if.c revision 1.287 1 /* $NetBSD: if.c,v 1.287 2014/07/29 05:56:58 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.287 2014/07/29 05:56:58 ozaki-r Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99
100 #include <sys/param.h>
101 #include <sys/mbuf.h>
102 #include <sys/systm.h>
103 #include <sys/callout.h>
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/domain.h>
108 #include <sys/protosw.h>
109 #include <sys/kernel.h>
110 #include <sys/ioctl.h>
111 #include <sys/sysctl.h>
112 #include <sys/syslog.h>
113 #include <sys/kauth.h>
114 #include <sys/kmem.h>
115 #include <sys/xcall.h>
116
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <sys/module.h>
128 #ifdef NETATALK
129 #include <netatalk/at_extern.h>
130 #include <netatalk/at.h>
131 #endif
132 #include <net/pfil.h>
133 #include <netinet/in.h>
134 #include <netinet/in_var.h>
135
136 #ifdef INET6
137 #include <netinet6/in6_var.h>
138 #include <netinet6/nd6.h>
139 #endif
140
141 #include "carp.h"
142 #if NCARP > 0
143 #include <netinet/ip_carp.h>
144 #endif
145
146 #include <compat/sys/sockio.h>
147 #include <compat/sys/socket.h>
148
149 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
150 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
151
152 /*
153 * Global list of interfaces.
154 */
155 struct ifnet_head ifnet_list;
156 static ifnet_t ** ifindex2ifnet = NULL;
157
158 static u_int if_index = 1;
159 static size_t if_indexlim = 0;
160 static uint64_t index_gen;
161 static kmutex_t index_gen_mtx;
162
163 static struct ifaddr ** ifnet_addrs = NULL;
164
165 static callout_t if_slowtimo_ch;
166
167 struct ifnet *lo0ifp;
168 int ifqmaxlen = IFQ_MAXLEN;
169
170 static int if_rt_walktree(struct rtentry *, void *);
171
172 static struct if_clone *if_clone_lookup(const char *, int *);
173 static int if_clone_list(struct if_clonereq *);
174
175 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
176 static int if_cloners_count;
177
178 /* Packet filtering hook for interfaces. */
179 pfil_head_t * if_pfil;
180
181 static kauth_listener_t if_listener;
182
183 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
184 static int ifioctl_attach(struct ifnet *);
185 static void ifioctl_detach(struct ifnet *);
186 static void ifnet_lock_enter(struct ifnet_lock *);
187 static void ifnet_lock_exit(struct ifnet_lock *);
188 static void if_detach_queues(struct ifnet *, struct ifqueue *);
189 static void sysctl_sndq_setup(struct sysctllog **, const char *,
190 struct ifaltq *);
191
192 #if defined(INET) || defined(INET6)
193 static void sysctl_net_pktq_setup(struct sysctllog **, int);
194 #endif
195
196 static int
197 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
198 void *arg0, void *arg1, void *arg2, void *arg3)
199 {
200 int result;
201 enum kauth_network_req req;
202
203 result = KAUTH_RESULT_DEFER;
204 req = (enum kauth_network_req)arg1;
205
206 if (action != KAUTH_NETWORK_INTERFACE)
207 return result;
208
209 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
210 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
211 result = KAUTH_RESULT_ALLOW;
212
213 return result;
214 }
215
216 /*
217 * Network interface utility routines.
218 *
219 * Routines with ifa_ifwith* names take sockaddr *'s as
220 * parameters.
221 */
222 void
223 ifinit(void)
224 {
225 #if defined(INET)
226 sysctl_net_pktq_setup(NULL, PF_INET);
227 #endif
228 #ifdef INET6
229 sysctl_net_pktq_setup(NULL, PF_INET6);
230 #endif
231
232 callout_init(&if_slowtimo_ch, 0);
233 if_slowtimo(NULL);
234
235 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
236 if_listener_cb, NULL);
237
238 /* interfaces are available, inform socket code */
239 ifioctl = doifioctl;
240 }
241
242 /*
243 * XXX Initialization before configure().
244 * XXX hack to get pfil_add_hook working in autoconf.
245 */
246 void
247 ifinit1(void)
248 {
249 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
250 TAILQ_INIT(&ifnet_list);
251 if_indexlim = 8;
252
253 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
254 KASSERT(if_pfil != NULL);
255
256 etherinit();
257 }
258
259 ifnet_t *
260 if_alloc(u_char type)
261 {
262 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
263 }
264
265 void
266 if_free(ifnet_t *ifp)
267 {
268 kmem_free(ifp, sizeof(ifnet_t));
269 }
270
271 void
272 if_initname(struct ifnet *ifp, const char *name, int unit)
273 {
274 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
275 "%s%d", name, unit);
276 }
277
278 /*
279 * Null routines used while an interface is going away. These routines
280 * just return an error.
281 */
282
283 int
284 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
285 const struct sockaddr *so, struct rtentry *rt)
286 {
287
288 return ENXIO;
289 }
290
291 void
292 if_nullinput(struct ifnet *ifp, struct mbuf *m)
293 {
294
295 /* Nothing. */
296 }
297
298 void
299 if_nullstart(struct ifnet *ifp)
300 {
301
302 /* Nothing. */
303 }
304
305 int
306 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
307 {
308
309 /* Wake ifioctl_detach(), who may wait for all threads to
310 * quit the critical section.
311 */
312 cv_signal(&ifp->if_ioctl_lock->il_emptied);
313 return ENXIO;
314 }
315
316 int
317 if_nullinit(struct ifnet *ifp)
318 {
319
320 return ENXIO;
321 }
322
323 void
324 if_nullstop(struct ifnet *ifp, int disable)
325 {
326
327 /* Nothing. */
328 }
329
330 void
331 if_nullwatchdog(struct ifnet *ifp)
332 {
333
334 /* Nothing. */
335 }
336
337 void
338 if_nulldrain(struct ifnet *ifp)
339 {
340
341 /* Nothing. */
342 }
343
344 void
345 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
346 {
347 struct ifaddr *ifa;
348 struct sockaddr_dl *sdl;
349
350 ifp->if_addrlen = addrlen;
351 if_alloc_sadl(ifp);
352 ifa = ifp->if_dl;
353 sdl = satosdl(ifa->ifa_addr);
354
355 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
356 if (factory) {
357 ifp->if_hwdl = ifp->if_dl;
358 IFAREF(ifp->if_hwdl);
359 }
360 /* TBD routing socket */
361 }
362
363 struct ifaddr *
364 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
365 {
366 unsigned socksize, ifasize;
367 int addrlen, namelen;
368 struct sockaddr_dl *mask, *sdl;
369 struct ifaddr *ifa;
370
371 namelen = strlen(ifp->if_xname);
372 addrlen = ifp->if_addrlen;
373 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
374 ifasize = sizeof(*ifa) + 2 * socksize;
375 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
376
377 sdl = (struct sockaddr_dl *)(ifa + 1);
378 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
379
380 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
381 ifp->if_xname, namelen, NULL, addrlen);
382 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
383 memset(&mask->sdl_data[0], 0xff, namelen);
384 ifa->ifa_rtrequest = link_rtrequest;
385 ifa->ifa_addr = (struct sockaddr *)sdl;
386 ifa->ifa_netmask = (struct sockaddr *)mask;
387
388 *sdlp = sdl;
389
390 return ifa;
391 }
392
393 static void
394 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
395 {
396 const struct sockaddr_dl *sdl;
397 ifnet_addrs[ifp->if_index] = ifa;
398 IFAREF(ifa);
399 ifp->if_dl = ifa;
400 IFAREF(ifa);
401 sdl = satosdl(ifa->ifa_addr);
402 ifp->if_sadl = sdl;
403 }
404
405 /*
406 * Allocate the link level name for the specified interface. This
407 * is an attachment helper. It must be called after ifp->if_addrlen
408 * is initialized, which may not be the case when if_attach() is
409 * called.
410 */
411 void
412 if_alloc_sadl(struct ifnet *ifp)
413 {
414 struct ifaddr *ifa;
415 const struct sockaddr_dl *sdl;
416
417 /*
418 * If the interface already has a link name, release it
419 * now. This is useful for interfaces that can change
420 * link types, and thus switch link names often.
