if.c revision 1.278 1 /* $NetBSD: if.c,v 1.278 2014/06/07 13:25:33 he Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.278 2014/06/07 13:25:33 he Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99
100 #include <sys/param.h>
101 #include <sys/mbuf.h>
102 #include <sys/systm.h>
103 #include <sys/callout.h>
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/domain.h>
108 #include <sys/protosw.h>
109 #include <sys/kernel.h>
110 #include <sys/ioctl.h>
111 #include <sys/sysctl.h>
112 #include <sys/syslog.h>
113 #include <sys/kauth.h>
114 #include <sys/kmem.h>
115 #include <sys/xcall.h>
116
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <sys/module.h>
128 #ifdef NETATALK
129 #include <netatalk/at_extern.h>
130 #include <netatalk/at.h>
131 #endif
132 #include <net/pfil.h>
133 #include <netinet/in.h>
134 #include <netinet/in_var.h>
135
136 #ifdef INET6
137 #include <netinet6/in6_var.h>
138 #include <netinet6/nd6.h>
139 #endif
140
141 #include "carp.h"
142 #if NCARP > 0
143 #include <netinet/ip_carp.h>
144 #endif
145
146 #include <compat/sys/sockio.h>
147 #include <compat/sys/socket.h>
148
149 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
150 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
151
152 /*
153 * Global list of interfaces.
154 */
155 struct ifnet_head ifnet_list;
156 static ifnet_t ** ifindex2ifnet = NULL;
157
158 static u_int if_index = 1;
159 static size_t if_indexlim = 0;
160 static uint64_t index_gen;
161 static kmutex_t index_gen_mtx;
162
163 static struct ifaddr ** ifnet_addrs = NULL;
164
165 static callout_t if_slowtimo_ch;
166
167 struct ifnet *lo0ifp;
168 int ifqmaxlen = IFQ_MAXLEN;
169
170 static int if_rt_walktree(struct rtentry *, void *);
171
172 static struct if_clone *if_clone_lookup(const char *, int *);
173 static int if_clone_list(struct if_clonereq *);
174
175 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
176 static int if_cloners_count;
177
178 /* Packet filtering hook for interfaces. */
179 pfil_head_t * if_pfil;
180
181 static kauth_listener_t if_listener;
182
183 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
184 static int ifioctl_attach(struct ifnet *);
185 static void ifioctl_detach(struct ifnet *);
186 static void ifnet_lock_enter(struct ifnet_lock *);
187 static void ifnet_lock_exit(struct ifnet_lock *);
188 static void if_detach_queues(struct ifnet *, struct ifqueue *);
189 static void sysctl_sndq_setup(struct sysctllog **, const char *,
190 struct ifaltq *);
191
192 #if defined(INET) || defined(INET6)
193 static void sysctl_net_pktq_setup(struct sysctllog **, int);
194 #endif
195
196 static int
197 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
198 void *arg0, void *arg1, void *arg2, void *arg3)
199 {
200 int result;
201 enum kauth_network_req req;
202
203 result = KAUTH_RESULT_DEFER;
204 req = (enum kauth_network_req)arg1;
205
206 if (action != KAUTH_NETWORK_INTERFACE)
207 return result;
208
209 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
210 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
211 result = KAUTH_RESULT_ALLOW;
212
213 return result;
214 }
215
216 /*
217 * Network interface utility routines.
218 *
219 * Routines with ifa_ifwith* names take sockaddr *'s as
220 * parameters.
221 */
222 void
223 ifinit(void)
224 {
225 #if defined(INET)
226 sysctl_net_pktq_setup(NULL, PF_INET);
227 #endif
228 #ifdef INET6
229 sysctl_net_pktq_setup(NULL, PF_INET6);
230 #endif
231
232 callout_init(&if_slowtimo_ch, 0);
233 if_slowtimo(NULL);
234
235 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
236 if_listener_cb, NULL);
237
238 /* interfaces are available, inform socket code */
239 ifioctl = doifioctl;
240 }
241
242 /*
243 * XXX Initialization before configure().
244 * XXX hack to get pfil_add_hook working in autoconf.
245 */
246 void
247 ifinit1(void)
248 {
249 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
250 TAILQ_INIT(&ifnet_list);
251 if_indexlim = 8;
252
253 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
254 KASSERT(if_pfil != NULL);
255 }
256
257 ifnet_t *
258 if_alloc(u_char type)
259 {
260 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
261 }
262
263 void
264 if_free(ifnet_t *ifp)
265 {
266 kmem_free(ifp, sizeof(ifnet_t));
267 }
268
269 void
270 if_initname(struct ifnet *ifp, const char *name, int unit)
271 {
272 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
273 "%s%d", name, unit);
274 }
275
276 /*
277 * Null routines used while an interface is going away. These routines
278 * just return an error.
279 */
280
281 int
282 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
283 const struct sockaddr *so, struct rtentry *rt)
284 {
285
286 return ENXIO;
287 }
288
289 void
290 if_nullinput(struct ifnet *ifp, struct mbuf *m)
291 {
292
293 /* Nothing. */
294 }
295
296 void
297 if_nullstart(struct ifnet *ifp)
298 {
299
300 /* Nothing. */
301 }
302
303 int
304 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
305 {
306
307 /* Wake ifioctl_detach(), who may wait for all threads to
308 * quit the critical section.
309 */
310 cv_signal(&ifp->if_ioctl_lock->il_emptied);
311 return ENXIO;
312 }
313
314 int
315 if_nullinit(struct ifnet *ifp)
316 {
317
318 return ENXIO;
319 }
320
321 void
322 if_nullstop(struct ifnet *ifp, int disable)
323 {
324
325 /* Nothing. */
326 }
327
328 void
329 if_nullwatchdog(struct ifnet *ifp)
330 {
331
332 /* Nothing. */
333 }
334
335 void
336 if_nulldrain(struct ifnet *ifp)
337 {
338
339 /* Nothing. */
340 }
341
342 void
343 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
344 {
345 struct ifaddr *ifa;
346 struct sockaddr_dl *sdl;
347
348 ifp->if_addrlen = addrlen;
349 if_alloc_sadl(ifp);
350 ifa = ifp->if_dl;
351 sdl = satosdl(ifa->ifa_addr);
352
353 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
354 if (factory) {
355 ifp->if_hwdl = ifp->if_dl;
356 IFAREF(ifp->if_hwdl);
357 }
358 /* TBD routing socket */
359 }
360
361 struct ifaddr *
362 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
363 {
364 unsigned socksize, ifasize;
365 int addrlen, namelen;
366 struct sockaddr_dl *mask, *sdl;
367 struct ifaddr *ifa;
368
369 namelen = strlen(ifp->if_xname);
370 addrlen = ifp->if_addrlen;
371 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
372 ifasize = sizeof(*ifa) + 2 * socksize;
373 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
374
375 sdl = (struct sockaddr_dl *)(ifa + 1);
376 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
377
378 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
379 ifp->if_xname, namelen, NULL, addrlen);
380 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
381 memset(&mask->sdl_data[0], 0xff, namelen);
382 ifa->ifa_rtrequest = link_rtrequest;
383 ifa->ifa_addr = (struct sockaddr *)sdl;
384 ifa->ifa_netmask = (struct sockaddr *)mask;
385
386 *sdlp = sdl;
387
388 return ifa;
389 }
390
391 static void
392 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
393 {
394 const struct sockaddr_dl *sdl;
395 ifnet_addrs[ifp->if_index] = ifa;
396 IFAREF(ifa);
397 ifp->if_dl = ifa;
398 IFAREF(ifa);
399 sdl = satosdl(ifa->ifa_addr);
400 ifp->if_sadl = sdl;
401 }
402
403 /*
404 * Allocate the link level name for the specified interface. This
405 * is an attachment helper. It must be called after ifp->if_addrlen
406 * is initialized, which may not be the case when if_attach() is
407 * called.
408 */
409 void
410 if_alloc_sadl(struct ifnet *ifp)
411 {
412 struct ifaddr *ifa;
413 const struct sockaddr_dl *sdl;
414
415 /*
416 * If the interface already has a link name, release it
417 * now. This is useful for interfaces that can change
418 * link types, and thus switch link names often.
