Home | History | Annotate | Line # | Download | only in net
bpfjit.c revision 1.5
      1 /*	$NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2012 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <stdlib.h>
     44 #include <assert.h>
     45 #define BPFJIT_ALLOC(sz) malloc(sz)
     46 #define BPFJIT_FREE(p, sz) free(p)
     47 #define BPFJIT_ASSERT(c) assert(c)
     48 #else
     49 #include <sys/kmem.h>
     50 #define BPFJIT_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     51 #define BPFJIT_FREE(p, sz) kmem_free(p, sz)
     52 #define BPFJIT_ASSERT(c) KASSERT(c)
     53 #endif
     54 
     55 #ifndef _KERNEL
     56 #include <limits.h>
     57 #include <stdio.h>
     58 #include <stdbool.h>
     59 #include <stddef.h>
     60 #include <stdint.h>
     61 #else
     62 #include <sys/atomic.h>
     63 #include <sys/module.h>
     64 #endif
     65 
     66 #define	__BPF_PRIVATE
     67 #include <net/bpf.h>
     68 #include <net/bpfjit.h>
     69 #include <sljitLir.h>
     70 
     71 #define BPFJIT_A	SLJIT_TEMPORARY_REG1
     72 #define BPFJIT_X	SLJIT_TEMPORARY_EREG1
     73 #define BPFJIT_TMP1	SLJIT_TEMPORARY_REG2
     74 #define BPFJIT_TMP2	SLJIT_TEMPORARY_REG3
     75 #define BPFJIT_BUF	SLJIT_SAVED_REG1
     76 #define BPFJIT_WIRELEN	SLJIT_SAVED_REG2
     77 #define BPFJIT_BUFLEN	SLJIT_SAVED_REG3
     78 #define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
     79 
     80 /*
     81  * Flags for bpfjit_optimization_hints().
     82  */
     83 #define BPFJIT_INIT_X 0x10000
     84 #define BPFJIT_INIT_A 0x20000
     85 
     86 /*
     87  * Node of bj_jumps list.
     88  */
     89 struct bpfjit_jump {
     90 	struct sljit_jump *bj_jump;
     91 	SLIST_ENTRY(bpfjit_jump) bj_entries;
     92 	uint32_t bj_safe_length;
     93 };
     94 
     95 /*
     96  * Data for BPF_JMP instruction.
     97  */
     98 struct bpfjit_jump_data {
     99 	/*
    100 	 * These entries make up bj_jumps list:
    101 	 * bj_jtf[0] - when coming from jt path,
    102 	 * bj_jtf[1] - when coming from jf path.
    103 	 */
    104 	struct bpfjit_jump bj_jtf[2];
    105 };
    106 
    107 /*
    108  * Data for "read from packet" instructions.
    109  * See also read_pkt_insn() function below.
    110  */
    111 struct bpfjit_read_pkt_data {
    112 	/*
    113 	 * If positive, emit "if (buflen < bj_check_length) return 0".
    114 	 * We assume that buflen is never equal to UINT32_MAX (otherwise,
    115 	 * we need a special bool variable to emit unconditional "return 0").
    116 	 */
    117 	uint32_t bj_check_length;
    118 };
    119 
    120 /*
    121  * Additional (optimization-related) data for bpf_insn.
    122  */
    123 struct bpfjit_insn_data {
    124 	/* List of jumps to this insn. */
    125 	SLIST_HEAD(, bpfjit_jump) bj_jumps;
    126 
    127 	union {
    128 		struct bpfjit_jump_data     bj_jdata;
    129 		struct bpfjit_read_pkt_data bj_rdata;
    130 	} bj_aux;
    131 
    132 	bool bj_unreachable;
    133 };
    134 
    135 #ifdef _KERNEL
    136 
    137 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    138 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    139 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    140 
    141 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    142 
    143 static int
    144 bpfjit_modcmd(modcmd_t cmd, void *arg)
    145 {
    146 
    147 	switch (cmd) {
    148 	case MODULE_CMD_INIT:
    149 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    150 		membar_producer();
    151 		bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
    152 		membar_producer();
    153 		return 0;
    154 
    155 	case MODULE_CMD_FINI:
    156 		return EOPNOTSUPP;
    157 
    158 	default:
    159 		return ENOTTY;
    160 	}
    161 }
    162 #endif
    163 
    164 static uint32_t
    165 read_width(struct bpf_insn *pc)
    166 {
    167 
    168 	switch (BPF_SIZE(pc->code)) {
    169 	case BPF_W:
    170 		return 4;
    171 	case BPF_H:
    172 		return 2;
    173 	case BPF_B:
    174 		return 1;
    175 	default:
    176 		BPFJIT_ASSERT(false);
    177 		return 0;
    178 	}
    179 }
    180 
    181 /*
    182  * Get offset of M[k] on the stack.
    183  */
    184 static size_t
    185 mem_local_offset(uint32_t k, unsigned int minm)
    186 {
    187 	size_t moff = (k - minm) * sizeof(uint32_t);
    188 
    189 #ifdef _KERNEL
    190 	/*
    191 	 * 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
    192 	 */
    193 	return sizeof(uint32_t) + moff;
    194 #else
    195 	return moff;
    196 #endif
    197 }
    198 
    199 /*
    200  * Generate code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    201  */
    202 static int
    203 emit_read8(struct sljit_compiler* compiler, uint32_t k)
    204 {
    205 
    206 	return sljit_emit_op1(compiler,
    207 	    SLJIT_MOV_UB,
    208 	    BPFJIT_A, 0,
    209 	    SLJIT_MEM1(BPFJIT_BUF), k);
    210 }
    211 
    212 /*
    213  * Generate code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    214  */
    215 static int
    216 emit_read16(struct sljit_compiler* compiler, uint32_t k)
    217 {
    218 	int status;
    219 
    220 	/* tmp1 = buf[k]; */
    221 	status = sljit_emit_op1(compiler,
    222 	    SLJIT_MOV_UB,
    223 	    BPFJIT_TMP1, 0,
    224 	    SLJIT_MEM1(BPFJIT_BUF), k);
    225 	if (status != SLJIT_SUCCESS)
    226 		return status;
    227 
    228 	/* A = buf[k+1]; */
    229 	status = sljit_emit_op1(compiler,
    230 	    SLJIT_MOV_UB,
    231 	    BPFJIT_A, 0,
    232 	    SLJIT_MEM1(BPFJIT_BUF), k+1);
    233 	if (status != SLJIT_SUCCESS)
    234 		return status;
    235 
    236 	/* tmp1 = tmp1 << 8; */
    237 	status = sljit_emit_op2(compiler,
    238 	    SLJIT_SHL,
    239 	    BPFJIT_TMP1, 0,
    240 	    BPFJIT_TMP1, 0,
    241 	    SLJIT_IMM, 8);
    242 	if (status != SLJIT_SUCCESS)
    243 		return status;
    244 
    245 	/* A = A + tmp1; */
    246 	status = sljit_emit_op2(compiler,
    247 	    SLJIT_ADD,
    248 	    BPFJIT_A, 0,
    249 	    BPFJIT_A, 0,
    250 	    BPFJIT_TMP1, 0);
    251 	return status;
    252 }
    253 
    254 /*
    255  * Generate code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    256  */
    257 static int
    258 emit_read32(struct sljit_compiler* compiler, uint32_t k)
    259 {
    260 	int status;
    261 
    262 	/* tmp1 = buf[k]; */
    263 	status = sljit_emit_op1(compiler,