421 */
422 if (ifp->if_sadl != NULL)
423 if_free_sadl(ifp);
424
425 ifa = if_dl_create(ifp, &sdl);
426
427 ifa_insert(ifp, ifa);
428 if_sadl_setrefs(ifp, ifa);
429 }
430
431 static void
432 if_deactivate_sadl(struct ifnet *ifp)
433 {
434 struct ifaddr *ifa;
435
436 KASSERT(ifp->if_dl != NULL);
437
438 ifa = ifp->if_dl;
439
440 ifp->if_sadl = NULL;
441
442 ifnet_addrs[ifp->if_index] = NULL;
443 IFAFREE(ifa);
444 ifp->if_dl = NULL;
445 IFAFREE(ifa);
446 }
447
448 void
449 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
450 const struct sockaddr_dl *sdl)
451 {
452 int s;
453
454 s = splnet();
455
456 if_deactivate_sadl(ifp);
457
458 if_sadl_setrefs(ifp, ifa);
459 IFADDR_FOREACH(ifa, ifp)
460 rtinit(ifa, RTM_LLINFO_UPD, 0);
461 splx(s);
462 }
463
464 /*
465 * Free the link level name for the specified interface. This is
466 * a detach helper. This is called from if_detach() or from
467 * link layer type specific detach functions.
468 */
469 void
470 if_free_sadl(struct ifnet *ifp)
471 {
472 struct ifaddr *ifa;
473 int s;
474
475 ifa = ifnet_addrs[ifp->if_index];
476 if (ifa == NULL) {
477 KASSERT(ifp->if_sadl == NULL);
478 KASSERT(ifp->if_dl == NULL);
479 return;
480 }
481
482 KASSERT(ifp->if_sadl != NULL);
483 KASSERT(ifp->if_dl != NULL);
484
485 s = splnet();
486 rtinit(ifa, RTM_DELETE, 0);
487 ifa_remove(ifp, ifa);
488 if_deactivate_sadl(ifp);
489 if (ifp->if_hwdl == ifa) {
490 IFAFREE(ifa);
491 ifp->if_hwdl = NULL;
492 }
493 splx(s);
494 }
495
496 static void
497 if_getindex(ifnet_t *ifp)
498 {
499 bool hitlimit = false;
500
501 mutex_enter(&index_gen_mtx);
502 ifp->if_index_gen = index_gen++;
503 mutex_exit(&index_gen_mtx);
504
505 ifp->if_index = if_index;
506 if (ifindex2ifnet == NULL) {
507 if_index++;
508 goto skip;
509 }
510 while (if_byindex(ifp->if_index)) {
511 /*
512 * If we hit USHRT_MAX, we skip back to 0 since
513 * there are a number of places where the value
514 * of if_index or if_index itself is compared
515 * to or stored in an unsigned short. By
516 * jumping back, we won't botch those assignments
517 * or comparisons.
518 */
519 if (++if_index == 0) {
520 if_index = 1;
521 } else if (if_index == USHRT_MAX) {
522 /*
523 * However, if we have to jump back to
524 * zero *twice* without finding an empty
525 * slot in ifindex2ifnet[], then there
526 * there are too many (>65535) interfaces.
527 */
528 if (hitlimit) {
529 panic("too many interfaces");
530 }
531 hitlimit = true;
532 if_index = 1;
533 }
534 ifp->if_index = if_index;
535 }
536 skip:
537 /*
538 * We have some arrays that should be indexed by if_index.
539 * since if_index will grow dynamically, they should grow too.
540 * struct ifadd **ifnet_addrs
541 * struct ifnet **ifindex2ifnet
542 */
543 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
544 ifp->if_index >= if_indexlim) {
545 size_t m, n, oldlim;
546 void *q;
547
548 oldlim = if_indexlim;
549 while (ifp->if_index >= if_indexlim)
550 if_indexlim <<= 1;
551
552 /* grow ifnet_addrs */
553 m = oldlim * sizeof(struct ifaddr *);
554 n = if_indexlim * sizeof(struct ifaddr *);
555 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
556 if (ifnet_addrs != NULL) {
557 memcpy(q, ifnet_addrs, m);
558 free(ifnet_addrs, M_IFADDR);
559 }
560 ifnet_addrs = (struct ifaddr **)q;
561
562 /* grow ifindex2ifnet */
563 m = oldlim * sizeof(struct ifnet *);
564 n = if_indexlim * sizeof(struct ifnet *);
565 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
566 if (ifindex2ifnet != NULL) {
567 memcpy(q, ifindex2ifnet, m);
568 free(ifindex2ifnet, M_IFADDR);
569 }
570 ifindex2ifnet = (struct ifnet **)q;
571 }
572 ifindex2ifnet[ifp->if_index] = ifp;
573 }
574
575 /*
576 * Attach an interface to the list of "active" interfaces.
577 */
578 void
579 if_attach(ifnet_t *ifp)
580 {
581 KASSERT(if_indexlim > 0);
582 TAILQ_INIT(&ifp->if_addrlist);
583 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
584
585 if (ifioctl_attach(ifp) != 0)
586 panic("%s: ifioctl_attach() failed", __func__);
587
588 if_getindex(ifp);
589
590 /*
591 * Link level name is allocated later by a separate call to
592 * if_alloc_sadl().
593 */
594
595 if (ifp->if_snd.ifq_maxlen == 0)
596 ifp->if_snd.ifq_maxlen = ifqmaxlen;
597
598 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
599
600 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
601
602 ifp->if_link_state = LINK_STATE_UNKNOWN;
603
604 ifp->if_capenable = 0;
605 ifp->if_csum_flags_tx = 0;
606 ifp->if_csum_flags_rx = 0;
607
608 #ifdef ALTQ
609 ifp->if_snd.altq_type = 0;
610 ifp->if_snd.altq_disc = NULL;
611 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
612 ifp->if_snd.altq_tbr = NULL;
613 ifp->if_snd.altq_ifp = ifp;
614 #endif
615
616 #ifdef NET_MPSAFE
617 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
618 #else
619 ifp->if_snd.ifq_lock = NULL;
620 #endif
621
622 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
623 (void)pfil_run_hooks(if_pfil,
624 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
625
626 if (!STAILQ_EMPTY(&domains))
627 if_attachdomain1(ifp);
628
629 /* Announce the interface. */
630 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
631 }
632
633 void
634 if_attachdomain(void)
635 {
636 struct ifnet *ifp;
637 int s;
638
639 s = splnet();
640 IFNET_FOREACH(ifp)
641 if_attachdomain1(ifp);
642 splx(s);
643 }
644
645 void
646 if_attachdomain1(struct ifnet *ifp)
647 {
648 struct domain *dp;
649 int s;
650
651 s = splnet();
652
653 /* address family dependent data region */
654 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
655 DOMAIN_FOREACH(dp) {
656 if (dp->dom_ifattach != NULL)
657 ifp->if_afdata[dp->dom_family] =
658 (*dp->dom_ifattach)(ifp);
659 }
660
661 splx(s);
662 }
663
664 /*
665 * Deactivate an interface. This points all of the procedure
666 * handles at error stubs. May be called from interrupt context.
667 */
668 void
669 if_deactivate(struct ifnet *ifp)
670 {
671 int s;
672
673 s = splnet();
674
675 ifp->if_output = if_nulloutput;
676 ifp->if_input = if_nullinput;
677 ifp->if_start = if_nullstart;
678 ifp->if_ioctl = if_nullioctl;
679 ifp->if_init = if_nullinit;
680 ifp->if_stop = if_nullstop;
681 ifp->if_watchdog = if_nullwatchdog;
682 ifp->if_drain = if_nulldrain;
683
684 /* No more packets may be enqueued. */
685 ifp->if_snd.ifq_maxlen = 0;
686
687 splx(s);
688 }
689
690 void
691 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
692 {
693 struct ifaddr *ifa;
694
695 IFADDR_FOREACH(ifa, ifp) {
696 if (ifa->ifa_addr->sa_family != family)
697 continue;
698 (*purgeaddr)(ifa);
699 }
700 }
701
702 /*
703 * Detach an interface from the list of "active" interfaces,
704 * freeing any resources as we go along.
705 *
706 * NOTE: This routine must be called with a valid thread context,
707 * as it may block.
708 */
709 void
710 if_detach(struct ifnet *ifp)
711 {
712 struct socket so;
713 struct ifaddr *ifa;
714 #ifdef IFAREF_DEBUG
715 struct ifaddr *last_ifa = NULL;
716 #endif
717 struct domain *dp;
718 const struct protosw *pr;
719 int s, i, family, purged;
720 uint64_t xc;
721
722 /*
723 * XXX It's kind of lame that we have to have the
724 * XXX socket structure...
725 */
726 memset(&so, 0, sizeof(so));
727
728 s = splnet();
729
730 /*
731 * Do an if_down() to give protocols a chance to do something.
732 */
733 if_down(ifp);
734
735 #ifdef ALTQ
736 if (ALTQ_IS_ENABLED(&ifp->if_snd))
737 altq_disable(&ifp->if_snd);
738 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
739 altq_detach(&ifp->if_snd);
740 #endif
741
742 if (ifp->if_snd.ifq_lock)
743 mutex_obj_free(ifp->if_snd.ifq_lock);
744
745 sysctl_teardown(&ifp->if_sysctl_log);
746
747 #if NCARP > 0
748 /* Remove the interface from any carp group it is a part of. */
749 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
750 carp_ifdetach(ifp);
751 #endif
752
753 /*
754 * Rip all the addresses off the interface. This should make
755 * all of the routes go away.