419 */
420 if (ifp->if_sadl != NULL)
421 if_free_sadl(ifp);
422
423 ifa = if_dl_create(ifp, &sdl);
424
425 ifa_insert(ifp, ifa);
426 if_sadl_setrefs(ifp, ifa);
427 }
428
429 static void
430 if_deactivate_sadl(struct ifnet *ifp)
431 {
432 struct ifaddr *ifa;
433
434 KASSERT(ifp->if_dl != NULL);
435
436 ifa = ifp->if_dl;
437
438 ifp->if_sadl = NULL;
439
440 ifnet_addrs[ifp->if_index] = NULL;
441 IFAFREE(ifa);
442 ifp->if_dl = NULL;
443 IFAFREE(ifa);
444 }
445
446 void
447 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
448 const struct sockaddr_dl *sdl)
449 {
450 int s;
451
452 s = splnet();
453
454 if_deactivate_sadl(ifp);
455
456 if_sadl_setrefs(ifp, ifa);
457 IFADDR_FOREACH(ifa, ifp)
458 rtinit(ifa, RTM_LLINFO_UPD, 0);
459 splx(s);
460 }
461
462 /*
463 * Free the link level name for the specified interface. This is
464 * a detach helper. This is called from if_detach() or from
465 * link layer type specific detach functions.
466 */
467 void
468 if_free_sadl(struct ifnet *ifp)
469 {
470 struct ifaddr *ifa;
471 int s;
472
473 ifa = ifnet_addrs[ifp->if_index];
474 if (ifa == NULL) {
475 KASSERT(ifp->if_sadl == NULL);
476 KASSERT(ifp->if_dl == NULL);
477 return;
478 }
479
480 KASSERT(ifp->if_sadl != NULL);
481 KASSERT(ifp->if_dl != NULL);
482
483 s = splnet();
484 rtinit(ifa, RTM_DELETE, 0);
485 ifa_remove(ifp, ifa);
486 if_deactivate_sadl(ifp);
487 if (ifp->if_hwdl == ifa) {
488 IFAFREE(ifa);
489 ifp->if_hwdl = NULL;
490 }
491 splx(s);
492 }
493
494 static void
495 if_getindex(ifnet_t *ifp)
496 {
497 bool hitlimit = false;
498
499 mutex_enter(&index_gen_mtx);
500 ifp->if_index_gen = index_gen++;
501 mutex_exit(&index_gen_mtx);
502
503 ifp->if_index = if_index;
504 if (ifindex2ifnet == NULL) {
505 if_index++;
506 goto skip;
507 }
508 while (if_byindex(ifp->if_index)) {
509 /*
510 * If we hit USHRT_MAX, we skip back to 0 since
511 * there are a number of places where the value
512 * of if_index or if_index itself is compared
513 * to or stored in an unsigned short. By
514 * jumping back, we won't botch those assignments
515 * or comparisons.
516 */
517 if (++if_index == 0) {
518 if_index = 1;
519 } else if (if_index == USHRT_MAX) {
520 /*
521 * However, if we have to jump back to
522 * zero *twice* without finding an empty
523 * slot in ifindex2ifnet[], then there
524 * there are too many (>65535) interfaces.
525 */
526 if (hitlimit) {
527 panic("too many interfaces");
528 }
529 hitlimit = true;
530 if_index = 1;
531 }
532 ifp->if_index = if_index;
533 }
534 skip:
535 /*
536 * We have some arrays that should be indexed by if_index.
537 * since if_index will grow dynamically, they should grow too.
538 * struct ifadd **ifnet_addrs
539 * struct ifnet **ifindex2ifnet
540 */
541 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
542 ifp->if_index >= if_indexlim) {
543 size_t m, n, oldlim;
544 void *q;
545
546 oldlim = if_indexlim;
547 while (ifp->if_index >= if_indexlim)
548 if_indexlim <<= 1;
549
550 /* grow ifnet_addrs */
551 m = oldlim * sizeof(struct ifaddr *);
552 n = if_indexlim * sizeof(struct ifaddr *);
553 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
554 if (ifnet_addrs != NULL) {
555 memcpy(q, ifnet_addrs, m);
556 free(ifnet_addrs, M_IFADDR);
557 }
558 ifnet_addrs = (struct ifaddr **)q;
559
560 /* grow ifindex2ifnet */
561 m = oldlim * sizeof(struct ifnet *);
562 n = if_indexlim * sizeof(struct ifnet *);
563 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
564 if (ifindex2ifnet != NULL) {
565 memcpy(q, ifindex2ifnet, m);
566 free(ifindex2ifnet, M_IFADDR);
567 }
568 ifindex2ifnet = (struct ifnet **)q;
569 }
570 ifindex2ifnet[ifp->if_index] = ifp;
571 }
572
573 /*
574 * Attach an interface to the list of "active" interfaces.
575 */
576 void
577 if_attach(ifnet_t *ifp)
578 {
579 KASSERT(if_indexlim > 0);
580 TAILQ_INIT(&ifp->if_addrlist);
581 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
582
583 if (ifioctl_attach(ifp) != 0)
584 panic("%s: ifioctl_attach() failed", __func__);
585
586 if_getindex(ifp);
587
588 /*
589 * Link level name is allocated later by a separate call to
590 * if_alloc_sadl().
591 */
592
593 if (ifp->if_snd.ifq_maxlen == 0)
594 ifp->if_snd.ifq_maxlen = ifqmaxlen;
595
596 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
597
598 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
599
600 ifp->if_link_state = LINK_STATE_UNKNOWN;
601
602 ifp->if_capenable = 0;
603 ifp->if_csum_flags_tx = 0;
604 ifp->if_csum_flags_rx = 0;
605
606 #ifdef ALTQ
607 ifp->if_snd.altq_type = 0;
608 ifp->if_snd.altq_disc = NULL;
609 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
610 ifp->if_snd.altq_tbr = NULL;
611 ifp->if_snd.altq_ifp = ifp;
612 #endif
613
614 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
615 (void)pfil_run_hooks(if_pfil,
616 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
617
618 if (!STAILQ_EMPTY(&domains))
619 if_attachdomain1(ifp);
620
621 /* Announce the interface. */
622 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
623 }
624
625 void
626 if_attachdomain(void)
627 {
628 struct ifnet *ifp;
629 int s;
630
631 s = splnet();
632 IFNET_FOREACH(ifp)
633 if_attachdomain1(ifp);
634 splx(s);
635 }
636
637 void
638 if_attachdomain1(struct ifnet *ifp)
639 {
640 struct domain *dp;
641 int s;
642
643 s = splnet();
644
645 /* address family dependent data region */
646 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
647 DOMAIN_FOREACH(dp) {
648 if (dp->dom_ifattach != NULL)
649 ifp->if_afdata[dp->dom_family] =
650 (*dp->dom_ifattach)(ifp);
651 }
652
653 splx(s);
654 }
655
656 /*
657 * Deactivate an interface. This points all of the procedure
658 * handles at error stubs. May be called from interrupt context.
659 */
660 void
661 if_deactivate(struct ifnet *ifp)
662 {
663 int s;
664
665 s = splnet();
666
667 ifp->if_output = if_nulloutput;
668 ifp->if_input = if_nullinput;
669 ifp->if_start = if_nullstart;
670 ifp->if_ioctl = if_nullioctl;
671 ifp->if_init = if_nullinit;
672 ifp->if_stop = if_nullstop;
673 ifp->if_watchdog = if_nullwatchdog;
674 ifp->if_drain = if_nulldrain;
675
676 /* No more packets may be enqueued. */
677 ifp->if_snd.ifq_maxlen = 0;
678
679 splx(s);
680 }
681
682 void
683 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
684 {
685 struct ifaddr *ifa, *nifa;
686
687 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) {
688 nifa = IFADDR_NEXT(ifa);
689 if (ifa->ifa_addr->sa_family != family)
690 continue;
691 (*purgeaddr)(ifa);
692 }
693 }
694
695 /*
696 * Detach an interface from the list of "active" interfaces,
697 * freeing any resources as we go along.
698 *
699 * NOTE: This routine must be called with a valid thread context,
700 * as it may block.
701 */
702 void
703 if_detach(struct ifnet *ifp)
704 {
705 struct socket so;
706 struct ifaddr *ifa;
707 #ifdef IFAREF_DEBUG
708 struct ifaddr *last_ifa = NULL;
709 #endif
710 struct domain *dp;
711 const struct protosw *pr;
712 int s, i, family, purged;
713 uint64_t xc;
714
715 /*
716 * XXX It's kind of lame that we have to have the
717 * XXX socket structure...
718 */
719 memset(&so, 0, sizeof(so));
720
721 s = splnet();
722
723 /*
724 * Do an if_down() to give protocols a chance to do something.
725 */
726 if_down(ifp);
727
728 #ifdef ALTQ
729 if (ALTQ_IS_ENABLED(&ifp->if_snd))
730 altq_disable(&ifp->if_snd);
731 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
732 altq_detach(&ifp->if_snd);
733 #endif
734
735 sysctl_teardown(&ifp->if_sysctl_log);
736
737 #if NCARP > 0
738 /* Remove the interface from any carp group it is a part of. */
739 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
740 carp_ifdetach(ifp);
741 #endif
742
743 /*
744 * Rip all the addresses off the interface. This should make
745 * all of the routes go away.
