if.c revision 1.261 1 /* $NetBSD: if.c,v 1.261 2012/11/01 06:36:30 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.261 2012/11/01 06:36:30 msaitoh Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99 #include "opt_pfil_hooks.h"
100
101 #include <sys/param.h>
102 #include <sys/mbuf.h>
103 #include <sys/systm.h>
104 #include <sys/callout.h>
105 #include <sys/proc.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/kernel.h>
111 #include <sys/ioctl.h>
112 #include <sys/sysctl.h>
113 #include <sys/syslog.h>
114 #include <sys/kauth.h>
115 #include <sys/kmem.h>
116
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #ifdef NETATALK
128 #include <netatalk/at_extern.h>
129 #include <netatalk/at.h>
130 #endif
131 #include <net/pfil.h>
132
133 #ifdef INET6
134 #include <netinet/in.h>
135 #include <netinet6/in6_var.h>
136 #include <netinet6/nd6.h>
137 #endif
138
139 #include "carp.h"
140 #if NCARP > 0
141 #include <netinet/ip_carp.h>
142 #endif
143
144 #include <compat/sys/sockio.h>
145 #include <compat/sys/socket.h>
146
147 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
148 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
149
150 int ifqmaxlen = IFQ_MAXLEN;
151 callout_t if_slowtimo_ch;
152
153 int netisr; /* scheduling bits for network */
154
155 static int if_rt_walktree(struct rtentry *, void *);
156
157 static struct if_clone *if_clone_lookup(const char *, int *);
158 static int if_clone_list(struct if_clonereq *);
159
160 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
161 static int if_cloners_count;
162
163 static uint64_t index_gen;
164 static kmutex_t index_gen_mtx;
165
166 #ifdef PFIL_HOOKS
167 struct pfil_head if_pfil; /* packet filtering hook for interfaces */
168 #endif
169
170 static kauth_listener_t if_listener;
171
172 static int ifioctl_attach(struct ifnet *);
173 static void ifioctl_detach(struct ifnet *);
174 static void ifnet_lock_enter(struct ifnet_lock *);
175 static void ifnet_lock_exit(struct ifnet_lock *);
176 static void if_detach_queues(struct ifnet *, struct ifqueue *);
177 static void sysctl_sndq_setup(struct sysctllog **, const char *,
178 struct ifaltq *);
179
180 #if defined(INET) || defined(INET6)
181 static void sysctl_net_ifq_setup(struct sysctllog **, int, const char *,
182 int, const char *, int, struct ifqueue *);
183 #endif
184
185 static int
186 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
187 void *arg0, void *arg1, void *arg2, void *arg3)
188 {
189 int result;
190 enum kauth_network_req req;
191
192 result = KAUTH_RESULT_DEFER;
193 req = (enum kauth_network_req)arg1;
194
195 if (action != KAUTH_NETWORK_INTERFACE)
196 return result;
197
198 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
199 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
200 result = KAUTH_RESULT_ALLOW;
201
202 return result;
203 }
204
205 /*
206 * Network interface utility routines.
207 *
208 * Routines with ifa_ifwith* names take sockaddr *'s as
209 * parameters.
210 */
211 void
212 ifinit(void)
213 {
214 #ifdef INET
215 {extern struct ifqueue ipintrq;
216 sysctl_net_ifq_setup(NULL, PF_INET, "inet", IPPROTO_IP, "ip",
217 IPCTL_IFQ, &ipintrq);}
218 #endif /* INET */
219 #ifdef INET6
220 {extern struct ifqueue ip6intrq;
221 sysctl_net_ifq_setup(NULL, PF_INET6, "inet6", IPPROTO_IPV6, "ip6",
222 IPV6CTL_IFQ, &ip6intrq);}
223 #endif /* INET6 */
224
225 callout_init(&if_slowtimo_ch, 0);
226 if_slowtimo(NULL);
227
228 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
229 if_listener_cb, NULL);
230 }
231
232 /*
233 * XXX Initialization before configure().
234 * XXX hack to get pfil_add_hook working in autoconf.
235 */
236 void
237 ifinit1(void)
238 {
239
240 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
241
242 #ifdef PFIL_HOOKS
243 if_pfil.ph_type = PFIL_TYPE_IFNET;
244 if_pfil.ph_ifnet = NULL;
245 if (pfil_head_register(&if_pfil) != 0)
246 printf("WARNING: unable to register pfil hook\n");
247 #endif
248 }
249
250 struct ifnet *
251 if_alloc(u_char type)
252 {
253 return malloc(sizeof(struct ifnet), M_DEVBUF, M_WAITOK|M_ZERO);
254 }
255
256 void
257 if_free(struct ifnet *ifp)
258 {
259 free(ifp, M_DEVBUF);
260 }
261
262 void
263 if_initname(struct ifnet *ifp, const char *name, int unit)
264 {
265 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
266 "%s%d", name, unit);
267 }
268
269 /*
270 * Null routines used while an interface is going away. These routines
271 * just return an error.
272 */
273
274 int
275 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
276 const struct sockaddr *so, struct rtentry *rt)
277 {
278
279 return ENXIO;
280 }
281
282 void
283 if_nullinput(struct ifnet *ifp, struct mbuf *m)
284 {
285
286 /* Nothing. */
287 }
288
289 void
290 if_nullstart(struct ifnet *ifp)
291 {
292
293 /* Nothing. */
294 }
295
296 int
297 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
298 {
299
300 /* Wake ifioctl_detach(), who may wait for all threads to
301 * quit the critical section.
302 */
303 cv_signal(&ifp->if_ioctl_lock->il_emptied);
304 return ENXIO;
305 }
306
307 int
308 if_nullinit(struct ifnet *ifp)
309 {
310
311 return ENXIO;
312 }
313
314 void
315 if_nullstop(struct ifnet *ifp, int disable)
316 {
317
318 /* Nothing. */
319 }
320
321 void
322 if_nullwatchdog(struct ifnet *ifp)
323 {
324
325 /* Nothing. */
326 }
327
328 void
329 if_nulldrain(struct ifnet *ifp)
330 {
331
332 /* Nothing. */
333 }
334
335 static u_int if_index = 1;
336 struct ifnet_head ifnet;
337 size_t if_indexlim = 0;
338 struct ifaddr **ifnet_addrs = NULL;
339 struct ifnet **ifindex2ifnet = NULL;
340 struct ifnet *lo0ifp;
341
342 void
343 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
344 {
345 struct ifaddr *ifa;
346 struct sockaddr_dl *sdl;
347
348 ifp->if_addrlen = addrlen;
349 if_alloc_sadl(ifp);
350 ifa = ifp->if_dl;
351 sdl = satosdl(ifa->ifa_addr);
352
353 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
354 if (factory) {
355 ifp->if_hwdl = ifp->if_dl;
356 IFAREF(ifp->if_hwdl);
357 }
358 /* TBD routing socket */
359 }
360
361 struct ifaddr *
362 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
363 {
364 unsigned socksize, ifasize;
365 int addrlen, namelen;
366 struct sockaddr_dl *mask, *sdl;
367 struct ifaddr *ifa;
368
369 namelen = strlen(ifp->if_xname);
370 addrlen = ifp->if_addrlen;
371 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
372 ifasize = sizeof(*ifa) + 2 * socksize;
373 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
374
375 sdl = (struct sockaddr_dl *)(ifa + 1);
376 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
377
378 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
379 ifp->if_xname, namelen, NULL, addrlen);
380 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
381 memset(&mask->sdl_data[0], 0xff, namelen);
382 ifa->ifa_rtrequest = link_rtrequest;
383 ifa->ifa_addr = (struct sockaddr *)sdl;
384 ifa->ifa_netmask = (struct sockaddr *)mask;
385
386 *sdlp = sdl;
387
388 return ifa;
389 }
390
391 static void
392 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
393 {
394 const struct sockaddr_dl *sdl;
395 ifnet_addrs[ifp->if_index] = ifa;
396 IFAREF(ifa);
397 ifp->if_dl = ifa;
398 IFAREF(ifa);
399 sdl = satosdl(ifa->ifa_addr);
400 ifp->if_sadl = sdl;
401 }
402
403 /*
404 * Allocate the link level name for the specified interface. This
405 * is an attachment helper. It must be called after ifp->if_addrlen
406 * is initialized, which may not be the case when if_attach() is
407 * called.
