Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.37
      1 /*	$NetBSD: bpfjit.c,v 1.37 2014/12/08 00:44:45 justin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.37 2014/12/08 00:44:45 justin Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.37 2014/12/08 00:44:45 justin Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #else
     65 #include <sys/atomic.h>
     66 #include <sys/module.h>
     67 #endif
     68 
     69 #define	__BPF_PRIVATE
     70 #include <net/bpf.h>
     71 #include <net/bpfjit.h>
     72 #include <sljitLir.h>
     73 
     74 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     75 #include <stdio.h> /* for stderr */
     76 #endif
     77 
     78 /*
     79  * Arguments of generated bpfjit_func_t.
     80  * The first argument is reassigned upon entry
     81  * to a more frequently used buf argument.
     82  */
     83 #define BJ_CTX_ARG	SLJIT_SAVED_REG1
     84 #define BJ_ARGS		SLJIT_SAVED_REG2
     85 
     86 /*
     87  * Permanent register assignments.
     88  */
     89 #define BJ_BUF		SLJIT_SAVED_REG1
     90 //#define BJ_ARGS	SLJIT_SAVED_REG2
     91 #define BJ_BUFLEN	SLJIT_SAVED_REG3
     92 #define BJ_AREG		SLJIT_SCRATCH_REG1
     93 #define BJ_TMP1REG	SLJIT_SCRATCH_REG2
     94 #define BJ_TMP2REG	SLJIT_SCRATCH_REG3
     95 #define BJ_XREG		SLJIT_TEMPORARY_EREG1
     96 #define BJ_TMP3REG	SLJIT_TEMPORARY_EREG2
     97 
     98 #ifdef _KERNEL
     99 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    100 #else
    101 #define MAX_MEMWORDS BPF_MEMWORDS
    102 #endif
    103 
    104 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    105 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    106 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    107 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    108 
    109 /*
    110  * Get a number of memwords and external memwords from a bpf_ctx object.
    111  */
    112 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    113 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    114 
    115 /*
    116  * Optimization hints.
    117  */
    118 typedef unsigned int bpfjit_hint_t;
    119 #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    120 #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    121 #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    122 #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    123 #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    124 #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    125 #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    126 #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    127 
    128 /*
    129  * Datatype for Array Bounds Check Elimination (ABC) pass.
    130  */
    131 typedef uint64_t bpfjit_abc_length_t;
    132 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    133 
    134 struct bpfjit_stack
    135 {
    136 	bpf_ctx_t *ctx;
    137 	uint32_t *extmem; /* pointer to external memory store */
    138 	uint32_t reg; /* saved A or X register */
    139 #ifdef _KERNEL
    140 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    141 #endif
    142 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    143 };
    144 
    145 /*
    146  * Data for BPF_JMP instruction.
    147  * Forward declaration for struct bpfjit_jump.
    148  */
    149 struct bpfjit_jump_data;
    150 
    151 /*
    152  * Node of bjumps list.
    153  */
    154 struct bpfjit_jump {
    155 	struct sljit_jump *sjump;
    156 	SLIST_ENTRY(bpfjit_jump) entries;
    157 	struct bpfjit_jump_data *jdata;
    158 };
    159 
    160 /*
    161  * Data for BPF_JMP instruction.
    162  */
    163 struct bpfjit_jump_data {
    164 	/*
    165 	 * These entries make up bjumps list:
    166 	 * jtf[0] - when coming from jt path,
    167 	 * jtf[1] - when coming from jf path.
    168 	 */
    169 	struct bpfjit_jump jtf[2];
    170 	/*
    171 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    172 	 */
    173 	bpfjit_abc_length_t abc_length;
    174 	/*
    175 	 * Length checked by the last out-of-bounds check.
    176 	 */
    177 	bpfjit_abc_length_t checked_length;
    178 };
    179 
    180 /*
    181  * Data for "read from packet" instructions.
    182  * See also read_pkt_insn() function below.
    183  */
    184 struct bpfjit_read_pkt_data {
    185 	/*
    186 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    187 	 */
    188 	bpfjit_abc_length_t abc_length;
    189 	/*
    190 	 * If positive, emit "if (buflen < check_length) return 0"
    191 	 * out-of-bounds check.
    192 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    193 	 */
    194 	bpfjit_abc_length_t check_length;
    195 };
    196 
    197 /*
    198  * Additional (optimization-related) data for bpf_insn.
    199  */
    200 struct bpfjit_insn_data {
    201 	/* List of jumps to this insn. */
    202 	SLIST_HEAD(, bpfjit_jump) bjumps;
    203 
    204 	union {
    205 		struct bpfjit_jump_data     jdata;
    206 		struct bpfjit_read_pkt_data rdata;
    207 	} u;
    208 
    209 	bpf_memword_init_t invalid;
    210 	bool unreachable;
    211 };
    212 
    213 #ifdef _KERNEL
    214 
    215 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    216 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    217 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    218 
    219 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    220 
    221 static int
    222 bpfjit_modcmd(modcmd_t cmd, void *arg)
    223 {
    224 
    225 	switch (cmd) {
    226 	case MODULE_CMD_INIT:
    227 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    228 		membar_producer();
    229 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    230 		membar_producer();
    231 		return 0;
    232 
    233 	case MODULE_CMD_FINI:
    234 		return EOPNOTSUPP;
    235 
    236 	default:
    237 		return ENOTTY;
    238 	}
    239 }
    240 #endif
    241 
    242 /*
    243  * Return a number of scratch registers to pass
    244  * to sljit_emit_enter() function.
    245  */
    246 static sljit_si
    247 nscratches(bpfjit_hint_t hints)
    248 {
    249 	sljit_si rv = 2;
    250 
    251 #ifdef _KERNEL
    252 	if (hints & BJ_HINT_PKT)
    253 		rv = 3; /* xcall with three arguments */
    254 #endif
    255 
    256 	if (hints & BJ_HINT_IND)
    257 		rv = 3; /* uses BJ_TMP2REG */
    258 
    259 	if (hints & BJ_HINT_COP)
    260 		rv = 3; /* calls copfunc with three arguments */
    261 
    262 	if (hints & BJ_HINT_XREG)
    263 		rv = 4; /* uses BJ_XREG */
    264 
    265 #ifdef _KERNEL
    266 	if (hints & BJ_HINT_LDX)
    267 		rv = 5; /* uses BJ_TMP3REG */
    268 #endif
    269 
    270 	if (hints & BJ_HINT_COPX)
    271 		rv = 5; /* uses BJ_TMP3REG */
    272 
    273 	return rv;
    274 }
    275 
    276 /*
    277  * Return a number of saved registers to pass
    278  * to sljit_emit_enter() function.
    279  */
    280 static sljit_si
    281 nsaveds(bpfjit_hint_t hints)
    282 {
    283 	sljit_si rv = 3;
    284 
    285 	return rv;
    286 }
    287 
    288 static uint32_t
    289 read_width(const struct bpf_insn *pc)
    290 {
    291 
    292 	switch (BPF_SIZE(pc->code)) {
    293 	case BPF_W:
    294 		return 4;
    295 	case BPF_H:
    296 		return 2;
    297 	case BPF_B:
    298 		return 1;
    299 	default:
    300 		BJ_ASSERT(false);
    301 		return 0;
    302 	}
    303 }
    304 
    305 /*
    306  * Copy buf and buflen members of bpf_args from BJ_ARGS
    307  * pointer to BJ_BUF and BJ_BUFLEN registers.
