if.c revision 1.284 1 /* $NetBSD: if.c,v 1.284 2014/07/01 05:49:18 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.284 2014/07/01 05:49:18 rtr Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99
100 #include <sys/param.h>
101 #include <sys/mbuf.h>
102 #include <sys/systm.h>
103 #include <sys/callout.h>
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/domain.h>
108 #include <sys/protosw.h>
109 #include <sys/kernel.h>
110 #include <sys/ioctl.h>
111 #include <sys/sysctl.h>
112 #include <sys/syslog.h>
113 #include <sys/kauth.h>
114 #include <sys/kmem.h>
115 #include <sys/xcall.h>
116
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <sys/module.h>
128 #ifdef NETATALK
129 #include <netatalk/at_extern.h>
130 #include <netatalk/at.h>
131 #endif
132 #include <net/pfil.h>
133 #include <netinet/in.h>
134 #include <netinet/in_var.h>
135
136 #ifdef INET6
137 #include <netinet6/in6_var.h>
138 #include <netinet6/nd6.h>
139 #endif
140
141 #include "carp.h"
142 #if NCARP > 0
143 #include <netinet/ip_carp.h>
144 #endif
145
146 #include <compat/sys/sockio.h>
147 #include <compat/sys/socket.h>
148
149 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
150 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
151
152 /*
153 * Global list of interfaces.
154 */
155 struct ifnet_head ifnet_list;
156 static ifnet_t ** ifindex2ifnet = NULL;
157
158 static u_int if_index = 1;
159 static size_t if_indexlim = 0;
160 static uint64_t index_gen;
161 static kmutex_t index_gen_mtx;
162
163 static struct ifaddr ** ifnet_addrs = NULL;
164
165 static callout_t if_slowtimo_ch;
166
167 struct ifnet *lo0ifp;
168 int ifqmaxlen = IFQ_MAXLEN;
169
170 static int if_rt_walktree(struct rtentry *, void *);
171
172 static struct if_clone *if_clone_lookup(const char *, int *);
173 static int if_clone_list(struct if_clonereq *);
174
175 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
176 static int if_cloners_count;
177
178 /* Packet filtering hook for interfaces. */
179 pfil_head_t * if_pfil;
180
181 static kauth_listener_t if_listener;
182
183 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
184 static int ifioctl_attach(struct ifnet *);
185 static void ifioctl_detach(struct ifnet *);
186 static void ifnet_lock_enter(struct ifnet_lock *);
187 static void ifnet_lock_exit(struct ifnet_lock *);
188 static void if_detach_queues(struct ifnet *, struct ifqueue *);
189 static void sysctl_sndq_setup(struct sysctllog **, const char *,
190 struct ifaltq *);
191
192 #if defined(INET) || defined(INET6)
193 static void sysctl_net_pktq_setup(struct sysctllog **, int);
194 #endif
195
196 static int
197 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
198 void *arg0, void *arg1, void *arg2, void *arg3)
199 {
200 int result;
201 enum kauth_network_req req;
202
203 result = KAUTH_RESULT_DEFER;
204 req = (enum kauth_network_req)arg1;
205
206 if (action != KAUTH_NETWORK_INTERFACE)
207 return result;
208
209 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
210 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
211 result = KAUTH_RESULT_ALLOW;
212
213 return result;
214 }
215
216 /*
217 * Network interface utility routines.
218 *
219 * Routines with ifa_ifwith* names take sockaddr *'s as
220 * parameters.
221 */
222 void
223 ifinit(void)
224 {
225 #if defined(INET)
226 sysctl_net_pktq_setup(NULL, PF_INET);
227 #endif
228 #ifdef INET6
229 sysctl_net_pktq_setup(NULL, PF_INET6);
230 #endif
231
232 callout_init(&if_slowtimo_ch, 0);
233 if_slowtimo(NULL);
234
235 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
236 if_listener_cb, NULL);
237
238 /* interfaces are available, inform socket code */
239 ifioctl = doifioctl;
240 }
241
242 /*
243 * XXX Initialization before configure().
244 * XXX hack to get pfil_add_hook working in autoconf.
245 */
246 void
247 ifinit1(void)
248 {
249 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
250 TAILQ_INIT(&ifnet_list);
251 if_indexlim = 8;
252
253 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
254 KASSERT(if_pfil != NULL);
255 }
256
257 ifnet_t *
258 if_alloc(u_char type)
259 {
260 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
261 }
262
263 void
264 if_free(ifnet_t *ifp)
265 {
266 kmem_free(ifp, sizeof(ifnet_t));
267 }
268
269 void
270 if_initname(struct ifnet *ifp, const char *name, int unit)
271 {
272 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
273 "%s%d", name, unit);
274 }
275
276 /*
277 * Null routines used while an interface is going away. These routines
278 * just return an error.
279 */
280
281 int
282 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
283 const struct sockaddr *so, struct rtentry *rt)
284 {
285
286 return ENXIO;
287 }
288
289 void
290 if_nullinput(struct ifnet *ifp, struct mbuf *m)
291 {
292
293 /* Nothing. */
294 }
295
296 void
297 if_nullstart(struct ifnet *ifp)
298 {
299
300 /* Nothing. */
301 }
302
303 int
304 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
305 {
306
307 /* Wake ifioctl_detach(), who may wait for all threads to
308 * quit the critical section.
309 */
310 cv_signal(&ifp->if_ioctl_lock->il_emptied);
311 return ENXIO;
312 }
313
314 int
315 if_nullinit(struct ifnet *ifp)
316 {
317
318 return ENXIO;
319 }
320
321 void
322 if_nullstop(struct ifnet *ifp, int disable)
323 {
324
325 /* Nothing. */
326 }
327
328 void
329 if_nullwatchdog(struct ifnet *ifp)
330 {
331
332 /* Nothing. */
333 }
334
335 void
336 if_nulldrain(struct ifnet *ifp)
337 {
338
339 /* Nothing. */
340 }
341
342 void
343 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
344 {
345 struct ifaddr *ifa;
346 struct sockaddr_dl *sdl;
347
348 ifp->if_addrlen = addrlen;
349 if_alloc_sadl(ifp);
350 ifa = ifp->if_dl;
351 sdl = satosdl(ifa->ifa_addr);
352
353 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
354 if (factory) {
355 ifp->if_hwdl = ifp->if_dl;
356 IFAREF(ifp->if_hwdl);
357 }
358 /* TBD routing socket */
359 }
360
361 struct ifaddr *
362 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
363 {
364 unsigned socksize, ifasize;
365 int addrlen, namelen;
366 struct sockaddr_dl *mask, *sdl;
367 struct ifaddr *ifa;
368
369 namelen = strlen(ifp->if_xname);
370 addrlen = ifp->if_addrlen;
371 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
372 ifasize = sizeof(*ifa) + 2 * socksize;
373 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
374
375 sdl = (struct sockaddr_dl *)(ifa + 1);
376 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
377
378 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
379 ifp->if_xname, namelen, NULL, addrlen);
380 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
381 memset(&mask->sdl_data[0], 0xff, namelen);
382 ifa->ifa_rtrequest = link_rtrequest;
383 ifa->ifa_addr = (struct sockaddr *)sdl;
384 ifa->ifa_netmask = (struct sockaddr *)mask;
385
386 *sdlp = sdl;
387
388 return ifa;
389 }
390
391 static void
392 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
393 {
394 const struct sockaddr_dl *sdl;
395 ifnet_addrs[ifp->if_index] = ifa;
396 IFAREF(ifa);
397 ifp->if_dl = ifa;
398 IFAREF(ifa);
399 sdl = satosdl(ifa->ifa_addr);
400 ifp->if_sadl = sdl;
401 }
402
403 /*
404 * Allocate the link level name for the specified interface. This
405 * is an attachment helper. It must be called after ifp->if_addrlen
406 * is initialized, which may not be the case when if_attach() is
407 * called.
408 */
409 void
410 if_alloc_sadl(struct ifnet *ifp)
411 {
412 struct ifaddr *ifa;
413 const struct sockaddr_dl *sdl;
414
415 /*
416 * If the interface already has a link name, release it
417 * now. This is useful for interfaces that can change
418 * link types, and thus switch link names often.
