if.c revision 1.289 1 /* $NetBSD: if.c,v 1.289 2014/07/31 06:35:47 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.289 2014/07/31 06:35:47 ozaki-r Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99 #include "opt_wlan.h"
100
101 #include <sys/param.h>
102 #include <sys/mbuf.h>
103 #include <sys/systm.h>
104 #include <sys/callout.h>
105 #include <sys/proc.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/kernel.h>
111 #include <sys/ioctl.h>
112 #include <sys/sysctl.h>
113 #include <sys/syslog.h>
114 #include <sys/kauth.h>
115 #include <sys/kmem.h>
116 #include <sys/xcall.h>
117
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_ether.h>
121 #include <net/if_media.h>
122 #include <net80211/ieee80211.h>
123 #include <net80211/ieee80211_ioctl.h>
124 #include <net/if_types.h>
125 #include <net/radix.h>
126 #include <net/route.h>
127 #include <net/netisr.h>
128 #include <sys/module.h>
129 #ifdef NETATALK
130 #include <netatalk/at_extern.h>
131 #include <netatalk/at.h>
132 #endif
133 #include <net/pfil.h>
134 #include <netinet/in.h>
135 #include <netinet/in_var.h>
136
137 #ifdef INET6
138 #include <netinet6/in6_var.h>
139 #include <netinet6/nd6.h>
140 #endif
141
142 #include "ether.h"
143 #include "fddi.h"
144 #include "token.h"
145
146 #include "carp.h"
147 #if NCARP > 0
148 #include <netinet/ip_carp.h>
149 #endif
150
151 #include <compat/sys/sockio.h>
152 #include <compat/sys/socket.h>
153
154 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
155 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
156
157 /*
158 * Global list of interfaces.
159 */
160 struct ifnet_head ifnet_list;
161 static ifnet_t ** ifindex2ifnet = NULL;
162
163 static u_int if_index = 1;
164 static size_t if_indexlim = 0;
165 static uint64_t index_gen;
166 static kmutex_t index_gen_mtx;
167
168 static struct ifaddr ** ifnet_addrs = NULL;
169
170 static callout_t if_slowtimo_ch;
171
172 struct ifnet *lo0ifp;
173 int ifqmaxlen = IFQ_MAXLEN;
174
175 static int if_rt_walktree(struct rtentry *, void *);
176
177 static struct if_clone *if_clone_lookup(const char *, int *);
178 static int if_clone_list(struct if_clonereq *);
179
180 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
181 static int if_cloners_count;
182
183 /* Packet filtering hook for interfaces. */
184 pfil_head_t * if_pfil;
185
186 static kauth_listener_t if_listener;
187
188 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
189 static int ifioctl_attach(struct ifnet *);
190 static void ifioctl_detach(struct ifnet *);
191 static void ifnet_lock_enter(struct ifnet_lock *);
192 static void ifnet_lock_exit(struct ifnet_lock *);
193 static void if_detach_queues(struct ifnet *, struct ifqueue *);
194 static void sysctl_sndq_setup(struct sysctllog **, const char *,
195 struct ifaltq *);
196
197 #if defined(INET) || defined(INET6)
198 static void sysctl_net_pktq_setup(struct sysctllog **, int);
199 #endif
200
201 static int
202 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
203 void *arg0, void *arg1, void *arg2, void *arg3)
204 {
205 int result;
206 enum kauth_network_req req;
207
208 result = KAUTH_RESULT_DEFER;
209 req = (enum kauth_network_req)arg1;
210
211 if (action != KAUTH_NETWORK_INTERFACE)
212 return result;
213
214 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
215 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
216 result = KAUTH_RESULT_ALLOW;
217
218 return result;
219 }
220
221 /*
222 * Network interface utility routines.
223 *
224 * Routines with ifa_ifwith* names take sockaddr *'s as
225 * parameters.
226 */
227 void
228 ifinit(void)
229 {
230 #if defined(INET)
231 sysctl_net_pktq_setup(NULL, PF_INET);
232 #endif
233 #ifdef INET6
234 sysctl_net_pktq_setup(NULL, PF_INET6);
235 #endif
236
237 callout_init(&if_slowtimo_ch, 0);
238 if_slowtimo(NULL);
239
240 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
241 if_listener_cb, NULL);
242
243 /* interfaces are available, inform socket code */
244 ifioctl = doifioctl;
245 }
246
247 /*
248 * XXX Initialization before configure().
249 * XXX hack to get pfil_add_hook working in autoconf.
250 */
251 void
252 ifinit1(void)
253 {
254 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
255 TAILQ_INIT(&ifnet_list);
256 if_indexlim = 8;
257
258 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
259 KASSERT(if_pfil != NULL);
260
261 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
262 etherinit();
263 #endif
264 }
265
266 ifnet_t *
267 if_alloc(u_char type)
268 {
269 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
270 }
271
272 void
273 if_free(ifnet_t *ifp)
274 {
275 kmem_free(ifp, sizeof(ifnet_t));
276 }
277
278 void
279 if_initname(struct ifnet *ifp, const char *name, int unit)
280 {
281 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
282 "%s%d", name, unit);
283 }
284
285 /*
286 * Null routines used while an interface is going away. These routines
287 * just return an error.
288 */
289
290 int
291 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
292 const struct sockaddr *so, struct rtentry *rt)
293 {
294
295 return ENXIO;
296 }
297
298 void
299 if_nullinput(struct ifnet *ifp, struct mbuf *m)
300 {
301
302 /* Nothing. */
303 }
304
305 void
306 if_nullstart(struct ifnet *ifp)
307 {
308
309 /* Nothing. */
310 }
311
312 int
313 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
314 {
315
316 /* Wake ifioctl_detach(), who may wait for all threads to
317 * quit the critical section.
318 */
319 cv_signal(&ifp->if_ioctl_lock->il_emptied);
320 return ENXIO;
321 }
322
323 int
324 if_nullinit(struct ifnet *ifp)
325 {
326
327 return ENXIO;
328 }
329
330 void
331 if_nullstop(struct ifnet *ifp, int disable)
332 {
333
334 /* Nothing. */
335 }
336
337 void
338 if_nullwatchdog(struct ifnet *ifp)
339 {
340
341 /* Nothing. */
342 }
343
344 void
345 if_nulldrain(struct ifnet *ifp)
346 {
347
348 /* Nothing. */
349 }
350
351 void
352 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
353 {
354 struct ifaddr *ifa;
355 struct sockaddr_dl *sdl;
356
357 ifp->if_addrlen = addrlen;
358 if_alloc_sadl(ifp);
359 ifa = ifp->if_dl;
360 sdl = satosdl(ifa->ifa_addr);
361
362 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
363 if (factory) {
364 ifp->if_hwdl = ifp->if_dl;
365 IFAREF(ifp->if_hwdl);
366 }
367 /* TBD routing socket */
368 }
369
370 struct ifaddr *
371 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
372 {
373 unsigned socksize, ifasize;
374 int addrlen, namelen;
375 struct sockaddr_dl *mask, *sdl;
376 struct ifaddr *ifa;
377
378 namelen = strlen(ifp->if_xname);
379 addrlen = ifp->if_addrlen;
380 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
381 ifasize = sizeof(*ifa) + 2 * socksize;
382 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
383
384 sdl = (struct sockaddr_dl *)(ifa + 1);
385 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
386
387 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
388 ifp->if_xname, namelen, NULL, addrlen);
389 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
390 memset(&mask->sdl_data[0], 0xff, namelen);
391 ifa->ifa_rtrequest = link_rtrequest;
392 ifa->ifa_addr = (struct sockaddr *)sdl;
393 ifa->ifa_netmask = (struct sockaddr *)mask;
394
395 *sdlp = sdl;
396
397 return ifa;
398 }
399
400 static void
401 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
402 {
403 const struct sockaddr_dl *sdl;
404 ifnet_addrs[ifp->if_index] = ifa;
405 IFAREF(ifa);
406 ifp->if_dl = ifa;
407 IFAREF(ifa);
408 sdl = satosdl(ifa->ifa_addr);
409 ifp->if_sadl = sdl;
410 }
411
412 /*
413 * Allocate the link level name for the specified interface. This
414 * is an attachment helper. It must be called after ifp->if_addrlen
415 * is initialized, which may not be the case when if_attach() is
416 * called.
417 */
418 void
419 if_alloc_sadl(struct ifnet *ifp)
420 {
421 struct ifaddr *ifa;
422 const struct sockaddr_dl *sdl;
423
424 /*
425 * If the interface already has a link name, release it
426 * now. This is useful for interfaces that can change
427 * link types, and thus switch link names often.
