if.c revision 1.286 1 /* $NetBSD: if.c,v 1.286 2014/07/28 14:24:48 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.286 2014/07/28 14:24:48 ozaki-r Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99
100 #include <sys/param.h>
101 #include <sys/mbuf.h>
102 #include <sys/systm.h>
103 #include <sys/callout.h>
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/domain.h>
108 #include <sys/protosw.h>
109 #include <sys/kernel.h>
110 #include <sys/ioctl.h>
111 #include <sys/sysctl.h>
112 #include <sys/syslog.h>
113 #include <sys/kauth.h>
114 #include <sys/kmem.h>
115 #include <sys/xcall.h>
116
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <sys/module.h>
128 #ifdef NETATALK
129 #include <netatalk/at_extern.h>
130 #include <netatalk/at.h>
131 #endif
132 #include <net/pfil.h>
133 #include <netinet/in.h>
134 #include <netinet/in_var.h>
135
136 #ifdef INET6
137 #include <netinet6/in6_var.h>
138 #include <netinet6/nd6.h>
139 #endif
140
141 #include "carp.h"
142 #if NCARP > 0
143 #include <netinet/ip_carp.h>
144 #endif
145
146 #include <compat/sys/sockio.h>
147 #include <compat/sys/socket.h>
148
149 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
150 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
151
152 /*
153 * Global list of interfaces.
154 */
155 struct ifnet_head ifnet_list;
156 static ifnet_t ** ifindex2ifnet = NULL;
157
158 static u_int if_index = 1;
159 static size_t if_indexlim = 0;
160 static uint64_t index_gen;
161 static kmutex_t index_gen_mtx;
162
163 static struct ifaddr ** ifnet_addrs = NULL;
164
165 static callout_t if_slowtimo_ch;
166
167 struct ifnet *lo0ifp;
168 int ifqmaxlen = IFQ_MAXLEN;
169
170 static int if_rt_walktree(struct rtentry *, void *);
171
172 static struct if_clone *if_clone_lookup(const char *, int *);
173 static int if_clone_list(struct if_clonereq *);
174
175 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
176 static int if_cloners_count;
177
178 /* Packet filtering hook for interfaces. */
179 pfil_head_t * if_pfil;
180
181 static kauth_listener_t if_listener;
182
183 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
184 static int ifioctl_attach(struct ifnet *);
185 static void ifioctl_detach(struct ifnet *);
186 static void ifnet_lock_enter(struct ifnet_lock *);
187 static void ifnet_lock_exit(struct ifnet_lock *);
188 static void if_detach_queues(struct ifnet *, struct ifqueue *);
189 static void sysctl_sndq_setup(struct sysctllog **, const char *,
190 struct ifaltq *);
191
192 #if defined(INET) || defined(INET6)
193 static void sysctl_net_pktq_setup(struct sysctllog **, int);
194 #endif
195
196 static int
197 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
198 void *arg0, void *arg1, void *arg2, void *arg3)
199 {
200 int result;
201 enum kauth_network_req req;
202
203 result = KAUTH_RESULT_DEFER;
204 req = (enum kauth_network_req)arg1;
205
206 if (action != KAUTH_NETWORK_INTERFACE)
207 return result;
208
209 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
210 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
211 result = KAUTH_RESULT_ALLOW;
212
213 return result;
214 }
215
216 /*
217 * Network interface utility routines.
218 *
219 * Routines with ifa_ifwith* names take sockaddr *'s as
220 * parameters.
221 */
222 void
223 ifinit(void)
224 {
225 #if defined(INET)
226 sysctl_net_pktq_setup(NULL, PF_INET);
227 #endif
228 #ifdef INET6
229 sysctl_net_pktq_setup(NULL, PF_INET6);
230 #endif
231
232 callout_init(&if_slowtimo_ch, 0);
233 if_slowtimo(NULL);
234
235 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
236 if_listener_cb, NULL);
237
238 /* interfaces are available, inform socket code */
239 ifioctl = doifioctl;
240 }
241
242 /*
243 * XXX Initialization before configure().
244 * XXX hack to get pfil_add_hook working in autoconf.
245 */
246 void
247 ifinit1(void)
248 {
249 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
250 TAILQ_INIT(&ifnet_list);
251 if_indexlim = 8;
252
253 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
254 KASSERT(if_pfil != NULL);
255
256 etherinit();
257 }
258
259 ifnet_t *
260 if_alloc(u_char type)
261 {
262 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
263 }
264
265 void
266 if_free(ifnet_t *ifp)
267 {
268 kmem_free(ifp, sizeof(ifnet_t));
269 }
270
271 void
272 if_initname(struct ifnet *ifp, const char *name, int unit)
273 {
274 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
275 "%s%d", name, unit);
276 }
277
278 /*
279 * Null routines used while an interface is going away. These routines
280 * just return an error.
281 */
282
283 int
284 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
285 const struct sockaddr *so, struct rtentry *rt)
286 {
287
288 return ENXIO;
289 }
290
291 void
292 if_nullinput(struct ifnet *ifp, struct mbuf *m)
293 {
294
295 /* Nothing. */
296 }
297
298 void
299 if_nullstart(struct ifnet *ifp)
300 {
301
302 /* Nothing. */
303 }
304
305 int
306 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
307 {
308
309 /* Wake ifioctl_detach(), who may wait for all threads to
310 * quit the critical section.
311 */
312 cv_signal(&ifp->if_ioctl_lock->il_emptied);
313 return ENXIO;
314 }
315
316 int
317 if_nullinit(struct ifnet *ifp)
318 {
319
320 return ENXIO;
321 }
322
323 void
324 if_nullstop(struct ifnet *ifp, int disable)
325 {
326
327 /* Nothing. */
328 }
329
330 void
331 if_nullwatchdog(struct ifnet *ifp)
332 {
333
334 /* Nothing. */
335 }
336
337 void
338 if_nulldrain(struct ifnet *ifp)
339 {
340
341 /* Nothing. */
342 }
343
344 void
345 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
346 {
347 struct ifaddr *ifa;
348 struct sockaddr_dl *sdl;
349
350 ifp->if_addrlen = addrlen;
351 if_alloc_sadl(ifp);
352 ifa = ifp->if_dl;
353 sdl = satosdl(ifa->ifa_addr);
354
355 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
356 if (factory) {
357 ifp->if_hwdl = ifp->if_dl;
358 IFAREF(ifp->if_hwdl);
359 }
360 /* TBD routing socket */
361 }
362
363 struct ifaddr *
364 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
365 {
366 unsigned socksize, ifasize;
367 int addrlen, namelen;
368 struct sockaddr_dl *mask, *sdl;
369 struct ifaddr *ifa;
370
371 namelen = strlen(ifp->if_xname);
372 addrlen = ifp->if_addrlen;
373 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
374 ifasize = sizeof(*ifa) + 2 * socksize;
375 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
376
377 sdl = (struct sockaddr_dl *)(ifa + 1);
378 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
379
380 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
381 ifp->if_xname, namelen, NULL, addrlen);
382 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
383 memset(&mask->sdl_data[0], 0xff, namelen);
384 ifa->ifa_rtrequest = link_rtrequest;
385 ifa->ifa_addr = (struct sockaddr *)sdl;
386 ifa->ifa_netmask = (struct sockaddr *)mask;
387
388 *sdlp = sdl;
389
390 return ifa;
391 }
392
393 static void
394 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
395 {
396 const struct sockaddr_dl *sdl;
397 ifnet_addrs[ifp->if_index] = ifa;
398 IFAREF(ifa);
399 ifp->if_dl = ifa;
400 IFAREF(ifa);
401 sdl = satosdl(ifa->ifa_addr);
402 ifp->if_sadl = sdl;
403 }
404
405 /*
406 * Allocate the link level name for the specified interface. This
407 * is an attachment helper. It must be called after ifp->if_addrlen
408 * is initialized, which may not be the case when if_attach() is
409 * called.
410 */
411 void
412 if_alloc_sadl(struct ifnet *ifp)
413 {
414 struct ifaddr *ifa;
415 const struct sockaddr_dl *sdl;
416
417 /*
418 * If the interface already has a link name, release it
419 * now. This is useful for interfaces that can change
420 * link types, and thus switch link names often.
