bpfjit.c revision 1.35 1 /* $NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 Alexander Nasonov.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #ifdef _KERNEL
34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $");
35 #else
36 __RCSID("$NetBSD: bpfjit.c,v 1.35 2014/11/20 19:18:52 alnsn Exp $");
37 #endif
38
39 #include <sys/types.h>
40 #include <sys/queue.h>
41
42 #ifndef _KERNEL
43 #include <assert.h>
44 #define BJ_ASSERT(c) assert(c)
45 #else
46 #define BJ_ASSERT(c) KASSERT(c)
47 #endif
48
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #define BJ_ALLOC(sz) malloc(sz)
52 #define BJ_FREE(p, sz) free(p)
53 #else
54 #include <sys/kmem.h>
55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
56 #define BJ_FREE(p, sz) kmem_free(p, sz)
57 #endif
58
59 #ifndef _KERNEL
60 #include <limits.h>
61 #include <stdbool.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #else
65 #include <sys/atomic.h>
66 #include <sys/module.h>
67 #endif
68
69 #define __BPF_PRIVATE
70 #include <net/bpf.h>
71 #include <net/bpfjit.h>
72 #include <sljitLir.h>
73
74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
75 #include <stdio.h> /* for stderr */
76 #endif
77
78 /*
79 * XXX: Until we support SLJIT_UMOD properly
80 */
81 #undef BPFJIT_USE_UDIV
82
83 /*
84 * Arguments of generated bpfjit_func_t.
85 * The first argument is reassigned upon entry
86 * to a more frequently used buf argument.
87 */
88 #define BJ_CTX_ARG SLJIT_SAVED_REG1
89 #define BJ_ARGS SLJIT_SAVED_REG2
90
91 /*
92 * Permanent register assignments.
93 */
94 #define BJ_BUF SLJIT_SAVED_REG1
95 //#define BJ_ARGS SLJIT_SAVED_REG2
96 #define BJ_BUFLEN SLJIT_SAVED_REG3
97 #define BJ_AREG SLJIT_SCRATCH_REG1
98 #define BJ_TMP1REG SLJIT_SCRATCH_REG2
99 #define BJ_TMP2REG SLJIT_SCRATCH_REG3
100 #define BJ_XREG SLJIT_TEMPORARY_EREG1
101 #define BJ_TMP3REG SLJIT_TEMPORARY_EREG2
102
103 #ifdef _KERNEL
104 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
105 #else
106 #define MAX_MEMWORDS BPF_MEMWORDS
107 #endif
108
109 #define BJ_INIT_NOBITS ((bpf_memword_init_t)0)
110 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
111 #define BJ_INIT_ABIT BJ_INIT_MBIT(MAX_MEMWORDS)
112 #define BJ_INIT_XBIT BJ_INIT_MBIT(MAX_MEMWORDS + 1)
113
114 /*
115 * Get a number of memwords and external memwords from a bpf_ctx object.
116 */
117 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
118 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
119
120 /*
121 * Optimization hints.
122 */
123 typedef unsigned int bpfjit_hint_t;
124 #define BJ_HINT_ABS 0x01 /* packet read at absolute offset */
125 #define BJ_HINT_IND 0x02 /* packet read at variable offset */
126 #define BJ_HINT_MSH 0x04 /* BPF_MSH instruction */
127 #define BJ_HINT_COP 0x08 /* BPF_COP or BPF_COPX instruction */
128 #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction */
129 #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed */
130 #define BJ_HINT_LDX 0x40 /* BPF_LDX instruction */
131 #define BJ_HINT_PKT (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
132
133 /*
134 * Datatype for Array Bounds Check Elimination (ABC) pass.
135 */
136 typedef uint64_t bpfjit_abc_length_t;
137 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
138
139 struct bpfjit_stack
140 {
141 bpf_ctx_t *ctx;
142 uint32_t *extmem; /* pointer to external memory store */
143 uint32_t reg; /* saved A or X register */
144 #ifdef _KERNEL
145 int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
146 #endif
147 uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
148 };
149
150 /*
151 * Data for BPF_JMP instruction.
152 * Forward declaration for struct bpfjit_jump.
153 */
154 struct bpfjit_jump_data;
155
156 /*
157 * Node of bjumps list.
158 */
159 struct bpfjit_jump {
160 struct sljit_jump *sjump;
161 SLIST_ENTRY(bpfjit_jump) entries;
162 struct bpfjit_jump_data *jdata;
163 };
164
165 /*
166 * Data for BPF_JMP instruction.
167 */
168 struct bpfjit_jump_data {
169 /*
170 * These entries make up bjumps list:
171 * jtf[0] - when coming from jt path,
172 * jtf[1] - when coming from jf path.
173 */
174 struct bpfjit_jump jtf[2];
175 /*
176 * Length calculated by Array Bounds Check Elimination (ABC) pass.
177 */
178 bpfjit_abc_length_t abc_length;
179 /*
180 * Length checked by the last out-of-bounds check.
181 */
182 bpfjit_abc_length_t checked_length;
183 };
184
185 /*
186 * Data for "read from packet" instructions.
187 * See also read_pkt_insn() function below.
188 */
189 struct bpfjit_read_pkt_data {
190 /*
191 * Length calculated by Array Bounds Check Elimination (ABC) pass.
192 */
193 bpfjit_abc_length_t abc_length;
194 /*
195 * If positive, emit "if (buflen < check_length) return 0"
196 * out-of-bounds check.
197 * Values greater than UINT32_MAX generate unconditional "return 0".
198 */
199 bpfjit_abc_length_t check_length;
200 };
201
202 /*
203 * Additional (optimization-related) data for bpf_insn.
204 */
205 struct bpfjit_insn_data {
206 /* List of jumps to this insn. */
207 SLIST_HEAD(, bpfjit_jump) bjumps;
208
209 union {
210 struct bpfjit_jump_data jdata;
211 struct bpfjit_read_pkt_data rdata;
212 } u;
213
214 bpf_memword_init_t invalid;
215 bool unreachable;
216 };
217
218 #ifdef _KERNEL
219
220 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
221 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
222 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
223
224 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
225
226 static int
227 bpfjit_modcmd(modcmd_t cmd, void *arg)
228 {
229
230 switch (cmd) {
231 case MODULE_CMD_INIT:
232 bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
233 membar_producer();
234 bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
235 membar_producer();
236 return 0;
237
238 case MODULE_CMD_FINI:
239 return EOPNOTSUPP;
240
241 default:
242 return ENOTTY;
243 }
244 }
245 #endif
246
247 /*
248 * Return a number of scratch registers to pass
249 * to sljit_emit_enter() function.
250 */
251 static sljit_si
252 nscratches(bpfjit_hint_t hints)
253 {
254 sljit_si rv = 2;
255
256 #ifdef _KERNEL
257 if (hints & BJ_HINT_PKT)
258 rv = 3; /* xcall with three arguments */
259 #endif
260
261 if (hints & BJ_HINT_IND)
262 rv = 3; /* uses BJ_TMP2REG */
263
264 if (hints & BJ_HINT_COP)
265 rv = 3; /* calls copfunc with three arguments */
266
267 if (hints & BJ_HINT_XREG)
268 rv = 4; /* uses BJ_XREG */
269
270 #ifdef _KERNEL
271 if (hints & BJ_HINT_LDX)
272 rv = 5; /* uses BJ_TMP3REG */
273 #endif
274
275 if (hints & BJ_HINT_COPX)
276 rv = 5; /* uses BJ_TMP3REG */
277
278 return rv;
279 }
280
281 /*
282 * Return a number of saved registers to pass
283 * to sljit_emit_enter() function.
284 */
285 static sljit_si
286 nsaveds(bpfjit_hint_t hints)
287 {
288 sljit_si rv = 3;
289
290 return rv;
291 }
292
293 static uint32_t
294 read_width(const struct bpf_insn *pc)
295 {
296
297 switch (BPF_SIZE(pc->code)) {
298 case BPF_W:
299 return 4;
300 case BPF_H:
301 return 2;
302 case BPF_B:
303 return 1;
304 default:
305 BJ_ASSERT(false);
306 return 0;
307 }
308 }
309
310 /*
311 * Copy buf and buflen members of bpf_args from BJ_ARGS
312 * pointer to BJ_BUF and BJ_BUFLEN registers.