    308  */
    309 static int
    310 load_buf_buflen(struct sljit_compiler *compiler)
    311 {
    312 	int status;
    313 
    314 	status = sljit_emit_op1(compiler,
    315 	    SLJIT_MOV_P,
    316 	    BJ_BUF, 0,
    317 	    SLJIT_MEM1(BJ_ARGS),
    318 	    offsetof(struct bpf_args, pkt));
    319 	if (status != SLJIT_SUCCESS)
    320 		return status;
    321 
    322 	status = sljit_emit_op1(compiler,
    323 	    SLJIT_MOV, /* size_t source */
    324 	    BJ_BUFLEN, 0,
    325 	    SLJIT_MEM1(BJ_ARGS),
    326 	    offsetof(struct bpf_args, buflen));
    327 
    328 	return status;
    329 }
    330 
    331 static bool
    332 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    333 {
    334 	struct sljit_jump **newptr;
    335 	const size_t elemsz = sizeof(struct sljit_jump *);
    336 	size_t old_size = *size;
    337 	size_t new_size = 2 * old_size;
    338 
    339 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    340 		return false;
    341 
    342 	newptr = BJ_ALLOC(new_size * elemsz);
    343 	if (newptr == NULL)
    344 		return false;
    345 
    346 	memcpy(newptr, *jumps, old_size * elemsz);
    347 	BJ_FREE(*jumps, old_size * elemsz);
    348 
    349 	*jumps = newptr;
    350 	*size = new_size;
    351 	return true;
    352 }
    353 
    354 static bool
    355 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    356     size_t *size, size_t *max_size)
    357 {
    358 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    359 		return false;
    360 
    361 	(*jumps)[(*size)++] = jump;
    362 	return true;
    363 }
    364 
    365 /*
    366  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    367  */
    368 static int
    369 emit_read8(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    370 {
    371 
    372 	return sljit_emit_op1(compiler,
    373 	    SLJIT_MOV_UB,
    374 	    BJ_AREG, 0,
    375 	    SLJIT_MEM1(src), k);
    376 }
    377 
    378 /*
    379  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    380  */
    381 static int
    382 emit_read16(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    383 {
    384 	int status;
    385 
    386 	BJ_ASSERT(k <= UINT32_MAX - 1);
    387 
    388 	/* A = buf[k]; */
    389 	status = sljit_emit_op1(compiler,
    390 	    SLJIT_MOV_UB,
    391 	    BJ_AREG, 0,
    392 	    SLJIT_MEM1(src), k);
    393 	if (status != SLJIT_SUCCESS)
    394 		return status;
    395 
    396 	/* tmp1 = buf[k+1]; */
    397 	status = sljit_emit_op1(compiler,
    398 	    SLJIT_MOV_UB,
    399 	    BJ_TMP1REG, 0,
    400 	    SLJIT_MEM1(src), k+1);
    401 	if (status != SLJIT_SUCCESS)
    402 		return status;
    403 
    404 	/* A = A << 8; */
    405 	status = sljit_emit_op2(compiler,
    406 	    SLJIT_SHL,
    407 	    BJ_AREG, 0,
    408 	    BJ_AREG, 0,
    409 	    SLJIT_IMM, 8);
    410 	if (status != SLJIT_SUCCESS)
    411 		return status;
    412 
    413 	/* A = A + tmp1; */
    414 	status = sljit_emit_op2(compiler,
    415 	    SLJIT_ADD,
    416 	    BJ_AREG, 0,
    417 	    BJ_AREG, 0,
    418 	    BJ_TMP1REG, 0);
    419 	return status;
    420 }
    421 
    422 /*
    423  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    424  */
    425 static int
    426 emit_read32(struct sljit_compiler *compiler, sljit_si src, uint32_t k)
    427 {
    428 	int status;
    429 
    430 	BJ_ASSERT(k <= UINT32_MAX - 3);
    431 
    432 	/* A = buf[k]; */
    433 	status = sljit_emit_op1(compiler,
    434 	    SLJIT_MOV_UB,
    435 	    BJ_AREG, 0,
    436 	    SLJIT_MEM1(src), k);
    437 	if (status != SLJIT_SUCCESS)
    438 		return status;
    439 
    440 	/* tmp1 = buf[k+1]; */
    441 	status = sljit_emit_op1(compiler,
    442 	    SLJIT_MOV_UB,
    443 	    BJ_TMP1REG, 0,
    444 	    SLJIT_MEM1(src), k+1);
    445 	if (status != SLJIT_SUCCESS)
    446 		return status;
    447 
    448 	/* A = A << 8; */
    449 	status = sljit_emit_op2(compiler,
    450 	    SLJIT_SHL,
    451 	    BJ_AREG, 0,
    452 	    BJ_AREG, 0,
    453 	    SLJIT_IMM, 8);
    454 	if (status != SLJIT_SUCCESS)
    455 		return status;
    456 
    457 	/* A = A + tmp1; */
    458 	status = sljit_emit_op2(compiler,
    459 	    SLJIT_ADD,
    460 	    BJ_AREG, 0,
    461 	    BJ_AREG, 0,
    462 	    BJ_TMP1REG, 0);
    463 	if (status != SLJIT_SUCCESS)
    464 		return status;
    465 
    466 	/* tmp1 = buf[k+2]; */
    467 	status = sljit_emit_op1(compiler,
    468 	    SLJIT_MOV_UB,
    469 	    BJ_TMP1REG, 0,
    470 	    SLJIT_MEM1(src), k+2);
    471 	if (status != SLJIT_SUCCESS)
    472 		return status;
    473 
    474 	/* A = A << 8; */
    475 	status = sljit_emit_op2(compiler,
    476 	    SLJIT_SHL,
    477 	    BJ_AREG, 0,
    478 	    BJ_AREG, 0,
    479 	    SLJIT_IMM, 8);
    480 	if (status != SLJIT_SUCCESS)
    481 		return status;
    482 
    483 	/* A = A + tmp1; */
    484 	status = sljit_emit_op2(compiler,
    485 	    SLJIT_ADD,
    486 	    BJ_AREG, 0,
    487 	    BJ_AREG, 0,
    488 	    BJ_TMP1REG, 0);
    489 	if (status != SLJIT_SUCCESS)
    490 		return status;
    491 
    492 	/* tmp1 = buf[k+3]; */
    493 	status = sljit_emit_op1(compiler,
    494 	    SLJIT_MOV_UB,
    495 	    BJ_TMP1REG, 0,
    496 	    SLJIT_MEM1(src), k+3);
    497 	if (status != SLJIT_SUCCESS)
    498 		return status;
    499 
    500 	/* A = A << 8; */
    501 	status = sljit_emit_op2(compiler,
    502 	    SLJIT_SHL,
    503 	    BJ_AREG, 0,
    504 	    BJ_AREG, 0,
    505 	    SLJIT_IMM, 8);
    506 	if (status != SLJIT_SUCCESS)
    507 		return status;
    508 
    509 	/* A = A + tmp1; */
    510 	status = sljit_emit_op2(compiler,
    511 	    SLJIT_ADD,
    512 	    BJ_AREG, 0,
    513 	    BJ_AREG, 0,
    514 	    BJ_TMP1REG, 0);
    515 	return status;
    516 }
    517 
    518 #ifdef _KERNEL
    519 /*
    520  * Emit code for m_xword/m_xhalf/m_xbyte call.
    521  *
    522  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    523  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    524  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    525  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    526  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    527  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    528  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    529  */
    530 static int
    531 emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    532     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    533     size_t *ret0_size, size_t *ret0_maxsize,
    534     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    535 {
    536 #if BJ_XREG == SLJIT_RETURN_REG   || \
    537     BJ_XREG == SLJIT_SCRATCH_REG1 || \
    538     BJ_XREG == SLJIT_SCRATCH_REG2 || \
    539     BJ_XREG == SLJIT_SCRATCH_REG3
    540 #error "Not supported assignment of registers."
    541 #endif
    542 	struct sljit_jump *jump;
    543 	sljit_si save_reg;
    544 	int status;
    545 
    546 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    547 
    548 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    549 		/* save A or X */
    550 		status = sljit_emit_op1(compiler,
    551 		    SLJIT_MOV_UI, /* uint32_t destination */
    552 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    553 		    offsetof(struct bpfjit_stack, reg),
    554 		    save_reg, 0);
    555 		if (status != SLJIT_SUCCESS)
    556 			return status;
    557 	}
    558 
    559 	/*
    560 	 * Prepare registers for fn(mbuf, k, &err) call.
    561 	 */
    562 	status = sljit_emit_op1(compiler,
    563 	    SLJIT_MOV,
    564 	    SLJIT_SCRATCH_REG1, 0,
    565 	    BJ_BUF, 0);
    566 	if (status != SLJIT_SUCCESS)
    567 		return status;
    568 
    569 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    570 		if (pc->k == 0) {
    571 			/* k = X; */
    572 			status = sljit_emit_op1(compiler,
    573 			    SLJIT_MOV,
    574 			    SLJIT_SCRATCH_REG2, 0,
    575 			    BJ_XREG, 0);
    576 			if (status != SLJIT_SUCCESS)
    577 				return status;
    578 		} else {
    579 			/* if (X > UINT32_MAX - pc->k) return 0; */
    580 			jump = sljit_emit_cmp(compiler,
    581 			    SLJIT_C_GREATER,
    582 			    BJ_XREG, 0,
    583 			    SLJIT_IMM, UINT32_MAX - pc->k);
    584 			if (jump == NULL)
    585 				return SLJIT_ERR_ALLOC_FAILED;
    586 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    587 				return SLJIT_ERR_ALLOC_FAILED;
    588 
    589 			/* k = X + pc->k; */
    590 			status = sljit_emit_op2(compiler,
    591 			    SLJIT_ADD,
    592 			    SLJIT_SCRATCH_REG2, 0,
    593 			    BJ_XREG, 0,
    594 			    SLJIT_IMM, (uint32_t)pc->k);
    595 			if (status != SLJIT_SUCCESS)
    596 				return status;
    597 		}
    598 	} else {
    599 		/* k = pc->k */
    600 		status = sljit_emit_op1(compiler,
    601 		    SLJIT_MOV,
    602 		    SLJIT_SCRATCH_REG2, 0,
    603 		    SLJIT_IMM, (uint32_t)pc->k);
    604 		if (status != SLJIT_SUCCESS)
    605 			return status;
    606 	}
    607 
    608 	/*
    609 	 * The third argument of fn is an address on stack.
    610 	 */
    611 	status = sljit_get_local_base(compiler,
    612 	    SLJIT_SCRATCH_REG3, 0,
    613 	    offsetof(struct bpfjit_stack, err));
    614 	if (status != SLJIT_SUCCESS)
    615 		return status;
    616 
    617 	/* fn(buf, k, &err); */
    618 	status = sljit_emit_ijump(compiler,
    619 	    SLJIT_CALL3,
    620 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    621 	if (status != SLJIT_SUCCESS)
    622 		return status;
    623 
    624 	if (dst != SLJIT_RETURN_REG) {
    625 		/* move return value to dst */
    626 		status = sljit_emit_op1(compiler,
    627 		    SLJIT_MOV,
    628 		    dst, 0,
    629 		    SLJIT_RETURN_REG, 0);
    630 		if (status != SLJIT_SUCCESS)
    631 			return status;
    632 	}
    633 
    634 	/* if (*err != 0) return 0; */
    635 	jump = sljit_emit_cmp(compiler,
    636 	    SLJIT_C_NOT_EQUAL|SLJIT_INT_OP,
    637 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    638 	    offsetof(struct bpfjit_stack, err),
    639 	    SLJIT_IMM, 0);
    640 	if (jump == NULL)
    641 		return SLJIT_ERR_ALLOC_FAILED;
    642 
    643 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    644 		return SLJIT_ERR_ALLOC_FAILED;
    645 
    646 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    647 		/* restore A or X */
    648 		status = sljit_emit_op1(compiler,
    649 		    SLJIT_MOV_UI, /* uint32_t source */
    650 		    save_reg, 0,
    651 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    652 		    offsetof(struct bpfjit_stack, reg));
    653 		if (status != SLJIT_SUCCESS)
    654 			return status;
    655 	}
    656 
    657 	return SLJIT_SUCCESS;
    658 }
    659 #endif
    660 
    661 /*
    662  * Emit code for BPF_COP and BPF_COPX instructions.