421 */
422 if (ifp->if_sadl != NULL)
423 if_free_sadl(ifp);
424
425 ifa = if_dl_create(ifp, &sdl);
426
427 ifa_insert(ifp, ifa);
428 if_sadl_setrefs(ifp, ifa);
429 }
430
431 static void
432 if_deactivate_sadl(struct ifnet *ifp)
433 {
434 struct ifaddr *ifa;
435
436 KASSERT(ifp->if_dl != NULL);
437
438 ifa = ifp->if_dl;
439
440 ifp->if_sadl = NULL;
441
442 ifnet_addrs[ifp->if_index] = NULL;
443 IFAFREE(ifa);
444 ifp->if_dl = NULL;
445 IFAFREE(ifa);
446 }
447
448 void
449 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
450 const struct sockaddr_dl *sdl)
451 {
452 int s;
453
454 s = splnet();
455
456 if_deactivate_sadl(ifp);
457
458 if_sadl_setrefs(ifp, ifa);
459 IFADDR_FOREACH(ifa, ifp)
460 rtinit(ifa, RTM_LLINFO_UPD, 0);
461 splx(s);
462 }
463
464 /*
465 * Free the link level name for the specified interface. This is
466 * a detach helper. This is called from if_detach() or from
467 * link layer type specific detach functions.
468 */
469 void
470 if_free_sadl(struct ifnet *ifp)
471 {
472 struct ifaddr *ifa;
473 int s;
474
475 ifa = ifnet_addrs[ifp->if_index];
476 if (ifa == NULL) {
477 KASSERT(ifp->if_sadl == NULL);
478 KASSERT(ifp->if_dl == NULL);
479 return;
480 }
481
482 KASSERT(ifp->if_sadl != NULL);
483 KASSERT(ifp->if_dl != NULL);
484
485 s = splnet();
486 rtinit(ifa, RTM_DELETE, 0);
487 ifa_remove(ifp, ifa);
488 if_deactivate_sadl(ifp);
489 if (ifp->if_hwdl == ifa) {
490 IFAFREE(ifa);
491 ifp->if_hwdl = NULL;
492 }
493 splx(s);
494 }
495
496 static void
497 if_getindex(ifnet_t *ifp)
498 {
499 bool hitlimit = false;
500
501 mutex_enter(&index_gen_mtx);
502 ifp->if_index_gen = index_gen++;
503 mutex_exit(&index_gen_mtx);
504
505 ifp->if_index = if_index;
506 if (ifindex2ifnet == NULL) {
507 if_index++;
508 goto skip;
509 }
510 while (if_byindex(ifp->if_index)) {
511 /*
512 * If we hit USHRT_MAX, we skip back to 0 since
513 * there are a number of places where the value
514 * of if_index or if_index itself is compared
515 * to or stored in an unsigned short. By
516 * jumping back, we won't botch those assignments
517 * or comparisons.
518 */
519 if (++if_index == 0) {
520 if_index = 1;
521 } else if (if_index == USHRT_MAX) {
522 /*
523 * However, if we have to jump back to
524 * zero *twice* without finding an empty
525 * slot in ifindex2ifnet[], then there
526 * there are too many (>65535) interfaces.
527 */
528 if (hitlimit) {
529 panic("too many interfaces");
530 }
531 hitlimit = true;
532 if_index = 1;
533 }
534 ifp->if_index = if_index;
535 }
536 skip:
537 /*
538 * We have some arrays that should be indexed by if_index.
539 * since if_index will grow dynamically, they should grow too.
540 * struct ifadd **ifnet_addrs
541 * struct ifnet **ifindex2ifnet
542 */
543 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
544 ifp->if_index >= if_indexlim) {
545 size_t m, n, oldlim;
546 void *q;
547
548 oldlim = if_indexlim;
549 while (ifp->if_index >= if_indexlim)
550 if_indexlim <<= 1;
551
552 /* grow ifnet_addrs */
553 m = oldlim * sizeof(struct ifaddr *);
554 n = if_indexlim * sizeof(struct ifaddr *);
555 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
556 if (ifnet_addrs != NULL) {
557 memcpy(q, ifnet_addrs, m);
558 free(ifnet_addrs, M_IFADDR);
559 }
560 ifnet_addrs = (struct ifaddr **)q;
561
562 /* grow ifindex2ifnet */
563 m = oldlim * sizeof(struct ifnet *);
564 n = if_indexlim * sizeof(struct ifnet *);
565 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
566 if (ifindex2ifnet != NULL) {
567 memcpy(q, ifindex2ifnet, m);
568 free(ifindex2ifnet, M_IFADDR);
569 }
570 ifindex2ifnet = (struct ifnet **)q;
571 }
572 ifindex2ifnet[ifp->if_index] = ifp;
573 }
574
575 /*
576 * Attach an interface to the list of "active" interfaces.
577 */
578 void
579 if_attach(ifnet_t *ifp)
580 {
581 KASSERT(if_indexlim > 0);
582 TAILQ_INIT(&ifp->if_addrlist);
583 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
584
585 if (ifioctl_attach(ifp) != 0)
586 panic("%s: ifioctl_attach() failed", __func__);
587
588 if_getindex(ifp);
589
590 /*
591 * Link level name is allocated later by a separate call to
592 * if_alloc_sadl().
593 */
594
595 if (ifp->if_snd.ifq_maxlen == 0)
596 ifp->if_snd.ifq_maxlen = ifqmaxlen;
597
598 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
599
600 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
601
602 ifp->if_link_state = LINK_STATE_UNKNOWN;
603
604 ifp->if_capenable = 0;
605 ifp->if_csum_flags_tx = 0;
606 ifp->if_csum_flags_rx = 0;
607
608 #ifdef ALTQ
609 ifp->if_snd.altq_type = 0;
610 ifp->if_snd.altq_disc = NULL;
611 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
612 ifp->if_snd.altq_tbr = NULL;
613 ifp->if_snd.altq_ifp = ifp;
614 #endif
615
616 #ifdef NET_MPSAFE
617 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
618 #else
619 ifp->if_snd.ifq_lock = NULL;
620 #endif
621
622 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
623 (void)pfil_run_hooks(if_pfil,
624 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
625
626 if (!STAILQ_EMPTY(&domains))
627 if_attachdomain1(ifp);
628
629 /* Announce the interface. */
630 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
631 }
632
633 void
634 if_attachdomain(void)
635 {
636 struct ifnet *ifp;
637 int s;
638
639 s = splnet();
640 IFNET_FOREACH(ifp)
641 if_attachdomain1(ifp);
642 splx(s);
643 }
644
645 void
646 if_attachdomain1(struct ifnet *ifp)
647 {
648 struct domain *dp;
649 int s;
650
651 s = splnet();
652
653 /* address family dependent data region */
654 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
655 DOMAIN_FOREACH(dp) {
656 if (dp->dom_ifattach != NULL)
657 ifp->if_afdata[dp->dom_family] =
658 (*dp->dom_ifattach)(ifp);
659 }
660
661 splx(s);
662 }
663
664 /*
665 * Deactivate an interface. This points all of the procedure
666 * handles at error stubs. May be called from interrupt context.
667 */
668 void
669 if_deactivate(struct ifnet *ifp)
670 {
671 int s;
672
673 s = splnet();
674
675 ifp->if_output = if_nulloutput;
676 ifp->if_input = if_nullinput;
677 ifp->if_start = if_nullstart;
678 ifp->if_ioctl = if_nullioctl;
679 ifp->if_init = if_nullinit;
680 ifp->if_stop = if_nullstop;
681 ifp->if_watchdog = if_nullwatchdog;
682 ifp->if_drain = if_nulldrain;
683
684 /* No more packets may be enqueued. */
685 ifp->if_snd.ifq_maxlen = 0;
686
687 splx(s);
688 }
689
690 void
691 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
692 {
693 struct ifaddr *ifa, *nifa;
694
695 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) {
696 nifa = IFADDR_NEXT(ifa);
697 if (ifa->ifa_addr->sa_family != family)
698 continue;
699 (*purgeaddr)(ifa);
700 }
701 }
702
703 /*
704 * Detach an interface from the list of "active" interfaces,
705 * freeing any resources as we go along.
706 *
707 * NOTE: This routine must be called with a valid thread context,
708 * as it may block.
709 */
710 void
711 if_detach(struct ifnet *ifp)
712 {
713 struct socket so;
714 struct ifaddr *ifa;
715 #ifdef IFAREF_DEBUG
716 struct ifaddr *last_ifa = NULL;
717 #endif
718 struct domain *dp;
719 const struct protosw *pr;
720 int s, i, family, purged;
721 uint64_t xc;
722
723 /*
724 * XXX It's kind of lame that we have to have the
725 * XXX socket structure...
726 */
727 memset(&so, 0, sizeof(so));
728
729 s = splnet();
730
731 /*
732 * Do an if_down() to give protocols a chance to do something.
733 */
734 if_down(ifp);
735
736 #ifdef ALTQ
737 if (ALTQ_IS_ENABLED(&ifp->if_snd))
738 altq_disable(&ifp->if_snd);
739 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
740 altq_detach(&ifp->if_snd);
741 #endif
742
743 if (ifp->if_snd.ifq_lock)
744 mutex_obj_free(ifp->if_snd.ifq_lock);
745
746 sysctl_teardown(&ifp->if_sysctl_log);
747
748 #if NCARP > 0
749 /* Remove the interface from any carp group it is a part of. */
750 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
751 carp_ifdetach(ifp);
752 #endif
753
754 /*
755 * Rip all the addresses off the interface. This should make
756 * all of the routes go away.