756 *
757 * pr_usrreq calls can remove an arbitrary number of ifaddrs
758 * from the list, including our "cursor", ifa. For safety,
759 * and to honor the TAILQ abstraction, I just restart the
760 * loop after each removal. Note that the loop will exit
761 * when all of the remaining ifaddrs belong to the AF_LINK
762 * family. I am counting on the historical fact that at
763 * least one pr_usrreq in each address domain removes at
764 * least one ifaddr.
765 */
766 again:
767 IFADDR_FOREACH(ifa, ifp) {
768 family = ifa->ifa_addr->sa_family;
769 #ifdef IFAREF_DEBUG
770 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
771 ifa, family, ifa->ifa_refcnt);
772 if (last_ifa != NULL && ifa == last_ifa)
773 panic("if_detach: loop detected");
774 last_ifa = ifa;
775 #endif
776 if (family == AF_LINK)
777 continue;
778 dp = pffinddomain(family);
779 #ifdef DIAGNOSTIC
780 if (dp == NULL)
781 panic("if_detach: no domain for AF %d",
782 family);
783 #endif
784 /*
785 * XXX These PURGEIF calls are redundant with the
786 * purge-all-families calls below, but are left in for
787 * now both to make a smaller change, and to avoid
788 * unplanned interactions with clearing of
789 * ifp->if_addrlist.
790 */
791 purged = 0;
792 for (pr = dp->dom_protosw;
793 pr < dp->dom_protoswNPROTOSW; pr++) {
794 so.so_proto = pr;
795 if (pr->pr_usrreqs) {
796 (void) (*pr->pr_usrreqs->pr_generic)(&so,
797 PRU_PURGEIF, NULL, NULL,
798 (struct mbuf *) ifp, curlwp);
799 purged = 1;
800 }
801 }
802 if (purged == 0) {
803 /*
804 * XXX What's really the best thing to do
805 * XXX here? --thorpej (at) NetBSD.org
806 */
807 printf("if_detach: WARNING: AF %d not purged\n",
808 family);
809 ifa_remove(ifp, ifa);
810 }
811 goto again;
812 }
813
814 if_free_sadl(ifp);
815
816 /* Walk the routing table looking for stragglers. */
817 for (i = 0; i <= AF_MAX; i++) {
818 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
819 continue;
820 }
821
822 DOMAIN_FOREACH(dp) {
823 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
824 {
825 void *p = ifp->if_afdata[dp->dom_family];
826 if (p) {
827 ifp->if_afdata[dp->dom_family] = NULL;
828 (*dp->dom_ifdetach)(ifp, p);
829 }
830 }
831
832 /*
833 * One would expect multicast memberships (INET and
834 * INET6) on UDP sockets to be purged by the PURGEIF
835 * calls above, but if all addresses were removed from
836 * the interface prior to destruction, the calls will
837 * not be made (e.g. ppp, for which pppd(8) generally
838 * removes addresses before destroying the interface).
839 * Because there is no invariant that multicast
840 * memberships only exist for interfaces with IPv4
841 * addresses, we must call PURGEIF regardless of
842 * addresses. (Protocols which might store ifnet
843 * pointers are marked with PR_PURGEIF.)
844 */
845 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
846 so.so_proto = pr;
847 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
848 (void)(*pr->pr_usrreqs->pr_generic)(&so,
849 PRU_PURGEIF, NULL, NULL,
850 (struct mbuf *)ifp, curlwp);
851 }
852 }
853
854 (void)pfil_run_hooks(if_pfil,
855 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
856 (void)pfil_head_destroy(ifp->if_pfil);
857
858 /* Announce that the interface is gone. */
859 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
860
861 ifindex2ifnet[ifp->if_index] = NULL;
862
863 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
864
865 ifioctl_detach(ifp);
866
867 /*
868 * remove packets that came from ifp, from software interrupt queues.
869 */
870 DOMAIN_FOREACH(dp) {
871 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
872 struct ifqueue *iq = dp->dom_ifqueues[i];
873 if (iq == NULL)
874 break;
875 dp->dom_ifqueues[i] = NULL;
876 if_detach_queues(ifp, iq);
877 }
878 }
879
880 /*
881 * IP queues have to be processed separately: net-queue barrier
882 * ensures that the packets are dequeued while a cross-call will
883 * ensure that the interrupts have completed. FIXME: not quite..
884 */
885 #ifdef INET
886 pktq_barrier(ip_pktq);
887 #endif
888 #ifdef INET6
889 pktq_barrier(ip6_pktq);
890 #endif
891 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
892 xc_wait(xc);
893
894 splx(s);
895 }
896
897 static void
898 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
899 {
900 struct mbuf *m, *prev, *next;
901
902 prev = NULL;
903 for (m = q->ifq_head; m != NULL; m = next) {
904 KASSERT((m->m_flags & M_PKTHDR) != 0);
905
906 next = m->m_nextpkt;
907 if (m->m_pkthdr.rcvif != ifp) {
908 prev = m;
909 continue;
910 }
911
912 if (prev != NULL)
913 prev->m_nextpkt = m->m_nextpkt;
914 else
915 q->ifq_head = m->m_nextpkt;
916 if (q->ifq_tail == m)
917 q->ifq_tail = prev;
918 q->ifq_len--;
919
920 m->m_nextpkt = NULL;
921 m_freem(m);
922 IF_DROP(q);
923 }
924 }
925
926 /*
927 * Callback for a radix tree walk to delete all references to an
928 * ifnet.
929 */
930 static int
931 if_rt_walktree(struct rtentry *rt, void *v)
932 {
933 struct ifnet *ifp = (struct ifnet *)v;
934 int error;
935
936 if (rt->rt_ifp != ifp)
937 return 0;
938
939 /* Delete the entry. */
940 ++rt->rt_refcnt;
941 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
942 rt_mask(rt), rt->rt_flags, NULL);
943 KASSERT((rt->rt_flags & RTF_UP) == 0);
944 rt->rt_ifp = NULL;
945 rtfree(rt);
946 if (error != 0)
947 printf("%s: warning: unable to delete rtentry @ %p, "
948 "error = %d\n", ifp->if_xname, rt, error);
949 return ERESTART;
950 }
951
952 /*
953 * Create a clone network interface.
954 */
955 int
956 if_clone_create(const char *name)
957 {
958 struct if_clone *ifc;
959 int unit;
960
961 ifc = if_clone_lookup(name, &unit);
962 if (ifc == NULL)
963 return EINVAL;
964
965 if (ifunit(name) != NULL)
966 return EEXIST;
967
968 return (*ifc->ifc_create)(ifc, unit);
969 }
970
971 /*
972 * Destroy a clone network interface.
973 */
974 int
975 if_clone_destroy(const char *name)
976 {
977 struct if_clone *ifc;
978 struct ifnet *ifp;
979
980 ifc = if_clone_lookup(name, NULL);
981 if (ifc == NULL)
982 return EINVAL;
983
984 ifp = ifunit(name);
985 if (ifp == NULL)
986 return ENXIO;
987
988 if (ifc->ifc_destroy == NULL)
989 return EOPNOTSUPP;
990
991 return (*ifc->ifc_destroy)(ifp);
992 }
993
994 /*
995 * Look up a network interface cloner.
996 */
997 static struct if_clone *
998 if_clone_lookup(const char *name, int *unitp)
999 {
1000 struct if_clone *ifc;
1001 const char *cp;
1002 char *dp, ifname[IFNAMSIZ + 3];
1003 int unit;
1004
1005 strcpy(ifname, "if_");
1006 /* separate interface name from unit */
1007 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1008 *cp && (*cp < '0' || *cp > '9');)
1009 *dp++ = *cp++;
1010
1011 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1012 return NULL; /* No name or unit number */
1013 *dp++ = '\0';
1014
1015 again:
1016 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1017 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1018 break;
1019 }
1020
1021 if (ifc == NULL) {
1022 if (*ifname == '\0' ||
1023 module_autoload(ifname, MODULE_CLASS_DRIVER))
1024 return NULL;
1025 *ifname = '\0';
1026 goto again;
1027 }
1028
1029 unit = 0;
1030 while (cp - name < IFNAMSIZ && *cp) {
1031 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1032 /* Bogus unit number. */
1033 return NULL;
1034 }
1035 unit = (unit * 10) + (*cp++ - '0');
1036 }
1037
1038 if (unitp != NULL)
1039 *unitp = unit;
1040 return ifc;
1041 }
1042
1043 /*
1044 * Register a network interface cloner.
1045 */
1046 void
1047 if_clone_attach(struct if_clone *ifc)
1048 {
1049
1050 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1051 if_cloners_count++;
1052 }
1053
1054 /*
1055 * Unregister a network interface cloner.
