if.c revision 1.293 1 /* $NetBSD: if.c,v 1.293 2014/11/17 13:58:53 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.293 2014/11/17 13:58:53 pooka Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99 #include "opt_wlan.h"
100
101 #include <sys/param.h>
102 #include <sys/mbuf.h>
103 #include <sys/systm.h>
104 #include <sys/callout.h>
105 #include <sys/proc.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/kernel.h>
111 #include <sys/ioctl.h>
112 #include <sys/sysctl.h>
113 #include <sys/syslog.h>
114 #include <sys/kauth.h>
115 #include <sys/kmem.h>
116 #include <sys/xcall.h>
117
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_ether.h>
121 #include <net/if_media.h>
122 #include <net80211/ieee80211.h>
123 #include <net80211/ieee80211_ioctl.h>
124 #include <net/if_types.h>
125 #include <net/radix.h>
126 #include <net/route.h>
127 #include <net/netisr.h>
128 #include <sys/module.h>
129 #ifdef NETATALK
130 #include <netatalk/at_extern.h>
131 #include <netatalk/at.h>
132 #endif
133 #include <net/pfil.h>
134 #include <netinet/in.h>
135 #include <netinet/in_var.h>
136
137 #ifdef INET6
138 #include <netinet6/in6_var.h>
139 #include <netinet6/nd6.h>
140 #endif
141
142 #include "ether.h"
143 #include "fddi.h"
144 #include "token.h"
145
146 #include "carp.h"
147 #if NCARP > 0
148 #include <netinet/ip_carp.h>
149 #endif
150
151 #include <compat/sys/sockio.h>
152 #include <compat/sys/socket.h>
153
154 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
155 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
156
157 /*
158 * Global list of interfaces.
159 */
160 struct ifnet_head ifnet_list;
161 static ifnet_t ** ifindex2ifnet = NULL;
162
163 static u_int if_index = 1;
164 static size_t if_indexlim = 0;
165 static uint64_t index_gen;
166 static kmutex_t index_gen_mtx;
167 static kmutex_t if_clone_mtx;
168
169 static struct ifaddr ** ifnet_addrs = NULL;
170
171 static callout_t if_slowtimo_ch;
172
173 struct ifnet *lo0ifp;
174 int ifqmaxlen = IFQ_MAXLEN;
175
176 static int if_rt_walktree(struct rtentry *, void *);
177
178 static struct if_clone *if_clone_lookup(const char *, int *);
179 static int if_clone_list(struct if_clonereq *);
180
181 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
182 static int if_cloners_count;
183
184 /* Packet filtering hook for interfaces. */
185 pfil_head_t * if_pfil;
186
187 static kauth_listener_t if_listener;
188
189 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
190 static int ifioctl_attach(struct ifnet *);
191 static void ifioctl_detach(struct ifnet *);
192 static void ifnet_lock_enter(struct ifnet_lock *);
193 static void ifnet_lock_exit(struct ifnet_lock *);
194 static void if_detach_queues(struct ifnet *, struct ifqueue *);
195 static void sysctl_sndq_setup(struct sysctllog **, const char *,
196 struct ifaltq *);
197
198 #if defined(INET) || defined(INET6)
199 static void sysctl_net_pktq_setup(struct sysctllog **, int);
200 #endif
201
202 static int
203 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
204 void *arg0, void *arg1, void *arg2, void *arg3)
205 {
206 int result;
207 enum kauth_network_req req;
208
209 result = KAUTH_RESULT_DEFER;
210 req = (enum kauth_network_req)arg1;
211
212 if (action != KAUTH_NETWORK_INTERFACE)
213 return result;
214
215 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
216 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
217 result = KAUTH_RESULT_ALLOW;
218
219 return result;
220 }
221
222 /*
223 * Network interface utility routines.
224 *
225 * Routines with ifa_ifwith* names take sockaddr *'s as
226 * parameters.
227 */
228 void
229 ifinit(void)
230 {
231 #if defined(INET)
232 sysctl_net_pktq_setup(NULL, PF_INET);
233 #endif
234 #ifdef INET6
235 sysctl_net_pktq_setup(NULL, PF_INET6);
236 #endif
237
238 callout_init(&if_slowtimo_ch, 0);
239 if_slowtimo(NULL);
240
241 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
242 if_listener_cb, NULL);
243
244 /* interfaces are available, inform socket code */
245 ifioctl = doifioctl;
246 }
247
248 /*
249 * XXX Initialization before configure().
250 * XXX hack to get pfil_add_hook working in autoconf.
251 */
252 void
253 ifinit1(void)
254 {
255 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
256 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
257 TAILQ_INIT(&ifnet_list);
258 if_indexlim = 8;
259
260 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
261 KASSERT(if_pfil != NULL);
262
263 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
264 etherinit();
265 #endif
266 }
267
268 ifnet_t *
269 if_alloc(u_char type)
270 {
271 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
272 }
273
274 void
275 if_free(ifnet_t *ifp)
276 {
277 kmem_free(ifp, sizeof(ifnet_t));
278 }
279
280 void
281 if_initname(struct ifnet *ifp, const char *name, int unit)
282 {
283 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
284 "%s%d", name, unit);
285 }
286
287 /*
288 * Null routines used while an interface is going away. These routines
289 * just return an error.
290 */
291
292 int
293 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
294 const struct sockaddr *so, struct rtentry *rt)
295 {
296
297 return ENXIO;
298 }
299
300 void
301 if_nullinput(struct ifnet *ifp, struct mbuf *m)
302 {
303
304 /* Nothing. */
305 }
306
307 void
308 if_nullstart(struct ifnet *ifp)
309 {
310
311 /* Nothing. */
312 }
313
314 int
315 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
316 {
317
318 /* Wake ifioctl_detach(), who may wait for all threads to
319 * quit the critical section.