757 *
758 * pr_usrreq calls can remove an arbitrary number of ifaddrs
759 * from the list, including our "cursor", ifa. For safety,
760 * and to honor the TAILQ abstraction, I just restart the
761 * loop after each removal. Note that the loop will exit
762 * when all of the remaining ifaddrs belong to the AF_LINK
763 * family. I am counting on the historical fact that at
764 * least one pr_usrreq in each address domain removes at
765 * least one ifaddr.
766 */
767 again:
768 IFADDR_FOREACH(ifa, ifp) {
769 family = ifa->ifa_addr->sa_family;
770 #ifdef IFAREF_DEBUG
771 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
772 ifa, family, ifa->ifa_refcnt);
773 if (last_ifa != NULL && ifa == last_ifa)
774 panic("if_detach: loop detected");
775 last_ifa = ifa;
776 #endif
777 if (family == AF_LINK)
778 continue;
779 dp = pffinddomain(family);
780 #ifdef DIAGNOSTIC
781 if (dp == NULL)
782 panic("if_detach: no domain for AF %d",
783 family);
784 #endif
785 /*
786 * XXX These PURGEIF calls are redundant with the
787 * purge-all-families calls below, but are left in for
788 * now both to make a smaller change, and to avoid
789 * unplanned interactions with clearing of
790 * ifp->if_addrlist.
791 */
792 purged = 0;
793 for (pr = dp->dom_protosw;
794 pr < dp->dom_protoswNPROTOSW; pr++) {
795 so.so_proto = pr;
796 if (pr->pr_usrreqs) {
797 (void) (*pr->pr_usrreqs->pr_generic)(&so,
798 PRU_PURGEIF, NULL, NULL,
799 (struct mbuf *) ifp, curlwp);
800 purged = 1;
801 }
802 }
803 if (purged == 0) {
804 /*
805 * XXX What's really the best thing to do
806 * XXX here? --thorpej (at) NetBSD.org
807 */
808 printf("if_detach: WARNING: AF %d not purged\n",
809 family);
810 ifa_remove(ifp, ifa);
811 }
812 goto again;
813 }
814
815 if_free_sadl(ifp);
816
817 /* Walk the routing table looking for stragglers. */
818 for (i = 0; i <= AF_MAX; i++) {
819 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
820 continue;
821 }
822
823 DOMAIN_FOREACH(dp) {
824 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
825 {
826 void *p = ifp->if_afdata[dp->dom_family];
827 if (p) {
828 ifp->if_afdata[dp->dom_family] = NULL;
829 (*dp->dom_ifdetach)(ifp, p);
830 }
831 }
832
833 /*
834 * One would expect multicast memberships (INET and
835 * INET6) on UDP sockets to be purged by the PURGEIF
836 * calls above, but if all addresses were removed from
837 * the interface prior to destruction, the calls will
838 * not be made (e.g. ppp, for which pppd(8) generally
839 * removes addresses before destroying the interface).
840 * Because there is no invariant that multicast
841 * memberships only exist for interfaces with IPv4
842 * addresses, we must call PURGEIF regardless of
843 * addresses. (Protocols which might store ifnet
844 * pointers are marked with PR_PURGEIF.)
845 */
846 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
847 so.so_proto = pr;
848 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
849 (void)(*pr->pr_usrreqs->pr_generic)(&so,
850 PRU_PURGEIF, NULL, NULL,
851 (struct mbuf *)ifp, curlwp);
852 }
853 }
854
855 (void)pfil_run_hooks(if_pfil,
856 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
857 (void)pfil_head_destroy(ifp->if_pfil);
858
859 /* Announce that the interface is gone. */
860 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
861
862 ifindex2ifnet[ifp->if_index] = NULL;
863
864 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
865
866 ifioctl_detach(ifp);
867
868 /*
869 * remove packets that came from ifp, from software interrupt queues.
870 */
871 DOMAIN_FOREACH(dp) {
872 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
873 struct ifqueue *iq = dp->dom_ifqueues[i];
874 if (iq == NULL)
875 break;
876 dp->dom_ifqueues[i] = NULL;
877 if_detach_queues(ifp, iq);
878 }
879 }
880
881 /*
882 * IP queues have to be processed separately: net-queue barrier
883 * ensures that the packets are dequeued while a cross-call will
884 * ensure that the interrupts have completed. FIXME: not quite..
885 */
886 #ifdef INET
887 pktq_barrier(ip_pktq);
888 #endif
889 #ifdef INET6
890 pktq_barrier(ip6_pktq);
891 #endif
892 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
893 xc_wait(xc);
894
895 splx(s);
896 }
897
898 static void
899 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
900 {
901 struct mbuf *m, *prev, *next;
902
903 prev = NULL;
904 for (m = q->ifq_head; m != NULL; m = next) {
905 KASSERT((m->m_flags & M_PKTHDR) != 0);
906
907 next = m->m_nextpkt;
908 if (m->m_pkthdr.rcvif != ifp) {
909 prev = m;
910 continue;
911 }
912
913 if (prev != NULL)
914 prev->m_nextpkt = m->m_nextpkt;
915 else
916 q->ifq_head = m->m_nextpkt;
917 if (q->ifq_tail == m)
918 q->ifq_tail = prev;
919 q->ifq_len--;
920
921 m->m_nextpkt = NULL;
922 m_freem(m);
923 IF_DROP(q);
924 }
925 }
926
927 /*
928 * Callback for a radix tree walk to delete all references to an
929 * ifnet.
930 */
931 static int
932 if_rt_walktree(struct rtentry *rt, void *v)
933 {
934 struct ifnet *ifp = (struct ifnet *)v;
935 int error;
936
937 if (rt->rt_ifp != ifp)
938 return 0;
939
940 /* Delete the entry. */
941 ++rt->rt_refcnt;
942 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
943 rt_mask(rt), rt->rt_flags, NULL);
944 KASSERT((rt->rt_flags & RTF_UP) == 0);
945 rt->rt_ifp = NULL;
946 rtfree(rt);
947 if (error != 0)
948 printf("%s: warning: unable to delete rtentry @ %p, "
949 "error = %d\n", ifp->if_xname, rt, error);
950 return ERESTART;
951 }
952
953 /*
954 * Create a clone network interface.
955 */
956 int
957 if_clone_create(const char *name)
958 {
959 struct if_clone *ifc;
960 int unit;
961
962 ifc = if_clone_lookup(name, &unit);
963 if (ifc == NULL)
964 return EINVAL;
965
966 if (ifunit(name) != NULL)
967 return EEXIST;
968
969 return (*ifc->ifc_create)(ifc, unit);
970 }
971
972 /*
973 * Destroy a clone network interface.
974 */
975 int
976 if_clone_destroy(const char *name)
977 {
978 struct if_clone *ifc;
979 struct ifnet *ifp;
980
981 ifc = if_clone_lookup(name, NULL);
982 if (ifc == NULL)
983 return EINVAL;
984
985 ifp = ifunit(name);
986 if (ifp == NULL)
987 return ENXIO;
988
989 if (ifc->ifc_destroy == NULL)
990 return EOPNOTSUPP;
991
992 return (*ifc->ifc_destroy)(ifp);
993 }
994
995 /*
996 * Look up a network interface cloner.
997 */
998 static struct if_clone *
999 if_clone_lookup(const char *name, int *unitp)
1000 {
1001 struct if_clone *ifc;
1002 const char *cp;
1003 char *dp, ifname[IFNAMSIZ + 3];
1004 int unit;
1005
1006 strcpy(ifname, "if_");
1007 /* separate interface name from unit */
1008 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1009 *cp && (*cp < '0' || *cp > '9');)
1010 *dp++ = *cp++;
1011
1012 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1013 return NULL; /* No name or unit number */
1014 *dp++ = '\0';
1015
1016 again:
1017 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1018 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1019 break;
1020 }
1021
1022 if (ifc == NULL) {
1023 if (*ifname == '\0' ||
1024 module_autoload(ifname, MODULE_CLASS_DRIVER))
1025 return NULL;
1026 *ifname = '\0';
1027 goto again;
1028 }
1029
1030 unit = 0;
1031 while (cp - name < IFNAMSIZ && *cp) {
1032 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1033 /* Bogus unit number. */
1034 return NULL;
1035 }
1036 unit = (unit * 10) + (*cp++ - '0');
1037 }
1038
1039 if (unitp != NULL)
1040 *unitp = unit;
1041 return ifc;
1042 }
1043
1044 /*
1045 * Register a network interface cloner.
1046 */
1047 void
1048 if_clone_attach(struct if_clone *ifc)
1049 {
1050
1051 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1052 if_cloners_count++;
1053 }
1054
1055 /*
1056 * Unregister a network interface cloner.
