_t old_size = *size;
342 size_t new_size = 2 * old_size;
343
344 if (new_size < old_size || new_size > SIZE_MAX / elemsz)
345 return false;
346
347 newptr = BJ_ALLOC(new_size * elemsz);
348 if (newptr == NULL)
349 return false;
350
351 memcpy(newptr, *jumps, old_size * elemsz);
352 BJ_FREE(*jumps, old_size * elemsz);
353
354 *jumps = newptr;
355 *size = new_size;
356 return true;
357 }
358
359 static bool
360 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
361 size_t *size, size_t *max_size)
362 {
363 if (*size == *max_size && !grow_jumps(jumps, max_size))
364 return false;
365
366 (*jumps)[(*size)++] = jump;
367 return true;
368 }
369
370 /*
371 * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
372 */
373 static int
374 emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
375 {
376
377 return sljit_emit_op1(compiler,
378 SLJIT_MOV_UB,
379 BJ_AREG, 0,
380 SLJIT_MEM1(src), k);
381 }
382
383 /*
384 * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
385 */
386 static int
387 emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
388 {
389 int status;
390
391 BJ_ASSERT(k <= UINT32_MAX - 1);
392
393 /* A = buf[k]; */
394 status = sljit_emit_op1(compiler,
395 SLJIT_MOV_UB,
396 BJ_AREG, 0,
397 SLJIT_MEM1(src), k);
398 if (status != SLJIT_SUCCESS)
399 return status;
400
401 /* tmp1 = buf[k+1]; */
402 status = sljit_emit_op1(compiler,
403 SLJIT_MOV_UB,
404 BJ_TMP1REG, 0,
405 SLJIT_MEM1(src), k+1);
406 if (status != SLJIT_SUCCESS)
407 return status;
408
409 /* A = A << 8; */
410 status = sljit_emit_op2(compiler,
411 SLJIT_SHL,
412 BJ_AREG, 0,
413 BJ_AREG, 0,
414 SLJIT_IMM, 8);
415 if (status != SLJIT_SUCCESS)
416 return status;
417
418 /* A = A + tmp1; */
419 status = sljit_emit_op2(compiler,
420 SLJIT_ADD,
421 BJ_AREG, 0,
422 BJ_AREG, 0,
423 BJ_TMP1REG, 0);
424 return status;
425 }
426
427 /*
428 * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
429 */
430 static int
431 emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
432 {
433 int status;
434
435 BJ_ASSERT(k <= UINT32_MAX - 3);
436
437 /* A = buf[k]; */
438 status = sljit_emit_op1(compiler,
439 SLJIT_MOV_UB,
440 BJ_AREG, 0,
441 SLJIT_MEM1(src), k);
442 if (status != SLJIT_SUCCESS)
443 return status;
444
445 /* tmp1 = buf[k+1]; */
446 status = sljit_emit_op1(compiler,
447 SLJIT_MOV_UB,
448 BJ_TMP1REG, 0,
449 SLJIT_MEM1(src), k+1);
450 if (status != SLJIT_SUCCESS)
451 return status;
452
453 /* A = A << 8; */
454 status = sljit_emit_op2(compiler,
455 SLJIT_SHL,
456 BJ_AREG, 0,
457 BJ_AREG, 0,
458 SLJIT_IMM, 8);
459 if (status != SLJIT_SUCCESS)
460 return status;
461
462 /* A = A + tmp1; */
463 status = sljit_emit_op2(compiler,
464 SLJIT_ADD,
465 BJ_AREG, 0,
466 BJ_AREG, 0,
467 BJ_TMP1REG, 0);
468 if (status != SLJIT_SUCCESS)
469 return status;
470
471 /* tmp1 = buf[k+2]; */
472 status = sljit_emit_op1(compiler,
473 SLJIT_MOV_UB,
474 BJ_TMP1REG, 0,
475 SLJIT_MEM1(src), k+2);
476 if (status != SLJIT_SUCCESS)
477 return status;
478
479 /* A = A << 8; */
480 status = sljit_emit_op2(compiler,
481 SLJIT_SHL,
482 BJ_AREG, 0,
483 BJ_AREG, 0,
484 SLJIT_IMM, 8);
485 if (status != SLJIT_SUCCESS)
486 return status;
487
488 /* A = A + tmp1; */
489 status = sljit_emit_op2(compiler,
490 SLJIT_ADD,
491 BJ_AREG, 0,
492 BJ_AREG, 0,
493 BJ_TMP1REG, 0);
494 if (status != SLJIT_SUCCESS)
495 return status;
496
497 /* tmp1 = buf[k+3]; */
498 status = sljit_emit_op1(compiler,
499 SLJIT_MOV_UB,
500 BJ_TMP1REG, 0,
501 SLJIT_MEM1(src), k+3);
502 if (status != SLJIT_SUCCESS)
503 return status;
504
505 /* A = A << 8; */
506 status = sljit_emit_op2(compiler,
507 SLJIT_SHL,
508 BJ_AREG, 0,
509 BJ_AREG, 0,
510 SLJIT_IMM, 8);
511 if (status != SLJIT_SUCCESS)
512 return status;
513
514 /* A = A + tmp1; */
515 status = sljit_emit_op2(compiler,
516 SLJIT_ADD,
517 BJ_AREG, 0,
518 BJ_AREG, 0,
519 BJ_TMP1REG, 0);
520 return status;
521 }
522
523 #ifdef _KERNEL
524 /*
525 * Emit code for m_xword/m_xhalf/m_xbyte call.
526 *
527 * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
528 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
529 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
530 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
531 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
532 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
533 * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
534 */
535 static int
536 emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
537 const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
538 size_t *ret0_size, size_t *ret0_maxsize,
539 uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
540 {
541 #if BJ_XREG == SLJIT_RETURN_REG || \
542 BJ_XREG == SLJIT_SCRATCH_REG1 || \
543 BJ_XREG == SLJIT_SCRATCH_REG2 || \
544 BJ_XREG == SLJIT_SCRATCH_REG3
545 #error "Not supported assignment of registers."
546 #endif
547 struct sljit_jump *jump;
548 sljit_si save_reg;
549 int status;
550
551 save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
552
553 if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
554 /* save A or X */
555 status = sljit_emit_op1(compiler,
556 SLJIT_MOV_UI, /* uint32_t destination */
557 SLJIT_MEM1(SLJIT_LOCALS_REG),
558 offsetof(struct bpfjit_stack, reg),
559 save_reg, 0);
560 if (status != SLJIT_SUCCESS)
561 return status;
562 }
563
564 /*
565 * Prepare registers for fn(mbuf, k, &err) call.
566 */
567 status = sljit_emit_op1(compiler,
568 SLJIT_MOV,
569 SLJIT_SCRATCH_REG1, 0,
570 BJ_BUF, 0);
571 if (status != SLJIT_SUCCESS)
572 return status;
573
574 if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
575 if (pc->k == 0) {
576 /* k = X; */
577 status = sljit_emit_op1(compiler,
578 SLJIT_MOV,
579 SLJIT_SCRATCH_REG2, 0,
580 BJ_XREG, 0);
581 if (status != SLJIT_SUCCESS)
582 return status;
583 } else {
584 /* if (X > UINT32_MAX - pc->k) return 0; */
585 jump = sljit_emit_cmp(compiler,
586 SLJIT_C_GREATER,
587 BJ_XREG, 0,
588 SLJIT_IMM, UINT32_MAX - pc->k);
589 if (jump == NULL)
590 return SLJIT_ERR_ALLOC_FAILED;
591 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
592 return SLJIT_ERR_ALLOC_FAILED;
593
594 /* k = X + pc->k; */
595 status = sljit_emit_op2(compiler,
596 SLJIT_ADD,
597 SLJIT_SCRATCH_REG2, 0,
598 BJ_XREG, 0,
599 SLJIT_IMM, (uint32_t)pc->k);
600 if (status != SLJIT_SUCCESS)
601 return status;
602 }
603 } else {
604 /* k = pc->k */
605 status = sljit_emit_op1(compiler,
606 SLJIT_MOV,
607 SLJIT_SCRATCH_REG2, 0,
608 SLJIT_IMM, (uint32_t)pc->k);
609 if (status != SLJIT_SUCCESS)
610 return status;
611 }
612
613 /*
614 * The third argument of fn is an address on stack.