320 */
321 cv_signal(&ifp->if_ioctl_lock->il_emptied);
322 return ENXIO;
323 }
324
325 int
326 if_nullinit(struct ifnet *ifp)
327 {
328
329 return ENXIO;
330 }
331
332 void
333 if_nullstop(struct ifnet *ifp, int disable)
334 {
335
336 /* Nothing. */
337 }
338
339 void
340 if_nullwatchdog(struct ifnet *ifp)
341 {
342
343 /* Nothing. */
344 }
345
346 void
347 if_nulldrain(struct ifnet *ifp)
348 {
349
350 /* Nothing. */
351 }
352
353 void
354 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
355 {
356 struct ifaddr *ifa;
357 struct sockaddr_dl *sdl;
358
359 ifp->if_addrlen = addrlen;
360 if_alloc_sadl(ifp);
361 ifa = ifp->if_dl;
362 sdl = satosdl(ifa->ifa_addr);
363
364 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
365 if (factory) {
366 ifp->if_hwdl = ifp->if_dl;
367 ifaref(ifp->if_hwdl);
368 }
369 /* TBD routing socket */
370 }
371
372 struct ifaddr *
373 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
374 {
375 unsigned socksize, ifasize;
376 int addrlen, namelen;
377 struct sockaddr_dl *mask, *sdl;
378 struct ifaddr *ifa;
379
380 namelen = strlen(ifp->if_xname);
381 addrlen = ifp->if_addrlen;
382 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
383 ifasize = sizeof(*ifa) + 2 * socksize;
384 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
385
386 sdl = (struct sockaddr_dl *)(ifa + 1);
387 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
388
389 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
390 ifp->if_xname, namelen, NULL, addrlen);
391 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
392 memset(&mask->sdl_data[0], 0xff, namelen);
393 ifa->ifa_rtrequest = link_rtrequest;
394 ifa->ifa_addr = (struct sockaddr *)sdl;
395 ifa->ifa_netmask = (struct sockaddr *)mask;
396
397 *sdlp = sdl;
398
399 return ifa;
400 }
401
402 static void
403 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
404 {
405 const struct sockaddr_dl *sdl;
406 ifnet_addrs[ifp->if_index] = ifa;
407 ifaref(ifa);
408 ifp->if_dl = ifa;
409 ifaref(ifa);
410 sdl = satosdl(ifa->ifa_addr);
411 ifp->if_sadl = sdl;
412 }
413
414 /*
415 * Allocate the link level name for the specified interface. This
416 * is an attachment helper. It must be called after ifp->if_addrlen
417 * is initialized, which may not be the case when if_attach() is
418 * called.
419 */
420 void
421 if_alloc_sadl(struct ifnet *ifp)
422 {
423 struct ifaddr *ifa;
424 const struct sockaddr_dl *sdl;
425
426 /*
427 * If the interface already has a link name, release it
428 * now. This is useful for interfaces that can change
429 * link types, and thus switch link names often.
430 */
431 if (ifp->if_sadl != NULL)
432 if_free_sadl(ifp);
433
434 ifa = if_dl_create(ifp, &sdl);
435
436 ifa_insert(ifp, ifa);
437 if_sadl_setrefs(ifp, ifa);
438 }
439
440 static void
441 if_deactivate_sadl(struct ifnet *ifp)
442 {
443 struct ifaddr *ifa;
444
445 KASSERT(ifp->if_dl != NULL);
446
447 ifa = ifp->if_dl;
448
449 ifp->if_sadl = NULL;
450
451 ifnet_addrs[ifp->if_index] = NULL;
452 ifafree(ifa);
453 ifp->if_dl = NULL;
454 ifafree(ifa);
455 }
456
457 void
458 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
459 const struct sockaddr_dl *sdl)
460 {
461 int s;
462
463 s = splnet();
464
465 if_deactivate_sadl(ifp);
466
467 if_sadl_setrefs(ifp, ifa);
468 IFADDR_FOREACH(ifa, ifp)
469 rtinit(ifa, RTM_LLINFO_UPD, 0);
470 splx(s);
471 }
472
473 /*
474 * Free the link level name for the specified interface. This is
475 * a detach helper. This is called from if_detach() or from
476 * link layer type specific detach functions.
477 */
478 void
479 if_free_sadl(struct ifnet *ifp)
480 {
481 struct ifaddr *ifa;
482 int s;
483
484 ifa = ifnet_addrs[ifp->if_index];
485 if (ifa == NULL) {
486 KASSERT(ifp->if_sadl == NULL);
487 KASSERT(ifp->if_dl == NULL);
488 return;
489 }
490
491 KASSERT(ifp->if_sadl != NULL);
492 KASSERT(ifp->if_dl != NULL);
493
494 s = splnet();
495 rtinit(ifa, RTM_DELETE, 0);
496 ifa_remove(ifp, ifa);
497 if_deactivate_sadl(ifp);
498 if (ifp->if_hwdl == ifa) {
499 ifafree(ifa);
500 ifp->if_hwdl = NULL;
501 }
502 splx(s);
503 }
504
505 static void
506 if_getindex(ifnet_t *ifp)
507 {
508 bool hitlimit = false;
509
510 mutex_enter(&index_gen_mtx);
511 ifp->if_index_gen = index_gen++;
512 mutex_exit(&index_gen_mtx);
513
514 ifp->if_index = if_index;
515 if (ifindex2ifnet == NULL) {
516 if_index++;
517 goto skip;
518 }
519 while (if_byindex(ifp->if_index)) {
520 /*
521 * If we hit USHRT_MAX, we skip back to 0 since
522 * there are a number of places where the value
523 * of if_index or if_index itself is compared
524 * to or stored in an unsigned short. By
525 * jumping back, we won't botch those assignments
526 * or comparisons.
527 */
528 if (++if_index == 0) {
529 if_index = 1;
530 } else if (if_index == USHRT_MAX) {
531 /*
532 * However, if we have to jump back to
533 * zero *twice* without finding an empty
534 * slot in ifindex2ifnet[], then there
535 * there are too many (>65535) interfaces.
536 */
537 if (hitlimit) {
538 panic("too many interfaces");
539 }
540 hitlimit = true;
541 if_index = 1;
542 }
543 ifp->if_index = if_index;
544 }
545 skip:
546 /*
547 * We have some arrays that should be indexed by if_index.
548 * since if_index will grow dynamically, they should grow too.
549 * struct ifadd **ifnet_addrs
550 * struct ifnet **ifindex2ifnet
551 */
552 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
553 ifp->if_index >= if_indexlim) {
554 size_t m, n, oldlim;
555 void *q;
556
557 oldlim = if_indexlim;
558 while (ifp->if_index >= if_indexlim)
559 if_indexlim <<= 1;
560
561 /* grow ifnet_addrs */
562 m = oldlim * sizeof(struct ifaddr *);
563 n = if_indexlim * sizeof(struct ifaddr *);
564 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
565 if (ifnet_addrs != NULL) {
566 memcpy(q, ifnet_addrs, m);
567 free(ifnet_addrs, M_IFADDR);
568 }
569 ifnet_addrs = (struct ifaddr **)q;
570
571 /* grow ifindex2ifnet */
572 m = oldlim * sizeof(struct ifnet *);
573 n = if_indexlim * sizeof(struct ifnet *);
574 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
575 if (ifindex2ifnet != NULL) {
576 memcpy(q, ifindex2ifnet, m);
577 free(ifindex2ifnet, M_IFADDR);
578 }
579 ifindex2ifnet = (struct ifnet **)q;
580 }
581 ifindex2ifnet[ifp->if_index] = ifp;
582 }
583
584 /*
585 * Attach an interface to the list of "active" interfaces.