408 */
409 void
410 if_alloc_sadl(struct ifnet *ifp)
411 {
412 struct ifaddr *ifa;
413 const struct sockaddr_dl *sdl;
414
415 /*
416 * If the interface already has a link name, release it
417 * now. This is useful for interfaces that can change
418 * link types, and thus switch link names often.
419 */
420 if (ifp->if_sadl != NULL)
421 if_free_sadl(ifp);
422
423 ifa = if_dl_create(ifp, &sdl);
424
425 ifa_insert(ifp, ifa);
426 if_sadl_setrefs(ifp, ifa);
427 }
428
429 static void
430 if_deactivate_sadl(struct ifnet *ifp)
431 {
432 struct ifaddr *ifa;
433
434 KASSERT(ifp->if_dl != NULL);
435
436 ifa = ifp->if_dl;
437
438 ifp->if_sadl = NULL;
439
440 ifnet_addrs[ifp->if_index] = NULL;
441 IFAFREE(ifa);
442 ifp->if_dl = NULL;
443 IFAFREE(ifa);
444 }
445
446 void
447 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
448 const struct sockaddr_dl *sdl)
449 {
450 int s;
451
452 s = splnet();
453
454 if_deactivate_sadl(ifp);
455
456 if_sadl_setrefs(ifp, ifa);
457 IFADDR_FOREACH(ifa, ifp)
458 rtinit(ifa, RTM_LLINFO_UPD, 0);
459 splx(s);
460 }
461
462 /*
463 * Free the link level name for the specified interface. This is
464 * a detach helper. This is called from if_detach() or from
465 * link layer type specific detach functions.
466 */
467 void
468 if_free_sadl(struct ifnet *ifp)
469 {
470 struct ifaddr *ifa;
471 int s;
472
473 ifa = ifnet_addrs[ifp->if_index];
474 if (ifa == NULL) {
475 KASSERT(ifp->if_sadl == NULL);
476 KASSERT(ifp->if_dl == NULL);
477 return;
478 }
479
480 KASSERT(ifp->if_sadl != NULL);
481 KASSERT(ifp->if_dl != NULL);
482
483 s = splnet();
484 rtinit(ifa, RTM_DELETE, 0);
485 ifa_remove(ifp, ifa);
486 if_deactivate_sadl(ifp);
487 if (ifp->if_hwdl == ifa) {
488 IFAFREE(ifa);
489 ifp->if_hwdl = NULL;
490 }
491 splx(s);
492 }
493
494 /*
495 * Attach an interface to the
496 * list of "active" interfaces.
497 */
498 void
499 if_attach(struct ifnet *ifp)
500 {
501 int indexlim = 0;
502
503 if (if_indexlim == 0) {
504 TAILQ_INIT(&ifnet);
505 if_indexlim = 8;
506 }
507 TAILQ_INIT(&ifp->if_addrlist);
508 TAILQ_INSERT_TAIL(&ifnet, ifp, if_list);
509
510 if (ifioctl_attach(ifp) != 0)
511 panic("%s: ifioctl_attach() failed", __func__);
512
513 mutex_enter(&index_gen_mtx);
514 ifp->if_index_gen = index_gen++;
515 mutex_exit(&index_gen_mtx);
516
517 ifp->if_index = if_index;
518 if (ifindex2ifnet == NULL)
519 if_index++;
520 else
521 while (ifp->if_index < if_indexlim &&
522 ifindex2ifnet[ifp->if_index] != NULL) {
523 ++if_index;
524 if (if_index == 0)
525 if_index = 1;
526 /*
527 * If we hit USHRT_MAX, we skip back to 0 since
528 * there are a number of places where the value
529 * of if_index or if_index itself is compared
530 * to or stored in an unsigned short. By
531 * jumping back, we won't botch those assignments
532 * or comparisons.
533 */
534 else if (if_index == USHRT_MAX) {
535 /*
536 * However, if we have to jump back to
537 * zero *twice* without finding an empty
538 * slot in ifindex2ifnet[], then there
539 * there are too many (>65535) interfaces.
540 */
541 if (indexlim++)
542 panic("too many interfaces");
543 else
544 if_index = 1;
545 }
546 ifp->if_index = if_index;
547 }
548
549 /*
550 * We have some arrays that should be indexed by if_index.
551 * since if_index will grow dynamically, they should grow too.
552 * struct ifadd **ifnet_addrs
553 * struct ifnet **ifindex2ifnet
554 */
555 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
556 ifp->if_index >= if_indexlim) {
557 size_t m, n, oldlim;
558 void *q;
559
560 oldlim = if_indexlim;
561 while (ifp->if_index >= if_indexlim)
562 if_indexlim <<= 1;
563
564 /* grow ifnet_addrs */
565 m = oldlim * sizeof(struct ifaddr *);
566 n = if_indexlim * sizeof(struct ifaddr *);
567 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
568 if (ifnet_addrs != NULL) {
569 memcpy(q, ifnet_addrs, m);
570 free(ifnet_addrs, M_IFADDR);
571 }
572 ifnet_addrs = (struct ifaddr **)q;
573
574 /* grow ifindex2ifnet */
575 m = oldlim * sizeof(struct ifnet *);
576 n = if_indexlim * sizeof(struct ifnet *);
577 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
578 if (ifindex2ifnet != NULL) {
579 memcpy(q, ifindex2ifnet, m);
580 free(ifindex2ifnet, M_IFADDR);
581 }
582 ifindex2ifnet = (struct ifnet **)q;
583 }
584
585 ifindex2ifnet[ifp->if_index] = ifp;
586
587 /*
588 * Link level name is allocated later by a separate call to
589 * if_alloc_sadl().
590 */
591
592 if (ifp->if_snd.ifq_maxlen == 0)
593 ifp->if_snd.ifq_maxlen = ifqmaxlen;
594
595 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
596
597 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
598
599 ifp->if_link_state = LINK_STATE_UNKNOWN;
600
601 ifp->if_capenable = 0;
602 ifp->if_csum_flags_tx = 0;
603 ifp->if_csum_flags_rx = 0;
604
605 #ifdef ALTQ
606 ifp->if_snd.altq_type = 0;
607 ifp->if_snd.altq_disc = NULL;
608 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
609 ifp->if_snd.altq_tbr = NULL;
610 ifp->if_snd.altq_ifp = ifp;
611 #endif
612
613 #ifdef PFIL_HOOKS
614 ifp->if_pfil.ph_type = PFIL_TYPE_IFNET;
615 ifp->if_pfil.ph_ifnet = ifp;
616 if (pfil_head_register(&ifp->if_pfil) != 0)
617 printf("%s: WARNING: unable to register pfil hook\n",
618 ifp->if_xname);
619 (void)pfil_run_hooks(&if_pfil,
620 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
621 #endif
622
623 if (!STAILQ_EMPTY(&domains))
624 if_attachdomain1(ifp);
625
626 /* Announce the interface. */
627 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
628 }
629
630 void
631 if_attachdomain(void)
632 {
633 struct ifnet *ifp;
634 int s;
635
636 s = splnet();
637 IFNET_FOREACH(ifp)
638 if_attachdomain1(ifp);
639 splx(s);
640 }
641
642 void
643 if_attachdomain1(struct ifnet *ifp)
644 {
645 struct domain *dp;
646 int s;
647
648 s = splnet();
649
650 /* address family dependent data region */
651 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
652 DOMAIN_FOREACH(dp) {
653 if (dp->dom_ifattach != NULL)
654 ifp->if_afdata[dp->dom_family] =
655 (*dp->dom_ifattach)(ifp);
656 }
657
658 splx(s);
659 }
660
661 /*
662 * Deactivate an interface. This points all of the procedure
663 * handles at error stubs. May be called from interrupt context.
664 */
665 void
666 if_deactivate(struct ifnet *ifp)
667 {
668 int s;
669
670 s = splnet();
671
672 ifp->if_output = if_nulloutput;
673 ifp->if_input = if_nullinput;
674 ifp->if_start = if_nullstart;
675 ifp->if_ioctl = if_nullioctl;
676 ifp->if_init = if_nullinit;
677 ifp->if_stop = if_nullstop;
678 ifp->if_watchdog = if_nullwatchdog;
679 ifp->if_drain = if_nulldrain;
680
681 /* No more packets may be enqueued. */
682 ifp->if_snd.ifq_maxlen = 0;
683
684 splx(s);
685 }
686
687 void
688 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
689 {
690 struct ifaddr *ifa, *nifa;
691
692 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) {
693 nifa = IFADDR_NEXT(ifa);
694 if (ifa->ifa_addr->sa_family != family)
695 continue;
696 (*purgeaddr)(ifa);
697 }
698 }
699
700 /*
701 * Detach an interface from the list of "active" interfaces,
702 * freeing any resources as we go along.