    264 	    SLJIT_MOV_UB,
    265 	    BPFJIT_TMP1, 0,
    266 	    SLJIT_MEM1(BPFJIT_BUF), k);
    267 	if (status != SLJIT_SUCCESS)
    268 		return status;
    269 
    270 	/* tmp2 = buf[k+1]; */
    271 	status = sljit_emit_op1(compiler,
    272 	    SLJIT_MOV_UB,
    273 	    BPFJIT_TMP2, 0,
    274 	    SLJIT_MEM1(BPFJIT_BUF), k+1);
    275 	if (status != SLJIT_SUCCESS)
    276 		return status;
    277 
    278 	/* A = buf[k+3]; */
    279 	status = sljit_emit_op1(compiler,
    280 	    SLJIT_MOV_UB,
    281 	    BPFJIT_A, 0,
    282 	    SLJIT_MEM1(BPFJIT_BUF), k+3);
    283 	if (status != SLJIT_SUCCESS)
    284 		return status;
    285 
    286 	/* tmp1 = tmp1 << 24; */
    287 	status = sljit_emit_op2(compiler,
    288 	    SLJIT_SHL,
    289 	    BPFJIT_TMP1, 0,
    290 	    BPFJIT_TMP1, 0,
    291 	    SLJIT_IMM, 24);
    292 	if (status != SLJIT_SUCCESS)
    293 		return status;
    294 
    295 	/* A = A + tmp1; */
    296 	status = sljit_emit_op2(compiler,
    297 	    SLJIT_ADD,
    298 	    BPFJIT_A, 0,
    299 	    BPFJIT_A, 0,
    300 	    BPFJIT_TMP1, 0);
    301 	if (status != SLJIT_SUCCESS)
    302 		return status;
    303 
    304 	/* tmp1 = buf[k+2]; */
    305 	status = sljit_emit_op1(compiler,
    306 	    SLJIT_MOV_UB,
    307 	    BPFJIT_TMP1, 0,
    308 	    SLJIT_MEM1(BPFJIT_BUF), k+2);
    309 	if (status != SLJIT_SUCCESS)
    310 		return status;
    311 
    312 	/* tmp2 = tmp2 << 16; */
    313 	status = sljit_emit_op2(compiler,
    314 	    SLJIT_SHL,
    315 	    BPFJIT_TMP2, 0,
    316 	    BPFJIT_TMP2, 0,
    317 	    SLJIT_IMM, 16);
    318 	if (status != SLJIT_SUCCESS)
    319 		return status;
    320 
    321 	/* A = A + tmp2; */
    322 	status = sljit_emit_op2(compiler,
    323 	    SLJIT_ADD,
    324 	    BPFJIT_A, 0,
    325 	    BPFJIT_A, 0,
    326 	    BPFJIT_TMP2, 0);
    327 	if (status != SLJIT_SUCCESS)
    328 		return status;
    329 
    330 	/* tmp1 = tmp1 << 8; */
    331 	status = sljit_emit_op2(compiler,
    332 	    SLJIT_SHL,
    333 	    BPFJIT_TMP1, 0,
    334 	    BPFJIT_TMP1, 0,
    335 	    SLJIT_IMM, 8);
    336 	if (status != SLJIT_SUCCESS)
    337 		return status;
    338 
    339 	/* A = A + tmp1; */
    340 	status = sljit_emit_op2(compiler,
    341 	    SLJIT_ADD,
    342 	    BPFJIT_A, 0,
    343 	    BPFJIT_A, 0,
    344 	    BPFJIT_TMP1, 0);
    345 	return status;
    346 }
    347 
    348 #ifdef _KERNEL
    349 /*
    350  * Generate m_xword/m_xhalf/m_xbyte call.
    351  *
    352  * pc is one of:
    353  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    354  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    355  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    356  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    357  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    358  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    359  * BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    360  *
    361  * dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
    362  * or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
    363  */
    364 static int
    365 emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
    366     int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
    367     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    368 {
    369 #if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
    370     BPFJIT_X == SLJIT_RETURN_REG
    371 #error "Not supported assignment of registers."
    372 #endif
    373 	int status;
    374 
    375 	/*
    376 	 * The third argument of fn is an address on stack.
    377 	 */
    378 	const int arg3_offset = 0;
    379 
    380 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    381 		/* save A */
    382 		status = sljit_emit_op1(compiler,
    383 		    SLJIT_MOV,
    384 		    BPFJIT_KERN_TMP, 0,
    385 		    BPFJIT_A, 0);
    386 		if (status != SLJIT_SUCCESS)
    387 			return status;
    388 	}
    389 
    390 	/*
    391 	 * Prepare registers for fn(buf, k, &err) call.
    392 	 */
    393 	status = sljit_emit_op1(compiler,
    394 	    SLJIT_MOV,
    395 	    SLJIT_TEMPORARY_REG1, 0,
    396 	    BPFJIT_BUF, 0);
    397 	if (status != SLJIT_SUCCESS)
    398 		return status;
    399 
    400 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    401 		status = sljit_emit_op2(compiler,
    402 		    SLJIT_ADD,
    403 		    SLJIT_TEMPORARY_REG2, 0,
    404 		    BPFJIT_X, 0,
    405 		    SLJIT_IMM, (uint32_t)pc->k);
    406 	} else {
    407 		status = sljit_emit_op1(compiler,
    408 		    SLJIT_MOV,
    409 		    SLJIT_TEMPORARY_REG2, 0,
    410 		    SLJIT_IMM, (uint32_t)pc->k);
    411 	}
    412 
    413 	if (status != SLJIT_SUCCESS)
    414 		return status;
    415 
    416 	status = sljit_get_local_base(compiler,
    417 	    SLJIT_TEMPORARY_REG3, 0, arg3_offset);
    418 	if (status != SLJIT_SUCCESS)
    419 		return status;
    420 
    421 	/* fn(buf, k, &err); */
    422 	status = sljit_emit_ijump(compiler,
    423 	    SLJIT_CALL3,
    424 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    425 
    426 	if (BPF_CLASS(pc->code) == BPF_LDX) {
    427 
    428 		/* move return value to dst */
    429 		BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
    430 		status = sljit_emit_op1(compiler,
    431 		    SLJIT_MOV,
    432 		    dst, dstw,
    433 		    SLJIT_RETURN_REG, 0);
    434 		if (status != SLJIT_SUCCESS)
    435 			return status;
    436 
    437 		/* restore A */
    438 		status = sljit_emit_op1(compiler,
    439 		    SLJIT_MOV,
    440 		    BPFJIT_A, 0,
    441 		    BPFJIT_KERN_TMP, 0);
    442 		if (status != SLJIT_SUCCESS)
    443 			return status;
    444 
    445 	} else if (dst != SLJIT_RETURN_REG) {
    446 		status = sljit_emit_op1(compiler,
    447 		    SLJIT_MOV,
    448 		    dst, dstw,
    449 		    SLJIT_RETURN_REG, 0);
    450 		if (status != SLJIT_SUCCESS)
    451 			return status;
    452 	}
    453 
    454 	/* tmp3 = *err; */
    455 	status = sljit_emit_op1(compiler,
    456 	    SLJIT_MOV_UI,
    457 	    SLJIT_TEMPORARY_REG3, 0,
    458 	    SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
    459 	if (status != SLJIT_SUCCESS)
    460 		return status;
    461 
    462 	/* if (tmp3 != 0) return 0; */
    463 	*ret0_jump = sljit_emit_cmp(compiler,
    464 	    SLJIT_C_NOT_EQUAL,
    465 	    SLJIT_TEMPORARY_REG3, 0,
    466 	    SLJIT_IMM, 0);