746 *
747 * pr_usrreq calls can remove an arbitrary number of ifaddrs
748 * from the list, including our "cursor", ifa. For safety,
749 * and to honor the TAILQ abstraction, I just restart the
750 * loop after each removal. Note that the loop will exit
751 * when all of the remaining ifaddrs belong to the AF_LINK
752 * family. I am counting on the historical fact that at
753 * least one pr_usrreq in each address domain removes at
754 * least one ifaddr.
755 */
756 again:
757 IFADDR_FOREACH(ifa, ifp) {
758 family = ifa->ifa_addr->sa_family;
759 #ifdef IFAREF_DEBUG
760 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
761 ifa, family, ifa->ifa_refcnt);
762 if (last_ifa != NULL && ifa == last_ifa)
763 panic("if_detach: loop detected");
764 last_ifa = ifa;
765 #endif
766 if (family == AF_LINK)
767 continue;
768 dp = pffinddomain(family);
769 #ifdef DIAGNOSTIC
770 if (dp == NULL)
771 panic("if_detach: no domain for AF %d",
772 family);
773 #endif
774 /*
775 * XXX These PURGEIF calls are redundant with the
776 * purge-all-families calls below, but are left in for
777 * now both to make a smaller change, and to avoid
778 * unplanned interactions with clearing of
779 * ifp->if_addrlist.
780 */
781 purged = 0;
782 for (pr = dp->dom_protosw;
783 pr < dp->dom_protoswNPROTOSW; pr++) {
784 so.so_proto = pr;
785 if (pr->pr_usrreqs) {
786 (void) (*pr->pr_usrreqs->pr_generic)(&so,
787 PRU_PURGEIF, NULL, NULL,
788 (struct mbuf *) ifp, curlwp);
789 purged = 1;
790 }
791 }
792 if (purged == 0) {
793 /*
794 * XXX What's really the best thing to do
795 * XXX here? --thorpej (at) NetBSD.org
796 */
797 printf("if_detach: WARNING: AF %d not purged\n",
798 family);
799 ifa_remove(ifp, ifa);
800 }
801 goto again;
802 }
803
804 if_free_sadl(ifp);
805
806 /* Walk the routing table looking for stragglers. */
807 for (i = 0; i <= AF_MAX; i++) {
808 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
809 continue;
810 }
811
812 DOMAIN_FOREACH(dp) {
813 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
814 {
815 void *p = ifp->if_afdata[dp->dom_family];
816 if (p) {
817 ifp->if_afdata[dp->dom_family] = NULL;
818 (*dp->dom_ifdetach)(ifp, p);
819 }
820 }
821
822 /*
823 * One would expect multicast memberships (INET and
824 * INET6) on UDP sockets to be purged by the PURGEIF
825 * calls above, but if all addresses were removed from
826 * the interface prior to destruction, the calls will
827 * not be made (e.g. ppp, for which pppd(8) generally
828 * removes addresses before destroying the interface).
829 * Because there is no invariant that multicast
830 * memberships only exist for interfaces with IPv4
831 * addresses, we must call PURGEIF regardless of
832 * addresses. (Protocols which might store ifnet
833 * pointers are marked with PR_PURGEIF.)
834 */
835 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
836 so.so_proto = pr;
837 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
838 (void)(*pr->pr_usrreqs->pr_generic)(&so,
839 PRU_PURGEIF, NULL, NULL,
840 (struct mbuf *)ifp, curlwp);
841 }
842 }
843
844 (void)pfil_run_hooks(if_pfil,
845 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
846 (void)pfil_head_destroy(ifp->if_pfil);
847
848 /* Announce that the interface is gone. */
849 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
850
851 ifindex2ifnet[ifp->if_index] = NULL;
852
853 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
854
855 ifioctl_detach(ifp);
856
857 /*
858 * remove packets that came from ifp, from software interrupt queues.
859 */
860 DOMAIN_FOREACH(dp) {
861 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
862 struct ifqueue *iq = dp->dom_ifqueues[i];
863 if (iq == NULL)
864 break;
865 dp->dom_ifqueues[i] = NULL;
866 if_detach_queues(ifp, iq);
867 }
868 }
869
870 /*
871 * IP queues have to be processed separately: net-queue barrier
872 * ensures that the packets are dequeued while a cross-call will
873 * ensure that the interrupts have completed. FIXME: not quite..
874 */
875 #ifdef INET
876 pktq_barrier(ip_pktq);
877 #endif
878 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
879 xc_wait(xc);
880
881 splx(s);
882 }
883
884 static void
885 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
886 {
887 struct mbuf *m, *prev, *next;
888
889 prev = NULL;
890 for (m = q->ifq_head; m != NULL; m = next) {
891 KASSERT((m->m_flags & M_PKTHDR) != 0);
892
893 next = m->m_nextpkt;
894 if (m->m_pkthdr.rcvif != ifp) {
895 prev = m;
896 continue;
897 }
898
899 if (prev != NULL)
900 prev->m_nextpkt = m->m_nextpkt;
901 else
902 q->ifq_head = m->m_nextpkt;
903 if (q->ifq_tail == m)
904 q->ifq_tail = prev;
905 q->ifq_len--;
906
907 m->m_nextpkt = NULL;
908 m_freem(m);
909 IF_DROP(q);
910 }
911 }
912
913 /*
914 * Callback for a radix tree walk to delete all references to an
915 * ifnet.
916 */
917 static int
918 if_rt_walktree(struct rtentry *rt, void *v)
919 {
920 struct ifnet *ifp = (struct ifnet *)v;
921 int error;
922
923 if (rt->rt_ifp != ifp)
924 return 0;
925
926 /* Delete the entry. */
927 ++rt->rt_refcnt;
928 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
929 rt_mask(rt), rt->rt_flags, NULL);
930 KASSERT((rt->rt_flags & RTF_UP) == 0);
931 rt->rt_ifp = NULL;
932 rtfree(rt);
933 if (error != 0)
934 printf("%s: warning: unable to delete rtentry @ %p, "
935 "error = %d\n", ifp->if_xname, rt, error);
936 return ERESTART;
937 }
938
939 /*
940 * Create a clone network interface.
941 */
942 int
943 if_clone_create(const char *name)
944 {
945 struct if_clone *ifc;
946 int unit;
947
948 ifc = if_clone_lookup(name, &unit);
949 if (ifc == NULL)
950 return EINVAL;
951
952 if (ifunit(name) != NULL)
953 return EEXIST;
954
955 return (*ifc->ifc_create)(ifc, unit);
956 }
957
958 /*
959 * Destroy a clone network interface.
960 */
961 int
962 if_clone_destroy(const char *name)
963 {
964 struct if_clone *ifc;
965 struct ifnet *ifp;
966
967 ifc = if_clone_lookup(name, NULL);
968 if (ifc == NULL)
969 return EINVAL;
970
971 ifp = ifunit(name);
972 if (ifp == NULL)
973 return ENXIO;
974
975 if (ifc->ifc_destroy == NULL)
976 return EOPNOTSUPP;
977
978 return (*ifc->ifc_destroy)(ifp);
979 }
980
981 /*
982 * Look up a network interface cloner.
983 */
984 static struct if_clone *
985 if_clone_lookup(const char *name, int *unitp)
986 {
987 struct if_clone *ifc;
988 const char *cp;
989 char *dp, ifname[IFNAMSIZ + 3];
990 int unit;
991
992 strcpy(ifname, "if_");
993 /* separate interface name from unit */
994 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
995 *cp && (*cp < '0' || *cp > '9');)
996 *dp++ = *cp++;
997
998 if (cp == name || cp - name == IFNAMSIZ || !*cp)
999 return NULL; /* No name or unit number */
1000 *dp++ = '\0';
1001
1002 again:
1003 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1004 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1005 break;
1006 }
1007
1008 if (ifc == NULL) {
1009 if (*ifname == '\0' ||
1010 module_autoload(ifname, MODULE_CLASS_DRIVER))
1011 return NULL;
1012 *ifname = '\0';
1013 goto again;
1014 }
1015
1016 unit = 0;
1017 while (cp - name < IFNAMSIZ && *cp) {
1018 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1019 /* Bogus unit number. */
1020 return NULL;
1021 }
1022 unit = (unit * 10) + (*cp++ - '0');
1023 }
1024
1025 if (unitp != NULL)
1026 *unitp = unit;
1027 return ifc;
1028 }
1029
1030 /*
1031 * Register a network interface cloner.