703 *
704 * NOTE: This routine must be called with a valid thread context,
705 * as it may block.
706 */
707 void
708 if_detach(struct ifnet *ifp)
709 {
710 struct socket so;
711 struct ifaddr *ifa;
712 #ifdef IFAREF_DEBUG
713 struct ifaddr *last_ifa = NULL;
714 #endif
715 struct domain *dp;
716 const struct protosw *pr;
717 int s, i, family, purged;
718
719 /*
720 * XXX It's kind of lame that we have to have the
721 * XXX socket structure...
722 */
723 memset(&so, 0, sizeof(so));
724
725 s = splnet();
726
727 /*
728 * Do an if_down() to give protocols a chance to do something.
729 */
730 if_down(ifp);
731
732 #ifdef ALTQ
733 if (ALTQ_IS_ENABLED(&ifp->if_snd))
734 altq_disable(&ifp->if_snd);
735 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
736 altq_detach(&ifp->if_snd);
737 #endif
738
739 sysctl_teardown(&ifp->if_sysctl_log);
740
741 #if NCARP > 0
742 /* Remove the interface from any carp group it is a part of. */
743 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
744 carp_ifdetach(ifp);
745 #endif
746
747 /*
748 * Rip all the addresses off the interface. This should make
749 * all of the routes go away.
750 *
751 * pr_usrreq calls can remove an arbitrary number of ifaddrs
752 * from the list, including our "cursor", ifa. For safety,
753 * and to honor the TAILQ abstraction, I just restart the
754 * loop after each removal. Note that the loop will exit
755 * when all of the remaining ifaddrs belong to the AF_LINK
756 * family. I am counting on the historical fact that at
757 * least one pr_usrreq in each address domain removes at
758 * least one ifaddr.
759 */
760 again:
761 IFADDR_FOREACH(ifa, ifp) {
762 family = ifa->ifa_addr->sa_family;
763 #ifdef IFAREF_DEBUG
764 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
765 ifa, family, ifa->ifa_refcnt);
766 if (last_ifa != NULL && ifa == last_ifa)
767 panic("if_detach: loop detected");
768 last_ifa = ifa;
769 #endif
770 if (family == AF_LINK)
771 continue;
772 dp = pffinddomain(family);
773 #ifdef DIAGNOSTIC
774 if (dp == NULL)
775 panic("if_detach: no domain for AF %d",
776 family);
777 #endif
778 /*
779 * XXX These PURGEIF calls are redundant with the
780 * purge-all-families calls below, but are left in for
781 * now both to make a smaller change, and to avoid
782 * unplanned interactions with clearing of
783 * ifp->if_addrlist.
784 */
785 purged = 0;
786 for (pr = dp->dom_protosw;
787 pr < dp->dom_protoswNPROTOSW; pr++) {
788 so.so_proto = pr;
789 if (pr->pr_usrreq != NULL) {
790 (void) (*pr->pr_usrreq)(&so,
791 PRU_PURGEIF, NULL, NULL,
792 (struct mbuf *) ifp, curlwp);
793 purged = 1;
794 }
795 }
796 if (purged == 0) {
797 /*
798 * XXX What's really the best thing to do
799 * XXX here? --thorpej (at) NetBSD.org
800 */
801 printf("if_detach: WARNING: AF %d not purged\n",
802 family);
803 ifa_remove(ifp, ifa);
804 }
805 goto again;
806 }
807
808 if_free_sadl(ifp);
809
810 /* Walk the routing table looking for stragglers. */
811 for (i = 0; i <= AF_MAX; i++) {
812 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
813 continue;
814 }
815
816 DOMAIN_FOREACH(dp) {
817 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
818 {
819 void *p = ifp->if_afdata[dp->dom_family];
820 if (p) {
821 ifp->if_afdata[dp->dom_family] = NULL;
822 (*dp->dom_ifdetach)(ifp, p);
823 }
824 }
825
826 /*
827 * One would expect multicast memberships (INET and
828 * INET6) on UDP sockets to be purged by the PURGEIF
829 * calls above, but if all addresses were removed from
830 * the interface prior to destruction, the calls will
831 * not be made (e.g. ppp, for which pppd(8) generally
832 * removes addresses before destroying the interface).
833 * Because there is no invariant that multicast
834 * memberships only exist for interfaces with IPv4
835 * addresses, we must call PURGEIF regardless of
836 * addresses. (Protocols which might store ifnet
837 * pointers are marked with PR_PURGEIF.)
838 */
839 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
840 so.so_proto = pr;
841 if (pr->pr_usrreq != NULL && pr->pr_flags & PR_PURGEIF)
842 (void)(*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL,
843 NULL, (struct mbuf *)ifp, curlwp);
844 }
845 }
846
847 #ifdef PFIL_HOOKS
848 (void)pfil_run_hooks(&if_pfil,
849 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
850 (void)pfil_head_unregister(&ifp->if_pfil);
851 #endif
852
853 /* Announce that the interface is gone. */
854 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
855
856 ifindex2ifnet[ifp->if_index] = NULL;
857
858 TAILQ_REMOVE(&ifnet, ifp, if_list);
859
860 ifioctl_detach(ifp);
861
862 /*
863 * remove packets that came from ifp, from software interrupt queues.
864 */
865 DOMAIN_FOREACH(dp) {
866 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
867 struct ifqueue *iq = dp->dom_ifqueues[i];
868 if (iq == NULL)
869 break;
870 dp->dom_ifqueues[i] = NULL;
871 if_detach_queues(ifp, iq);
872 }
873 }
874
875 splx(s);
876 }
877
878 static void
879 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
880 {
881 struct mbuf *m, *prev, *next;
882
883 prev = NULL;
884 for (m = q->ifq_head; m != NULL; m = next) {
885 next = m->m_nextpkt;
886 #ifdef DIAGNOSTIC
887 if ((m->m_flags & M_PKTHDR) == 0) {
888 prev = m;
889 continue;
890 }
891 #endif
892 if (m->m_pkthdr.rcvif != ifp) {
893 prev = m;
894 continue;
895 }
896
897 if (prev != NULL)
898 prev->m_nextpkt = m->m_nextpkt;
899 else
900 q->ifq_head = m->m_nextpkt;
901 if (q->ifq_tail == m)
902 q->ifq_tail = prev;
903 q->ifq_len--;
904
905 m->m_nextpkt = NULL;
906 m_freem(m);
907 IF_DROP(q);
908 }
909 }
910
911 /*
912 * Callback for a radix tree walk to delete all references to an
913 * ifnet.
914 */
915 static int
916 if_rt_walktree(struct rtentry *rt, void *v)
917 {
918 struct ifnet *ifp = (struct ifnet *)v;
919 int error;
920
921 if (rt->rt_ifp != ifp)
922 return 0;
923
924 /* Delete the entry. */
925 ++rt->rt_refcnt;
926 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
927 rt_mask(rt), rt->rt_flags, NULL);
928 KASSERT((rt->rt_flags & RTF_UP) == 0);
929 rt->rt_ifp = NULL;
930 RTFREE(rt);
931 if (error != 0)
932 printf("%s: warning: unable to delete rtentry @ %p, "
933 "error = %d\n", ifp->if_xname, rt, error);
934 return ERESTART;
935 }
936
937 /*
938 * Create a clone network interface.
939 */
940 int
941 if_clone_create(const char *name)
942 {
943 struct if_clone *ifc;
944 int unit;
945
946 ifc = if_clone_lookup(name, &unit);
947 if (ifc == NULL)
948 return EINVAL;
949
950 if (ifunit(name) != NULL)
951 return EEXIST;
952
953 return (*ifc->ifc_create)(ifc, unit);
954 }
955
956 /*
957 * Destroy a clone network interface.
958 */
959 int
960 if_clone_destroy(const char *name)
961 {
962 struct if_clone *ifc;
963 struct ifnet *ifp;
964
965 ifc = if_clone_lookup(name, NULL);
966 if (ifc == NULL)
967 return EINVAL;
968
969 ifp = ifunit(name);
970 if (ifp == NULL)
971 return ENXIO;
972
973 if (ifc->ifc_destroy == NULL)
974 return EOPNOTSUPP;
975
976 return (*ifc->ifc_destroy)(ifp);
977 }
978
979 /*
980 * Look up a network interface cloner.