    467 	if (*ret0_jump == NULL)
    468 		return SLJIT_ERR_ALLOC_FAILED;
    469 
    470 	return status;
    471 }
    472 #endif
    473 
    474 /*
    475  * Generate code for
    476  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    477  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    478  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    479  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    480  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    481  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    482  */
    483 static int
    484 emit_pkt_read(struct sljit_compiler* compiler,
    485     struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    486     struct sljit_jump **ret0, size_t *ret0_size)
    487 {
    488 	int status;
    489 	uint32_t width;
    490 	struct sljit_jump *jump;
    491 #ifdef _KERNEL
    492 	struct sljit_label *label;
    493 	struct sljit_jump *over_mchain_jump;
    494 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    495 #endif
    496 	const uint32_t k = pc->k;
    497 
    498 #ifdef _KERNEL
    499 	if (to_mchain_jump == NULL) {
    500 		to_mchain_jump = sljit_emit_cmp(compiler,
    501 		    SLJIT_C_EQUAL,
    502 		    BPFJIT_BUFLEN, 0,
    503 		    SLJIT_IMM, 0);
    504 		if (to_mchain_jump == NULL)
    505   			return SLJIT_ERR_ALLOC_FAILED;
    506 	}
    507 #endif
    508 
    509 	width = read_width(pc);
    510 
    511 	if (BPF_MODE(pc->code) == BPF_IND) {
    512 		/* tmp1 = buflen - (pc->k + width); */
    513 		status = sljit_emit_op2(compiler,
    514 		    SLJIT_SUB,
    515 		    BPFJIT_TMP1, 0,
    516 		    BPFJIT_BUFLEN, 0,
    517 		    SLJIT_IMM, k + width);
    518 		if (status != SLJIT_SUCCESS)
    519 			return status;
    520 
    521 		/* buf += X; */
    522 		status = sljit_emit_op2(compiler,
    523 		    SLJIT_ADD,
    524 		    BPFJIT_BUF, 0,
    525 		    BPFJIT_BUF, 0,
    526 		    BPFJIT_X, 0);
    527 		if (status != SLJIT_SUCCESS)
    528 			return status;
    529 
    530 		/* if (tmp1 < X) return 0; */
    531 		jump = sljit_emit_cmp(compiler,
    532 		    SLJIT_C_LESS,
    533 		    BPFJIT_TMP1, 0,
    534 		    BPFJIT_X, 0);
    535 		if (jump == NULL)
    536   			return SLJIT_ERR_ALLOC_FAILED;
    537 		ret0[(*ret0_size)++] = jump;
    538 	}
    539 
    540 	switch (width) {
    541 	case 4:
    542 		status = emit_read32(compiler, k);
    543 		break;
    544 	case 2:
    545 		status = emit_read16(compiler, k);
    546 		break;
    547 	case 1:
    548 		status = emit_read8(compiler, k);
    549 		break;
    550 	}
    551 
    552 	if (status != SLJIT_SUCCESS)
    553 		return status;
    554 
    555 	if (BPF_MODE(pc->code) == BPF_IND) {
    556 		/* buf -= X; */
    557 		status = sljit_emit_op2(compiler,
    558 		    SLJIT_SUB,
    559 		    BPFJIT_BUF, 0,
    560 		    BPFJIT_BUF, 0,
    561 		    BPFJIT_X, 0);
    562 		if (status != SLJIT_SUCCESS)
    563 			return status;
    564 	}
    565 
    566 #ifdef _KERNEL
    567 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    568 	if (over_mchain_jump == NULL)
    569   		return SLJIT_ERR_ALLOC_FAILED;
    570 
    571 	/* entry point to mchain handler */
    572 	label = sljit_emit_label(compiler);
    573 	if (label == NULL)
    574   		return SLJIT_ERR_ALLOC_FAILED;
    575 	sljit_set_label(to_mchain_jump, label);
    576 
    577 	if (check_zero_buflen) {
    578 		/* if (buflen != 0) return 0; */
    579 		jump = sljit_emit_cmp(compiler,
    580 		    SLJIT_C_NOT_EQUAL,
    581 		    BPFJIT_BUFLEN, 0,
    582 		    SLJIT_IMM, 0);
    583 		if (jump == NULL)
    584 			return SLJIT_ERR_ALLOC_FAILED;
    585 		ret0[(*ret0_size)++] = jump;
    586 	}
    587 
    588 	switch (width) {
    589 	case 4:
    590 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
    591 		break;
    592 	case 2:
    593 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
    594 		break;
    595 	case 1:
    596 		status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
    597 		break;
    598 	}
    599 
    600 	if (status != SLJIT_SUCCESS)
    601 		return status;
    602 
    603 	ret0[(*ret0_size)++] = jump;
    604 
    605 	label = sljit_emit_label(compiler);
    606 	if (label == NULL)
    607 		return SLJIT_ERR_ALLOC_FAILED;
    608 	sljit_set_label(over_mchain_jump, label);
    609 #endif
    610 
    611 	return status;
    612 }
    613 
    614 /*
    615  * Generate code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    616  */
    617 static int
    618 emit_msh(struct sljit_compiler* compiler,
    619     struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    620     struct sljit_jump **ret0, size_t *ret0_size)
    621 {
    622 	int status;
    623 #ifdef _KERNEL
    624 	struct sljit_label *label;
    625 	struct sljit_jump *jump, *over_mchain_jump;
    626 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    627 #endif
    628 	const uint32_t k = pc->k;
    629 
    630 #ifdef _KERNEL
    631 	if (to_mchain_jump == NULL) {
    632 		to_mchain_jump = sljit_emit_cmp(compiler,
    633 		    SLJIT_C_EQUAL,
    634 		    BPFJIT_BUFLEN, 0,
    635 		    SLJIT_IMM, 0);
    636 		if (to_mchain_jump == NULL)
    637  			return SLJIT_ERR_ALLOC_FAILED;
    638 	}
    639 #endif
    640 
    641 	/* tmp1 = buf[k] */
    642 	status = sljit_emit_op1(compiler,
    643 	    SLJIT_MOV_UB,
    644 	    BPFJIT_TMP1, 0,
    645 	    SLJIT_MEM1(BPFJIT_BUF), k);
    646 	if (status != SLJIT_SUCCESS)
    647 		return status;
    648 
    649 	/* tmp1 &= 0xf */
    650 	status = sljit_emit_op2(compiler,
    651 	    SLJIT_AND,
    652 	    BPFJIT_TMP1, 0,
    653 	    BPFJIT_TMP1, 0,
    654 	    SLJIT_IMM, 0xf);
    655 	if (status != SLJIT_SUCCESS)
    656 		return status;
    657 
    658 	/* tmp1 = tmp1 << 2 */
    659 	status = sljit_emit_op2(compiler,
    660 	    SLJIT_SHL,
    661 	    BPFJIT_X, 0,
    662 	    BPFJIT_TMP1, 0,
    663 	    SLJIT_IMM, 2);
    664 	if (status != SLJIT_SUCCESS)
    665 		return status;
    666 
    667 #ifdef _KERNEL
    668 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    669 	if (over_mchain_jump == NULL)
    670 		return SLJIT_ERR_ALLOC_FAILED;
    671 
    672 	/* entry point to mchain handler */
    673 	label = sljit_emit_label(compiler);
    674 	if (label == NULL)
    675 		return SLJIT_ERR_ALLOC_FAILED;
    676 	sljit_set_label(to_mchain_jump, label);
    677 