428 */
429 if (ifp->if_sadl != NULL)
430 if_free_sadl(ifp);
431
432 ifa = if_dl_create(ifp, &sdl);
433
434 ifa_insert(ifp, ifa);
435 if_sadl_setrefs(ifp, ifa);
436 }
437
438 static void
439 if_deactivate_sadl(struct ifnet *ifp)
440 {
441 struct ifaddr *ifa;
442
443 KASSERT(ifp->if_dl != NULL);
444
445 ifa = ifp->if_dl;
446
447 ifp->if_sadl = NULL;
448
449 ifnet_addrs[ifp->if_index] = NULL;
450 IFAFREE(ifa);
451 ifp->if_dl = NULL;
452 IFAFREE(ifa);
453 }
454
455 void
456 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
457 const struct sockaddr_dl *sdl)
458 {
459 int s;
460
461 s = splnet();
462
463 if_deactivate_sadl(ifp);
464
465 if_sadl_setrefs(ifp, ifa);
466 IFADDR_FOREACH(ifa, ifp)
467 rtinit(ifa, RTM_LLINFO_UPD, 0);
468 splx(s);
469 }
470
471 /*
472 * Free the link level name for the specified interface. This is
473 * a detach helper. This is called from if_detach() or from
474 * link layer type specific detach functions.
475 */
476 void
477 if_free_sadl(struct ifnet *ifp)
478 {
479 struct ifaddr *ifa;
480 int s;
481
482 ifa = ifnet_addrs[ifp->if_index];
483 if (ifa == NULL) {
484 KASSERT(ifp->if_sadl == NULL);
485 KASSERT(ifp->if_dl == NULL);
486 return;
487 }
488
489 KASSERT(ifp->if_sadl != NULL);
490 KASSERT(ifp->if_dl != NULL);
491
492 s = splnet();
493 rtinit(ifa, RTM_DELETE, 0);
494 ifa_remove(ifp, ifa);
495 if_deactivate_sadl(ifp);
496 if (ifp->if_hwdl == ifa) {
497 IFAFREE(ifa);
498 ifp->if_hwdl = NULL;
499 }
500 splx(s);
501 }
502
503 static void
504 if_getindex(ifnet_t *ifp)
505 {
506 bool hitlimit = false;
507
508 mutex_enter(&index_gen_mtx);
509 ifp->if_index_gen = index_gen++;
510 mutex_exit(&index_gen_mtx);
511
512 ifp->if_index = if_index;
513 if (ifindex2ifnet == NULL) {
514 if_index++;
515 goto skip;
516 }
517 while (if_byindex(ifp->if_index)) {
518 /*
519 * If we hit USHRT_MAX, we skip back to 0 since
520 * there are a number of places where the value
521 * of if_index or if_index itself is compared
522 * to or stored in an unsigned short. By
523 * jumping back, we won't botch those assignments
524 * or comparisons.
525 */
526 if (++if_index == 0) {
527 if_index = 1;
528 } else if (if_index == USHRT_MAX) {
529 /*
530 * However, if we have to jump back to
531 * zero *twice* without finding an empty
532 * slot in ifindex2ifnet[], then there
533 * there are too many (>65535) interfaces.
534 */
535 if (hitlimit) {
536 panic("too many interfaces");
537 }
538 hitlimit = true;
539 if_index = 1;
540 }
541 ifp->if_index = if_index;
542 }
543 skip:
544 /*
545 * We have some arrays that should be indexed by if_index.
546 * since if_index will grow dynamically, they should grow too.
547 * struct ifadd **ifnet_addrs
548 * struct ifnet **ifindex2ifnet
549 */
550 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
551 ifp->if_index >= if_indexlim) {
552 size_t m, n, oldlim;
553 void *q;
554
555 oldlim = if_indexlim;
556 while (ifp->if_index >= if_indexlim)
557 if_indexlim <<= 1;
558
559 /* grow ifnet_addrs */
560 m = oldlim * sizeof(struct ifaddr *);
561 n = if_indexlim * sizeof(struct ifaddr *);
562 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
563 if (ifnet_addrs != NULL) {
564 memcpy(q, ifnet_addrs, m);
565 free(ifnet_addrs, M_IFADDR);
566 }
567 ifnet_addrs = (struct ifaddr **)q;
568
569 /* grow ifindex2ifnet */
570 m = oldlim * sizeof(struct ifnet *);
571 n = if_indexlim * sizeof(struct ifnet *);
572 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
573 if (ifindex2ifnet != NULL) {
574 memcpy(q, ifindex2ifnet, m);
575 free(ifindex2ifnet, M_IFADDR);
576 }
577 ifindex2ifnet = (struct ifnet **)q;
578 }
579 ifindex2ifnet[ifp->if_index] = ifp;
580 }
581
582 /*
583 * Attach an interface to the list of "active" interfaces.
584 */
585 void
586 if_attach(ifnet_t *ifp)
587 {
588 KASSERT(if_indexlim > 0);
589 TAILQ_INIT(&ifp->if_addrlist);
590 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
591
592 if (ifioctl_attach(ifp) != 0)
593 panic("%s: ifioctl_attach() failed", __func__);
594
595 if_getindex(ifp);
596
597 /*
598 * Link level name is allocated later by a separate call to
599 * if_alloc_sadl().
600 */
601
602 if (ifp->if_snd.ifq_maxlen == 0)
603 ifp->if_snd.ifq_maxlen = ifqmaxlen;
604
605 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
606
607 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
608
609 ifp->if_link_state = LINK_STATE_UNKNOWN;
610
611 ifp->if_capenable = 0;
612 ifp->if_csum_flags_tx = 0;
613 ifp->if_csum_flags_rx = 0;
614
615 #ifdef ALTQ
616 ifp->if_snd.altq_type = 0;
617 ifp->if_snd.altq_disc = NULL;
618 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
619 ifp->if_snd.altq_tbr = NULL;
620 ifp->if_snd.altq_ifp = ifp;
621 #endif
622
623 #ifdef NET_MPSAFE
624 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
625 #else
626 ifp->if_snd.ifq_lock = NULL;
627 #endif
628
629 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
630 (void)pfil_run_hooks(if_pfil,
631 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
632
633 if (!STAILQ_EMPTY(&domains))
634 if_attachdomain1(ifp);
635
636 /* Announce the interface. */
637 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
638 }
639
640 void
641 if_attachdomain(void)
642 {
643 struct ifnet *ifp;
644 int s;
645
646 s = splnet();
647 IFNET_FOREACH(ifp)
648 if_attachdomain1(ifp);
649 splx(s);
650 }
651
652 void
653 if_attachdomain1(struct ifnet *ifp)
654 {
655 struct domain *dp;
656 int s;
657
658 s = splnet();
659
660 /* address family dependent data region */
661 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
662 DOMAIN_FOREACH(dp) {
663 if (dp->dom_ifattach != NULL)
664 ifp->if_afdata[dp->dom_family] =
665 (*dp->dom_ifattach)(ifp);
666 }
667
668 splx(s);
669 }
670
671 /*
672 * Deactivate an interface. This points all of the procedure
673 * handles at error stubs. May be called from interrupt context.
674 */
675 void
676 if_deactivate(struct ifnet *ifp)
677 {
678 int s;
679
680 s = splnet();
681
682 ifp->if_output = if_nulloutput;
683 ifp->if_input = if_nullinput;
684 ifp->if_start = if_nullstart;
685 ifp->if_ioctl = if_nullioctl;
686 ifp->if_init = if_nullinit;
687 ifp->if_stop = if_nullstop;
688 ifp->if_watchdog = if_nullwatchdog;
689 ifp->if_drain = if_nulldrain;
690
691 /* No more packets may be enqueued. */
692 ifp->if_snd.ifq_maxlen = 0;
693
694 splx(s);
695 }
696
697 void
698 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
699 {
700 struct ifaddr *ifa, *nifa;
701
702 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
703 if (ifa->ifa_addr->sa_family != family)
704 continue;
705 (*purgeaddr)(ifa);
706 }
707 }
708
709 /*
710 * Detach an interface from the list of "active" interfaces,
711 * freeing any resources as we go along.
712 *
713 * NOTE: This routine must be called with a valid thread context,
714 * as it may block.
715 */
716 void
717 if_detach(struct ifnet *ifp)
718 {
719 struct socket so;
720 struct ifaddr *ifa;
721 #ifdef IFAREF_DEBUG
722 struct ifaddr *last_ifa = NULL;
723 #endif
724 struct domain *dp;
725 const struct protosw *pr;
726 int s, i, family, purged;
727 uint64_t xc;
728
729 /*
730 * XXX It's kind of lame that we have to have the
731 * XXX socket structure...
732 */
733 memset(&so, 0, sizeof(so));
734
735 s = splnet();
736
737 /*
738 * Do an if_down() to give protocols a chance to do something.