586 */
587 void
588 if_attach(ifnet_t *ifp)
589 {
590 KASSERT(if_indexlim > 0);
591 TAILQ_INIT(&ifp->if_addrlist);
592 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
593
594 if (ifioctl_attach(ifp) != 0)
595 panic("%s: ifioctl_attach() failed", __func__);
596
597 if_getindex(ifp);
598
599 /*
600 * Link level name is allocated later by a separate call to
601 * if_alloc_sadl().
602 */
603
604 if (ifp->if_snd.ifq_maxlen == 0)
605 ifp->if_snd.ifq_maxlen = ifqmaxlen;
606
607 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
608
609 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
610
611 ifp->if_link_state = LINK_STATE_UNKNOWN;
612
613 ifp->if_capenable = 0;
614 ifp->if_csum_flags_tx = 0;
615 ifp->if_csum_flags_rx = 0;
616
617 #ifdef ALTQ
618 ifp->if_snd.altq_type = 0;
619 ifp->if_snd.altq_disc = NULL;
620 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
621 ifp->if_snd.altq_tbr = NULL;
622 ifp->if_snd.altq_ifp = ifp;
623 #endif
624
625 #ifdef NET_MPSAFE
626 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
627 #else
628 ifp->if_snd.ifq_lock = NULL;
629 #endif
630
631 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
632 (void)pfil_run_hooks(if_pfil,
633 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
634
635 if (!STAILQ_EMPTY(&domains))
636 if_attachdomain1(ifp);
637
638 /* Announce the interface. */
639 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
640 }
641
642 void
643 if_attachdomain(void)
644 {
645 struct ifnet *ifp;
646 int s;
647
648 s = splnet();
649 IFNET_FOREACH(ifp)
650 if_attachdomain1(ifp);
651 splx(s);
652 }
653
654 void
655 if_attachdomain1(struct ifnet *ifp)
656 {
657 struct domain *dp;
658 int s;
659
660 s = splnet();
661
662 /* address family dependent data region */
663 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
664 DOMAIN_FOREACH(dp) {
665 if (dp->dom_ifattach != NULL)
666 ifp->if_afdata[dp->dom_family] =
667 (*dp->dom_ifattach)(ifp);
668 }
669
670 splx(s);
671 }
672
673 /*
674 * Deactivate an interface. This points all of the procedure
675 * handles at error stubs. May be called from interrupt context.
676 */
677 void
678 if_deactivate(struct ifnet *ifp)
679 {
680 int s;
681
682 s = splnet();
683
684 ifp->if_output = if_nulloutput;
685 ifp->if_input = if_nullinput;
686 ifp->if_start = if_nullstart;
687 ifp->if_ioctl = if_nullioctl;
688 ifp->if_init = if_nullinit;
689 ifp->if_stop = if_nullstop;
690 ifp->if_watchdog = if_nullwatchdog;
691 ifp->if_drain = if_nulldrain;
692
693 /* No more packets may be enqueued. */
694 ifp->if_snd.ifq_maxlen = 0;
695
696 splx(s);
697 }
698
699 void
700 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
701 {
702 struct ifaddr *ifa, *nifa;
703
704 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
705 if (ifa->ifa_addr->sa_family != family)
706 continue;
707 (*purgeaddr)(ifa);
708 }
709 }
710
711 /*
712 * Detach an interface from the list of "active" interfaces,
713 * freeing any resources as we go along.
714 *
715 * NOTE: This routine must be called with a valid thread context,
716 * as it may block.
717 */
718 void
719 if_detach(struct ifnet *ifp)
720 {
721 struct socket so;
722 struct ifaddr *ifa;
723 #ifdef IFAREF_DEBUG
724 struct ifaddr *last_ifa = NULL;
725 #endif
726 struct domain *dp;
727 const struct protosw *pr;
728 int s, i, family, purged;
729 uint64_t xc;
730
731 /*
732 * XXX It's kind of lame that we have to have the
733 * XXX socket structure...
734 */
735 memset(&so, 0, sizeof(so));
736
737 s = splnet();
738
739 /*
740 * Do an if_down() to give protocols a chance to do something.
741 */
742 if_down(ifp);
743
744 #ifdef ALTQ
745 if (ALTQ_IS_ENABLED(&ifp->if_snd))
746 altq_disable(&ifp->if_snd);
747 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
748 altq_detach(&ifp->if_snd);
749 #endif
750
751 if (ifp->if_snd.ifq_lock)
752 mutex_obj_free(ifp->if_snd.ifq_lock);
753
754 sysctl_teardown(&ifp->if_sysctl_log);
755
756 #if NCARP > 0
757 /* Remove the interface from any carp group it is a part of. */
758 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
759 carp_ifdetach(ifp);
760 #endif
761
762 /*
763 * Rip all the addresses off the interface. This should make
764 * all of the routes go away.
765 *
766 * pr_usrreq calls can remove an arbitrary number of ifaddrs
767 * from the list, including our "cursor", ifa. For safety,
768 * and to honor the TAILQ abstraction, I just restart the
769 * loop after each removal. Note that the loop will exit
770 * when all of the remaining ifaddrs belong to the AF_LINK
771 * family. I am counting on the historical fact that at
772 * least one pr_usrreq in each address domain removes at
773 * least one ifaddr.
774 */
775 again:
776 IFADDR_FOREACH(ifa, ifp) {
777 family = ifa->ifa_addr->sa_family;
778 #ifdef IFAREF_DEBUG
779 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
780 ifa, family, ifa->ifa_refcnt);
781 if (last_ifa != NULL && ifa == last_ifa)
782 panic("if_detach: loop detected");
783 last_ifa = ifa;
784 #endif
785 if (family == AF_LINK)
786 continue;
787 dp = pffinddomain(family);
788 #ifdef DIAGNOSTIC
789 if (dp == NULL)
790 panic("if_detach: no domain for AF %d",
791 family);
792 #endif
793 /*
794 * XXX These PURGEIF calls are redundant with the
795 * purge-all-families calls below, but are left in for
796 * now both to make a smaller change, and to avoid
797 * unplanned interactions with clearing of
798 * ifp->if_addrlist.
799 */
800 purged = 0;
801 for (pr = dp->dom_protosw;
802 pr < dp->dom_protoswNPROTOSW; pr++) {
803 so.so_proto = pr;
804 if (pr->pr_usrreqs) {
805 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
806 purged = 1;
807 }
808 }
809 if (purged == 0) {
810 /*
811 * XXX What's really the best thing to do
812 * XXX here? --thorpej (at) NetBSD.org
813 */
814 printf("if_detach: WARNING: AF %d not purged\n",
815 family);
816 ifa_remove(ifp, ifa);
817 }
818 goto again;
819 }
820
821 if_free_sadl(ifp);
822
823 /* Walk the routing table looking for stragglers. */
824 for (i = 0; i <= AF_MAX; i++) {
825 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
826 continue;
827 }
828
829 DOMAIN_FOREACH(dp) {
830 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
831 {
832 void *p = ifp->if_afdata[dp->dom_family];
833 if (p) {
834 ifp->if_afdata[dp->dom_family] = NULL;
835 (*dp->dom_ifdetach)(ifp, p);
836 }
837 }
838
839 /*
840 * One would expect multicast memberships (INET and
841 * INET6) on UDP sockets to be purged by the PURGEIF
842 * calls above, but if all addresses were removed from
843 * the interface prior to destruction, the calls will
844 * not be made (e.g. ppp, for which pppd(8) generally
845 * removes addresses before destroying the interface).