1056 */
1057 void
1058 if_clone_detach(struct if_clone *ifc)
1059 {
1060
1061 LIST_REMOVE(ifc, ifc_list);
1062 if_cloners_count--;
1063 }
1064
1065 /*
1066 * Provide list of interface cloners to userspace.
1067 */
1068 static int
1069 if_clone_list(struct if_clonereq *ifcr)
1070 {
1071 char outbuf[IFNAMSIZ], *dst;
1072 struct if_clone *ifc;
1073 int count, error = 0;
1074
1075 ifcr->ifcr_total = if_cloners_count;
1076 if ((dst = ifcr->ifcr_buffer) == NULL) {
1077 /* Just asking how many there are. */
1078 return 0;
1079 }
1080
1081 if (ifcr->ifcr_count < 0)
1082 return EINVAL;
1083
1084 count = (if_cloners_count < ifcr->ifcr_count) ?
1085 if_cloners_count : ifcr->ifcr_count;
1086
1087 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1088 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1089 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1090 if (outbuf[sizeof(outbuf) - 1] != '\0')
1091 return ENAMETOOLONG;
1092 error = copyout(outbuf, dst, sizeof(outbuf));
1093 if (error != 0)
1094 break;
1095 }
1096
1097 return error;
1098 }
1099
1100 void
1101 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1102 {
1103 ifa->ifa_ifp = ifp;
1104 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1105 IFAREF(ifa);
1106 }
1107
1108 void
1109 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1110 {
1111 KASSERT(ifa->ifa_ifp == ifp);
1112 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1113 IFAFREE(ifa);
1114 }
1115
1116 static inline int
1117 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1118 {
1119 return sockaddr_cmp(sa1, sa2) == 0;
1120 }
1121
1122 /*
1123 * Locate an interface based on a complete address.
1124 */
1125 /*ARGSUSED*/
1126 struct ifaddr *
1127 ifa_ifwithaddr(const struct sockaddr *addr)
1128 {
1129 struct ifnet *ifp;
1130 struct ifaddr *ifa;
1131
1132 IFNET_FOREACH(ifp) {
1133 if (ifp->if_output == if_nulloutput)
1134 continue;
1135 IFADDR_FOREACH(ifa, ifp) {
1136 if (ifa->ifa_addr->sa_family != addr->sa_family)
1137 continue;
1138 if (equal(addr, ifa->ifa_addr))
1139 return ifa;
1140 if ((ifp->if_flags & IFF_BROADCAST) &&
1141 ifa->ifa_broadaddr &&
1142 /* IP6 doesn't have broadcast */
1143 ifa->ifa_broadaddr->sa_len != 0 &&
1144 equal(ifa->ifa_broadaddr, addr))
1145 return ifa;
1146 }
1147 }
1148 return NULL;
1149 }
1150
1151 /*
1152 * Locate the point to point interface with a given destination address.
1153 */
1154 /*ARGSUSED*/
1155 struct ifaddr *
1156 ifa_ifwithdstaddr(const struct sockaddr *addr)
1157 {
1158 struct ifnet *ifp;
1159 struct ifaddr *ifa;
1160
1161 IFNET_FOREACH(ifp) {
1162 if (ifp->if_output == if_nulloutput)
1163 continue;
1164 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1165 continue;
1166 IFADDR_FOREACH(ifa, ifp) {
1167 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1168 ifa->ifa_dstaddr == NULL)
1169 continue;
1170 if (equal(addr, ifa->ifa_dstaddr))
1171 return ifa;
1172 }
1173 }
1174 return NULL;
1175 }
1176
1177 /*
1178 * Find an interface on a specific network. If many, choice
1179 * is most specific found.
1180 */
1181 struct ifaddr *
1182 ifa_ifwithnet(const struct sockaddr *addr)
1183 {
1184 struct ifnet *ifp;
1185 struct ifaddr *ifa;
1186 const struct sockaddr_dl *sdl;
1187 struct ifaddr *ifa_maybe = 0;
1188 u_int af = addr->sa_family;
1189 const char *addr_data = addr->sa_data, *cplim;
1190
1191 if (af == AF_LINK) {
1192 sdl = satocsdl(addr);
1193 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1194 ifindex2ifnet[sdl->sdl_index] &&
1195 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1196 return ifnet_addrs[sdl->sdl_index];
1197 }
1198 #ifdef NETATALK
1199 if (af == AF_APPLETALK) {
1200 const struct sockaddr_at *sat, *sat2;
1201 sat = (const struct sockaddr_at *)addr;
1202 IFNET_FOREACH(ifp) {
1203 if (ifp->if_output == if_nulloutput)
1204 continue;
1205 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1206 if (ifa == NULL)
1207 continue;
1208 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1209 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1210 return ifa; /* exact match */
1211 if (ifa_maybe == NULL) {
1212 /* else keep the if with the right range */
1213 ifa_maybe = ifa;
1214 }
1215 }
1216 return ifa_maybe;
1217 }
1218 #endif
1219 IFNET_FOREACH(ifp) {
1220 if (ifp->if_output == if_nulloutput)
1221 continue;
1222 IFADDR_FOREACH(ifa, ifp) {
1223 const char *cp, *cp2, *cp3;
1224
1225 if (ifa->ifa_addr->sa_family != af ||
1226 ifa->ifa_netmask == NULL)
1227 next: continue;
1228 cp = addr_data;
1229 cp2 = ifa->ifa_addr->sa_data;
1230 cp3 = ifa->ifa_netmask->sa_data;
1231 cplim = (const char *)ifa->ifa_netmask +
1232 ifa->ifa_netmask->sa_len;
1233 while (cp3 < cplim) {
1234 if ((*cp++ ^ *cp2++) & *cp3++) {
1235 /* want to continue for() loop */
1236 goto next;
1237 }
1238 }
1239 if (ifa_maybe == NULL ||
1240 rn_refines((void *)ifa->ifa_netmask,
1241 (void *)ifa_maybe->ifa_netmask))
1242 ifa_maybe = ifa;
1243 }
1244 }
1245 return ifa_maybe;
1246 }
1247
1248 /*
1249 * Find the interface of the addresss.
1250 */
1251 struct ifaddr *
1252 ifa_ifwithladdr(const struct sockaddr *addr)
1253 {
1254 struct ifaddr *ia;
1255
1256 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1257 (ia = ifa_ifwithnet(addr)))
1258 return ia;
1259 return NULL;
1260 }
1261
1262 /*
1263 * Find an interface using a specific address family
1264 */
1265 struct ifaddr *
1266 ifa_ifwithaf(int af)
1267 {
1268 struct ifnet *ifp;
1269 struct ifaddr *ifa;
1270
1271 IFNET_FOREACH(ifp) {
1272 if (ifp->if_output == if_nulloutput)
1273 continue;
1274 IFADDR_FOREACH(ifa, ifp) {
1275 if (ifa->ifa_addr->sa_family == af)
1276 return ifa;
1277 }
1278 }
1279 return NULL;
1280 }
1281
1282 /*
1283 * Find an interface address specific to an interface best matching
1284 * a given address.
1285 */
1286 struct ifaddr *
1287 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1288 {
1289 struct ifaddr *ifa;
1290 const char *cp, *cp2, *cp3;
1291 const char *cplim;
1292 struct ifaddr *ifa_maybe = 0;
1293 u_int af = addr->sa_family;
1294
1295 if (ifp->if_output == if_nulloutput)
1296 return NULL;
1297
1298 if (af >= AF_MAX)
1299 return NULL;
1300
1301 IFADDR_FOREACH(ifa, ifp) {
1302 if (ifa->ifa_addr->sa_family != af)
1303 continue;
1304 ifa_maybe = ifa;
1305 if (ifa->ifa_netmask == NULL) {
1306 if (equal(addr, ifa->ifa_addr) ||
1307 (ifa->ifa_dstaddr &&
1308 equal(addr, ifa->ifa_dstaddr)))
1309 return ifa;
1310 continue;
1311 }
1312 cp = addr->sa_data;
1313 cp2 = ifa->ifa_addr->sa_data;
1314 cp3 = ifa->ifa_netmask->sa_data;
1315 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1316 for (; cp3 < cplim; cp3++) {
1317 if ((*cp++ ^ *cp2++) & *cp3)
1318 break;
1319 }
1320 if (cp3 == cplim)
1321 return ifa;
1322 }
1323 return ifa_maybe;
1324 }
1325
1326 /*
1327 * Default action when installing a route with a Link Level gateway.
1328 * Lookup an appropriate real ifa to point to.
1329 * This should be moved to /sys/net/link.c eventually.