739 */
740 if_down(ifp);
741
742 #ifdef ALTQ
743 if (ALTQ_IS_ENABLED(&ifp->if_snd))
744 altq_disable(&ifp->if_snd);
745 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
746 altq_detach(&ifp->if_snd);
747 #endif
748
749 if (ifp->if_snd.ifq_lock)
750 mutex_obj_free(ifp->if_snd.ifq_lock);
751
752 sysctl_teardown(&ifp->if_sysctl_log);
753
754 #if NCARP > 0
755 /* Remove the interface from any carp group it is a part of. */
756 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
757 carp_ifdetach(ifp);
758 #endif
759
760 /*
761 * Rip all the addresses off the interface. This should make
762 * all of the routes go away.
763 *
764 * pr_usrreq calls can remove an arbitrary number of ifaddrs
765 * from the list, including our "cursor", ifa. For safety,
766 * and to honor the TAILQ abstraction, I just restart the
767 * loop after each removal. Note that the loop will exit
768 * when all of the remaining ifaddrs belong to the AF_LINK
769 * family. I am counting on the historical fact that at
770 * least one pr_usrreq in each address domain removes at
771 * least one ifaddr.
772 */
773 again:
774 IFADDR_FOREACH(ifa, ifp) {
775 family = ifa->ifa_addr->sa_family;
776 #ifdef IFAREF_DEBUG
777 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
778 ifa, family, ifa->ifa_refcnt);
779 if (last_ifa != NULL && ifa == last_ifa)
780 panic("if_detach: loop detected");
781 last_ifa = ifa;
782 #endif
783 if (family == AF_LINK)
784 continue;
785 dp = pffinddomain(family);
786 #ifdef DIAGNOSTIC
787 if (dp == NULL)
788 panic("if_detach: no domain for AF %d",
789 family);
790 #endif
791 /*
792 * XXX These PURGEIF calls are redundant with the
793 * purge-all-families calls below, but are left in for
794 * now both to make a smaller change, and to avoid
795 * unplanned interactions with clearing of
796 * ifp->if_addrlist.
797 */
798 purged = 0;
799 for (pr = dp->dom_protosw;
800 pr < dp->dom_protoswNPROTOSW; pr++) {
801 so.so_proto = pr;
802 if (pr->pr_usrreqs) {
803 (void) (*pr->pr_usrreqs->pr_generic)(&so,
804 PRU_PURGEIF, NULL, NULL,
805 (struct mbuf *) ifp, curlwp);
806 purged = 1;
807 }
808 }
809 if (purged == 0) {
810 /*
811 * XXX What's really the best thing to do
812 * XXX here? --thorpej (at) NetBSD.org
813 */
814 printf("if_detach: WARNING: AF %d not purged\n",
815 family);
816 ifa_remove(ifp, ifa);
817 }
818 goto again;
819 }
820
821 if_free_sadl(ifp);
822
823 /* Walk the routing table looking for stragglers. */
824 for (i = 0; i <= AF_MAX; i++) {
825 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
826 continue;
827 }
828
829 DOMAIN_FOREACH(dp) {
830 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
831 {
832 void *p = ifp->if_afdata[dp->dom_family];
833 if (p) {
834 ifp->if_afdata[dp->dom_family] = NULL;
835 (*dp->dom_ifdetach)(ifp, p);
836 }
837 }
838
839 /*
840 * One would expect multicast memberships (INET and
841 * INET6) on UDP sockets to be purged by the PURGEIF
842 * calls above, but if all addresses were removed from
843 * the interface prior to destruction, the calls will
844 * not be made (e.g. ppp, for which pppd(8) generally
845 * removes addresses before destroying the interface).
846 * Because there is no invariant that multicast
847 * memberships only exist for interfaces with IPv4
848 * addresses, we must call PURGEIF regardless of
849 * addresses. (Protocols which might store ifnet
850 * pointers are marked with PR_PURGEIF.)
851 */
852 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
853 so.so_proto = pr;
854 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
855 (void)(*pr->pr_usrreqs->pr_generic)(&so,
856 PRU_PURGEIF, NULL, NULL,
857 (struct mbuf *)ifp, curlwp);
858 }
859 }
860
861 (void)pfil_run_hooks(if_pfil,
862 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
863 (void)pfil_head_destroy(ifp->if_pfil);
864
865 /* Announce that the interface is gone. */
866 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
867
868 ifindex2ifnet[ifp->if_index] = NULL;
869
870 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
871
872 ifioctl_detach(ifp);
873
874 /*
875 * remove packets that came from ifp, from software interrupt queues.
876 */
877 DOMAIN_FOREACH(dp) {
878 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
879 struct ifqueue *iq = dp->dom_ifqueues[i];
880 if (iq == NULL)
881 break;
882 dp->dom_ifqueues[i] = NULL;
883 if_detach_queues(ifp, iq);
884 }
885 }
886
887 /*
888 * IP queues have to be processed separately: net-queue barrier
889 * ensures that the packets are dequeued while a cross-call will
890 * ensure that the interrupts have completed. FIXME: not quite..
891 */
892 #ifdef INET
893 pktq_barrier(ip_pktq);
894 #endif
895 #ifdef INET6
896 pktq_barrier(ip6_pktq);
897 #endif
898 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
899 xc_wait(xc);
900
901 splx(s);
902 }
903
904 static void
905 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
906 {
907 struct mbuf *m, *prev, *next;
908
909 prev = NULL;
910 for (m = q->ifq_head; m != NULL; m = next) {
911 KASSERT((m->m_flags & M_PKTHDR) != 0);
912
913 next = m->m_nextpkt;
914 if (m->m_pkthdr.rcvif != ifp) {
915 prev = m;
916 continue;
917 }
918
919 if (prev != NULL)
920 prev->m_nextpkt = m->m_nextpkt;
921 else
922 q->ifq_head = m->m_nextpkt;
923 if (q->ifq_tail == m)
924 q->ifq_tail = prev;
925 q->ifq_len--;
926
927 m->m_nextpkt = NULL;
928 m_freem(m);
929 IF_DROP(q);
930 }
931 }
932
933 /*
934 * Callback for a radix tree walk to delete all references to an
935 * ifnet.
936 */
937 static int
938 if_rt_walktree(struct rtentry *rt, void *v)
939 {
940 struct ifnet *ifp = (struct ifnet *)v;
941 int error;
942
943 if (rt->rt_ifp != ifp)
944 return 0;
945
946 /* Delete the entry. */
947 ++rt->rt_refcnt;
948 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
949 rt_mask(rt), rt->rt_flags, NULL);
950 KASSERT((rt->rt_flags & RTF_UP) == 0);
951 rt->rt_ifp = NULL;
952 rtfree(rt);
953 if (error != 0)
954 printf("%s: warning: unable to delete rtentry @ %p, "
955 "error = %d\n", ifp->if_xname, rt, error);
956 return ERESTART;
957 }
958
959 /*
960 * Create a clone network interface.
961 */
962 int
963 if_clone_create(const char *name)
964 {
965 struct if_clone *ifc;
966 int unit;
967
968 ifc = if_clone_lookup(name, &unit);
969 if (ifc == NULL)
970 return EINVAL;
971
972 if (ifunit(name) != NULL)
973 return EEXIST;
974
975 return (*ifc->ifc_create)(ifc, unit);
976 }
977
978 /*
979 * Destroy a clone network interface.
980 */
981 int
982 if_clone_destroy(const char *name)
983 {
984 struct if_clone *ifc;
985 struct ifnet *ifp;
986
987 ifc = if_clone_lookup(name, NULL);
988 if (ifc == NULL)
989 return EINVAL;
990
991 ifp = ifunit(name);
992 if (ifp == NULL)
993 return ENXIO;
994
995 if (ifc->ifc_destroy == NULL)
996 return EOPNOTSUPP;
997
998 return (*ifc->ifc_destroy)(ifp);
999 }
1000
1001 /*
1002 * Look up a network interface cloner.
1003 */
1004 static struct if_clone *
1005 if_clone_lookup(const char *name, int *unitp)
1006 {
1007 struct if_clone *ifc;
1008 const char *cp;
1009 char *dp, ifname[IFNAMSIZ + 3];
1010 int unit;
1011
1012 strcpy(ifname, "if_");
1013 /* separate interface name from unit */
1014 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1015 *cp && (*cp < '0' || *cp > '9');)
1016 *dp++ = *cp++;
1017
1018 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1019 return NULL; /* No name or unit number */
1020 *dp++ = '\0';
1021
1022 again:
1023 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1024 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1025 break;
1026 }
1027
1028 if (ifc == NULL) {
1029 if (*ifname == '\0' ||
1030 module_autoload(ifname, MODULE_CLASS_DRIVER))
1031 return NULL;
1032 *ifname = '\0';
1033 goto again;
1034 }
1035
1036 unit = 0;
1037 while (cp - name < IFNAMSIZ && *cp) {
1038 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1039 /* Bogus unit number. */
1040 return NULL;
1041 }
1042 unit = (unit * 10) + (*cp++ - '0');
1043 }
1044
1045 if (unitp != NULL)
1046 *unitp = unit;
1047 return ifc;
1048 }
1049
1050 /*
1051 * Register a network interface cloner.