    663  */
    664 static int
    665 emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    666     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    667     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    668 {
    669 #if BJ_XREG    == SLJIT_RETURN_REG   || \
    670     BJ_XREG    == SLJIT_SCRATCH_REG1 || \
    671     BJ_XREG    == SLJIT_SCRATCH_REG2 || \
    672     BJ_XREG    == SLJIT_SCRATCH_REG3 || \
    673     BJ_TMP3REG == SLJIT_SCRATCH_REG1 || \
    674     BJ_TMP3REG == SLJIT_SCRATCH_REG2 || \
    675     BJ_TMP3REG == SLJIT_SCRATCH_REG3
    676 #error "Not supported assignment of registers."
    677 #endif
    678 
    679 	struct sljit_jump *jump;
    680 	sljit_si call_reg;
    681 	sljit_sw call_off;
    682 	int status;
    683 
    684 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    685 
    686 	if (hints & BJ_HINT_LDX) {
    687 		/* save X */
    688 		status = sljit_emit_op1(compiler,
    689 		    SLJIT_MOV_UI, /* uint32_t destination */
    690 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    691 		    offsetof(struct bpfjit_stack, reg),
    692 		    BJ_XREG, 0);
    693 		if (status != SLJIT_SUCCESS)
    694 			return status;
    695 	}
    696 
    697 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    698 		call_reg = SLJIT_IMM;
    699 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    700 	} else {
    701 		/* if (X >= bc->nfuncs) return 0; */
    702 		jump = sljit_emit_cmp(compiler,
    703 		    SLJIT_C_GREATER_EQUAL,
    704 		    BJ_XREG, 0,
    705 		    SLJIT_IMM, bc->nfuncs);
    706 		if (jump == NULL)
    707 			return SLJIT_ERR_ALLOC_FAILED;
    708 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    709 			return SLJIT_ERR_ALLOC_FAILED;
    710 
    711 		/* tmp1 = ctx; */
    712 		status = sljit_emit_op1(compiler,
    713 		    SLJIT_MOV_P,
    714 		    BJ_TMP1REG, 0,
    715 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    716 		    offsetof(struct bpfjit_stack, ctx));
    717 		if (status != SLJIT_SUCCESS)
    718 			return status;
    719 
    720 		/* tmp1 = ctx->copfuncs; */
    721 		status = sljit_emit_op1(compiler,
    722 		    SLJIT_MOV_P,
    723 		    BJ_TMP1REG, 0,
    724 		    SLJIT_MEM1(BJ_TMP1REG),
    725 		    offsetof(struct bpf_ctx, copfuncs));
    726 		if (status != SLJIT_SUCCESS)
    727 			return status;
    728 
    729 		/* tmp2 = X; */
    730 		status = sljit_emit_op1(compiler,
    731 		    SLJIT_MOV,
    732 		    BJ_TMP2REG, 0,
    733 		    BJ_XREG, 0);
    734 		if (status != SLJIT_SUCCESS)
    735 			return status;
    736 
    737 		/* tmp3 = ctx->copfuncs[tmp2]; */
    738 		call_reg = BJ_TMP3REG;
    739 		call_off = 0;
    740 		status = sljit_emit_op1(compiler,
    741 		    SLJIT_MOV_P,
    742 		    call_reg, call_off,
    743 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    744 		    SLJIT_WORD_SHIFT);
    745 		if (status != SLJIT_SUCCESS)
    746 			return status;
    747 	}
    748 
    749 	/*
    750 	 * Copy bpf_copfunc_t arguments to registers.
    751 	 */
    752 #if BJ_AREG != SLJIT_SCRATCH_REG3
    753 	status = sljit_emit_op1(compiler,
    754 	    SLJIT_MOV_UI,
    755 	    SLJIT_SCRATCH_REG3, 0,
    756 	    BJ_AREG, 0);
    757 	if (status != SLJIT_SUCCESS)
    758 		return status;
    759 #endif
    760 
    761 	status = sljit_emit_op1(compiler,
    762 	    SLJIT_MOV_P,
    763 	    SLJIT_SCRATCH_REG1, 0,
    764 	    SLJIT_MEM1(SLJIT_LOCALS_REG),
    765 	    offsetof(struct bpfjit_stack, ctx));
    766 	if (status != SLJIT_SUCCESS)
    767 		return status;
    768 
    769 	status = sljit_emit_op1(compiler,
    770 	    SLJIT_MOV_P,
    771 	    SLJIT_SCRATCH_REG2, 0,
    772 	    BJ_ARGS, 0);
    773 	if (status != SLJIT_SUCCESS)
    774 		return status;
    775 
    776 	status = sljit_emit_ijump(compiler,
    777 	    SLJIT_CALL3, call_reg, call_off);
    778 	if (status != SLJIT_SUCCESS)
    779 		return status;
    780 
    781 #if BJ_AREG != SLJIT_RETURN_REG
    782 	status = sljit_emit_op1(compiler,
    783 	    SLJIT_MOV,
    784 	    BJ_AREG, 0,
    785 	    SLJIT_RETURN_REG, 0);
    786 	if (status != SLJIT_SUCCESS)
    787 		return status;
    788 #endif
    789 
    790 	if (hints & BJ_HINT_LDX) {
    791 		/* restore X */
    792 		status = sljit_emit_op1(compiler,
    793 		    SLJIT_MOV_UI, /* uint32_t source */
    794 		    BJ_XREG, 0,
    795 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    796 		    offsetof(struct bpfjit_stack, reg));
    797 		if (status != SLJIT_SUCCESS)
    798 			return status;
    799 	}
    800 
    801 	return SLJIT_SUCCESS;
    802 }
    803 
    804 /*
    805  * Generate code for
    806  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    807  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    808  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    809  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    810  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    811  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    812  */
    813 static int
    814 emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    815     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    816     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    817 {
    818 	int status = SLJIT_ERR_ALLOC_FAILED;
    819 	uint32_t width;
    820 	sljit_si ld_reg;
    821 	struct sljit_jump *jump;
    822 #ifdef _KERNEL
    823 	struct sljit_label *label;
    824 	struct sljit_jump *over_mchain_jump;
    825 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    826 #endif
    827 	const uint32_t k = pc->k;
    828 
    829 #ifdef _KERNEL
    830 	if (to_mchain_jump == NULL) {
    831 		to_mchain_jump = sljit_emit_cmp(compiler,
    832 		    SLJIT_C_EQUAL,
    833 		    BJ_BUFLEN, 0,
    834 		    SLJIT_IMM, 0);
    835 		if (to_mchain_jump == NULL)
    836 			return SLJIT_ERR_ALLOC_FAILED;
    837 	}
    838 #endif
    839 
    840 	ld_reg = BJ_BUF;
    841 	width = read_width(pc);
    842 
    843 	if (BPF_MODE(pc->code) == BPF_IND) {
    844 		/* tmp1 = buflen - (pc->k + width); */
    845 		status = sljit_emit_op2(compiler,
    846 		    SLJIT_SUB,
    847 		    BJ_TMP1REG, 0,
    848 		    BJ_BUFLEN, 0,
    849 		    SLJIT_IMM, k + width);
    850 		if (status != SLJIT_SUCCESS)
    851 			return status;
    852 
    853 		/* ld_reg = buf + X; */
    854 		ld_reg = BJ_TMP2REG;
    855 		status = sljit_emit_op2(compiler,
    856 		    SLJIT_ADD,
    857 		    ld_reg, 0,
    858 		    BJ_BUF, 0,
    859 		    BJ_XREG, 0);
    860 		if (status != SLJIT_SUCCESS)
    861 			return status;
    862 
    863 		/* if (tmp1 < X) return 0; */
    864 		jump = sljit_emit_cmp(compiler,
    865 		    SLJIT_C_LESS,
    866 		    BJ_TMP1REG, 0,
    867 		    BJ_XREG, 0);
    868 		if (jump == NULL)
    869 			return SLJIT_ERR_ALLOC_FAILED;
    870 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    871 			return SLJIT_ERR_ALLOC_FAILED;
    872 	}
    873 
    874 	switch (width) {
    875 	case 4:
    876 		status = emit_read32(compiler, ld_reg, k);
    877 		break;
    878 	case 2:
    879 		status = emit_read16(compiler, ld_reg, k);
    880 		break;
    881 	case 1:
    882 		status = emit_read8(compiler, ld_reg, k);
    883 		break;
    884 	}
    885 
    886 	if (status != SLJIT_SUCCESS)
    887 		return status;
    888 
    889 #ifdef _KERNEL
    890 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    891 	if (over_mchain_jump == NULL)
    892 		return SLJIT_ERR_ALLOC_FAILED;
    893 
    894 	/* entry point to mchain handler */
    895 	label = sljit_emit_label(compiler);
    896 	if (label == NULL)
    897 		return SLJIT_ERR_ALLOC_FAILED;
    898 	sljit_set_label(to_mchain_jump, label);
    899 
    900 	if (check_zero_buflen) {