1057 */
1058 void
1059 if_clone_detach(struct if_clone *ifc)
1060 {
1061
1062 LIST_REMOVE(ifc, ifc_list);
1063 if_cloners_count--;
1064 }
1065
1066 /*
1067 * Provide list of interface cloners to userspace.
1068 */
1069 static int
1070 if_clone_list(struct if_clonereq *ifcr)
1071 {
1072 char outbuf[IFNAMSIZ], *dst;
1073 struct if_clone *ifc;
1074 int count, error = 0;
1075
1076 ifcr->ifcr_total = if_cloners_count;
1077 if ((dst = ifcr->ifcr_buffer) == NULL) {
1078 /* Just asking how many there are. */
1079 return 0;
1080 }
1081
1082 if (ifcr->ifcr_count < 0)
1083 return EINVAL;
1084
1085 count = (if_cloners_count < ifcr->ifcr_count) ?
1086 if_cloners_count : ifcr->ifcr_count;
1087
1088 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1089 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1090 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1091 if (outbuf[sizeof(outbuf) - 1] != '\0')
1092 return ENAMETOOLONG;
1093 error = copyout(outbuf, dst, sizeof(outbuf));
1094 if (error != 0)
1095 break;
1096 }
1097
1098 return error;
1099 }
1100
1101 void
1102 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1103 {
1104 ifa->ifa_ifp = ifp;
1105 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1106 IFAREF(ifa);
1107 }
1108
1109 void
1110 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1111 {
1112 KASSERT(ifa->ifa_ifp == ifp);
1113 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1114 IFAFREE(ifa);
1115 }
1116
1117 static inline int
1118 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1119 {
1120 return sockaddr_cmp(sa1, sa2) == 0;
1121 }
1122
1123 /*
1124 * Locate an interface based on a complete address.
1125 */
1126 /*ARGSUSED*/
1127 struct ifaddr *
1128 ifa_ifwithaddr(const struct sockaddr *addr)
1129 {
1130 struct ifnet *ifp;
1131 struct ifaddr *ifa;
1132
1133 IFNET_FOREACH(ifp) {
1134 if (ifp->if_output == if_nulloutput)
1135 continue;
1136 IFADDR_FOREACH(ifa, ifp) {
1137 if (ifa->ifa_addr->sa_family != addr->sa_family)
1138 continue;
1139 if (equal(addr, ifa->ifa_addr))
1140 return ifa;
1141 if ((ifp->if_flags & IFF_BROADCAST) &&
1142 ifa->ifa_broadaddr &&
1143 /* IP6 doesn't have broadcast */
1144 ifa->ifa_broadaddr->sa_len != 0 &&
1145 equal(ifa->ifa_broadaddr, addr))
1146 return ifa;
1147 }
1148 }
1149 return NULL;
1150 }
1151
1152 /*
1153 * Locate the point to point interface with a given destination address.
1154 */
1155 /*ARGSUSED*/
1156 struct ifaddr *
1157 ifa_ifwithdstaddr(const struct sockaddr *addr)
1158 {
1159 struct ifnet *ifp;
1160 struct ifaddr *ifa;
1161
1162 IFNET_FOREACH(ifp) {
1163 if (ifp->if_output == if_nulloutput)
1164 continue;
1165 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1166 continue;
1167 IFADDR_FOREACH(ifa, ifp) {
1168 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1169 ifa->ifa_dstaddr == NULL)
1170 continue;
1171 if (equal(addr, ifa->ifa_dstaddr))
1172 return ifa;
1173 }
1174 }
1175 return NULL;
1176 }
1177
1178 /*
1179 * Find an interface on a specific network. If many, choice
1180 * is most specific found.
1181 */
1182 struct ifaddr *
1183 ifa_ifwithnet(const struct sockaddr *addr)
1184 {
1185 struct ifnet *ifp;
1186 struct ifaddr *ifa;
1187 const struct sockaddr_dl *sdl;
1188 struct ifaddr *ifa_maybe = 0;
1189 u_int af = addr->sa_family;
1190 const char *addr_data = addr->sa_data, *cplim;
1191
1192 if (af == AF_LINK) {
1193 sdl = satocsdl(addr);
1194 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1195 ifindex2ifnet[sdl->sdl_index] &&
1196 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1197 return ifnet_addrs[sdl->sdl_index];
1198 }
1199 #ifdef NETATALK
1200 if (af == AF_APPLETALK) {
1201 const struct sockaddr_at *sat, *sat2;
1202 sat = (const struct sockaddr_at *)addr;
1203 IFNET_FOREACH(ifp) {
1204 if (ifp->if_output == if_nulloutput)
1205 continue;
1206 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1207 if (ifa == NULL)
1208 continue;
1209 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1210 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1211 return ifa; /* exact match */
1212 if (ifa_maybe == NULL) {
1213 /* else keep the if with the right range */
1214 ifa_maybe = ifa;
1215 }
1216 }
1217 return ifa_maybe;
1218 }
1219 #endif
1220 IFNET_FOREACH(ifp) {
1221 if (ifp->if_output == if_nulloutput)
1222 continue;
1223 IFADDR_FOREACH(ifa, ifp) {
1224 const char *cp, *cp2, *cp3;
1225
1226 if (ifa->ifa_addr->sa_family != af ||
1227 ifa->ifa_netmask == NULL)
1228 next: continue;
1229 cp = addr_data;
1230 cp2 = ifa->ifa_addr->sa_data;
1231 cp3 = ifa->ifa_netmask->sa_data;
1232 cplim = (const char *)ifa->ifa_netmask +
1233 ifa->ifa_netmask->sa_len;
1234 while (cp3 < cplim) {
1235 if ((*cp++ ^ *cp2++) & *cp3++) {
1236 /* want to continue for() loop */
1237 goto next;
1238 }
1239 }
1240 if (ifa_maybe == NULL ||
1241 rn_refines((void *)ifa->ifa_netmask,
1242 (void *)ifa_maybe->ifa_netmask))
1243 ifa_maybe = ifa;
1244 }
1245 }
1246 return ifa_maybe;
1247 }
1248
1249 /*
1250 * Find the interface of the addresss.
1251 */
1252 struct ifaddr *
1253 ifa_ifwithladdr(const struct sockaddr *addr)
1254 {
1255 struct ifaddr *ia;
1256
1257 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1258 (ia = ifa_ifwithnet(addr)))
1259 return ia;
1260 return NULL;
1261 }
1262
1263 /*
1264 * Find an interface using a specific address family
1265 */
1266 struct ifaddr *
1267 ifa_ifwithaf(int af)
1268 {
1269 struct ifnet *ifp;
1270 struct ifaddr *ifa;
1271
1272 IFNET_FOREACH(ifp) {
1273 if (ifp->if_output == if_nulloutput)
1274 continue;
1275 IFADDR_FOREACH(ifa, ifp) {
1276 if (ifa->ifa_addr->sa_family == af)
1277 return ifa;
1278 }
1279 }
1280 return NULL;
1281 }
1282
1283 /*
1284 * Find an interface address specific to an interface best matching
1285 * a given address.
1286 */
1287 struct ifaddr *
1288 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1289 {
1290 struct ifaddr *ifa;
1291 const char *cp, *cp2, *cp3;
1292 const char *cplim;
1293 struct ifaddr *ifa_maybe = 0;
1294 u_int af = addr->sa_family;
1295
1296 if (ifp->if_output == if_nulloutput)
1297 return NULL;
1298
1299 if (af >= AF_MAX)
1300 return NULL;
1301
1302 IFADDR_FOREACH(ifa, ifp) {
1303 if (ifa->ifa_addr->sa_family != af)
1304 continue;
1305 ifa_maybe = ifa;
1306 if (ifa->ifa_netmask == NULL) {
1307 if (equal(addr, ifa->ifa_addr) ||
1308 (ifa->ifa_dstaddr &&
1309 equal(addr, ifa->ifa_dstaddr)))
1310 return ifa;
1311 continue;
1312 }
1313 cp = addr->sa_data;
1314 cp2 = ifa->ifa_addr->sa_data;
1315 cp3 = ifa->ifa_netmask->sa_data;
1316 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1317 for (; cp3 < cplim; cp3++) {
1318 if ((*cp++ ^ *cp2++) & *cp3)
1319 break;
1320 }
1321 if (cp3 == cplim)
1322 return ifa;
1323 }
1324 return ifa_maybe;
1325 }
1326
1327 /*
1328 * Default action when installing a route with a Link Level gateway.
1329 * Lookup an appropriate real ifa to point to.
1330 * This should be moved to /sys/net/link.c eventually.