615 */
616 status = sljit_get_local_base(compiler,
617 SLJIT_SCRATCH_REG3, 0,
618 offsetof(struct bpfjit_stack, err));
619 if (status != SLJIT_SUCCESS)
620 return status;
621
622 /* fn(buf, k, &err); */
623 status = sljit_emit_ijump(compiler,
624 SLJIT_CALL3,
625 SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
626 if (status != SLJIT_SUCCESS)
627 return status;
628
629 if (dst != SLJIT_RETURN_REG) {
630 /* move return value to dst */
631 status = sljit_emit_op1(compiler,
632 SLJIT_MOV,
633 dst, 0,
634 SLJIT_RETURN_REG, 0);
635 if (status != SLJIT_SUCCESS)
636 return status;
637 }
638
639 /* if (*err != 0) return 0; */
640 jump = sljit_emit_cmp(compiler,
641 SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
642 SLJIT_MEM1(SLJIT_LOCALS_REG),
643 offsetof(struct bpfjit_stack, err),
644 SLJIT_IMM, 0);
645 if (jump == NULL)
646 return SLJIT_ERR_ALLOC_FAILED;
647
648 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
649 return SLJIT_ERR_ALLOC_FAILED;
650
651 if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
652 /* restore A or X */
653 status = sljit_emit_op1(compiler,
654 SLJIT_MOV_UI, /* uint32_t source */
655 save_reg, 0,
656 SLJIT_MEM1(SLJIT_LOCALS_REG),
657 offsetof(struct bpfjit_stack, reg));
658 if (status != SLJIT_SUCCESS)
659 return status;
660 }
661
662 return SLJIT_SUCCESS;
663 }
664 #endif
665
666 /*
667 * Emit code for BPF_COP and BPF_COPX instructions.
668 */
669 static int
670 emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
671 const bpf_ctx_t *bc, const struct bpf_insn *pc,
672 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
673 {
674 #if BJ_XREG == SLJIT_RETURN_REG || \
675 BJ_XREG == SLJIT_SCRATCH_REG1 || \
676 BJ_XREG == SLJIT_SCRATCH_REG2 || \
677 BJ_XREG == SLJIT_SCRATCH_REG3 || \
678 BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
679 BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
680 BJ_TMP3REG == SLJIT_SCRATCH_REG3
681 #error "Not supported assignment of registers."
682 #endif
683
684 struct sljit_jump *jump;
685 sljit_si call_reg;
686 sljit_sw call_off;
687 int status;
688
689 BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
690
691 if (hints & BJ_HINT_LDX) {
692 /* save X */
693 status = sljit_emit_op1(compiler,
694 SLJIT_MOV_UI, /* uint32_t destination */
695 SLJIT_MEM1(SLJIT_LOCALS_REG),
696 offsetof(struct bpfjit_stack, reg),
697 BJ_XREG, 0);
698 if (status != SLJIT_SUCCESS)
699 return status;
700 }
701
702 if (BPF_MISCOP(pc->code) == BPF_COP) {
703 call_reg = SLJIT_IMM;
704 call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
705 } else {
706 /* if (X >= bc->nfuncs) return 0; */
707 jump = sljit_emit_cmp(compiler,
708 SLJIT_C_GREATER_EQUAL,
709 BJ_XREG, 0,
710 SLJIT_IMM, bc->nfuncs);
711 if (jump == NULL)
712 return SLJIT_ERR_ALLOC_FAILED;
713 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
714 return SLJIT_ERR_ALLOC_FAILED;
715
716 /* tmp1 = ctx; */
717 status = sljit_emit_op1(compiler,
718 SLJIT_MOV_P,
719 BJ_TMP1REG, 0,
720 SLJIT_MEM1(SLJIT_LOCALS_REG),
721 offsetof(struct bpfjit_stack, ctx));
722 if (status != SLJIT_SUCCESS)
723 return status;
724
725 /* tmp1 = ctx->copfuncs; */
726 status = sljit_emit_op1(compiler,
727 SLJIT_MOV_P,
728 BJ_TMP1REG, 0,
729 SLJIT_MEM1(BJ_TMP1REG),
730 offsetof(struct bpf_ctx, copfuncs));
731 if (status != SLJIT_SUCCESS)
732 return status;
733
734 /* tmp2 = X; */
735 status = sljit_emit_op1(compiler,
736 SLJIT_MOV,
737 BJ_TMP2REG, 0,
738 BJ_XREG, 0);
739 if (status != SLJIT_SUCCESS)
740 return status;
741
742 /* tmp3 = ctx->copfuncs[tmp2]; */
743 call_reg = BJ_TMP3REG;
744 call_off = 0;
745 status = sljit_emit_op1(compiler,
746 SLJIT_MOV_P,
747 call_reg, call_off,
748 SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
749 SLJIT_WORD_SHIFT);
750 if (status != SLJIT_SUCCESS)
751 return status;
752 }
753
754 /*
755 * Copy bpf_copfunc_t arguments to registers.