981 */
982 static struct if_clone *
983 if_clone_lookup(const char *name, int *unitp)
984 {
985 struct if_clone *ifc;
986 const char *cp;
987 int unit;
988
989 /* separate interface name from unit */
990 for (cp = name;
991 cp - name < IFNAMSIZ && *cp && (*cp < '0' || *cp > '9');
992 cp++)
993 continue;
994
995 if (cp == name || cp - name == IFNAMSIZ || !*cp)
996 return NULL; /* No name or unit number */
997
998 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
999 if (strlen(ifc->ifc_name) == cp - name &&
1000 strncmp(name, ifc->ifc_name, cp - name) == 0)
1001 break;
1002 }
1003
1004 if (ifc == NULL)
1005 return NULL;
1006
1007 unit = 0;
1008 while (cp - name < IFNAMSIZ && *cp) {
1009 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1010 /* Bogus unit number. */
1011 return NULL;
1012 }
1013 unit = (unit * 10) + (*cp++ - '0');
1014 }
1015
1016 if (unitp != NULL)
1017 *unitp = unit;
1018 return ifc;
1019 }
1020
1021 /*
1022 * Register a network interface cloner.
1023 */
1024 void
1025 if_clone_attach(struct if_clone *ifc)
1026 {
1027
1028 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1029 if_cloners_count++;
1030 }
1031
1032 /*
1033 * Unregister a network interface cloner.
1034 */
1035 void
1036 if_clone_detach(struct if_clone *ifc)
1037 {
1038
1039 LIST_REMOVE(ifc, ifc_list);
1040 if_cloners_count--;
1041 }
1042
1043 /*
1044 * Provide list of interface cloners to userspace.
1045 */
1046 static int
1047 if_clone_list(struct if_clonereq *ifcr)
1048 {
1049 char outbuf[IFNAMSIZ], *dst;
1050 struct if_clone *ifc;
1051 int count, error = 0;
1052
1053 ifcr->ifcr_total = if_cloners_count;
1054 if ((dst = ifcr->ifcr_buffer) == NULL) {
1055 /* Just asking how many there are. */
1056 return 0;
1057 }
1058
1059 if (ifcr->ifcr_count < 0)
1060 return EINVAL;
1061
1062 count = (if_cloners_count < ifcr->ifcr_count) ?
1063 if_cloners_count : ifcr->ifcr_count;
1064
1065 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1066 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1067 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1068 if (outbuf[sizeof(outbuf) - 1] != '\0')
1069 return ENAMETOOLONG;
1070 error = copyout(outbuf, dst, sizeof(outbuf));
1071 if (error != 0)
1072 break;
1073 }
1074
1075 return error;
1076 }
1077
1078 void
1079 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1080 {
1081 ifa->ifa_ifp = ifp;
1082 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1083 IFAREF(ifa);
1084 }
1085
1086 void
1087 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1088 {
1089 KASSERT(ifa->ifa_ifp == ifp);
1090 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1091 IFAFREE(ifa);
1092 }
1093
1094 static inline int
1095 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1096 {
1097 return sockaddr_cmp(sa1, sa2) == 0;
1098 }
1099
1100 /*
1101 * Locate an interface based on a complete address.
1102 */
1103 /*ARGSUSED*/
1104 struct ifaddr *
1105 ifa_ifwithaddr(const struct sockaddr *addr)
1106 {
1107 struct ifnet *ifp;
1108 struct ifaddr *ifa;
1109
1110 IFNET_FOREACH(ifp) {
1111 if (ifp->if_output == if_nulloutput)
1112 continue;
1113 IFADDR_FOREACH(ifa, ifp) {
1114 if (ifa->ifa_addr->sa_family != addr->sa_family)
1115 continue;
1116 if (equal(addr, ifa->ifa_addr))
1117 return ifa;
1118 if ((ifp->if_flags & IFF_BROADCAST) &&
1119 ifa->ifa_broadaddr &&
1120 /* IP6 doesn't have broadcast */
1121 ifa->ifa_broadaddr->sa_len != 0 &&
1122 equal(ifa->ifa_broadaddr, addr))
1123 return ifa;
1124 }
1125 }
1126 return NULL;
1127 }
1128
1129 /*
1130 * Locate the point to point interface with a given destination address.
1131 */
1132 /*ARGSUSED*/
1133 struct ifaddr *
1134 ifa_ifwithdstaddr(const struct sockaddr *addr)
1135 {
1136 struct ifnet *ifp;
1137 struct ifaddr *ifa;
1138
1139 IFNET_FOREACH(ifp) {
1140 if (ifp->if_output == if_nulloutput)
1141 continue;
1142 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1143 continue;
1144 IFADDR_FOREACH(ifa, ifp) {
1145 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1146 ifa->ifa_dstaddr == NULL)
1147 continue;
1148 if (equal(addr, ifa->ifa_dstaddr))
1149 return ifa;
1150 }
1151 }
1152 return NULL;
1153 }
1154
1155 /*
1156 * Find an interface on a specific network. If many, choice
1157 * is most specific found.
1158 */
1159 struct ifaddr *
1160 ifa_ifwithnet(const struct sockaddr *addr)
1161 {
1162 struct ifnet *ifp;
1163 struct ifaddr *ifa;
1164 const struct sockaddr_dl *sdl;
1165 struct ifaddr *ifa_maybe = 0;
1166 u_int af = addr->sa_family;
1167 const char *addr_data = addr->sa_data, *cplim;
1168
1169 if (af == AF_LINK) {
1170 sdl = satocsdl(addr);
1171 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1172 ifindex2ifnet[sdl->sdl_index] &&
1173 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1174 return ifnet_addrs[sdl->sdl_index];
1175 }
1176 #ifdef NETATALK
1177 if (af == AF_APPLETALK) {
1178 const struct sockaddr_at *sat, *sat2;
1179 sat = (const struct sockaddr_at *)addr;
1180 IFNET_FOREACH(ifp) {
1181 if (ifp->if_output == if_nulloutput)
1182 continue;
1183 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1184 if (ifa == NULL)
1185 continue;
1186 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1187 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1188 return ifa; /* exact match */
1189 if (ifa_maybe == NULL) {
1190 /* else keep the if with the right range */
1191 ifa_maybe = ifa;
1192 }
1193 }
1194 return ifa_maybe;
1195 }
1196 #endif
1197 IFNET_FOREACH(ifp) {
1198 if (ifp->if_output == if_nulloutput)
1199 continue;
1200 IFADDR_FOREACH(ifa, ifp) {
1201 const char *cp, *cp2, *cp3;
1202
1203 if (ifa->ifa_addr->sa_family != af ||
1204 ifa->ifa_netmask == NULL)
1205 next: continue;
1206 cp = addr_data;
1207 cp2 = ifa->ifa_addr->sa_data;
1208 cp3 = ifa->ifa_netmask->sa_data;
1209 cplim = (const char *)ifa->ifa_netmask +
1210 ifa->ifa_netmask->sa_len;
1211 while (cp3 < cplim) {
1212 if ((*cp++ ^ *cp2++) & *cp3++) {
1213 /* want to continue for() loop */
1214 goto next;
1215 }
1216 }
1217 if (ifa_maybe == NULL ||
1218 rn_refines((void *)ifa->ifa_netmask,
1219 (void *)ifa_maybe->ifa_netmask))
1220 ifa_maybe = ifa;
1221 }
1222 }
1223 return ifa_maybe;
1224 }
1225
1226 /*
1227 * Find the interface of the addresss.
1228 */
1229 struct ifaddr *
1230 ifa_ifwithladdr(const struct sockaddr *addr)
1231 {
1232 struct ifaddr *ia;
1233
1234 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1235 (ia = ifa_ifwithnet(addr)))
1236 return ia;
1237 return NULL;
1238 }
1239
1240 /*
1241 * Find an interface using a specific address family
1242 */
1243 struct ifaddr *
1244 ifa_ifwithaf(int af)
1245 {
1246 struct ifnet *ifp;
1247 struct ifaddr *ifa;
1248
1249 IFNET_FOREACH(ifp) {
1250 if (ifp->if_output == if_nulloutput)
1251 continue;
1252 IFADDR_FOREACH(ifa, ifp) {
1253 if (ifa->ifa_addr->sa_family == af)
1254 return ifa;
1255 }
1256 }
1257 return NULL;
1258 }
1259
1260 /*
1261 * Find an interface address specific to an interface best matching
1262 * a given address.