846 * Because there is no invariant that multicast
847 * memberships only exist for interfaces with IPv4
848 * addresses, we must call PURGEIF regardless of
849 * addresses. (Protocols which might store ifnet
850 * pointers are marked with PR_PURGEIF.)
851 */
852 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
853 so.so_proto = pr;
854 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
855 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
856 }
857 }
858
859 (void)pfil_run_hooks(if_pfil,
860 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
861 (void)pfil_head_destroy(ifp->if_pfil);
862
863 /* Announce that the interface is gone. */
864 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
865
866 ifindex2ifnet[ifp->if_index] = NULL;
867
868 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
869
870 ifioctl_detach(ifp);
871
872 /*
873 * remove packets that came from ifp, from software interrupt queues.
874 */
875 DOMAIN_FOREACH(dp) {
876 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
877 struct ifqueue *iq = dp->dom_ifqueues[i];
878 if (iq == NULL)
879 break;
880 dp->dom_ifqueues[i] = NULL;
881 if_detach_queues(ifp, iq);
882 }
883 }
884
885 /*
886 * IP queues have to be processed separately: net-queue barrier
887 * ensures that the packets are dequeued while a cross-call will
888 * ensure that the interrupts have completed. FIXME: not quite..
889 */
890 #ifdef INET
891 pktq_barrier(ip_pktq);
892 #endif
893 #ifdef INET6
894 if (in6_present)
895 pktq_barrier(ip6_pktq);
896 #endif
897 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
898 xc_wait(xc);
899
900 splx(s);
901 }
902
903 static void
904 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
905 {
906 struct mbuf *m, *prev, *next;
907
908 prev = NULL;
909 for (m = q->ifq_head; m != NULL; m = next) {
910 KASSERT((m->m_flags & M_PKTHDR) != 0);
911
912 next = m->m_nextpkt;
913 if (m->m_pkthdr.rcvif != ifp) {
914 prev = m;
915 continue;
916 }
917
918 if (prev != NULL)
919 prev->m_nextpkt = m->m_nextpkt;
920 else
921 q->ifq_head = m->m_nextpkt;
922 if (q->ifq_tail == m)
923 q->ifq_tail = prev;
924 q->ifq_len--;
925
926 m->m_nextpkt = NULL;
927 m_freem(m);
928 IF_DROP(q);
929 }
930 }
931
932 /*
933 * Callback for a radix tree walk to delete all references to an
934 * ifnet.
935 */
936 static int
937 if_rt_walktree(struct rtentry *rt, void *v)
938 {
939 struct ifnet *ifp = (struct ifnet *)v;
940 int error;
941
942 if (rt->rt_ifp != ifp)
943 return 0;
944
945 /* Delete the entry. */
946 ++rt->rt_refcnt;
947 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
948 rt_mask(rt), rt->rt_flags, NULL);
949 KASSERT((rt->rt_flags & RTF_UP) == 0);
950 rt->rt_ifp = NULL;
951 rtfree(rt);
952 if (error != 0)
953 printf("%s: warning: unable to delete rtentry @ %p, "
954 "error = %d\n", ifp->if_xname, rt, error);
955 return ERESTART;
956 }
957
958 /*
959 * Create a clone network interface.
960 */
961 int
962 if_clone_create(const char *name)
963 {
964 struct if_clone *ifc;
965 int unit;
966
967 ifc = if_clone_lookup(name, &unit);
968 if (ifc == NULL)
969 return EINVAL;
970
971 if (ifunit(name) != NULL)
972 return EEXIST;
973
974 return (*ifc->ifc_create)(ifc, unit);
975 }
976
977 /*
978 * Destroy a clone network interface.
979 */
980 int
981 if_clone_destroy(const char *name)
982 {
983 struct if_clone *ifc;
984 struct ifnet *ifp;
985
986 ifc = if_clone_lookup(name, NULL);
987 if (ifc == NULL)
988 return EINVAL;
989
990 ifp = ifunit(name);
991 if (ifp == NULL)
992 return ENXIO;
993
994 if (ifc->ifc_destroy == NULL)
995 return EOPNOTSUPP;
996
997 return (*ifc->ifc_destroy)(ifp);
998 }
999
1000 /*
1001 * Look up a network interface cloner.
1002 */
1003 static struct if_clone *
1004 if_clone_lookup(const char *name, int *unitp)
1005 {
1006 struct if_clone *ifc;
1007 const char *cp;
1008 char *dp, ifname[IFNAMSIZ + 3];
1009 int unit;
1010
1011 strcpy(ifname, "if_");
1012 /* separate interface name from unit */
1013 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1014 *cp && (*cp < '0' || *cp > '9');)
1015 *dp++ = *cp++;
1016
1017 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1018 return NULL; /* No name or unit number */
1019 *dp++ = '\0';
1020
1021 again:
1022 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1023 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1024 break;
1025 }
1026
1027 if (ifc == NULL) {
1028 if (*ifname == '\0' ||
1029 module_autoload(ifname, MODULE_CLASS_DRIVER))
1030 return NULL;
1031 *ifname = '\0';
1032 goto again;
1033 }
1034
1035 unit = 0;
1036 while (cp - name < IFNAMSIZ && *cp) {
1037 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1038 /* Bogus unit number. */
1039 return NULL;
1040 }
1041 unit = (unit * 10) + (*cp++ - '0');
1042 }
1043
1044 if (unitp != NULL)
1045 *unitp = unit;
1046 return ifc;
1047 }
1048
1049 /*
1050 * Register a network interface cloner.
1051 */
1052 void
1053 if_clone_attach(struct if_clone *ifc)
1054 {
1055
1056 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1057 if_cloners_count++;
1058 }
1059
1060 /*
1061 * Unregister a network interface cloner.
1062 */
1063 void
1064 if_clone_detach(struct if_clone *ifc)
1065 {
1066
1067 LIST_REMOVE(ifc, ifc_list);
1068 if_cloners_count--;
1069 }
1070
1071 /*
1072 * Provide list of interface cloners to userspace.
1073 */
1074 static int
1075 if_clone_list(struct if_clonereq *ifcr)
1076 {
1077 char outbuf[IFNAMSIZ], *dst;
1078 struct if_clone *ifc;
1079 int count, error = 0;
1080
1081 ifcr->ifcr_total = if_cloners_count;
1082 if ((dst = ifcr->ifcr_buffer) == NULL) {
1083 /* Just asking how many there are. */
1084 return 0;
1085 }
1086
1087 if (ifcr->ifcr_count < 0)
1088 return EINVAL;
1089
1090 count = (if_cloners_count < ifcr->ifcr_count) ?