313 */
314 static int
315 load_buf_buflen(struct sljit_compiler *compiler)
316 {
317 int status;
318
319 status = sljit_emit_op1(compiler,
320 SLJIT_MOV_P,
321 BJ_BUF, 0,
322 SLJIT_MEM1(BJ_ARGS),
323 offsetof(struct bpf_args, pkt));
324 if (status != SLJIT_SUCCESS)
325 return status;
326
327 status = sljit_emit_op1(compiler,
328 SLJIT_MOV, /* size_t source */
329 BJ_BUFLEN, 0,
330 SLJIT_MEM1(BJ_ARGS),
331 offsetof(struct bpf_args, buflen));
332
333 return status;
334 }
335
336 static bool
337 grow_jumps(struct sljit_jump ***jumps, size_t *size)
338 {
339 struct sljit_jump **newptr;
340 const size_t elemsz = sizeof(struct sljit_jump *);
341 size_t old_size = *size;
342 size_t new_size = 2 * old_size;
343
344 if (new_size < old_size || new_size > SIZE_MAX / elemsz)
345 return false;
346
347 newptr = BJ_ALLOC(new_size * elemsz);
348 if (newptr == NULL)
349 return false;
350
351 memcpy(newptr, *jumps, old_size * elemsz);
352 BJ_FREE(*jumps, old_size * elemsz);
353
354 *jumps = newptr;
355 *size = new_size;
356 return true;
357 }
358
359 static bool
360 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
361 size_t *size, size_t *max_size)
362 {
363 if (*size == *max_size && !grow_jumps(jumps, max_size))
364 return false;
365
366 (*jumps)[(*size)++] = jump;
367 return true;
368 }
369
370 /*
371 * Emit code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
372 */
373 static int
374 emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
375 {
376
377 return sljit_emit_op1(compiler,
378 SLJIT_MOV_UB,
379 BJ_AREG, 0,
380 SLJIT_MEM1(src), k);
381 }
382
383 /*
384 * Emit code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
385 */
386 static int
387 emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
388 {
389 int status;
390
391 BJ_ASSERT(k <= UINT32_MAX - 1);
392
393 /* A = buf[k]; */
394 status = sljit_emit_op1(compiler,
395 SLJIT_MOV_UB,
396 BJ_AREG, 0,
397 SLJIT_MEM1(src), k);
398 if (status != SLJIT_SUCCESS)
399 return status;
400
401 /* tmp1 = buf[k+1]; */
402 status = sljit_emit_op1(compiler,
403 SLJIT_MOV_UB,
404 BJ_TMP1REG, 0,
405 SLJIT_MEM1(src), k+1);
406 if (status != SLJIT_SUCCESS)
407 return status;
408
409 /* A = A << 8; */
410 status = sljit_emit_op2(compiler,
411 SLJIT_SHL,
412 BJ_AREG, 0,
413 BJ_AREG, 0,
414 SLJIT_IMM, 8);
415 if (status != SLJIT_SUCCESS)
416 return status;
417
418 /* A = A + tmp1; */
419 status = sljit_emit_op2(compiler,
420 SLJIT_ADD,
421 BJ_AREG, 0,
422 BJ_AREG, 0,
423 BJ_TMP1REG, 0);
424 return status;
425 }
426
427 /*
428 * Emit code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
429 */
430 static int
431 emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
432 {
433 int status;
434
435 BJ_ASSERT(k <= UINT32_MAX - 3);
436
437 /* A = buf[k]; */
438 status = sljit_emit_op1(compiler,
439 SLJIT_MOV_UB,
440 BJ_AREG, 0,
441 SLJIT_MEM1(src), k);
442 if (status != SLJIT_SUCCESS)
443 return status;
444
445 /* tmp1 = buf[k+1]; */
446 status = sljit_emit_op1(compiler,
447 SLJIT_MOV_UB,
448 BJ_TMP1REG, 0,
449 SLJIT_MEM1(src), k+1);
450 if (status != SLJIT_SUCCESS)
451 return status;
452
453 /* A = A << 8; */
454 status = sljit_emit_op2(compiler,
455 SLJIT_SHL,
456 BJ_AREG, 0,
457 BJ_AREG, 0,
458 SLJIT_IMM, 8);
459 if (status != SLJIT_SUCCESS)
460 return status;
461
462 /* A = A + tmp1; */
463 status = sljit_emit_op2(compiler,
464 SLJIT_ADD,
465 BJ_AREG, 0,
466 BJ_AREG, 0,
467 BJ_TMP1REG, 0);
468 if (status != SLJIT_SUCCESS)
469 return status;
470
471 /* tmp1 = buf[k+2]; */
472 status = sljit_emit_op1(compiler,
473 SLJIT_MOV_UB,
474 BJ_TMP1REG, 0,
475 SLJIT_MEM1(src), k+2);
476 if (status != SLJIT_SUCCESS)
477 return status;
478
479 /* A = A << 8; */
480 status = sljit_emit_op2(compiler,
481 SLJIT_SHL,
482 BJ_AREG, 0,
483 BJ_AREG, 0,
484 SLJIT_IMM, 8);
485 if (status != SLJIT_SUCCESS)
486 return status;
487
488 /* A = A + tmp1; */
489 status = sljit_emit_op2(compiler,
490 SLJIT_ADD,
491 BJ_AREG, 0,
492 BJ_AREG, 0,
493 BJ_TMP1REG, 0);
494 if (status != SLJIT_SUCCESS)
495 return status;
496
497 /* tmp1 = buf[k+3]; */
498 status = sljit_emit_op1(compiler,
499 SLJIT_MOV_UB,
500 BJ_TMP1REG, 0,
501 SLJIT_MEM1(src), k+3);
502 if (status != SLJIT_SUCCESS)
503 return status;
504
505 /* A = A << 8; */
506 status = sljit_emit_op2(compiler,
507 SLJIT_SHL,
508 BJ_AREG, 0,
509 BJ_AREG, 0,
510 SLJIT_IMM, 8);
511 if (status != SLJIT_SUCCESS)
512 return status;
513
514 /* A = A + tmp1; */
515 status = sljit_emit_op2(compiler,
516 SLJIT_ADD,
517 BJ_AREG, 0,
518 BJ_AREG, 0,
519 BJ_TMP1REG, 0);
520 return status;
521 }
522
523 #ifdef _KERNEL
524 /*
525 * Emit code for m_xword/m_xhalf/m_xbyte call.
526 *
527 * @pc BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
528 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
529 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
530 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
531 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
532 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
533 * BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
534 */
535 static int
536 emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
537 const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
538 size_t *ret0_size, size_t *ret0_maxsize,
539 uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
540 {
541 #if BJ_XREG == SLJIT_RETURN_REG || \
542 BJ_XREG == SLJIT_SCRATCH_REG1 || \
543 BJ_XREG == SLJIT_SCRATCH_REG2 || \
544 BJ_XREG == SLJIT_SCRATCH_REG3
545 #error "Not supported assignment of registers."
546 #endif
547 struct sljit_jump *jump;
548 sljit_si save_reg;
549 int status;
550
551 save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
552
553 if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
554 /* save A or X */
555 status = sljit_emit_op1(compiler,
556 SLJIT_MOV_UI, /* uint32_t destination */
557 SLJIT_MEM1(SLJIT_LOCALS_REG),
558 offsetof(struct bpfjit_stack, reg),
559 save_reg, 0);
560 if (status != SLJIT_SUCCESS)
561 return status;
562 }
563
564 /*
565 * Prepare registers for fn(mbuf, k, &err) call.
566 */
567 status = sljit_emit_op1(compiler,
568 SLJIT_MOV,
569 SLJIT_SCRATCH_REG1, 0,
570 BJ_BUF, 0);
571 if (status != SLJIT_SUCCESS)
572 return status;
573
574 if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
575 if (pc->k == 0) {
576 /* k = X; */
577 status = sljit_emit_op1(compiler,
578 SLJIT_MOV,
579 SLJIT_SCRATCH_REG2, 0,
580 BJ_XREG, 0);
581 if (status != SLJIT_SUCCESS)
582 return status;
583 } else {
584 /* if (X > UINT32_MAX - pc->k) return 0; */
585 jump = sljit_emit_cmp(compiler,
586 SLJIT_C_GREATER,
587 BJ_XREG, 0,
588 SLJIT_IMM, UINT32_MAX - pc->k);
589 if (jump == NULL)
590 return SLJIT_ERR_ALLOC_FAILED;
591 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
592 return SLJIT_ERR_ALLOC_FAILED;
593
594 /* k = X + pc->k; */
595 status = sljit_emit_op2(compiler,
596 SLJIT_ADD,
597 SLJIT_SCRATCH_REG2, 0,
598 BJ_XREG, 0,
599 SLJIT_IMM, (uint32_t)pc->k);
600 if (status != SLJIT_SUCCESS)
601 return status;
602 }
603 } else {
604 /* k = pc->k */
605 status = sljit_emit_op1(compiler,
606 SLJIT_MOV,
607 SLJIT_SCRATCH_REG2, 0,
608 SLJIT_IMM, (uint32_t)pc->k);
609 if (status != SLJIT_SUCCESS)
610 return status;
611 }
612
613 /*
614 * The third argument of fn is an address on stack.