1052 */
1053 void
1054 if_clone_attach(struct if_clone *ifc)
1055 {
1056
1057 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1058 if_cloners_count++;
1059 }
1060
1061 /*
1062 * Unregister a network interface cloner.
1063 */
1064 void
1065 if_clone_detach(struct if_clone *ifc)
1066 {
1067
1068 LIST_REMOVE(ifc, ifc_list);
1069 if_cloners_count--;
1070 }
1071
1072 /*
1073 * Provide list of interface cloners to userspace.
1074 */
1075 static int
1076 if_clone_list(struct if_clonereq *ifcr)
1077 {
1078 char outbuf[IFNAMSIZ], *dst;
1079 struct if_clone *ifc;
1080 int count, error = 0;
1081
1082 ifcr->ifcr_total = if_cloners_count;
1083 if ((dst = ifcr->ifcr_buffer) == NULL) {
1084 /* Just asking how many there are. */
1085 return 0;
1086 }
1087
1088 if (ifcr->ifcr_count < 0)
1089 return EINVAL;
1090
1091 count = (if_cloners_count < ifcr->ifcr_count) ?
1092 if_cloners_count : ifcr->ifcr_count;
1093
1094 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1095 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1096 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1097 if (outbuf[sizeof(outbuf) - 1] != '\0')
1098 return ENAMETOOLONG;
1099 error = copyout(outbuf, dst, sizeof(outbuf));
1100 if (error != 0)
1101 break;
1102 }
1103
1104 return error;
1105 }
1106
1107 void
1108 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1109 {
1110 ifa->ifa_ifp = ifp;
1111 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1112 IFAREF(ifa);
1113 }
1114
1115 void
1116 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1117 {
1118 KASSERT(ifa->ifa_ifp == ifp);
1119 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1120 IFAFREE(ifa);
1121 }
1122
1123 static inline int
1124 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1125 {
1126 return sockaddr_cmp(sa1, sa2) == 0;
1127 }
1128
1129 /*
1130 * Locate an interface based on a complete address.
1131 */
1132 /*ARGSUSED*/
1133 struct ifaddr *
1134 ifa_ifwithaddr(const struct sockaddr *addr)
1135 {
1136 struct ifnet *ifp;
1137 struct ifaddr *ifa;
1138
1139 IFNET_FOREACH(ifp) {
1140 if (ifp->if_output == if_nulloutput)
1141 continue;
1142 IFADDR_FOREACH(ifa, ifp) {
1143 if (ifa->ifa_addr->sa_family != addr->sa_family)
1144 continue;
1145 if (equal(addr, ifa->ifa_addr))
1146 return ifa;
1147 if ((ifp->if_flags & IFF_BROADCAST) &&
1148 ifa->ifa_broadaddr &&
1149 /* IP6 doesn't have broadcast */
1150 ifa->ifa_broadaddr->sa_len != 0 &&
1151 equal(ifa->ifa_broadaddr, addr))
1152 return ifa;
1153 }
1154 }
1155 return NULL;
1156 }
1157
1158 /*
1159 * Locate the point to point interface with a given destination address.
1160 */
1161 /*ARGSUSED*/
1162 struct ifaddr *
1163 ifa_ifwithdstaddr(const struct sockaddr *addr)
1164 {
1165 struct ifnet *ifp;
1166 struct ifaddr *ifa;
1167
1168 IFNET_FOREACH(ifp) {
1169 if (ifp->if_output == if_nulloutput)
1170 continue;
1171 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1172 continue;
1173 IFADDR_FOREACH(ifa, ifp) {
1174 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1175 ifa->ifa_dstaddr == NULL)
1176 continue;
1177 if (equal(addr, ifa->ifa_dstaddr))
1178 return ifa;
1179 }
1180 }
1181 return NULL;
1182 }
1183
1184 /*
1185 * Find an interface on a specific network. If many, choice
1186 * is most specific found.
1187 */
1188 struct ifaddr *
1189 ifa_ifwithnet(const struct sockaddr *addr)
1190 {
1191 struct ifnet *ifp;
1192 struct ifaddr *ifa;
1193 const struct sockaddr_dl *sdl;
1194 struct ifaddr *ifa_maybe = 0;
1195 u_int af = addr->sa_family;
1196 const char *addr_data = addr->sa_data, *cplim;
1197
1198 if (af == AF_LINK) {
1199 sdl = satocsdl(addr);
1200 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1201 ifindex2ifnet[sdl->sdl_index] &&
1202 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1203 return ifnet_addrs[sdl->sdl_index];
1204 }
1205 #ifdef NETATALK
1206 if (af == AF_APPLETALK) {
1207 const struct sockaddr_at *sat, *sat2;
1208 sat = (const struct sockaddr_at *)addr;
1209 IFNET_FOREACH(ifp) {
1210 if (ifp->if_output == if_nulloutput)
1211 continue;
1212 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1213 if (ifa == NULL)
1214 continue;
1215 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1216 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1217 return ifa; /* exact match */
1218 if (ifa_maybe == NULL) {
1219 /* else keep the if with the right range */
1220 ifa_maybe = ifa;
1221 }
1222 }
1223 return ifa_maybe;
1224 }
1225 #endif
1226 IFNET_FOREACH(ifp) {
1227 if (ifp->if_output == if_nulloutput)
1228 continue;
1229 IFADDR_FOREACH(ifa, ifp) {
1230 const char *cp, *cp2, *cp3;
1231
1232 if (ifa->ifa_addr->sa_family != af ||
1233 ifa->ifa_netmask == NULL)
1234 next: continue;
1235 cp = addr_data;
1236 cp2 = ifa->ifa_addr->sa_data;
1237 cp3 = ifa->ifa_netmask->sa_data;
1238 cplim = (const char *)ifa->ifa_netmask +
1239 ifa->ifa_netmask->sa_len;
1240 while (cp3 < cplim) {
1241 if ((*cp++ ^ *cp2++) & *cp3++) {
1242 /* want to continue for() loop */
1243 goto next;
1244 }
1245 }
1246 if (ifa_maybe == NULL ||
1247 rn_refines((void *)ifa->ifa_netmask,
1248 (void *)ifa_maybe->ifa_netmask))
1249 ifa_maybe = ifa;
1250 }
1251 }
1252 return ifa_maybe;
1253 }
1254
1255 /*
1256 * Find the interface of the addresss.
1257 */
1258 struct ifaddr *
1259 ifa_ifwithladdr(const struct sockaddr *addr)
1260 {
1261 struct ifaddr *ia;
1262
1263 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1264 (ia = ifa_ifwithnet(addr)))
1265 return ia;
1266 return NULL;
1267 }
1268
1269 /*
1270 * Find an interface using a specific address family
1271 */
1272 struct ifaddr *
1273 ifa_ifwithaf(int af)
1274 {
1275 struct ifnet *ifp;
1276 struct ifaddr *ifa;
1277
1278 IFNET_FOREACH(ifp) {
1279 if (ifp->if_output == if_nulloutput)
1280 continue;
1281 IFADDR_FOREACH(ifa, ifp) {
1282 if (ifa->ifa_addr->sa_family == af)
1283 return ifa;
1284 }
1285 }
1286 return NULL;
1287 }
1288
1289 /*
1290 * Find an interface address specific to an interface best matching
1291 * a given address.
1292 */
1293 struct ifaddr *
1294 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1295 {
1296 struct ifaddr *ifa;
1297 const char *cp, *cp2, *cp3;
1298 const char *cplim;
1299 struct ifaddr *ifa_maybe = 0;
1300 u_int af = addr->sa_family;
1301
1302 if (ifp->if_output == if_nulloutput)
1303 return NULL;
1304
1305 if (af >= AF_MAX)
1306 return NULL;
1307
1308 IFADDR_FOREACH(ifa, ifp) {
1309 if (ifa->ifa_addr->sa_family != af)
1310 continue;
1311 ifa_maybe = ifa;
1312 if (ifa->ifa_netmask == NULL) {
1313 if (equal(addr, ifa->ifa_addr) ||
1314 (ifa->ifa_dstaddr &&
1315 equal(addr, ifa->ifa_dstaddr)))
1316 return ifa;
1317 continue;
1318 }
1319 cp = addr->sa_data;
1320 cp2 = ifa->ifa_addr->sa_data;
1321 cp3 = ifa->ifa_netmask->sa_data;
1322 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1323 for (; cp3 < cplim; cp3++) {
1324 if ((*cp++ ^ *cp2++) & *cp3)
1325 break;
1326 }
1327 if (cp3 == cplim)
1328 return ifa;
1329 }
1330 return ifa_maybe;
1331 }
1332
1333 /*
1334 * Default action when installing a route with a Link Level gateway.