756 */
757 #if BJ_AREG != SLJIT_SCRATCH_REG3
758 status = sljit_emit_op1(compiler,
759 SLJIT_MOV_UI,
760 SLJIT_SCRATCH_REG3, 0,
761 BJ_AREG, 0);
762 if (status != SLJIT_SUCCESS)
763 return status;
764 #endif
765
766 status = sljit_emit_op1(compiler,
767 SLJIT_MOV_P,
768 SLJIT_SCRATCH_REG1, 0,
769 SLJIT_MEM1(SLJIT_LOCALS_REG),
770 offsetof(struct bpfjit_stack, ctx));
771 if (status != SLJIT_SUCCESS)
772 return status;
773
774 status = sljit_emit_op1(compiler,
775 SLJIT_MOV_P,
776 SLJIT_SCRATCH_REG2, 0,
777 BJ_ARGS, 0);
778 if (status != SLJIT_SUCCESS)
779 return status;
780
781 status = sljit_emit_ijump(compiler,
782 SLJIT_CALL3, call_reg, call_off);
783 if (status != SLJIT_SUCCESS)
784 return status;
785
786 #if BJ_AREG != SLJIT_RETURN_REG
787 status = sljit_emit_op1(compiler,
788 SLJIT_MOV,
789 BJ_AREG, 0,
790 SLJIT_RETURN_REG, 0);
791 if (status != SLJIT_SUCCESS)
792 return status;
793 #endif
794
795 if (hints & BJ_HINT_LDX) {
796 /* restore X */
797 status = sljit_emit_op1(compiler,
798 SLJIT_MOV_UI, /* uint32_t source */
799 BJ_XREG, 0,
800 SLJIT_MEM1(SLJIT_LOCALS_REG),
801 offsetof(struct bpfjit_stack, reg));
802 if (status != SLJIT_SUCCESS)
803 return status;
804 }
805
806 return SLJIT_SUCCESS;
807 }
808
809 /*
810 * Generate code for
811 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
812 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
813 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
814 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
815 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
816 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
817 */
818 static int
819 emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
820 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
821 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
822 {
823 int status = SLJIT_ERR_ALLOC_FAILED;
824 uint32_t width;
825 sljit_si ld_reg;
826 struct sljit_jump *jump;
827 #ifdef _KERNEL
828 struct sljit_label *label;
829 struct sljit_jump *over_mchain_jump;
830 const bool check_zero_buflen = (to_mchain_jump != NULL);
831 #endif
832 const uint32_t k = pc->k;
833
834 #ifdef _KERNEL
835 if (to_mchain_jump == NULL) {
836 to_mchain_jump = sljit_emit_cmp(compiler,
837 SLJIT_C_EQUAL,
838 BJ_BUFLEN, 0,
839 SLJIT_IMM, 0);
840 if (to_mchain_jump == NULL)
841 return SLJIT_ERR_ALLOC_FAILED;
842 }
843 #endif
844
845 ld_reg = BJ_BUF;
846 width = read_width(pc);
847
848 if (BPF_MODE(pc->code) == BPF_IND) {
849 /* tmp1 = buflen - (pc->k + width); */
850 status = sljit_emit_op2(compiler,
851 SLJIT_SUB,
852 BJ_TMP1REG, 0,
853 BJ_BUFLEN, 0,
854 SLJIT_IMM, k + width);
855 if (status != SLJIT_SUCCESS)
856 return status;
857
858 /* ld_reg = buf + X; */
859 ld_reg = BJ_TMP2REG;
860 status = sljit_emit_op2(compiler,
861 SLJIT_ADD,
862 ld_reg, 0,
863 BJ_BUF, 0,
864 BJ_XREG, 0);
865 if (status != SLJIT_SUCCESS)
866 return status;
867
868 /* if (tmp1 < X) return 0; */
869 jump = sljit_emit_cmp(compiler,
870 SLJIT_C_LESS,
871 BJ_TMP1REG, 0,
872 BJ_XREG, 0);
873 if (jump == NULL)
874 return SLJIT_ERR_ALLOC_FAILED;
875 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
876 return SLJIT_ERR_ALLOC_FAILED;
877 }
878
879 switch (width) {
880 case 4:
881 status = emit_read32(compiler, ld_reg, k);
882 break;
883 case 2:
884 status = emit_read16(compiler, ld_reg, k);
885 break;
886 case 1:
887 status = emit_read8(compiler, ld_reg, k);
888 break;
889 }
890
891 if (status != SLJIT_SUCCESS)
892 return status;
893
894 #ifdef _KERNEL
895 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
896 if (over_mchain_jump == NULL)
897 return SLJIT_ERR_ALLOC_FAILED;
898
899 /* entry point to mchain handler */
900 label = sljit_emit_label(compiler);
901 if (label == NULL)
902 return SLJIT_ERR_ALLOC_FAILED;
903 sljit_set_label(to_mchain_jump, label);
904
905 if (check_zero_buflen) {
906 /* if (buflen != 0) return 0; */
907 jump = sljit_emit_cmp(compiler,
908 SLJIT_C_NOT_EQUAL,
909 BJ_BUFLEN, 0,
910 SLJIT_IMM, 0);
911 if (jump == NULL)
912 return SLJIT_ERR_ALLOC_FAILED;
913 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
914 return SLJIT_ERR_ALLOC_FAILED;
915 }
916
917 switch (width) {
918 case 4:
919 status = emit_xcall(compiler, hints, pc, BJ_AREG,
920 ret0, ret0_size, ret0_maxsize, &m_xword);
921 break;
922 case 2:
923 status = emit_xcall(compiler, hints, pc, BJ_AREG,
924 ret0, ret0_size, ret0_maxsize, &m_xhalf);
925 break;
926 case 1:
927 status = emit_xcall(compiler, hints, pc, BJ_AREG,
928 ret0, ret0_size, ret0_maxsize, &m_xbyte);
929 break;
930 }
931
932 if (status != SLJIT_SUCCESS)
933 return status;
934
935 label = sljit_emit_label(compiler);
936 if (label == NULL)
937 return SLJIT_ERR_ALLOC_FAILED;
938 sljit_set_label(over_mchain_jump, label);
939 #endif
940
941 return SLJIT_SUCCESS;
942 }
943
944 static int
945 emit_memload(struct sljit_compiler *compiler,
946 sljit_si dst, uint32_t k, size_t extwords)
947 {
948 int status;
949 sljit_si src;
950 sljit_sw srcw;
951
952 srcw = k * sizeof(uint32_t);
953
954 if (extwords == 0) {
955 src = SLJIT_MEM1(SLJIT_LOCALS_REG);
956 srcw += offsetof(struct bpfjit_stack, mem);
957 } else {
958 /* copy extmem pointer to the tmp1 register */
959 status = sljit_emit_op1(compiler,
960 SLJIT_MOV_P,
961 BJ_TMP1REG, 0,
962 SLJIT_MEM1(SLJIT_LOCALS_REG),
963 offsetof(struct bpfjit_stack, extmem));
964 if (status != SLJIT_SUCCESS)
965 return status;
966 src = SLJIT_MEM1(BJ_TMP1REG);
967 }
968
969 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
970 }
971
972 static int
973 emit_memstore(struct sljit_compiler *compiler,
974 sljit_si src, uint32_t k, size_t extwords)
975 {
976 int status;
977 sljit_si dst;
978 sljit_sw dstw;
979
980 dstw = k * sizeof(uint32_t);
981
982 if (extwords == 0) {
983 dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
984 dstw += offsetof(struct bpfjit_stack, mem);
985 } else {
986 /* copy extmem pointer to the tmp1 register */
987 status = sljit_emit_op1(compiler,
988 SLJIT_MOV_P,
989 BJ_TMP1REG, 0,
990 SLJIT_MEM1(SLJIT_LOCALS_REG),
991 offsetof(struct bpfjit_stack, extmem));
992 if (status != SLJIT_SUCCESS)
993 return status;
994 dst = SLJIT_MEM1(BJ_TMP1REG);
995 }
996
997 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
998 }
999
1000 /*
1001 * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
1002 */
1003 static int