615 */
616 status = sljit_get_local_base(compiler,
617 SLJIT_SCRATCH_REG3, 0,
618 offsetof(struct bpfjit_stack, err));
619 if (status != SLJIT_SUCCESS)
620 return status;
621
622 /* fn(buf, k, &err); */
623 status = sljit_emit_ijump(compiler,
624 SLJIT_CALL3,
625 SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
626 if (status != SLJIT_SUCCESS)
627 return status;
628
629 if (dst != SLJIT_RETURN_REG) {
630 /* move return value to dst */
631 status = sljit_emit_op1(compiler,
632 SLJIT_MOV,
633 dst, 0,
634 SLJIT_RETURN_REG, 0);
635 if (status != SLJIT_SUCCESS)
636 return status;
637 }
638
639 /* if (*err != 0) return 0; */
640 jump = sljit_emit_cmp(compiler,
641 SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
642 SLJIT_MEM1(SLJIT_LOCALS_REG),
643 offsetof(struct bpfjit_stack, err),
644 SLJIT_IMM, 0);
645 if (jump == NULL)
646 return SLJIT_ERR_ALLOC_FAILED;
647
648 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
649 return SLJIT_ERR_ALLOC_FAILED;
650
651 if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
652 /* restore A or X */
653 status = sljit_emit_op1(compiler,
654 SLJIT_MOV_UI, /* uint32_t source */
655 save_reg, 0,
656 SLJIT_MEM1(SLJIT_LOCALS_REG),
657 offsetof(struct bpfjit_stack, reg));
658 if (status != SLJIT_SUCCESS)
659 return status;
660 }
661
662 return SLJIT_SUCCESS;
663 }
664 #endif
665
666 /*
667 * Emit code for BPF_COP and BPF_COPX instructions.
668 */
669 static int
670 emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
671 const bpf_ctx_t *bc, const struct bpf_insn *pc,
672 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
673 {
674 #if BJ_XREG == SLJIT_RETURN_REG || \
675 BJ_XREG == SLJIT_SCRATCH_REG1 || \
676 BJ_XREG == SLJIT_SCRATCH_REG2 || \
677 BJ_XREG == SLJIT_SCRATCH_REG3 || \
678 BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
679 BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
680 BJ_TMP3REG == SLJIT_SCRATCH_REG3
681 #error "Not supported assignment of registers."
682 #endif
683
684 struct sljit_jump *jump;
685 sljit_si call_reg;
686 sljit_sw call_off;
687 int status;
688
689 BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
690
691 if (hints & BJ_HINT_LDX) {
692 /* save X */
693 status = sljit_emit_op1(compiler,
694 SLJIT_MOV_UI, /* uint32_t destination */
695 SLJIT_MEM1(SLJIT_LOCALS_REG),
696 offsetof(struct bpfjit_stack, reg),
697 BJ_XREG, 0);
698 if (status != SLJIT_SUCCESS)
699 return status;
700 }
701
702 if (BPF_MISCOP(pc->code) == BPF_COP) {
703 call_reg = SLJIT_IMM;
704 call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
705 } else {
706 /* if (X >= bc->nfuncs) return 0; */
707 jump = sljit_emit_cmp(compiler,
708 SLJIT_C_GREATER_EQUAL,
709 BJ_XREG, 0,
710 SLJIT_IMM, bc->nfuncs);
711 if (jump == NULL)
712 return SLJIT_ERR_ALLOC_FAILED;
713 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
714 return SLJIT_ERR_ALLOC_FAILED;
715
716 /* tmp1 = ctx; */
717 status = sljit_emit_op1(compiler,
718 SLJIT_MOV_P,
719 BJ_TMP1REG, 0,
720 SLJIT_MEM1(SLJIT_LOCALS_REG),
721 offsetof(struct bpfjit_stack, ctx));
722 if (status != SLJIT_SUCCESS)
723 return status;
724
725 /* tmp1 = ctx->copfuncs; */
726 status = sljit_emit_op1(compiler,
727 SLJIT_MOV_P,
728 BJ_TMP1REG, 0,
729 SLJIT_MEM1(BJ_TMP1REG),
730 offsetof(struct bpf_ctx, copfuncs));
731 if (status != SLJIT_SUCCESS)
732 return status;
733
734 /* tmp2 = X; */
735 status = sljit_emit_op1(compiler,
736 SLJIT_MOV,
737 BJ_TMP2REG, 0,
738 BJ_XREG, 0);
739 if (status != SLJIT_SUCCESS)
740 return status;
741
742 /* tmp3 = ctx->copfuncs[tmp2]; */
743 call_reg = BJ_TMP3REG;
744 call_off = 0;
745 status = sljit_emit_op1(compiler,
746 SLJIT_MOV_P,
747 call_reg, call_off,
748 SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
749 SLJIT_WORD_SHIFT);
750 if (status != SLJIT_SUCCESS)
751 return status;
752 }
753
754 /*
755 * Copy bpf_copfunc_t arguments to registers.
756 */
757 #if BJ_AREG != SLJIT_SCRATCH_REG3
758 status = sljit_emit_op1(compiler,
759 SLJIT_MOV_UI,
760 SLJIT_SCRATCH_REG3, 0,
761 BJ_AREG, 0);
762 if (status != SLJIT_SUCCESS)
763 return status;
764 #endif
765
766 status = sljit_emit_op1(compiler,
767 SLJIT_MOV_P,
768 SLJIT_SCRATCH_REG1, 0,
769 SLJIT_MEM1(SLJIT_LOCALS_REG),
770 offsetof(struct bpfjit_stack, ctx));
771 if (status != SLJIT_SUCCESS)
772 return status;
773
774 status = sljit_emit_op1(compiler,
775 SLJIT_MOV_P,
776 SLJIT_SCRATCH_REG2, 0,
777 BJ_ARGS, 0);
778 if (status != SLJIT_SUCCESS)
779 return status;
780
781 status = sljit_emit_ijump(compiler,
782 SLJIT_CALL3, call_reg, call_off);
783 if (status != SLJIT_SUCCESS)
784 return status;
785
786 #if BJ_AREG != SLJIT_RETURN_REG
787 status = sljit_emit_op1(compiler,
788 SLJIT_MOV,
789 BJ_AREG, 0,
790 SLJIT_RETURN_REG, 0);
791 if (status != SLJIT_SUCCESS)
792 return status;
793 #endif
794
795 if (hints & BJ_HINT_LDX) {
796 /* restore X */
797 status = sljit_emit_op1(compiler,
798 SLJIT_MOV_UI, /* uint32_t source */
799 BJ_XREG, 0,
800 SLJIT_MEM1(SLJIT_LOCALS_REG),
801 offsetof(struct bpfjit_stack, reg));
802 if (status != SLJIT_SUCCESS)
803 return status;
804 }
805
806 return SLJIT_SUCCESS;
807 }
808
809 /*
810 * Generate code for
811 * BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
812 * BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
813 * BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
814 * BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
815 * BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
816 * BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
817 */
818 static int
819 emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
820 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
821 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
822 {
823 int status = SLJIT_ERR_ALLOC_FAILED;
824 uint32_t width;
825 sljit_si ld_reg;
826 struct sljit_jump *jump;
827 #ifdef _KERNEL
828 struct sljit_label *label;
829 struct sljit_jump *over_mchain_jump;
830 const bool check_zero_buflen = (to_mchain_jump != NULL);
831 #endif
832 const uint32_t k = pc->k;
833
834 #ifdef _KERNEL
835 if (to_mchain_jump == NULL) {
836 to_mchain_jump = sljit_emit_cmp(compiler,
837 SLJIT_C_EQUAL,
838 BJ_BUFLEN, 0,
839 SLJIT_IMM, 0);
840 if (to_mchain_jump == NULL)
841 return SLJIT_ERR_ALLOC_FAILED;
842 }
843 #endif
844
845 ld_reg = BJ_BUF;
846 width = read_width(pc);
847
848 if (BPF_MODE(pc->code) == BPF_IND) {
849 /* tmp1 = buflen - (pc->k + width); */
850 status = sljit_emit_op2(compiler,
851 SLJIT_SUB,
852 BJ_TMP1REG, 0,
853 BJ_BUFLEN, 0,
854 SLJIT_IMM, k + width);
855 if (status != SLJIT_SUCCESS)
856 return status;
857
858 /* ld_reg = buf + X; */
859 ld_reg = BJ_TMP2REG;
860 status = sljit_emit_op2(compiler,
861 SLJIT_ADD,
862 ld_reg, 0,
863 BJ_BUF, 0,
864 BJ_XREG, 0);
865 if (status != SLJIT_SUCCESS)
866 return status;
867
868 /* if (tmp1 < X) return 0; */
869 jump = sljit_emit_cmp(compiler,
870 SLJIT_C_LESS,
871 BJ_TMP1REG, 0,
872 BJ_XREG, 0);
873 if (jump == NULL)
874 return SLJIT_ERR_ALLOC_FAILED;
875 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
876 return SLJIT_ERR_ALLOC_FAILED;
877 }
878
879 switch (width) {
880 case 4:
881 status = emit_read32(compiler, ld_reg, k);