1330 */
1331 void
1332 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1333 {
1334 struct ifaddr *ifa;
1335 const struct sockaddr *dst;
1336 struct ifnet *ifp;
1337
1338 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1339 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1340 return;
1341 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1342 rt_replace_ifa(rt, ifa);
1343 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1344 ifa->ifa_rtrequest(cmd, rt, info);
1345 }
1346 }
1347
1348 /*
1349 * Handle a change in the interface link state.
1350 * XXX: We should listen to the routing socket in-kernel rather
1351 * than calling in6_if_link_* functions directly from here.
1352 */
1353 void
1354 if_link_state_change(struct ifnet *ifp, int link_state)
1355 {
1356 int s;
1357 #if defined(DEBUG) || defined(INET6)
1358 int old_link_state;
1359 #endif
1360
1361 s = splnet();
1362 if (ifp->if_link_state == link_state) {
1363 splx(s);
1364 return;
1365 }
1366
1367 #if defined(DEBUG) || defined(INET6)
1368 old_link_state = ifp->if_link_state;
1369 #endif
1370 ifp->if_link_state = link_state;
1371 #ifdef DEBUG
1372 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1373 link_state == LINK_STATE_UP ? "UP" :
1374 link_state == LINK_STATE_DOWN ? "DOWN" :
1375 "UNKNOWN",
1376 old_link_state == LINK_STATE_UP ? "UP" :
1377 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1378 "UNKNOWN");
1379 #endif
1380
1381 #ifdef INET6
1382 /*
1383 * When going from UNKNOWN to UP, we need to mark existing
1384 * IPv6 addresses as tentative and restart DAD as we may have
1385 * erroneously not found a duplicate.
1386 *
1387 * This needs to happen before rt_ifmsg to avoid a race where
1388 * listeners would have an address and expect it to work right
1389 * away.
1390 */
1391 if (in6_present && link_state == LINK_STATE_UP &&
1392 old_link_state == LINK_STATE_UNKNOWN)
1393 in6_if_link_down(ifp);
1394 #endif
1395
1396 /* Notify that the link state has changed. */
1397 rt_ifmsg(ifp);
1398
1399 #if NCARP > 0
1400 if (ifp->if_carp)
1401 carp_carpdev_state(ifp);
1402 #endif
1403
1404 #ifdef INET6
1405 if (in6_present) {
1406 if (link_state == LINK_STATE_DOWN)
1407 in6_if_link_down(ifp);
1408 else if (link_state == LINK_STATE_UP)
1409 in6_if_link_up(ifp);
1410 }
1411 #endif
1412
1413 splx(s);
1414 }
1415
1416 /*
1417 * Mark an interface down and notify protocols of
1418 * the transition.
1419 * NOTE: must be called at splsoftnet or equivalent.
1420 */
1421 void
1422 if_down(struct ifnet *ifp)
1423 {
1424 struct ifaddr *ifa;
1425
1426 ifp->if_flags &= ~IFF_UP;
1427 nanotime(&ifp->if_lastchange);
1428 IFADDR_FOREACH(ifa, ifp)
1429 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1430 IFQ_PURGE(&ifp->if_snd);
1431 #if NCARP > 0
1432 if (ifp->if_carp)
1433 carp_carpdev_state(ifp);
1434 #endif
1435 rt_ifmsg(ifp);
1436 #ifdef INET6
1437 if (in6_present)
1438 in6_if_down(ifp);
1439 #endif
1440 }
1441
1442 /*
1443 * Mark an interface up and notify protocols of
1444 * the transition.
1445 * NOTE: must be called at splsoftnet or equivalent.
1446 */
1447 void
1448 if_up(struct ifnet *ifp)
1449 {
1450 #ifdef notyet
1451 struct ifaddr *ifa;
1452 #endif
1453
1454 ifp->if_flags |= IFF_UP;
1455 nanotime(&ifp->if_lastchange);
1456 #ifdef notyet
1457 /* this has no effect on IP, and will kill all ISO connections XXX */
1458 IFADDR_FOREACH(ifa, ifp)
1459 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1460 #endif
1461 #if NCARP > 0
1462 if (ifp->if_carp)
1463 carp_carpdev_state(ifp);
1464 #endif
1465 rt_ifmsg(ifp);
1466 #ifdef INET6
1467 if (in6_present)
1468 in6_if_up(ifp);
1469 #endif
1470 }
1471
1472 /*
1473 * Handle interface watchdog timer routines. Called
1474 * from softclock, we decrement timers (if set) and
1475 * call the appropriate interface routine on expiration.
1476 */
1477 void
1478 if_slowtimo(void *arg)
1479 {
1480 struct ifnet *ifp;
1481 int s = splnet();
1482
1483 IFNET_FOREACH(ifp) {
1484 if (ifp->if_timer == 0 || --ifp->if_timer)
1485 continue;
1486 if (ifp->if_watchdog != NULL)
1487 (*ifp->if_watchdog)(ifp);
1488 }
1489 splx(s);
1490 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1491 }
1492
1493 /*
1494 * Set/clear promiscuous mode on interface ifp based on the truth value
1495 * of pswitch. The calls are reference counted so that only the first
1496 * "on" request actually has an effect, as does the final "off" request.
1497 * Results are undefined if the "off" and "on" requests are not matched.
1498 */
1499 int
1500 ifpromisc(struct ifnet *ifp, int pswitch)
1501 {
1502 int pcount, ret;
1503 short nflags;
1504
1505 pcount = ifp->if_pcount;
1506 if (pswitch) {
1507 /*
1508 * Allow the device to be "placed" into promiscuous
1509 * mode even if it is not configured up. It will
1510 * consult IFF_PROMISC when it is brought up.
1511 */
1512 if (ifp->if_pcount++ != 0)
1513 return 0;
1514 nflags = ifp->if_flags | IFF_PROMISC;
1515 } else {
1516 if (--ifp->if_pcount > 0)
1517 return 0;
1518 nflags = ifp->if_flags & ~IFF_PROMISC;
1519 }
1520 ret = if_flags_set(ifp, nflags);
1521 /* Restore interface state if not successful. */
1522 if (ret != 0) {
1523 ifp->if_pcount = pcount;
1524 }
1525 return ret;
1526 }
1527
1528 /*
1529 * Map interface name to
1530 * interface structure pointer.
1531 */
1532 struct ifnet *
1533 ifunit(const char *name)
1534 {
1535 struct ifnet *ifp;
1536 const char *cp = name;
1537 u_int unit = 0;
1538 u_int i;
1539
1540 /*
1541 * If the entire name is a number, treat it as an ifindex.
1542 */
1543 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1544 unit = unit * 10 + (*cp - '0');
1545 }
1546
1547 /*
1548 * If the number took all of the name, then it's a valid ifindex.
1549 */
1550 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1551 if (unit >= if_indexlim)
1552 return NULL;
1553 ifp = ifindex2ifnet[unit];
1554 if (ifp == NULL || ifp->if_output == if_nulloutput)
1555 return NULL;
1556 return ifp;
1557 }
1558
1559 IFNET_FOREACH(ifp) {
1560 if (ifp->if_output == if_nulloutput)
1561 continue;
1562 if (strcmp(ifp->if_xname, name) == 0)
1563 return ifp;
1564 }
1565 return NULL;
1566 }
1567
1568 ifnet_t *
1569 if_byindex(u_int idx)
1570 {
1571 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1572 }
1573
1574 /* common */
1575 int
1576 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1577 {
1578 int s;
1579 struct ifreq *ifr;
1580 struct ifcapreq *ifcr;
1581 struct ifdatareq *ifdr;
1582
1583 switch (cmd) {
1584 case SIOCSIFCAP:
1585 ifcr = data;
1586 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1587 return EINVAL;
1588
1589 if (ifcr->ifcr_capenable == ifp->if_capenable)
1590 return 0;
1591
1592 ifp->if_capenable = ifcr->ifcr_capenable;
1593
1594 /* Pre-compute the checksum flags mask. */
1595 ifp->if_csum_flags_tx = 0;
1596 ifp->if_csum_flags_rx = 0;
1597 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1598 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1599 }
1600 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1601 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1602 }
1603
1604 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1605 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1606 }
1607 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1608 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1609 }
1610
1611 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1612 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1613 }
1614 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1615 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1616 }
1617
1618 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1619 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1620 }
1621 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1622 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1623 }
1624
1625 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1626 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1627 }
1628 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1629 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1630 }
1631 if (ifp->if_flags & IFF_UP)
1632 return ENETRESET;
1633 return 0;
1634 case SIOCSIFFLAGS:
1635 ifr = data;
1636 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1637 s = splnet();
1638 if_down(ifp);
1639 splx(s);
1640 }
1641 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1642 s = splnet();
1643 if_up(ifp);
1644 splx(s);
1645 }
1646 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1647 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1648 break;
1649 case SIOCGIFFLAGS:
1650 ifr = data;
1651 ifr->ifr_flags = ifp->if_flags;
1652 break;
1653
1654 case SIOCGIFMETRIC:
1655 ifr = data;
1656 ifr->ifr_metric = ifp->if_metric;
1657 break;
1658
1659 case SIOCGIFMTU:
1660 ifr = data;
1661 ifr->ifr_mtu = ifp->if_mtu;
1662 break;
1663
1664 case SIOCGIFDLT:
1665 ifr = data;
1666 ifr->ifr_dlt = ifp->if_dlt;
1667 break;
1668
1669 case SIOCGIFCAP:
1670 ifcr = data;
1671 ifcr->ifcr_capabilities = ifp->if_capabilities;
1672 ifcr->ifcr_capenable = ifp->if_capenable;
1673 break;
1674
1675 case SIOCSIFMETRIC:
1676 ifr = data;
1677 ifp->if_metric = ifr->ifr_metric;
1678 break;
1679
1680 case SIOCGIFDATA:
1681 ifdr = data;
1682 ifdr->ifdr_data = ifp->if_data;
1683 break;
1684
1685 case SIOCGIFINDEX:
1686 ifr = data;
1687 ifr->ifr_index = ifp->if_index;
1688 break;
1689
1690 case SIOCZIFDATA:
1691 ifdr = data;
1692 ifdr->ifdr_data = ifp->if_data;
1693 /*
1694 * Assumes that the volatile counters that can be
1695 * zero'ed are at the end of if_data.