1004 emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1005 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
1006 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
1007 {
1008 int status;
1009 #ifdef _KERNEL
1010 struct sljit_label *label;
1011 struct sljit_jump *jump, *over_mchain_jump;
1012 const bool check_zero_buflen = (to_mchain_jump != NULL);
1013 #endif
1014 const uint32_t k = pc->k;
1015
1016 #ifdef _KERNEL
1017 if (to_mchain_jump == NULL) {
1018 to_mchain_jump = sljit_emit_cmp(compiler,
1019 SLJIT_C_EQUAL,
1020 BJ_BUFLEN, 0,
1021 SLJIT_IMM, 0);
1022 if (to_mchain_jump == NULL)
1023 return SLJIT_ERR_ALLOC_FAILED;
1024 }
1025 #endif
1026
1027 /* tmp1 = buf[k] */
1028 status = sljit_emit_op1(compiler,
1029 SLJIT_MOV_UB,
1030 BJ_TMP1REG, 0,
1031 SLJIT_MEM1(BJ_BUF), k);
1032 if (status != SLJIT_SUCCESS)
1033 return status;
1034
1035 #ifdef _KERNEL
1036 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1037 if (over_mchain_jump == NULL)
1038 return SLJIT_ERR_ALLOC_FAILED;
1039
1040 /* entry point to mchain handler */
1041 label = sljit_emit_label(compiler);
1042 if (label == NULL)
1043 return SLJIT_ERR_ALLOC_FAILED;
1044 sljit_set_label(to_mchain_jump, label);
1045
1046 if (check_zero_buflen) {
1047 /* if (buflen != 0) return 0; */
1048 jump = sljit_emit_cmp(compiler,
1049 SLJIT_C_NOT_EQUAL,
1050 BJ_BUFLEN, 0,
1051 SLJIT_IMM, 0);
1052 if (jump == NULL)
1053 return SLJIT_ERR_ALLOC_FAILED;
1054 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1055 return SLJIT_ERR_ALLOC_FAILED;
1056 }
1057
1058 status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1059 ret0, ret0_size, ret0_maxsize, &m_xbyte);
1060 if (status != SLJIT_SUCCESS)
1061 return status;
1062
1063 label = sljit_emit_label(compiler);
1064 if (label == NULL)
1065 return SLJIT_ERR_ALLOC_FAILED;
1066 sljit_set_label(over_mchain_jump, label);
1067 #endif
1068
1069 /* tmp1 &= 0xf */
1070 status = sljit_emit_op2(compiler,
1071 SLJIT_AND,
1072 BJ_TMP1REG, 0,
1073 BJ_TMP1REG, 0,
1074 SLJIT_IMM, 0xf);
1075 if (status != SLJIT_SUCCESS)
1076 return status;
1077
1078 /* X = tmp1 << 2 */
1079 status = sljit_emit_op2(compiler,
1080 SLJIT_SHL,
1081 BJ_XREG, 0,
1082 BJ_TMP1REG, 0,
1083 SLJIT_IMM, 2);
1084 if (status != SLJIT_SUCCESS)
1085 return status;
1086
1087 return SLJIT_SUCCESS;
1088 }
1089
1090 static int
1091 emit_pow2_division(struct sljit_compiler *compiler, uint32_t k)
1092 {
1093 int shift = 0;
1094 int status = SLJIT_SUCCESS;
1095
1096 while (k > 1) {
1097 k >>= 1;
1098 shift++;
1099 }
1100
1101 BJ_ASSERT(k == 1 && shift < 32);
1102
1103 if (shift != 0) {
1104 status = sljit_emit_op2(compiler,
1105 SLJIT_LSHR|SLJIT_INT_OP,
1106 BJ_AREG, 0,
1107 BJ_AREG, 0,
1108 SLJIT_IMM, shift);
1109 }
1110
1111 return status;
1112 }
1113
1114 #if !defined(BPFJIT_USE_UDIV)
1115 static sljit_uw
1116 divide(sljit_uw x, sljit_uw y)
1117 {
1118
1119 return (uint32_t)x / (uint32_t)y;
1120 }
1121
1122 static sljit_uw
1123 modulus(sljit_uw x, sljit_uw y)
1124 {
1125
1126 return (uint32_t)x % (uint32_t)y;
1127 }
1128 #endif
1129
1130 /*
1131 * Emit code for A = A / div or A = A % div
1132 * divt,divw are either SLJIT_IMM,pc->k or BJ_XREG,0.
1133 */
1134 static int
1135 emit_moddiv(bool div, struct sljit_compiler *compiler, int divt, sljit_sw divw)
1136 {
1137 int status;
1138
1139 #if BJ_XREG == SLJIT_RETURN_REG || \
1140 BJ_XREG == SLJIT_SCRATCH_REG1 || \
1141 BJ_XREG == SLJIT_SCRATCH_REG2 || \
1142 BJ_AREG == SLJIT_SCRATCH_REG2
1143 #error "Not supported assignment of registers."
1144 #endif
1145
1146 #if BJ_AREG != SLJIT_SCRATCH_REG1
1147 status = sljit_emit_op1(compiler,
1148 SLJIT_MOV,
1149 SLJIT_SCRATCH_REG1, 0,
1150 BJ_AREG, 0);
1151 if (status != SLJIT_SUCCESS)
1152 return status;
1153 #endif
1154
1155 status = sljit_emit_op1(compiler,
1156 SLJIT_MOV,
1157 SLJIT_SCRATCH_REG2, 0,
1158 divt, divw);
1159 if (status != SLJIT_SUCCESS)
1160 return status;
1161
1162 #if defined(BPFJIT_USE_UDIV)
1163 status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1164
1165 #if BJ_AREG != SLJIT_SCRATCH_REG1
1166 status = sljit_emit_op1(compiler,
1167 SLJIT_MOV,
1168 BJ_AREG, 0,
1169 SLJIT_SCRATCH_REG1, 0);
1170 if (status != SLJIT_SUCCESS)
1171 return status;
1172 #endif
1173 #else
1174 status = sljit_emit_ijump(compiler,
1175 SLJIT_CALL2,
1176 SLJIT_IMM, div ? SLJIT_FUNC_OFFSET(divide) :
1177 SLJIT_FUNC_OFFSET(modulus));
1178
1179 #if BJ_AREG != SLJIT_RETURN_REG
1180 status = sljit_emit_op1(compiler,
1181 SLJIT_MOV,
1182 BJ_AREG, 0,
1183 SLJIT_RETURN_REG, 0);
1184 if (status != SLJIT_SUCCESS)
1185 return status;
1186 #endif
1187 #endif
1188
1189 return status;
1190 }
1191
1192 /*
1193 * Return true if pc is a "read from packet" instruction.
1194 * If length is not NULL and return value is true, *length will
1195 * be set to a safe length required to read a packet.
1196 */
1197 static bool
1198 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1199 {
1200 bool rv;
1201 bpfjit_abc_length_t width;
1202
1203 switch (BPF_CLASS(pc->code)) {
1204 default:
1205 rv = false;
1206 break;
1207
1208 case BPF_LD:
1209 rv = BPF_MODE(pc->code) == BPF_ABS ||
1210 BPF_MODE(pc->code) == BPF_IND;
1211 if (rv)
1212 width = read_width(pc);
1213 break;
1214
1215 case BPF_LDX:
1216 rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1217 width = 1;
1218 break;
1219 }
1220
1221 if (rv && length != NULL) {
1222 /*
1223 * Values greater than UINT32_MAX will generate
1224 * unconditional "return 0".
1225 */
1226 *length = (uint32_t)pc->k + width;
1227 }
1228
1229 return rv;
1230 }
1231
1232 static void
1233 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1234 {
1235 size_t i;
1236
1237 for (i = 0; i < insn_count; i++) {
1238 SLIST_INIT(&insn_dat[i].bjumps);
1239 insn_dat[i].invalid = BJ_INIT_NOBITS;
1240 }
1241 }
1242
1243 /*
1244 * The function divides instructions into blocks. Destination of a jump
1245 * instruction starts a new block. BPF_RET and BPF_JMP instructions
1246 * terminate a block. Blocks are linear, that is, there are no jumps out
1247 * from the middle of a block and there are no jumps in to the middle of
1248 * a block.
1249 *
1250 * The function also sets bits in *initmask for memwords that
1251 * need to be initialized to zero. Note that this set should be empty
1252 * for any valid kernel filter program.