1331 */
1332 void
1333 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1334 {
1335 struct ifaddr *ifa;
1336 const struct sockaddr *dst;
1337 struct ifnet *ifp;
1338
1339 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1340 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1341 return;
1342 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1343 rt_replace_ifa(rt, ifa);
1344 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1345 ifa->ifa_rtrequest(cmd, rt, info);
1346 }
1347 }
1348
1349 /*
1350 * Handle a change in the interface link state.
1351 * XXX: We should listen to the routing socket in-kernel rather
1352 * than calling in6_if_link_* functions directly from here.
1353 */
1354 void
1355 if_link_state_change(struct ifnet *ifp, int link_state)
1356 {
1357 int s;
1358 #if defined(DEBUG) || defined(INET6)
1359 int old_link_state;
1360 #endif
1361
1362 s = splnet();
1363 if (ifp->if_link_state == link_state) {
1364 splx(s);
1365 return;
1366 }
1367
1368 #if defined(DEBUG) || defined(INET6)
1369 old_link_state = ifp->if_link_state;
1370 #endif
1371 ifp->if_link_state = link_state;
1372 #ifdef DEBUG
1373 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1374 link_state == LINK_STATE_UP ? "UP" :
1375 link_state == LINK_STATE_DOWN ? "DOWN" :
1376 "UNKNOWN",
1377 old_link_state == LINK_STATE_UP ? "UP" :
1378 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1379 "UNKNOWN");
1380 #endif
1381
1382 #ifdef INET6
1383 /*
1384 * When going from UNKNOWN to UP, we need to mark existing
1385 * IPv6 addresses as tentative and restart DAD as we may have
1386 * erroneously not found a duplicate.
1387 *
1388 * This needs to happen before rt_ifmsg to avoid a race where
1389 * listeners would have an address and expect it to work right
1390 * away.
1391 */
1392 if (in6_present && link_state == LINK_STATE_UP &&
1393 old_link_state == LINK_STATE_UNKNOWN)
1394 in6_if_link_down(ifp);
1395 #endif
1396
1397 /* Notify that the link state has changed. */
1398 rt_ifmsg(ifp);
1399
1400 #if NCARP > 0
1401 if (ifp->if_carp)
1402 carp_carpdev_state(ifp);
1403 #endif
1404
1405 #ifdef INET6
1406 if (in6_present) {
1407 if (link_state == LINK_STATE_DOWN)
1408 in6_if_link_down(ifp);
1409 else if (link_state == LINK_STATE_UP)
1410 in6_if_link_up(ifp);
1411 }
1412 #endif
1413
1414 splx(s);
1415 }
1416
1417 /*
1418 * Mark an interface down and notify protocols of
1419 * the transition.
1420 * NOTE: must be called at splsoftnet or equivalent.
1421 */
1422 void
1423 if_down(struct ifnet *ifp)
1424 {
1425 struct ifaddr *ifa;
1426
1427 ifp->if_flags &= ~IFF_UP;
1428 nanotime(&ifp->if_lastchange);
1429 IFADDR_FOREACH(ifa, ifp)
1430 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1431 IFQ_PURGE(&ifp->if_snd);
1432 #if NCARP > 0
1433 if (ifp->if_carp)
1434 carp_carpdev_state(ifp);
1435 #endif
1436 rt_ifmsg(ifp);
1437 #ifdef INET6
1438 if (in6_present)
1439 in6_if_down(ifp);
1440 #endif
1441 }
1442
1443 /*
1444 * Mark an interface up and notify protocols of
1445 * the transition.
1446 * NOTE: must be called at splsoftnet or equivalent.
1447 */
1448 void
1449 if_up(struct ifnet *ifp)
1450 {
1451 #ifdef notyet
1452 struct ifaddr *ifa;
1453 #endif
1454
1455 ifp->if_flags |= IFF_UP;
1456 nanotime(&ifp->if_lastchange);
1457 #ifdef notyet
1458 /* this has no effect on IP, and will kill all ISO connections XXX */
1459 IFADDR_FOREACH(ifa, ifp)
1460 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1461 #endif
1462 #if NCARP > 0
1463 if (ifp->if_carp)
1464 carp_carpdev_state(ifp);
1465 #endif
1466 rt_ifmsg(ifp);
1467 #ifdef INET6
1468 if (in6_present)
1469 in6_if_up(ifp);
1470 #endif
1471 }
1472
1473 /*
1474 * Handle interface watchdog timer routines. Called
1475 * from softclock, we decrement timers (if set) and
1476 * call the appropriate interface routine on expiration.
1477 */
1478 void
1479 if_slowtimo(void *arg)
1480 {
1481 struct ifnet *ifp;
1482 int s = splnet();
1483
1484 IFNET_FOREACH(ifp) {
1485 if (ifp->if_timer == 0 || --ifp->if_timer)
1486 continue;
1487 if (ifp->if_watchdog != NULL)
1488 (*ifp->if_watchdog)(ifp);
1489 }
1490 splx(s);
1491 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1492 }
1493
1494 /*
1495 * Set/clear promiscuous mode on interface ifp based on the truth value
1496 * of pswitch. The calls are reference counted so that only the first
1497 * "on" request actually has an effect, as does the final "off" request.
1498 * Results are undefined if the "off" and "on" requests are not matched.
1499 */
1500 int
1501 ifpromisc(struct ifnet *ifp, int pswitch)
1502 {
1503 int pcount, ret;
1504 short nflags;
1505
1506 pcount = ifp->if_pcount;
1507 if (pswitch) {
1508 /*
1509 * Allow the device to be "placed" into promiscuous
1510 * mode even if it is not configured up. It will
1511 * consult IFF_PROMISC when it is brought up.
1512 */
1513 if (ifp->if_pcount++ != 0)
1514 return 0;
1515 nflags = ifp->if_flags | IFF_PROMISC;
1516 } else {
1517 if (--ifp->if_pcount > 0)
1518 return 0;
1519 nflags = ifp->if_flags & ~IFF_PROMISC;
1520 }
1521 ret = if_flags_set(ifp, nflags);
1522 /* Restore interface state if not successful. */
1523 if (ret != 0) {
1524 ifp->if_pcount = pcount;
1525 }
1526 return ret;
1527 }
1528
1529 /*
1530 * Map interface name to
1531 * interface structure pointer.
1532 */
1533 struct ifnet *
1534 ifunit(const char *name)
1535 {
1536 struct ifnet *ifp;
1537 const char *cp = name;
1538 u_int unit = 0;
1539 u_int i;
1540
1541 /*
1542 * If the entire name is a number, treat it as an ifindex.
1543 */
1544 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1545 unit = unit * 10 + (*cp - '0');
1546 }
1547
1548 /*
1549 * If the number took all of the name, then it's a valid ifindex.
1550 */
1551 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1552 if (unit >= if_indexlim)
1553 return NULL;
1554 ifp = ifindex2ifnet[unit];
1555 if (ifp == NULL || ifp->if_output == if_nulloutput)
1556 return NULL;
1557 return ifp;
1558 }
1559
1560 IFNET_FOREACH(ifp) {
1561 if (ifp->if_output == if_nulloutput)
1562 continue;
1563 if (strcmp(ifp->if_xname, name) == 0)
1564 return ifp;
1565 }
1566 return NULL;
1567 }
1568
1569 ifnet_t *
1570 if_byindex(u_int idx)
1571 {
1572 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1573 }
1574
1575 /* common */
1576 int
1577 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1578 {
1579 int s;
1580 struct ifreq *ifr;
1581 struct ifcapreq *ifcr;
1582 struct ifdatareq *ifdr;
1583
1584 switch (cmd) {
1585 case SIOCSIFCAP:
1586 ifcr = data;
1587 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1588 return EINVAL;
1589
1590 if (ifcr->ifcr_capenable == ifp->if_capenable)
1591 return 0;
1592
1593 ifp->if_capenable = ifcr->ifcr_capenable;
1594
1595 /* Pre-compute the checksum flags mask. */
1596 ifp->if_csum_flags_tx = 0;
1597 ifp->if_csum_flags_rx = 0;
1598 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1599 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1600 }
1601 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1602 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1603 }
1604
1605 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1606 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1607 }
1608 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1609 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1610 }
1611
1612 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1613 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1614 }
1615 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1616 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1617 }
1618
1619 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1620 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1621 }
1622 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1623 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1624 }
1625
1626 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1627 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1628 }
1629 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1630 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1631 }
1632 if (ifp->if_flags & IFF_UP)
1633 return ENETRESET;
1634 return 0;
1635 case SIOCSIFFLAGS:
1636 ifr = data;
1637 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1638 s = splnet();
1639 if_down(ifp);
1640 splx(s);
1641 }
1642 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1643 s = splnet();
1644 if_up(ifp);
1645 splx(s);
1646 }
1647 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1648 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1649 break;
1650 case SIOCGIFFLAGS:
1651 ifr = data;
1652 ifr->ifr_flags = ifp->if_flags;
1653 break;
1654
1655 case SIOCGIFMETRIC:
1656 ifr = data;
1657 ifr->ifr_metric = ifp->if_metric;
1658 break;
1659
1660 case SIOCGIFMTU:
1661 ifr = data;
1662 ifr->ifr_mtu = ifp->if_mtu;
1663 break;
1664
1665 case SIOCGIFDLT:
1666 ifr = data;
1667 ifr->ifr_dlt = ifp->if_dlt;
1668 break;
1669
1670 case SIOCGIFCAP:
1671 ifcr = data;
1672 ifcr->ifcr_capabilities = ifp->if_capabilities;
1673 ifcr->ifcr_capenable = ifp->if_capenable;
1674 break;
1675
1676 case SIOCSIFMETRIC:
1677 ifr = data;
1678 ifp->if_metric = ifr->ifr_metric;
1679 break;
1680
1681 case SIOCGIFDATA:
1682 ifdr = data;
1683 ifdr->ifdr_data = ifp->if_data;
1684 break;
1685
1686 case SIOCGIFINDEX:
1687 ifr = data;
1688 ifr->ifr_index = ifp->if_index;
1689 break;
1690
1691 case SIOCZIFDATA:
1692 ifdr = data;
1693 ifdr->ifdr_data = ifp->if_data;
1694 /*
1695 * Assumes that the volatile counters that can be
1696 * zero'ed are at the end of if_data.