    678 	if (check_zero_buflen) {
    679 		/* if (buflen != 0) return 0; */
    680 		jump = sljit_emit_cmp(compiler,
    681 		    SLJIT_C_NOT_EQUAL,
    682 		    BPFJIT_BUFLEN, 0,
    683 		    SLJIT_IMM, 0);
    684 		if (jump == NULL)
    685   			return SLJIT_ERR_ALLOC_FAILED;
    686 		ret0[(*ret0_size)++] = jump;
    687 	}
    688 
    689 	status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
    690 	if (status != SLJIT_SUCCESS)
    691 		return status;
    692 	ret0[(*ret0_size)++] = jump;
    693 
    694 	/* tmp1 &= 0xf */
    695 	status = sljit_emit_op2(compiler,
    696 	    SLJIT_AND,
    697 	    BPFJIT_TMP1, 0,
    698 	    BPFJIT_TMP1, 0,
    699 	    SLJIT_IMM, 0xf);
    700 	if (status != SLJIT_SUCCESS)
    701 		return status;
    702 
    703 	/* tmp1 = tmp1 << 2 */
    704 	status = sljit_emit_op2(compiler,
    705 	    SLJIT_SHL,
    706 	    BPFJIT_X, 0,
    707 	    BPFJIT_TMP1, 0,
    708 	    SLJIT_IMM, 2);
    709 	if (status != SLJIT_SUCCESS)
    710 		return status;
    711 
    712 
    713 	label = sljit_emit_label(compiler);
    714 	if (label == NULL)
    715 		return SLJIT_ERR_ALLOC_FAILED;
    716 	sljit_set_label(over_mchain_jump, label);
    717 #endif
    718 
    719 	return status;
    720 }
    721 
    722 static int
    723 emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
    724 {
    725 	int shift = 0;
    726 	int status = SLJIT_SUCCESS;
    727 
    728 	while (k > 1) {
    729 		k >>= 1;
    730 		shift++;
    731 	}
    732 
    733 	BPFJIT_ASSERT(k == 1 && shift < 32);
    734 
    735 	if (shift != 0) {
    736 		status = sljit_emit_op2(compiler,
    737 		    SLJIT_LSHR|SLJIT_INT_OP,
    738 		    BPFJIT_A, 0,
    739 		    BPFJIT_A, 0,
    740 		    SLJIT_IMM, shift);
    741 	}
    742 
    743 	return status;
    744 }
    745 
    746 #if !defined(BPFJIT_USE_UDIV)
    747 static sljit_uw
    748 divide(sljit_uw x, sljit_uw y)
    749 {
    750 
    751 	return (uint32_t)x / (uint32_t)y;
    752 }
    753 #endif
    754 
    755 /*
    756  * Generate A = A / div.
    757  * divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
    758  */
    759 static int
    760 emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
    761 {
    762 	int status;
    763 
    764 #if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
    765     BPFJIT_X == SLJIT_RETURN_REG     || \
    766     BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
    767     BPFJIT_A == SLJIT_TEMPORARY_REG2
    768 #error "Not supported assignment of registers."
    769 #endif
    770 
    771 #if BPFJIT_A != SLJIT_TEMPORARY_REG1
    772 	status = sljit_emit_op1(compiler,
    773 	    SLJIT_MOV,
    774 	    SLJIT_TEMPORARY_REG1, 0,
    775 	    BPFJIT_A, 0);
    776 	if (status != SLJIT_SUCCESS)
    777 		return status;
    778 #endif
    779 
    780 	status = sljit_emit_op1(compiler,
    781 	    SLJIT_MOV,
    782 	    SLJIT_TEMPORARY_REG2, 0,
    783 	    divt, divw);
    784 	if (status != SLJIT_SUCCESS)
    785 		return status;
    786 
    787 #if defined(BPFJIT_USE_UDIV)
    788 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
    789 
    790 #if BPFJIT_A != SLJIT_TEMPORARY_REG1
    791 	status = sljit_emit_op1(compiler,
    792 	    SLJIT_MOV,
    793 	    BPFJIT_A, 0,
    794 	    SLJIT_TEMPORARY_REG1, 0);
    795 	if (status != SLJIT_SUCCESS)
    796 		return status;
    797 #endif
    798 #else
    799 	status = sljit_emit_ijump(compiler,
    800 	    SLJIT_CALL2,
    801 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
    802 
    803 #if BPFJIT_A != SLJIT_RETURN_REG
    804 	status = sljit_emit_op1(compiler,
    805 	    SLJIT_MOV,
    806 	    BPFJIT_A, 0,
    807 	    SLJIT_RETURN_REG, 0);
    808 	if (status != SLJIT_SUCCESS)
    809 		return status;
    810 #endif
    811 #endif
    812 
    813 	return status;
    814 }
    815 
    816 /*
    817  * Count BPF_RET instructions.
    818  */
    819 static size_t
    820 count_returns(struct bpf_insn *insns, size_t insn_count)
    821 {
    822 	size_t i;
    823 	size_t rv;
    824 
    825 	rv = 0;
    826 	for (i = 0; i < insn_count; i++) {
    827 		if (BPF_CLASS(insns[i].code) == BPF_RET)
    828 			rv++;
    829 	}
    830 
    831 	return rv;
    832 }
    833 
    834 /*
    835  * Return true if pc is a "read from packet" instruction.
    836  * If length is not NULL and return value is true, *length will
    837  * be set to a safe length required to read a packet.
    838  */
    839 static bool
    840 read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
    841 {
    842 	bool rv;
    843 	uint32_t width;
    844 
    845 	switch (BPF_CLASS(pc->code)) {
    846 	default:
    847 		rv = false;
    848 		break;
    849 
    850 	case BPF_LD:
    851 		rv = BPF_MODE(pc->code) == BPF_ABS ||
    852 		     BPF_MODE(pc->code) == BPF_IND;
    853 		if (rv)
    854 			width = read_width(pc);
    855 		break;
    856 
    857 	case BPF_LDX:
    858 		rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
    859 		width = 1;
    860 		break;
    861 	}
    862 
    863 	if (rv && length != NULL) {
    864 		*length = (pc->k > UINT32_MAX - width) ?
    865 		    UINT32_MAX : pc->k + width;
    866 	}
    867 
    868 	return rv;
    869 }
    870 
    871 /*
    872  * Set bj_check_length for all "read from packet" instructions
    873  * in a linear block of instructions [from, to).
    874  */
    875 static void
    876 set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
    877     size_t from, size_t to, uint32_t length)
    878 {
    879 
    880 	for (; from < to; from++) {
    881 		if (read_pkt_insn(&insns[from], NULL)) {
    882 			insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
    883 			length = 0;
    884 		}
    885 	}
    886 }
    887 
    888 /*
    889  * The function divides instructions into blocks. Destination of a jump
    890  * instruction starts a new block. BPF_RET and BPF_JMP instructions
    891  * terminate a block. Blocks are linear, that is, there are no jumps out
    892  * from the middle of a block and there are no jumps in to the middle of
    893  * a block.
    894  * If a block has one or more "read from packet" instructions,
    895  * bj_check_length will be set to one value for the whole block and that
    896  * value will be equal to the greatest value of safe lengths of "read from
    897  * packet" instructions inside the block.