1253 */
1254 static bool
1255 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1256 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1257 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1258 {
1259 struct bpfjit_jump *jtf;
1260 size_t i;
1261 uint32_t jt, jf;
1262 bpfjit_abc_length_t length;
1263 bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1264 bool unreachable;
1265
1266 const size_t memwords = GET_MEMWORDS(bc);
1267
1268 *hints = 0;
1269 *initmask = BJ_INIT_NOBITS;
1270
1271 unreachable = false;
1272 invalid = ~BJ_INIT_NOBITS;
1273
1274 for (i = 0; i < insn_count; i++) {
1275 if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1276 unreachable = false;
1277 insn_dat[i].unreachable = unreachable;
1278
1279 if (unreachable)
1280 continue;
1281
1282 invalid |= insn_dat[i].invalid;
1283
1284 if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1285 unreachable = true;
1286
1287 switch (BPF_CLASS(insns[i].code)) {
1288 case BPF_RET:
1289 if (BPF_RVAL(insns[i].code) == BPF_A)
1290 *initmask |= invalid & BJ_INIT_ABIT;
1291
1292 unreachable = true;
1293 continue;
1294
1295 case BPF_LD:
1296 if (BPF_MODE(insns[i].code) == BPF_ABS)
1297 *hints |= BJ_HINT_ABS;
1298
1299 if (BPF_MODE(insns[i].code) == BPF_IND) {
1300 *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1301 *initmask |= invalid & BJ_INIT_XBIT;
1302 }
1303
1304 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1305 (uint32_t)insns[i].k < memwords) {
1306 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1307 }
1308
1309 invalid &= ~BJ_INIT_ABIT;
1310 continue;
1311
1312 case BPF_LDX:
1313 *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1314
1315 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1316 (uint32_t)insns[i].k < memwords) {
1317 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1318 }
1319
1320 if (BPF_MODE(insns[i].code) == BPF_MSH &&
1321 BPF_SIZE(insns[i].code) == BPF_B) {
1322 *hints |= BJ_HINT_MSH;
1323 }
1324
1325 invalid &= ~BJ_INIT_XBIT;
1326 continue;
1327
1328 case BPF_ST:
1329 *initmask |= invalid & BJ_INIT_ABIT;
1330
1331 if ((uint32_t)insns[i].k < memwords)
1332 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1333
1334 continue;
1335
1336 case BPF_STX:
1337 *hints |= BJ_HINT_XREG;
1338 *initmask |= invalid & BJ_INIT_XBIT;
1339
1340 if ((uint32_t)insns[i].k < memwords)
1341 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1342
1343 continue;
1344
1345 case BPF_ALU:
1346 *initmask |= invalid & BJ_INIT_ABIT;
1347
1348 if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1349 BPF_SRC(insns[i].code) == BPF_X) {
1350 *hints |= BJ_HINT_XREG;
1351 *initmask |= invalid & BJ_INIT_XBIT;
1352 }
1353
1354 invalid &= ~BJ_INIT_ABIT;
1355 continue;
1356
1357 case BPF_MISC:
1358 switch (BPF_MISCOP(insns[i].code)) {
1359 case BPF_TAX: // X <- A
1360 *hints |= BJ_HINT_XREG;
1361 *initmask |= invalid & BJ_INIT_ABIT;
1362 invalid &= ~BJ_INIT_XBIT;
1363 continue;
1364
1365 case BPF_TXA: // A <- X
1366 *hints |= BJ_HINT_XREG;
1367 *initmask |= invalid & BJ_INIT_XBIT;
1368 invalid &= ~BJ_INIT_ABIT;
1369 continue;
1370
1371 case BPF_COPX:
1372 *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1373 /* FALLTHROUGH */
1374
1375 case BPF_COP:
1376 *hints |= BJ_HINT_COP;
1377 *initmask |= invalid & BJ_INIT_ABIT;
1378 invalid &= ~BJ_INIT_ABIT;
1379 continue;
1380 }
1381
1382 continue;
1383
1384 case BPF_JMP:
1385 /* Initialize abc_length for ABC pass. */
1386 insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1387
1388 if (BPF_OP(insns[i].code) == BPF_JA) {
1389 jt = jf = insns[i].k;
1390 } else {
1391 jt = insns[i].jt;
1392 jf = insns[i].jf;
1393 }
1394
1395 if (jt >= insn_count - (i + 1) ||
1396 jf >= insn_count - (i + 1)) {
1397 return false;
1398 }
1399
1400 if (jt > 0 && jf > 0)
1401 unreachable = true;
1402
1403 jt += i + 1;
1404 jf += i + 1;
1405
1406 jtf = insn_dat[i].u.jdata.jtf;
1407
1408 jtf[0].jdata = &insn_dat[i].u.jdata;
1409 SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1410 &jtf[0], entries);
1411
1412 if (jf != jt) {
1413 jtf[1].jdata = &insn_dat[i].u.jdata;
1414 SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1415 &jtf[1], entries);
1416 }
1417
1418 insn_dat[jf].invalid |= invalid;
1419 insn_dat[jt].invalid |= invalid;
1420 invalid = 0;
1421
1422 continue;
1423 }
1424 }
1425
1426 return true;
1427 }
1428
1429 /*
1430 * Array Bounds Check Elimination (ABC) pass.
1431 */
1432 static void
1433 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1434 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1435 {
1436 struct bpfjit_jump *jmp;
1437 const struct bpf_insn *pc;
1438 struct bpfjit_insn_data *pd;
1439 size_t i;
1440 bpfjit_abc_length_t length, abc_length = 0;
1441
1442 const size_t extwords = GET_EXTWORDS(bc);
1443
1444 for (i = insn_count; i != 0; i--) {
1445 pc = &insns[i-1];
1446 pd = &insn_dat[i-1];
1447
1448 if (pd->unreachable)
1449 continue;
1450
1451 switch (BPF_CLASS(pc->code)) {
1452 case BPF_RET:
1453 /*
1454 * It's quite common for bpf programs to
1455 * check packet bytes in increasing order
1456 * and return zero if bytes don't match
1457 * specified critetion. Such programs disable
1458 * ABC optimization completely because for
1459 * every jump there is a branch with no read
1460 * instruction.
1461 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1462 * is indistinguishable from out-of-bound load.
1463 * Therefore, abc_length can be set to
1464 * MAX_ABC_LENGTH and enable ABC for many
1465 * bpf programs.
1466 * If this optimization encounters any
1467 * instruction with a side effect, it will
1468 * reset abc_length.
1469 */
1470 if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1471 abc_length = MAX_ABC_LENGTH;
1472 else
1473 abc_length = 0;
1474 break;
1475
1476 case BPF_MISC:
1477 if (BPF_MISCOP(pc->code) == BPF_COP ||
1478 BPF_MISCOP(pc->code) == BPF_COPX) {
1479 /* COP instructions can have side effects. */
1480 abc_length = 0;
1481 }
1482 break;
1483
1484 case BPF_ST:
1485 case BPF_STX:
1486 if (extwords != 0) {
1487 /* Write to memory is visible after a call. */
1488 abc_length = 0;
1489 }
1490 break;
1491
1492 case BPF_JMP:
1493 abc_length = pd->u.jdata.abc_length;
1494 break;
1495
1496 default:
1497 if (read_pkt_insn(pc, &length)) {
1498 if (abc_length < length)
1499 abc_length = length;
1500 pd->u.rdata.abc_length = abc_length;
1501 }
1502 break;
1503 }
1504
1505 SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1506 if (jmp->jdata->abc_length > abc_length)
1507 jmp->jdata->abc_length = abc_length;
1508 }
1509 }
1510 }
1511
1512 static void
1513 optimize_pass3(const struct bpf_insn *insns,
1514 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1515 {
1516 struct bpfjit_jump *jmp;
1517 size_t i;
1518 bpfjit_abc_length_t checked_length = 0;
1519
1520 for (i = 0; i < insn_count; i++) {
1521 if (insn_dat[i].unreachable)
1522 continue;
1523
1524 SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1525 if (jmp->jdata->checked_length < checked_length)
1526 checked_length = jmp->jdata->checked_length;
1527 }
1528
1529 if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1530 insn_dat[i].u.jdata.checked_length = checked_length;
1531 } else if (read_pkt_insn(&insns[i], NULL)) {
1532 struct bpfjit_read_pkt_data *rdata =
1533 &insn_dat[i].u.rdata;
1534 rdata->check_length = 0;
1535 if (checked_length < rdata->abc_length) {
1536 checked_length = rdata->abc_length;
1537 rdata->check_length = checked_length;
1538 }
1539 }
1540 }
1541 }
1542
1543 static bool
1544 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1545 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1546 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1547 {
1548
1549 optimize_init(insn_dat, insn_count);
1550
1551 if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1552 return false;
1553
1554 optimize_pass2(bc, insns, insn_dat, insn_count);
1555 optimize_pass3(insns, insn_dat, insn_count);
1556
1557 return true;
1558 }
1559
1560 /*
1561 * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1562 */
1563 static int
1564 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1565 {
1566
1567 /*
1568 * Note: all supported 64bit arches have 32bit multiply
1569 * instruction so SLJIT_INT_OP doesn't have any overhead.