882 break;
883 case 2:
884 status = emit_read16(compiler, ld_reg, k);
885 break;
886 case 1:
887 status = emit_read8(compiler, ld_reg, k);
888 break;
889 }
890
891 if (status != SLJIT_SUCCESS)
892 return status;
893
894 #ifdef _KERNEL
895 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
896 if (over_mchain_jump == NULL)
897 return SLJIT_ERR_ALLOC_FAILED;
898
899 /* entry point to mchain handler */
900 label = sljit_emit_label(compiler);
901 if (label == NULL)
902 return SLJIT_ERR_ALLOC_FAILED;
903 sljit_set_label(to_mchain_jump, label);
904
905 if (check_zero_buflen) {
906 /* if (buflen != 0) return 0; */
907 jump = sljit_emit_cmp(compiler,
908 SLJIT_C_NOT_EQUAL,
909 BJ_BUFLEN, 0,
910 SLJIT_IMM, 0);
911 if (jump == NULL)
912 return SLJIT_ERR_ALLOC_FAILED;
913 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
914 return SLJIT_ERR_ALLOC_FAILED;
915 }
916
917 switch (width) {
918 case 4:
919 status = emit_xcall(compiler, hints, pc, BJ_AREG,
920 ret0, ret0_size, ret0_maxsize, &m_xword);
921 break;
922 case 2:
923 status = emit_xcall(compiler, hints, pc, BJ_AREG,
924 ret0, ret0_size, ret0_maxsize, &m_xhalf);
925 break;
926 case 1:
927 status = emit_xcall(compiler, hints, pc, BJ_AREG,
928 ret0, ret0_size, ret0_maxsize, &m_xbyte);
929 break;
930 }
931
932 if (status != SLJIT_SUCCESS)
933 return status;
934
935 label = sljit_emit_label(compiler);
936 if (label == NULL)
937 return SLJIT_ERR_ALLOC_FAILED;
938 sljit_set_label(over_mchain_jump, label);
939 #endif
940
941 return SLJIT_SUCCESS;
942 }
943
944 static int
945 emit_memload(struct sljit_compiler *compiler,
946 sljit_si dst, uint32_t k, size_t extwords)
947 {
948 int status;
949 sljit_si src;
950 sljit_sw srcw;
951
952 srcw = k * sizeof(uint32_t);
953
954 if (extwords == 0) {
955 src = SLJIT_MEM1(SLJIT_LOCALS_REG);
956 srcw += offsetof(struct bpfjit_stack, mem);
957 } else {
958 /* copy extmem pointer to the tmp1 register */
959 status = sljit_emit_op1(compiler,
960 SLJIT_MOV_P,
961 BJ_TMP1REG, 0,
962 SLJIT_MEM1(SLJIT_LOCALS_REG),
963 offsetof(struct bpfjit_stack, extmem));
964 if (status != SLJIT_SUCCESS)
965 return status;
966 src = SLJIT_MEM1(BJ_TMP1REG);
967 }
968
969 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
970 }
971
972 static int
973 emit_memstore(struct sljit_compiler *compiler,
974 sljit_si src, uint32_t k, size_t extwords)
975 {
976 int status;
977 sljit_si dst;
978 sljit_sw dstw;
979
980 dstw = k * sizeof(uint32_t);
981
982 if (extwords == 0) {
983 dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
984 dstw += offsetof(struct bpfjit_stack, mem);
985 } else {
986 /* copy extmem pointer to the tmp1 register */
987 status = sljit_emit_op1(compiler,
988 SLJIT_MOV_P,
989 BJ_TMP1REG, 0,
990 SLJIT_MEM1(SLJIT_LOCALS_REG),
991 offsetof(struct bpfjit_stack, extmem));
992 if (status != SLJIT_SUCCESS)
993 return status;
994 dst = SLJIT_MEM1(BJ_TMP1REG);
995 }
996
997 return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
998 }
999
1000 /*
1001 * Emit code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
1002 */
1003 static int
1004 emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1005 const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
1006 struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
1007 {
1008 int status;
1009 #ifdef _KERNEL
1010 struct sljit_label *label;
1011 struct sljit_jump *jump, *over_mchain_jump;
1012 const bool check_zero_buflen = (to_mchain_jump != NULL);
1013 #endif
1014 const uint32_t k = pc->k;
1015
1016 #ifdef _KERNEL
1017 if (to_mchain_jump == NULL) {
1018 to_mchain_jump = sljit_emit_cmp(compiler,
1019 SLJIT_C_EQUAL,
1020 BJ_BUFLEN, 0,
1021 SLJIT_IMM, 0);
1022 if (to_mchain_jump == NULL)
1023 return SLJIT_ERR_ALLOC_FAILED;
1024 }
1025 #endif
1026
1027 /* tmp1 = buf[k] */
1028 status = sljit_emit_op1(compiler,
1029 SLJIT_MOV_UB,
1030 BJ_TMP1REG, 0,
1031 SLJIT_MEM1(BJ_BUF), k);
1032 if (status != SLJIT_SUCCESS)
1033 return status;
1034
1035 #ifdef _KERNEL
1036 over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1037 if (over_mchain_jump == NULL)
1038 return SLJIT_ERR_ALLOC_FAILED;
1039
1040 /* entry point to mchain handler */
1041 label = sljit_emit_label(compiler);
1042 if (label == NULL)
1043 return SLJIT_ERR_ALLOC_FAILED;
1044 sljit_set_label(to_mchain_jump, label);
1045
1046 if (check_zero_buflen) {
1047 /* if (buflen != 0) return 0; */
1048 jump = sljit_emit_cmp(compiler,
1049 SLJIT_C_NOT_EQUAL,
1050 BJ_BUFLEN, 0,
1051 SLJIT_IMM, 0);
1052 if (jump == NULL)
1053 return SLJIT_ERR_ALLOC_FAILED;
1054 if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
1055 return SLJIT_ERR_ALLOC_FAILED;
1056 }
1057
1058 status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
1059 ret0, ret0_size, ret0_maxsize, &m_xbyte);
1060 if (status != SLJIT_SUCCESS)
1061 return status;
1062
1063 label = sljit_emit_label(compiler);
1064 if (label == NULL)
1065 return SLJIT_ERR_ALLOC_FAILED;
1066 sljit_set_label(over_mchain_jump, label);
1067 #endif
1068
1069 /* tmp1 &= 0xf */
1070 status = sljit_emit_op2(compiler,
1071 SLJIT_AND,
1072 BJ_TMP1REG, 0,
1073 BJ_TMP1REG, 0,
1074 SLJIT_IMM, 0xf);
1075 if (status != SLJIT_SUCCESS)
1076 return status;
1077
1078 /* X = tmp1 << 2 */
1079 status = sljit_emit_op2(compiler,
1080 SLJIT_SHL,
1081 BJ_XREG, 0,
1082 BJ_TMP1REG, 0,
1083 SLJIT_IMM, 2);
1084 if (status != SLJIT_SUCCESS)
1085 return status;
1086
1087 return SLJIT_SUCCESS;
1088 }
1089
1090 /*
1091 * Emit code for A = A / k or A = A % k when k is a power of 2.
1092 * @pc BPF_DIV or BPF_MOD instruction.
1093 */
1094 static int
1095 emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1096 {
1097 uint32_t k = pc->k;
1098 int status = SLJIT_SUCCESS;
1099
1100 BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
1101
1102 if (BPF_OP(pc->code) == BPF_MOD) {
1103 status = sljit_emit_op2(compiler,
1104 SLJIT_AND,
1105 BJ_AREG, 0,
1106 BJ_AREG, 0,
1107 SLJIT_IMM, k - 1);
1108 } else {
1109 int shift = 0;
1110
1111 /*
1112 * Do shift = __builtin_ctz(k).
1113 * The loop is slower, but that's ok.
1114 */
1115 while (k > 1) {
1116 k >>= 1;
1117 shift++;
1118 }
1119
1120 if (shift != 0) {
1121 status = sljit_emit_op2(compiler,
1122 SLJIT_LSHR|SLJIT_INT_OP,
1123 BJ_AREG, 0,
1124 BJ_AREG, 0,
1125 SLJIT_IMM, shift);
1126 }
1127 }
1128
1129 return status;
1130 }
1131
1132 #if !defined(BPFJIT_USE_UDIV)
1133 static sljit_uw
1134 divide(sljit_uw x, sljit_uw y)
1135 {
1136
1137 return (uint32_t)x / (uint32_t)y;
1138 }
1139
1140 static sljit_uw
1141 modulus(sljit_uw x, sljit_uw y)
1142 {
1143
1144 return (uint32_t)x % (uint32_t)y;
1145 }
1146 #endif
1147
1148 /*
1149 * Emit code for A = A / div or A = A % div.
1150 * @pc BPF_DIV or BPF_MOD instruction.
1151 */
1152 static int
1153 emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
1154 {
1155 int status;
1156 const bool div = BPF_OP(pc->code) == BPF_DIV;
1157 const bool xreg = BPF_SRC(pc->code) == BPF_X;
1158
1159 #if BJ_XREG == SLJIT_RETURN_REG || \
1160 BJ_XREG == SLJIT_SCRATCH_REG1 || \
1161 BJ_XREG == SLJIT_SCRATCH_REG2 || \
1162 BJ_AREG == SLJIT_SCRATCH_REG2
1163 #error "Not supported assignment of registers."