1696 */
1697 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1698 offsetof(struct if_data, ifi_ipackets));
1699 /*
1700 * The memset() clears to the bottm of if_data. In the area,
1701 * if_lastchange is included. Please be careful if new entry
1702 * will be added into if_data or rewite this.
1703 *
1704 * And also, update if_lastchnage.
1705 */
1706 getnanotime(&ifp->if_lastchange);
1707 break;
1708 case SIOCSIFMTU:
1709 ifr = data;
1710 if (ifp->if_mtu == ifr->ifr_mtu)
1711 break;
1712 ifp->if_mtu = ifr->ifr_mtu;
1713 /*
1714 * If the link MTU changed, do network layer specific procedure.
1715 */
1716 #ifdef INET6
1717 if (in6_present)
1718 nd6_setmtu(ifp);
1719 #endif
1720 return ENETRESET;
1721 default:
1722 return ENOTTY;
1723 }
1724 return 0;
1725 }
1726
1727 int
1728 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1729 {
1730 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1731 struct ifaddr *ifa;
1732 const struct sockaddr *any, *sa;
1733 union {
1734 struct sockaddr sa;
1735 struct sockaddr_storage ss;
1736 } u, v;
1737
1738 switch (cmd) {
1739 case SIOCSIFADDRPREF:
1740 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1741 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1742 NULL) != 0)
1743 return EPERM;
1744 case SIOCGIFADDRPREF:
1745 break;
1746 default:
1747 return EOPNOTSUPP;
1748 }
1749
1750 /* sanity checks */
1751 if (data == NULL || ifp == NULL) {
1752 panic("invalid argument to %s", __func__);
1753 /*NOTREACHED*/
1754 }
1755
1756 /* address must be specified on ADD and DELETE */
1757 sa = sstocsa(&ifap->ifap_addr);
1758 if (sa->sa_family != sofamily(so))
1759 return EINVAL;
1760 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1761 return EINVAL;
1762
1763 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1764
1765 IFADDR_FOREACH(ifa, ifp) {
1766 if (ifa->ifa_addr->sa_family != sa->sa_family)
1767 continue;
1768 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1769 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1770 break;
1771 }
1772 if (ifa == NULL)
1773 return EADDRNOTAVAIL;
1774
1775 switch (cmd) {
1776 case SIOCSIFADDRPREF:
1777 ifa->ifa_preference = ifap->ifap_preference;
1778 return 0;
1779 case SIOCGIFADDRPREF:
1780 /* fill in the if_laddrreq structure */
1781 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1782 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1783 ifap->ifap_preference = ifa->ifa_preference;
1784 return 0;
1785 default:
1786 return EOPNOTSUPP;
1787 }
1788 }
1789
1790 static void
1791 ifnet_lock_enter(struct ifnet_lock *il)
1792 {
1793 uint64_t *nenter;
1794
1795 /* Before trying to acquire the mutex, increase the count of threads
1796 * who have entered or who wait to enter the critical section.
1797 * Avoid one costly locked memory transaction by keeping a count for
1798 * each CPU.
1799 */
1800 nenter = percpu_getref(il->il_nenter);
1801 (*nenter)++;
1802 percpu_putref(il->il_nenter);
1803 mutex_enter(&il->il_lock);
1804 }
1805
1806 static void
1807 ifnet_lock_exit(struct ifnet_lock *il)
1808 {
1809 /* Increase the count of threads who have exited the critical
1810 * section. Increase while we still hold the lock.
1811 */
1812 il->il_nexit++;
1813 mutex_exit(&il->il_lock);
1814 }
1815
1816 /*
1817 * Interface ioctls.
1818 */
1819 static int
1820 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1821 {
1822 struct ifnet *ifp;
1823 struct ifreq *ifr;
1824 int error = 0;
1825 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1826 u_long ocmd = cmd;
1827 #endif
1828 short oif_flags;
1829 #ifdef COMPAT_OIFREQ
1830 struct ifreq ifrb;
1831 struct oifreq *oifr = NULL;
1832 #endif
1833
1834 switch (cmd) {
1835 #ifdef COMPAT_OIFREQ
1836 case OSIOCGIFCONF:
1837 case OOSIOCGIFCONF:
1838 return compat_ifconf(cmd, data);
1839 #endif
1840 #ifdef COMPAT_OIFDATA
1841 case OSIOCGIFDATA:
1842 case OSIOCZIFDATA:
1843 return compat_ifdatareq(l, cmd, data);
1844 #endif
1845 case SIOCGIFCONF:
1846 return ifconf(cmd, data);
1847 case SIOCINITIFADDR:
1848 return EPERM;
1849 }
1850
1851 #ifdef COMPAT_OIFREQ
1852 cmd = compat_cvtcmd(cmd);
1853 if (cmd != ocmd) {
1854 oifr = data;
1855 data = ifr = &ifrb;
1856 ifreqo2n(oifr, ifr);
1857 } else
1858 #endif
1859 ifr = data;
1860
1861 ifp = ifunit(ifr->ifr_name);
1862
1863 switch (cmd) {
1864 case SIOCIFCREATE:
1865 case SIOCIFDESTROY:
1866 if (l != NULL) {
1867 error = kauth_authorize_network(l->l_cred,
1868 KAUTH_NETWORK_INTERFACE,
1869 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1870 (void *)cmd, NULL);
1871 if (error != 0)
1872 return error;
1873 }
1874 return (cmd == SIOCIFCREATE) ?
1875 if_clone_create(ifr->ifr_name) :
1876 if_clone_destroy(ifr->ifr_name);
1877
1878 case SIOCIFGCLONERS:
1879 return if_clone_list((struct if_clonereq *)data);
1880 }
1881
1882 if (ifp == NULL)
1883 return ENXIO;
1884
1885 switch (cmd) {
1886 case SIOCALIFADDR:
1887 case SIOCDLIFADDR:
1888 case SIOCSIFADDRPREF:
1889 case SIOCSIFFLAGS:
1890 case SIOCSIFCAP:
1891 case SIOCSIFMETRIC:
1892 case SIOCZIFDATA:
1893 case SIOCSIFMTU:
1894 case SIOCSIFPHYADDR:
1895 case SIOCDIFPHYADDR:
1896 #ifdef INET6
1897 case SIOCSIFPHYADDR_IN6:
1898 #endif
1899 case SIOCSLIFPHYADDR:
1900 case SIOCADDMULTI:
1901 case SIOCDELMULTI:
1902 case SIOCSIFMEDIA:
1903 case SIOCSDRVSPEC:
1904 case SIOCG80211:
1905 case SIOCS80211:
1906 case SIOCS80211NWID:
1907 case SIOCS80211NWKEY:
1908 case SIOCS80211POWER:
1909 case SIOCS80211BSSID:
1910 case SIOCS80211CHANNEL:
1911 case SIOCSLINKSTR:
1912 if (l != NULL) {
1913 error = kauth_authorize_network(l->l_cred,
1914 KAUTH_NETWORK_INTERFACE,
1915 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1916 (void *)cmd, NULL);
1917 if (error != 0)
1918 return error;
1919 }
1920 }
1921
1922 oif_flags = ifp->if_flags;
1923
1924 ifnet_lock_enter(ifp->if_ioctl_lock);
1925 error = (*ifp->if_ioctl)(ifp, cmd, data);
1926 if (error != ENOTTY)
1927 ;
1928 else if (so->so_proto == NULL)
1929 error = EOPNOTSUPP;
1930 else {
1931 #ifdef COMPAT_OSOCK
1932 error = compat_ifioctl(so, ocmd, cmd, data, l);
1933 #else
1934 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1935 cmd, data, ifp);
1936 #endif
1937 }
1938
1939 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1940 #ifdef INET6
1941 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1942 int s = splnet();
1943 in6_if_up(ifp);
1944 splx(s);
1945 }
1946 #endif
1947 }
1948 #ifdef COMPAT_OIFREQ
1949 if (cmd != ocmd)
1950 ifreqn2o(oifr, ifr);
1951 #endif
1952
1953 ifnet_lock_exit(ifp->if_ioctl_lock);
1954 return error;
1955 }
1956
1957 /* This callback adds to the sum in `arg' the number of
1958 * threads on `ci' who have entered or who wait to enter the
1959 * critical section.