1091 if_cloners_count : ifcr->ifcr_count;
1092
1093 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1094 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1095 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1096 if (outbuf[sizeof(outbuf) - 1] != '\0')
1097 return ENAMETOOLONG;
1098 error = copyout(outbuf, dst, sizeof(outbuf));
1099 if (error != 0)
1100 break;
1101 }
1102
1103 return error;
1104 }
1105
1106 void
1107 ifaref(struct ifaddr *ifa)
1108 {
1109 ifa->ifa_refcnt++;
1110 }
1111
1112 void
1113 ifafree(struct ifaddr *ifa)
1114 {
1115 KASSERT(ifa != NULL);
1116 KASSERT(ifa->ifa_refcnt > 0);
1117
1118 if (--ifa->ifa_refcnt == 0) {
1119 free(ifa, M_IFADDR);
1120 }
1121 }
1122
1123 void
1124 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1125 {
1126 ifa->ifa_ifp = ifp;
1127 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1128 ifaref(ifa);
1129 }
1130
1131 void
1132 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1133 {
1134 KASSERT(ifa->ifa_ifp == ifp);
1135 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1136 ifafree(ifa);
1137 }
1138
1139 static inline int
1140 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1141 {
1142 return sockaddr_cmp(sa1, sa2) == 0;
1143 }
1144
1145 /*
1146 * Locate an interface based on a complete address.
1147 */
1148 /*ARGSUSED*/
1149 struct ifaddr *
1150 ifa_ifwithaddr(const struct sockaddr *addr)
1151 {
1152 struct ifnet *ifp;
1153 struct ifaddr *ifa;
1154
1155 IFNET_FOREACH(ifp) {
1156 if (ifp->if_output == if_nulloutput)
1157 continue;
1158 IFADDR_FOREACH(ifa, ifp) {
1159 if (ifa->ifa_addr->sa_family != addr->sa_family)
1160 continue;
1161 if (equal(addr, ifa->ifa_addr))
1162 return ifa;
1163 if ((ifp->if_flags & IFF_BROADCAST) &&
1164 ifa->ifa_broadaddr &&
1165 /* IP6 doesn't have broadcast */
1166 ifa->ifa_broadaddr->sa_len != 0 &&
1167 equal(ifa->ifa_broadaddr, addr))
1168 return ifa;
1169 }
1170 }
1171 return NULL;
1172 }
1173
1174 /*
1175 * Locate the point to point interface with a given destination address.
1176 */
1177 /*ARGSUSED*/
1178 struct ifaddr *
1179 ifa_ifwithdstaddr(const struct sockaddr *addr)
1180 {
1181 struct ifnet *ifp;
1182 struct ifaddr *ifa;
1183
1184 IFNET_FOREACH(ifp) {
1185 if (ifp->if_output == if_nulloutput)
1186 continue;
1187 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1188 continue;
1189 IFADDR_FOREACH(ifa, ifp) {
1190 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1191 ifa->ifa_dstaddr == NULL)
1192 continue;
1193 if (equal(addr, ifa->ifa_dstaddr))
1194 return ifa;
1195 }
1196 }
1197 return NULL;
1198 }
1199
1200 /*
1201 * Find an interface on a specific network. If many, choice
1202 * is most specific found.
1203 */
1204 struct ifaddr *
1205 ifa_ifwithnet(const struct sockaddr *addr)
1206 {
1207 struct ifnet *ifp;
1208 struct ifaddr *ifa;
1209 const struct sockaddr_dl *sdl;
1210 struct ifaddr *ifa_maybe = 0;
1211 u_int af = addr->sa_family;
1212 const char *addr_data = addr->sa_data, *cplim;
1213
1214 if (af == AF_LINK) {
1215 sdl = satocsdl(addr);
1216 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1217 ifindex2ifnet[sdl->sdl_index] &&
1218 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1219 return ifnet_addrs[sdl->sdl_index];
1220 }
1221 #ifdef NETATALK
1222 if (af == AF_APPLETALK) {
1223 const struct sockaddr_at *sat, *sat2;
1224 sat = (const struct sockaddr_at *)addr;
1225 IFNET_FOREACH(ifp) {
1226 if (ifp->if_output == if_nulloutput)
1227 continue;
1228 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1229 if (ifa == NULL)
1230 continue;
1231 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1232 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1233 return ifa; /* exact match */
1234 if (ifa_maybe == NULL) {
1235 /* else keep the if with the right range */
1236 ifa_maybe = ifa;
1237 }
1238 }
1239 return ifa_maybe;
1240 }
1241 #endif
1242 IFNET_FOREACH(ifp) {
1243 if (ifp->if_output == if_nulloutput)
1244 continue;
1245 IFADDR_FOREACH(ifa, ifp) {
1246 const char *cp, *cp2, *cp3;
1247
1248 if (ifa->ifa_addr->sa_family != af ||
1249 ifa->ifa_netmask == NULL)
1250 next: continue;
1251 cp = addr_data;
1252 cp2 = ifa->ifa_addr->sa_data;
1253 cp3 = ifa->ifa_netmask->sa_data;
1254 cplim = (const char *)ifa->ifa_netmask +
1255 ifa->ifa_netmask->sa_len;
1256 while (cp3 < cplim) {
1257 if ((*cp++ ^ *cp2++) & *cp3++) {
1258 /* want to continue for() loop */
1259 goto next;
1260 }
1261 }
1262 if (ifa_maybe == NULL ||
1263 rn_refines((void *)ifa->ifa_netmask,
1264 (void *)ifa_maybe->ifa_netmask))
1265 ifa_maybe = ifa;
1266 }
1267 }
1268 return ifa_maybe;
1269 }
1270
1271 /*
1272 * Find the interface of the addresss.
1273 */
1274 struct ifaddr *
1275 ifa_ifwithladdr(const struct sockaddr *addr)
1276 {
1277 struct ifaddr *ia;
1278
1279 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1280 (ia = ifa_ifwithnet(addr)))
1281 return ia;
1282 return NULL;
1283 }
1284
1285 /*
1286 * Find an interface using a specific address family
1287 */
1288 struct ifaddr *
1289 ifa_ifwithaf(int af)
1290 {
1291 struct ifnet *ifp;
1292 struct ifaddr *ifa;
1293
1294 IFNET_FOREACH(ifp) {
1295 if (ifp->if_output == if_nulloutput)
1296 continue;
1297 IFADDR_FOREACH(ifa, ifp) {
1298 if (ifa->ifa_addr->sa_family == af)
1299 return ifa;
1300 }
1301 }
1302 return NULL;
1303 }
1304
1305 /*
1306 * Find an interface address specific to an interface best matching
1307 * a given address.