1164 #endif
1165
1166 #if BJ_AREG != SLJIT_SCRATCH_REG1
1167 status = sljit_emit_op1(compiler,
1168 SLJIT_MOV,
1169 SLJIT_SCRATCH_REG1, 0,
1170 BJ_AREG, 0);
1171 if (status != SLJIT_SUCCESS)
1172 return status;
1173 #endif
1174
1175 status = sljit_emit_op1(compiler,
1176 SLJIT_MOV,
1177 SLJIT_SCRATCH_REG2, 0,
1178 xreg ? BJ_XREG : SLJIT_IMM,
1179 xreg ? 0 : (uint32_t)pc->k);
1180 if (status != SLJIT_SUCCESS)
1181 return status;
1182
1183 #if defined(BPFJIT_USE_UDIV)
1184 status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
1185
1186 #if BJ_AREG != SLJIT_SCRATCH_REG1
1187 status = sljit_emit_op1(compiler,
1188 SLJIT_MOV,
1189 BJ_AREG, 0,
1190 SLJIT_SCRATCH_REG1, 0);
1191 if (status != SLJIT_SUCCESS)
1192 return status;
1193 #endif
1194 #else
1195 status = sljit_emit_ijump(compiler,
1196 SLJIT_CALL2,
1197 SLJIT_IMM, div ? SLJIT_FUNC_OFFSET(divide) :
1198 SLJIT_FUNC_OFFSET(modulus));
1199
1200 #if BJ_AREG != SLJIT_RETURN_REG
1201 status = sljit_emit_op1(compiler,
1202 SLJIT_MOV,
1203 BJ_AREG, 0,
1204 SLJIT_RETURN_REG, 0);
1205 if (status != SLJIT_SUCCESS)
1206 return status;
1207 #endif
1208 #endif
1209
1210 return status;
1211 }
1212
1213 /*
1214 * Return true if pc is a "read from packet" instruction.
1215 * If length is not NULL and return value is true, *length will
1216 * be set to a safe length required to read a packet.
1217 */
1218 static bool
1219 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
1220 {
1221 bool rv;
1222 bpfjit_abc_length_t width;
1223
1224 switch (BPF_CLASS(pc->code)) {
1225 default:
1226 rv = false;
1227 break;
1228
1229 case BPF_LD:
1230 rv = BPF_MODE(pc->code) == BPF_ABS ||
1231 BPF_MODE(pc->code) == BPF_IND;
1232 if (rv)
1233 width = read_width(pc);
1234 break;
1235
1236 case BPF_LDX:
1237 rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
1238 width = 1;
1239 break;
1240 }
1241
1242 if (rv && length != NULL) {
1243 /*
1244 * Values greater than UINT32_MAX will generate
1245 * unconditional "return 0".
1246 */
1247 *length = (uint32_t)pc->k + width;
1248 }
1249
1250 return rv;
1251 }
1252
1253 static void
1254 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
1255 {
1256 size_t i;
1257
1258 for (i = 0; i < insn_count; i++) {
1259 SLIST_INIT(&insn_dat[i].bjumps);
1260 insn_dat[i].invalid = BJ_INIT_NOBITS;
1261 }
1262 }
1263
1264 /*
1265 * The function divides instructions into blocks. Destination of a jump
1266 * instruction starts a new block. BPF_RET and BPF_JMP instructions
1267 * terminate a block. Blocks are linear, that is, there are no jumps out
1268 * from the middle of a block and there are no jumps in to the middle of
1269 * a block.
1270 *
1271 * The function also sets bits in *initmask for memwords that
1272 * need to be initialized to zero. Note that this set should be empty
1273 * for any valid kernel filter program.
1274 */
1275 static bool
1276 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1277 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1278 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1279 {
1280 struct bpfjit_jump *jtf;
1281 size_t i;
1282 uint32_t jt, jf;
1283 bpfjit_abc_length_t length;
1284 bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
1285 bool unreachable;
1286
1287 const size_t memwords = GET_MEMWORDS(bc);
1288
1289 *hints = 0;
1290 *initmask = BJ_INIT_NOBITS;
1291
1292 unreachable = false;
1293 invalid = ~BJ_INIT_NOBITS;
1294
1295 for (i = 0; i < insn_count; i++) {
1296 if (!SLIST_EMPTY(&insn_dat[i].bjumps))
1297 unreachable = false;
1298 insn_dat[i].unreachable = unreachable;
1299
1300 if (unreachable)
1301 continue;
1302
1303 invalid |= insn_dat[i].invalid;
1304
1305 if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
1306 unreachable = true;
1307
1308 switch (BPF_CLASS(insns[i].code)) {
1309 case BPF_RET:
1310 if (BPF_RVAL(insns[i].code) == BPF_A)
1311 *initmask |= invalid & BJ_INIT_ABIT;
1312
1313 unreachable = true;
1314 continue;
1315
1316 case BPF_LD:
1317 if (BPF_MODE(insns[i].code) == BPF_ABS)
1318 *hints |= BJ_HINT_ABS;
1319
1320 if (BPF_MODE(insns[i].code) == BPF_IND) {
1321 *hints |= BJ_HINT_IND | BJ_HINT_XREG;
1322 *initmask |= invalid & BJ_INIT_XBIT;
1323 }
1324
1325 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1326 (uint32_t)insns[i].k < memwords) {
1327 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1328 }
1329
1330 invalid &= ~BJ_INIT_ABIT;
1331 continue;
1332
1333 case BPF_LDX:
1334 *hints |= BJ_HINT_XREG | BJ_HINT_LDX;
1335
1336 if (BPF_MODE(insns[i].code) == BPF_MEM &&
1337 (uint32_t)insns[i].k < memwords) {
1338 *initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
1339 }
1340
1341 if (BPF_MODE(insns[i].code) == BPF_MSH &&
1342 BPF_SIZE(insns[i].code) == BPF_B) {
1343 *hints |= BJ_HINT_MSH;
1344 }
1345
1346 invalid &= ~BJ_INIT_XBIT;
1347 continue;
1348
1349 case BPF_ST:
1350 *initmask |= invalid & BJ_INIT_ABIT;
1351
1352 if ((uint32_t)insns[i].k < memwords)
1353 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1354
1355 continue;
1356
1357 case BPF_STX:
1358 *hints |= BJ_HINT_XREG;
1359 *initmask |= invalid & BJ_INIT_XBIT;
1360
1361 if ((uint32_t)insns[i].k < memwords)
1362 invalid &= ~BJ_INIT_MBIT(insns[i].k);
1363
1364 continue;
1365
1366 case BPF_ALU:
1367 *initmask |= invalid & BJ_INIT_ABIT;
1368
1369 if (insns[i].code != (BPF_ALU|BPF_NEG) &&
1370 BPF_SRC(insns[i].code) == BPF_X) {
1371 *hints |= BJ_HINT_XREG;
1372 *initmask |= invalid & BJ_INIT_XBIT;
1373 }
1374
1375 invalid &= ~BJ_INIT_ABIT;
1376 continue;
1377
1378 case BPF_MISC:
1379 switch (BPF_MISCOP(insns[i].code)) {
1380 case BPF_TAX: // X <- A
1381 *hints |= BJ_HINT_XREG;
1382 *initmask |= invalid & BJ_INIT_ABIT;
1383 invalid &= ~BJ_INIT_XBIT;
1384 continue;
1385
1386 case BPF_TXA: // A <- X
1387 *hints |= BJ_HINT_XREG;
1388 *initmask |= invalid & BJ_INIT_XBIT;
1389 invalid &= ~BJ_INIT_ABIT;
1390 continue;
1391
1392 case BPF_COPX:
1393 *hints |= BJ_HINT_XREG | BJ_HINT_COPX;
1394 /* FALLTHROUGH */
1395
1396 case BPF_COP:
1397 *hints |= BJ_HINT_COP;
1398 *initmask |= invalid & BJ_INIT_ABIT;
1399 invalid &= ~BJ_INIT_ABIT;
1400 continue;
1401 }
1402
1403 continue;
1404
1405 case BPF_JMP:
1406 /* Initialize abc_length for ABC pass. */
1407 insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
1408
1409 if (BPF_OP(insns[i].code) == BPF_JA) {
1410 jt = jf = insns[i].k;
1411 } else {
1412 jt = insns[i].jt;
1413 jf = insns[i].jf;
1414 }
1415
1416 if (jt >= insn_count - (i + 1) ||
1417 jf >= insn_count - (i + 1)) {
1418 return false;
1419 }
1420
1421 if (jt > 0 && jf > 0)
1422 unreachable = true;
1423
1424 jt += i + 1;
1425 jf += i + 1;
1426
1427 jtf = insn_dat[i].u.jdata.jtf;
1428
1429 jtf[0].jdata = &insn_dat[i].u.jdata;
1430 SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
1431 &jtf[0], entries);
1432
1433 if (jf != jt) {
1434 jtf[1].jdata = &insn_dat[i].u.jdata;
1435 SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
1436 &jtf[1], entries);
1437 }
1438
1439 insn_dat[jf].invalid |= invalid;
1440 insn_dat[jt].invalid |= invalid;
1441 invalid = 0;
1442
1443 continue;
1444 }
1445 }
1446
1447 return true;
1448 }
1449
1450 /*
1451 * Array Bounds Check Elimination (ABC) pass.