1263 */
1264 struct ifaddr *
1265 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1266 {
1267 struct ifaddr *ifa;
1268 const char *cp, *cp2, *cp3;
1269 const char *cplim;
1270 struct ifaddr *ifa_maybe = 0;
1271 u_int af = addr->sa_family;
1272
1273 if (ifp->if_output == if_nulloutput)
1274 return NULL;
1275
1276 if (af >= AF_MAX)
1277 return NULL;
1278
1279 IFADDR_FOREACH(ifa, ifp) {
1280 if (ifa->ifa_addr->sa_family != af)
1281 continue;
1282 ifa_maybe = ifa;
1283 if (ifa->ifa_netmask == NULL) {
1284 if (equal(addr, ifa->ifa_addr) ||
1285 (ifa->ifa_dstaddr &&
1286 equal(addr, ifa->ifa_dstaddr)))
1287 return ifa;
1288 continue;
1289 }
1290 cp = addr->sa_data;
1291 cp2 = ifa->ifa_addr->sa_data;
1292 cp3 = ifa->ifa_netmask->sa_data;
1293 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1294 for (; cp3 < cplim; cp3++) {
1295 if ((*cp++ ^ *cp2++) & *cp3)
1296 break;
1297 }
1298 if (cp3 == cplim)
1299 return ifa;
1300 }
1301 return ifa_maybe;
1302 }
1303
1304 /*
1305 * Default action when installing a route with a Link Level gateway.
1306 * Lookup an appropriate real ifa to point to.
1307 * This should be moved to /sys/net/link.c eventually.
1308 */
1309 void
1310 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1311 {
1312 struct ifaddr *ifa;
1313 const struct sockaddr *dst;
1314 struct ifnet *ifp;
1315
1316 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1317 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1318 return;
1319 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1320 rt_replace_ifa(rt, ifa);
1321 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1322 ifa->ifa_rtrequest(cmd, rt, info);
1323 }
1324 }
1325
1326 /*
1327 * Handle a change in the interface link state.
1328 */
1329 void
1330 if_link_state_change(struct ifnet *ifp, int link_state)
1331 {
1332 if (ifp->if_link_state == link_state)
1333 return;
1334 ifp->if_link_state = link_state;
1335 /* Notify that the link state has changed. */
1336 rt_ifmsg(ifp);
1337 #if NCARP > 0
1338 if (ifp->if_carp)
1339 carp_carpdev_state(ifp);
1340 #endif
1341 }
1342
1343 /*
1344 * Mark an interface down and notify protocols of
1345 * the transition.
1346 * NOTE: must be called at splsoftnet or equivalent.
1347 */
1348 void
1349 if_down(struct ifnet *ifp)
1350 {
1351 struct ifaddr *ifa;
1352
1353 ifp->if_flags &= ~IFF_UP;
1354 nanotime(&ifp->if_lastchange);
1355 IFADDR_FOREACH(ifa, ifp)
1356 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1357 IFQ_PURGE(&ifp->if_snd);
1358 #if NCARP > 0
1359 if (ifp->if_carp)
1360 carp_carpdev_state(ifp);
1361 #endif
1362 rt_ifmsg(ifp);
1363 }
1364
1365 /*
1366 * Mark an interface up and notify protocols of
1367 * the transition.
1368 * NOTE: must be called at splsoftnet or equivalent.
1369 */
1370 void
1371 if_up(struct ifnet *ifp)
1372 {
1373 #ifdef notyet
1374 struct ifaddr *ifa;
1375 #endif
1376
1377 ifp->if_flags |= IFF_UP;
1378 nanotime(&ifp->if_lastchange);
1379 #ifdef notyet
1380 /* this has no effect on IP, and will kill all ISO connections XXX */
1381 IFADDR_FOREACH(ifa, ifp)
1382 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1383 #endif
1384 #if NCARP > 0
1385 if (ifp->if_carp)
1386 carp_carpdev_state(ifp);
1387 #endif
1388 rt_ifmsg(ifp);
1389 #ifdef INET6
1390 in6_if_up(ifp);
1391 #endif
1392 }
1393
1394 /*
1395 * Handle interface watchdog timer routines. Called
1396 * from softclock, we decrement timers (if set) and
1397 * call the appropriate interface routine on expiration.
1398 */
1399 void
1400 if_slowtimo(void *arg)
1401 {
1402 struct ifnet *ifp;
1403 int s = splnet();
1404
1405 IFNET_FOREACH(ifp) {
1406 if (ifp->if_timer == 0 || --ifp->if_timer)
1407 continue;
1408 if (ifp->if_watchdog != NULL)
1409 (*ifp->if_watchdog)(ifp);
1410 }
1411 splx(s);
1412 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1413 }
1414
1415 /*
1416 * Set/clear promiscuous mode on interface ifp based on the truth value
1417 * of pswitch. The calls are reference counted so that only the first
1418 * "on" request actually has an effect, as does the final "off" request.
1419 * Results are undefined if the "off" and "on" requests are not matched.
1420 */
1421 int
1422 ifpromisc(struct ifnet *ifp, int pswitch)
1423 {
1424 int pcount, ret;
1425 short nflags;
1426
1427 pcount = ifp->if_pcount;
1428 if (pswitch) {
1429 /*
1430 * Allow the device to be "placed" into promiscuous
1431 * mode even if it is not configured up. It will
1432 * consult IFF_PROMISC when it is brought up.
1433 */
1434 if (ifp->if_pcount++ != 0)
1435 return 0;
1436 nflags = ifp->if_flags | IFF_PROMISC;
1437 } else {
1438 if (--ifp->if_pcount > 0)
1439 return 0;
1440 nflags = ifp->if_flags & ~IFF_PROMISC;
1441 }
1442 ret = if_flags_set(ifp, nflags);
1443 /* Restore interface state if not successful. */
1444 if (ret != 0) {
1445 ifp->if_pcount = pcount;
1446 }
1447 return ret;
1448 }
1449
1450 /*
1451 * Map interface name to
1452 * interface structure pointer.
1453 */
1454 struct ifnet *
1455 ifunit(const char *name)
1456 {
1457 struct ifnet *ifp;
1458 const char *cp = name;
1459 u_int unit = 0;
1460 u_int i;
1461
1462 /*
1463 * If the entire name is a number, treat it as an ifindex.
1464 */
1465 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1466 unit = unit * 10 + (*cp - '0');
1467 }
1468
1469 /*
1470 * If the number took all of the name, then it's a valid ifindex.
1471 */
1472 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1473 if (unit >= if_indexlim)
1474 return NULL;
1475 ifp = ifindex2ifnet[unit];
1476 if (ifp == NULL || ifp->if_output == if_nulloutput)
1477 return NULL;
1478 return ifp;
1479 }
1480
1481 IFNET_FOREACH(ifp) {
1482 if (ifp->if_output == if_nulloutput)
1483 continue;
1484 if (strcmp(ifp->if_xname, name) == 0)
1485 return ifp;
1486 }
1487 return NULL;
1488 }
1489
1490 ifnet_t *
1491 if_byindex(u_int idx)
1492 {
1493
1494 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1495 }
1496
1497 /* common */
1498 int
1499 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1500 {
1501 int s;
1502 struct ifreq *ifr;
1503 struct ifcapreq *ifcr;
1504 struct ifdatareq *ifdr;
1505
1506 switch (cmd) {
1507 case SIOCSIFCAP:
1508 ifcr = data;
1509 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1510 return EINVAL;
1511
1512 if (ifcr->ifcr_capenable == ifp->if_capenable)
1513 return 0;
1514
1515 ifp->if_capenable = ifcr->ifcr_capenable;
1516
1517 /* Pre-compute the checksum flags mask. */
1518 ifp->if_csum_flags_tx = 0;
1519 ifp->if_csum_flags_rx = 0;
1520 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1521 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1522 }
1523 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1524 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1525 }
1526
1527 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1528 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1529 }
1530 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1531 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1532 }
1533
1534 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1535 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1536 }
1537 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1538 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1539 }
1540
1541 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1542 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1543 }
1544 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1545 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1546 }
1547
1548 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1549 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1550 }
1551 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1552 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1553 }
1554 if (ifp->if_flags & IFF_UP)
1555 return ENETRESET;
1556 return 0;
1557 case SIOCSIFFLAGS:
1558 ifr = data;
1559 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1560 s = splnet();
1561 if_down(ifp);
1562 splx(s);
1563 }
1564 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1565 s = splnet();
1566 if_up(ifp);
1567 splx(s);
1568 }
1569 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1570 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1571 break;
1572 case SIOCGIFFLAGS:
1573 ifr = data;
1574 ifr->ifr_flags = ifp->if_flags;
1575 break;
1576
1577 case SIOCGIFMETRIC:
1578 ifr = data;
1579 ifr->ifr_metric = ifp->if_metric;
1580 break;
1581
1582 case SIOCGIFMTU:
1583 ifr = data;
1584 ifr->ifr_mtu = ifp->if_mtu;
1585 break;
1586
1587 case SIOCGIFDLT:
1588 ifr = data;
1589 ifr->ifr_dlt = ifp->if_dlt;
1590 break;
1591
1592 case SIOCGIFCAP:
1593 ifcr = data;
1594 ifcr->ifcr_capabilities = ifp->if_capabilities;
1595 ifcr->ifcr_capenable = ifp->if_capenable;
1596 break;
1597
1598 case SIOCSIFMETRIC:
1599 ifr = data;
1600 ifp->if_metric = ifr->ifr_metric;
1601 break;
1602
1603 case SIOCGIFDATA:
1604 ifdr = data;
1605 ifdr->ifdr_data = ifp->if_data;
1606 break;
1607
1608 case SIOCZIFDATA:
1609 ifdr = data;
1610 ifdr->ifdr_data = ifp->if_data;
1611 /*
1612 * Assumes that the volatile counters that can be
1613 * zero'ed are at the end of if_data.