1570 */
1571 switch (BPF_OP(pc->code)) {
1572 case BPF_ADD: return SLJIT_ADD;
1573 case BPF_SUB: return SLJIT_SUB;
1574 case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1575 case BPF_OR: return SLJIT_OR;
1576 case BPF_XOR: return SLJIT_XOR;
1577 case BPF_AND: return SLJIT_AND;
1578 case BPF_LSH: return SLJIT_SHL;
1579 case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1580 default:
1581 BJ_ASSERT(false);
1582 return 0;
1583 }
1584 }
1585
1586 /*
1587 * Convert BPF_JMP operations except BPF_JA to sljit condition.
1588 */
1589 static int
1590 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1591 {
1592 /*
1593 * Note: all supported 64bit arches have 32bit comparison
1594 * instructions so SLJIT_INT_OP doesn't have any overhead.
1595 */
1596 int rv = SLJIT_INT_OP;
1597
1598 switch (BPF_OP(pc->code)) {
1599 case BPF_JGT:
1600 rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1601 break;
1602 case BPF_JGE:
1603 rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1604 break;
1605 case BPF_JEQ:
1606 rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1607 break;
1608 case BPF_JSET:
1609 rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1610 break;
1611 default:
1612 BJ_ASSERT(false);
1613 }
1614
1615 return rv;
1616 }
1617
1618 /*
1619 * Convert BPF_K and BPF_X to sljit register.
1620 */
1621 static int
1622 kx_to_reg(const struct bpf_insn *pc)
1623 {
1624
1625 switch (BPF_SRC(pc->code)) {
1626 case BPF_K: return SLJIT_IMM;
1627 case BPF_X: return BJ_XREG;
1628 default:
1629 BJ_ASSERT(false);
1630 return 0;
1631 }
1632 }
1633
1634 static sljit_sw
1635 kx_to_reg_arg(const struct bpf_insn *pc)
1636 {
1637
1638 switch (BPF_SRC(pc->code)) {
1639 case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1640 case BPF_X: return 0; /* BJ_XREG, 0, */
1641 default:
1642 BJ_ASSERT(false);
1643 return 0;
1644 }
1645 }
1646
1647 static bool
1648 generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1649 const bpf_ctx_t *bc, const struct bpf_insn *insns,
1650 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1651 {
1652 /* a list of jumps to out-of-bound return from a generated function */
1653 struct sljit_jump **ret0;
1654 size_t ret0_size, ret0_maxsize;
1655
1656 struct sljit_jump *jump;
1657 struct sljit_label *label;
1658 const struct bpf_insn *pc;
1659 struct bpfjit_jump *bjump, *jtf;
1660 struct sljit_jump *to_mchain_jump;
1661
1662 size_t i;
1663 int status;
1664 int branching, negate;
1665 unsigned int rval, mode, src, op;
1666 uint32_t jt, jf;
1667
1668 bool unconditional_ret;
1669 bool rv;
1670
1671 const size_t extwords = GET_EXTWORDS(bc);
1672 const size_t memwords = GET_MEMWORDS(bc);
1673
1674 ret0 = NULL;
1675 rv = false;
1676
1677 ret0_size = 0;
1678 ret0_maxsize = 64;
1679 ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1680 if (ret0 == NULL)
1681 goto fail;
1682
1683 /* reset sjump members of jdata */
1684 for (i = 0; i < insn_count; i++) {
1685 if (insn_dat[i].unreachable ||
1686 BPF_CLASS(insns[i].code) != BPF_JMP) {
1687 continue;
1688 }
1689
1690 jtf = insn_dat[i].u.jdata.jtf;
1691 jtf[0].sjump = jtf[1].sjump = NULL;
1692 }
1693
1694 /* main loop */
1695 for (i = 0; i < insn_count; i++) {
1696 if (insn_dat[i].unreachable)
1697 continue;
1698
1699 /*
1700 * Resolve jumps to the current insn.
1701 */
1702 label = NULL;
1703 SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1704 if (bjump->sjump != NULL) {
1705 if (label == NULL)
1706 label = sljit_emit_label(compiler);
1707 if (label == NULL)
1708 goto fail;
1709 sljit_set_label(bjump->sjump, label);
1710 }
1711 }
1712
1713 to_mchain_jump = NULL;
1714 unconditional_ret = false;
1715
1716 if (read_pkt_insn(&insns[i], NULL)) {
1717 if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1718 /* Jump to "return 0" unconditionally. */
1719 unconditional_ret = true;
1720 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1721 if (jump == NULL)
1722 goto fail;
1723 if (!append_jump(jump, &ret0,
1724 &ret0_size, &ret0_maxsize))
1725 goto fail;
1726 } else if (insn_dat[i].u.rdata.check_length > 0) {
1727 /* if (buflen < check_length) return 0; */
1728 jump = sljit_emit_cmp(compiler,
1729 SLJIT_C_LESS,
1730 BJ_BUFLEN, 0,
1731 SLJIT_IMM,
1732 insn_dat[i].u.rdata.check_length);
1733 if (jump == NULL)
1734 goto fail;
1735 #ifdef _KERNEL
1736 to_mchain_jump = jump;
1737 #else
1738 if (!append_jump(jump, &ret0,
1739 &ret0_size, &ret0_maxsize))
1740 goto fail;
1741 #endif
1742 }
1743 }
1744
1745 pc = &insns[i];
1746 switch (BPF_CLASS(pc->code)) {
1747
1748 default:
1749 goto fail;
1750
1751 case BPF_LD:
1752 /* BPF_LD+BPF_IMM A <- k */
1753 if (pc->code == (BPF_LD|BPF_IMM)) {
1754 status = sljit_emit_op1(compiler,
1755 SLJIT_MOV,
1756 BJ_AREG, 0,
1757 SLJIT_IMM, (uint32_t)pc->k);
1758 if (status != SLJIT_SUCCESS)
1759 goto fail;
1760
1761 continue;
1762 }
1763
1764 /* BPF_LD+BPF_MEM A <- M[k] */
1765 if (pc->code == (BPF_LD|BPF_MEM)) {
1766 if ((uint32_t)pc->k >= memwords)
1767 goto fail;
1768 status = emit_memload(compiler,
1769 BJ_AREG, pc->k, extwords);
1770 if (status != SLJIT_SUCCESS)
1771 goto fail;
1772
1773 continue;
1774 }
1775
1776 /* BPF_LD+BPF_W+BPF_LEN A <- len */
1777 if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1778 status = sljit_emit_op1(compiler,
1779 SLJIT_MOV, /* size_t source */
1780 BJ_AREG, 0,
1781 SLJIT_MEM1(BJ_ARGS),
1782 offsetof(struct bpf_args, wirelen));
1783 if (status != SLJIT_SUCCESS)
1784 goto fail;
1785
1786 continue;
1787 }
1788
1789 mode = BPF_MODE(pc->code);
1790 if (mode != BPF_ABS && mode != BPF_IND)
1791 goto fail;