    901 		/* if (buflen != 0) return 0; */
    902 		jump = sljit_emit_cmp(compiler,
    903 		    SLJIT_C_NOT_EQUAL,
    904 		    BJ_BUFLEN, 0,
    905 		    SLJIT_IMM, 0);
    906 		if (jump == NULL)
    907 			return SLJIT_ERR_ALLOC_FAILED;
    908 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    909 			return SLJIT_ERR_ALLOC_FAILED;
    910 	}
    911 
    912 	switch (width) {
    913 	case 4:
    914 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    915 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    916 		break;
    917 	case 2:
    918 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    919 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    920 		break;
    921 	case 1:
    922 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    923 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    924 		break;
    925 	}
    926 
    927 	if (status != SLJIT_SUCCESS)
    928 		return status;
    929 
    930 	label = sljit_emit_label(compiler);
    931 	if (label == NULL)
    932 		return SLJIT_ERR_ALLOC_FAILED;
    933 	sljit_set_label(over_mchain_jump, label);
    934 #endif
    935 
    936 	return SLJIT_SUCCESS;
    937 }
    938 
    939 static int
    940 emit_memload(struct sljit_compiler *compiler,
    941     sljit_si dst, uint32_t k, size_t extwords)
    942 {
    943 	int status;
    944 	sljit_si src;
    945 	sljit_sw srcw;
    946 
    947 	srcw = k * sizeof(uint32_t);
    948 
    949 	if (extwords == 0) {
    950 		src = SLJIT_MEM1(SLJIT_LOCALS_REG);
    951 		srcw += offsetof(struct bpfjit_stack, mem);
    952 	} else {
    953 		/* copy extmem pointer to the tmp1 register */
    954 		status = sljit_emit_op1(compiler,
    955 		    SLJIT_MOV_P,
    956 		    BJ_TMP1REG, 0,
    957 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    958 		    offsetof(struct bpfjit_stack, extmem));
    959 		if (status != SLJIT_SUCCESS)
    960 			return status;
    961 		src = SLJIT_MEM1(BJ_TMP1REG);
    962 	}
    963 
    964 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, 0, src, srcw);
    965 }
    966 
    967 static int
    968 emit_memstore(struct sljit_compiler *compiler,
    969     sljit_si src, uint32_t k, size_t extwords)
    970 {
    971 	int status;
    972 	sljit_si dst;
    973 	sljit_sw dstw;
    974 
    975 	dstw = k * sizeof(uint32_t);
    976 
    977 	if (extwords == 0) {
    978 		dst = SLJIT_MEM1(SLJIT_LOCALS_REG);
    979 		dstw += offsetof(struct bpfjit_stack, mem);
    980 	} else {
    981 		/* copy extmem pointer to the tmp1 register */
    982 		status = sljit_emit_op1(compiler,
    983 		    SLJIT_MOV_P,
    984 		    BJ_TMP1REG, 0,
    985 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
    986 		    offsetof(struct bpfjit_stack, extmem));
    987 		if (status != SLJIT_SUCCESS)
    988 			return status;
    989 		dst = SLJIT_MEM1(BJ_TMP1REG);
    990 	}
    991 
    992 	return sljit_emit_op1(compiler, SLJIT_MOV_UI, dst, dstw, src, 0);
    993 }
    994 
    995 /*
    996  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    997  */
    998 static int
    999 emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1000     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
   1001     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
   1002 {
   1003 	int status;
   1004 #ifdef _KERNEL
   1005 	struct sljit_label *label;
   1006 	struct sljit_jump *jump, *over_mchain_jump;
   1007 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1008 #endif
   1009 	const uint32_t k = pc->k;
   1010 
   1011 #ifdef _KERNEL
   1012 	if (to_mchain_jump == NULL) {
   1013 		to_mchain_jump = sljit_emit_cmp(compiler,
   1014 		    SLJIT_C_EQUAL,
   1015 		    BJ_BUFLEN, 0,
   1016 		    SLJIT_IMM, 0);
   1017 		if (to_mchain_jump == NULL)
   1018 			return SLJIT_ERR_ALLOC_FAILED;
   1019 	}
   1020 #endif
   1021 
   1022 	/* tmp1 = buf[k] */
   1023 	status = sljit_emit_op1(compiler,
   1024 	    SLJIT_MOV_UB,
   1025 	    BJ_TMP1REG, 0,
   1026 	    SLJIT_MEM1(BJ_BUF), k);
   1027 	if (status != SLJIT_SUCCESS)
   1028 		return status;
   1029 
   1030 #ifdef _KERNEL
   1031 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1032 	if (over_mchain_jump == NULL)
   1033 		return SLJIT_ERR_ALLOC_FAILED;
   1034 
   1035 	/* entry point to mchain handler */
   1036 	label = sljit_emit_label(compiler);
   1037 	if (label == NULL)
   1038 		return SLJIT_ERR_ALLOC_FAILED;
   1039 	sljit_set_label(to_mchain_jump, label);
   1040 
   1041 	if (check_zero_buflen) {
   1042 		/* if (buflen != 0) return 0; */
   1043 		jump = sljit_emit_cmp(compiler,
   1044 		    SLJIT_C_NOT_EQUAL,
   1045 		    BJ_BUFLEN, 0,
   1046 		    SLJIT_IMM, 0);
   1047 		if (jump == NULL)
   1048 			return SLJIT_ERR_ALLOC_FAILED;
   1049 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1050 			return SLJIT_ERR_ALLOC_FAILED;
   1051 	}
   1052 
   1053 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1054 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1055 	if (status != SLJIT_SUCCESS)
   1056 		return status;
   1057 
   1058 	label = sljit_emit_label(compiler);
   1059 	if (label == NULL)
   1060 		return SLJIT_ERR_ALLOC_FAILED;
   1061 	sljit_set_label(over_mchain_jump, label);
   1062 #endif
   1063 
   1064 	/* tmp1 &= 0xf */
   1065 	status = sljit_emit_op2(compiler,
   1066 	    SLJIT_AND,
   1067 	    BJ_TMP1REG, 0,
   1068 	    BJ_TMP1REG, 0,
   1069 	    SLJIT_IMM, 0xf);
   1070 	if (status != SLJIT_SUCCESS)
   1071 		return status;
   1072 
   1073 	/* X = tmp1 << 2 */
   1074 	status = sljit_emit_op2(compiler,
   1075 	    SLJIT_SHL,
   1076 	    BJ_XREG, 0,
   1077 	    BJ_TMP1REG, 0,
   1078 	    SLJIT_IMM, 2);
   1079 	if (status != SLJIT_SUCCESS)
   1080 		return status;
   1081 
   1082 	return SLJIT_SUCCESS;
   1083 }
   1084 
   1085 /*
   1086  * Emit code for A = A / k or A = A % k when k is a power of 2.
   1087  * @pc BPF_DIV or BPF_MOD instruction.
   1088  */
   1089 static int
   1090 emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1091 {
   1092 	uint32_t k = pc->k;
   1093 	int status = SLJIT_SUCCESS;
   1094 
   1095 	BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
   1096 
   1097 	if (BPF_OP(pc->code) == BPF_MOD) {
   1098 		status = sljit_emit_op2(compiler,
   1099 		    SLJIT_AND,
   1100 		    BJ_AREG, 0,
   1101 		    BJ_AREG, 0,
   1102 		    SLJIT_IMM, k - 1);
   1103 	} else {
   1104 		int shift = 0;
   1105 
   1106 		/*
   1107 		 * Do shift = __builtin_ctz(k).
   1108 		 * The loop is slower, but that's ok.
   1109 		 */
   1110 		while (k > 1) {
   1111 			k >>= 1;
   1112 			shift++;
   1113 		}
   1114 
   1115 		if (shift != 0) {
   1116 			status = sljit_emit_op2(compiler,
   1117 			    SLJIT_LSHR|SLJIT_INT_OP,
   1118 			    BJ_AREG, 0,
   1119 			    BJ_AREG, 0,
   1120 			    SLJIT_IMM, shift);
   1121 		}
   1122 	}
   1123 
   1124 	return status;
   1125 }
   1126 
   1127 #if !defined(BPFJIT_USE_UDIV)
   1128 static sljit_uw
   1129 divide(sljit_uw x, sljit_uw y)
   1130 {
   1131 
   1132 	return (uint32_t)x / (uint32_t)y;
   1133 }
   1134 
   1135 static sljit_uw
   1136 modulus(sljit_uw x, sljit_uw y)
   1137 {
   1138 
   1139 	return (uint32_t)x % (uint32_t)y;
   1140 }
   1141 #endif
   1142 
   1143 /*
   1144  * Emit code for A = A / div or A = A % div.
   1145  * @pc BPF_DIV or BPF_MOD instruction.
   1146  */
   1147 static int
   1148 emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1149 {
   1150 	int status;
   1151 	const bool div = BPF_OP(pc->code) == BPF_DIV;
   1152 	const bool xreg = BPF_SRC(pc->code) == BPF_X;
   1153 
   1154 #if BJ_XREG == SLJIT_RETURN_REG   || \
   1155     BJ_XREG == SLJIT_SCRATCH_REG1 || \
   1156     BJ_XREG == SLJIT_SCRATCH_REG2 || \
   1157     BJ_AREG == SLJIT_SCRATCH_REG2
   1158 #error "Not supported assignment of registers."