419 */
420 if (ifp->if_sadl != NULL)
421 if_free_sadl(ifp);
422
423 ifa = if_dl_create(ifp, &sdl);
424
425 ifa_insert(ifp, ifa);
426 if_sadl_setrefs(ifp, ifa);
427 }
428
429 static void
430 if_deactivate_sadl(struct ifnet *ifp)
431 {
432 struct ifaddr *ifa;
433
434 KASSERT(ifp->if_dl != NULL);
435
436 ifa = ifp->if_dl;
437
438 ifp->if_sadl = NULL;
439
440 ifnet_addrs[ifp->if_index] = NULL;
441 IFAFREE(ifa);
442 ifp->if_dl = NULL;
443 IFAFREE(ifa);
444 }
445
446 void
447 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
448 const struct sockaddr_dl *sdl)
449 {
450 int s;
451
452 s = splnet();
453
454 if_deactivate_sadl(ifp);
455
456 if_sadl_setrefs(ifp, ifa);
457 IFADDR_FOREACH(ifa, ifp)
458 rtinit(ifa, RTM_LLINFO_UPD, 0);
459 splx(s);
460 }
461
462 /*
463 * Free the link level name for the specified interface. This is
464 * a detach helper. This is called from if_detach() or from
465 * link layer type specific detach functions.
466 */
467 void
468 if_free_sadl(struct ifnet *ifp)
469 {
470 struct ifaddr *ifa;
471 int s;
472
473 ifa = ifnet_addrs[ifp->if_index];
474 if (ifa == NULL) {
475 KASSERT(ifp->if_sadl == NULL);
476 KASSERT(ifp->if_dl == NULL);
477 return;
478 }
479
480 KASSERT(ifp->if_sadl != NULL);
481 KASSERT(ifp->if_dl != NULL);
482
483 s = splnet();
484 rtinit(ifa, RTM_DELETE, 0);
485 ifa_remove(ifp, ifa);
486 if_deactivate_sadl(ifp);
487 if (ifp->if_hwdl == ifa) {
488 IFAFREE(ifa);
489 ifp->if_hwdl = NULL;
490 }
491 splx(s);
492 }
493
494 static void
495 if_getindex(ifnet_t *ifp)
496 {
497 bool hitlimit = false;
498
499 mutex_enter(&index_gen_mtx);
500 ifp->if_index_gen = index_gen++;
501 mutex_exit(&index_gen_mtx);
502
503 ifp->if_index = if_index;
504 if (ifindex2ifnet == NULL) {
505 if_index++;
506 goto skip;
507 }
508 while (if_byindex(ifp->if_index)) {
509 /*
510 * If we hit USHRT_MAX, we skip back to 0 since
511 * there are a number of places where the value
512 * of if_index or if_index itself is compared
513 * to or stored in an unsigned short. By
514 * jumping back, we won't botch those assignments
515 * or comparisons.
516 */
517 if (++if_index == 0) {
518 if_index = 1;
519 } else if (if_index == USHRT_MAX) {
520 /*
521 * However, if we have to jump back to
522 * zero *twice* without finding an empty
523 * slot in ifindex2ifnet[], then there
524 * there are too many (>65535) interfaces.
525 */
526 if (hitlimit) {
527 panic("too many interfaces");
528 }
529 hitlimit = true;
530 if_index = 1;
531 }
532 ifp->if_index = if_index;
533 }
534 skip:
535 /*
536 * We have some arrays that should be indexed by if_index.
537 * since if_index will grow dynamically, they should grow too.
538 * struct ifadd **ifnet_addrs
539 * struct ifnet **ifindex2ifnet
540 */
541 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
542 ifp->if_index >= if_indexlim) {
543 size_t m, n, oldlim;
544 void *q;
545
546 oldlim = if_indexlim;
547 while (ifp->if_index >= if_indexlim)
548 if_indexlim <<= 1;
549
550 /* grow ifnet_addrs */
551 m = oldlim * sizeof(struct ifaddr *);
552 n = if_indexlim * sizeof(struct ifaddr *);
553 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
554 if (ifnet_addrs != NULL) {
555 memcpy(q, ifnet_addrs, m);
556 free(ifnet_addrs, M_IFADDR);
557 }
558 ifnet_addrs = (struct ifaddr **)q;
559
560 /* grow ifindex2ifnet */
561 m = oldlim * sizeof(struct ifnet *);
562 n = if_indexlim * sizeof(struct ifnet *);
563 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
564 if (ifindex2ifnet != NULL) {
565 memcpy(q, ifindex2ifnet, m);
566 free(ifindex2ifnet, M_IFADDR);
567 }
568 ifindex2ifnet = (struct ifnet **)q;
569 }
570 ifindex2ifnet[ifp->if_index] = ifp;
571 }
572
573 /*
574 * Attach an interface to the list of "active" interfaces.
575 */
576 void
577 if_attach(ifnet_t *ifp)
578 {
579 KASSERT(if_indexlim > 0);
580 TAILQ_INIT(&ifp->if_addrlist);
581 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
582
583 if (ifioctl_attach(ifp) != 0)
584 panic("%s: ifioctl_attach() failed", __func__);
585
586 if_getindex(ifp);
587
588 /*
589 * Link level name is allocated later by a separate call to
590 * if_alloc_sadl().
591 */
592
593 if (ifp->if_snd.ifq_maxlen == 0)
594 ifp->if_snd.ifq_maxlen = ifqmaxlen;
595
596 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
597
598 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
599
600 ifp->if_link_state = LINK_STATE_UNKNOWN;
601
602 ifp->if_capenable = 0;
603 ifp->if_csum_flags_tx = 0;
604 ifp->if_csum_flags_rx = 0;
605
606 #ifdef ALTQ
607 ifp->if_snd.altq_type = 0;
608 ifp->if_snd.altq_disc = NULL;
609 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
610 ifp->if_snd.altq_tbr = NULL;
611 ifp->if_snd.altq_ifp = ifp;
612 #endif
613
614 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
615 (void)pfil_run_hooks(if_pfil,
616 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
617
618 if (!STAILQ_EMPTY(&domains))
619 if_attachdomain1(ifp);
620
621 /* Announce the interface. */
622 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
623 }
624
625 void
626 if_attachdomain(void)
627 {
628 struct ifnet *ifp;
629 int s;
630
631 s = splnet();
632 IFNET_FOREACH(ifp)
633 if_attachdomain1(ifp);
634 splx(s);
635 }
636
637 void
638 if_attachdomain1(struct ifnet *ifp)
639 {
640 struct domain *dp;
641 int s;
642
643 s = splnet();
644
645 /* address family dependent data region */
646 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
647 DOMAIN_FOREACH(dp) {
648 if (dp->dom_ifattach != NULL)
649 ifp->if_afdata[dp->dom_family] =
650 (*dp->dom_ifattach)(ifp);
651 }
652
653 splx(s);
654 }
655
656 /*
657 * Deactivate an interface. This points all of the procedure
658 * handles at error stubs. May be called from interrupt context.
659 */
660 void
661 if_deactivate(struct ifnet *ifp)
662 {
663 int s;
664
665 s = splnet();
666
667 ifp->if_output = if_nulloutput;
668 ifp->if_input = if_nullinput;
669 ifp->if_start = if_nullstart;
670 ifp->if_ioctl = if_nullioctl;
671 ifp->if_init = if_nullinit;
672 ifp->if_stop = if_nullstop;
673 ifp->if_watchdog = if_nullwatchdog;
674 ifp->if_drain = if_nulldrain;
675
676 /* No more packets may be enqueued. */
677 ifp->if_snd.ifq_maxlen = 0;
678
679 splx(s);
680 }
681
682 void
683 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
684 {
685 struct ifaddr *ifa, *nifa;
686
687 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) {
688 nifa = IFADDR_NEXT(ifa);
689 if (ifa->ifa_addr->sa_family != family)
690 continue;
691 (*purgeaddr)(ifa);
692 }
693 }
694
695 /*
696 * Detach an interface from the list of "active" interfaces,
697 * freeing any resources as we go along.
698 *
699 * NOTE: This routine must be called with a valid thread context,
700 * as it may block.
701 */
702 void
703 if_detach(struct ifnet *ifp)
704 {
705 struct socket so;
706 struct ifaddr *ifa;
707 #ifdef IFAREF_DEBUG
708 struct ifaddr *last_ifa = NULL;
709 #endif
710 struct domain *dp;
711 const struct protosw *pr;
712 int s, i, family, purged;
713 uint64_t xc;
714
715 /*
716 * XXX It's kind of lame that we have to have the
717 * XXX socket structure...
718 */
719 memset(&so, 0, sizeof(so));
720
721 s = splnet();
722
723 /*
724 * Do an if_down() to give protocols a chance to do something.
725 */
726 if_down(ifp);
727
728 #ifdef ALTQ
729 if (ALTQ_IS_ENABLED(&ifp->if_snd))
730 altq_disable(&ifp->if_snd);
731 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
732 altq_detach(&ifp->if_snd);
733 #endif
734
735 sysctl_teardown(&ifp->if_sysctl_log);
736
737 #if NCARP > 0
738 /* Remove the interface from any carp group it is a part of. */
739 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
740 carp_ifdetach(ifp);
741 #endif
742
743 /*
744 * Rip all the addresses off the interface. This should make
745 * all of the routes go away.