    898  */
    899 static int
    900 optimize(struct bpf_insn *insns,
    901     struct bpfjit_insn_data *insn_dat, size_t insn_count)
    902 {
    903 	size_t i;
    904 	size_t first_read;
    905 	bool unreachable;
    906 	uint32_t jt, jf;
    907 	uint32_t length, safe_length;
    908 	struct bpfjit_jump *jmp, *jtf;
    909 
    910 	for (i = 0; i < insn_count; i++)
    911 		SLIST_INIT(&insn_dat[i].bj_jumps);
    912 
    913 	safe_length = 0;
    914 	unreachable = false;
    915 	first_read = SIZE_MAX;
    916 
    917 	for (i = 0; i < insn_count; i++) {
    918 
    919 		if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
    920 			unreachable = false;
    921 
    922 			set_check_length(insns, insn_dat,
    923 			    first_read, i, safe_length);
    924 			first_read = SIZE_MAX;
    925 
    926 			safe_length = UINT32_MAX;
    927 			SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
    928 				if (jmp->bj_safe_length < safe_length)
    929 					safe_length = jmp->bj_safe_length;
    930 			}
    931 		}
    932 
    933 		insn_dat[i].bj_unreachable = unreachable;
    934 		if (unreachable)
    935 			continue;
    936 
    937 		if (read_pkt_insn(&insns[i], &length)) {
    938 			if (first_read == SIZE_MAX)
    939 				first_read = i;
    940 			if (length > safe_length)
    941 				safe_length = length;
    942 		}
    943 
    944 		switch (BPF_CLASS(insns[i].code)) {
    945 		case BPF_RET:
    946 			unreachable = true;
    947 			continue;
    948 
    949 		case BPF_JMP:
    950 			if (insns[i].code == (BPF_JMP|BPF_JA)) {
    951 				jt = jf = insns[i].k;
    952 			} else {
    953 				jt = insns[i].jt;
    954 				jf = insns[i].jf;
    955 			}
    956 
    957 			if (jt >= insn_count - (i + 1) ||
    958 			    jf >= insn_count - (i + 1)) {
    959 				return -1;
    960 			}
    961 
    962 			if (jt > 0 && jf > 0)
    963 				unreachable = true;
    964 
    965 			jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
    966 
    967 			jtf[0].bj_jump = NULL;
    968 			jtf[0].bj_safe_length = safe_length;
    969 			SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
    970 			    &jtf[0], bj_entries);
    971 
    972 			if (jf != jt) {
    973 				jtf[1].bj_jump = NULL;
    974 				jtf[1].bj_safe_length = safe_length;
    975 				SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
    976 				    &jtf[1], bj_entries);
    977 			}
    978 
    979 			continue;
    980 		}
    981 	}
    982 
    983 	set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
    984 
    985 	return 0;
    986 }
    987 
    988 /*
    989  * Count out-of-bounds and division by zero jumps.
    990  *
    991  * insn_dat should be initialized by optimize().
    992  */
    993 static size_t
    994 get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
    995     size_t insn_count)
    996 {
    997 	size_t rv = 0;
    998 	size_t i;
    999 
   1000 	for (i = 0; i < insn_count; i++) {
   1001 
   1002 		if (read_pkt_insn(&insns[i], NULL)) {
   1003 			if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
   1004 				rv++;
   1005 #ifdef _KERNEL
   1006 			rv++;
   1007 #endif
   1008 		}
   1009 
   1010 		if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
   1011 		    insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
   1012 		    insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
   1013 			rv++;
   1014 		}
   1015 
   1016 		if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
   1017 			rv++;
   1018 
   1019 		if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
   1020 		    insns[i].k == 0) {
   1021 			rv++;
   1022 		}
   1023 	}
   1024 
   1025 	return rv;
   1026 }
   1027 
   1028 /*
   1029  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1030  */
   1031 static int
   1032 bpf_alu_to_sljit_op(struct bpf_insn *pc)
   1033 {
   1034 
   1035 	/*
   1036 	 * Note: all supported 64bit arches have 32bit multiply
   1037 	 * instruction so SLJIT_INT_OP doesn't have any overhead.
   1038 	 */
   1039 	switch (BPF_OP(pc->code)) {
   1040 	case BPF_ADD: return SLJIT_ADD;
   1041 	case BPF_SUB: return SLJIT_SUB;
   1042 	case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
   1043 	case BPF_OR:  return SLJIT_OR;
   1044 	case BPF_AND: return SLJIT_AND;
   1045 	case BPF_LSH: return SLJIT_SHL;
   1046 	case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
   1047 	default:
   1048 		BPFJIT_ASSERT(false);
   1049 		return 0;
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1055  */
   1056 static int
   1057 bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
   1058 {
   1059 	/*
   1060 	 * Note: all supported 64bit arches have 32bit comparison
   1061 	 * instructions so SLJIT_INT_OP doesn't have any overhead.
   1062 	 */
   1063 	int rv = SLJIT_INT_OP;
   1064 
   1065 	switch (BPF_OP(pc->code)) {
   1066 	case BPF_JGT:
   1067 		rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
   1068 		break;
   1069 	case BPF_JGE:
   1070 		rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
   1071 		break;
   1072 	case BPF_JEQ:
   1073 		rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
   1074 		break;
   1075 	case BPF_JSET:
   1076 		rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
   1077 		break;
   1078 	default:
   1079 		BPFJIT_ASSERT(false);
   1080 	}
   1081 
   1082 	return rv;
   1083 }
   1084 
   1085 static unsigned int
   1086 bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
   1087 {
   1088 	unsigned int rv = BPFJIT_INIT_A;
   1089 	struct bpf_insn *pc;
   1090 	unsigned int minm, maxm;
   1091 
   1092 	BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
   1093 
   1094 	maxm = 0;
   1095 	minm = BPF_MEMWORDS - 1;
   1096 
   1097 	for (pc = insns; pc != insns + insn_count; pc++) {
   1098 		switch (BPF_CLASS(pc->code)) {
   1099 		case BPF_LD:
   1100 			if (BPF_MODE(pc->code) == BPF_IND)
   1101 				rv |= BPFJIT_INIT_X;
   1102 			if (BPF_MODE(pc->code) == BPF_MEM &&
   1103 			    (uint32_t)pc->k < BPF_MEMWORDS) {
   1104 				if (pc->k > maxm)
   1105 					maxm = pc->k;
   1106 				if (pc->k < minm)
   1107 					minm = pc->k;
   1108 			}
   1109 			continue;
   1110 		case BPF_LDX:
   1111 			rv |= BPFJIT_INIT_X;
   1112 			if (BPF_MODE(pc->code) == BPF_MEM &&
   1113 			    (uint32_t)pc->k < BPF_MEMWORDS) {
   1114 				if (pc->k > maxm)
   1115 					maxm = pc->k;
   1116 				if (pc->k < minm)
   1117 					minm = pc->k;
   1118 			}
   1119 			continue;
   1120 		case BPF_ST:
   1121 			if ((uint32_t)pc->k < BPF_MEMWORDS) {
   1122 				if (pc->k > maxm)
   1123 					maxm = pc->k;
   1124 				if (pc->k < minm)
   1125 					minm = pc->k;
   1126 			}
   1127 			continue;
   1128 		case BPF_STX:
   1129 			rv |= BPFJIT_INIT_X;
   1130 			if ((uint32_t)pc->k < BPF_MEMWORDS) {
   1131 				if (pc->k > maxm)
   1132 					maxm = pc->k;
   1133 				if (pc->k < minm)
   1134 					minm = pc->k;
   1135 			}
   1136 			continue;
   1137 		case BPF_ALU:
   1138 			if (pc->code == (BPF_ALU|BPF_NEG))
   1139 				continue;
   1140 			if (BPF_SRC(pc->code) == BPF_X)
   1141 				rv |= BPFJIT_INIT_X;
   1142 			continue;
   1143 		case BPF_JMP:
   1144 			if (pc->code == (BPF_JMP|BPF_JA))
   1145 				continue;
   1146 			if (BPF_SRC(pc->code) == BPF_X)
   1147 				rv |= BPFJIT_INIT_X;
   1148 			continue;
   1149 		case BPF_RET:
   1150 			continue;
   1151 		case BPF_MISC:
   1152 			rv |= BPFJIT_INIT_X;
   1153 			continue;
   1154 		default:
   1155 			BPFJIT_ASSERT(false);
   1156 		}
   1157 	}
   1158 
   1159 	return rv | (maxm << 8) | minm;
   1160 }
   1161 
   1162 /*
   1163  * Convert BPF_K and BPF_X to sljit register.