1032 */
1033 void
1034 if_clone_attach(struct if_clone *ifc)
1035 {
1036
1037 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1038 if_cloners_count++;
1039 }
1040
1041 /*
1042 * Unregister a network interface cloner.
1043 */
1044 void
1045 if_clone_detach(struct if_clone *ifc)
1046 {
1047
1048 LIST_REMOVE(ifc, ifc_list);
1049 if_cloners_count--;
1050 }
1051
1052 /*
1053 * Provide list of interface cloners to userspace.
1054 */
1055 static int
1056 if_clone_list(struct if_clonereq *ifcr)
1057 {
1058 char outbuf[IFNAMSIZ], *dst;
1059 struct if_clone *ifc;
1060 int count, error = 0;
1061
1062 ifcr->ifcr_total = if_cloners_count;
1063 if ((dst = ifcr->ifcr_buffer) == NULL) {
1064 /* Just asking how many there are. */
1065 return 0;
1066 }
1067
1068 if (ifcr->ifcr_count < 0)
1069 return EINVAL;
1070
1071 count = (if_cloners_count < ifcr->ifcr_count) ?
1072 if_cloners_count : ifcr->ifcr_count;
1073
1074 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1075 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1076 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1077 if (outbuf[sizeof(outbuf) - 1] != '\0')
1078 return ENAMETOOLONG;
1079 error = copyout(outbuf, dst, sizeof(outbuf));
1080 if (error != 0)
1081 break;
1082 }
1083
1084 return error;
1085 }
1086
1087 void
1088 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1089 {
1090 ifa->ifa_ifp = ifp;
1091 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1092 IFAREF(ifa);
1093 }
1094
1095 void
1096 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1097 {
1098 KASSERT(ifa->ifa_ifp == ifp);
1099 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1100 IFAFREE(ifa);
1101 }
1102
1103 static inline int
1104 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1105 {
1106 return sockaddr_cmp(sa1, sa2) == 0;
1107 }
1108
1109 /*
1110 * Locate an interface based on a complete address.
1111 */
1112 /*ARGSUSED*/
1113 struct ifaddr *
1114 ifa_ifwithaddr(const struct sockaddr *addr)
1115 {
1116 struct ifnet *ifp;
1117 struct ifaddr *ifa;
1118
1119 IFNET_FOREACH(ifp) {
1120 if (ifp->if_output == if_nulloutput)
1121 continue;
1122 IFADDR_FOREACH(ifa, ifp) {
1123 if (ifa->ifa_addr->sa_family != addr->sa_family)
1124 continue;
1125 if (equal(addr, ifa->ifa_addr))
1126 return ifa;
1127 if ((ifp->if_flags & IFF_BROADCAST) &&
1128 ifa->ifa_broadaddr &&
1129 /* IP6 doesn't have broadcast */
1130 ifa->ifa_broadaddr->sa_len != 0 &&
1131 equal(ifa->ifa_broadaddr, addr))
1132 return ifa;
1133 }
1134 }
1135 return NULL;
1136 }
1137
1138 /*
1139 * Locate the point to point interface with a given destination address.
1140 */
1141 /*ARGSUSED*/
1142 struct ifaddr *
1143 ifa_ifwithdstaddr(const struct sockaddr *addr)
1144 {
1145 struct ifnet *ifp;
1146 struct ifaddr *ifa;
1147
1148 IFNET_FOREACH(ifp) {
1149 if (ifp->if_output == if_nulloutput)
1150 continue;
1151 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1152 continue;
1153 IFADDR_FOREACH(ifa, ifp) {
1154 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1155 ifa->ifa_dstaddr == NULL)
1156 continue;
1157 if (equal(addr, ifa->ifa_dstaddr))
1158 return ifa;
1159 }
1160 }
1161 return NULL;
1162 }
1163
1164 /*
1165 * Find an interface on a specific network. If many, choice
1166 * is most specific found.
1167 */
1168 struct ifaddr *
1169 ifa_ifwithnet(const struct sockaddr *addr)
1170 {
1171 struct ifnet *ifp;
1172 struct ifaddr *ifa;
1173 const struct sockaddr_dl *sdl;
1174 struct ifaddr *ifa_maybe = 0;
1175 u_int af = addr->sa_family;
1176 const char *addr_data = addr->sa_data, *cplim;
1177
1178 if (af == AF_LINK) {
1179 sdl = satocsdl(addr);
1180 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1181 ifindex2ifnet[sdl->sdl_index] &&
1182 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1183 return ifnet_addrs[sdl->sdl_index];
1184 }
1185 #ifdef NETATALK
1186 if (af == AF_APPLETALK) {
1187 const struct sockaddr_at *sat, *sat2;
1188 sat = (const struct sockaddr_at *)addr;
1189 IFNET_FOREACH(ifp) {
1190 if (ifp->if_output == if_nulloutput)
1191 continue;
1192 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1193 if (ifa == NULL)
1194 continue;
1195 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1196 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1197 return ifa; /* exact match */
1198 if (ifa_maybe == NULL) {
1199 /* else keep the if with the right range */
1200 ifa_maybe = ifa;
1201 }
1202 }
1203 return ifa_maybe;
1204 }
1205 #endif
1206 IFNET_FOREACH(ifp) {
1207 if (ifp->if_output == if_nulloutput)
1208 continue;
1209 IFADDR_FOREACH(ifa, ifp) {
1210 const char *cp, *cp2, *cp3;
1211
1212 if (ifa->ifa_addr->sa_family != af ||
1213 ifa->ifa_netmask == NULL)
1214 next: continue;
1215 cp = addr_data;
1216 cp2 = ifa->ifa_addr->sa_data;
1217 cp3 = ifa->ifa_netmask->sa_data;
1218 cplim = (const char *)ifa->ifa_netmask +
1219 ifa->ifa_netmask->sa_len;
1220 while (cp3 < cplim) {
1221 if ((*cp++ ^ *cp2++) & *cp3++) {
1222 /* want to continue for() loop */
1223 goto next;
1224 }
1225 }
1226 if (ifa_maybe == NULL ||
1227 rn_refines((void *)ifa->ifa_netmask,
1228 (void *)ifa_maybe->ifa_netmask))
1229 ifa_maybe = ifa;
1230 }
1231 }
1232 return ifa_maybe;
1233 }
1234
1235 /*
1236 * Find the interface of the addresss.
1237 */
1238 struct ifaddr *
1239 ifa_ifwithladdr(const struct sockaddr *addr)
1240 {
1241 struct ifaddr *ia;
1242
1243 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1244 (ia = ifa_ifwithnet(addr)))
1245 return ia;
1246 return NULL;
1247 }
1248
1249 /*
1250 * Find an interface using a specific address family
1251 */
1252 struct ifaddr *
1253 ifa_ifwithaf(int af)
1254 {
1255 struct ifnet *ifp;
1256 struct ifaddr *ifa;
1257
1258 IFNET_FOREACH(ifp) {
1259 if (ifp->if_output == if_nulloutput)
1260 continue;
1261 IFADDR_FOREACH(ifa, ifp) {
1262 if (ifa->ifa_addr->sa_family == af)
1263 return ifa;
1264 }
1265 }
1266 return NULL;
1267 }
1268
1269 /*
1270 * Find an interface address specific to an interface best matching
1271 * a given address.
1272 */
1273 struct ifaddr *
1274 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1275 {
1276 struct ifaddr *ifa;
1277 const char *cp, *cp2, *cp3;
1278 const char *cplim;
1279 struct ifaddr *ifa_maybe = 0;
1280 u_int af = addr->sa_family;
1281
1282 if (ifp->if_output == if_nulloutput)
1283 return NULL;
1284
1285 if (af >= AF_MAX)
1286 return NULL;
1287
1288 IFADDR_FOREACH(ifa, ifp) {
1289 if (ifa->ifa_addr->sa_family != af)
1290 continue;
1291 ifa_maybe = ifa;
1292 if (ifa->ifa_netmask == NULL) {
1293 if (equal(addr, ifa->ifa_addr) ||
1294 (ifa->ifa_dstaddr &&
1295 equal(addr, ifa->ifa_dstaddr)))
1296 return ifa;
1297 continue;
1298 }
1299 cp = addr->sa_data;
1300 cp2 = ifa->ifa_addr->sa_data;
1301 cp3 = ifa->ifa_netmask->sa_data;
1302 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1303 for (; cp3 < cplim; cp3++) {
1304 if ((*cp++ ^ *cp2++) & *cp3)
1305 break;
1306 }
1307 if (cp3 == cplim)
1308 return ifa;
1309 }
1310 return ifa_maybe;
1311 }
1312
1313 /*
1314 * Default action when installing a route with a Link Level gateway.
1315 * Lookup an appropriate real ifa to point to.
1316 * This should be moved to /sys/net/link.c eventually.