1960 */
1961 static void
1962 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1963 {
1964 uint64_t *sum = arg, *nenter = p;
1965
1966 *sum += *nenter;
1967 }
1968
1969 /* Return the number of threads who have entered or who wait
1970 * to enter the critical section on all CPUs.
1971 */
1972 static uint64_t
1973 ifnet_lock_entrances(struct ifnet_lock *il)
1974 {
1975 uint64_t sum = 0;
1976
1977 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1978
1979 return sum;
1980 }
1981
1982 static int
1983 ifioctl_attach(struct ifnet *ifp)
1984 {
1985 struct ifnet_lock *il;
1986
1987 /* If the driver has not supplied its own if_ioctl, then
1988 * supply the default.
1989 */
1990 if (ifp->if_ioctl == NULL)
1991 ifp->if_ioctl = ifioctl_common;
1992
1993 /* Create an ifnet_lock for synchronizing ifioctls. */
1994 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1995 return ENOMEM;
1996
1997 il->il_nenter = percpu_alloc(sizeof(uint64_t));
1998 if (il->il_nenter == NULL) {
1999 kmem_free(il, sizeof(*il));
2000 return ENOMEM;
2001 }
2002
2003 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2004 cv_init(&il->il_emptied, ifp->if_xname);
2005
2006 ifp->if_ioctl_lock = il;
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * This must not be called until after `ifp' has been withdrawn from the
2013 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2014 * ifunit().
2015 */
2016 static void
2017 ifioctl_detach(struct ifnet *ifp)
2018 {
2019 struct ifnet_lock *il;
2020
2021 il = ifp->if_ioctl_lock;
2022 mutex_enter(&il->il_lock);
2023 /* Install if_nullioctl to make sure that any thread that
2024 * subsequently enters the critical section will quit it
2025 * immediately and signal the condition variable that we
2026 * wait on, below.
2027 */
2028 ifp->if_ioctl = if_nullioctl;
2029 /* Sleep while threads are still in the critical section or
2030 * wait to enter it.
2031 */
2032 while (ifnet_lock_entrances(il) != il->il_nexit)
2033 cv_wait(&il->il_emptied, &il->il_lock);
2034 /* At this point, we are the only thread still in the critical
2035 * section, and no new thread can get a handle on the ifioctl
2036 * lock, so it is safe to free its memory.
2037 */
2038 mutex_exit(&il->il_lock);
2039 ifp->if_ioctl_lock = NULL;
2040 percpu_free(il->il_nenter, sizeof(uint64_t));
2041 il->il_nenter = NULL;
2042 cv_destroy(&il->il_emptied);
2043 mutex_destroy(&il->il_lock);
2044 kmem_free(il, sizeof(*il));
2045 }
2046
2047 /*
2048 * Return interface configuration
2049 * of system. List may be used
2050 * in later ioctl's (above) to get
2051 * other information.
2052 *
2053 * Each record is a struct ifreq. Before the addition of
2054 * sockaddr_storage, the API rule was that sockaddr flavors that did
2055 * not fit would extend beyond the struct ifreq, with the next struct
2056 * ifreq starting sa_len beyond the struct sockaddr. Because the
2057 * union in struct ifreq includes struct sockaddr_storage, every kind
2058 * of sockaddr must fit. Thus, there are no longer any overlength
2059 * records.
2060 *
2061 * Records are added to the user buffer if they fit, and ifc_len is
2062 * adjusted to the length that was written. Thus, the user is only
2063 * assured of getting the complete list if ifc_len on return is at
2064 * least sizeof(struct ifreq) less than it was on entry.
2065 *
2066 * If the user buffer pointer is NULL, this routine copies no data and
2067 * returns the amount of space that would be needed.
2068 *
2069 * Invariants:
2070 * ifrp points to the next part of the user's buffer to be used. If
2071 * ifrp != NULL, space holds the number of bytes remaining that we may
2072 * write at ifrp. Otherwise, space holds the number of bytes that
2073 * would have been written had there been adequate space.
2074 */
2075 /*ARGSUSED*/
2076 int
2077 ifconf(u_long cmd, void *data)
2078 {
2079 struct ifconf *ifc = (struct ifconf *)data;
2080 struct ifnet *ifp;
2081 struct ifaddr *ifa;
2082 struct ifreq ifr, *ifrp;
2083 int space, error = 0;
2084 const int sz = (int)sizeof(struct ifreq);
2085
2086 if ((ifrp = ifc->ifc_req) == NULL)
2087 space = 0;
2088 else
2089 space = ifc->ifc_len;
2090 IFNET_FOREACH(ifp) {
2091 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2092 sizeof(ifr.ifr_name));
2093 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2094 return ENAMETOOLONG;
2095 if (IFADDR_EMPTY(ifp)) {
2096 /* Interface with no addresses - send zero sockaddr. */
2097 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2098 if (ifrp == NULL) {
2099 space += sz;
2100 continue;
2101 }
2102 if (space >= sz) {
2103 error = copyout(&ifr, ifrp, sz);
2104 if (error != 0)
2105 return error;
2106 ifrp++;
2107 space -= sz;
2108 }
2109 }
2110
2111 IFADDR_FOREACH(ifa, ifp) {
2112 struct sockaddr *sa = ifa->ifa_addr;
2113 /* all sockaddrs must fit in sockaddr_storage */
2114 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2115
2116 if (ifrp == NULL) {
2117 space += sz;
2118 continue;
2119 }
2120 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2121 if (space >= sz) {
2122 error = copyout(&ifr, ifrp, sz);
2123 if (error != 0)
2124 return (error);
2125 ifrp++; space -= sz;
2126 }
2127 }
2128 }
2129 if (ifrp != NULL) {
2130 KASSERT(0 <= space && space <= ifc->ifc_len);
2131 ifc->ifc_len -= space;
2132 } else {
2133 KASSERT(space >= 0);
2134 ifc->ifc_len = space;
2135 }
2136 return (0);
2137 }
2138
2139 int
2140 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2141 {
2142 uint8_t len;
2143 #ifdef COMPAT_OIFREQ
2144 struct ifreq ifrb;
2145 struct oifreq *oifr = NULL;
2146 u_long ocmd = cmd;
2147 cmd = compat_cvtcmd(cmd);
2148 if (cmd != ocmd) {
2149 oifr = (struct oifreq *)(void *)ifr;
2150 ifr = &ifrb;
2151 ifreqo2n(oifr, ifr);
2152 len = sizeof(oifr->ifr_addr);
2153 } else
2154 #endif
2155 len = sizeof(ifr->ifr_ifru.ifru_space);
2156
2157 if (len < sa->sa_len)
2158 return EFBIG;
2159
2160 memset(&ifr->ifr_addr, 0, len);
2161 sockaddr_copy(&ifr->ifr_addr, len, sa);
2162
2163 #ifdef COMPAT_OIFREQ
2164 if (cmd != ocmd)
2165 ifreqn2o(oifr, ifr);
2166 #endif
2167 return 0;
2168 }
2169
2170 /*
2171 * Queue message on interface, and start output if interface
2172 * not yet active.