746 *
747 * pr_usrreq calls can remove an arbitrary number of ifaddrs
748 * from the list, including our "cursor", ifa. For safety,
749 * and to honor the TAILQ abstraction, I just restart the
750 * loop after each removal. Note that the loop will exit
751 * when all of the remaining ifaddrs belong to the AF_LINK
752 * family. I am counting on the historical fact that at
753 * least one pr_usrreq in each address domain removes at
754 * least one ifaddr.
755 */
756 again:
757 IFADDR_FOREACH(ifa, ifp) {
758 family = ifa->ifa_addr->sa_family;
759 #ifdef IFAREF_DEBUG
760 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
761 ifa, family, ifa->ifa_refcnt);
762 if (last_ifa != NULL && ifa == last_ifa)
763 panic("if_detach: loop detected");
764 last_ifa = ifa;
765 #endif
766 if (family == AF_LINK)
767 continue;
768 dp = pffinddomain(family);
769 #ifdef DIAGNOSTIC
770 if (dp == NULL)
771 panic("if_detach: no domain for AF %d",
772 family);
773 #endif
774 /*
775 * XXX These PURGEIF calls are redundant with the
776 * purge-all-families calls below, but are left in for
777 * now both to make a smaller change, and to avoid
778 * unplanned interactions with clearing of
779 * ifp->if_addrlist.
780 */
781 purged = 0;
782 for (pr = dp->dom_protosw;
783 pr < dp->dom_protoswNPROTOSW; pr++) {
784 so.so_proto = pr;
785 if (pr->pr_usrreqs) {
786 (void) (*pr->pr_usrreqs->pr_generic)(&so,
787 PRU_PURGEIF, NULL, NULL,
788 (struct mbuf *) ifp, curlwp);
789 purged = 1;
790 }
791 }
792 if (purged == 0) {
793 /*
794 * XXX What's really the best thing to do
795 * XXX here? --thorpej (at) NetBSD.org
796 */
797 printf("if_detach: WARNING: AF %d not purged\n",
798 family);
799 ifa_remove(ifp, ifa);
800 }
801 goto again;
802 }
803
804 if_free_sadl(ifp);
805
806 /* Walk the routing table looking for stragglers. */
807 for (i = 0; i <= AF_MAX; i++) {
808 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
809 continue;
810 }
811
812 DOMAIN_FOREACH(dp) {
813 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
814 {
815 void *p = ifp->if_afdata[dp->dom_family];
816 if (p) {
817 ifp->if_afdata[dp->dom_family] = NULL;
818 (*dp->dom_ifdetach)(ifp, p);
819 }
820 }
821
822 /*
823 * One would expect multicast memberships (INET and
824 * INET6) on UDP sockets to be purged by the PURGEIF
825 * calls above, but if all addresses were removed from
826 * the interface prior to destruction, the calls will
827 * not be made (e.g. ppp, for which pppd(8) generally
828 * removes addresses before destroying the interface).
829 * Because there is no invariant that multicast
830 * memberships only exist for interfaces with IPv4
831 * addresses, we must call PURGEIF regardless of
832 * addresses. (Protocols which might store ifnet
833 * pointers are marked with PR_PURGEIF.)
834 */
835 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
836 so.so_proto = pr;
837 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
838 (void)(*pr->pr_usrreqs->pr_generic)(&so,
839 PRU_PURGEIF, NULL, NULL,
840 (struct mbuf *)ifp, curlwp);
841 }
842 }
843
844 (void)pfil_run_hooks(if_pfil,
845 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
846 (void)pfil_head_destroy(ifp->if_pfil);
847
848 /* Announce that the interface is gone. */
849 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
850
851 ifindex2ifnet[ifp->if_index] = NULL;
852
853 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
854
855 ifioctl_detach(ifp);
856
857 /*
858 * remove packets that came from ifp, from software interrupt queues.
859 */
860 DOMAIN_FOREACH(dp) {
861 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
862 struct ifqueue *iq = dp->dom_ifqueues[i];
863 if (iq == NULL)
864 break;
865 dp->dom_ifqueues[i] = NULL;
866 if_detach_queues(ifp, iq);
867 }
868 }
869
870 /*
871 * IP queues have to be processed separately: net-queue barrier
872 * ensures that the packets are dequeued while a cross-call will
873 * ensure that the interrupts have completed. FIXME: not quite..
874 */
875 #ifdef INET
876 pktq_barrier(ip_pktq);
877 #endif
878 #ifdef INET6
879 pktq_barrier(ip6_pktq);
880 #endif
881 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
882 xc_wait(xc);
883
884 splx(s);
885 }
886
887 static void
888 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
889 {
890 struct mbuf *m, *prev, *next;
891
892 prev = NULL;
893 for (m = q->ifq_head; m != NULL; m = next) {
894 KASSERT((m->m_flags & M_PKTHDR) != 0);
895
896 next = m->m_nextpkt;
897 if (m->m_pkthdr.rcvif != ifp) {
898 prev = m;
899 continue;
900 }
901
902 if (prev != NULL)
903 prev->m_nextpkt = m->m_nextpkt;
904 else
905 q->ifq_head = m->m_nextpkt;
906 if (q->ifq_tail == m)
907 q->ifq_tail = prev;
908 q->ifq_len--;
909
910 m->m_nextpkt = NULL;
911 m_freem(m);
912 IF_DROP(q);
913 }
914 }
915
916 /*
917 * Callback for a radix tree walk to delete all references to an
918 * ifnet.
919 */
920 static int
921 if_rt_walktree(struct rtentry *rt, void *v)
922 {
923 struct ifnet *ifp = (struct ifnet *)v;
924 int error;
925
926 if (rt->rt_ifp != ifp)
927 return 0;
928
929 /* Delete the entry. */
930 ++rt->rt_refcnt;
931 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
932 rt_mask(rt), rt->rt_flags, NULL);
933 KASSERT((rt->rt_flags & RTF_UP) == 0);
934 rt->rt_ifp = NULL;
935 rtfree(rt);
936 if (error != 0)
937 printf("%s: warning: unable to delete rtentry @ %p, "
938 "error = %d\n", ifp->if_xname, rt, error);
939 return ERESTART;
940 }
941
942 /*
943 * Create a clone network interface.
944 */
945 int
946 if_clone_create(const char *name)
947 {
948 struct if_clone *ifc;
949 int unit;
950
951 ifc = if_clone_lookup(name, &unit);
952 if (ifc == NULL)
953 return EINVAL;
954
955 if (ifunit(name) != NULL)
956 return EEXIST;
957
958 return (*ifc->ifc_create)(ifc, unit);
959 }
960
961 /*
962 * Destroy a clone network interface.
963 */
964 int
965 if_clone_destroy(const char *name)
966 {
967 struct if_clone *ifc;
968 struct ifnet *ifp;
969
970 ifc = if_clone_lookup(name, NULL);
971 if (ifc == NULL)
972 return EINVAL;
973
974 ifp = ifunit(name);
975 if (ifp == NULL)
976 return ENXIO;
977
978 if (ifc->ifc_destroy == NULL)
979 return EOPNOTSUPP;
980
981 return (*ifc->ifc_destroy)(ifp);
982 }
983
984 /*
985 * Look up a network interface cloner.
986 */
987 static struct if_clone *
988 if_clone_lookup(const char *name, int *unitp)
989 {
990 struct if_clone *ifc;
991 const char *cp;
992 char *dp, ifname[IFNAMSIZ + 3];
993 int unit;
994
995 strcpy(ifname, "if_");
996 /* separate interface name from unit */
997 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
998 *cp && (*cp < '0' || *cp > '9');)
999 *dp++ = *cp++;
1000
1001 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1002 return NULL; /* No name or unit number */
1003 *dp++ = '\0';
1004
1005 again:
1006 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1007 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1008 break;
1009 }
1010
1011 if (ifc == NULL) {
1012 if (*ifname == '\0' ||
1013 module_autoload(ifname, MODULE_CLASS_DRIVER))
1014 return NULL;
1015 *ifname = '\0';
1016 goto again;
1017 }
1018
1019 unit = 0;
1020 while (cp - name < IFNAMSIZ && *cp) {
1021 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1022 /* Bogus unit number. */
1023 return NULL;
1024 }
1025 unit = (unit * 10) + (*cp++ - '0');
1026 }
1027
1028 if (unitp != NULL)
1029 *unitp = unit;
1030 return ifc;
1031 }
1032
1033 /*
1034 * Register a network interface cloner.
1035 */
1036 void
1037 if_clone_attach(struct if_clone *ifc)
1038 {
1039
1040 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1041 if_cloners_count++;
1042 }
1043
1044 /*
1045 * Unregister a network interface cloner.
1046 */
1047 void
1048 if_clone_detach(struct if_clone *ifc)
1049 {
1050
1051 LIST_REMOVE(ifc, ifc_list);
1052 if_cloners_count--;
1053 }
1054
1055 /*
1056 * Provide list of interface cloners to userspace.