1317 */
1318 void
1319 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1320 {
1321 struct ifaddr *ifa;
1322 const struct sockaddr *dst;
1323 struct ifnet *ifp;
1324
1325 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1326 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1327 return;
1328 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1329 rt_replace_ifa(rt, ifa);
1330 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1331 ifa->ifa_rtrequest(cmd, rt, info);
1332 }
1333 }
1334
1335 /*
1336 * Handle a change in the interface link state.
1337 * XXX: We should listen to the routing socket in-kernel rather
1338 * than calling in6_if_link_* functions directly from here.
1339 */
1340 void
1341 if_link_state_change(struct ifnet *ifp, int link_state)
1342 {
1343 int s;
1344 #if defined(DEBUG) || defined(INET6)
1345 int old_link_state;
1346 #endif
1347
1348 s = splnet();
1349 if (ifp->if_link_state == link_state) {
1350 splx(s);
1351 return;
1352 }
1353
1354 #if defined(DEBUG) || defined(INET6)
1355 old_link_state = ifp->if_link_state;
1356 #endif
1357 ifp->if_link_state = link_state;
1358 #ifdef DEBUG
1359 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1360 link_state == LINK_STATE_UP ? "UP" :
1361 link_state == LINK_STATE_DOWN ? "DOWN" :
1362 "UNKNOWN",
1363 old_link_state == LINK_STATE_UP ? "UP" :
1364 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1365 "UNKNOWN");
1366 #endif
1367
1368 #ifdef INET6
1369 /*
1370 * When going from UNKNOWN to UP, we need to mark existing
1371 * IPv6 addresses as tentative and restart DAD as we may have
1372 * erroneously not found a duplicate.
1373 *
1374 * This needs to happen before rt_ifmsg to avoid a race where
1375 * listeners would have an address and expect it to work right
1376 * away.
1377 */
1378 if (in6_present && link_state == LINK_STATE_UP &&
1379 old_link_state == LINK_STATE_UNKNOWN)
1380 in6_if_link_down(ifp);
1381 #endif
1382
1383 /* Notify that the link state has changed. */
1384 rt_ifmsg(ifp);
1385
1386 #if NCARP > 0
1387 if (ifp->if_carp)
1388 carp_carpdev_state(ifp);
1389 #endif
1390
1391 #ifdef INET6
1392 if (in6_present) {
1393 if (link_state == LINK_STATE_DOWN)
1394 in6_if_link_down(ifp);
1395 else if (link_state == LINK_STATE_UP)
1396 in6_if_link_up(ifp);
1397 }
1398 #endif
1399
1400 splx(s);
1401 }
1402
1403 /*
1404 * Mark an interface down and notify protocols of
1405 * the transition.
1406 * NOTE: must be called at splsoftnet or equivalent.
1407 */
1408 void
1409 if_down(struct ifnet *ifp)
1410 {
1411 struct ifaddr *ifa;
1412
1413 ifp->if_flags &= ~IFF_UP;
1414 nanotime(&ifp->if_lastchange);
1415 IFADDR_FOREACH(ifa, ifp)
1416 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1417 IFQ_PURGE(&ifp->if_snd);
1418 #if NCARP > 0
1419 if (ifp->if_carp)
1420 carp_carpdev_state(ifp);
1421 #endif
1422 rt_ifmsg(ifp);
1423 #ifdef INET6
1424 if (in6_present)
1425 in6_if_down(ifp);
1426 #endif
1427 }
1428
1429 /*
1430 * Mark an interface up and notify protocols of
1431 * the transition.
1432 * NOTE: must be called at splsoftnet or equivalent.
1433 */
1434 void
1435 if_up(struct ifnet *ifp)
1436 {
1437 #ifdef notyet
1438 struct ifaddr *ifa;
1439 #endif
1440
1441 ifp->if_flags |= IFF_UP;
1442 nanotime(&ifp->if_lastchange);
1443 #ifdef notyet
1444 /* this has no effect on IP, and will kill all ISO connections XXX */
1445 IFADDR_FOREACH(ifa, ifp)
1446 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1447 #endif
1448 #if NCARP > 0
1449 if (ifp->if_carp)
1450 carp_carpdev_state(ifp);
1451 #endif
1452 rt_ifmsg(ifp);
1453 #ifdef INET6
1454 if (in6_present)
1455 in6_if_up(ifp);
1456 #endif
1457 }
1458
1459 /*
1460 * Handle interface watchdog timer routines. Called
1461 * from softclock, we decrement timers (if set) and
1462 * call the appropriate interface routine on expiration.
1463 */
1464 void
1465 if_slowtimo(void *arg)
1466 {
1467 struct ifnet *ifp;
1468 int s = splnet();
1469
1470 IFNET_FOREACH(ifp) {
1471 if (ifp->if_timer == 0 || --ifp->if_timer)
1472 continue;
1473 if (ifp->if_watchdog != NULL)
1474 (*ifp->if_watchdog)(ifp);
1475 }
1476 splx(s);
1477 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1478 }
1479
1480 /*
1481 * Set/clear promiscuous mode on interface ifp based on the truth value
1482 * of pswitch. The calls are reference counted so that only the first
1483 * "on" request actually has an effect, as does the final "off" request.
1484 * Results are undefined if the "off" and "on" requests are not matched.
1485 */
1486 int
1487 ifpromisc(struct ifnet *ifp, int pswitch)
1488 {
1489 int pcount, ret;
1490 short nflags;
1491
1492 pcount = ifp->if_pcount;
1493 if (pswitch) {
1494 /*
1495 * Allow the device to be "placed" into promiscuous
1496 * mode even if it is not configured up. It will
1497 * consult IFF_PROMISC when it is brought up.
1498 */
1499 if (ifp->if_pcount++ != 0)
1500 return 0;
1501 nflags = ifp->if_flags | IFF_PROMISC;
1502 } else {
1503 if (--ifp->if_pcount > 0)
1504 return 0;
1505 nflags = ifp->if_flags & ~IFF_PROMISC;
1506 }
1507 ret = if_flags_set(ifp, nflags);
1508 /* Restore interface state if not successful. */
1509 if (ret != 0) {
1510 ifp->if_pcount = pcount;
1511 }
1512 return ret;
1513 }
1514
1515 /*
1516 * Map interface name to
1517 * interface structure pointer.
1518 */
1519 struct ifnet *
1520 ifunit(const char *name)
1521 {
1522 struct ifnet *ifp;
1523 const char *cp = name;
1524 u_int unit = 0;
1525 u_int i;
1526
1527 /*
1528 * If the entire name is a number, treat it as an ifindex.
1529 */
1530 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1531 unit = unit * 10 + (*cp - '0');
1532 }
1533
1534 /*
1535 * If the number took all of the name, then it's a valid ifindex.
1536 */
1537 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1538 if (unit >= if_indexlim)
1539 return NULL;
1540 ifp = ifindex2ifnet[unit];
1541 if (ifp == NULL || ifp->if_output == if_nulloutput)
1542 return NULL;
1543 return ifp;
1544 }
1545
1546 IFNET_FOREACH(ifp) {
1547 if (ifp->if_output == if_nulloutput)
1548 continue;
1549 if (strcmp(ifp->if_xname, name) == 0)
1550 return ifp;
1551 }
1552 return NULL;
1553 }
1554
1555 ifnet_t *
1556 if_byindex(u_int idx)
1557 {
1558 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1559 }
1560
1561 /* common */
1562 int
1563 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1564 {
1565 int s;
1566 struct ifreq *ifr;
1567 struct ifcapreq *ifcr;
1568 struct ifdatareq *ifdr;
1569
1570 switch (cmd) {
1571 case SIOCSIFCAP:
1572 ifcr = data;
1573 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1574 return EINVAL;
1575
1576 if (ifcr->ifcr_capenable == ifp->if_capenable)
1577 return 0;
1578
1579 ifp->if_capenable = ifcr->ifcr_capenable;
1580
1581 /* Pre-compute the checksum flags mask. */
1582 ifp->if_csum_flags_tx = 0;
1583 ifp->if_csum_flags_rx = 0;
1584 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1585 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1586 }
1587 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1588 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1589 }
1590
1591 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1592 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1593 }
1594 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1595 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1596 }
1597
1598 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1599 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1600 }
1601 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1602 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1603 }
1604
1605 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1606 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1607 }
1608 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1609 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1610 }
1611
1612 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1613 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1614 }
1615 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1616 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1617 }
1618 if (ifp->if_flags & IFF_UP)
1619 return ENETRESET;
1620 return 0;
1621 case SIOCSIFFLAGS:
1622 ifr = data;
1623 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1624 s = splnet();
1625 if_down(ifp);
1626 splx(s);
1627 }
1628 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1629 s = splnet();
1630 if_up(ifp);
1631 splx(s);
1632 }
1633 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1634 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1635 break;
1636 case SIOCGIFFLAGS:
1637 ifr = data;
1638 ifr->ifr_flags = ifp->if_flags;
1639 break;
1640
1641 case SIOCGIFMETRIC:
1642 ifr = data;
1643 ifr->ifr_metric = ifp->if_metric;
1644 break;
1645
1646 case SIOCGIFMTU:
1647 ifr = data;
1648 ifr->ifr_mtu = ifp->if_mtu;
1649 break;
1650
1651 case SIOCGIFDLT:
1652 ifr = data;
1653 ifr->ifr_dlt = ifp->if_dlt;
1654 break;
1655
1656 case SIOCGIFCAP:
1657 ifcr = data;
1658 ifcr->ifcr_capabilities = ifp->if_capabilities;
1659 ifcr->ifcr_capenable = ifp->if_capenable;
1660 break;
1661
1662 case SIOCSIFMETRIC:
1663 ifr = data;
1664 ifp->if_metric = ifr->ifr_metric;
1665 break;
1666
1667 case SIOCGIFDATA:
1668 ifdr = data;
1669 ifdr->ifdr_data = ifp->if_data;
1670 break;
1671
1672 case SIOCGIFINDEX:
1673 ifr = data;
1674 ifr->ifr_index = ifp->if_index;
1675 break;
1676
1677 case SIOCZIFDATA:
1678 ifdr = data;
1679 ifdr->ifdr_data = ifp->if_data;
1680 /*
1681 * Assumes that the volatile counters that can be
1682 * zero'ed are at the end of if_data.