   1159 #endif
   1160 
   1161 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1162 	status = sljit_emit_op1(compiler,
   1163 	    SLJIT_MOV,
   1164 	    SLJIT_SCRATCH_REG1, 0,
   1165 	    BJ_AREG, 0);
   1166 	if (status != SLJIT_SUCCESS)
   1167 		return status;
   1168 #endif
   1169 
   1170 	status = sljit_emit_op1(compiler,
   1171 	    SLJIT_MOV,
   1172 	    SLJIT_SCRATCH_REG2, 0,
   1173 	    xreg ? BJ_XREG : SLJIT_IMM,
   1174 	    xreg ? 0 : (uint32_t)pc->k);
   1175 	if (status != SLJIT_SUCCESS)
   1176 		return status;
   1177 
   1178 #if defined(BPFJIT_USE_UDIV)
   1179 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
   1180 
   1181 	if (BPF_OP(pc->code) == BPF_DIV) {
   1182 #if BJ_AREG != SLJIT_SCRATCH_REG1
   1183 		status = sljit_emit_op1(compiler,
   1184 		    SLJIT_MOV,
   1185 		    BJ_AREG, 0,
   1186 		    SLJIT_SCRATCH_REG1, 0);
   1187 #endif
   1188 	} else {
   1189 #if BJ_AREG != SLJIT_SCRATCH_REG2
   1190 		/* Remainder is in SLJIT_SCRATCH_REG2. */
   1191 		status = sljit_emit_op1(compiler,
   1192 		    SLJIT_MOV,
   1193 		    BJ_AREG, 0,
   1194 		    SLJIT_SCRATCH_REG2, 0);
   1195 #endif
   1196 	}
   1197 
   1198 	if (status != SLJIT_SUCCESS)
   1199 		return status;
   1200 #else
   1201 	status = sljit_emit_ijump(compiler,
   1202 	    SLJIT_CALL2,
   1203 	    SLJIT_IMM, div ? SLJIT_FUNC_OFFSET(divide) :
   1204 		SLJIT_FUNC_OFFSET(modulus));
   1205 
   1206 #if BJ_AREG != SLJIT_RETURN_REG
   1207 	status = sljit_emit_op1(compiler,
   1208 	    SLJIT_MOV,
   1209 	    BJ_AREG, 0,
   1210 	    SLJIT_RETURN_REG, 0);
   1211 	if (status != SLJIT_SUCCESS)
   1212 		return status;
   1213 #endif
   1214 #endif
   1215 
   1216 	return status;
   1217 }
   1218 
   1219 /*
   1220  * Return true if pc is a "read from packet" instruction.
   1221  * If length is not NULL and return value is true, *length will
   1222  * be set to a safe length required to read a packet.
   1223  */
   1224 static bool
   1225 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1226 {
   1227 	bool rv;
   1228 	bpfjit_abc_length_t width = 0; /* XXXuninit */
   1229 
   1230 	switch (BPF_CLASS(pc->code)) {
   1231 	default:
   1232 		rv = false;
   1233 		break;
   1234 
   1235 	case BPF_LD:
   1236 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1237 		     BPF_MODE(pc->code) == BPF_IND;
   1238 		if (rv)
   1239 			width = read_width(pc);
   1240 		break;
   1241 
   1242 	case BPF_LDX:
   1243 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
   1244 		width = 1;
   1245 		break;
   1246 	}
   1247 
   1248 	if (rv && length != NULL) {
   1249 		/*
   1250 		 * Values greater than UINT32_MAX will generate
   1251 		 * unconditional "return 0".
   1252 		 */
   1253 		*length = (uint32_t)pc->k + width;
   1254 	}
   1255 
   1256 	return rv;
   1257 }
   1258 
   1259 static void
   1260 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1261 {
   1262 	size_t i;
   1263 
   1264 	for (i = 0; i < insn_count; i++) {
   1265 		SLIST_INIT(&insn_dat[i].bjumps);
   1266 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1267 	}
   1268 }
   1269 
   1270 /*
   1271  * The function divides instructions into blocks. Destination of a jump
   1272  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1273  * terminate a block. Blocks are linear, that is, there are no jumps out
   1274  * from the middle of a block and there are no jumps in to the middle of
   1275  * a block.
   1276  *
   1277  * The function also sets bits in *initmask for memwords that
   1278  * need to be initialized to zero. Note that this set should be empty
   1279  * for any valid kernel filter program.
   1280  */
   1281 static bool
   1282 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1283     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1284     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1285 {
   1286 	struct bpfjit_jump *jtf;
   1287 	size_t i;
   1288 	uint32_t jt, jf;
   1289 	bpfjit_abc_length_t length;
   1290 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1291 	bool unreachable;
   1292 
   1293 	const size_t memwords = GET_MEMWORDS(bc);
   1294 
   1295 	*hints = 0;
   1296 	*initmask = BJ_INIT_NOBITS;
   1297 
   1298 	unreachable = false;
   1299 	invalid = ~BJ_INIT_NOBITS;
   1300 
   1301 	for (i = 0; i < insn_count; i++) {
   1302 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1303 			unreachable = false;
   1304 		insn_dat[i].unreachable = unreachable;
   1305 
   1306 		if (unreachable)
   1307 			continue;
   1308 
   1309 		invalid |= insn_dat[i].invalid;
   1310 
   1311 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1312 			unreachable = true;
   1313 
   1314 		switch (BPF_CLASS(insns[i].code)) {
   1315 		case BPF_RET:
   1316 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1317 				*initmask |= invalid & BJ_INIT_ABIT;
   1318 
   1319 			unreachable = true;
   1320 			continue;
   1321 
   1322 		case BPF_LD:
   1323 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1324 				*hints |= BJ_HINT_ABS;
   1325 
   1326 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1327 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1328 				*initmask |= invalid & BJ_INIT_XBIT;
   1329 			}
   1330 
   1331 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1332 			    (uint32_t)insns[i].k < memwords) {
   1333 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1334 			}
   1335 
   1336 			invalid &= ~BJ_INIT_ABIT;
   1337 			continue;
   1338 
   1339 		case BPF_LDX:
   1340 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1341 
   1342 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1343 			    (uint32_t)insns[i].k < memwords) {
   1344 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1345 			}
   1346 
   1347 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1348 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1349 				*hints |= BJ_HINT_MSH;
   1350 			}
   1351 
   1352 			invalid &= ~BJ_INIT_XBIT;
   1353 			continue;
   1354 
   1355 		case BPF_ST:
   1356 			*initmask |= invalid & BJ_INIT_ABIT;
   1357 
   1358 			if ((uint32_t)insns[i].k < memwords)
   1359 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1360 
   1361 			continue;
   1362 
   1363 		case BPF_STX:
   1364 			*hints |= BJ_HINT_XREG;
   1365 			*initmask |= invalid & BJ_INIT_XBIT;
   1366 
   1367 			if ((uint32_t)insns[i].k < memwords)
   1368 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1369 
   1370 			continue;
   1371 
   1372 		case BPF_ALU:
   1373 			*initmask |= invalid & BJ_INIT_ABIT;
   1374 
   1375 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1376 			    BPF_SRC(insns[i].code) == BPF_X) {
   1377 				*hints |= BJ_HINT_XREG;
   1378 				*initmask |= invalid & BJ_INIT_XBIT;
   1379 			}
   1380 
   1381 			invalid &= ~BJ_INIT_ABIT;
   1382 			continue;
   1383 
   1384 		case BPF_MISC:
   1385 			switch (BPF_MISCOP(insns[i].code)) {
   1386 			case BPF_TAX: // X <- A
   1387 				*hints |= BJ_HINT_XREG;
   1388 				*initmask |= invalid & BJ_INIT_ABIT;
   1389 				invalid &= ~BJ_INIT_XBIT;
   1390 				continue;
   1391 
   1392 			case BPF_TXA: // A <- X
   1393 				*hints |= BJ_HINT_XREG;
   1394 				*initmask |= invalid & BJ_INIT_XBIT;
   1395 				invalid &= ~BJ_INIT_ABIT;
   1396 				continue;
   1397 
   1398 			case BPF_COPX:
   1399 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1400 				/* FALLTHROUGH */
   1401 
   1402 			case BPF_COP:
   1403 				*hints |= BJ_HINT_COP;
   1404 				*initmask |= invalid & BJ_INIT_ABIT;
   1405 				invalid &= ~BJ_INIT_ABIT;
   1406 				continue;
   1407 			}
   1408 
   1409 			continue;
   1410 
   1411 		case BPF_JMP:
   1412 			/* Initialize abc_length for ABC pass. */
   1413 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1414 
   1415 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1416 				jt = jf = insns[i].k;
   1417 			} else {
   1418 				jt = insns[i].jt;
   1419 				jf = insns[i].jf;
   1420 			}
   1421 
   1422 			if (jt >= insn_count - (i + 1) ||
   1423 			    jf >= insn_count - (i + 1)) {
   1424 				return false;
   1425 			}
   1426 
   1427 			if (jt > 0 && jf > 0)
   1428 				unreachable = true;
   1429 
   1430 			jt += i + 1;
   1431 			jf += i + 1;
   1432 
   1433 			jtf = insn_dat[i].u.jdata.jtf;
   1434 
   1435 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1436 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1437 			    &jtf[0], entries);
   1438 
   1439 			if (jf != jt) {
   1440 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1441 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1442 				    &jtf[1], entries);
   1443 			}
   1444 
   1445 			insn_dat[jf].invalid |= invalid;
   1446 			insn_dat[jt].invalid |= invalid;
   1447 			invalid = 0;
   1448 
   1449 			continue;
   1450 		}
   1451 	}
   1452 
   1453 	return true;
   1454 }
   1455 
   1456 /*
   1457  * Array Bounds Check Elimination (ABC) pass.