1057 */
1058 static int
1059 if_clone_list(struct if_clonereq *ifcr)
1060 {
1061 char outbuf[IFNAMSIZ], *dst;
1062 struct if_clone *ifc;
1063 int count, error = 0;
1064
1065 ifcr->ifcr_total = if_cloners_count;
1066 if ((dst = ifcr->ifcr_buffer) == NULL) {
1067 /* Just asking how many there are. */
1068 return 0;
1069 }
1070
1071 if (ifcr->ifcr_count < 0)
1072 return EINVAL;
1073
1074 count = (if_cloners_count < ifcr->ifcr_count) ?
1075 if_cloners_count : ifcr->ifcr_count;
1076
1077 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1078 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1079 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1080 if (outbuf[sizeof(outbuf) - 1] != '\0')
1081 return ENAMETOOLONG;
1082 error = copyout(outbuf, dst, sizeof(outbuf));
1083 if (error != 0)
1084 break;
1085 }
1086
1087 return error;
1088 }
1089
1090 void
1091 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1092 {
1093 ifa->ifa_ifp = ifp;
1094 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1095 IFAREF(ifa);
1096 }
1097
1098 void
1099 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1100 {
1101 KASSERT(ifa->ifa_ifp == ifp);
1102 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1103 IFAFREE(ifa);
1104 }
1105
1106 static inline int
1107 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1108 {
1109 return sockaddr_cmp(sa1, sa2) == 0;
1110 }
1111
1112 /*
1113 * Locate an interface based on a complete address.
1114 */
1115 /*ARGSUSED*/
1116 struct ifaddr *
1117 ifa_ifwithaddr(const struct sockaddr *addr)
1118 {
1119 struct ifnet *ifp;
1120 struct ifaddr *ifa;
1121
1122 IFNET_FOREACH(ifp) {
1123 if (ifp->if_output == if_nulloutput)
1124 continue;
1125 IFADDR_FOREACH(ifa, ifp) {
1126 if (ifa->ifa_addr->sa_family != addr->sa_family)
1127 continue;
1128 if (equal(addr, ifa->ifa_addr))
1129 return ifa;
1130 if ((ifp->if_flags & IFF_BROADCAST) &&
1131 ifa->ifa_broadaddr &&
1132 /* IP6 doesn't have broadcast */
1133 ifa->ifa_broadaddr->sa_len != 0 &&
1134 equal(ifa->ifa_broadaddr, addr))
1135 return ifa;
1136 }
1137 }
1138 return NULL;
1139 }
1140
1141 /*
1142 * Locate the point to point interface with a given destination address.
1143 */
1144 /*ARGSUSED*/
1145 struct ifaddr *
1146 ifa_ifwithdstaddr(const struct sockaddr *addr)
1147 {
1148 struct ifnet *ifp;
1149 struct ifaddr *ifa;
1150
1151 IFNET_FOREACH(ifp) {
1152 if (ifp->if_output == if_nulloutput)
1153 continue;
1154 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1155 continue;
1156 IFADDR_FOREACH(ifa, ifp) {
1157 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1158 ifa->ifa_dstaddr == NULL)
1159 continue;
1160 if (equal(addr, ifa->ifa_dstaddr))
1161 return ifa;
1162 }
1163 }
1164 return NULL;
1165 }
1166
1167 /*
1168 * Find an interface on a specific network. If many, choice
1169 * is most specific found.
1170 */
1171 struct ifaddr *
1172 ifa_ifwithnet(const struct sockaddr *addr)
1173 {
1174 struct ifnet *ifp;
1175 struct ifaddr *ifa;
1176 const struct sockaddr_dl *sdl;
1177 struct ifaddr *ifa_maybe = 0;
1178 u_int af = addr->sa_family;
1179 const char *addr_data = addr->sa_data, *cplim;
1180
1181 if (af == AF_LINK) {
1182 sdl = satocsdl(addr);
1183 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1184 ifindex2ifnet[sdl->sdl_index] &&
1185 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1186 return ifnet_addrs[sdl->sdl_index];
1187 }
1188 #ifdef NETATALK
1189 if (af == AF_APPLETALK) {
1190 const struct sockaddr_at *sat, *sat2;
1191 sat = (const struct sockaddr_at *)addr;
1192 IFNET_FOREACH(ifp) {
1193 if (ifp->if_output == if_nulloutput)
1194 continue;
1195 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1196 if (ifa == NULL)
1197 continue;
1198 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1199 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1200 return ifa; /* exact match */
1201 if (ifa_maybe == NULL) {
1202 /* else keep the if with the right range */
1203 ifa_maybe = ifa;
1204 }
1205 }
1206 return ifa_maybe;
1207 }
1208 #endif
1209 IFNET_FOREACH(ifp) {
1210 if (ifp->if_output == if_nulloutput)
1211 continue;
1212 IFADDR_FOREACH(ifa, ifp) {
1213 const char *cp, *cp2, *cp3;
1214
1215 if (ifa->ifa_addr->sa_family != af ||
1216 ifa->ifa_netmask == NULL)
1217 next: continue;
1218 cp = addr_data;
1219 cp2 = ifa->ifa_addr->sa_data;
1220 cp3 = ifa->ifa_netmask->sa_data;
1221 cplim = (const char *)ifa->ifa_netmask +
1222 ifa->ifa_netmask->sa_len;
1223 while (cp3 < cplim) {
1224 if ((*cp++ ^ *cp2++) & *cp3++) {
1225 /* want to continue for() loop */
1226 goto next;
1227 }
1228 }
1229 if (ifa_maybe == NULL ||
1230 rn_refines((void *)ifa->ifa_netmask,
1231 (void *)ifa_maybe->ifa_netmask))
1232 ifa_maybe = ifa;
1233 }
1234 }
1235 return ifa_maybe;
1236 }
1237
1238 /*
1239 * Find the interface of the addresss.
1240 */
1241 struct ifaddr *
1242 ifa_ifwithladdr(const struct sockaddr *addr)
1243 {
1244 struct ifaddr *ia;
1245
1246 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1247 (ia = ifa_ifwithnet(addr)))
1248 return ia;
1249 return NULL;
1250 }
1251
1252 /*
1253 * Find an interface using a specific address family
1254 */
1255 struct ifaddr *
1256 ifa_ifwithaf(int af)
1257 {
1258 struct ifnet *ifp;
1259 struct ifaddr *ifa;
1260
1261 IFNET_FOREACH(ifp) {
1262 if (ifp->if_output == if_nulloutput)
1263 continue;
1264 IFADDR_FOREACH(ifa, ifp) {
1265 if (ifa->ifa_addr->sa_family == af)
1266 return ifa;
1267 }
1268 }
1269 return NULL;
1270 }
1271
1272 /*
1273 * Find an interface address specific to an interface best matching
1274 * a given address.
1275 */
1276 struct ifaddr *
1277 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1278 {
1279 struct ifaddr *ifa;
1280 const char *cp, *cp2, *cp3;
1281 const char *cplim;
1282 struct ifaddr *ifa_maybe = 0;
1283 u_int af = addr->sa_family;
1284
1285 if (ifp->if_output == if_nulloutput)
1286 return NULL;
1287
1288 if (af >= AF_MAX)
1289 return NULL;
1290
1291 IFADDR_FOREACH(ifa, ifp) {
1292 if (ifa->ifa_addr->sa_family != af)
1293 continue;
1294 ifa_maybe = ifa;
1295 if (ifa->ifa_netmask == NULL) {
1296 if (equal(addr, ifa->ifa_addr) ||
1297 (ifa->ifa_dstaddr &&
1298 equal(addr, ifa->ifa_dstaddr)))
1299 return ifa;
1300 continue;
1301 }
1302 cp = addr->sa_data;
1303 cp2 = ifa->ifa_addr->sa_data;
1304 cp3 = ifa->ifa_netmask->sa_data;
1305 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1306 for (; cp3 < cplim; cp3++) {
1307 if ((*cp++ ^ *cp2++) & *cp3)
1308 break;
1309 }
1310 if (cp3 == cplim)
1311 return ifa;
1312 }
1313 return ifa_maybe;
1314 }
1315
1316 /*
1317 * Default action when installing a route with a Link Level gateway.
1318 * Lookup an appropriate real ifa to point to.
1319 * This should be moved to /sys/net/link.c eventually.
1320 */
1321 void
1322 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1323 {
1324 struct ifaddr *ifa;
1325 const struct sockaddr *dst;
1326 struct ifnet *ifp;
1327
1328 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1329 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1330 return;
1331 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1332 rt_replace_ifa(rt, ifa);
1333 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1334 ifa->ifa_rtrequest(cmd, rt, info);
1335 }
1336 }
1337
1338 /*
1339 * Handle a change in the interface link state.