1614 */
1615 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1616 offsetof(struct if_data, ifi_ipackets));
1617 /*
1618 * The memset() clears to the bottm of if_data. In the area,
1619 * if_lastchange is included. Please be careful if new entry
1620 * will be added into if_data or rewite this.
1621 *
1622 * And also, update if_lastchnage.
1623 */
1624 getnanotime(&ifp->if_lastchange);
1625 break;
1626 case SIOCSIFMTU:
1627 ifr = data;
1628 if (ifp->if_mtu == ifr->ifr_mtu)
1629 break;
1630 ifp->if_mtu = ifr->ifr_mtu;
1631 /*
1632 * If the link MTU changed, do network layer specific procedure.
1633 */
1634 #ifdef INET6
1635 nd6_setmtu(ifp);
1636 #endif
1637 return ENETRESET;
1638 default:
1639 return ENOTTY;
1640 }
1641 return 0;
1642 }
1643
1644 int
1645 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
1646 lwp_t *l)
1647 {
1648 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1649 struct ifaddr *ifa;
1650 const struct sockaddr *any, *sa;
1651 union {
1652 struct sockaddr sa;
1653 struct sockaddr_storage ss;
1654 } u, v;
1655
1656 switch (cmd) {
1657 case SIOCSIFADDRPREF:
1658 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
1659 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1660 NULL) != 0)
1661 return EPERM;
1662 case SIOCGIFADDRPREF:
1663 break;
1664 default:
1665 return EOPNOTSUPP;
1666 }
1667
1668 /* sanity checks */
1669 if (data == NULL || ifp == NULL) {
1670 panic("invalid argument to %s", __func__);
1671 /*NOTREACHED*/
1672 }
1673
1674 /* address must be specified on ADD and DELETE */
1675 sa = sstocsa(&ifap->ifap_addr);
1676 if (sa->sa_family != sofamily(so))
1677 return EINVAL;
1678 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1679 return EINVAL;
1680
1681 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1682
1683 IFADDR_FOREACH(ifa, ifp) {
1684 if (ifa->ifa_addr->sa_family != sa->sa_family)
1685 continue;
1686 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1687 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1688 break;
1689 }
1690 if (ifa == NULL)
1691 return EADDRNOTAVAIL;
1692
1693 switch (cmd) {
1694 case SIOCSIFADDRPREF:
1695 ifa->ifa_preference = ifap->ifap_preference;
1696 return 0;
1697 case SIOCGIFADDRPREF:
1698 /* fill in the if_laddrreq structure */
1699 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1700 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1701 ifap->ifap_preference = ifa->ifa_preference;
1702 return 0;
1703 default:
1704 return EOPNOTSUPP;
1705 }
1706 }
1707
1708 static void
1709 ifnet_lock_enter(struct ifnet_lock *il)
1710 {
1711 uint64_t *nenter;
1712
1713 /* Before trying to acquire the mutex, increase the count of threads
1714 * who have entered or who wait to enter the critical section.
1715 * Avoid one costly locked memory transaction by keeping a count for
1716 * each CPU.
1717 */
1718 nenter = percpu_getref(il->il_nenter);
1719 (*nenter)++;
1720 percpu_putref(il->il_nenter);
1721 mutex_enter(&il->il_lock);
1722 }
1723
1724 static void
1725 ifnet_lock_exit(struct ifnet_lock *il)
1726 {
1727 /* Increase the count of threads who have exited the critical
1728 * section. Increase while we still hold the lock.
1729 */
1730 il->il_nexit++;
1731 mutex_exit(&il->il_lock);
1732 }
1733
1734 /*
1735 * Interface ioctls.
1736 */
1737 int
1738 ifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1739 {
1740 struct ifnet *ifp;
1741 struct ifreq *ifr;
1742 int error = 0;
1743 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1744 u_long ocmd = cmd;
1745 #endif
1746 short oif_flags;
1747 #ifdef COMPAT_OIFREQ
1748 struct ifreq ifrb;
1749 struct oifreq *oifr = NULL;
1750 #endif
1751
1752 switch (cmd) {
1753 #ifdef COMPAT_OIFREQ
1754 case OSIOCGIFCONF:
1755 case OOSIOCGIFCONF:
1756 return compat_ifconf(cmd, data);
1757 #endif
1758 #ifdef COMPAT_OIFDATA
1759 case OSIOCGIFDATA:
1760 case OSIOCZIFDATA:
1761 return compat_ifdatareq(l, cmd, data);
1762 #endif
1763 case SIOCGIFCONF:
1764 return ifconf(cmd, data);
1765 case SIOCINITIFADDR:
1766 return EPERM;
1767 }
1768
1769 #ifdef COMPAT_OIFREQ
1770 cmd = compat_cvtcmd(cmd);
1771 if (cmd != ocmd) {
1772 oifr = data;
1773 data = ifr = &ifrb;
1774 ifreqo2n(oifr, ifr);
1775 } else
1776 #endif
1777 ifr = data;
1778
1779 ifp = ifunit(ifr->ifr_name);
1780
1781 switch (cmd) {
1782 case SIOCIFCREATE:
1783 case SIOCIFDESTROY:
1784 if (l != NULL) {
1785 error = kauth_authorize_network(l->l_cred,
1786 KAUTH_NETWORK_INTERFACE,
1787 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1788 (void *)cmd, NULL);
1789 if (error != 0)
1790 return error;
1791 }
1792 return (cmd == SIOCIFCREATE) ?
1793 if_clone_create(ifr->ifr_name) :
1794 if_clone_destroy(ifr->ifr_name);
1795
1796 case SIOCIFGCLONERS:
1797 return if_clone_list((struct if_clonereq *)data);
1798 }
1799
1800 if (ifp == NULL)
1801 return ENXIO;
1802
1803 switch (cmd) {
1804 case SIOCALIFADDR:
1805 case SIOCDLIFADDR:
1806 case SIOCSIFADDRPREF:
1807 case SIOCSIFFLAGS:
1808 case SIOCSIFCAP:
1809 case SIOCSIFMETRIC:
1810 case SIOCZIFDATA:
1811 case SIOCSIFMTU:
1812 case SIOCSIFPHYADDR:
1813 case SIOCDIFPHYADDR:
1814 #ifdef INET6
1815 case SIOCSIFPHYADDR_IN6:
1816 #endif
1817 case SIOCSLIFPHYADDR:
1818 case SIOCADDMULTI:
1819 case SIOCDELMULTI:
1820 case SIOCSIFMEDIA:
1821 case SIOCSDRVSPEC:
1822 case SIOCG80211:
1823 case SIOCS80211:
1824 case SIOCS80211NWID:
1825 case SIOCS80211NWKEY:
1826 case SIOCS80211POWER:
1827 case SIOCS80211BSSID:
1828 case SIOCS80211CHANNEL:
1829 case SIOCSLINKSTR:
1830 if (l != NULL) {
1831 error = kauth_authorize_network(l->l_cred,
1832 KAUTH_NETWORK_INTERFACE,
1833 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1834 (void *)cmd, NULL);
1835 if (error != 0)
1836 return error;
1837 }
1838 }
1839
1840 oif_flags = ifp->if_flags;
1841
1842 ifnet_lock_enter(ifp->if_ioctl_lock);
1843 error = (*ifp->if_ioctl)(ifp, cmd, data);
1844 if (error != ENOTTY)
1845 ;
1846 else if (so->so_proto == NULL)
1847 error = EOPNOTSUPP;
1848 else {
1849 #ifdef COMPAT_OSOCK
1850 error = compat_ifioctl(so, ocmd, cmd, data, l);
1851 #else
1852 error = (*so->so_proto->pr_usrreq)(so, PRU_CONTROL,
1853 (struct mbuf *)cmd, (struct mbuf *)data,
1854 (struct mbuf *)ifp, l);
1855 #endif
1856 }
1857
1858 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1859 #ifdef INET6
1860 if ((ifp->if_flags & IFF_UP) != 0) {
1861 int s = splnet();
1862 in6_if_up(ifp);
1863 splx(s);
1864 }
1865 #endif
1866 }
1867 #ifdef COMPAT_OIFREQ
1868 if (cmd != ocmd)
1869 ifreqn2o(oifr, ifr);
1870 #endif
1871
1872 ifnet_lock_exit(ifp->if_ioctl_lock);
1873 return error;
1874 }
1875
1876 /* This callback adds to the sum in `arg' the number of
1877 * threads on `ci' who have entered or who wait to enter the
1878 * critical section.