1335 * Lookup an appropriate real ifa to point to.
1336 * This should be moved to /sys/net/link.c eventually.
1337 */
1338 void
1339 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1340 {
1341 struct ifaddr *ifa;
1342 const struct sockaddr *dst;
1343 struct ifnet *ifp;
1344
1345 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1346 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1347 return;
1348 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1349 rt_replace_ifa(rt, ifa);
1350 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1351 ifa->ifa_rtrequest(cmd, rt, info);
1352 }
1353 }
1354
1355 /*
1356 * Handle a change in the interface link state.
1357 * XXX: We should listen to the routing socket in-kernel rather
1358 * than calling in6_if_link_* functions directly from here.
1359 */
1360 void
1361 if_link_state_change(struct ifnet *ifp, int link_state)
1362 {
1363 int s;
1364 #if defined(DEBUG) || defined(INET6)
1365 int old_link_state;
1366 #endif
1367
1368 s = splnet();
1369 if (ifp->if_link_state == link_state) {
1370 splx(s);
1371 return;
1372 }
1373
1374 #if defined(DEBUG) || defined(INET6)
1375 old_link_state = ifp->if_link_state;
1376 #endif
1377 ifp->if_link_state = link_state;
1378 #ifdef DEBUG
1379 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1380 link_state == LINK_STATE_UP ? "UP" :
1381 link_state == LINK_STATE_DOWN ? "DOWN" :
1382 "UNKNOWN",
1383 old_link_state == LINK_STATE_UP ? "UP" :
1384 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1385 "UNKNOWN");
1386 #endif
1387
1388 #ifdef INET6
1389 /*
1390 * When going from UNKNOWN to UP, we need to mark existing
1391 * IPv6 addresses as tentative and restart DAD as we may have
1392 * erroneously not found a duplicate.
1393 *
1394 * This needs to happen before rt_ifmsg to avoid a race where
1395 * listeners would have an address and expect it to work right
1396 * away.
1397 */
1398 if (in6_present && link_state == LINK_STATE_UP &&
1399 old_link_state == LINK_STATE_UNKNOWN)
1400 in6_if_link_down(ifp);
1401 #endif
1402
1403 /* Notify that the link state has changed. */
1404 rt_ifmsg(ifp);
1405
1406 #if NCARP > 0
1407 if (ifp->if_carp)
1408 carp_carpdev_state(ifp);
1409 #endif
1410
1411 #ifdef INET6
1412 if (in6_present) {
1413 if (link_state == LINK_STATE_DOWN)
1414 in6_if_link_down(ifp);
1415 else if (link_state == LINK_STATE_UP)
1416 in6_if_link_up(ifp);
1417 }
1418 #endif
1419
1420 splx(s);
1421 }
1422
1423 /*
1424 * Mark an interface down and notify protocols of
1425 * the transition.
1426 * NOTE: must be called at splsoftnet or equivalent.
1427 */
1428 void
1429 if_down(struct ifnet *ifp)
1430 {
1431 struct ifaddr *ifa;
1432
1433 ifp->if_flags &= ~IFF_UP;
1434 nanotime(&ifp->if_lastchange);
1435 IFADDR_FOREACH(ifa, ifp)
1436 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1437 IFQ_PURGE(&ifp->if_snd);
1438 #if NCARP > 0
1439 if (ifp->if_carp)
1440 carp_carpdev_state(ifp);
1441 #endif
1442 rt_ifmsg(ifp);
1443 #ifdef INET6
1444 if (in6_present)
1445 in6_if_down(ifp);
1446 #endif
1447 }
1448
1449 /*
1450 * Mark an interface up and notify protocols of
1451 * the transition.
1452 * NOTE: must be called at splsoftnet or equivalent.
1453 */
1454 void
1455 if_up(struct ifnet *ifp)
1456 {
1457 #ifdef notyet
1458 struct ifaddr *ifa;
1459 #endif
1460
1461 ifp->if_flags |= IFF_UP;
1462 nanotime(&ifp->if_lastchange);
1463 #ifdef notyet
1464 /* this has no effect on IP, and will kill all ISO connections XXX */
1465 IFADDR_FOREACH(ifa, ifp)
1466 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1467 #endif
1468 #if NCARP > 0
1469 if (ifp->if_carp)
1470 carp_carpdev_state(ifp);
1471 #endif
1472 rt_ifmsg(ifp);
1473 #ifdef INET6
1474 if (in6_present)
1475 in6_if_up(ifp);
1476 #endif
1477 }
1478
1479 /*
1480 * Handle interface watchdog timer routines. Called
1481 * from softclock, we decrement timers (if set) and
1482 * call the appropriate interface routine on expiration.
1483 */
1484 void
1485 if_slowtimo(void *arg)
1486 {
1487 struct ifnet *ifp;
1488 int s = splnet();
1489
1490 IFNET_FOREACH(ifp) {
1491 if (ifp->if_timer == 0 || --ifp->if_timer)
1492 continue;
1493 if (ifp->if_watchdog != NULL)
1494 (*ifp->if_watchdog)(ifp);
1495 }
1496 splx(s);
1497 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1498 }
1499
1500 /*
1501 * Set/clear promiscuous mode on interface ifp based on the truth value
1502 * of pswitch. The calls are reference counted so that only the first
1503 * "on" request actually has an effect, as does the final "off" request.
1504 * Results are undefined if the "off" and "on" requests are not matched.
1505 */
1506 int
1507 ifpromisc(struct ifnet *ifp, int pswitch)
1508 {
1509 int pcount, ret;
1510 short nflags;
1511
1512 pcount = ifp->if_pcount;
1513 if (pswitch) {
1514 /*
1515 * Allow the device to be "placed" into promiscuous
1516 * mode even if it is not configured up. It will
1517 * consult IFF_PROMISC when it is brought up.
1518 */
1519 if (ifp->if_pcount++ != 0)
1520 return 0;
1521 nflags = ifp->if_flags | IFF_PROMISC;
1522 } else {
1523 if (--ifp->if_pcount > 0)
1524 return 0;
1525 nflags = ifp->if_flags & ~IFF_PROMISC;
1526 }
1527 ret = if_flags_set(ifp, nflags);
1528 /* Restore interface state if not successful. */
1529 if (ret != 0) {
1530 ifp->if_pcount = pcount;
1531 }
1532 return ret;
1533 }
1534
1535 /*
1536 * Map interface name to
1537 * interface structure pointer.
1538 */
1539 struct ifnet *
1540 ifunit(const char *name)
1541 {
1542 struct ifnet *ifp;
1543 const char *cp = name;
1544 u_int unit = 0;
1545 u_int i;
1546
1547 /*
1548 * If the entire name is a number, treat it as an ifindex.
1549 */
1550 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1551 unit = unit * 10 + (*cp - '0');
1552 }
1553
1554 /*
1555 * If the number took all of the name, then it's a valid ifindex.
1556 */
1557 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1558 if (unit >= if_indexlim)
1559 return NULL;
1560 ifp = ifindex2ifnet[unit];
1561 if (ifp == NULL || ifp->if_output == if_nulloutput)
1562 return NULL;
1563 return ifp;
1564 }
1565
1566 IFNET_FOREACH(ifp) {
1567 if (ifp->if_output == if_nulloutput)
1568 continue;
1569 if (strcmp(ifp->if_xname, name) == 0)
1570 return ifp;
1571 }
1572 return NULL;
1573 }
1574
1575 ifnet_t *
1576 if_byindex(u_int idx)
1577 {
1578 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1579 }
1580
1581 /* common */
1582 int
1583 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1584 {
1585 int s;
1586 struct ifreq *ifr;
1587 struct ifcapreq *ifcr;
1588 struct ifdatareq *ifdr;
1589
1590 switch (cmd) {
1591 case SIOCSIFCAP:
1592 ifcr = data;
1593 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1594 return EINVAL;
1595
1596 if (ifcr->ifcr_capenable == ifp->if_capenable)
1597 return 0;
1598
1599 ifp->if_capenable = ifcr->ifcr_capenable;
1600
1601 /* Pre-compute the checksum flags mask. */
1602 ifp->if_csum_flags_tx = 0;
1603 ifp->if_csum_flags_rx = 0;
1604 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1605 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1606 }
1607 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1608 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1609 }
1610
1611 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1612 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1613 }
1614 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1615 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1616 }
1617
1618 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1619 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1620 }
1621 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1622 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1623 }
1624
1625 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1626 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1627 }
1628 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1629 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1630 }
1631
1632 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1633 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1634 }
1635 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1636 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1637 }
1638 if (ifp->if_flags & IFF_UP)
1639 return ENETRESET;
1640 return 0;
1641 case SIOCSIFFLAGS:
1642 ifr = data;
1643 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1644 s = splnet();
1645 if_down(ifp);
1646 splx(s);
1647 }
1648 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1649 s = splnet();
1650 if_up(ifp);
1651 splx(s);
1652 }
1653 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1654 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1655 break;
1656 case SIOCGIFFLAGS:
1657 ifr = data;
1658 ifr->ifr_flags = ifp->if_flags;
1659 break;
1660
1661 case SIOCGIFMETRIC:
1662 ifr = data;
1663 ifr->ifr_metric = ifp->if_metric;
1664 break;
1665
1666 case SIOCGIFMTU:
1667 ifr = data;
1668 ifr->ifr_mtu = ifp->if_mtu;
1669 break;
1670
1671 case SIOCGIFDLT:
1672 ifr = data;
1673 ifr->ifr_dlt = ifp->if_dlt;
1674 break;
1675
1676 case SIOCGIFCAP:
1677 ifcr = data;
1678 ifcr->ifcr_capabilities = ifp->if_capabilities;
1679 ifcr->ifcr_capenable = ifp->if_capenable;
1680 break;
1681
1682 case SIOCSIFMETRIC:
1683 ifr = data;
1684 ifp->if_metric = ifr->ifr_metric;
1685 break;
1686
1687 case SIOCGIFDATA:
1688 ifdr = data;
1689 ifdr->ifdr_data = ifp->if_data;
1690 break;
1691
1692 case SIOCGIFINDEX:
1693 ifr = data;
1694 ifr->ifr_index = ifp->if_index;
1695 break;
1696
1697 case SIOCZIFDATA:
1698 ifdr = data;
1699 ifdr->ifdr_data = ifp->if_data;
1700 /*
1701 * Assumes that the volatile counters that can be
1702 * zero'ed are at the end of if_data.