1683 */
1684 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1685 offsetof(struct if_data, ifi_ipackets));
1686 /*
1687 * The memset() clears to the bottm of if_data. In the area,
1688 * if_lastchange is included. Please be careful if new entry
1689 * will be added into if_data or rewite this.
1690 *
1691 * And also, update if_lastchnage.
1692 */
1693 getnanotime(&ifp->if_lastchange);
1694 break;
1695 case SIOCSIFMTU:
1696 ifr = data;
1697 if (ifp->if_mtu == ifr->ifr_mtu)
1698 break;
1699 ifp->if_mtu = ifr->ifr_mtu;
1700 /*
1701 * If the link MTU changed, do network layer specific procedure.
1702 */
1703 #ifdef INET6
1704 if (in6_present)
1705 nd6_setmtu(ifp);
1706 #endif
1707 return ENETRESET;
1708 default:
1709 return ENOTTY;
1710 }
1711 return 0;
1712 }
1713
1714 int
1715 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
1716 lwp_t *l)
1717 {
1718 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1719 struct ifaddr *ifa;
1720 const struct sockaddr *any, *sa;
1721 union {
1722 struct sockaddr sa;
1723 struct sockaddr_storage ss;
1724 } u, v;
1725
1726 switch (cmd) {
1727 case SIOCSIFADDRPREF:
1728 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
1729 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1730 NULL) != 0)
1731 return EPERM;
1732 case SIOCGIFADDRPREF:
1733 break;
1734 default:
1735 return EOPNOTSUPP;
1736 }
1737
1738 /* sanity checks */
1739 if (data == NULL || ifp == NULL) {
1740 panic("invalid argument to %s", __func__);
1741 /*NOTREACHED*/
1742 }
1743
1744 /* address must be specified on ADD and DELETE */
1745 sa = sstocsa(&ifap->ifap_addr);
1746 if (sa->sa_family != sofamily(so))
1747 return EINVAL;
1748 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1749 return EINVAL;
1750
1751 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1752
1753 IFADDR_FOREACH(ifa, ifp) {
1754 if (ifa->ifa_addr->sa_family != sa->sa_family)
1755 continue;
1756 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1757 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1758 break;
1759 }
1760 if (ifa == NULL)
1761 return EADDRNOTAVAIL;
1762
1763 switch (cmd) {
1764 case SIOCSIFADDRPREF:
1765 ifa->ifa_preference = ifap->ifap_preference;
1766 return 0;
1767 case SIOCGIFADDRPREF:
1768 /* fill in the if_laddrreq structure */
1769 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1770 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1771 ifap->ifap_preference = ifa->ifa_preference;
1772 return 0;
1773 default:
1774 return EOPNOTSUPP;
1775 }
1776 }
1777
1778 static void
1779 ifnet_lock_enter(struct ifnet_lock *il)
1780 {
1781 uint64_t *nenter;
1782
1783 /* Before trying to acquire the mutex, increase the count of threads
1784 * who have entered or who wait to enter the critical section.
1785 * Avoid one costly locked memory transaction by keeping a count for
1786 * each CPU.
1787 */
1788 nenter = percpu_getref(il->il_nenter);
1789 (*nenter)++;
1790 percpu_putref(il->il_nenter);
1791 mutex_enter(&il->il_lock);
1792 }
1793
1794 static void
1795 ifnet_lock_exit(struct ifnet_lock *il)
1796 {
1797 /* Increase the count of threads who have exited the critical
1798 * section. Increase while we still hold the lock.
1799 */
1800 il->il_nexit++;
1801 mutex_exit(&il->il_lock);
1802 }
1803
1804 /*
1805 * Interface ioctls.
1806 */
1807 static int
1808 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1809 {
1810 struct ifnet *ifp;
1811 struct ifreq *ifr;
1812 int error = 0;
1813 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1814 u_long ocmd = cmd;
1815 #endif
1816 short oif_flags;
1817 #ifdef COMPAT_OIFREQ
1818 struct ifreq ifrb;
1819 struct oifreq *oifr = NULL;
1820 #endif
1821
1822 switch (cmd) {
1823 #ifdef COMPAT_OIFREQ
1824 case OSIOCGIFCONF:
1825 case OOSIOCGIFCONF:
1826 return compat_ifconf(cmd, data);
1827 #endif
1828 #ifdef COMPAT_OIFDATA
1829 case OSIOCGIFDATA:
1830 case OSIOCZIFDATA:
1831 return compat_ifdatareq(l, cmd, data);
1832 #endif
1833 case SIOCGIFCONF:
1834 return ifconf(cmd, data);
1835 case SIOCINITIFADDR:
1836 return EPERM;
1837 }
1838
1839 #ifdef COMPAT_OIFREQ
1840 cmd = compat_cvtcmd(cmd);
1841 if (cmd != ocmd) {
1842 oifr = data;
1843 data = ifr = &ifrb;
1844 ifreqo2n(oifr, ifr);
1845 } else
1846 #endif
1847 ifr = data;
1848
1849 ifp = ifunit(ifr->ifr_name);
1850
1851 switch (cmd) {
1852 case SIOCIFCREATE:
1853 case SIOCIFDESTROY:
1854 if (l != NULL) {
1855 error = kauth_authorize_network(l->l_cred,
1856 KAUTH_NETWORK_INTERFACE,
1857 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1858 (void *)cmd, NULL);
1859 if (error != 0)
1860 return error;
1861 }
1862 return (cmd == SIOCIFCREATE) ?
1863 if_clone_create(ifr->ifr_name) :
1864 if_clone_destroy(ifr->ifr_name);
1865
1866 case SIOCIFGCLONERS:
1867 return if_clone_list((struct if_clonereq *)data);
1868 }
1869
1870 if (ifp == NULL)
1871 return ENXIO;
1872
1873 switch (cmd) {
1874 case SIOCALIFADDR:
1875 case SIOCDLIFADDR:
1876 case SIOCSIFADDRPREF:
1877 case SIOCSIFFLAGS:
1878 case SIOCSIFCAP:
1879 case SIOCSIFMETRIC:
1880 case SIOCZIFDATA:
1881 case SIOCSIFMTU:
1882 case SIOCSIFPHYADDR:
1883 case SIOCDIFPHYADDR:
1884 #ifdef INET6
1885 case SIOCSIFPHYADDR_IN6:
1886 #endif
1887 case SIOCSLIFPHYADDR:
1888 case SIOCADDMULTI:
1889 case SIOCDELMULTI:
1890 case SIOCSIFMEDIA:
1891 case SIOCSDRVSPEC:
1892 case SIOCG80211:
1893 case SIOCS80211:
1894 case SIOCS80211NWID:
1895 case SIOCS80211NWKEY:
1896 case SIOCS80211POWER:
1897 case SIOCS80211BSSID:
1898 case SIOCS80211CHANNEL:
1899 case SIOCSLINKSTR:
1900 if (l != NULL) {
1901 error = kauth_authorize_network(l->l_cred,
1902 KAUTH_NETWORK_INTERFACE,
1903 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1904 (void *)cmd, NULL);
1905 if (error != 0)
1906 return error;
1907 }
1908 }
1909
1910 oif_flags = ifp->if_flags;
1911
1912 ifnet_lock_enter(ifp->if_ioctl_lock);
1913 error = (*ifp->if_ioctl)(ifp, cmd, data);
1914 if (error != ENOTTY)
1915 ;
1916 else if (so->so_proto == NULL)
1917 error = EOPNOTSUPP;
1918 else {
1919 #ifdef COMPAT_OSOCK
1920 error = compat_ifioctl(so, ocmd, cmd, data, l);
1921 #else
1922 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1923 PRU_CONTROL, (struct mbuf *)cmd, (struct mbuf *)data,
1924 (struct mbuf *)ifp, l);
1925 #endif
1926 }
1927
1928 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1929 #ifdef INET6
1930 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1931 int s = splnet();
1932 in6_if_up(ifp);
1933 splx(s);
1934 }
1935 #endif
1936 }
1937 #ifdef COMPAT_OIFREQ
1938 if (cmd != ocmd)
1939 ifreqn2o(oifr, ifr);
1940 #endif
1941
1942 ifnet_lock_exit(ifp->if_ioctl_lock);
1943 return error;
1944 }
1945
1946 /* This callback adds to the sum in `arg' the number of
1947 * threads on `ci' who have entered or who wait to enter the
1948 * critical section.