1340 * XXX: We should listen to the routing socket in-kernel rather
1341 * than calling in6_if_link_* functions directly from here.
1342 */
1343 void
1344 if_link_state_change(struct ifnet *ifp, int link_state)
1345 {
1346 int s;
1347 #if defined(DEBUG) || defined(INET6)
1348 int old_link_state;
1349 #endif
1350
1351 s = splnet();
1352 if (ifp->if_link_state == link_state) {
1353 splx(s);
1354 return;
1355 }
1356
1357 #if defined(DEBUG) || defined(INET6)
1358 old_link_state = ifp->if_link_state;
1359 #endif
1360 ifp->if_link_state = link_state;
1361 #ifdef DEBUG
1362 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1363 link_state == LINK_STATE_UP ? "UP" :
1364 link_state == LINK_STATE_DOWN ? "DOWN" :
1365 "UNKNOWN",
1366 old_link_state == LINK_STATE_UP ? "UP" :
1367 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1368 "UNKNOWN");
1369 #endif
1370
1371 #ifdef INET6
1372 /*
1373 * When going from UNKNOWN to UP, we need to mark existing
1374 * IPv6 addresses as tentative and restart DAD as we may have
1375 * erroneously not found a duplicate.
1376 *
1377 * This needs to happen before rt_ifmsg to avoid a race where
1378 * listeners would have an address and expect it to work right
1379 * away.
1380 */
1381 if (in6_present && link_state == LINK_STATE_UP &&
1382 old_link_state == LINK_STATE_UNKNOWN)
1383 in6_if_link_down(ifp);
1384 #endif
1385
1386 /* Notify that the link state has changed. */
1387 rt_ifmsg(ifp);
1388
1389 #if NCARP > 0
1390 if (ifp->if_carp)
1391 carp_carpdev_state(ifp);
1392 #endif
1393
1394 #ifdef INET6
1395 if (in6_present) {
1396 if (link_state == LINK_STATE_DOWN)
1397 in6_if_link_down(ifp);
1398 else if (link_state == LINK_STATE_UP)
1399 in6_if_link_up(ifp);
1400 }
1401 #endif
1402
1403 splx(s);
1404 }
1405
1406 /*
1407 * Mark an interface down and notify protocols of
1408 * the transition.
1409 * NOTE: must be called at splsoftnet or equivalent.
1410 */
1411 void
1412 if_down(struct ifnet *ifp)
1413 {
1414 struct ifaddr *ifa;
1415
1416 ifp->if_flags &= ~IFF_UP;
1417 nanotime(&ifp->if_lastchange);
1418 IFADDR_FOREACH(ifa, ifp)
1419 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1420 IFQ_PURGE(&ifp->if_snd);
1421 #if NCARP > 0
1422 if (ifp->if_carp)
1423 carp_carpdev_state(ifp);
1424 #endif
1425 rt_ifmsg(ifp);
1426 #ifdef INET6
1427 if (in6_present)
1428 in6_if_down(ifp);
1429 #endif
1430 }
1431
1432 /*
1433 * Mark an interface up and notify protocols of
1434 * the transition.
1435 * NOTE: must be called at splsoftnet or equivalent.
1436 */
1437 void
1438 if_up(struct ifnet *ifp)
1439 {
1440 #ifdef notyet
1441 struct ifaddr *ifa;
1442 #endif
1443
1444 ifp->if_flags |= IFF_UP;
1445 nanotime(&ifp->if_lastchange);
1446 #ifdef notyet
1447 /* this has no effect on IP, and will kill all ISO connections XXX */
1448 IFADDR_FOREACH(ifa, ifp)
1449 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1450 #endif
1451 #if NCARP > 0
1452 if (ifp->if_carp)
1453 carp_carpdev_state(ifp);
1454 #endif
1455 rt_ifmsg(ifp);
1456 #ifdef INET6
1457 if (in6_present)
1458 in6_if_up(ifp);
1459 #endif
1460 }
1461
1462 /*
1463 * Handle interface watchdog timer routines. Called
1464 * from softclock, we decrement timers (if set) and
1465 * call the appropriate interface routine on expiration.
1466 */
1467 void
1468 if_slowtimo(void *arg)
1469 {
1470 struct ifnet *ifp;
1471 int s = splnet();
1472
1473 IFNET_FOREACH(ifp) {
1474 if (ifp->if_timer == 0 || --ifp->if_timer)
1475 continue;
1476 if (ifp->if_watchdog != NULL)
1477 (*ifp->if_watchdog)(ifp);
1478 }
1479 splx(s);
1480 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1481 }
1482
1483 /*
1484 * Set/clear promiscuous mode on interface ifp based on the truth value
1485 * of pswitch. The calls are reference counted so that only the first
1486 * "on" request actually has an effect, as does the final "off" request.
1487 * Results are undefined if the "off" and "on" requests are not matched.
1488 */
1489 int
1490 ifpromisc(struct ifnet *ifp, int pswitch)
1491 {
1492 int pcount, ret;
1493 short nflags;
1494
1495 pcount = ifp->if_pcount;
1496 if (pswitch) {
1497 /*
1498 * Allow the device to be "placed" into promiscuous
1499 * mode even if it is not configured up. It will
1500 * consult IFF_PROMISC when it is brought up.
1501 */
1502 if (ifp->if_pcount++ != 0)
1503 return 0;
1504 nflags = ifp->if_flags | IFF_PROMISC;
1505 } else {
1506 if (--ifp->if_pcount > 0)
1507 return 0;
1508 nflags = ifp->if_flags & ~IFF_PROMISC;
1509 }
1510 ret = if_flags_set(ifp, nflags);
1511 /* Restore interface state if not successful. */
1512 if (ret != 0) {
1513 ifp->if_pcount = pcount;
1514 }
1515 return ret;
1516 }
1517
1518 /*
1519 * Map interface name to
1520 * interface structure pointer.
1521 */
1522 struct ifnet *
1523 ifunit(const char *name)
1524 {
1525 struct ifnet *ifp;
1526 const char *cp = name;
1527 u_int unit = 0;
1528 u_int i;
1529
1530 /*
1531 * If the entire name is a number, treat it as an ifindex.
1532 */
1533 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1534 unit = unit * 10 + (*cp - '0');
1535 }
1536
1537 /*
1538 * If the number took all of the name, then it's a valid ifindex.
1539 */
1540 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1541 if (unit >= if_indexlim)
1542 return NULL;
1543 ifp = ifindex2ifnet[unit];
1544 if (ifp == NULL || ifp->if_output == if_nulloutput)
1545 return NULL;
1546 return ifp;
1547 }
1548
1549 IFNET_FOREACH(ifp) {
1550 if (ifp->if_output == if_nulloutput)
1551 continue;
1552 if (strcmp(ifp->if_xname, name) == 0)
1553 return ifp;
1554 }
1555 return NULL;
1556 }
1557
1558 ifnet_t *
1559 if_byindex(u_int idx)
1560 {
1561 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1562 }
1563
1564 /* common */
1565 int
1566 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1567 {
1568 int s;
1569 struct ifreq *ifr;
1570 struct ifcapreq *ifcr;
1571 struct ifdatareq *ifdr;
1572
1573 switch (cmd) {
1574 case SIOCSIFCAP:
1575 ifcr = data;
1576 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1577 return EINVAL;
1578
1579 if (ifcr->ifcr_capenable == ifp->if_capenable)
1580 return 0;
1581
1582 ifp->if_capenable = ifcr->ifcr_capenable;
1583
1584 /* Pre-compute the checksum flags mask. */
1585 ifp->if_csum_flags_tx = 0;
1586 ifp->if_csum_flags_rx = 0;
1587 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1588 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1589 }
1590 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1591 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1592 }
1593
1594 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1595 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1596 }
1597 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1598 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1599 }
1600
1601 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1602 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1603 }
1604 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1605 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1606 }
1607
1608 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1609 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1610 }
1611 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1612 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1613 }
1614
1615 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1616 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1617 }
1618 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1619 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1620 }
1621 if (ifp->if_flags & IFF_UP)
1622 return ENETRESET;
1623 return 0;
1624 case SIOCSIFFLAGS:
1625 ifr = data;
1626 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1627 s = splnet();
1628 if_down(ifp);
1629 splx(s);
1630 }
1631 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1632 s = splnet();
1633 if_up(ifp);
1634 splx(s);
1635 }
1636 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1637 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1638 break;
1639 case SIOCGIFFLAGS:
1640 ifr = data;
1641 ifr->ifr_flags = ifp->if_flags;
1642 break;
1643
1644 case SIOCGIFMETRIC:
1645 ifr = data;
1646 ifr->ifr_metric = ifp->if_metric;
1647 break;
1648
1649 case SIOCGIFMTU:
1650 ifr = data;
1651 ifr->ifr_mtu = ifp->if_mtu;
1652 break;
1653
1654 case SIOCGIFDLT:
1655 ifr = data;
1656 ifr->ifr_dlt = ifp->if_dlt;
1657 break;
1658
1659 case SIOCGIFCAP:
1660 ifcr = data;
1661 ifcr->ifcr_capabilities = ifp->if_capabilities;
1662 ifcr->ifcr_capenable = ifp->if_capenable;
1663 break;
1664
1665 case SIOCSIFMETRIC:
1666 ifr = data;
1667 ifp->if_metric = ifr->ifr_metric;
1668 break;
1669
1670 case SIOCGIFDATA:
1671 ifdr = data;
1672 ifdr->ifdr_data = ifp->if_data;
1673 break;
1674
1675 case SIOCGIFINDEX:
1676 ifr = data;
1677 ifr->ifr_index = ifp->if_index;
1678 break;
1679
1680 case SIOCZIFDATA:
1681 ifdr = data;
1682 ifdr->ifdr_data = ifp->if_data;
1683 /*
1684 * Assumes that the volatile counters that can be
1685 * zero'ed are at the end of if_data.