1879 */
1880 static void
1881 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1882 {
1883 uint64_t *sum = arg, *nenter = p;
1884
1885 *sum += *nenter;
1886 }
1887
1888 /* Return the number of threads who have entered or who wait
1889 * to enter the critical section on all CPUs.
1890 */
1891 static uint64_t
1892 ifnet_lock_entrances(struct ifnet_lock *il)
1893 {
1894 uint64_t sum = 0;
1895
1896 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1897
1898 return sum;
1899 }
1900
1901 static int
1902 ifioctl_attach(struct ifnet *ifp)
1903 {
1904 struct ifnet_lock *il;
1905
1906 /* If the driver has not supplied its own if_ioctl, then
1907 * supply the default.
1908 */
1909 if (ifp->if_ioctl == NULL)
1910 ifp->if_ioctl = ifioctl_common;
1911
1912 /* Create an ifnet_lock for synchronizing ifioctls. */
1913 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1914 return ENOMEM;
1915
1916 il->il_nenter = percpu_alloc(sizeof(uint64_t));
1917 if (il->il_nenter == NULL) {
1918 kmem_free(il, sizeof(*il));
1919 return ENOMEM;
1920 }
1921
1922 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
1923 cv_init(&il->il_emptied, ifp->if_xname);
1924
1925 ifp->if_ioctl_lock = il;
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * This must not be called until after `ifp' has been withdrawn from the
1932 * ifnet tables so that ifioctl() cannot get a handle on it by calling
1933 * ifunit().
1934 */
1935 static void
1936 ifioctl_detach(struct ifnet *ifp)
1937 {
1938 struct ifnet_lock *il;
1939
1940 il = ifp->if_ioctl_lock;
1941 mutex_enter(&il->il_lock);
1942 /* Install if_nullioctl to make sure that any thread that
1943 * subsequently enters the critical section will quit it
1944 * immediately and signal the condition variable that we
1945 * wait on, below.
1946 */
1947 ifp->if_ioctl = if_nullioctl;
1948 /* Sleep while threads are still in the critical section or
1949 * wait to enter it.
1950 */
1951 while (ifnet_lock_entrances(il) != il->il_nexit)
1952 cv_wait(&il->il_emptied, &il->il_lock);
1953 /* At this point, we are the only thread still in the critical
1954 * section, and no new thread can get a handle on the ifioctl
1955 * lock, so it is safe to free its memory.
1956 */
1957 mutex_exit(&il->il_lock);
1958 ifp->if_ioctl_lock = NULL;
1959 percpu_free(il->il_nenter, sizeof(uint64_t));
1960 il->il_nenter = NULL;
1961 cv_destroy(&il->il_emptied);
1962 mutex_destroy(&il->il_lock);
1963 kmem_free(il, sizeof(*il));
1964 }
1965
1966 /*
1967 * Return interface configuration
1968 * of system. List may be used
1969 * in later ioctl's (above) to get
1970 * other information.
1971 *
1972 * Each record is a struct ifreq. Before the addition of
1973 * sockaddr_storage, the API rule was that sockaddr flavors that did
1974 * not fit would extend beyond the struct ifreq, with the next struct
1975 * ifreq starting sa_len beyond the struct sockaddr. Because the
1976 * union in struct ifreq includes struct sockaddr_storage, every kind
1977 * of sockaddr must fit. Thus, there are no longer any overlength
1978 * records.
1979 *
1980 * Records are added to the user buffer if they fit, and ifc_len is
1981 * adjusted to the length that was written. Thus, the user is only
1982 * assured of getting the complete list if ifc_len on return is at
1983 * least sizeof(struct ifreq) less than it was on entry.
1984 *
1985 * If the user buffer pointer is NULL, this routine copies no data and
1986 * returns the amount of space that would be needed.
1987 *
1988 * Invariants:
1989 * ifrp points to the next part of the user's buffer to be used. If
1990 * ifrp != NULL, space holds the number of bytes remaining that we may
1991 * write at ifrp. Otherwise, space holds the number of bytes that
1992 * would have been written had there been adequate space.
1993 */
1994 /*ARGSUSED*/
1995 int
1996 ifconf(u_long cmd, void *data)
1997 {
1998 struct ifconf *ifc = (struct ifconf *)data;
1999 struct ifnet *ifp;
2000 struct ifaddr *ifa;
2001 struct ifreq ifr, *ifrp;
2002 int space, error = 0;
2003 const int sz = (int)sizeof(struct ifreq);
2004
2005 if ((ifrp = ifc->ifc_req) == NULL)
2006 space = 0;
2007 else
2008 space = ifc->ifc_len;
2009 IFNET_FOREACH(ifp) {
2010 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2011 sizeof(ifr.ifr_name));
2012 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2013 return ENAMETOOLONG;
2014 if (IFADDR_EMPTY(ifp)) {
2015 /* Interface with no addresses - send zero sockaddr. */
2016 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2017 if (ifrp == NULL) {
2018 space += sz;
2019 continue;
2020 }
2021 if (space >= sz) {
2022 error = copyout(&ifr, ifrp, sz);
2023 if (error != 0)
2024 return error;
2025 ifrp++;
2026 space -= sz;
2027 }
2028 }
2029
2030 IFADDR_FOREACH(ifa, ifp) {
2031 struct sockaddr *sa = ifa->ifa_addr;
2032 /* all sockaddrs must fit in sockaddr_storage */
2033 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2034
2035 if (ifrp == NULL) {
2036 space += sz;
2037 continue;
2038 }
2039 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2040 if (space >= sz) {
2041 error = copyout(&ifr, ifrp, sz);
2042 if (error != 0)
2043 return (error);
2044 ifrp++; space -= sz;
2045 }
2046 }
2047 }
2048 if (ifrp != NULL) {
2049 KASSERT(0 <= space && space <= ifc->ifc_len);
2050 ifc->ifc_len -= space;
2051 } else {
2052 KASSERT(space >= 0);
2053 ifc->ifc_len = space;
2054 }
2055 return (0);
2056 }
2057
2058 int
2059 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2060 {
2061 uint8_t len;
2062 #ifdef COMPAT_OIFREQ
2063 struct ifreq ifrb;
2064 struct oifreq *oifr = NULL;
2065 u_long ocmd = cmd;
2066 cmd = compat_cvtcmd(cmd);
2067 if (cmd != ocmd) {
2068 oifr = (struct oifreq *)(void *)ifr;
2069 ifr = &ifrb;
2070 ifreqo2n(oifr, ifr);
2071 len = sizeof(oifr->ifr_addr);
2072 } else
2073 #endif
2074 len = sizeof(ifr->ifr_ifru.ifru_space);
2075
2076 if (len < sa->sa_len)
2077 return EFBIG;
2078
2079 memset(&ifr->ifr_addr, 0, len);
2080 sockaddr_copy(&ifr->ifr_addr, len, sa);
2081
2082 #ifdef COMPAT_OIFREQ
2083 if (cmd != ocmd)
2084 ifreqn2o(oifr, ifr);
2085 #endif
2086 return 0;
2087 }
2088
2089 /*
2090 * Queue message on interface, and start output if interface
2091 * not yet active.