1308 */
1309 struct ifaddr *
1310 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1311 {
1312 struct ifaddr *ifa;
1313 const char *cp, *cp2, *cp3;
1314 const char *cplim;
1315 struct ifaddr *ifa_maybe = 0;
1316 u_int af = addr->sa_family;
1317
1318 if (ifp->if_output == if_nulloutput)
1319 return NULL;
1320
1321 if (af >= AF_MAX)
1322 return NULL;
1323
1324 IFADDR_FOREACH(ifa, ifp) {
1325 if (ifa->ifa_addr->sa_family != af)
1326 continue;
1327 ifa_maybe = ifa;
1328 if (ifa->ifa_netmask == NULL) {
1329 if (equal(addr, ifa->ifa_addr) ||
1330 (ifa->ifa_dstaddr &&
1331 equal(addr, ifa->ifa_dstaddr)))
1332 return ifa;
1333 continue;
1334 }
1335 cp = addr->sa_data;
1336 cp2 = ifa->ifa_addr->sa_data;
1337 cp3 = ifa->ifa_netmask->sa_data;
1338 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1339 for (; cp3 < cplim; cp3++) {
1340 if ((*cp++ ^ *cp2++) & *cp3)
1341 break;
1342 }
1343 if (cp3 == cplim)
1344 return ifa;
1345 }
1346 return ifa_maybe;
1347 }
1348
1349 /*
1350 * Default action when installing a route with a Link Level gateway.
1351 * Lookup an appropriate real ifa to point to.
1352 * This should be moved to /sys/net/link.c eventually.
1353 */
1354 void
1355 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1356 {
1357 struct ifaddr *ifa;
1358 const struct sockaddr *dst;
1359 struct ifnet *ifp;
1360
1361 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1362 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1363 return;
1364 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1365 rt_replace_ifa(rt, ifa);
1366 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1367 ifa->ifa_rtrequest(cmd, rt, info);
1368 }
1369 }
1370
1371 /*
1372 * Handle a change in the interface link state.
1373 * XXX: We should listen to the routing socket in-kernel rather
1374 * than calling in6_if_link_* functions directly from here.
1375 */
1376 void
1377 if_link_state_change(struct ifnet *ifp, int link_state)
1378 {
1379 int s;
1380 #if defined(DEBUG) || defined(INET6)
1381 int old_link_state;
1382 #endif
1383
1384 s = splnet();
1385 if (ifp->if_link_state == link_state) {
1386 splx(s);
1387 return;
1388 }
1389
1390 #if defined(DEBUG) || defined(INET6)
1391 old_link_state = ifp->if_link_state;
1392 #endif
1393 ifp->if_link_state = link_state;
1394 #ifdef DEBUG
1395 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1396 link_state == LINK_STATE_UP ? "UP" :
1397 link_state == LINK_STATE_DOWN ? "DOWN" :
1398 "UNKNOWN",
1399 old_link_state == LINK_STATE_UP ? "UP" :
1400 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1401 "UNKNOWN");
1402 #endif
1403
1404 #ifdef INET6
1405 /*
1406 * When going from UNKNOWN to UP, we need to mark existing
1407 * IPv6 addresses as tentative and restart DAD as we may have
1408 * erroneously not found a duplicate.
1409 *
1410 * This needs to happen before rt_ifmsg to avoid a race where
1411 * listeners would have an address and expect it to work right
1412 * away.
1413 */
1414 if (in6_present && link_state == LINK_STATE_UP &&
1415 old_link_state == LINK_STATE_UNKNOWN)
1416 in6_if_link_down(ifp);
1417 #endif
1418
1419 /* Notify that the link state has changed. */
1420 rt_ifmsg(ifp);
1421
1422 #if NCARP > 0
1423 if (ifp->if_carp)
1424 carp_carpdev_state(ifp);
1425 #endif
1426
1427 #ifdef INET6
1428 if (in6_present) {
1429 if (link_state == LINK_STATE_DOWN)
1430 in6_if_link_down(ifp);
1431 else if (link_state == LINK_STATE_UP)
1432 in6_if_link_up(ifp);
1433 }
1434 #endif
1435
1436 splx(s);
1437 }
1438
1439 /*
1440 * Mark an interface down and notify protocols of
1441 * the transition.
1442 * NOTE: must be called at splsoftnet or equivalent.
1443 */
1444 void
1445 if_down(struct ifnet *ifp)
1446 {
1447 struct ifaddr *ifa;
1448
1449 ifp->if_flags &= ~IFF_UP;
1450 nanotime(&ifp->if_lastchange);
1451 IFADDR_FOREACH(ifa, ifp)
1452 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1453 IFQ_PURGE(&ifp->if_snd);
1454 #if NCARP > 0
1455 if (ifp->if_carp)
1456 carp_carpdev_state(ifp);
1457 #endif
1458 rt_ifmsg(ifp);
1459 #ifdef INET6
1460 if (in6_present)
1461 in6_if_down(ifp);
1462 #endif
1463 }
1464
1465 /*
1466 * Mark an interface up and notify protocols of
1467 * the transition.
1468 * NOTE: must be called at splsoftnet or equivalent.
1469 */
1470 void
1471 if_up(struct ifnet *ifp)
1472 {
1473 #ifdef notyet
1474 struct ifaddr *ifa;
1475 #endif
1476
1477 ifp->if_flags |= IFF_UP;
1478 nanotime(&ifp->if_lastchange);
1479 #ifdef notyet
1480 /* this has no effect on IP, and will kill all ISO connections XXX */
1481 IFADDR_FOREACH(ifa, ifp)
1482 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1483 #endif
1484 #if NCARP > 0
1485 if (ifp->if_carp)
1486 carp_carpdev_state(ifp);
1487 #endif
1488 rt_ifmsg(ifp);
1489 #ifdef INET6
1490 if (in6_present)
1491 in6_if_up(ifp);
1492 #endif
1493 }
1494
1495 /*
1496 * Handle interface watchdog timer routines. Called
1497 * from softclock, we decrement timers (if set) and
1498 * call the appropriate interface routine on expiration.
1499 */
1500 void
1501 if_slowtimo(void *arg)
1502 {
1503 struct ifnet *ifp;
1504 int s = splnet();
1505
1506 IFNET_FOREACH(ifp) {
1507 if (ifp->if_timer == 0 || --ifp->if_timer)
1508 continue;
1509 if (ifp->if_watchdog != NULL)
1510 (*ifp->if_watchdog)(ifp);
1511 }
1512 splx(s);
1513 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1514 }
1515
1516 /*
1517 * Set/clear promiscuous mode on interface ifp based on the truth value
1518 * of pswitch. The calls are reference counted so that only the first
1519 * "on" request actually has an effect, as does the final "off" request.