2173 */
2174 int
2175 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2176 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2177 {
2178 int len = m->m_pkthdr.len;
2179 int mflags = m->m_flags;
2180 int s = splnet();
2181 int error;
2182
2183 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2184 if (error != 0)
2185 goto out;
2186 ifp->if_obytes += len;
2187 if (mflags & M_MCAST)
2188 ifp->if_omcasts++;
2189 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2190 (*ifp->if_start)(ifp);
2191 out:
2192 splx(s);
2193 return error;
2194 }
2195
2196 /*
2197 * Queue message on interface, possibly using a second fast queue
2198 */
2199 int
2200 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2201 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2202 {
2203 int error = 0;
2204
2205 if (ifq != NULL
2206 #ifdef ALTQ
2207 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2208 #endif
2209 ) {
2210 if (IF_QFULL(ifq)) {
2211 IF_DROP(&ifp->if_snd);
2212 m_freem(m);
2213 if (error == 0)
2214 error = ENOBUFS;
2215 } else
2216 IF_ENQUEUE(ifq, m);
2217 } else
2218 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2219 if (error != 0) {
2220 ++ifp->if_oerrors;
2221 return error;
2222 }
2223 return 0;
2224 }
2225
2226 int
2227 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2228 {
2229 int rc;
2230
2231 if (ifp->if_initaddr != NULL)
2232 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2233 else if (src ||
2234 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2235 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2236
2237 return rc;
2238 }
2239
2240 int
2241 if_flags_set(ifnet_t *ifp, const short flags)
2242 {
2243 int rc;
2244
2245 if (ifp->if_setflags != NULL)
2246 rc = (*ifp->if_setflags)(ifp, flags);
2247 else {
2248 short cantflags, chgdflags;
2249 struct ifreq ifr;
2250
2251 chgdflags = ifp->if_flags ^ flags;
2252 cantflags = chgdflags & IFF_CANTCHANGE;
2253
2254 if (cantflags != 0)
2255 ifp->if_flags ^= cantflags;
2256
2257 /* Traditionally, we do not call if_ioctl after
2258 * setting/clearing only IFF_PROMISC if the interface
2259 * isn't IFF_UP. Uphold that tradition.
2260 */
2261 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2262 return 0;
2263
2264 memset(&ifr, 0, sizeof(ifr));
2265
2266 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2267 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2268
2269 if (rc != 0 && cantflags != 0)
2270 ifp->if_flags ^= cantflags;
2271 }
2272
2273 return rc;
2274 }
2275
2276 int
2277 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2278 {
2279 int rc;
2280 struct ifreq ifr;
2281
2282 if (ifp->if_mcastop != NULL)
2283 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2284 else {
2285 ifreq_setaddr(cmd, &ifr, sa);
2286 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2287 }
2288
2289 return rc;
2290 }
2291
2292 static void
2293 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2294 struct ifaltq *ifq)
2295 {
2296 const struct sysctlnode *cnode, *rnode;
2297
2298 if (sysctl_createv(clog, 0, NULL, &rnode,
2299 CTLFLAG_PERMANENT,
2300 CTLTYPE_NODE, "interfaces",
2301 SYSCTL_DESCR("Per-interface controls"),
2302 NULL, 0, NULL, 0,
2303 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2304 goto bad;
2305
2306 if (sysctl_createv(clog, 0, &rnode, &rnode,
2307 CTLFLAG_PERMANENT,
2308 CTLTYPE_NODE, ifname,
2309 SYSCTL_DESCR("Interface controls"),
2310 NULL, 0, NULL, 0,
2311 CTL_CREATE, CTL_EOL) != 0)
2312 goto bad;
2313
2314 if (sysctl_createv(clog, 0, &rnode, &rnode,
2315 CTLFLAG_PERMANENT,
2316 CTLTYPE_NODE, "sndq",
2317 SYSCTL_DESCR("Interface output queue controls"),
2318 NULL, 0, NULL, 0,
2319 CTL_CREATE, CTL_EOL) != 0)
2320 goto bad;
2321
2322 if (sysctl_createv(clog, 0, &rnode, &cnode,
2323 CTLFLAG_PERMANENT,
2324 CTLTYPE_INT, "len",
2325 SYSCTL_DESCR("Current output queue length"),
2326 NULL, 0, &ifq->ifq_len, 0,
2327 CTL_CREATE, CTL_EOL) != 0)
2328 goto bad;
2329
2330 if (sysctl_createv(clog, 0, &rnode, &cnode,
2331 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2332 CTLTYPE_INT, "maxlen",
2333 SYSCTL_DESCR("Maximum allowed output queue length"),
2334 NULL, 0, &ifq->ifq_maxlen, 0,
2335 CTL_CREATE, CTL_EOL) != 0)
2336 goto bad;
2337
2338 if (sysctl_createv(clog, 0, &rnode, &cnode,
2339 CTLFLAG_PERMANENT,
2340 CTLTYPE_INT, "drops",
2341 SYSCTL_DESCR("Packets dropped due to full output queue"),
2342 NULL, 0, &ifq->ifq_drops, 0,
2343 CTL_CREATE, CTL_EOL) != 0)
2344 goto bad;
2345
2346 return;
2347 bad:
2348 printf("%s: could not attach sysctl nodes\n", ifname);
2349 return;
2350 }
2351
2352 #if defined(INET) || defined(INET6)
2353
2354 #define SYSCTL_NET_PKTQ(q, cn, c) \
2355 static int \
2356 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2357 { \
2358 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2359 }
2360
2361 #if defined(INET)
2362 static int
2363 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2364 {
2365 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2366 }
2367 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2368 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2369 #endif
2370
2371 #if defined(INET6)
2372 static int
2373 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2374 {
2375 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2376 }
2377 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2378 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2379 #endif
2380
2381 static void
2382 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2383 {
2384 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2385 const char *pfname = NULL, *ipname = NULL;
2386 int ipn = 0, qid = 0;
2387
2388 switch (pf) {
2389 #if defined(INET)
2390 case PF_INET:
2391 len_func = sysctl_net_ip_pktq_items;
2392 maxlen_func = sysctl_net_ip_pktq_maxlen;
2393 drops_func = sysctl_net_ip_pktq_drops;
2394 pfname = "inet", ipn = IPPROTO_IP;
2395 ipname = "ip", qid = IPCTL_IFQ;
2396 break;
2397 #endif
2398 #if defined(INET6)
2399 case PF_INET6:
2400 len_func = sysctl_net_ip6_pktq_items;
2401 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2402 drops_func = sysctl_net_ip6_pktq_drops;
2403 pfname = "inet6", ipn = IPPROTO_IPV6;
2404 ipname = "ip6", qid = IPV6CTL_IFQ;
2405 break;
2406 #endif
2407 default:
2408 KASSERT(false);
2409 }
2410
2411 sysctl_createv(clog, 0, NULL, NULL,
2412 CTLFLAG_PERMANENT,
2413 CTLTYPE_NODE, pfname, NULL,
2414 NULL, 0, NULL, 0,
2415 CTL_NET, pf, CTL_EOL);
2416 sysctl_createv(clog, 0, NULL, NULL,
2417 CTLFLAG_PERMANENT,
2418 CTLTYPE_NODE, ipname, NULL,
2419 NULL, 0, NULL, 0,
2420 CTL_NET, pf, ipn, CTL_EOL);
2421 sysctl_createv(clog, 0, NULL, NULL,
2422 CTLFLAG_PERMANENT,
2423 CTLTYPE_NODE, "ifq",
2424 SYSCTL_DESCR("Protocol input queue controls"),
2425 NULL, 0, NULL, 0,
2426 CTL_NET, pf, ipn, qid, CTL_EOL);
2427
2428 sysctl_createv(clog, 0, NULL, NULL,
2429 CTLFLAG_PERMANENT,
2430 CTLTYPE_INT, "len",
2431 SYSCTL_DESCR("Current input queue length"),
2432 len_func, 0, NULL, 0,
2433 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2434 sysctl_createv(clog, 0, NULL, NULL,
2435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2436 CTLTYPE_INT, "maxlen",
2437 SYSCTL_DESCR("Maximum allowed input queue length"),
2438 maxlen_func, 0, NULL, 0,
2439 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2440 sysctl_createv(clog, 0, NULL, NULL,
2441 CTLFLAG_PERMANENT,
2442 CTLTYPE_INT, "drops",
2443 SYSCTL_DESCR("Packets dropped due to full input queue"),
2444 drops_func, 0, NULL, 0,
2445 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2446 }
2447 #endif /* INET || INET6 */
2448
2449 static int
2450 if_sdl_sysctl(SYSCTLFN_ARGS)
2451 {
2452 struct ifnet *ifp;
2453 const struct sockaddr_dl *sdl;
2454
2455 if (namelen != 1)
2456 return EINVAL;
2457
2458 ifp = if_byindex(name[0]);
2459 if (ifp == NULL)
2460 return ENODEV;
2461
2462 sdl = ifp->if_sadl;
2463 if (sdl == NULL) {
2464 *oldlenp = 0;
2465 return 0;
2466 }
2467
2468 if (oldp == NULL) {
2469 *oldlenp = sdl->sdl_alen;
2470 return 0;
2471 }
2472
2473 if (*oldlenp >= sdl->sdl_alen)
2474 *oldlenp = sdl->sdl_alen;
2475 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2476 }
2477
2478 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2479 {
2480 const struct sysctlnode *rnode = NULL;
2481
2482 sysctl_createv(clog, 0, NULL, &rnode,
2483 CTLFLAG_PERMANENT,
2484 CTLTYPE_NODE, "sdl",
2485 SYSCTL_DESCR("Get active link-layer address"),
2486 if_sdl_sysctl, 0, NULL, 0,
2487 CTL_NET, CTL_CREATE, CTL_EOL);
2488 }
2489