1697 */
1698 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1699 offsetof(struct if_data, ifi_ipackets));
1700 /*
1701 * The memset() clears to the bottm of if_data. In the area,
1702 * if_lastchange is included. Please be careful if new entry
1703 * will be added into if_data or rewite this.
1704 *
1705 * And also, update if_lastchnage.
1706 */
1707 getnanotime(&ifp->if_lastchange);
1708 break;
1709 case SIOCSIFMTU:
1710 ifr = data;
1711 if (ifp->if_mtu == ifr->ifr_mtu)
1712 break;
1713 ifp->if_mtu = ifr->ifr_mtu;
1714 /*
1715 * If the link MTU changed, do network layer specific procedure.
1716 */
1717 #ifdef INET6
1718 if (in6_present)
1719 nd6_setmtu(ifp);
1720 #endif
1721 return ENETRESET;
1722 default:
1723 return ENOTTY;
1724 }
1725 return 0;
1726 }
1727
1728 int
1729 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1730 {
1731 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1732 struct ifaddr *ifa;
1733 const struct sockaddr *any, *sa;
1734 union {
1735 struct sockaddr sa;
1736 struct sockaddr_storage ss;
1737 } u, v;
1738
1739 switch (cmd) {
1740 case SIOCSIFADDRPREF:
1741 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1742 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1743 NULL) != 0)
1744 return EPERM;
1745 case SIOCGIFADDRPREF:
1746 break;
1747 default:
1748 return EOPNOTSUPP;
1749 }
1750
1751 /* sanity checks */
1752 if (data == NULL || ifp == NULL) {
1753 panic("invalid argument to %s", __func__);
1754 /*NOTREACHED*/
1755 }
1756
1757 /* address must be specified on ADD and DELETE */
1758 sa = sstocsa(&ifap->ifap_addr);
1759 if (sa->sa_family != sofamily(so))
1760 return EINVAL;
1761 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1762 return EINVAL;
1763
1764 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1765
1766 IFADDR_FOREACH(ifa, ifp) {
1767 if (ifa->ifa_addr->sa_family != sa->sa_family)
1768 continue;
1769 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1770 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1771 break;
1772 }
1773 if (ifa == NULL)
1774 return EADDRNOTAVAIL;
1775
1776 switch (cmd) {
1777 case SIOCSIFADDRPREF:
1778 ifa->ifa_preference = ifap->ifap_preference;
1779 return 0;
1780 case SIOCGIFADDRPREF:
1781 /* fill in the if_laddrreq structure */
1782 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1783 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1784 ifap->ifap_preference = ifa->ifa_preference;
1785 return 0;
1786 default:
1787 return EOPNOTSUPP;
1788 }
1789 }
1790
1791 static void
1792 ifnet_lock_enter(struct ifnet_lock *il)
1793 {
1794 uint64_t *nenter;
1795
1796 /* Before trying to acquire the mutex, increase the count of threads
1797 * who have entered or who wait to enter the critical section.
1798 * Avoid one costly locked memory transaction by keeping a count for
1799 * each CPU.
1800 */
1801 nenter = percpu_getref(il->il_nenter);
1802 (*nenter)++;
1803 percpu_putref(il->il_nenter);
1804 mutex_enter(&il->il_lock);
1805 }
1806
1807 static void
1808 ifnet_lock_exit(struct ifnet_lock *il)
1809 {
1810 /* Increase the count of threads who have exited the critical
1811 * section. Increase while we still hold the lock.
1812 */
1813 il->il_nexit++;
1814 mutex_exit(&il->il_lock);
1815 }
1816
1817 /*
1818 * Interface ioctls.
1819 */
1820 static int
1821 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1822 {
1823 struct ifnet *ifp;
1824 struct ifreq *ifr;
1825 int error = 0;
1826 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1827 u_long ocmd = cmd;
1828 #endif
1829 short oif_flags;
1830 #ifdef COMPAT_OIFREQ
1831 struct ifreq ifrb;
1832 struct oifreq *oifr = NULL;
1833 #endif
1834
1835 switch (cmd) {
1836 #ifdef COMPAT_OIFREQ
1837 case OSIOCGIFCONF:
1838 case OOSIOCGIFCONF:
1839 return compat_ifconf(cmd, data);
1840 #endif
1841 #ifdef COMPAT_OIFDATA
1842 case OSIOCGIFDATA:
1843 case OSIOCZIFDATA:
1844 return compat_ifdatareq(l, cmd, data);
1845 #endif
1846 case SIOCGIFCONF:
1847 return ifconf(cmd, data);
1848 case SIOCINITIFADDR:
1849 return EPERM;
1850 }
1851
1852 #ifdef COMPAT_OIFREQ
1853 cmd = compat_cvtcmd(cmd);
1854 if (cmd != ocmd) {
1855 oifr = data;
1856 data = ifr = &ifrb;
1857 ifreqo2n(oifr, ifr);
1858 } else
1859 #endif
1860 ifr = data;
1861
1862 ifp = ifunit(ifr->ifr_name);
1863
1864 switch (cmd) {
1865 case SIOCIFCREATE:
1866 case SIOCIFDESTROY:
1867 if (l != NULL) {
1868 error = kauth_authorize_network(l->l_cred,
1869 KAUTH_NETWORK_INTERFACE,
1870 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1871 (void *)cmd, NULL);
1872 if (error != 0)
1873 return error;
1874 }
1875 return (cmd == SIOCIFCREATE) ?
1876 if_clone_create(ifr->ifr_name) :
1877 if_clone_destroy(ifr->ifr_name);
1878
1879 case SIOCIFGCLONERS:
1880 return if_clone_list((struct if_clonereq *)data);
1881 }
1882
1883 if (ifp == NULL)
1884 return ENXIO;
1885
1886 switch (cmd) {
1887 case SIOCALIFADDR:
1888 case SIOCDLIFADDR:
1889 case SIOCSIFADDRPREF:
1890 case SIOCSIFFLAGS:
1891 case SIOCSIFCAP:
1892 case SIOCSIFMETRIC:
1893 case SIOCZIFDATA:
1894 case SIOCSIFMTU:
1895 case SIOCSIFPHYADDR:
1896 case SIOCDIFPHYADDR:
1897 #ifdef INET6
1898 case SIOCSIFPHYADDR_IN6:
1899 #endif
1900 case SIOCSLIFPHYADDR:
1901 case SIOCADDMULTI:
1902 case SIOCDELMULTI:
1903 case SIOCSIFMEDIA:
1904 case SIOCSDRVSPEC:
1905 case SIOCG80211:
1906 case SIOCS80211:
1907 case SIOCS80211NWID:
1908 case SIOCS80211NWKEY:
1909 case SIOCS80211POWER:
1910 case SIOCS80211BSSID:
1911 case SIOCS80211CHANNEL:
1912 case SIOCSLINKSTR:
1913 if (l != NULL) {
1914 error = kauth_authorize_network(l->l_cred,
1915 KAUTH_NETWORK_INTERFACE,
1916 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1917 (void *)cmd, NULL);
1918 if (error != 0)
1919 return error;
1920 }
1921 }
1922
1923 oif_flags = ifp->if_flags;
1924
1925 ifnet_lock_enter(ifp->if_ioctl_lock);
1926 error = (*ifp->if_ioctl)(ifp, cmd, data);
1927 if (error != ENOTTY)
1928 ;
1929 else if (so->so_proto == NULL)
1930 error = EOPNOTSUPP;
1931 else {
1932 #ifdef COMPAT_OSOCK
1933 error = compat_ifioctl(so, ocmd, cmd, data, l);
1934 #else
1935 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1936 cmd, data, ifp);
1937 #endif
1938 }
1939
1940 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1941 #ifdef INET6
1942 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1943 int s = splnet();
1944 in6_if_up(ifp);
1945 splx(s);
1946 }
1947 #endif
1948 }
1949 #ifdef COMPAT_OIFREQ
1950 if (cmd != ocmd)
1951 ifreqn2o(oifr, ifr);
1952 #endif
1953
1954 ifnet_lock_exit(ifp->if_ioctl_lock);
1955 return error;
1956 }
1957
1958 /* This callback adds to the sum in `arg' the number of
1959 * threads on `ci' who have entered or who wait to enter the
1960 * critical section.