2092 */
2093 int
2094 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2095 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2096 {
2097 int len = m->m_pkthdr.len;
2098 int mflags = m->m_flags;
2099 int s = splnet();
2100 int error;
2101
2102 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2103 if (error != 0)
2104 goto out;
2105 ifp->if_obytes += len;
2106 if (mflags & M_MCAST)
2107 ifp->if_omcasts++;
2108 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2109 (*ifp->if_start)(ifp);
2110 out:
2111 splx(s);
2112 return error;
2113 }
2114
2115 /*
2116 * Queue message on interface, possibly using a second fast queue
2117 */
2118 int
2119 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2120 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2121 {
2122 int error = 0;
2123
2124 if (ifq != NULL
2125 #ifdef ALTQ
2126 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2127 #endif
2128 ) {
2129 if (IF_QFULL(ifq)) {
2130 IF_DROP(&ifp->if_snd);
2131 m_freem(m);
2132 if (error == 0)
2133 error = ENOBUFS;
2134 } else
2135 IF_ENQUEUE(ifq, m);
2136 } else
2137 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2138 if (error != 0) {
2139 ++ifp->if_oerrors;
2140 return error;
2141 }
2142 return 0;
2143 }
2144
2145 int
2146 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2147 {
2148 int rc;
2149
2150 if (ifp->if_initaddr != NULL)
2151 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2152 else if (src ||
2153 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2154 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2155
2156 return rc;
2157 }
2158
2159 int
2160 if_flags_set(ifnet_t *ifp, const short flags)
2161 {
2162 int rc;
2163
2164 if (ifp->if_setflags != NULL)
2165 rc = (*ifp->if_setflags)(ifp, flags);
2166 else {
2167 short cantflags, chgdflags;
2168 struct ifreq ifr;
2169
2170 chgdflags = ifp->if_flags ^ flags;
2171 cantflags = chgdflags & IFF_CANTCHANGE;
2172
2173 if (cantflags != 0)
2174 ifp->if_flags ^= cantflags;
2175
2176 /* Traditionally, we do not call if_ioctl after
2177 * setting/clearing only IFF_PROMISC if the interface
2178 * isn't IFF_UP. Uphold that tradition.
2179 */
2180 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2181 return 0;
2182
2183 memset(&ifr, 0, sizeof(ifr));
2184
2185 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2186 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2187
2188 if (rc != 0 && cantflags != 0)
2189 ifp->if_flags ^= cantflags;
2190 }
2191
2192 return rc;
2193 }
2194
2195 int
2196 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2197 {
2198 int rc;
2199 struct ifreq ifr;
2200
2201 if (ifp->if_mcastop != NULL)
2202 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2203 else {
2204 ifreq_setaddr(cmd, &ifr, sa);
2205 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2206 }
2207
2208 return rc;
2209 }
2210
2211 static void
2212 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2213 struct ifaltq *ifq)
2214 {
2215 const struct sysctlnode *cnode, *rnode;
2216
2217 if (sysctl_createv(clog, 0, NULL, &rnode,
2218 CTLFLAG_PERMANENT,
2219 CTLTYPE_NODE, "net", NULL,
2220 NULL, 0, NULL, 0,
2221 CTL_NET, CTL_EOL) != 0)
2222 goto bad;
2223
2224 if (sysctl_createv(clog, 0, &rnode, &rnode,
2225 CTLFLAG_PERMANENT,
2226 CTLTYPE_NODE, "interfaces",
2227 SYSCTL_DESCR("Per-interface controls"),
2228 NULL, 0, NULL, 0,
2229 CTL_CREATE, CTL_EOL) != 0)
2230 goto bad;
2231
2232 if (sysctl_createv(clog, 0, &rnode, &rnode,
2233 CTLFLAG_PERMANENT,
2234 CTLTYPE_NODE, ifname,
2235 SYSCTL_DESCR("Interface controls"),
2236 NULL, 0, NULL, 0,
2237 CTL_CREATE, CTL_EOL) != 0)
2238 goto bad;
2239
2240 if (sysctl_createv(clog, 0, &rnode, &rnode,
2241 CTLFLAG_PERMANENT,
2242 CTLTYPE_NODE, "sndq",
2243 SYSCTL_DESCR("Interface output queue controls"),
2244 NULL, 0, NULL, 0,
2245 CTL_CREATE, CTL_EOL) != 0)
2246 goto bad;
2247
2248 if (sysctl_createv(clog, 0, &rnode, &cnode,
2249 CTLFLAG_PERMANENT,
2250 CTLTYPE_INT, "len",
2251 SYSCTL_DESCR("Current output queue length"),
2252 NULL, 0, &ifq->ifq_len, 0,
2253 CTL_CREATE, CTL_EOL) != 0)
2254 goto bad;
2255
2256 if (sysctl_createv(clog, 0, &rnode, &cnode,
2257 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2258 CTLTYPE_INT, "maxlen",
2259 SYSCTL_DESCR("Maximum allowed output queue length"),
2260 NULL, 0, &ifq->ifq_maxlen, 0,
2261 CTL_CREATE, CTL_EOL) != 0)
2262 goto bad;
2263
2264 if (sysctl_createv(clog, 0, &rnode, &cnode,
2265 CTLFLAG_PERMANENT,
2266 CTLTYPE_INT, "drops",
2267 SYSCTL_DESCR("Packets dropped due to full output queue"),
2268 NULL, 0, &ifq->ifq_drops, 0,
2269 CTL_CREATE, CTL_EOL) != 0)
2270 goto bad;
2271
2272 return;
2273 bad:
2274 printf("%s: could not attach sysctl nodes\n", ifname);
2275 return;
2276 }
2277
2278 #if defined(INET) || defined(INET6)
2279 static void
2280 sysctl_net_ifq_setup(struct sysctllog **clog,
2281 int pf, const char *pfname,
2282 int ipn, const char *ipname,
2283 int qid, struct ifqueue *ifq)
2284 {
2285
2286 sysctl_createv(clog, 0, NULL, NULL,
2287 CTLFLAG_PERMANENT,
2288 CTLTYPE_NODE, "net", NULL,
2289 NULL, 0, NULL, 0,
2290 CTL_NET, CTL_EOL);
2291 sysctl_createv(clog, 0, NULL, NULL,
2292 CTLFLAG_PERMANENT,
2293 CTLTYPE_NODE, pfname, NULL,
2294 NULL, 0, NULL, 0,
2295 CTL_NET, pf, CTL_EOL);
2296 sysctl_createv(clog, 0, NULL, NULL,
2297 CTLFLAG_PERMANENT,
2298 CTLTYPE_NODE, ipname, NULL,
2299 NULL, 0, NULL, 0,
2300 CTL_NET, pf, ipn, CTL_EOL);
2301 sysctl_createv(clog, 0, NULL, NULL,
2302 CTLFLAG_PERMANENT,
2303 CTLTYPE_NODE, "ifq",
2304 SYSCTL_DESCR("Protocol input queue controls"),
2305 NULL, 0, NULL, 0,
2306 CTL_NET, pf, ipn, qid, CTL_EOL);
2307
2308 sysctl_createv(clog, 0, NULL, NULL,
2309 CTLFLAG_PERMANENT,
2310 CTLTYPE_INT, "len",
2311 SYSCTL_DESCR("Current input queue length"),
2312 NULL, 0, &ifq->ifq_len, 0,
2313 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2314 sysctl_createv(clog, 0, NULL, NULL,
2315 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2316 CTLTYPE_INT, "maxlen",
2317 SYSCTL_DESCR("Maximum allowed input queue length"),
2318 NULL, 0, &ifq->ifq_maxlen, 0,
2319 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2320 #ifdef notyet
2321 sysctl_createv(clog, 0, NULL, NULL,
2322 CTLFLAG_PERMANENT,
2323 CTLTYPE_INT, "peak",
2324 SYSCTL_DESCR("Highest input queue length"),
2325 NULL, 0, &ifq->ifq_peak, 0,
2326 CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL);
2327 #endif
2328 sysctl_createv(clog, 0, NULL, NULL,
2329 CTLFLAG_PERMANENT,
2330 CTLTYPE_INT, "drops",
2331 SYSCTL_DESCR("Packets dropped due to full input queue"),
2332 NULL, 0, &ifq->ifq_drops, 0,
2333 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2334 }
2335 #endif /* INET || INET6 */
2336