1452 */
1453 static void
1454 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1455 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1456 {
1457 struct bpfjit_jump *jmp;
1458 const struct bpf_insn *pc;
1459 struct bpfjit_insn_data *pd;
1460 size_t i;
1461 bpfjit_abc_length_t length, abc_length = 0;
1462
1463 const size_t extwords = GET_EXTWORDS(bc);
1464
1465 for (i = insn_count; i != 0; i--) {
1466 pc = &insns[i-1];
1467 pd = &insn_dat[i-1];
1468
1469 if (pd->unreachable)
1470 continue;
1471
1472 switch (BPF_CLASS(pc->code)) {
1473 case BPF_RET:
1474 /*
1475 * It's quite common for bpf programs to
1476 * check packet bytes in increasing order
1477 * and return zero if bytes don't match
1478 * specified critetion. Such programs disable
1479 * ABC optimization completely because for
1480 * every jump there is a branch with no read
1481 * instruction.
1482 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
1483 * is indistinguishable from out-of-bound load.
1484 * Therefore, abc_length can be set to
1485 * MAX_ABC_LENGTH and enable ABC for many
1486 * bpf programs.
1487 * If this optimization encounters any
1488 * instruction with a side effect, it will
1489 * reset abc_length.
1490 */
1491 if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
1492 abc_length = MAX_ABC_LENGTH;
1493 else
1494 abc_length = 0;
1495 break;
1496
1497 case BPF_MISC:
1498 if (BPF_MISCOP(pc->code) == BPF_COP ||
1499 BPF_MISCOP(pc->code) == BPF_COPX) {
1500 /* COP instructions can have side effects. */
1501 abc_length = 0;
1502 }
1503 break;
1504
1505 case BPF_ST:
1506 case BPF_STX:
1507 if (extwords != 0) {
1508 /* Write to memory is visible after a call. */
1509 abc_length = 0;
1510 }
1511 break;
1512
1513 case BPF_JMP:
1514 abc_length = pd->u.jdata.abc_length;
1515 break;
1516
1517 default:
1518 if (read_pkt_insn(pc, &length)) {
1519 if (abc_length < length)
1520 abc_length = length;
1521 pd->u.rdata.abc_length = abc_length;
1522 }
1523 break;
1524 }
1525
1526 SLIST_FOREACH(jmp, &pd->bjumps, entries) {
1527 if (jmp->jdata->abc_length > abc_length)
1528 jmp->jdata->abc_length = abc_length;
1529 }
1530 }
1531 }
1532
1533 static void
1534 optimize_pass3(const struct bpf_insn *insns,
1535 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1536 {
1537 struct bpfjit_jump *jmp;
1538 size_t i;
1539 bpfjit_abc_length_t checked_length = 0;
1540
1541 for (i = 0; i < insn_count; i++) {
1542 if (insn_dat[i].unreachable)
1543 continue;
1544
1545 SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
1546 if (jmp->jdata->checked_length < checked_length)
1547 checked_length = jmp->jdata->checked_length;
1548 }
1549
1550 if (BPF_CLASS(insns[i].code) == BPF_JMP) {
1551 insn_dat[i].u.jdata.checked_length = checked_length;
1552 } else if (read_pkt_insn(&insns[i], NULL)) {
1553 struct bpfjit_read_pkt_data *rdata =
1554 &insn_dat[i].u.rdata;
1555 rdata->check_length = 0;
1556 if (checked_length < rdata->abc_length) {
1557 checked_length = rdata->abc_length;
1558 rdata->check_length = checked_length;
1559 }
1560 }
1561 }
1562 }
1563
1564 static bool
1565 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
1566 struct bpfjit_insn_data *insn_dat, size_t insn_count,
1567 bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
1568 {
1569
1570 optimize_init(insn_dat, insn_count);
1571
1572 if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
1573 return false;
1574
1575 optimize_pass2(bc, insns, insn_dat, insn_count);
1576 optimize_pass3(insns, insn_dat, insn_count);
1577
1578 return true;
1579 }
1580
1581 /*
1582 * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
1583 */
1584 static int
1585 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
1586 {
1587
1588 /*
1589 * Note: all supported 64bit arches have 32bit multiply
1590 * instruction so SLJIT_INT_OP doesn't have any overhead.
1591 */
1592 switch (BPF_OP(pc->code)) {
1593 case BPF_ADD: return SLJIT_ADD;
1594 case BPF_SUB: return SLJIT_SUB;
1595 case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
1596 case BPF_OR: return SLJIT_OR;
1597 case BPF_XOR: return SLJIT_XOR;
1598 case BPF_AND: return SLJIT_AND;
1599 case BPF_LSH: return SLJIT_SHL;
1600 case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
1601 default:
1602 BJ_ASSERT(false);
1603 return 0;
1604 }
1605 }
1606
1607 /*
1608 * Convert BPF_JMP operations except BPF_JA to sljit condition.
1609 */
1610 static int
1611 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
1612 {
1613 /*
1614 * Note: all supported 64bit arches have 32bit comparison
1615 * instructions so SLJIT_INT_OP doesn't have any overhead.
1616 */
1617 int rv = SLJIT_INT_OP;
1618
1619 switch (BPF_OP(pc->code)) {
1620 case BPF_JGT:
1621 rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
1622 break;
1623 case BPF_JGE:
1624 rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
1625 break;
1626 case BPF_JEQ:
1627 rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
1628 break;
1629 case BPF_JSET:
1630 rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
1631 break;
1632 default:
1633 BJ_ASSERT(false);
1634 }
1635
1636 return rv;
1637 }
1638
1639 /*
1640 * Convert BPF_K and BPF_X to sljit register.
1641 */
1642 static int
1643 kx_to_reg(const struct bpf_insn *pc)
1644 {
1645
1646 switch (BPF_SRC(pc->code)) {
1647 case BPF_K: return SLJIT_IMM;
1648 case BPF_X: return BJ_XREG;
1649 default:
1650 BJ_ASSERT(false);
1651 return 0;
1652 }
1653 }
1654
1655 static sljit_sw
1656 kx_to_reg_arg(const struct bpf_insn *pc)
1657 {
1658
1659 switch (BPF_SRC(pc->code)) {
1660 case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
1661 case BPF_X: return 0; /* BJ_XREG, 0, */
1662 default:
1663 BJ_ASSERT(false);
1664 return 0;
1665 }
1666 }
1667
1668 static bool
1669 generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
1670 const bpf_ctx_t *bc, const struct bpf_insn *insns,
1671 struct bpfjit_insn_data *insn_dat, size_t insn_count)
1672 {
1673 /* a list of jumps to out-of-bound return from a generated function */
1674 struct sljit_jump **ret0;
1675 size_t ret0_size, ret0_maxsize;
1676
1677 struct sljit_jump *jump;
1678 struct sljit_label *label;
1679 const struct bpf_insn *pc;
1680 struct bpfjit_jump *bjump, *jtf;
1681 struct sljit_jump *to_mchain_jump;
1682
1683 size_t i;
1684 int status;
1685 int branching, negate;
1686 unsigned int rval, mode, src, op;
1687 uint32_t jt, jf;
1688
1689 bool unconditional_ret;
1690 bool rv;
1691
1692 const size_t extwords = GET_EXTWORDS(bc);
1693 const size_t memwords = GET_MEMWORDS(bc);
1694
1695 ret0 = NULL;
1696 rv = false;
1697
1698 ret0_size = 0;
1699 ret0_maxsize = 64;
1700 ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
1701 if (ret0 == NULL)
1702 goto fail;
1703
1704 /* reset sjump members of jdata */
1705 for (i = 0; i < insn_count; i++) {
1706 if (insn_dat[i].unreachable ||
1707 BPF_CLASS(insns[i].code) != BPF_JMP) {
1708 continue;
1709 }
1710
1711 jtf = insn_dat[i].u.jdata.jtf;
1712 jtf[0].sjump = jtf[1].sjump = NULL;
1713 }
1714
1715 /* main loop */
1716 for (i = 0; i < insn_count; i++) {
1717 if (insn_dat[i].unreachable)
1718 continue;
1719
1720 /*
1721 * Resolve jumps to the current insn.