1961 */
1962 static void
1963 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1964 {
1965 uint64_t *sum = arg, *nenter = p;
1966
1967 *sum += *nenter;
1968 }
1969
1970 /* Return the number of threads who have entered or who wait
1971 * to enter the critical section on all CPUs.
1972 */
1973 static uint64_t
1974 ifnet_lock_entrances(struct ifnet_lock *il)
1975 {
1976 uint64_t sum = 0;
1977
1978 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1979
1980 return sum;
1981 }
1982
1983 static int
1984 ifioctl_attach(struct ifnet *ifp)
1985 {
1986 struct ifnet_lock *il;
1987
1988 /* If the driver has not supplied its own if_ioctl, then
1989 * supply the default.
1990 */
1991 if (ifp->if_ioctl == NULL)
1992 ifp->if_ioctl = ifioctl_common;
1993
1994 /* Create an ifnet_lock for synchronizing ifioctls. */
1995 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1996 return ENOMEM;
1997
1998 il->il_nenter = percpu_alloc(sizeof(uint64_t));
1999 if (il->il_nenter == NULL) {
2000 kmem_free(il, sizeof(*il));
2001 return ENOMEM;
2002 }
2003
2004 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2005 cv_init(&il->il_emptied, ifp->if_xname);
2006
2007 ifp->if_ioctl_lock = il;
2008
2009 return 0;
2010 }
2011
2012 /*
2013 * This must not be called until after `ifp' has been withdrawn from the
2014 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2015 * ifunit().
2016 */
2017 static void
2018 ifioctl_detach(struct ifnet *ifp)
2019 {
2020 struct ifnet_lock *il;
2021
2022 il = ifp->if_ioctl_lock;
2023 mutex_enter(&il->il_lock);
2024 /* Install if_nullioctl to make sure that any thread that
2025 * subsequently enters the critical section will quit it
2026 * immediately and signal the condition variable that we
2027 * wait on, below.
2028 */
2029 ifp->if_ioctl = if_nullioctl;
2030 /* Sleep while threads are still in the critical section or
2031 * wait to enter it.
2032 */
2033 while (ifnet_lock_entrances(il) != il->il_nexit)
2034 cv_wait(&il->il_emptied, &il->il_lock);
2035 /* At this point, we are the only thread still in the critical
2036 * section, and no new thread can get a handle on the ifioctl
2037 * lock, so it is safe to free its memory.
2038 */
2039 mutex_exit(&il->il_lock);
2040 ifp->if_ioctl_lock = NULL;
2041 percpu_free(il->il_nenter, sizeof(uint64_t));
2042 il->il_nenter = NULL;
2043 cv_destroy(&il->il_emptied);
2044 mutex_destroy(&il->il_lock);
2045 kmem_free(il, sizeof(*il));
2046 }
2047
2048 /*
2049 * Return interface configuration
2050 * of system. List may be used
2051 * in later ioctl's (above) to get
2052 * other information.
2053 *
2054 * Each record is a struct ifreq. Before the addition of
2055 * sockaddr_storage, the API rule was that sockaddr flavors that did
2056 * not fit would extend beyond the struct ifreq, with the next struct
2057 * ifreq starting sa_len beyond the struct sockaddr. Because the
2058 * union in struct ifreq includes struct sockaddr_storage, every kind
2059 * of sockaddr must fit. Thus, there are no longer any overlength
2060 * records.
2061 *
2062 * Records are added to the user buffer if they fit, and ifc_len is
2063 * adjusted to the length that was written. Thus, the user is only
2064 * assured of getting the complete list if ifc_len on return is at
2065 * least sizeof(struct ifreq) less than it was on entry.
2066 *
2067 * If the user buffer pointer is NULL, this routine copies no data and
2068 * returns the amount of space that would be needed.
2069 *
2070 * Invariants:
2071 * ifrp points to the next part of the user's buffer to be used. If
2072 * ifrp != NULL, space holds the number of bytes remaining that we may
2073 * write at ifrp. Otherwise, space holds the number of bytes that
2074 * would have been written had there been adequate space.
2075 */
2076 /*ARGSUSED*/
2077 int
2078 ifconf(u_long cmd, void *data)
2079 {
2080 struct ifconf *ifc = (struct ifconf *)data;
2081 struct ifnet *ifp;
2082 struct ifaddr *ifa;
2083 struct ifreq ifr, *ifrp;
2084 int space, error = 0;
2085 const int sz = (int)sizeof(struct ifreq);
2086
2087 if ((ifrp = ifc->ifc_req) == NULL)
2088 space = 0;
2089 else
2090 space = ifc->ifc_len;
2091 IFNET_FOREACH(ifp) {
2092 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2093 sizeof(ifr.ifr_name));
2094 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2095 return ENAMETOOLONG;
2096 if (IFADDR_EMPTY(ifp)) {
2097 /* Interface with no addresses - send zero sockaddr. */
2098 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2099 if (ifrp == NULL) {
2100 space += sz;
2101 continue;
2102 }
2103 if (space >= sz) {
2104 error = copyout(&ifr, ifrp, sz);
2105 if (error != 0)
2106 return error;
2107 ifrp++;
2108 space -= sz;
2109 }
2110 }
2111
2112 IFADDR_FOREACH(ifa, ifp) {
2113 struct sockaddr *sa = ifa->ifa_addr;
2114 /* all sockaddrs must fit in sockaddr_storage */
2115 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2116
2117 if (ifrp == NULL) {
2118 space += sz;
2119 continue;
2120 }
2121 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2122 if (space >= sz) {
2123 error = copyout(&ifr, ifrp, sz);
2124 if (error != 0)
2125 return (error);
2126 ifrp++; space -= sz;
2127 }
2128 }
2129 }
2130 if (ifrp != NULL) {
2131 KASSERT(0 <= space && space <= ifc->ifc_len);
2132 ifc->ifc_len -= space;
2133 } else {
2134 KASSERT(space >= 0);
2135 ifc->ifc_len = space;
2136 }
2137 return (0);
2138 }
2139
2140 int
2141 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2142 {
2143 uint8_t len;
2144 #ifdef COMPAT_OIFREQ
2145 struct ifreq ifrb;
2146 struct oifreq *oifr = NULL;
2147 u_long ocmd = cmd;
2148 cmd = compat_cvtcmd(cmd);
2149 if (cmd != ocmd) {
2150 oifr = (struct oifreq *)(void *)ifr;
2151 ifr = &ifrb;
2152 ifreqo2n(oifr, ifr);
2153 len = sizeof(oifr->ifr_addr);
2154 } else
2155 #endif
2156 len = sizeof(ifr->ifr_ifru.ifru_space);
2157
2158 if (len < sa->sa_len)
2159 return EFBIG;
2160
2161 memset(&ifr->ifr_addr, 0, len);
2162 sockaddr_copy(&ifr->ifr_addr, len, sa);
2163
2164 #ifdef COMPAT_OIFREQ
2165 if (cmd != ocmd)
2166 ifreqn2o(oifr, ifr);
2167 #endif
2168 return 0;
2169 }
2170
2171 /*
2172 * Queue message on interface, and start output if interface
2173 * not yet active.