1949 */
1950 static void
1951 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1952 {
1953 uint64_t *sum = arg, *nenter = p;
1954
1955 *sum += *nenter;
1956 }
1957
1958 /* Return the number of threads who have entered or who wait
1959 * to enter the critical section on all CPUs.
1960 */
1961 static uint64_t
1962 ifnet_lock_entrances(struct ifnet_lock *il)
1963 {
1964 uint64_t sum = 0;
1965
1966 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1967
1968 return sum;
1969 }
1970
1971 static int
1972 ifioctl_attach(struct ifnet *ifp)
1973 {
1974 struct ifnet_lock *il;
1975
1976 /* If the driver has not supplied its own if_ioctl, then
1977 * supply the default.
1978 */
1979 if (ifp->if_ioctl == NULL)
1980 ifp->if_ioctl = ifioctl_common;
1981
1982 /* Create an ifnet_lock for synchronizing ifioctls. */
1983 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1984 return ENOMEM;
1985
1986 il->il_nenter = percpu_alloc(sizeof(uint64_t));
1987 if (il->il_nenter == NULL) {
1988 kmem_free(il, sizeof(*il));
1989 return ENOMEM;
1990 }
1991
1992 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
1993 cv_init(&il->il_emptied, ifp->if_xname);
1994
1995 ifp->if_ioctl_lock = il;
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * This must not be called until after `ifp' has been withdrawn from the
2002 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2003 * ifunit().
2004 */
2005 static void
2006 ifioctl_detach(struct ifnet *ifp)
2007 {
2008 struct ifnet_lock *il;
2009
2010 il = ifp->if_ioctl_lock;
2011 mutex_enter(&il->il_lock);
2012 /* Install if_nullioctl to make sure that any thread that
2013 * subsequently enters the critical section will quit it
2014 * immediately and signal the condition variable that we
2015 * wait on, below.
2016 */
2017 ifp->if_ioctl = if_nullioctl;
2018 /* Sleep while threads are still in the critical section or
2019 * wait to enter it.
2020 */
2021 while (ifnet_lock_entrances(il) != il->il_nexit)
2022 cv_wait(&il->il_emptied, &il->il_lock);
2023 /* At this point, we are the only thread still in the critical
2024 * section, and no new thread can get a handle on the ifioctl
2025 * lock, so it is safe to free its memory.
2026 */
2027 mutex_exit(&il->il_lock);
2028 ifp->if_ioctl_lock = NULL;
2029 percpu_free(il->il_nenter, sizeof(uint64_t));
2030 il->il_nenter = NULL;
2031 cv_destroy(&il->il_emptied);
2032 mutex_destroy(&il->il_lock);
2033 kmem_free(il, sizeof(*il));
2034 }
2035
2036 /*
2037 * Return interface configuration
2038 * of system. List may be used
2039 * in later ioctl's (above) to get
2040 * other information.
2041 *
2042 * Each record is a struct ifreq. Before the addition of
2043 * sockaddr_storage, the API rule was that sockaddr flavors that did
2044 * not fit would extend beyond the struct ifreq, with the next struct
2045 * ifreq starting sa_len beyond the struct sockaddr. Because the
2046 * union in struct ifreq includes struct sockaddr_storage, every kind
2047 * of sockaddr must fit. Thus, there are no longer any overlength
2048 * records.
2049 *
2050 * Records are added to the user buffer if they fit, and ifc_len is
2051 * adjusted to the length that was written. Thus, the user is only
2052 * assured of getting the complete list if ifc_len on return is at
2053 * least sizeof(struct ifreq) less than it was on entry.
2054 *
2055 * If the user buffer pointer is NULL, this routine copies no data and
2056 * returns the amount of space that would be needed.
2057 *
2058 * Invariants:
2059 * ifrp points to the next part of the user's buffer to be used. If
2060 * ifrp != NULL, space holds the number of bytes remaining that we may
2061 * write at ifrp. Otherwise, space holds the number of bytes that
2062 * would have been written had there been adequate space.
2063 */
2064 /*ARGSUSED*/
2065 int
2066 ifconf(u_long cmd, void *data)
2067 {
2068 struct ifconf *ifc = (struct ifconf *)data;
2069 struct ifnet *ifp;
2070 struct ifaddr *ifa;
2071 struct ifreq ifr, *ifrp;
2072 int space, error = 0;
2073 const int sz = (int)sizeof(struct ifreq);
2074
2075 if ((ifrp = ifc->ifc_req) == NULL)
2076 space = 0;
2077 else
2078 space = ifc->ifc_len;
2079 IFNET_FOREACH(ifp) {
2080 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2081 sizeof(ifr.ifr_name));
2082 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2083 return ENAMETOOLONG;
2084 if (IFADDR_EMPTY(ifp)) {
2085 /* Interface with no addresses - send zero sockaddr. */
2086 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2087 if (ifrp == NULL) {
2088 space += sz;
2089 continue;
2090 }
2091 if (space >= sz) {
2092 error = copyout(&ifr, ifrp, sz);
2093 if (error != 0)
2094 return error;
2095 ifrp++;
2096 space -= sz;
2097 }
2098 }
2099
2100 IFADDR_FOREACH(ifa, ifp) {
2101 struct sockaddr *sa = ifa->ifa_addr;
2102 /* all sockaddrs must fit in sockaddr_storage */
2103 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2104
2105 if (ifrp == NULL) {
2106 space += sz;
2107 continue;
2108 }
2109 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2110 if (space >= sz) {
2111 error = copyout(&ifr, ifrp, sz);
2112 if (error != 0)
2113 return (error);
2114 ifrp++; space -= sz;
2115 }
2116 }
2117 }
2118 if (ifrp != NULL) {
2119 KASSERT(0 <= space && space <= ifc->ifc_len);
2120 ifc->ifc_len -= space;
2121 } else {
2122 KASSERT(space >= 0);
2123 ifc->ifc_len = space;
2124 }
2125 return (0);
2126 }
2127
2128 int
2129 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2130 {
2131 uint8_t len;
2132 #ifdef COMPAT_OIFREQ
2133 struct ifreq ifrb;
2134 struct oifreq *oifr = NULL;
2135 u_long ocmd = cmd;
2136 cmd = compat_cvtcmd(cmd);
2137 if (cmd != ocmd) {
2138 oifr = (struct oifreq *)(void *)ifr;
2139 ifr = &ifrb;
2140 ifreqo2n(oifr, ifr);
2141 len = sizeof(oifr->ifr_addr);
2142 } else
2143 #endif
2144 len = sizeof(ifr->ifr_ifru.ifru_space);
2145
2146 if (len < sa->sa_len)
2147 return EFBIG;
2148
2149 memset(&ifr->ifr_addr, 0, len);
2150 sockaddr_copy(&ifr->ifr_addr, len, sa);
2151
2152 #ifdef COMPAT_OIFREQ
2153 if (cmd != ocmd)
2154 ifreqn2o(oifr, ifr);
2155 #endif
2156 return 0;
2157 }
2158
2159 /*
2160 * Queue message on interface, and start output if interface
2161 * not yet active.