   1458  */
   1459 static void
   1460 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1461     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1462 {
   1463 	struct bpfjit_jump *jmp;
   1464 	const struct bpf_insn *pc;
   1465 	struct bpfjit_insn_data *pd;
   1466 	size_t i;
   1467 	bpfjit_abc_length_t length, abc_length = 0;
   1468 
   1469 	const size_t extwords = GET_EXTWORDS(bc);
   1470 
   1471 	for (i = insn_count; i != 0; i--) {
   1472 		pc = &insns[i-1];
   1473 		pd = &insn_dat[i-1];
   1474 
   1475 		if (pd->unreachable)
   1476 			continue;
   1477 
   1478 		switch (BPF_CLASS(pc->code)) {
   1479 		case BPF_RET:
   1480 			/*
   1481 			 * It's quite common for bpf programs to
   1482 			 * check packet bytes in increasing order
   1483 			 * and return zero if bytes don't match
   1484 			 * specified critetion. Such programs disable
   1485 			 * ABC optimization completely because for
   1486 			 * every jump there is a branch with no read
   1487 			 * instruction.
   1488 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1489 			 * is indistinguishable from out-of-bound load.
   1490 			 * Therefore, abc_length can be set to
   1491 			 * MAX_ABC_LENGTH and enable ABC for many
   1492 			 * bpf programs.
   1493 			 * If this optimization encounters any
   1494 			 * instruction with a side effect, it will
   1495 			 * reset abc_length.
   1496 			 */
   1497 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1498 				abc_length = MAX_ABC_LENGTH;
   1499 			else
   1500 				abc_length = 0;
   1501 			break;
   1502 
   1503 		case BPF_MISC:
   1504 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1505 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1506 				/* COP instructions can have side effects. */
   1507 				abc_length = 0;
   1508 			}
   1509 			break;
   1510 
   1511 		case BPF_ST:
   1512 		case BPF_STX:
   1513 			if (extwords != 0) {
   1514 				/* Write to memory is visible after a call. */
   1515 				abc_length = 0;
   1516 			}
   1517 			break;
   1518 
   1519 		case BPF_JMP:
   1520 			abc_length = pd->u.jdata.abc_length;
   1521 			break;
   1522 
   1523 		default:
   1524 			if (read_pkt_insn(pc, &length)) {
   1525 				if (abc_length < length)
   1526 					abc_length = length;
   1527 				pd->u.rdata.abc_length = abc_length;
   1528 			}
   1529 			break;
   1530 		}
   1531 
   1532 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1533 			if (jmp->jdata->abc_length > abc_length)
   1534 				jmp->jdata->abc_length = abc_length;
   1535 		}
   1536 	}
   1537 }
   1538 
   1539 static void
   1540 optimize_pass3(const struct bpf_insn *insns,
   1541     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1542 {
   1543 	struct bpfjit_jump *jmp;
   1544 	size_t i;
   1545 	bpfjit_abc_length_t checked_length = 0;
   1546 
   1547 	for (i = 0; i < insn_count; i++) {
   1548 		if (insn_dat[i].unreachable)
   1549 			continue;
   1550 
   1551 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1552 			if (jmp->jdata->checked_length < checked_length)
   1553 				checked_length = jmp->jdata->checked_length;
   1554 		}
   1555 
   1556 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1557 			insn_dat[i].u.jdata.checked_length = checked_length;
   1558 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1559 			struct bpfjit_read_pkt_data *rdata =
   1560 			    &insn_dat[i].u.rdata;
   1561 			rdata->check_length = 0;
   1562 			if (checked_length < rdata->abc_length) {
   1563 				checked_length = rdata->abc_length;
   1564 				rdata->check_length = checked_length;
   1565 			}
   1566 		}
   1567 	}
   1568 }
   1569 
   1570 static bool
   1571 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1572     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1573     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1574 {
   1575 
   1576 	optimize_init(insn_dat, insn_count);
   1577 
   1578 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1579 		return false;
   1580 
   1581 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1582 	optimize_pass3(insns, insn_dat, insn_count);
   1583 
   1584 	return true;
   1585 }
   1586 
   1587 /*
   1588  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1589  */
   1590 static int
   1591 bpf_alu_to_sljit_op(const struct bpf_insn *pc)
   1592 {
   1593 
   1594 	/*
   1595 	 * Note: all supported 64bit arches have 32bit multiply
   1596 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1597 	 */
   1598 	switch (BPF_OP(pc->code)) {
   1599 	case BPF_ADD: return SLJIT_ADD;
   1600 	case BPF_SUB: return SLJIT_SUB;
   1601 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1602 	case BPF_OR:  return SLJIT_OR;
   1603 	case BPF_XOR: return SLJIT_XOR;
   1604 	case BPF_AND: return SLJIT_AND;
   1605 	case BPF_LSH: return SLJIT_SHL;
   1606 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1607 	default:
   1608 		BJ_ASSERT(false);
   1609 		return 0;
   1610 	}
   1611 }
   1612 
   1613 /*
   1614  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1615  */
   1616 static int
   1617 bpf_jmp_to_sljit_cond(const struct bpf_insn *pc, bool negate)
   1618 {
   1619 	/*
   1620 	 * Note: all supported 64bit arches have 32bit comparison
   1621 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1622 	 */
   1623 	int rv = SLJIT_INT_OP;
   1624 
   1625 	switch (BPF_OP(pc->code)) {
   1626 	case BPF_JGT:
   1627 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1628 		break;
   1629 	case BPF_JGE:
   1630 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1631 		break;
   1632 	case BPF_JEQ:
   1633 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1634 		break;
   1635 	case BPF_JSET:
   1636 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1637 		break;
   1638 	default:
   1639 		BJ_ASSERT(false);
   1640 	}
   1641 
   1642 	return rv;
   1643 }
   1644 
   1645 /*
   1646  * Convert BPF_K and BPF_X to sljit register.
   1647  */
   1648 static int
   1649 kx_to_reg(const struct bpf_insn *pc)
   1650 {
   1651 
   1652 	switch (BPF_SRC(pc->code)) {
   1653 	case BPF_K: return SLJIT_IMM;
   1654 	case BPF_X: return BJ_XREG;
   1655 	default:
   1656 		BJ_ASSERT(false);
   1657 		return 0;
   1658 	}
   1659 }
   1660 
   1661 static sljit_sw
   1662 kx_to_reg_arg(const struct bpf_insn *pc)
   1663 {
   1664 
   1665 	switch (BPF_SRC(pc->code)) {
   1666 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1667 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1668 	default:
   1669 		BJ_ASSERT(false);
   1670 		return 0;
   1671 	}
   1672 }
   1673 
   1674 static bool
   1675 generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1676     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1677     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1678 {
   1679 	/* a list of jumps to out-of-bound return from a generated function */
   1680 	struct sljit_jump **ret0;
   1681 	size_t ret0_size, ret0_maxsize;
   1682 
   1683 	struct sljit_jump *jump;
   1684 	struct sljit_label *label;
   1685 	const struct bpf_insn *pc;
   1686 	struct bpfjit_jump *bjump, *jtf;
   1687 	struct sljit_jump *to_mchain_jump;
   1688 
   1689 	size_t i;
   1690 	int status;
   1691 	int branching, negate;
   1692 	unsigned int rval, mode, src, op;
   1693 	uint32_t jt, jf;
   1694 
   1695 	bool unconditional_ret;
   1696 	bool rv;
   1697 
   1698 	const size_t extwords = GET_EXTWORDS(bc);
   1699 	const size_t memwords = GET_MEMWORDS(bc);
   1700 
   1701 	ret0 = NULL;
   1702 	rv = false;
   1703 
   1704 	ret0_size = 0;
   1705 	ret0_maxsize = 64;
   1706 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1707 	if (ret0 == NULL)
   1708 		goto fail;
   1709 
   1710 	/* reset sjump members of jdata */
   1711 	for (i = 0; i < insn_count; i++) {
   1712 		if (insn_dat[i].unreachable ||
   1713 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1714 			continue;
   1715 		}
   1716 
   1717 		jtf = insn_dat[i].u.jdata.jtf;
   1718 		jtf[0].sjump = jtf[1].sjump = NULL;
   1719 	}
   1720 
   1721 	/* main loop */
   1722 	for (i = 0; i < insn_count; i++) {
   1723 		if (insn_dat[i].unreachable)
   1724 			continue;
   1725 
   1726 		/*
   1727 		 * Resolve jumps to the current insn.