1722 */
1723 label = NULL;
1724 SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
1725 if (bjump->sjump != NULL) {
1726 if (label == NULL)
1727 label = sljit_emit_label(compiler);
1728 if (label == NULL)
1729 goto fail;
1730 sljit_set_label(bjump->sjump, label);
1731 }
1732 }
1733
1734 to_mchain_jump = NULL;
1735 unconditional_ret = false;
1736
1737 if (read_pkt_insn(&insns[i], NULL)) {
1738 if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
1739 /* Jump to "return 0" unconditionally. */
1740 unconditional_ret = true;
1741 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1742 if (jump == NULL)
1743 goto fail;
1744 if (!append_jump(jump, &ret0,
1745 &ret0_size, &ret0_maxsize))
1746 goto fail;
1747 } else if (insn_dat[i].u.rdata.check_length > 0) {
1748 /* if (buflen < check_length) return 0; */
1749 jump = sljit_emit_cmp(compiler,
1750 SLJIT_C_LESS,
1751 BJ_BUFLEN, 0,
1752 SLJIT_IMM,
1753 insn_dat[i].u.rdata.check_length);
1754 if (jump == NULL)
1755 goto fail;
1756 #ifdef _KERNEL
1757 to_mchain_jump = jump;
1758 #else
1759 if (!append_jump(jump, &ret0,
1760 &ret0_size, &ret0_maxsize))
1761 goto fail;
1762 #endif
1763 }
1764 }
1765
1766 pc = &insns[i];
1767 switch (BPF_CLASS(pc->code)) {
1768
1769 default:
1770 goto fail;
1771
1772 case BPF_LD:
1773 /* BPF_LD+BPF_IMM A <- k */
1774 if (pc->code == (BPF_LD|BPF_IMM)) {
1775 status = sljit_emit_op1(compiler,
1776 SLJIT_MOV,
1777 BJ_AREG, 0,
1778 SLJIT_IMM, (uint32_t)pc->k);
1779 if (status != SLJIT_SUCCESS)
1780 goto fail;
1781
1782 continue;
1783 }
1784
1785 /* BPF_LD+BPF_MEM A <- M[k] */
1786 if (pc->code == (BPF_LD|BPF_MEM)) {
1787 if ((uint32_t)pc->k >= memwords)
1788 goto fail;
1789 status = emit_memload(compiler,
1790 BJ_AREG, pc->k, extwords);
1791 if (status != SLJIT_SUCCESS)
1792 goto fail;
1793
1794 continue;
1795 }
1796
1797 /* BPF_LD+BPF_W+BPF_LEN A <- len */
1798 if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
1799 status = sljit_emit_op1(compiler,
1800 SLJIT_MOV, /* size_t source */
1801 BJ_AREG, 0,
1802 SLJIT_MEM1(BJ_ARGS),
1803 offsetof(struct bpf_args, wirelen));
1804 if (status != SLJIT_SUCCESS)
1805 goto fail;
1806
1807 continue;
1808 }
1809
1810 mode = BPF_MODE(pc->code);
1811 if (mode != BPF_ABS && mode != BPF_IND)
1812 goto fail;
1813
1814 if (unconditional_ret)
1815 continue;
1816
1817 status = emit_pkt_read(compiler, hints, pc,
1818 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1819 if (status != SLJIT_SUCCESS)
1820 goto fail;
1821
1822 continue;
1823
1824 case BPF_LDX:
1825 mode = BPF_MODE(pc->code);
1826
1827 /* BPF_LDX+BPF_W+BPF_IMM X <- k */
1828 if (mode == BPF_IMM) {
1829 if (BPF_SIZE(pc->code) != BPF_W)
1830 goto fail;
1831 status = sljit_emit_op1(compiler,
1832 SLJIT_MOV,
1833 BJ_XREG, 0,
1834 SLJIT_IMM, (uint32_t)pc->k);
1835 if (status != SLJIT_SUCCESS)
1836 goto fail;
1837
1838 continue;
1839 }
1840
1841 /* BPF_LDX+BPF_W+BPF_LEN X <- len */
1842 if (mode == BPF_LEN) {
1843 if (BPF_SIZE(pc->code) != BPF_W)
1844 goto fail;
1845 status = sljit_emit_op1(compiler,
1846 SLJIT_MOV, /* size_t source */
1847 BJ_XREG, 0,
1848 SLJIT_MEM1(BJ_ARGS),
1849 offsetof(struct bpf_args, wirelen));
1850 if (status != SLJIT_SUCCESS)
1851 goto fail;
1852
1853 continue;
1854 }
1855
1856 /* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
1857 if (mode == BPF_MEM) {
1858 if (BPF_SIZE(pc->code) != BPF_W)
1859 goto fail;
1860 if ((uint32_t)pc->k >= memwords)
1861 goto fail;
1862 status = emit_memload(compiler,
1863 BJ_XREG, pc->k, extwords);
1864 if (status != SLJIT_SUCCESS)
1865 goto fail;
1866
1867 continue;
1868 }
1869
1870 /* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
1871 if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
1872 goto fail;
1873
1874 if (unconditional_ret)
1875 continue;
1876
1877 status = emit_msh(compiler, hints, pc,
1878 to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
1879 if (status != SLJIT_SUCCESS)
1880 goto fail;
1881
1882 continue;
1883
1884 case BPF_ST:
1885 if (pc->code != BPF_ST ||
1886 (uint32_t)pc->k >= memwords) {
1887 goto fail;
1888 }
1889
1890 status = emit_memstore(compiler,
1891 BJ_AREG, pc->k, extwords);
1892 if (status != SLJIT_SUCCESS)
1893 goto fail;
1894
1895 continue;
1896
1897 case BPF_STX:
1898 if (pc->code != BPF_STX ||
1899 (uint32_t)pc->k >= memwords) {
1900 goto fail;
1901 }
1902
1903 status = emit_memstore(compiler,
1904 BJ_XREG, pc->k, extwords);
1905 if (status != SLJIT_SUCCESS)
1906 goto fail;
1907
1908 continue;
1909
1910 case BPF_ALU:
1911 if (pc->code == (BPF_ALU|BPF_NEG)) {
1912 status = sljit_emit_op1(compiler,
1913 SLJIT_NEG,
1914 BJ_AREG, 0,
1915 BJ_AREG, 0);
1916 if (status != SLJIT_SUCCESS)
1917 goto fail;
1918
1919 continue;
1920 }
1921
1922 op = BPF_OP(pc->code);
1923 if (op != BPF_DIV && op != BPF_MOD) {
1924 status = sljit_emit_op2(compiler,
1925 bpf_alu_to_sljit_op(pc),
1926 BJ_AREG, 0,
1927 BJ_AREG, 0,
1928 kx_to_reg(pc), kx_to_reg_arg(pc));
1929 if (status != SLJIT_SUCCESS)
1930 goto fail;
1931
1932 continue;
1933 }
1934
1935 /* BPF_DIV/BPF_MOD */
1936
1937 src = BPF_SRC(pc->code);
1938 if (src != BPF_X && src != BPF_K)
1939 goto fail;
1940
1941 /* division by zero? */
1942 if (src == BPF_X) {
1943 jump = sljit_emit_cmp(compiler,
1944 SLJIT_C_EQUAL|SLJIT_INT_OP,
1945 BJ_XREG, 0,
1946 SLJIT_IMM, 0);
1947 if (jump == NULL)
1948 goto fail;
1949 if (!append_jump(jump, &ret0,
1950 &ret0_size, &ret0_maxsize))
1951 goto fail;
1952 } else if (pc->k == 0) {
1953 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
1954 if (jump == NULL)
1955 goto fail;
1956 if (!append_jump(jump, &ret0,
1957 &ret0_size, &ret0_maxsize))
1958 goto fail;
1959 }
1960
1961 if (src == BPF_X) {
1962 status = emit_moddiv(compiler, pc);
1963 if (status != SLJIT_SUCCESS)
1964 goto fail;
1965 } else if (pc->k != 0) {
1966 if (pc->k & (pc->k - 1)) {
1967 status = emit_moddiv(compiler, pc);
1968 } else {
1969 status = emit_pow2_moddiv(compiler, pc);
1970 }
1971 if (status != SLJIT_SUCCESS)
1972 goto fail;
1973 }
1974
1975 continue;
1976
1977 case BPF_JMP:
1978 op = BPF_OP(pc->code);
1979 if (op == BPF_JA) {
1980 jt = jf = pc->k;
1981 } else {
1982 jt = pc->jt;
1983 jf = pc->jf;
1984 }
1985
1986 negate = (jt == 0) ? 1 : 0;
1987 branching = (jt == jf) ? 0 : 1;
1988 jtf = insn_dat[i].u.jdata.jtf;
1989
1990 if (branching) {
1991 if (op != BPF_JSET) {
1992 jump = sljit_emit_cmp(compiler,
1993 bpf_jmp_to_sljit_cond(pc, negate),
1994 BJ_AREG, 0,
1995 kx_to_reg(pc), kx_to_reg_arg(pc));
1996 } else {
1997 status = sljit_emit_op2(compiler,
1998 SLJIT_AND,
1999 BJ_TMP1REG, 0,
2000 BJ_AREG, 0,
2001 kx_to_reg(pc), kx_to_reg_arg(pc));