   1164  */
   1165 static int
   1166 kx_to_reg(struct bpf_insn *pc)
   1167 {
   1168 
   1169 	switch (BPF_SRC(pc->code)) {
   1170 	case BPF_K: return SLJIT_IMM;
   1171 	case BPF_X: return BPFJIT_X;
   1172 	default:
   1173 		BPFJIT_ASSERT(false);
   1174 		return 0;
   1175 	}
   1176 }
   1177 
   1178 static sljit_w
   1179 kx_to_reg_arg(struct bpf_insn *pc)
   1180 {
   1181 
   1182 	switch (BPF_SRC(pc->code)) {
   1183 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1184 	case BPF_X: return 0;               /* BPFJIT_X, 0,      */
   1185 	default:
   1186 		BPFJIT_ASSERT(false);
   1187 		return 0;
   1188 	}
   1189 }
   1190 
   1191 bpfjit_func_t
   1192 bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
   1193 {
   1194 	void *rv;
   1195 	size_t i;
   1196 	int status;
   1197 	int branching, negate;
   1198 	unsigned int rval, mode, src;
   1199 	int ntmp;
   1200 	unsigned int locals_size;
   1201 	unsigned int minm, maxm; /* min/max k for M[k] */
   1202 	size_t mem_locals_start; /* start of M[] array */
   1203 	unsigned int opts;
   1204 	struct bpf_insn *pc;
   1205 	struct sljit_compiler* compiler;
   1206 
   1207 	/* a list of jumps to a normal return from a generated function */
   1208 	struct sljit_jump **returns;
   1209 	size_t returns_size, returns_maxsize;
   1210 
   1211 	/* a list of jumps to out-of-bound return from a generated function */
   1212 	struct sljit_jump **ret0;
   1213 	size_t ret0_size = 0, ret0_maxsize = 0;
   1214 
   1215 	struct bpfjit_insn_data *insn_dat;
   1216 
   1217 	/* for local use */
   1218 	struct sljit_label *label;
   1219 	struct sljit_jump *jump;
   1220 	struct bpfjit_jump *bjump, *jtf;
   1221 
   1222 	struct sljit_jump *to_mchain_jump;
   1223 
   1224 	uint32_t jt, jf;
   1225 
   1226 	rv = NULL;
   1227 	compiler = NULL;
   1228 	insn_dat = NULL;
   1229 	returns = NULL;
   1230 	ret0 = NULL;
   1231 
   1232 	opts = bpfjit_optimization_hints(insns, insn_count);
   1233 	minm = opts & 0xff;
   1234 	maxm = (opts >> 8) & 0xff;
   1235 	mem_locals_start = mem_local_offset(0, 0);
   1236 	locals_size = (minm <= maxm) ?
   1237 	    mem_local_offset(maxm + 1, minm) : mem_locals_start;
   1238 
   1239 	ntmp = 4;
   1240 #ifdef _KERNEL
   1241 	ntmp += 1; /* for BPFJIT_KERN_TMP */
   1242 #endif
   1243 
   1244 	returns_maxsize = count_returns(insns, insn_count);
   1245 	if (returns_maxsize  == 0)
   1246 		goto fail;
   1247 
   1248 	insn_dat = BPFJIT_ALLOC(insn_count * sizeof(insn_dat[0]));
   1249 	if (insn_dat == NULL)
   1250 		goto fail;
   1251 
   1252 	if (optimize(insns, insn_dat, insn_count) < 0)
   1253 		goto fail;
   1254 
   1255 	ret0_size = 0;
   1256 	ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
   1257 	if (ret0_maxsize > 0) {
   1258 		ret0 = BPFJIT_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1259 		if (ret0 == NULL)
   1260 			goto fail;
   1261 	}
   1262 
   1263 	returns_size = 0;
   1264 	returns = BPFJIT_ALLOC(returns_maxsize * sizeof(returns[0]));
   1265 	if (returns == NULL)
   1266 		goto fail;
   1267 
   1268 	compiler = sljit_create_compiler();
   1269 	if (compiler == NULL)
   1270 		goto fail;
   1271 
   1272 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   1273 	sljit_compiler_verbose(compiler, stderr);
   1274 #endif
   1275 
   1276 	status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
   1277 	if (status != SLJIT_SUCCESS)
   1278 		goto fail;
   1279 
   1280 	for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
   1281 		status = sljit_emit_op1(compiler,
   1282 		    SLJIT_MOV_UI,
   1283 		    SLJIT_MEM1(SLJIT_LOCALS_REG), i,
   1284 		    SLJIT_IMM, 0);
   1285 		if (status != SLJIT_SUCCESS)
   1286 			goto fail;
   1287 	}
   1288 
   1289 	if (opts & BPFJIT_INIT_A) {
   1290 		/* A = 0; */
   1291 		status = sljit_emit_op1(compiler,
   1292 		    SLJIT_MOV,
   1293 		    BPFJIT_A, 0,
   1294 		    SLJIT_IMM, 0);
   1295 		if (status != SLJIT_SUCCESS)
   1296 			goto fail;
   1297 	}
   1298 
   1299 	if (opts & BPFJIT_INIT_X) {
   1300 		/* X = 0; */
   1301 		status = sljit_emit_op1(compiler,
   1302 		    SLJIT_MOV,
   1303 		    BPFJIT_X, 0,
   1304 		    SLJIT_IMM, 0);
   1305 		if (status != SLJIT_SUCCESS)
   1306 			goto fail;
   1307 	}
   1308 
   1309 	for (i = 0; i < insn_count; i++) {
   1310 		if (insn_dat[i].bj_unreachable)
   1311 			continue;
   1312 
   1313 		to_mchain_jump = NULL;
   1314 
   1315 		/*
   1316 		 * Resolve jumps to the current insn.