1703 */
1704 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1705 offsetof(struct if_data, ifi_ipackets));
1706 /*
1707 * The memset() clears to the bottm of if_data. In the area,
1708 * if_lastchange is included. Please be careful if new entry
1709 * will be added into if_data or rewite this.
1710 *
1711 * And also, update if_lastchnage.
1712 */
1713 getnanotime(&ifp->if_lastchange);
1714 break;
1715 case SIOCSIFMTU:
1716 ifr = data;
1717 if (ifp->if_mtu == ifr->ifr_mtu)
1718 break;
1719 ifp->if_mtu = ifr->ifr_mtu;
1720 /*
1721 * If the link MTU changed, do network layer specific procedure.
1722 */
1723 #ifdef INET6
1724 if (in6_present)
1725 nd6_setmtu(ifp);
1726 #endif
1727 return ENETRESET;
1728 default:
1729 return ENOTTY;
1730 }
1731 return 0;
1732 }
1733
1734 int
1735 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1736 {
1737 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1738 struct ifaddr *ifa;
1739 const struct sockaddr *any, *sa;
1740 union {
1741 struct sockaddr sa;
1742 struct sockaddr_storage ss;
1743 } u, v;
1744
1745 switch (cmd) {
1746 case SIOCSIFADDRPREF:
1747 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1748 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1749 NULL) != 0)
1750 return EPERM;
1751 case SIOCGIFADDRPREF:
1752 break;
1753 default:
1754 return EOPNOTSUPP;
1755 }
1756
1757 /* sanity checks */
1758 if (data == NULL || ifp == NULL) {
1759 panic("invalid argument to %s", __func__);
1760 /*NOTREACHED*/
1761 }
1762
1763 /* address must be specified on ADD and DELETE */
1764 sa = sstocsa(&ifap->ifap_addr);
1765 if (sa->sa_family != sofamily(so))
1766 return EINVAL;
1767 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1768 return EINVAL;
1769
1770 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1771
1772 IFADDR_FOREACH(ifa, ifp) {
1773 if (ifa->ifa_addr->sa_family != sa->sa_family)
1774 continue;
1775 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1776 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1777 break;
1778 }
1779 if (ifa == NULL)
1780 return EADDRNOTAVAIL;
1781
1782 switch (cmd) {
1783 case SIOCSIFADDRPREF:
1784 ifa->ifa_preference = ifap->ifap_preference;
1785 return 0;
1786 case SIOCGIFADDRPREF:
1787 /* fill in the if_laddrreq structure */
1788 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1789 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1790 ifap->ifap_preference = ifa->ifa_preference;
1791 return 0;
1792 default:
1793 return EOPNOTSUPP;
1794 }
1795 }
1796
1797 static void
1798 ifnet_lock_enter(struct ifnet_lock *il)
1799 {
1800 uint64_t *nenter;
1801
1802 /* Before trying to acquire the mutex, increase the count of threads
1803 * who have entered or who wait to enter the critical section.
1804 * Avoid one costly locked memory transaction by keeping a count for
1805 * each CPU.
1806 */
1807 nenter = percpu_getref(il->il_nenter);
1808 (*nenter)++;
1809 percpu_putref(il->il_nenter);
1810 mutex_enter(&il->il_lock);
1811 }
1812
1813 static void
1814 ifnet_lock_exit(struct ifnet_lock *il)
1815 {
1816 /* Increase the count of threads who have exited the critical
1817 * section. Increase while we still hold the lock.
1818 */
1819 il->il_nexit++;
1820 mutex_exit(&il->il_lock);
1821 }
1822
1823 /*
1824 * Interface ioctls.
1825 */
1826 static int
1827 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1828 {
1829 struct ifnet *ifp;
1830 struct ifreq *ifr;
1831 int error = 0;
1832 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1833 u_long ocmd = cmd;
1834 #endif
1835 short oif_flags;
1836 #ifdef COMPAT_OIFREQ
1837 struct ifreq ifrb;
1838 struct oifreq *oifr = NULL;
1839 #endif
1840
1841 switch (cmd) {
1842 #ifdef COMPAT_OIFREQ
1843 case OSIOCGIFCONF:
1844 case OOSIOCGIFCONF:
1845 return compat_ifconf(cmd, data);
1846 #endif
1847 #ifdef COMPAT_OIFDATA
1848 case OSIOCGIFDATA:
1849 case OSIOCZIFDATA:
1850 return compat_ifdatareq(l, cmd, data);
1851 #endif
1852 case SIOCGIFCONF:
1853 return ifconf(cmd, data);
1854 case SIOCINITIFADDR:
1855 return EPERM;
1856 }
1857
1858 #ifdef COMPAT_OIFREQ
1859 cmd = compat_cvtcmd(cmd);
1860 if (cmd != ocmd) {
1861 oifr = data;
1862 data = ifr = &ifrb;
1863 ifreqo2n(oifr, ifr);
1864 } else
1865 #endif
1866 ifr = data;
1867
1868 ifp = ifunit(ifr->ifr_name);
1869
1870 switch (cmd) {
1871 case SIOCIFCREATE:
1872 case SIOCIFDESTROY:
1873 if (l != NULL) {
1874 error = kauth_authorize_network(l->l_cred,
1875 KAUTH_NETWORK_INTERFACE,
1876 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1877 (void *)cmd, NULL);
1878 if (error != 0)
1879 return error;
1880 }
1881 return (cmd == SIOCIFCREATE) ?
1882 if_clone_create(ifr->ifr_name) :
1883 if_clone_destroy(ifr->ifr_name);
1884
1885 case SIOCIFGCLONERS:
1886 return if_clone_list((struct if_clonereq *)data);
1887 }
1888
1889 if (ifp == NULL)
1890 return ENXIO;
1891
1892 switch (cmd) {
1893 case SIOCALIFADDR:
1894 case SIOCDLIFADDR:
1895 case SIOCSIFADDRPREF:
1896 case SIOCSIFFLAGS:
1897 case SIOCSIFCAP:
1898 case SIOCSIFMETRIC:
1899 case SIOCZIFDATA:
1900 case SIOCSIFMTU:
1901 case SIOCSIFPHYADDR:
1902 case SIOCDIFPHYADDR:
1903 #ifdef INET6
1904 case SIOCSIFPHYADDR_IN6:
1905 #endif
1906 case SIOCSLIFPHYADDR:
1907 case SIOCADDMULTI:
1908 case SIOCDELMULTI:
1909 case SIOCSIFMEDIA:
1910 case SIOCSDRVSPEC:
1911 case SIOCG80211:
1912 case SIOCS80211:
1913 case SIOCS80211NWID:
1914 case SIOCS80211NWKEY:
1915 case SIOCS80211POWER:
1916 case SIOCS80211BSSID:
1917 case SIOCS80211CHANNEL:
1918 case SIOCSLINKSTR:
1919 if (l != NULL) {
1920 error = kauth_authorize_network(l->l_cred,
1921 KAUTH_NETWORK_INTERFACE,
1922 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1923 (void *)cmd, NULL);
1924 if (error != 0)
1925 return error;
1926 }
1927 }
1928
1929 oif_flags = ifp->if_flags;
1930
1931 ifnet_lock_enter(ifp->if_ioctl_lock);
1932 error = (*ifp->if_ioctl)(ifp, cmd, data);
1933 if (error != ENOTTY)
1934 ;
1935 else if (so->so_proto == NULL)
1936 error = EOPNOTSUPP;
1937 else {
1938 #ifdef COMPAT_OSOCK
1939 error = compat_ifioctl(so, ocmd, cmd, data, l);
1940 #else
1941 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1942 cmd, data, ifp);
1943 #endif
1944 }
1945
1946 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1947 #ifdef INET6
1948 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1949 int s = splnet();
1950 in6_if_up(ifp);
1951 splx(s);
1952 }
1953 #endif
1954 }
1955 #ifdef COMPAT_OIFREQ
1956 if (cmd != ocmd)
1957 ifreqn2o(oifr, ifr);
1958 #endif
1959
1960 ifnet_lock_exit(ifp->if_ioctl_lock);
1961 return error;
1962 }
1963
1964 /* This callback adds to the sum in `arg' the number of
1965 * threads on `ci' who have entered or who wait to enter the
1966 * critical section.