1792
1793 if (unconditional_ret)
1794 continue;
1795
1796 status = emit_pkt_read(compiler, hints, pc,
1797 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1798 if (status != SLJIT_SUCCESS)
1799 goto fail;
1800
1801 continue;
1802
1803 case BPF_LDX:
1804 mode = BPF_MODE(pc->code);
1805
1806 /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1807 if (mode == BPF_IMM) {
1808 if (BPF_SIZE(pc->code) != BPF_W)
1809 goto fail;
1810 status = sljit_emit_op1(compiler,
1811 SLJIT_MOV,
1812 BJ_XREG, 0,
1813 SLJIT_IMM, (uint32_t)pc->k);
1814 if (status != SLJIT_SUCCESS)
1815 goto fail;
1816
1817 continue;
1818 }
1819
1820 /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1821 if (mode == BPF_LEN) {
1822 if (BPF_SIZE(pc->code) != BPF_W)
1823 goto fail;
1824 status = sljit_emit_op1(compiler,
1825 SLJIT_MOV, /* size_t source */
1826 BJ_XREG, 0,
1827 SLJIT_MEM1(BJ_ARGS),
1828 offsetof(struct bpf_args, wirelen));
1829 if (status != SLJIT_SUCCESS)
1830 goto fail;
1831
1832 continue;
1833 }
1834
1835 /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1836 if (mode == BPF_MEM) {
1837 if (BPF_SIZE(pc->code) != BPF_W)
1838 goto fail;
1839 if ((uint32_t)pc->k >= memwords)
1840 goto fail;
1841 status = emit_memload(compiler,
1842 BJ_XREG, pc->k, extwords);
1843 if (status != SLJIT_SUCCESS)
1844 goto fail;
1845
1846 continue;
1847 }
1848
1849 /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1850 if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1851 goto fail;
1852
1853 if (unconditional_ret)
1854 continue;
1855
1856 status = emit_msh(compiler, hints, pc,
1857 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1858 if (status != SLJIT_SUCCESS)
1859 goto fail;
1860
1861 continue;
1862
1863 case BPF_ST:
1864 if (pc->code != BPF_ST ||
1865 (uint32_t)pc->k >= memwords) {
1866 goto fail;
1867 }
1868
1869 status = emit_memstore(compiler,
1870 BJ_AREG, pc->k, extwords);
1871 if (status != SLJIT_SUCCESS)
1872 goto fail;
1873
1874 continue;
1875
1876 case BPF_STX:
1877 if (pc->code != BPF_STX ||
1878 (uint32_t)pc->k >= memwords) {
1879 goto fail;
1880 }
1881
1882 status = emit_memstore(compiler,
1883 BJ_XREG, pc->k, extwords);
1884 if (status != SLJIT_SUCCESS)
1885 goto fail;
1886
1887 continue;
1888
1889 case BPF_ALU:
1890 if (pc->code == (BPF_ALU|BPF_NEG)) {
1891 status = sljit_emit_op1(compiler,
1892 SLJIT_NEG,
1893 BJ_AREG, 0,
1894 BJ_AREG, 0);
1895 if (status != SLJIT_SUCCESS)
1896 goto fail;
1897
1898 continue;
1899 }
1900
1901 op = BPF_OP(pc->code);
1902 if (op != BPF_DIV && op != BPF_MOD) {
1903 status = sljit_emit_op2(compiler,
1904 bpf_alu_to_sljit_op(pc),
1905 BJ_AREG, 0,
1906 BJ_AREG, 0,
1907 kx_to_reg(pc), kx_to_reg_arg(pc));
1908 if (status != SLJIT_SUCCESS)
1909 goto fail;
1910
1911 continue;
1912 }
1913
1914 /* BPF_DIV/BPF_MOD */
1915
1916 src = BPF_SRC(pc->code);
1917 if (src != BPF_X && src != BPF_K)
1918 goto fail;
1919
1920 /* division by zero? */
1921 if (src == BPF_X) {
1922 jump = sljit_emit_cmp(compiler,
1923 SLJIT_C_EQUAL|SLJIT_INT_OP,
1924 BJ_XREG, 0,
1925 SLJIT_IMM, 0);
1926 if (jump == NULL)
1927 goto fail;
1928 if (!append_jump(jump, &ret0,
1929 &ret0_size, &ret0_maxsize))
1930 goto fail;
1931 } else if (pc->k == 0) {
1932 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1933 if (jump == NULL)
1934 goto fail;
1935 if (!append_jump(jump, &ret0,
1936 &ret0_size, &ret0_maxsize))
1937 goto fail;
1938 }
1939
1940 if (src == BPF_X) {
1941 status = emit_moddiv(op == BPF_DIV,
1942 compiler, BJ_XREG, 0);
1943 if (status != SLJIT_SUCCESS)
1944 goto fail;
1945 } else if (pc->k != 0) {
1946 /* XXX: We can do better here for MOD */
1947 if ((pc->k & (pc->k - 1)) || op == BPF_MOD) {
1948 status = emit_moddiv(op == BPF_DIV,
1949 compiler, SLJIT_IMM, (uint32_t)pc->k);
1950 } else {
1951 status = emit_pow2_division(compiler,
1952 (uint32_t)pc->k);
1953 }
1954 if (status != SLJIT_SUCCESS)
1955 goto fail;
1956 }
1957
1958 continue;
1959
1960 case BPF_JMP:
1961 op = BPF_OP(pc->code);
1962 if (op == BPF_JA) {
1963 jt = jf = pc->k;
1964 } else {
1965 jt = pc->jt;
1966 jf = pc->jf;
1967 }
1968
1969 negate = (jt == 0) ? 1 : 0;
1970 branching = (jt == jf) ? 0 : 1;
1971 jtf = insn_dat[i].u.jdata.jtf;
1972
1973 if (branching) {
1974 if (op != BPF_JSET) {
1975 jump = sljit_emit_cmp(compiler,
1976 bpf_jmp_to_sljit_cond(pc, negate),
1977 BJ_AREG, 0,
1978 kx_to_reg(pc), kx_to_reg_arg(pc));
1979 } else {
1980 status = sljit_emit_op2(compiler,
1981 SLJIT_AND,
1982 BJ_TMP1REG, 0,
1983 BJ_AREG, 0,
1984 kx_to_reg(pc), kx_to_reg_arg(pc));
1985 if (status != SLJIT_SUCCESS)
1986 goto fail;
1987
1988 jump = sljit_emit_cmp(compiler,
1989 bpf_jmp_to_sljit_cond(pc, negate),
1990 BJ_TMP1REG, 0,
1991 SLJIT_IMM, 0);
1992 }
1993
1994 if (jump == NULL)
1995 goto fail;
1996
1997 BJ_ASSERT(jtf[negate].sjump == NULL);
1998 jtf[negate].sjump = jump;
1999 }
2000
2001 if (!branching || (jt != 0 && jf != 0)) {
2002 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2003 if (jump == NULL)
2004 goto fail;
2005
2006 BJ_ASSERT(jtf[branching].sjump == NULL);
2007 jtf[branching].sjump = jump;
2008 }
2009
2010 continue;
2011
2012 case BPF_RET:
2013 rval = BPF_RVAL(pc->code);
2014 if (rval == BPF_X)
2015 goto fail;
2016
2017 /* BPF_RET+BPF_K accept k bytes */
2018 if (rval == BPF_K) {
2019 status = sljit_emit_return(compiler,
2020 SLJIT_MOV_UI,
2021 SLJIT_IMM, (uint32_t)pc->k);
2022 if (status != SLJIT_SUCCESS)
2023 goto fail;
2024 }
2025
2026 /* BPF_RET+BPF_A accept A bytes */
2027 if (rval == BPF_A) {
2028 status = sljit_emit_return(compiler,
2029 SLJIT_MOV_UI,
2030 BJ_AREG, 0);