   1317 		 */
   1318 		label = NULL;
   1319 		SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
   1320 			if (bjump->bj_jump != NULL) {
   1321 				if (label == NULL)
   1322 					label = sljit_emit_label(compiler);
   1323 				if (label == NULL)
   1324 					goto fail;
   1325 				sljit_set_label(bjump->bj_jump, label);
   1326 			}
   1327 		}
   1328 
   1329 		if (read_pkt_insn(&insns[i], NULL) &&
   1330 		    insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
   1331 			/* if (buflen < bj_check_length) return 0; */
   1332 			jump = sljit_emit_cmp(compiler,
   1333 			    SLJIT_C_LESS,
   1334 			    BPFJIT_BUFLEN, 0,
   1335 			    SLJIT_IMM,
   1336 			    insn_dat[i].bj_aux.bj_rdata.bj_check_length);
   1337 			if (jump == NULL)
   1338 		  		goto fail;
   1339 #ifdef _KERNEL
   1340 			to_mchain_jump = jump;
   1341 #else
   1342 			ret0[ret0_size++] = jump;
   1343 #endif
   1344 		}
   1345 
   1346 		pc = &insns[i];
   1347 		switch (BPF_CLASS(pc->code)) {
   1348 
   1349 		default:
   1350 			goto fail;
   1351 
   1352 		case BPF_LD:
   1353 			/* BPF_LD+BPF_IMM          A <- k */
   1354 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1355 				status = sljit_emit_op1(compiler,
   1356 				    SLJIT_MOV,
   1357 				    BPFJIT_A, 0,
   1358 				    SLJIT_IMM, (uint32_t)pc->k);
   1359 				if (status != SLJIT_SUCCESS)
   1360 					goto fail;
   1361 
   1362 				continue;
   1363 			}
   1364 
   1365 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1366 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1367 				if (pc->k < minm || pc->k > maxm)
   1368 					goto fail;
   1369 				status = sljit_emit_op1(compiler,
   1370 				    SLJIT_MOV_UI,
   1371 				    BPFJIT_A, 0,
   1372 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1373 				    mem_local_offset(pc->k, minm));
   1374 				if (status != SLJIT_SUCCESS)
   1375 					goto fail;
   1376 
   1377 				continue;
   1378 			}
   1379 
   1380 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1381 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1382 				status = sljit_emit_op1(compiler,
   1383 				    SLJIT_MOV,
   1384 				    BPFJIT_A, 0,
   1385 				    BPFJIT_WIRELEN, 0);
   1386 				if (status != SLJIT_SUCCESS)
   1387 					goto fail;
   1388 
   1389 				continue;
   1390 			}
   1391 
   1392 			mode = BPF_MODE(pc->code);
   1393 			if (mode != BPF_ABS && mode != BPF_IND)
   1394 				goto fail;
   1395 
   1396 			status = emit_pkt_read(compiler, pc,
   1397 			    to_mchain_jump, ret0, &ret0_size);
   1398 			if (status != SLJIT_SUCCESS)
   1399 				goto fail;
   1400 
   1401 			continue;
   1402 
   1403 		case BPF_LDX:
   1404 			mode = BPF_MODE(pc->code);
   1405 
   1406 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1407 			if (mode == BPF_IMM) {
   1408 				if (BPF_SIZE(pc->code) != BPF_W)
   1409 					goto fail;
   1410 				status = sljit_emit_op1(compiler,
   1411 				    SLJIT_MOV,
   1412 				    BPFJIT_X, 0,
   1413 				    SLJIT_IMM, (uint32_t)pc->k);
   1414 				if (status != SLJIT_SUCCESS)
   1415 					goto fail;
   1416 
   1417 				continue;
   1418 			}
   1419 
   1420 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1421 			if (mode == BPF_LEN) {
   1422 				if (BPF_SIZE(pc->code) != BPF_W)
   1423 					goto fail;
   1424 				status = sljit_emit_op1(compiler,
   1425 				    SLJIT_MOV,
   1426 				    BPFJIT_X, 0,
   1427 				    BPFJIT_WIRELEN, 0);
   1428 				if (status != SLJIT_SUCCESS)
   1429 					goto fail;
   1430 
   1431 				continue;
   1432 			}
   1433 
   1434 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1435 			if (mode == BPF_MEM) {
   1436 				if (BPF_SIZE(pc->code) != BPF_W)
   1437 					goto fail;
   1438 				if (pc->k < minm || pc->k > maxm)
   1439 					goto fail;
   1440 				status = sljit_emit_op1(compiler,
   1441 				    SLJIT_MOV_UI,
   1442 				    BPFJIT_X, 0,
   1443 				    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1444 				    mem_local_offset(pc->k, minm));
   1445 				if (status != SLJIT_SUCCESS)
   1446 					goto fail;
   1447 
   1448 				continue;
   1449 			}
   1450 
   1451 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1452 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1453 				goto fail;
   1454 
   1455 			status = emit_msh(compiler, pc,
   1456 			    to_mchain_jump, ret0, &ret0_size);
   1457 			if (status != SLJIT_SUCCESS)
   1458 				goto fail;
   1459 
   1460 			continue;
   1461 
   1462 		case BPF_ST:
   1463 			if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
   1464 				goto fail;
   1465 
   1466 			status = sljit_emit_op1(compiler,
   1467 			    SLJIT_MOV_UI,
   1468 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1469 			    mem_local_offset(pc->k, minm),
   1470 			    BPFJIT_A, 0);
   1471 			if (status != SLJIT_SUCCESS)
   1472 				goto fail;
   1473 
   1474 			continue;
   1475 
   1476 		case BPF_STX:
   1477 			if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
   1478 				goto fail;
   1479 
   1480 			status = sljit_emit_op1(compiler,
   1481 			    SLJIT_MOV_UI,
   1482 			    SLJIT_MEM1(SLJIT_LOCALS_REG),
   1483 			    mem_local_offset(pc->k, minm),
   1484 			    BPFJIT_X, 0);
   1485 			if (status != SLJIT_SUCCESS)
   1486 				goto fail;
   1487 
   1488 			continue;
   1489 
   1490 		case BPF_ALU:
   1491 
   1492 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1493 				status = sljit_emit_op1(compiler,
   1494 				    SLJIT_NEG,
   1495 				    BPFJIT_A, 0,
   1496 				    BPFJIT_A, 0);
   1497 				if (status != SLJIT_SUCCESS)
   1498 					goto fail;
   1499 
   1500 				continue;
   1501 			}
   1502 
   1503 			if (BPF_OP(pc->code) != BPF_DIV) {
   1504 				status = sljit_emit_op2(compiler,
   1505 				    bpf_alu_to_sljit_op(pc),
   1506 				    BPFJIT_A, 0,
   1507 				    BPFJIT_A, 0,
   1508 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1509 				if (status != SLJIT_SUCCESS)
   1510 					goto fail;
   1511 
   1512 				continue;
   1513 			}
   1514 
   1515 			/* BPF_DIV */
   1516 
   1517 			src = BPF_SRC(pc->code);
   1518 			if (src != BPF_X && src != BPF_K)
   1519 				goto fail;
   1520 
   1521 			/* division by zero? */
   1522 			if (src == BPF_X) {
   1523 				jump = sljit_emit_cmp(compiler,
   1524 				    SLJIT_C_EQUAL|SLJIT_INT_OP,
   1525 				    BPFJIT_X, 0,