1967 */
1968 static void
1969 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1970 {
1971 uint64_t *sum = arg, *nenter = p;
1972
1973 *sum += *nenter;
1974 }
1975
1976 /* Return the number of threads who have entered or who wait
1977 * to enter the critical section on all CPUs.
1978 */
1979 static uint64_t
1980 ifnet_lock_entrances(struct ifnet_lock *il)
1981 {
1982 uint64_t sum = 0;
1983
1984 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1985
1986 return sum;
1987 }
1988
1989 static int
1990 ifioctl_attach(struct ifnet *ifp)
1991 {
1992 struct ifnet_lock *il;
1993
1994 /* If the driver has not supplied its own if_ioctl, then
1995 * supply the default.
1996 */
1997 if (ifp->if_ioctl == NULL)
1998 ifp->if_ioctl = ifioctl_common;
1999
2000 /* Create an ifnet_lock for synchronizing ifioctls. */
2001 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2002 return ENOMEM;
2003
2004 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2005 if (il->il_nenter == NULL) {
2006 kmem_free(il, sizeof(*il));
2007 return ENOMEM;
2008 }
2009
2010 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2011 cv_init(&il->il_emptied, ifp->if_xname);
2012
2013 ifp->if_ioctl_lock = il;
2014
2015 return 0;
2016 }
2017
2018 /*
2019 * This must not be called until after `ifp' has been withdrawn from the
2020 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2021 * ifunit().
2022 */
2023 static void
2024 ifioctl_detach(struct ifnet *ifp)
2025 {
2026 struct ifnet_lock *il;
2027
2028 il = ifp->if_ioctl_lock;
2029 mutex_enter(&il->il_lock);
2030 /* Install if_nullioctl to make sure that any thread that
2031 * subsequently enters the critical section will quit it
2032 * immediately and signal the condition variable that we
2033 * wait on, below.
2034 */
2035 ifp->if_ioctl = if_nullioctl;
2036 /* Sleep while threads are still in the critical section or
2037 * wait to enter it.
2038 */
2039 while (ifnet_lock_entrances(il) != il->il_nexit)
2040 cv_wait(&il->il_emptied, &il->il_lock);
2041 /* At this point, we are the only thread still in the critical
2042 * section, and no new thread can get a handle on the ifioctl
2043 * lock, so it is safe to free its memory.
2044 */
2045 mutex_exit(&il->il_lock);
2046 ifp->if_ioctl_lock = NULL;
2047 percpu_free(il->il_nenter, sizeof(uint64_t));
2048 il->il_nenter = NULL;
2049 cv_destroy(&il->il_emptied);
2050 mutex_destroy(&il->il_lock);
2051 kmem_free(il, sizeof(*il));
2052 }
2053
2054 /*
2055 * Return interface configuration
2056 * of system. List may be used
2057 * in later ioctl's (above) to get
2058 * other information.
2059 *
2060 * Each record is a struct ifreq. Before the addition of
2061 * sockaddr_storage, the API rule was that sockaddr flavors that did
2062 * not fit would extend beyond the struct ifreq, with the next struct
2063 * ifreq starting sa_len beyond the struct sockaddr. Because the
2064 * union in struct ifreq includes struct sockaddr_storage, every kind
2065 * of sockaddr must fit. Thus, there are no longer any overlength
2066 * records.
2067 *
2068 * Records are added to the user buffer if they fit, and ifc_len is
2069 * adjusted to the length that was written. Thus, the user is only
2070 * assured of getting the complete list if ifc_len on return is at
2071 * least sizeof(struct ifreq) less than it was on entry.
2072 *
2073 * If the user buffer pointer is NULL, this routine copies no data and
2074 * returns the amount of space that would be needed.
2075 *
2076 * Invariants:
2077 * ifrp points to the next part of the user's buffer to be used. If
2078 * ifrp != NULL, space holds the number of bytes remaining that we may
2079 * write at ifrp. Otherwise, space holds the number of bytes that
2080 * would have been written had there been adequate space.
2081 */
2082 /*ARGSUSED*/
2083 int
2084 ifconf(u_long cmd, void *data)
2085 {
2086 struct ifconf *ifc = (struct ifconf *)data;
2087 struct ifnet *ifp;
2088 struct ifaddr *ifa;
2089 struct ifreq ifr, *ifrp;
2090 int space, error = 0;
2091 const int sz = (int)sizeof(struct ifreq);
2092
2093 if ((ifrp = ifc->ifc_req) == NULL)
2094 space = 0;
2095 else
2096 space = ifc->ifc_len;
2097 IFNET_FOREACH(ifp) {
2098 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2099 sizeof(ifr.ifr_name));
2100 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2101 return ENAMETOOLONG;
2102 if (IFADDR_EMPTY(ifp)) {
2103 /* Interface with no addresses - send zero sockaddr. */
2104 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2105 if (ifrp == NULL) {
2106 space += sz;
2107 continue;
2108 }
2109 if (space >= sz) {
2110 error = copyout(&ifr, ifrp, sz);
2111 if (error != 0)
2112 return error;
2113 ifrp++;
2114 space -= sz;
2115 }
2116 }
2117
2118 IFADDR_FOREACH(ifa, ifp) {
2119 struct sockaddr *sa = ifa->ifa_addr;
2120 /* all sockaddrs must fit in sockaddr_storage */
2121 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2122
2123 if (ifrp == NULL) {
2124 space += sz;
2125 continue;
2126 }
2127 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2128 if (space >= sz) {
2129 error = copyout(&ifr, ifrp, sz);
2130 if (error != 0)
2131 return (error);
2132 ifrp++; space -= sz;
2133 }
2134 }
2135 }
2136 if (ifrp != NULL) {
2137 KASSERT(0 <= space && space <= ifc->ifc_len);
2138 ifc->ifc_len -= space;
2139 } else {
2140 KASSERT(space >= 0);
2141 ifc->ifc_len = space;
2142 }
2143 return (0);
2144 }
2145
2146 int
2147 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2148 {
2149 uint8_t len;
2150 #ifdef COMPAT_OIFREQ
2151 struct ifreq ifrb;
2152 struct oifreq *oifr = NULL;
2153 u_long ocmd = cmd;
2154 cmd = compat_cvtcmd(cmd);
2155 if (cmd != ocmd) {
2156 oifr = (struct oifreq *)(void *)ifr;
2157 ifr = &ifrb;
2158 ifreqo2n(oifr, ifr);
2159 len = sizeof(oifr->ifr_addr);
2160 } else
2161 #endif
2162 len = sizeof(ifr->ifr_ifru.ifru_space);
2163
2164 if (len < sa->sa_len)
2165 return EFBIG;
2166
2167 memset(&ifr->ifr_addr, 0, len);
2168 sockaddr_copy(&ifr->ifr_addr, len, sa);
2169
2170 #ifdef COMPAT_OIFREQ
2171 if (cmd != ocmd)
2172 ifreqn2o(oifr, ifr);
2173 #endif
2174 return 0;
2175 }
2176
2177 /*
2178 * Queue message on interface, and start output if interface
2179 * not yet active.