2031 if (status != SLJIT_SUCCESS)
2032 goto fail;
2033 }
2034
2035 continue;
2036
2037 case BPF_MISC:
2038 switch (BPF_MISCOP(pc->code)) {
2039 case BPF_TAX:
2040 status = sljit_emit_op1(compiler,
2041 SLJIT_MOV_UI,
2042 BJ_XREG, 0,
2043 BJ_AREG, 0);
2044 if (status != SLJIT_SUCCESS)
2045 goto fail;
2046
2047 continue;
2048
2049 case BPF_TXA:
2050 status = sljit_emit_op1(compiler,
2051 SLJIT_MOV,
2052 BJ_AREG, 0,
2053 BJ_XREG, 0);
2054 if (status != SLJIT_SUCCESS)
2055 goto fail;
2056
2057 continue;
2058
2059 case BPF_COP:
2060 case BPF_COPX:
2061 if (bc == NULL || bc->copfuncs == NULL)
2062 goto fail;
2063 if (BPF_MISCOP(pc->code) == BPF_COP &&
2064 (uint32_t)pc->k >= bc->nfuncs) {
2065 goto fail;
2066 }
2067
2068 status = emit_cop(compiler, hints, bc, pc,
2069 &ret0, &ret0_size, &ret0_maxsize);
2070 if (status != SLJIT_SUCCESS)
2071 goto fail;
2072
2073 continue;
2074 }
2075
2076 goto fail;
2077 } /* switch */
2078 } /* main loop */
2079
2080 BJ_ASSERT(ret0_size <= ret0_maxsize);
2081
2082 if (ret0_size > 0) {
2083 label = sljit_emit_label(compiler);
2084 if (label == NULL)
2085 goto fail;
2086 for (i = 0; i < ret0_size; i++)
2087 sljit_set_label(ret0[i], label);
2088 }
2089
2090 status = sljit_emit_return(compiler,
2091 SLJIT_MOV_UI,
2092 SLJIT_IMM, 0);
2093 if (status != SLJIT_SUCCESS)
2094 goto fail;
2095
2096 rv = true;
2097
2098 fail:
2099 if (ret0 != NULL)
2100 BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2101
2102 return rv;
2103 }
2104
2105 bpfjit_func_t
2106 bpfjit_generate_code(const bpf_ctx_t *bc,
2107 const struct bpf_insn *insns, size_t insn_count)
2108 {
2109 void *rv;
2110 struct sljit_compiler *compiler;
2111
2112 size_t i;
2113 int status;
2114
2115 /* optimization related */
2116 bpf_memword_init_t initmask;
2117 bpfjit_hint_t hints;
2118
2119 /* memory store location for initial zero initialization */
2120 sljit_si mem_reg;
2121 sljit_sw mem_off;
2122
2123 struct bpfjit_insn_data *insn_dat;
2124
2125 const size_t extwords = GET_EXTWORDS(bc);
2126 const size_t memwords = GET_MEMWORDS(bc);
2127 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2128
2129 rv = NULL;
2130 compiler = NULL;
2131 insn_dat = NULL;
2132
2133 if (memwords > MAX_MEMWORDS)
2134 goto fail;
2135
2136 if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2137 goto fail;
2138
2139 insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2140 if (insn_dat == NULL)
2141 goto fail;
2142
2143 if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2144 goto fail;
2145
2146 compiler = sljit_create_compiler();
2147 if (compiler == NULL)
2148 goto fail;
2149
2150 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2151 sljit_compiler_verbose(compiler, stderr);
2152 #endif
2153
2154 status = sljit_emit_enter(compiler,
2155 2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
2156 if (status != SLJIT_SUCCESS)
2157 goto fail;
2158
2159 if (hints & BJ_HINT_COP) {
2160 /* save ctx argument */
2161 status = sljit_emit_op1(compiler,
2162 SLJIT_MOV_P,
2163 SLJIT_MEM1(SLJIT_LOCALS_REG),
2164 offsetof(struct bpfjit_stack, ctx),
2165 BJ_CTX_ARG, 0);
2166 if (status != SLJIT_SUCCESS)
2167 goto fail;
2168 }
2169
2170 if (extwords == 0) {
2171 mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2172 mem_off = offsetof(struct bpfjit_stack, mem);
2173 } else {
2174 /* copy "mem" argument from bpf_args to bpfjit_stack */
2175 status = sljit_emit_op1(compiler,
2176 SLJIT_MOV_P,
2177 BJ_TMP1REG, 0,
2178 SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2179 if (status != SLJIT_SUCCESS)
2180 goto fail;
2181
2182 status = sljit_emit_op1(compiler,
2183 SLJIT_MOV_P,
2184 SLJIT_MEM1(SLJIT_LOCALS_REG),
2185 offsetof(struct bpfjit_stack, extmem),
2186 BJ_TMP1REG, 0);
2187 if (status != SLJIT_SUCCESS)
2188 goto fail;
2189
2190 mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2191 mem_off = 0;
2192 }
2193
2194 /*
2195 * Exclude pre-initialised external memory words but keep
2196 * initialization statuses of A and X registers in case
2197 * bc->preinited wrongly sets those two bits.
2198 */
2199 initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2200
2201 #if defined(_KERNEL)
2202 /* bpf_filter() checks initialization of memwords. */
2203 BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2204 #endif
2205 for (i = 0; i < memwords; i++) {
2206 if (initmask & BJ_INIT_MBIT(i)) {
2207 /* M[i] = 0; */
2208 status = sljit_emit_op1(compiler,
2209 SLJIT_MOV_UI,
2210 mem_reg, mem_off + i * sizeof(uint32_t),
2211 SLJIT_IMM, 0);
2212 if (status != SLJIT_SUCCESS)
2213 goto fail;
2214 }
2215 }
2216
2217 if (initmask & BJ_INIT_ABIT) {
2218 /* A = 0; */
2219 status = sljit_emit_op1(compiler,
2220 SLJIT_MOV,
2221 BJ_AREG, 0,
2222 SLJIT_IMM, 0);
2223 if (status != SLJIT_SUCCESS)
2224 goto fail;
2225 }
2226
2227 if (initmask & BJ_INIT_XBIT) {
2228 /* X = 0; */
2229 status = sljit_emit_op1(compiler,
2230 SLJIT_MOV,
2231 BJ_XREG, 0,
2232 SLJIT_IMM, 0);
2233 if (status != SLJIT_SUCCESS)
2234 goto fail;
2235 }
2236
2237 status = load_buf_buflen(compiler);
2238 if (status != SLJIT_SUCCESS)
2239 goto fail;
2240
2241 if (!generate_insn_code(compiler, hints,
2242 bc, insns, insn_dat, insn_count)) {
2243 goto fail;
2244 }
2245
2246 rv = sljit_generate_code(compiler);
2247
2248 fail:
2249 if (compiler != NULL)
2250 sljit_free_compiler(compiler);
2251
2252 if (insn_dat != NULL)
2253 BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2254
2255 return (bpfjit_func_t)rv;
2256 }
2257
2258 void
2259 bpfjit_free_code(bpfjit_func_t code)
2260 {
2261
2262 sljit_free_code((void *)code);
2263 }
2264