2174 */
2175 int
2176 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2177 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2178 {
2179 int len = m->m_pkthdr.len;
2180 int mflags = m->m_flags;
2181 int s = splnet();
2182 int error;
2183
2184 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2185 if (error != 0)
2186 goto out;
2187 ifp->if_obytes += len;
2188 if (mflags & M_MCAST)
2189 ifp->if_omcasts++;
2190 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2191 (*ifp->if_start)(ifp);
2192 out:
2193 splx(s);
2194 return error;
2195 }
2196
2197 /*
2198 * Queue message on interface, possibly using a second fast queue
2199 */
2200 int
2201 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2202 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2203 {
2204 int error = 0;
2205
2206 if (ifq != NULL
2207 #ifdef ALTQ
2208 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2209 #endif
2210 ) {
2211 if (IF_QFULL(ifq)) {
2212 IF_DROP(&ifp->if_snd);
2213 m_freem(m);
2214 if (error == 0)
2215 error = ENOBUFS;
2216 } else
2217 IF_ENQUEUE(ifq, m);
2218 } else
2219 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2220 if (error != 0) {
2221 ++ifp->if_oerrors;
2222 return error;
2223 }
2224 return 0;
2225 }
2226
2227 int
2228 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2229 {
2230 int rc;
2231
2232 if (ifp->if_initaddr != NULL)
2233 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2234 else if (src ||
2235 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2236 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2237
2238 return rc;
2239 }
2240
2241 int
2242 if_flags_set(ifnet_t *ifp, const short flags)
2243 {
2244 int rc;
2245
2246 if (ifp->if_setflags != NULL)
2247 rc = (*ifp->if_setflags)(ifp, flags);
2248 else {
2249 short cantflags, chgdflags;
2250 struct ifreq ifr;
2251
2252 chgdflags = ifp->if_flags ^ flags;
2253 cantflags = chgdflags & IFF_CANTCHANGE;
2254
2255 if (cantflags != 0)
2256 ifp->if_flags ^= cantflags;
2257
2258 /* Traditionally, we do not call if_ioctl after
2259 * setting/clearing only IFF_PROMISC if the interface
2260 * isn't IFF_UP. Uphold that tradition.
2261 */
2262 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2263 return 0;
2264
2265 memset(&ifr, 0, sizeof(ifr));
2266
2267 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2268 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2269
2270 if (rc != 0 && cantflags != 0)
2271 ifp->if_flags ^= cantflags;
2272 }
2273
2274 return rc;
2275 }
2276
2277 int
2278 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2279 {
2280 int rc;
2281 struct ifreq ifr;
2282
2283 if (ifp->if_mcastop != NULL)
2284 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2285 else {
2286 ifreq_setaddr(cmd, &ifr, sa);
2287 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2288 }
2289
2290 return rc;
2291 }
2292
2293 static void
2294 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2295 struct ifaltq *ifq)
2296 {
2297 const struct sysctlnode *cnode, *rnode;
2298
2299 if (sysctl_createv(clog, 0, NULL, &rnode,
2300 CTLFLAG_PERMANENT,
2301 CTLTYPE_NODE, "interfaces",
2302 SYSCTL_DESCR("Per-interface controls"),
2303 NULL, 0, NULL, 0,
2304 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2305 goto bad;
2306
2307 if (sysctl_createv(clog, 0, &rnode, &rnode,
2308 CTLFLAG_PERMANENT,
2309 CTLTYPE_NODE, ifname,
2310 SYSCTL_DESCR("Interface controls"),
2311 NULL, 0, NULL, 0,
2312 CTL_CREATE, CTL_EOL) != 0)
2313 goto bad;
2314
2315 if (sysctl_createv(clog, 0, &rnode, &rnode,
2316 CTLFLAG_PERMANENT,
2317 CTLTYPE_NODE, "sndq",
2318 SYSCTL_DESCR("Interface output queue controls"),
2319 NULL, 0, NULL, 0,
2320 CTL_CREATE, CTL_EOL) != 0)
2321 goto bad;
2322
2323 if (sysctl_createv(clog, 0, &rnode, &cnode,
2324 CTLFLAG_PERMANENT,
2325 CTLTYPE_INT, "len",
2326 SYSCTL_DESCR("Current output queue length"),
2327 NULL, 0, &ifq->ifq_len, 0,
2328 CTL_CREATE, CTL_EOL) != 0)
2329 goto bad;
2330
2331 if (sysctl_createv(clog, 0, &rnode, &cnode,
2332 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2333 CTLTYPE_INT, "maxlen",
2334 SYSCTL_DESCR("Maximum allowed output queue length"),
2335 NULL, 0, &ifq->ifq_maxlen, 0,
2336 CTL_CREATE, CTL_EOL) != 0)
2337 goto bad;
2338
2339 if (sysctl_createv(clog, 0, &rnode, &cnode,
2340 CTLFLAG_PERMANENT,
2341 CTLTYPE_INT, "drops",
2342 SYSCTL_DESCR("Packets dropped due to full output queue"),
2343 NULL, 0, &ifq->ifq_drops, 0,
2344 CTL_CREATE, CTL_EOL) != 0)
2345 goto bad;
2346
2347 return;
2348 bad:
2349 printf("%s: could not attach sysctl nodes\n", ifname);
2350 return;
2351 }
2352
2353 #if defined(INET) || defined(INET6)
2354
2355 #define SYSCTL_NET_PKTQ(q, cn, c) \
2356 static int \
2357 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2358 { \
2359 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2360 }
2361
2362 #if defined(INET)
2363 static int
2364 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2365 {
2366 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2367 }
2368 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2369 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2370 #endif
2371
2372 #if defined(INET6)
2373 static int
2374 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2375 {
2376 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2377 }
2378 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2379 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2380 #endif
2381
2382 static void
2383 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2384 {
2385 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2386 const char *pfname = NULL, *ipname = NULL;
2387 int ipn = 0, qid = 0;
2388
2389 switch (pf) {
2390 #if defined(INET)
2391 case PF_INET:
2392 len_func = sysctl_net_ip_pktq_items;
2393 maxlen_func = sysctl_net_ip_pktq_maxlen;
2394 drops_func = sysctl_net_ip_pktq_drops;
2395 pfname = "inet", ipn = IPPROTO_IP;
2396 ipname = "ip", qid = IPCTL_IFQ;
2397 break;
2398 #endif
2399 #if defined(INET6)
2400 case PF_INET6:
2401 len_func = sysctl_net_ip6_pktq_items;
2402 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2403 drops_func = sysctl_net_ip6_pktq_drops;
2404 pfname = "inet6", ipn = IPPROTO_IPV6;
2405 ipname = "ip6", qid = IPV6CTL_IFQ;
2406 break;
2407 #endif
2408 default:
2409 KASSERT(false);
2410 }
2411
2412 sysctl_createv(clog, 0, NULL, NULL,
2413 CTLFLAG_PERMANENT,
2414 CTLTYPE_NODE, pfname, NULL,
2415 NULL, 0, NULL, 0,
2416 CTL_NET, pf, CTL_EOL);
2417 sysctl_createv(clog, 0, NULL, NULL,
2418 CTLFLAG_PERMANENT,
2419 CTLTYPE_NODE, ipname, NULL,
2420 NULL, 0, NULL, 0,
2421 CTL_NET, pf, ipn, CTL_EOL);
2422 sysctl_createv(clog, 0, NULL, NULL,
2423 CTLFLAG_PERMANENT,
2424 CTLTYPE_NODE, "ifq",
2425 SYSCTL_DESCR("Protocol input queue controls"),
2426 NULL, 0, NULL, 0,
2427 CTL_NET, pf, ipn, qid, CTL_EOL);
2428
2429 sysctl_createv(clog, 0, NULL, NULL,
2430 CTLFLAG_PERMANENT,
2431 CTLTYPE_INT, "len",
2432 SYSCTL_DESCR("Current input queue length"),
2433 len_func, 0, NULL, 0,
2434 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2435 sysctl_createv(clog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_INT, "maxlen",
2438 SYSCTL_DESCR("Maximum allowed input queue length"),
2439 maxlen_func, 0, NULL, 0,
2440 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2441 sysctl_createv(clog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT,
2443 CTLTYPE_INT, "drops",
2444 SYSCTL_DESCR("Packets dropped due to full input queue"),
2445 drops_func, 0, NULL, 0,
2446 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2447 }
2448 #endif /* INET || INET6 */
2449
2450 static int
2451 if_sdl_sysctl(SYSCTLFN_ARGS)
2452 {
2453 struct ifnet *ifp;
2454 const struct sockaddr_dl *sdl;
2455
2456 if (namelen != 1)
2457 return EINVAL;
2458
2459 ifp = if_byindex(name[0]);
2460 if (ifp == NULL)
2461 return ENODEV;
2462
2463 sdl = ifp->if_sadl;
2464 if (sdl == NULL) {
2465 *oldlenp = 0;
2466 return 0;
2467 }
2468
2469 if (oldp == NULL) {
2470 *oldlenp = sdl->sdl_alen;
2471 return 0;
2472 }
2473
2474 if (*oldlenp >= sdl->sdl_alen)
2475 *oldlenp = sdl->sdl_alen;
2476 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2477 }
2478
2479 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2480 {
2481 const struct sysctlnode *rnode = NULL;
2482
2483 sysctl_createv(clog, 0, NULL, &rnode,
2484 CTLFLAG_PERMANENT,
2485 CTLTYPE_NODE, "sdl",
2486 SYSCTL_DESCR("Get active link-layer address"),
2487 if_sdl_sysctl, 0, NULL, 0,
2488 CTL_NET, CTL_CREATE, CTL_EOL);
2489 }
2490