1520 * Results are undefined if the "off" and "on" requests are not matched.
1521 */
1522 int
1523 ifpromisc(struct ifnet *ifp, int pswitch)
1524 {
1525 int pcount, ret;
1526 short nflags;
1527
1528 pcount = ifp->if_pcount;
1529 if (pswitch) {
1530 /*
1531 * Allow the device to be "placed" into promiscuous
1532 * mode even if it is not configured up. It will
1533 * consult IFF_PROMISC when it is brought up.
1534 */
1535 if (ifp->if_pcount++ != 0)
1536 return 0;
1537 nflags = ifp->if_flags | IFF_PROMISC;
1538 } else {
1539 if (--ifp->if_pcount > 0)
1540 return 0;
1541 nflags = ifp->if_flags & ~IFF_PROMISC;
1542 }
1543 ret = if_flags_set(ifp, nflags);
1544 /* Restore interface state if not successful. */
1545 if (ret != 0) {
1546 ifp->if_pcount = pcount;
1547 }
1548 return ret;
1549 }
1550
1551 /*
1552 * Map interface name to
1553 * interface structure pointer.
1554 */
1555 struct ifnet *
1556 ifunit(const char *name)
1557 {
1558 struct ifnet *ifp;
1559 const char *cp = name;
1560 u_int unit = 0;
1561 u_int i;
1562
1563 /*
1564 * If the entire name is a number, treat it as an ifindex.
1565 */
1566 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1567 unit = unit * 10 + (*cp - '0');
1568 }
1569
1570 /*
1571 * If the number took all of the name, then it's a valid ifindex.
1572 */
1573 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1574 if (unit >= if_indexlim)
1575 return NULL;
1576 ifp = ifindex2ifnet[unit];
1577 if (ifp == NULL || ifp->if_output == if_nulloutput)
1578 return NULL;
1579 return ifp;
1580 }
1581
1582 IFNET_FOREACH(ifp) {
1583 if (ifp->if_output == if_nulloutput)
1584 continue;
1585 if (strcmp(ifp->if_xname, name) == 0)
1586 return ifp;
1587 }
1588 return NULL;
1589 }
1590
1591 ifnet_t *
1592 if_byindex(u_int idx)
1593 {
1594 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1595 }
1596
1597 /* common */
1598 int
1599 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1600 {
1601 int s;
1602 struct ifreq *ifr;
1603 struct ifcapreq *ifcr;
1604 struct ifdatareq *ifdr;
1605
1606 switch (cmd) {
1607 case SIOCSIFCAP:
1608 ifcr = data;
1609 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1610 return EINVAL;
1611
1612 if (ifcr->ifcr_capenable == ifp->if_capenable)
1613 return 0;
1614
1615 ifp->if_capenable = ifcr->ifcr_capenable;
1616
1617 /* Pre-compute the checksum flags mask. */
1618 ifp->if_csum_flags_tx = 0;
1619 ifp->if_csum_flags_rx = 0;
1620 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1621 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1622 }
1623 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1624 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1625 }
1626
1627 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1628 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1629 }
1630 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1631 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1632 }
1633
1634 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1635 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1636 }
1637 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1638 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1639 }
1640
1641 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1642 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1643 }
1644 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1645 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1646 }
1647
1648 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1649 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1650 }
1651 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1652 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1653 }
1654 if (ifp->if_flags & IFF_UP)
1655 return ENETRESET;
1656 return 0;
1657 case SIOCSIFFLAGS:
1658 ifr = data;
1659 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1660 s = splnet();
1661 if_down(ifp);
1662 splx(s);
1663 }
1664 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1665 s = splnet();
1666 if_up(ifp);
1667 splx(s);
1668 }
1669 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1670 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1671 break;
1672 case SIOCGIFFLAGS:
1673 ifr = data;
1674 ifr->ifr_flags = ifp->if_flags;
1675 break;
1676
1677 case SIOCGIFMETRIC:
1678 ifr = data;
1679 ifr->ifr_metric = ifp->if_metric;
1680 break;
1681
1682 case SIOCGIFMTU:
1683 ifr = data;
1684 ifr->ifr_mtu = ifp->if_mtu;
1685 break;
1686
1687 case SIOCGIFDLT:
1688 ifr = data;
1689 ifr->ifr_dlt = ifp->if_dlt;
1690 break;
1691
1692 case SIOCGIFCAP:
1693 ifcr = data;
1694 ifcr->ifcr_capabilities = ifp->if_capabilities;
1695 ifcr->ifcr_capenable = ifp->if_capenable;
1696 break;
1697
1698 case SIOCSIFMETRIC:
1699 ifr = data;
1700 ifp->if_metric = ifr->ifr_metric;
1701 break;
1702
1703 case SIOCGIFDATA:
1704 ifdr = data;
1705 ifdr->ifdr_data = ifp->if_data;
1706 break;
1707
1708 case SIOCGIFINDEX:
1709 ifr = data;
1710 ifr->ifr_index = ifp->if_index;
1711 break;
1712
1713 case SIOCZIFDATA:
1714 ifdr = data;
1715 ifdr->ifdr_data = ifp->if_data;
1716 /*
1717 * Assumes that the volatile counters that can be
1718 * zero'ed are at the end of if_data.
1719 */
1720 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1721 offsetof(struct if_data, ifi_ipackets));
1722 /*
1723 * The memset() clears to the bottm of if_data. In the area,
1724 * if_lastchange is included. Please be careful if new entry
1725 * will be added into if_data or rewite this.
1726 *
1727 * And also, update if_lastchnage.
1728 */
1729 getnanotime(&ifp->if_lastchange);
1730 break;
1731 case SIOCSIFMTU:
1732 ifr = data;
1733 if (ifp->if_mtu == ifr->ifr_mtu)
1734 break;
1735 ifp->if_mtu = ifr->ifr_mtu;
1736 /*
1737 * If the link MTU changed, do network layer specific procedure.