2180 */
2181 int
2182 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2183 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2184 {
2185 int len = m->m_pkthdr.len;
2186 int mflags = m->m_flags;
2187 int s = splnet();
2188 int error;
2189
2190 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2191 if (error != 0)
2192 goto out;
2193 ifp->if_obytes += len;
2194 if (mflags & M_MCAST)
2195 ifp->if_omcasts++;
2196 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2197 (*ifp->if_start)(ifp);
2198 out:
2199 splx(s);
2200 return error;
2201 }
2202
2203 /*
2204 * Queue message on interface, possibly using a second fast queue
2205 */
2206 int
2207 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2208 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2209 {
2210 int error = 0;
2211
2212 if (ifq != NULL
2213 #ifdef ALTQ
2214 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2215 #endif
2216 ) {
2217 if (IF_QFULL(ifq)) {
2218 IF_DROP(&ifp->if_snd);
2219 m_freem(m);
2220 if (error == 0)
2221 error = ENOBUFS;
2222 } else
2223 IF_ENQUEUE(ifq, m);
2224 } else
2225 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2226 if (error != 0) {
2227 ++ifp->if_oerrors;
2228 return error;
2229 }
2230 return 0;
2231 }
2232
2233 int
2234 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2235 {
2236 int rc;
2237
2238 if (ifp->if_initaddr != NULL)
2239 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2240 else if (src ||
2241 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2242 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2243
2244 return rc;
2245 }
2246
2247 int
2248 if_flags_set(ifnet_t *ifp, const short flags)
2249 {
2250 int rc;
2251
2252 if (ifp->if_setflags != NULL)
2253 rc = (*ifp->if_setflags)(ifp, flags);
2254 else {
2255 short cantflags, chgdflags;
2256 struct ifreq ifr;
2257
2258 chgdflags = ifp->if_flags ^ flags;
2259 cantflags = chgdflags & IFF_CANTCHANGE;
2260
2261 if (cantflags != 0)
2262 ifp->if_flags ^= cantflags;
2263
2264 /* Traditionally, we do not call if_ioctl after
2265 * setting/clearing only IFF_PROMISC if the interface
2266 * isn't IFF_UP. Uphold that tradition.
2267 */
2268 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2269 return 0;
2270
2271 memset(&ifr, 0, sizeof(ifr));
2272
2273 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2274 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2275
2276 if (rc != 0 && cantflags != 0)
2277 ifp->if_flags ^= cantflags;
2278 }
2279
2280 return rc;
2281 }
2282
2283 int
2284 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2285 {
2286 int rc;
2287 struct ifreq ifr;
2288
2289 if (ifp->if_mcastop != NULL)
2290 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2291 else {
2292 ifreq_setaddr(cmd, &ifr, sa);
2293 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2294 }
2295
2296 return rc;
2297 }
2298
2299 static void
2300 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2301 struct ifaltq *ifq)
2302 {
2303 const struct sysctlnode *cnode, *rnode;
2304
2305 if (sysctl_createv(clog, 0, NULL, &rnode,
2306 CTLFLAG_PERMANENT,
2307 CTLTYPE_NODE, "interfaces",
2308 SYSCTL_DESCR("Per-interface controls"),
2309 NULL, 0, NULL, 0,
2310 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2311 goto bad;
2312
2313 if (sysctl_createv(clog, 0, &rnode, &rnode,
2314 CTLFLAG_PERMANENT,
2315 CTLTYPE_NODE, ifname,
2316 SYSCTL_DESCR("Interface controls"),
2317 NULL, 0, NULL, 0,
2318 CTL_CREATE, CTL_EOL) != 0)
2319 goto bad;
2320
2321 if (sysctl_createv(clog, 0, &rnode, &rnode,
2322 CTLFLAG_PERMANENT,
2323 CTLTYPE_NODE, "sndq",
2324 SYSCTL_DESCR("Interface output queue controls"),
2325 NULL, 0, NULL, 0,
2326 CTL_CREATE, CTL_EOL) != 0)
2327 goto bad;
2328
2329 if (sysctl_createv(clog, 0, &rnode, &cnode,
2330 CTLFLAG_PERMANENT,
2331 CTLTYPE_INT, "len",
2332 SYSCTL_DESCR("Current output queue length"),
2333 NULL, 0, &ifq->ifq_len, 0,
2334 CTL_CREATE, CTL_EOL) != 0)
2335 goto bad;
2336
2337 if (sysctl_createv(clog, 0, &rnode, &cnode,
2338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2339 CTLTYPE_INT, "maxlen",
2340 SYSCTL_DESCR("Maximum allowed output queue length"),
2341 NULL, 0, &ifq->ifq_maxlen, 0,
2342 CTL_CREATE, CTL_EOL) != 0)
2343 goto bad;
2344
2345 if (sysctl_createv(clog, 0, &rnode, &cnode,
2346 CTLFLAG_PERMANENT,
2347 CTLTYPE_INT, "drops",
2348 SYSCTL_DESCR("Packets dropped due to full output queue"),
2349 NULL, 0, &ifq->ifq_drops, 0,
2350 CTL_CREATE, CTL_EOL) != 0)
2351 goto bad;
2352
2353 return;
2354 bad:
2355 printf("%s: could not attach sysctl nodes\n", ifname);
2356 return;
2357 }
2358
2359 #if defined(INET) || defined(INET6)
2360
2361 #define SYSCTL_NET_PKTQ(q, cn, c) \
2362 static int \
2363 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2364 { \
2365 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2366 }
2367
2368 #if defined(INET)
2369 static int
2370 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2371 {
2372 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2373 }
2374 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2375 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2376 #endif
2377
2378 #if defined(INET6)
2379 static int
2380 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2381 {
2382 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2383 }
2384 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2385 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2386 #endif
2387
2388 static void
2389 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2390 {
2391 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2392 const char *pfname = NULL, *ipname = NULL;
2393 int ipn = 0, qid = 0;
2394
2395 switch (pf) {
2396 #if defined(INET)
2397 case PF_INET:
2398 len_func = sysctl_net_ip_pktq_items;
2399 maxlen_func = sysctl_net_ip_pktq_maxlen;
2400 drops_func = sysctl_net_ip_pktq_drops;
2401 pfname = "inet", ipn = IPPROTO_IP;
2402 ipname = "ip", qid = IPCTL_IFQ;
2403 break;
2404 #endif
2405 #if defined(INET6)
2406 case PF_INET6:
2407 len_func = sysctl_net_ip6_pktq_items;
2408 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2409 drops_func = sysctl_net_ip6_pktq_drops;
2410 pfname = "inet6", ipn = IPPROTO_IPV6;
2411 ipname = "ip6", qid = IPV6CTL_IFQ;
2412 break;
2413 #endif
2414 default:
2415 KASSERT(false);
2416 }
2417
2418 sysctl_createv(clog, 0, NULL, NULL,
2419 CTLFLAG_PERMANENT,
2420 CTLTYPE_NODE, pfname, NULL,
2421 NULL, 0, NULL, 0,
2422 CTL_NET, pf, CTL_EOL);
2423 sysctl_createv(clog, 0, NULL, NULL,
2424 CTLFLAG_PERMANENT,
2425 CTLTYPE_NODE, ipname, NULL,
2426 NULL, 0, NULL, 0,
2427 CTL_NET, pf, ipn, CTL_EOL);
2428 sysctl_createv(clog, 0, NULL, NULL,
2429 CTLFLAG_PERMANENT,
2430 CTLTYPE_NODE, "ifq",
2431 SYSCTL_DESCR("Protocol input queue controls"),
2432 NULL, 0, NULL, 0,
2433 CTL_NET, pf, ipn, qid, CTL_EOL);
2434
2435 sysctl_createv(clog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT,
2437 CTLTYPE_INT, "len",
2438 SYSCTL_DESCR("Current input queue length"),
2439 len_func, 0, NULL, 0,
2440 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2441 sysctl_createv(clog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 CTLTYPE_INT, "maxlen",
2444 SYSCTL_DESCR("Maximum allowed input queue length"),
2445 maxlen_func, 0, NULL, 0,
2446 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2447 sysctl_createv(clog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT,
2449 CTLTYPE_INT, "drops",
2450 SYSCTL_DESCR("Packets dropped due to full input queue"),
2451 drops_func, 0, NULL, 0,
2452 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2453 }
2454 #endif /* INET || INET6 */
2455
2456 static int
2457 if_sdl_sysctl(SYSCTLFN_ARGS)
2458 {
2459 struct ifnet *ifp;
2460 const struct sockaddr_dl *sdl;
2461
2462 if (namelen != 1)
2463 return EINVAL;
2464
2465 ifp = if_byindex(name[0]);
2466 if (ifp == NULL)
2467 return ENODEV;
2468
2469 sdl = ifp->if_sadl;
2470 if (sdl == NULL) {
2471 *oldlenp = 0;
2472 return 0;
2473 }
2474
2475 if (oldp == NULL) {
2476 *oldlenp = sdl->sdl_alen;
2477 return 0;
2478 }
2479
2480 if (*oldlenp >= sdl->sdl_alen)
2481 *oldlenp = sdl->sdl_alen;
2482 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2483 }
2484
2485 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2486 {
2487 const struct sysctlnode *rnode = NULL;
2488
2489 sysctl_createv(clog, 0, NULL, &rnode,
2490 CTLFLAG_PERMANENT,
2491 CTLTYPE_NODE, "sdl",
2492 SYSCTL_DESCR("Get active link-layer address"),
2493 if_sdl_sysctl, 0, NULL, 0,
2494 CTL_NET, CTL_CREATE, CTL_EOL);
2495 }
2496