1686 */
1687 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1688 offsetof(struct if_data, ifi_ipackets));
1689 /*
1690 * The memset() clears to the bottm of if_data. In the area,
1691 * if_lastchange is included. Please be careful if new entry
1692 * will be added into if_data or rewite this.
1693 *
1694 * And also, update if_lastchnage.
1695 */
1696 getnanotime(&ifp->if_lastchange);
1697 break;
1698 case SIOCSIFMTU:
1699 ifr = data;
1700 if (ifp->if_mtu == ifr->ifr_mtu)
1701 break;
1702 ifp->if_mtu = ifr->ifr_mtu;
1703 /*
1704 * If the link MTU changed, do network layer specific procedure.
1705 */
1706 #ifdef INET6
1707 if (in6_present)
1708 nd6_setmtu(ifp);
1709 #endif
1710 return ENETRESET;
1711 default:
1712 return ENOTTY;
1713 }
1714 return 0;
1715 }
1716
1717 int
1718 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1719 {
1720 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1721 struct ifaddr *ifa;
1722 const struct sockaddr *any, *sa;
1723 union {
1724 struct sockaddr sa;
1725 struct sockaddr_storage ss;
1726 } u, v;
1727
1728 switch (cmd) {
1729 case SIOCSIFADDRPREF:
1730 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1731 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1732 NULL) != 0)
1733 return EPERM;
1734 case SIOCGIFADDRPREF:
1735 break;
1736 default:
1737 return EOPNOTSUPP;
1738 }
1739
1740 /* sanity checks */
1741 if (data == NULL || ifp == NULL) {
1742 panic("invalid argument to %s", __func__);
1743 /*NOTREACHED*/
1744 }
1745
1746 /* address must be specified on ADD and DELETE */
1747 sa = sstocsa(&ifap->ifap_addr);
1748 if (sa->sa_family != sofamily(so))
1749 return EINVAL;
1750 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1751 return EINVAL;
1752
1753 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1754
1755 IFADDR_FOREACH(ifa, ifp) {
1756 if (ifa->ifa_addr->sa_family != sa->sa_family)
1757 continue;
1758 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1759 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1760 break;
1761 }
1762 if (ifa == NULL)
1763 return EADDRNOTAVAIL;
1764
1765 switch (cmd) {
1766 case SIOCSIFADDRPREF:
1767 ifa->ifa_preference = ifap->ifap_preference;
1768 return 0;
1769 case SIOCGIFADDRPREF:
1770 /* fill in the if_laddrreq structure */
1771 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1772 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1773 ifap->ifap_preference = ifa->ifa_preference;
1774 return 0;
1775 default:
1776 return EOPNOTSUPP;
1777 }
1778 }
1779
1780 static void
1781 ifnet_lock_enter(struct ifnet_lock *il)
1782 {
1783 uint64_t *nenter;
1784
1785 /* Before trying to acquire the mutex, increase the count of threads
1786 * who have entered or who wait to enter the critical section.
1787 * Avoid one costly locked memory transaction by keeping a count for
1788 * each CPU.
1789 */
1790 nenter = percpu_getref(il->il_nenter);
1791 (*nenter)++;
1792 percpu_putref(il->il_nenter);
1793 mutex_enter(&il->il_lock);
1794 }
1795
1796 static void
1797 ifnet_lock_exit(struct ifnet_lock *il)
1798 {
1799 /* Increase the count of threads who have exited the critical
1800 * section. Increase while we still hold the lock.
1801 */
1802 il->il_nexit++;
1803 mutex_exit(&il->il_lock);
1804 }
1805
1806 /*
1807 * Interface ioctls.
1808 */
1809 static int
1810 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1811 {
1812 struct ifnet *ifp;
1813 struct ifreq *ifr;
1814 int error = 0;
1815 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1816 u_long ocmd = cmd;
1817 #endif
1818 short oif_flags;
1819 #ifdef COMPAT_OIFREQ
1820 struct ifreq ifrb;
1821 struct oifreq *oifr = NULL;
1822 #endif
1823
1824 switch (cmd) {
1825 #ifdef COMPAT_OIFREQ
1826 case OSIOCGIFCONF:
1827 case OOSIOCGIFCONF:
1828 return compat_ifconf(cmd, data);
1829 #endif
1830 #ifdef COMPAT_OIFDATA
1831 case OSIOCGIFDATA:
1832 case OSIOCZIFDATA:
1833 return compat_ifdatareq(l, cmd, data);
1834 #endif
1835 case SIOCGIFCONF:
1836 return ifconf(cmd, data);
1837 case SIOCINITIFADDR:
1838 return EPERM;
1839 }
1840
1841 #ifdef COMPAT_OIFREQ
1842 cmd = compat_cvtcmd(cmd);
1843 if (cmd != ocmd) {
1844 oifr = data;
1845 data = ifr = &ifrb;
1846 ifreqo2n(oifr, ifr);
1847 } else
1848 #endif
1849 ifr = data;
1850
1851 ifp = ifunit(ifr->ifr_name);
1852
1853 switch (cmd) {
1854 case SIOCIFCREATE:
1855 case SIOCIFDESTROY:
1856 if (l != NULL) {
1857 error = kauth_authorize_network(l->l_cred,
1858 KAUTH_NETWORK_INTERFACE,
1859 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1860 (void *)cmd, NULL);
1861 if (error != 0)
1862 return error;
1863 }
1864 return (cmd == SIOCIFCREATE) ?
1865 if_clone_create(ifr->ifr_name) :
1866 if_clone_destroy(ifr->ifr_name);
1867
1868 case SIOCIFGCLONERS:
1869 return if_clone_list((struct if_clonereq *)data);
1870 }
1871
1872 if (ifp == NULL)
1873 return ENXIO;
1874
1875 switch (cmd) {
1876 case SIOCALIFADDR:
1877 case SIOCDLIFADDR:
1878 case SIOCSIFADDRPREF:
1879 case SIOCSIFFLAGS:
1880 case SIOCSIFCAP:
1881 case SIOCSIFMETRIC:
1882 case SIOCZIFDATA:
1883 case SIOCSIFMTU:
1884 case SIOCSIFPHYADDR:
1885 case SIOCDIFPHYADDR:
1886 #ifdef INET6
1887 case SIOCSIFPHYADDR_IN6:
1888 #endif
1889 case SIOCSLIFPHYADDR:
1890 case SIOCADDMULTI:
1891 case SIOCDELMULTI:
1892 case SIOCSIFMEDIA:
1893 case SIOCSDRVSPEC:
1894 case SIOCG80211:
1895 case SIOCS80211:
1896 case SIOCS80211NWID:
1897 case SIOCS80211NWKEY:
1898 case SIOCS80211POWER:
1899 case SIOCS80211BSSID:
1900 case SIOCS80211CHANNEL:
1901 case SIOCSLINKSTR:
1902 if (l != NULL) {
1903 error = kauth_authorize_network(l->l_cred,
1904 KAUTH_NETWORK_INTERFACE,
1905 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1906 (void *)cmd, NULL);
1907 if (error != 0)
1908 return error;
1909 }
1910 }
1911
1912 oif_flags = ifp->if_flags;
1913
1914 ifnet_lock_enter(ifp->if_ioctl_lock);
1915 error = (*ifp->if_ioctl)(ifp, cmd, data);
1916 if (error != ENOTTY)
1917 ;
1918 else if (so->so_proto == NULL)
1919 error = EOPNOTSUPP;
1920 else {
1921 #ifdef COMPAT_OSOCK
1922 error = compat_ifioctl(so, ocmd, cmd, data, l);
1923 #else
1924 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1925 cmd, data, ifp);
1926 #endif
1927 }
1928
1929 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1930 #ifdef INET6
1931 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1932 int s = splnet();
1933 in6_if_up(ifp);
1934 splx(s);
1935 }
1936 #endif
1937 }
1938 #ifdef COMPAT_OIFREQ
1939 if (cmd != ocmd)
1940 ifreqn2o(oifr, ifr);
1941 #endif
1942
1943 ifnet_lock_exit(ifp->if_ioctl_lock);
1944 return error;
1945 }
1946
1947 /* This callback adds to the sum in `arg' the number of
1948 * threads on `ci' who have entered or who wait to enter the
1949 * critical section.