2162 */
2163 int
2164 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2165 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2166 {
2167 int len = m->m_pkthdr.len;
2168 int mflags = m->m_flags;
2169 int s = splnet();
2170 int error;
2171
2172 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2173 if (error != 0)
2174 goto out;
2175 ifp->if_obytes += len;
2176 if (mflags & M_MCAST)
2177 ifp->if_omcasts++;
2178 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2179 (*ifp->if_start)(ifp);
2180 out:
2181 splx(s);
2182 return error;
2183 }
2184
2185 /*
2186 * Queue message on interface, possibly using a second fast queue
2187 */
2188 int
2189 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2190 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2191 {
2192 int error = 0;
2193
2194 if (ifq != NULL
2195 #ifdef ALTQ
2196 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2197 #endif
2198 ) {
2199 if (IF_QFULL(ifq)) {
2200 IF_DROP(&ifp->if_snd);
2201 m_freem(m);
2202 if (error == 0)
2203 error = ENOBUFS;
2204 } else
2205 IF_ENQUEUE(ifq, m);
2206 } else
2207 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2208 if (error != 0) {
2209 ++ifp->if_oerrors;
2210 return error;
2211 }
2212 return 0;
2213 }
2214
2215 int
2216 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2217 {
2218 int rc;
2219
2220 if (ifp->if_initaddr != NULL)
2221 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2222 else if (src ||
2223 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2224 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2225
2226 return rc;
2227 }
2228
2229 int
2230 if_flags_set(ifnet_t *ifp, const short flags)
2231 {
2232 int rc;
2233
2234 if (ifp->if_setflags != NULL)
2235 rc = (*ifp->if_setflags)(ifp, flags);
2236 else {
2237 short cantflags, chgdflags;
2238 struct ifreq ifr;
2239
2240 chgdflags = ifp->if_flags ^ flags;
2241 cantflags = chgdflags & IFF_CANTCHANGE;
2242
2243 if (cantflags != 0)
2244 ifp->if_flags ^= cantflags;
2245
2246 /* Traditionally, we do not call if_ioctl after
2247 * setting/clearing only IFF_PROMISC if the interface
2248 * isn't IFF_UP. Uphold that tradition.
2249 */
2250 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2251 return 0;
2252
2253 memset(&ifr, 0, sizeof(ifr));
2254
2255 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2256 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2257
2258 if (rc != 0 && cantflags != 0)
2259 ifp->if_flags ^= cantflags;
2260 }
2261
2262 return rc;
2263 }
2264
2265 int
2266 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2267 {
2268 int rc;
2269 struct ifreq ifr;
2270
2271 if (ifp->if_mcastop != NULL)
2272 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2273 else {
2274 ifreq_setaddr(cmd, &ifr, sa);
2275 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2276 }
2277
2278 return rc;
2279 }
2280
2281 static void
2282 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2283 struct ifaltq *ifq)
2284 {
2285 const struct sysctlnode *cnode, *rnode;
2286
2287 if (sysctl_createv(clog, 0, NULL, &rnode,
2288 CTLFLAG_PERMANENT,
2289 CTLTYPE_NODE, "interfaces",
2290 SYSCTL_DESCR("Per-interface controls"),
2291 NULL, 0, NULL, 0,
2292 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2293 goto bad;
2294
2295 if (sysctl_createv(clog, 0, &rnode, &rnode,
2296 CTLFLAG_PERMANENT,
2297 CTLTYPE_NODE, ifname,
2298 SYSCTL_DESCR("Interface controls"),
2299 NULL, 0, NULL, 0,
2300 CTL_CREATE, CTL_EOL) != 0)
2301 goto bad;
2302
2303 if (sysctl_createv(clog, 0, &rnode, &rnode,
2304 CTLFLAG_PERMANENT,
2305 CTLTYPE_NODE, "sndq",
2306 SYSCTL_DESCR("Interface output queue controls"),
2307 NULL, 0, NULL, 0,
2308 CTL_CREATE, CTL_EOL) != 0)
2309 goto bad;
2310
2311 if (sysctl_createv(clog, 0, &rnode, &cnode,
2312 CTLFLAG_PERMANENT,
2313 CTLTYPE_INT, "len",
2314 SYSCTL_DESCR("Current output queue length"),
2315 NULL, 0, &ifq->ifq_len, 0,
2316 CTL_CREATE, CTL_EOL) != 0)
2317 goto bad;
2318
2319 if (sysctl_createv(clog, 0, &rnode, &cnode,
2320 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2321 CTLTYPE_INT, "maxlen",
2322 SYSCTL_DESCR("Maximum allowed output queue length"),
2323 NULL, 0, &ifq->ifq_maxlen, 0,
2324 CTL_CREATE, CTL_EOL) != 0)
2325 goto bad;
2326
2327 if (sysctl_createv(clog, 0, &rnode, &cnode,
2328 CTLFLAG_PERMANENT,
2329 CTLTYPE_INT, "drops",
2330 SYSCTL_DESCR("Packets dropped due to full output queue"),
2331 NULL, 0, &ifq->ifq_drops, 0,
2332 CTL_CREATE, CTL_EOL) != 0)
2333 goto bad;
2334
2335 return;
2336 bad:
2337 printf("%s: could not attach sysctl nodes\n", ifname);
2338 return;
2339 }
2340
2341 #if defined(INET) || defined(INET6)
2342
2343 static int
2344 sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
2345 {
2346 int count = pktq_get_count(pq, count_id);
2347 struct sysctlnode node = *rnode;
2348 node.sysctl_data = &count;
2349 return sysctl_lookup(SYSCTLFN_CALL(&node));
2350 }
2351
2352 #define SYSCTL_NET_PKTQ(q, cn, c) \
2353 static int \
2354 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2355 { \
2356 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2357 }
2358
2359 #if defined(INET)
2360 SYSCTL_NET_PKTQ(ip_pktq, maxlen, PKTQ_MAXLEN)
2361 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2362 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2363 #endif
2364 #if defined(INET6)
2365 SYSCTL_NET_PKTQ(ip6_pktq, maxlen, PKTQ_MAXLEN)
2366 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2367 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2368 #endif
2369
2370 static void
2371 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2372 {
2373 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2374 const char *pfname = NULL, *ipname = NULL;
2375 int ipn = 0, qid = 0;
2376
2377 switch (pf) {
2378 #if defined(INET)
2379 case PF_INET:
2380 len_func = sysctl_net_ip_pktq_items;
2381 maxlen_func = sysctl_net_ip_pktq_maxlen;
2382 drops_func = sysctl_net_ip_pktq_drops;
2383 pfname = "inet", ipn = IPPROTO_IP;
2384 ipname = "ip", qid = IPCTL_IFQ;
2385 break;
2386 #endif
2387 #if defined(INET6)
2388 case PF_INET6:
2389 len_func = sysctl_net_ip6_pktq_items;
2390 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2391 drops_func = sysctl_net_ip6_pktq_drops;
2392 pfname = "inet6", ipn = IPPROTO_IPV6;
2393 ipname = "ip6", qid = IPV6CTL_IFQ;
2394 break;
2395 #endif
2396 default:
2397 KASSERT(false);
2398 }
2399
2400 sysctl_createv(clog, 0, NULL, NULL,
2401 CTLFLAG_PERMANENT,
2402 CTLTYPE_NODE, pfname, NULL,
2403 NULL, 0, NULL, 0,
2404 CTL_NET, pf, CTL_EOL);
2405 sysctl_createv(clog, 0, NULL, NULL,
2406 CTLFLAG_PERMANENT,
2407 CTLTYPE_NODE, ipname, NULL,
2408 NULL, 0, NULL, 0,
2409 CTL_NET, pf, ipn, CTL_EOL);
2410 sysctl_createv(clog, 0, NULL, NULL,
2411 CTLFLAG_PERMANENT,
2412 CTLTYPE_NODE, "ifq",
2413 SYSCTL_DESCR("Protocol input queue controls"),
2414 NULL, 0, NULL, 0,
2415 CTL_NET, pf, ipn, qid, CTL_EOL);
2416
2417 sysctl_createv(clog, 0, NULL, NULL,
2418 CTLFLAG_PERMANENT,
2419 CTLTYPE_INT, "len",
2420 SYSCTL_DESCR("Current input queue length"),
2421 len_func, 0, NULL, 0,
2422 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2423 sysctl_createv(clog, 0, NULL, NULL,
2424 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2425 CTLTYPE_INT, "maxlen",
2426 SYSCTL_DESCR("Maximum allowed input queue length"),
2427 maxlen_func, 0, NULL, 0,
2428 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2429 sysctl_createv(clog, 0, NULL, NULL,
2430 CTLFLAG_PERMANENT,
2431 CTLTYPE_INT, "drops",
2432 SYSCTL_DESCR("Packets dropped due to full input queue"),
2433 drops_func, 0, NULL, 0,
2434 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2435 }
2436 #endif /* INET || INET6 */
2437