   1728 		 */
   1729 		label = NULL;
   1730 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1731 			if (bjump->sjump != NULL) {
   1732 				if (label == NULL)
   1733 					label = sljit_emit_label(compiler);
   1734 				if (label == NULL)
   1735 					goto fail;
   1736 				sljit_set_label(bjump->sjump, label);
   1737 			}
   1738 		}
   1739 
   1740 		to_mchain_jump = NULL;
   1741 		unconditional_ret = false;
   1742 
   1743 		if (read_pkt_insn(&insns[i], NULL)) {
   1744 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1745 				/* Jump to "return 0" unconditionally. */
   1746 				unconditional_ret = true;
   1747 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1748 				if (jump == NULL)
   1749 					goto fail;
   1750 				if (!append_jump(jump, &ret0,
   1751 				    &ret0_size, &ret0_maxsize))
   1752 					goto fail;
   1753 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1754 				/* if (buflen < check_length) return 0; */
   1755 				jump = sljit_emit_cmp(compiler,
   1756 				    SLJIT_C_LESS,
   1757 				    BJ_BUFLEN, 0,
   1758 				    SLJIT_IMM,
   1759 				    insn_dat[i].u.rdata.check_length);
   1760 				if (jump == NULL)
   1761 					goto fail;
   1762 #ifdef _KERNEL
   1763 				to_mchain_jump = jump;
   1764 #else
   1765 				if (!append_jump(jump, &ret0,
   1766 				    &ret0_size, &ret0_maxsize))
   1767 					goto fail;
   1768 #endif
   1769 			}
   1770 		}
   1771 
   1772 		pc = &insns[i];
   1773 		switch (BPF_CLASS(pc->code)) {
   1774 
   1775 		default:
   1776 			goto fail;
   1777 
   1778 		case BPF_LD:
   1779 			/* BPF_LD+BPF_IMM          A <- k */
   1780 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1781 				status = sljit_emit_op1(compiler,
   1782 				    SLJIT_MOV,
   1783 				    BJ_AREG, 0,
   1784 				    SLJIT_IMM, (uint32_t)pc->k);
   1785 				if (status != SLJIT_SUCCESS)
   1786 					goto fail;
   1787 
   1788 				continue;
   1789 			}
   1790 
   1791 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1792 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1793 				if ((uint32_t)pc->k >= memwords)
   1794 					goto fail;
   1795 				status = emit_memload(compiler,
   1796 				    BJ_AREG, pc->k, extwords);
   1797 				if (status != SLJIT_SUCCESS)
   1798 					goto fail;
   1799 
   1800 				continue;
   1801 			}
   1802 
   1803 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1804 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1805 				status = sljit_emit_op1(compiler,
   1806 				    SLJIT_MOV, /* size_t source */
   1807 				    BJ_AREG, 0,
   1808 				    SLJIT_MEM1(BJ_ARGS),
   1809 				    offsetof(struct bpf_args, wirelen));
   1810 				if (status != SLJIT_SUCCESS)
   1811 					goto fail;
   1812 
   1813 				continue;
   1814 			}
   1815 
   1816 			mode = BPF_MODE(pc->code);
   1817 			if (mode != BPF_ABS && mode != BPF_IND)
   1818 				goto fail;
   1819 
   1820 			if (unconditional_ret)
   1821 				continue;
   1822 
   1823 			status = emit_pkt_read(compiler, hints, pc,
   1824 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1825 			if (status != SLJIT_SUCCESS)
   1826 				goto fail;
   1827 
   1828 			continue;
   1829 
   1830 		case BPF_LDX:
   1831 			mode = BPF_MODE(pc->code);
   1832 
   1833 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1834 			if (mode == BPF_IMM) {
   1835 				if (BPF_SIZE(pc->code) != BPF_W)
   1836 					goto fail;
   1837 				status = sljit_emit_op1(compiler,
   1838 				    SLJIT_MOV,
   1839 				    BJ_XREG, 0,
   1840 				    SLJIT_IMM, (uint32_t)pc->k);
   1841 				if (status != SLJIT_SUCCESS)
   1842 					goto fail;
   1843 
   1844 				continue;
   1845 			}
   1846 
   1847 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1848 			if (mode == BPF_LEN) {
   1849 				if (BPF_SIZE(pc->code) != BPF_W)
   1850 					goto fail;
   1851 				status = sljit_emit_op1(compiler,
   1852 				    SLJIT_MOV, /* size_t source */
   1853 				    BJ_XREG, 0,
   1854 				    SLJIT_MEM1(BJ_ARGS),
   1855 				    offsetof(struct bpf_args, wirelen));
   1856 				if (status != SLJIT_SUCCESS)
   1857 					goto fail;
   1858 
   1859 				continue;
   1860 			}
   1861 
   1862 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1863 			if (mode == BPF_MEM) {
   1864 				if (BPF_SIZE(pc->code) != BPF_W)
   1865 					goto fail;
   1866 				if ((uint32_t)pc->k >= memwords)
   1867 					goto fail;
   1868 				status = emit_memload(compiler,
   1869 				    BJ_XREG, pc->k, extwords);
   1870 				if (status != SLJIT_SUCCESS)
   1871 					goto fail;
   1872 
   1873 				continue;
   1874 			}
   1875 
   1876 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1877 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1878 				goto fail;
   1879 
   1880 			if (unconditional_ret)
   1881 				continue;
   1882 
   1883 			status = emit_msh(compiler, hints, pc,
   1884 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1885 			if (status != SLJIT_SUCCESS)
   1886 				goto fail;
   1887 
   1888 			continue;
   1889 
   1890 		case BPF_ST:
   1891 			if (pc->code != BPF_ST ||
   1892 			    (uint32_t)pc->k >= memwords) {
   1893 				goto fail;
   1894 			}
   1895 
   1896 			status = emit_memstore(compiler,
   1897 			    BJ_AREG, pc->k, extwords);
   1898 			if (status != SLJIT_SUCCESS)
   1899 				goto fail;
   1900 
   1901 			continue;
   1902 
   1903 		case BPF_STX:
   1904 			if (pc->code != BPF_STX ||
   1905 			    (uint32_t)pc->k >= memwords) {
   1906 				goto fail;
   1907 			}
   1908 
   1909 			status = emit_memstore(compiler,
   1910 			    BJ_XREG, pc->k, extwords);
   1911 			if (status != SLJIT_SUCCESS)
   1912 				goto fail;
   1913 
   1914 			continue;
   1915 
   1916 		case BPF_ALU:
   1917 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1918 				status = sljit_emit_op1(compiler,
   1919 				    SLJIT_NEG,
   1920 				    BJ_AREG, 0,
   1921 				    BJ_AREG, 0);
   1922 				if (status != SLJIT_SUCCESS)
   1923 					goto fail;
   1924 
   1925 				continue;
   1926 			}
   1927 
   1928 			op = BPF_OP(pc->code);
   1929 			if (op != BPF_DIV && op != BPF_MOD) {
   1930 				status = sljit_emit_op2(compiler,
   1931 				    bpf_alu_to_sljit_op(pc),
   1932 				    BJ_AREG, 0,
   1933 				    BJ_AREG, 0,
   1934 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1935 				if (status != SLJIT_SUCCESS)
   1936 					goto fail;
   1937 
   1938 				continue;
   1939 			}
   1940 
   1941 			/* BPF_DIV/BPF_MOD */
   1942 
   1943 			src = BPF_SRC(pc->code);
   1944 			if (src != BPF_X && src != BPF_K)
   1945 				goto fail;
   1946 
   1947 			/* division by zero? */
   1948 			if (src == BPF_X) {
   1949 				jump = sljit_emit_cmp(compiler,
   1950 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1951 				    BJ_XREG, 0,
   1952 				    SLJIT_IMM, 0);
   1953 				if (jump == NULL)
   1954 					goto fail;
   1955 				if (!append_jump(jump, &ret0,
   1956 				    &ret0_size, &ret0_maxsize))
   1957 					goto fail;
   1958 			} else if (pc->k == 0) {
   1959 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1960 				if (jump == NULL)
   1961 					goto fail;
   1962 				if (!append_jump(jump, &ret0,
   1963 				    &ret0_size, &ret0_maxsize))
   1964 					goto fail;
   1965 			}
   1966 
   1967 			if (src == BPF_X) {
   1968 				status = emit_moddiv(compiler, pc);
   1969 				if (status != SLJIT_SUCCESS)
   1970 					goto fail;
   1971 			} else if (pc->k != 0) {
   1972 				if (pc->k & (pc->k - 1)) {
   1973 					status = emit_moddiv(compiler, pc);
   1974 				} else {
   1975 					status = emit_pow2_moddiv(compiler, pc);
   1976 				}
   1977 				if (status != SLJIT_SUCCESS)
   1978 					goto fail;
   1979 			}
   1980 
   1981 			continue;
   1982 
   1983 		case BPF_JMP:
   1984 			op = BPF_OP(pc->code);
   1985 			if (op == BPF_JA) {
   1986 				jt = jf = pc->k;
   1987 			} else {
   1988 				jt = pc->jt;
   1989 				jf = pc->jf;
   1990 			}
   1991 
   1992 			negate = (jt == 0) ? 1 : 0;
   1993 			branching = (jt == jf) ? 0 : 1;
   1994 			jtf = insn_dat[i].u.jdata.jtf;
   1995 
   1996 			if (branching) {
   1997 				if (op != BPF_JSET) {
   1998 					jump = sljit_emit_cmp(compiler,
   1999 					    bpf_jmp_to_sljit_cond(pc, negate),
   2000 					    BJ_AREG, 0,
   2001 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2002 				} else {