1950 */
1951 static void
1952 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1953 {
1954 uint64_t *sum = arg, *nenter = p;
1955
1956 *sum += *nenter;
1957 }
1958
1959 /* Return the number of threads who have entered or who wait
1960 * to enter the critical section on all CPUs.
1961 */
1962 static uint64_t
1963 ifnet_lock_entrances(struct ifnet_lock *il)
1964 {
1965 uint64_t sum = 0;
1966
1967 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1968
1969 return sum;
1970 }
1971
1972 static int
1973 ifioctl_attach(struct ifnet *ifp)
1974 {
1975 struct ifnet_lock *il;
1976
1977 /* If the driver has not supplied its own if_ioctl, then
1978 * supply the default.
1979 */
1980 if (ifp->if_ioctl == NULL)
1981 ifp->if_ioctl = ifioctl_common;
1982
1983 /* Create an ifnet_lock for synchronizing ifioctls. */
1984 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1985 return ENOMEM;
1986
1987 il->il_nenter = percpu_alloc(sizeof(uint64_t));
1988 if (il->il_nenter == NULL) {
1989 kmem_free(il, sizeof(*il));
1990 return ENOMEM;
1991 }
1992
1993 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
1994 cv_init(&il->il_emptied, ifp->if_xname);
1995
1996 ifp->if_ioctl_lock = il;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * This must not be called until after `ifp' has been withdrawn from the
2003 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2004 * ifunit().
2005 */
2006 static void
2007 ifioctl_detach(struct ifnet *ifp)
2008 {
2009 struct ifnet_lock *il;
2010
2011 il = ifp->if_ioctl_lock;
2012 mutex_enter(&il->il_lock);
2013 /* Install if_nullioctl to make sure that any thread that
2014 * subsequently enters the critical section will quit it
2015 * immediately and signal the condition variable that we
2016 * wait on, below.
2017 */
2018 ifp->if_ioctl = if_nullioctl;
2019 /* Sleep while threads are still in the critical section or
2020 * wait to enter it.
2021 */
2022 while (ifnet_lock_entrances(il) != il->il_nexit)
2023 cv_wait(&il->il_emptied, &il->il_lock);
2024 /* At this point, we are the only thread still in the critical
2025 * section, and no new thread can get a handle on the ifioctl
2026 * lock, so it is safe to free its memory.
2027 */
2028 mutex_exit(&il->il_lock);
2029 ifp->if_ioctl_lock = NULL;
2030 percpu_free(il->il_nenter, sizeof(uint64_t));
2031 il->il_nenter = NULL;
2032 cv_destroy(&il->il_emptied);
2033 mutex_destroy(&il->il_lock);
2034 kmem_free(il, sizeof(*il));
2035 }
2036
2037 /*
2038 * Return interface configuration
2039 * of system. List may be used
2040 * in later ioctl's (above) to get
2041 * other information.
2042 *
2043 * Each record is a struct ifreq. Before the addition of
2044 * sockaddr_storage, the API rule was that sockaddr flavors that did
2045 * not fit would extend beyond the struct ifreq, with the next struct
2046 * ifreq starting sa_len beyond the struct sockaddr. Because the
2047 * union in struct ifreq includes struct sockaddr_storage, every kind
2048 * of sockaddr must fit. Thus, there are no longer any overlength
2049 * records.
2050 *
2051 * Records are added to the user buffer if they fit, and ifc_len is
2052 * adjusted to the length that was written. Thus, the user is only
2053 * assured of getting the complete list if ifc_len on return is at
2054 * least sizeof(struct ifreq) less than it was on entry.
2055 *
2056 * If the user buffer pointer is NULL, this routine copies no data and
2057 * returns the amount of space that would be needed.
2058 *
2059 * Invariants:
2060 * ifrp points to the next part of the user's buffer to be used. If
2061 * ifrp != NULL, space holds the number of bytes remaining that we may
2062 * write at ifrp. Otherwise, space holds the number of bytes that
2063 * would have been written had there been adequate space.
2064 */
2065 /*ARGSUSED*/
2066 int
2067 ifconf(u_long cmd, void *data)
2068 {
2069 struct ifconf *ifc = (struct ifconf *)data;
2070 struct ifnet *ifp;
2071 struct ifaddr *ifa;
2072 struct ifreq ifr, *ifrp;
2073 int space, error = 0;
2074 const int sz = (int)sizeof(struct ifreq);
2075
2076 if ((ifrp = ifc->ifc_req) == NULL)
2077 space = 0;
2078 else
2079 space = ifc->ifc_len;
2080 IFNET_FOREACH(ifp) {
2081 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2082 sizeof(ifr.ifr_name));
2083 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2084 return ENAMETOOLONG;
2085 if (IFADDR_EMPTY(ifp)) {
2086 /* Interface with no addresses - send zero sockaddr. */
2087 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2088 if (ifrp == NULL) {
2089 space += sz;
2090 continue;
2091 }
2092 if (space >= sz) {
2093 error = copyout(&ifr, ifrp, sz);
2094 if (error != 0)
2095 return error;
2096 ifrp++;
2097 space -= sz;
2098 }
2099 }
2100
2101 IFADDR_FOREACH(ifa, ifp) {
2102 struct sockaddr *sa = ifa->ifa_addr;
2103 /* all sockaddrs must fit in sockaddr_storage */
2104 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2105
2106 if (ifrp == NULL) {
2107 space += sz;
2108 continue;
2109 }
2110 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2111 if (space >= sz) {
2112 error = copyout(&ifr, ifrp, sz);
2113 if (error != 0)
2114 return (error);
2115 ifrp++; space -= sz;
2116 }
2117 }
2118 }
2119 if (ifrp != NULL) {
2120 KASSERT(0 <= space && space <= ifc->ifc_len);
2121 ifc->ifc_len -= space;
2122 } else {
2123 KASSERT(space >= 0);
2124 ifc->ifc_len = space;
2125 }
2126 return (0);
2127 }
2128
2129 int
2130 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2131 {
2132 uint8_t len;
2133 #ifdef COMPAT_OIFREQ
2134 struct ifreq ifrb;
2135 struct oifreq *oifr = NULL;
2136 u_long ocmd = cmd;
2137 cmd = compat_cvtcmd(cmd);
2138 if (cmd != ocmd) {
2139 oifr = (struct oifreq *)(void *)ifr;
2140 ifr = &ifrb;
2141 ifreqo2n(oifr, ifr);
2142 len = sizeof(oifr->ifr_addr);
2143 } else
2144 #endif
2145 len = sizeof(ifr->ifr_ifru.ifru_space);
2146
2147 if (len < sa->sa_len)
2148 return EFBIG;
2149
2150 memset(&ifr->ifr_addr, 0, len);
2151 sockaddr_copy(&ifr->ifr_addr, len, sa);
2152
2153 #ifdef COMPAT_OIFREQ
2154 if (cmd != ocmd)
2155 ifreqn2o(oifr, ifr);
2156 #endif
2157 return 0;
2158 }
2159
2160 /*
2161 * Queue message on interface, and start output if interface
2162 * not yet active.