   1526 				    SLJIT_IMM, 0);
   1527 				if (jump == NULL)
   1528 					goto fail;
   1529 				ret0[ret0_size++] = jump;
   1530 			} else if (pc->k == 0) {
   1531 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1532 				if (jump == NULL)
   1533 					goto fail;
   1534 				ret0[ret0_size++] = jump;
   1535 			}
   1536 
   1537 			if (src == BPF_X) {
   1538 				status = emit_division(compiler, BPFJIT_X, 0);
   1539 				if (status != SLJIT_SUCCESS)
   1540 					goto fail;
   1541 			} else if (pc->k != 0) {
   1542 				if (pc->k & (pc->k - 1)) {
   1543 				    status = emit_division(compiler,
   1544 				        SLJIT_IMM, (uint32_t)pc->k);
   1545 				} else {
   1546     				    status = emit_pow2_division(compiler,
   1547 				        (uint32_t)pc->k);
   1548 				}
   1549 				if (status != SLJIT_SUCCESS)
   1550 					goto fail;
   1551 			}
   1552 
   1553 			continue;
   1554 
   1555 		case BPF_JMP:
   1556 
   1557 			if (pc->code == (BPF_JMP|BPF_JA)) {
   1558 				jt = jf = pc->k;
   1559 			} else {
   1560 				jt = pc->jt;
   1561 				jf = pc->jf;
   1562 			}
   1563 
   1564 			negate = (jt == 0) ? 1 : 0;
   1565 			branching = (jt == jf) ? 0 : 1;
   1566 			jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
   1567 
   1568 			if (branching) {
   1569 				if (BPF_OP(pc->code) != BPF_JSET) {
   1570 					jump = sljit_emit_cmp(compiler,
   1571 					    bpf_jmp_to_sljit_cond(pc, negate),
   1572 					    BPFJIT_A, 0,
   1573 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1574 				} else {
   1575 					status = sljit_emit_op2(compiler,
   1576 					    SLJIT_AND,
   1577 					    BPFJIT_TMP1, 0,
   1578 					    BPFJIT_A, 0,
   1579 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   1580 					if (status != SLJIT_SUCCESS)
   1581 						goto fail;
   1582 
   1583 					jump = sljit_emit_cmp(compiler,
   1584 					    bpf_jmp_to_sljit_cond(pc, negate),
   1585 					    BPFJIT_TMP1, 0,
   1586 					    SLJIT_IMM, 0);
   1587 				}
   1588 
   1589 				if (jump == NULL)
   1590 					goto fail;
   1591 
   1592 				BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
   1593 				jtf[negate].bj_jump = jump;
   1594 			}
   1595 
   1596 			if (!branching || (jt != 0 && jf != 0)) {
   1597 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1598 				if (jump == NULL)
   1599 					goto fail;
   1600 
   1601 				BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
   1602 				jtf[branching].bj_jump = jump;
   1603 			}
   1604 
   1605 			continue;
   1606 
   1607 		case BPF_RET:
   1608 
   1609 			rval = BPF_RVAL(pc->code);
   1610 			if (rval == BPF_X)
   1611 				goto fail;
   1612 
   1613 			/* BPF_RET+BPF_K    accept k bytes */
   1614 			if (rval == BPF_K) {
   1615 				status = sljit_emit_op1(compiler,
   1616 				    SLJIT_MOV,
   1617 				    BPFJIT_A, 0,
   1618 				    SLJIT_IMM, (uint32_t)pc->k);
   1619 				if (status != SLJIT_SUCCESS)
   1620 					goto fail;
   1621 			}
   1622 
   1623 			/* BPF_RET+BPF_A    accept A bytes */
   1624 			if (rval == BPF_A) {
   1625 #if BPFJIT_A != SLJIT_RETURN_REG
   1626 				status = sljit_emit_op1(compiler,
   1627 				    SLJIT_MOV,
   1628 				    SLJIT_RETURN_REG, 0,
   1629 				    BPFJIT_A, 0);
   1630 				if (status != SLJIT_SUCCESS)
   1631 					goto fail;
   1632 #endif
   1633 			}
   1634 
   1635 			/*
   1636 			 * Save a jump to a normal return. If the program
   1637 			 * ends with BPF_RET, no jump is needed because
   1638 			 * the normal return is generated right after the
   1639 			 * last instruction.
   1640 			 */
   1641 			if (i != insn_count - 1) {
   1642 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1643 				if (jump == NULL)
   1644 					goto fail;
   1645 				returns[returns_size++] = jump;
   1646 			}
   1647 
   1648 			continue;
   1649 
   1650 		case BPF_MISC:
   1651 
   1652 			if (pc->code == (BPF_MISC|BPF_TAX)) {
   1653 				status = sljit_emit_op1(compiler,
   1654 				    SLJIT_MOV_UI,
   1655 				    BPFJIT_X, 0,
   1656 				    BPFJIT_A, 0);
   1657 				if (status != SLJIT_SUCCESS)
   1658 					goto fail;
   1659 
   1660 				continue;
   1661 			}
   1662 
   1663 			if (pc->code == (BPF_MISC|BPF_TXA)) {
   1664 				status = sljit_emit_op1(compiler,
   1665 				    SLJIT_MOV,
   1666 				    BPFJIT_A, 0,
   1667 				    BPFJIT_X, 0);
   1668 				if (status != SLJIT_SUCCESS)
   1669 					goto fail;
   1670 
   1671 				continue;
   1672 			}
   1673 
   1674 			goto fail;
   1675 		} /* switch */
   1676 	} /* main loop */
   1677 
   1678 	BPFJIT_ASSERT(ret0_size == ret0_maxsize);
   1679 	BPFJIT_ASSERT(returns_size <= returns_maxsize);
   1680 
   1681 	if (returns_size > 0) {
   1682 		label = sljit_emit_label(compiler);
   1683 		if (label == NULL)
   1684 			goto fail;
   1685 		for (i = 0; i < returns_size; i++)
   1686 			sljit_set_label(returns[i], label);
   1687 	}
   1688 
   1689 	status = sljit_emit_return(compiler,
   1690 	    SLJIT_MOV_UI,
   1691 	    BPFJIT_A, 0);
   1692 	if (status != SLJIT_SUCCESS)
   1693 		goto fail;
   1694 
   1695 	if (ret0_size > 0) {
   1696 		label = sljit_emit_label(compiler);
   1697 		if (label == NULL)
   1698 			goto fail;
   1699 
   1700 		for (i = 0; i < ret0_size; i++)
   1701 			sljit_set_label(ret0[i], label);
   1702 
   1703 		status = sljit_emit_op1(compiler,
   1704 		    SLJIT_MOV,
   1705 		    SLJIT_RETURN_REG, 0,
   1706 		    SLJIT_IMM, 0);
   1707 		if (status != SLJIT_SUCCESS)
   1708 			goto fail;
   1709 
   1710 		status = sljit_emit_return(compiler,
   1711 		    SLJIT_MOV_UI,
   1712 		    SLJIT_RETURN_REG, 0);
   1713 		if (status != SLJIT_SUCCESS)
   1714 			goto fail;
   1715 	}
   1716 
   1717 	rv = sljit_generate_code(compiler);
   1718 
   1719 fail:
   1720 	if (compiler != NULL)
   1721 		sljit_free_compiler(compiler);
   1722 
   1723 	if (insn_dat != NULL)
   1724 		BPFJIT_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   1725 
   1726 	if (returns != NULL)
   1727 		BPFJIT_FREE(returns, returns_maxsize * sizeof(returns[0]));
   1728 
   1729 	if (ret0 != NULL)
   1730 		BPFJIT_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   1731 
   1732 	return (bpfjit_func_t)rv;
   1733 }
   1734 
   1735 void
   1736 bpfjit_free_code(bpfjit_func_t code)
   1737 {
   1738 	sljit_free_code((void *)code);
   1739 }
   1740