   2003 					status = sljit_emit_op2(compiler,
   2004 					    SLJIT_AND,
   2005 					    BJ_TMP1REG, 0,
   2006 					    BJ_AREG, 0,
   2007 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2008 					if (status != SLJIT_SUCCESS)
   2009 						goto fail;
   2010 
   2011 					jump = sljit_emit_cmp(compiler,
   2012 					    bpf_jmp_to_sljit_cond(pc, negate),
   2013 					    BJ_TMP1REG, 0,
   2014 					    SLJIT_IMM, 0);
   2015 				}
   2016 
   2017 				if (jump == NULL)
   2018 					goto fail;
   2019 
   2020 				BJ_ASSERT(jtf[negate].sjump == NULL);
   2021 				jtf[negate].sjump = jump;
   2022 			}
   2023 
   2024 			if (!branching || (jt != 0 && jf != 0)) {
   2025 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2026 				if (jump == NULL)
   2027 					goto fail;
   2028 
   2029 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2030 				jtf[branching].sjump = jump;
   2031 			}
   2032 
   2033 			continue;
   2034 
   2035 		case BPF_RET:
   2036 			rval = BPF_RVAL(pc->code);
   2037 			if (rval == BPF_X)
   2038 				goto fail;
   2039 
   2040 			/* BPF_RET+BPF_K    accept k bytes */
   2041 			if (rval == BPF_K) {
   2042 				status = sljit_emit_return(compiler,
   2043 				    SLJIT_MOV_UI,
   2044 				    SLJIT_IMM, (uint32_t)pc->k);
   2045 				if (status != SLJIT_SUCCESS)
   2046 					goto fail;
   2047 			}
   2048 
   2049 			/* BPF_RET+BPF_A    accept A bytes */
   2050 			if (rval == BPF_A) {
   2051 				status = sljit_emit_return(compiler,
   2052 				    SLJIT_MOV_UI,
   2053 				    BJ_AREG, 0);
   2054 				if (status != SLJIT_SUCCESS)
   2055 					goto fail;
   2056 			}
   2057 
   2058 			continue;
   2059 
   2060 		case BPF_MISC:
   2061 			switch (BPF_MISCOP(pc->code)) {
   2062 			case BPF_TAX:
   2063 				status = sljit_emit_op1(compiler,
   2064 				    SLJIT_MOV_UI,
   2065 				    BJ_XREG, 0,
   2066 				    BJ_AREG, 0);
   2067 				if (status != SLJIT_SUCCESS)
   2068 					goto fail;
   2069 
   2070 				continue;
   2071 
   2072 			case BPF_TXA:
   2073 				status = sljit_emit_op1(compiler,
   2074 				    SLJIT_MOV,
   2075 				    BJ_AREG, 0,
   2076 				    BJ_XREG, 0);
   2077 				if (status != SLJIT_SUCCESS)
   2078 					goto fail;
   2079 
   2080 				continue;
   2081 
   2082 			case BPF_COP:
   2083 			case BPF_COPX:
   2084 				if (bc == NULL || bc->copfuncs == NULL)
   2085 					goto fail;
   2086 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2087 				    (uint32_t)pc->k >= bc->nfuncs) {
   2088 					goto fail;
   2089 				}
   2090 
   2091 				status = emit_cop(compiler, hints, bc, pc,
   2092 				    &ret0, &ret0_size, &ret0_maxsize);
   2093 				if (status != SLJIT_SUCCESS)
   2094 					goto fail;
   2095 
   2096 				continue;
   2097 			}
   2098 
   2099 			goto fail;
   2100 		} /* switch */
   2101 	} /* main loop */
   2102 
   2103 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2104 
   2105 	if (ret0_size > 0) {
   2106 		label = sljit_emit_label(compiler);
   2107 		if (label == NULL)
   2108 			goto fail;
   2109 		for (i = 0; i < ret0_size; i++)
   2110 			sljit_set_label(ret0[i], label);
   2111 	}
   2112 
   2113 	status = sljit_emit_return(compiler,
   2114 	    SLJIT_MOV_UI,
   2115 	    SLJIT_IMM, 0);
   2116 	if (status != SLJIT_SUCCESS)
   2117 		goto fail;
   2118 
   2119 	rv = true;
   2120 
   2121 fail:
   2122 	if (ret0 != NULL)
   2123 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2124 
   2125 	return rv;
   2126 }
   2127 
   2128 bpfjit_func_t
   2129 bpfjit_generate_code(const bpf_ctx_t *bc,
   2130     const struct bpf_insn *insns, size_t insn_count)
   2131 {
   2132 	void *rv;
   2133 	struct sljit_compiler *compiler;
   2134 
   2135 	size_t i;
   2136 	int status;
   2137 
   2138 	/* optimization related */
   2139 	bpf_memword_init_t initmask;
   2140 	bpfjit_hint_t hints;
   2141 
   2142 	/* memory store location for initial zero initialization */
   2143 	sljit_si mem_reg;
   2144 	sljit_sw mem_off;
   2145 
   2146 	struct bpfjit_insn_data *insn_dat;
   2147 
   2148 	const size_t extwords = GET_EXTWORDS(bc);
   2149 	const size_t memwords = GET_MEMWORDS(bc);
   2150 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2151 
   2152 	rv = NULL;
   2153 	compiler = NULL;
   2154 	insn_dat = NULL;
   2155 
   2156 	if (memwords > MAX_MEMWORDS)
   2157 		goto fail;
   2158 
   2159 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2160 		goto fail;
   2161 
   2162 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2163 	if (insn_dat == NULL)
   2164 		goto fail;
   2165 
   2166 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2167 		goto fail;
   2168 
   2169 	compiler = sljit_create_compiler();
   2170 	if (compiler == NULL)
   2171 		goto fail;
   2172 
   2173 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2174 	sljit_compiler_verbose(compiler, stderr);
   2175 #endif
   2176 
   2177 	status = sljit_emit_enter(compiler,
   2178 	    2, nscratches(hints), nsaveds(hints), sizeof(struct bpfjit_stack));
   2179 	if (status != SLJIT_SUCCESS)
   2180 		goto fail;
   2181 
   2182 	if (hints & BJ_HINT_COP) {
   2183 		/* save ctx argument */
   2184 		status = sljit_emit_op1(compiler,
   2185 		    SLJIT_MOV_P,
   2186 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2187 		    offsetof(struct bpfjit_stack, ctx),
   2188 		    BJ_CTX_ARG, 0);
   2189 		if (status != SLJIT_SUCCESS)
   2190 			goto fail;
   2191 	}
   2192 
   2193 	if (extwords == 0) {
   2194 		mem_reg = SLJIT_MEM1(SLJIT_LOCALS_REG);
   2195 		mem_off = offsetof(struct bpfjit_stack, mem);
   2196 	} else {
   2197 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2198 		status = sljit_emit_op1(compiler,
   2199 		    SLJIT_MOV_P,
   2200 		    BJ_TMP1REG, 0,
   2201 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2202 		if (status != SLJIT_SUCCESS)
   2203 			goto fail;
   2204 
   2205 		status = sljit_emit_op1(compiler,
   2206 		    SLJIT_MOV_P,
   2207 		    SLJIT_MEM1(SLJIT_LOCALS_REG),
   2208 		    offsetof(struct bpfjit_stack, extmem),
   2209 		    BJ_TMP1REG, 0);
   2210 		if (status != SLJIT_SUCCESS)
   2211 			goto fail;
   2212 
   2213 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2214 		mem_off = 0;
   2215 	}
   2216 
   2217 	/*
   2218 	 * Exclude pre-initialised external memory words but keep
   2219 	 * initialization statuses of A and X registers in case
   2220 	 * bc->preinited wrongly sets those two bits.
   2221 	 */
   2222 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2223 
   2224 #if defined(_KERNEL)
   2225 	/* bpf_filter() checks initialization of memwords. */
   2226 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2227 #endif
   2228 	for (i = 0; i < memwords; i++) {
   2229 		if (initmask & BJ_INIT_MBIT(i)) {
   2230 			/* M[i] = 0; */
   2231 			status = sljit_emit_op1(compiler,
   2232 			    SLJIT_MOV_UI,
   2233 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2234 			    SLJIT_IMM, 0);
   2235 			if (status != SLJIT_SUCCESS)
   2236 				goto fail;
   2237 		}
   2238 	}
   2239 
   2240 	if (initmask & BJ_INIT_ABIT) {
   2241 		/* A = 0; */
   2242 		status = sljit_emit_op1(compiler,
   2243 		    SLJIT_MOV,
   2244 		    BJ_AREG, 0,
   2245 		    SLJIT_IMM, 0);
   2246 		if (status != SLJIT_SUCCESS)
   2247 			goto fail;
   2248 	}
   2249 
   2250 	if (initmask & BJ_INIT_XBIT) {
   2251 		/* X = 0; */
   2252 		status = sljit_emit_op1(compiler,
   2253 		    SLJIT_MOV,
   2254 		    BJ_XREG, 0,
   2255 		    SLJIT_IMM, 0);
   2256 		if (status != SLJIT_SUCCESS)
   2257 			goto fail;
   2258 	}
   2259 
   2260 	status = load_buf_buflen(compiler);
   2261 	if (status != SLJIT_SUCCESS)
   2262 		goto fail;
   2263 
   2264 	if (!generate_insn_code(compiler, hints,
   2265 	    bc, insns, insn_dat, insn_count)) {
   2266 		goto fail;
   2267 	}
   2268 
   2269 	rv = sljit_generate_code(compiler);
   2270 
   2271 fail:
   2272 	if (compiler != NULL)
   2273 		sljit_free_compiler(compiler);
   2274 
   2275 	if (insn_dat != NULL)
   2276 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2277 
   2278 	return (bpfjit_func_t)rv;
   2279 }
   2280 
   2281 void
   2282 bpfjit_free_code(bpfjit_func_t code)
   2283 {
   2284 
   2285 	sljit_free_code((void *)code);
   2286 }
   2287