2163 */
2164 int
2165 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2166 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2167 {
2168 int len = m->m_pkthdr.len;
2169 int mflags = m->m_flags;
2170 int s = splnet();
2171 int error;
2172
2173 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2174 if (error != 0)
2175 goto out;
2176 ifp->if_obytes += len;
2177 if (mflags & M_MCAST)
2178 ifp->if_omcasts++;
2179 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2180 (*ifp->if_start)(ifp);
2181 out:
2182 splx(s);
2183 return error;
2184 }
2185
2186 /*
2187 * Queue message on interface, possibly using a second fast queue
2188 */
2189 int
2190 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2191 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2192 {
2193 int error = 0;
2194
2195 if (ifq != NULL
2196 #ifdef ALTQ
2197 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2198 #endif
2199 ) {
2200 if (IF_QFULL(ifq)) {
2201 IF_DROP(&ifp->if_snd);
2202 m_freem(m);
2203 if (error == 0)
2204 error = ENOBUFS;
2205 } else
2206 IF_ENQUEUE(ifq, m);
2207 } else
2208 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2209 if (error != 0) {
2210 ++ifp->if_oerrors;
2211 return error;
2212 }
2213 return 0;
2214 }
2215
2216 int
2217 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2218 {
2219 int rc;
2220
2221 if (ifp->if_initaddr != NULL)
2222 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2223 else if (src ||
2224 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2225 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2226
2227 return rc;
2228 }
2229
2230 int
2231 if_flags_set(ifnet_t *ifp, const short flags)
2232 {
2233 int rc;
2234
2235 if (ifp->if_setflags != NULL)
2236 rc = (*ifp->if_setflags)(ifp, flags);
2237 else {
2238 short cantflags, chgdflags;
2239 struct ifreq ifr;
2240
2241 chgdflags = ifp->if_flags ^ flags;
2242 cantflags = chgdflags & IFF_CANTCHANGE;
2243
2244 if (cantflags != 0)
2245 ifp->if_flags ^= cantflags;
2246
2247 /* Traditionally, we do not call if_ioctl after
2248 * setting/clearing only IFF_PROMISC if the interface
2249 * isn't IFF_UP. Uphold that tradition.
2250 */
2251 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2252 return 0;
2253
2254 memset(&ifr, 0, sizeof(ifr));
2255
2256 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2257 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2258
2259 if (rc != 0 && cantflags != 0)
2260 ifp->if_flags ^= cantflags;
2261 }
2262
2263 return rc;
2264 }
2265
2266 int
2267 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2268 {
2269 int rc;
2270 struct ifreq ifr;
2271
2272 if (ifp->if_mcastop != NULL)
2273 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2274 else {
2275 ifreq_setaddr(cmd, &ifr, sa);
2276 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2277 }
2278
2279 return rc;
2280 }
2281
2282 static void
2283 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2284 struct ifaltq *ifq)
2285 {
2286 const struct sysctlnode *cnode, *rnode;
2287
2288 if (sysctl_createv(clog, 0, NULL, &rnode,
2289 CTLFLAG_PERMANENT,
2290 CTLTYPE_NODE, "interfaces",
2291 SYSCTL_DESCR("Per-interface controls"),
2292 NULL, 0, NULL, 0,
2293 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2294 goto bad;
2295
2296 if (sysctl_createv(clog, 0, &rnode, &rnode,
2297 CTLFLAG_PERMANENT,
2298 CTLTYPE_NODE, ifname,
2299 SYSCTL_DESCR("Interface controls"),
2300 NULL, 0, NULL, 0,
2301 CTL_CREATE, CTL_EOL) != 0)
2302 goto bad;
2303
2304 if (sysctl_createv(clog, 0, &rnode, &rnode,
2305 CTLFLAG_PERMANENT,
2306 CTLTYPE_NODE, "sndq",
2307 SYSCTL_DESCR("Interface output queue controls"),
2308 NULL, 0, NULL, 0,
2309 CTL_CREATE, CTL_EOL) != 0)
2310 goto bad;
2311
2312 if (sysctl_createv(clog, 0, &rnode, &cnode,
2313 CTLFLAG_PERMANENT,
2314 CTLTYPE_INT, "len",
2315 SYSCTL_DESCR("Current output queue length"),
2316 NULL, 0, &ifq->ifq_len, 0,
2317 CTL_CREATE, CTL_EOL) != 0)
2318 goto bad;
2319
2320 if (sysctl_createv(clog, 0, &rnode, &cnode,
2321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2322 CTLTYPE_INT, "maxlen",
2323 SYSCTL_DESCR("Maximum allowed output queue length"),
2324 NULL, 0, &ifq->ifq_maxlen, 0,
2325 CTL_CREATE, CTL_EOL) != 0)
2326 goto bad;
2327
2328 if (sysctl_createv(clog, 0, &rnode, &cnode,
2329 CTLFLAG_PERMANENT,
2330 CTLTYPE_INT, "drops",
2331 SYSCTL_DESCR("Packets dropped due to full output queue"),
2332 NULL, 0, &ifq->ifq_drops, 0,
2333 CTL_CREATE, CTL_EOL) != 0)
2334 goto bad;
2335
2336 return;
2337 bad:
2338 printf("%s: could not attach sysctl nodes\n", ifname);
2339 return;
2340 }
2341
2342 #if defined(INET) || defined(INET6)
2343
2344 #define SYSCTL_NET_PKTQ(q, cn, c) \
2345 static int \
2346 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2347 { \
2348 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2349 }
2350
2351 #if defined(INET)
2352 static int
2353 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2354 {
2355 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2356 }
2357 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2358 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2359 #endif
2360
2361 #if defined(INET6)
2362 static int
2363 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2364 {
2365 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2366 }
2367 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2368 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2369 #endif
2370
2371 static void
2372 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2373 {
2374 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2375 const char *pfname = NULL, *ipname = NULL;
2376 int ipn = 0, qid = 0;
2377
2378 switch (pf) {
2379 #if defined(INET)
2380 case PF_INET:
2381 len_func = sysctl_net_ip_pktq_items;
2382 maxlen_func = sysctl_net_ip_pktq_maxlen;
2383 drops_func = sysctl_net_ip_pktq_drops;
2384 pfname = "inet", ipn = IPPROTO_IP;
2385 ipname = "ip", qid = IPCTL_IFQ;
2386 break;
2387 #endif
2388 #if defined(INET6)
2389 case PF_INET6:
2390 len_func = sysctl_net_ip6_pktq_items;
2391 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2392 drops_func = sysctl_net_ip6_pktq_drops;
2393 pfname = "inet6", ipn = IPPROTO_IPV6;
2394 ipname = "ip6", qid = IPV6CTL_IFQ;
2395 break;
2396 #endif
2397 default:
2398 KASSERT(false);
2399 }
2400
2401 sysctl_createv(clog, 0, NULL, NULL,
2402 CTLFLAG_PERMANENT,
2403 CTLTYPE_NODE, pfname, NULL,
2404 NULL, 0, NULL, 0,
2405 CTL_NET, pf, CTL_EOL);
2406 sysctl_createv(clog, 0, NULL, NULL,
2407 CTLFLAG_PERMANENT,
2408 CTLTYPE_NODE, ipname, NULL,
2409 NULL, 0, NULL, 0,
2410 CTL_NET, pf, ipn, CTL_EOL);
2411 sysctl_createv(clog, 0, NULL, NULL,
2412 CTLFLAG_PERMANENT,
2413 CTLTYPE_NODE, "ifq",
2414 SYSCTL_DESCR("Protocol input queue controls"),
2415 NULL, 0, NULL, 0,
2416 CTL_NET, pf, ipn, qid, CTL_EOL);
2417
2418 sysctl_createv(clog, 0, NULL, NULL,
2419 CTLFLAG_PERMANENT,
2420 CTLTYPE_INT, "len",
2421 SYSCTL_DESCR("Current input queue length"),
2422 len_func, 0, NULL, 0,
2423 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2424 sysctl_createv(clog, 0, NULL, NULL,
2425 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2426 CTLTYPE_INT, "maxlen",
2427 SYSCTL_DESCR("Maximum allowed input queue length"),
2428 maxlen_func, 0, NULL, 0,
2429 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2430 sysctl_createv(clog, 0, NULL, NULL,
2431 CTLFLAG_PERMANENT,
2432 CTLTYPE_INT, "drops",
2433 SYSCTL_DESCR("Packets dropped due to full input queue"),
2434 drops_func, 0, NULL, 0,
2435 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2436 }
2437 #endif /* INET || INET6 */
2438
2439 static int
2440 if_sdl_sysctl(SYSCTLFN_ARGS)
2441 {
2442 struct ifnet *ifp;
2443 const struct sockaddr_dl *sdl;
2444
2445 if (namelen != 1)
2446 return EINVAL;
2447
2448 ifp = if_byindex(name[0]);
2449 if (ifp == NULL)
2450 return ENODEV;
2451
2452 sdl = ifp->if_sadl;
2453 if (sdl == NULL) {
2454 *oldlenp = 0;
2455 return 0;
2456 }
2457
2458 if (oldp == NULL) {
2459 *oldlenp = sdl->sdl_alen;
2460 return 0;
2461 }
2462
2463 if (*oldlenp >= sdl->sdl_alen)
2464 *oldlenp = sdl->sdl_alen;
2465 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2466 }
2467
2468 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2469 {
2470 const struct sysctlnode *rnode = NULL;
2471
2472 sysctl_createv(clog, 0, NULL, &rnode,
2473 CTLFLAG_PERMANENT,
2474 CTLTYPE_NODE, "sdl",
2475 SYSCTL_DESCR("Get active link-layer address"),
2476 if_sdl_sysctl, 0, NULL, 0,
2477 CTL_NET, CTL_CREATE, CTL_EOL);
2478 }
2479