2002 if (status != SLJIT_SUCCESS)
2003 goto fail;
2004
2005 jump = sljit_emit_cmp(compiler,
2006 bpf_jmp_to_sljit_cond(pc, negate),
2007 BJ_TMP1REG, 0,
2008 SLJIT_IMM, 0);
2009 }
2010
2011 if (jump == NULL)
2012 goto fail;
2013
2014 BJ_ASSERT(jtf[negate].sjump == NULL);
2015 jtf[negate].sjump = jump;
2016 }
2017
2018 if (!branching || (jt != 0 && jf != 0)) {
2019 jump = sljit_emit_jump(compiler, SLJIT_JUMP);
2020 if (jump == NULL)
2021 goto fail;
2022
2023 BJ_ASSERT(jtf[branching].sjump == NULL);
2024 jtf[branching].sjump = jump;
2025 }
2026
2027 continue;
2028
2029 case BPF_RET:
2030 rval = BPF_RVAL(pc->code);
2031 if (rval == BPF_X)
2032 goto fail;
2033
2034 /* BPF_RET+BPF_K accept k bytes */
2035 if (rval == BPF_K) {
2036 status = sljit_emit_return(compiler,
2037 SLJIT_MOV_UI,
2038 SLJIT_IMM, (uint32_t)pc->k);
2039 if (status != SLJIT_SUCCESS)
2040 goto fail;
2041 }
2042
2043 /* BPF_RET+BPF_A accept A bytes */
2044 if (rval == BPF_A) {
2045 status = sljit_emit_return(compiler,
2046 SLJIT_MOV_UI,
2047 BJ_AREG, 0);
2048 if (status != SLJIT_SUCCESS)
2049 goto fail;
2050 }
2051
2052 continue;
2053
2054 case BPF_MISC:
2055 switch (BPF_MISCOP(pc->code)) {
2056 case BPF_TAX:
2057 status = sljit_emit_op1(compiler,
2058 SLJIT_MOV_UI,
2059 BJ_XREG, 0,
2060 BJ_AREG, 0);
2061 if (status != SLJIT_SUCCESS)
2062 goto fail;
2063
2064 continue;
2065
2066 case BPF_TXA:
2067 status = sljit_emit_op1(compiler,
2068 SLJIT_MOV,
2069 BJ_AREG, 0,
2070 BJ_XREG, 0);
2071 if (status != SLJIT_SUCCESS)
2072 goto fail;
2073
2074 continue;
2075
2076 case BPF_COP:
2077 case BPF_COPX:
2078 if (bc == NULL || bc->copfuncs == NULL)
2079 goto fail;
2080 if (BPF_MISCOP(pc->code) == BPF_COP &&
2081 (uint32_t)pc->k >= bc->nfuncs) {
2082 goto fail;
2083 }
2084
2085 status = emit_cop(compiler, hints, bc, pc,
2086 &ret0, &ret0_size, &ret0_maxsize);
2087 if (status != SLJIT_SUCCESS)
2088 goto fail;
2089
2090 continue;
2091 }
2092
2093 goto fail;
2094 } /* switch */
2095 } /* main loop */
2096
2097 BJ_ASSERT(ret0_size <= ret0_maxsize);
2098
2099 if (ret0_size > 0) {
2100 label = sljit_emit_label(compiler);
2101 if (label == NULL)
2102 goto fail;
2103 for (i = 0; i < ret0_size; i++)
2104 sljit_set_label(ret0[i], label);
2105 }
2106
2107 status = sljit_emit_return(compiler,
2108 SLJIT_MOV_UI,
2109 SLJIT_IMM, 0);
2110 if (status != SLJIT_SUCCESS)
2111 goto fail;
2112
2113 rv = true;
2114
2115 fail:
2116 if (ret0 != NULL)
2117 BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
2118
2119 return rv;
2120 }
2121
2122 bpfjit_func_t
2123 bpfjit_generate_code(const bpf_ctx_t *bc,
2124 const struct bpf_insn *insns, size_t insn_count)
2125 {
2126 void *rv;
2127 struct sljit_compiler *compiler;
2128
2129 size_t i;
2130 int status;
2131
2132 /* optimization related */
2133 bpf_memword_init_t initmask;
2134 bpfjit_hint_t hints;
2135
2136 /* memory store location for initial zero initialization */
2137 sljit_si mem_reg;
2138 sljit_sw mem_off;
2139
2140 struct bpfjit_insn_data *insn_dat;
2141
2142 const size_t extwords = GET_EXTWORDS(bc);
2143 const size_t memwords = GET_MEMWORDS(bc);
2144 const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
2145
2146 rv = NULL;
2147 compiler = NULL;
2148 insn_dat = NULL;
2149
2150 if (memwords > MAX_MEMWORDS)
2151 goto fail;
2152
2153 if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
2154 goto fail;
2155
2156 insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
2157 if (insn_dat == NULL)
2158 goto fail;
2159
2160 if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
2161 goto fail;
2162
2163 compiler = sljit_create_compiler();
2164 if (compiler == NULL)
2165 goto fail;
2166
2167 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
2168 sljit_compiler_verbose(compiler, stderr);
2169 #endif
2170
2171 status = sljit_emit_enter(compiler,
2172 2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
2173 if (status != SLJIT_SUCCESS)
2174 goto fail;
2175
2176 if (hints & BJ_HINT_COP) {
2177 /* save ctx argument */
2178 status = sljit_emit_op1(compiler,
2179 SLJIT_MOV_P,
2180 SLJIT_MEM1(SLJIT_LOCALS_REG),
2181 offsetof(struct bpfjit_stack, ctx),
2182 BJ_CTX_ARG, 0);
2183 if (status != SLJIT_SUCCESS)
2184 goto fail;
2185 }
2186
2187 if (extwords == 0) {
2188 mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
2189 mem_off = offsetof(struct bpfjit_stack, mem);
2190 } else {
2191 /* copy "mem" argument from bpf_args to bpfjit_stack */
2192 status = sljit_emit_op1(compiler,
2193 SLJIT_MOV_P,
2194 BJ_TMP1REG, 0,
2195 SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
2196 if (status != SLJIT_SUCCESS)
2197 goto fail;
2198
2199 status = sljit_emit_op1(compiler,
2200 SLJIT_MOV_P,
2201 SLJIT_MEM1(SLJIT_LOCALS_REG),
2202 offsetof(struct bpfjit_stack, extmem),
2203 BJ_TMP1REG, 0);
2204 if (status != SLJIT_SUCCESS)
2205 goto fail;
2206
2207 mem_reg = SLJIT_MEM1(BJ_TMP1REG);
2208 mem_off = 0;
2209 }
2210
2211 /*
2212 * Exclude pre-initialised external memory words but keep
2213 * initialization statuses of A and X registers in case
2214 * bc->preinited wrongly sets those two bits.
2215 */
2216 initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
2217
2218 #if defined(_KERNEL)
2219 /* bpf_filter() checks initialization of memwords. */
2220 BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
2221 #endif
2222 for (i = 0; i < memwords; i++) {
2223 if (initmask & BJ_INIT_MBIT(i)) {
2224 /* M[i] = 0; */
2225 status = sljit_emit_op1(compiler,
2226 SLJIT_MOV_UI,
2227 mem_reg, mem_off + i * sizeof(uint32_t),
2228 SLJIT_IMM, 0);
2229 if (status != SLJIT_SUCCESS)
2230 goto fail;
2231 }
2232 }
2233
2234 if (initmask & BJ_INIT_ABIT) {
2235 /* A = 0; */
2236 status = sljit_emit_op1(compiler,
2237 SLJIT_MOV,
2238 BJ_AREG, 0,
2239 SLJIT_IMM, 0);
2240 if (status != SLJIT_SUCCESS)
2241 goto fail;
2242 }
2243
2244 if (initmask & BJ_INIT_XBIT) {
2245 /* X = 0; */
2246 status = sljit_emit_op1(compiler,
2247 SLJIT_MOV,
2248 BJ_XREG, 0,
2249 SLJIT_IMM, 0);
2250 if (status != SLJIT_SUCCESS)
2251 goto fail;
2252 }
2253
2254 status = load_buf_buflen(compiler);
2255 if (status != SLJIT_SUCCESS)
2256 goto fail;
2257
2258 if (!generate_insn_code(compiler, hints,
2259 bc, insns, insn_dat, insn_count)) {
2260 goto fail;
2261 }
2262
2263 rv = sljit_generate_code(compiler);
2264
2265 fail:
2266 if (compiler != NULL)
2267 sljit_free_compiler(compiler);
2268
2269 if (insn_dat != NULL)
2270 BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
2271
2272 return (bpfjit_func_t)rv;
2273 }
2274
2275 void
2276 bpfjit_free_code(bpfjit_func_t code)
2277 {
2278
2279 sljit_free_code((void *)code);
2280 }
2281