1738 */
1739 #ifdef INET6
1740 if (in6_present)
1741 nd6_setmtu(ifp);
1742 #endif
1743 return ENETRESET;
1744 default:
1745 return ENOTTY;
1746 }
1747 return 0;
1748 }
1749
1750 int
1751 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1752 {
1753 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1754 struct ifaddr *ifa;
1755 const struct sockaddr *any, *sa;
1756 union {
1757 struct sockaddr sa;
1758 struct sockaddr_storage ss;
1759 } u, v;
1760
1761 switch (cmd) {
1762 case SIOCSIFADDRPREF:
1763 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1764 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1765 NULL) != 0)
1766 return EPERM;
1767 case SIOCGIFADDRPREF:
1768 break;
1769 default:
1770 return EOPNOTSUPP;
1771 }
1772
1773 /* sanity checks */
1774 if (data == NULL || ifp == NULL) {
1775 panic("invalid argument to %s", __func__);
1776 /*NOTREACHED*/
1777 }
1778
1779 /* address must be specified on ADD and DELETE */
1780 sa = sstocsa(&ifap->ifap_addr);
1781 if (sa->sa_family != sofamily(so))
1782 return EINVAL;
1783 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1784 return EINVAL;
1785
1786 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1787
1788 IFADDR_FOREACH(ifa, ifp) {
1789 if (ifa->ifa_addr->sa_family != sa->sa_family)
1790 continue;
1791 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1792 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1793 break;
1794 }
1795 if (ifa == NULL)
1796 return EADDRNOTAVAIL;
1797
1798 switch (cmd) {
1799 case SIOCSIFADDRPREF:
1800 ifa->ifa_preference = ifap->ifap_preference;
1801 return 0;
1802 case SIOCGIFADDRPREF:
1803 /* fill in the if_laddrreq structure */
1804 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1805 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1806 ifap->ifap_preference = ifa->ifa_preference;
1807 return 0;
1808 default:
1809 return EOPNOTSUPP;
1810 }
1811 }
1812
1813 static void
1814 ifnet_lock_enter(struct ifnet_lock *il)
1815 {
1816 uint64_t *nenter;
1817
1818 /* Before trying to acquire the mutex, increase the count of threads
1819 * who have entered or who wait to enter the critical section.
1820 * Avoid one costly locked memory transaction by keeping a count for
1821 * each CPU.
1822 */
1823 nenter = percpu_getref(il->il_nenter);
1824 (*nenter)++;
1825 percpu_putref(il->il_nenter);
1826 mutex_enter(&il->il_lock);
1827 }
1828
1829 static void
1830 ifnet_lock_exit(struct ifnet_lock *il)
1831 {
1832 /* Increase the count of threads who have exited the critical
1833 * section. Increase while we still hold the lock.
1834 */
1835 il->il_nexit++;
1836 mutex_exit(&il->il_lock);
1837 }
1838
1839 /*
1840 * Interface ioctls.
1841 */
1842 static int
1843 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1844 {
1845 struct ifnet *ifp;
1846 struct ifreq *ifr;
1847 int error = 0;
1848 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1849 u_long ocmd = cmd;
1850 #endif
1851 short oif_flags;
1852 #ifdef COMPAT_OIFREQ
1853 struct ifreq ifrb;
1854 struct oifreq *oifr = NULL;
1855 #endif
1856 int r;
1857
1858 switch (cmd) {
1859 #ifdef COMPAT_OIFREQ
1860 case OSIOCGIFCONF:
1861 case OOSIOCGIFCONF:
1862 return compat_ifconf(cmd, data);
1863 #endif
1864 #ifdef COMPAT_OIFDATA
1865 case OSIOCGIFDATA:
1866 case OSIOCZIFDATA:
1867 return compat_ifdatareq(l, cmd, data);
1868 #endif
1869 case SIOCGIFCONF:
1870 return ifconf(cmd, data);
1871 case SIOCINITIFADDR:
1872 return EPERM;
1873 }
1874
1875 #ifdef COMPAT_OIFREQ
1876 cmd = compat_cvtcmd(cmd);
1877 if (cmd != ocmd) {
1878 oifr = data;
1879 data = ifr = &ifrb;
1880 ifreqo2n(oifr, ifr);
1881 } else
1882 #endif
1883 ifr = data;
1884
1885 ifp = ifunit(ifr->ifr_name);
1886
1887 switch (cmd) {
1888 case SIOCIFCREATE:
1889 case SIOCIFDESTROY:
1890 if (l != NULL) {
1891 error = kauth_authorize_network(l->l_cred,
1892 KAUTH_NETWORK_INTERFACE,
1893 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1894 (void *)cmd, NULL);
1895 if (error != 0)
1896 return error;
1897 }
1898 mutex_enter(&if_clone_mtx);
1899 r = (cmd == SIOCIFCREATE) ?
1900 if_clone_create(ifr->ifr_name) :
1901 if_clone_destroy(ifr->ifr_name);
1902 mutex_exit(&if_clone_mtx);
1903 return r;
1904
1905 case SIOCIFGCLONERS:
1906 return if_clone_list((struct if_clonereq *)data);
1907 }
1908
1909 if (ifp == NULL)
1910 return ENXIO;
1911
1912 switch (cmd) {
1913 case SIOCALIFADDR:
1914 case SIOCDLIFADDR:
1915 case SIOCSIFADDRPREF:
1916 case SIOCSIFFLAGS:
1917 case SIOCSIFCAP:
1918 case SIOCSIFMETRIC:
1919 case SIOCZIFDATA:
1920 case SIOCSIFMTU:
1921 case SIOCSIFPHYADDR:
1922 case SIOCDIFPHYADDR:
1923 #ifdef INET6
1924 case SIOCSIFPHYADDR_IN6:
1925 #endif
1926 case SIOCSLIFPHYADDR:
1927 case SIOCADDMULTI:
1928 case SIOCDELMULTI:
1929 case SIOCSIFMEDIA:
1930 case SIOCSDRVSPEC:
1931 case SIOCG80211:
1932 case SIOCS80211:
1933 case SIOCS80211NWID:
1934 case SIOCS80211NWKEY:
1935 case SIOCS80211POWER:
1936 case SIOCS80211BSSID:
1937 case SIOCS80211CHANNEL:
1938 case SIOCSLINKSTR:
1939 if (l != NULL) {
1940 error = kauth_authorize_network(l->l_cred,
1941 KAUTH_NETWORK_INTERFACE,
1942 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1943 (void *)cmd, NULL);
1944 if (error != 0)
1945 return error;
1946 }
1947 }
1948
1949 oif_flags = ifp->if_flags;
1950
1951 ifnet_lock_enter(ifp->if_ioctl_lock);
1952 error = (*ifp->if_ioctl)(ifp, cmd, data);
1953 if (error != ENOTTY)
1954 ;
1955 else if (so->so_proto == NULL)
1956 error = EOPNOTSUPP;
1957 else {
1958 #ifdef COMPAT_OSOCK
1959 error = compat_ifioctl(so, ocmd, cmd, data, l);
1960 #else
1961 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1962 cmd, data, ifp);
1963 #endif
1964 }
1965
1966 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1967 #ifdef INET6
1968 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1969 int s = splnet();
1970 in6_if_up(ifp);
1971 splx(s);
1972 }
1973 #endif
1974 }
1975 #ifdef COMPAT_OIFREQ
1976 if (cmd != ocmd)
1977 ifreqn2o(oifr, ifr);
1978 #endif
1979
1980 ifnet_lock_exit(ifp->if_ioctl_lock);
1981 return error;
1982 }
1983
1984 /* This callback adds to the sum in `arg' the number of
1985 * threads on `ci' who have entered or who wait to enter the
1986 * critical section.
1987 */
1988 static void
1989 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1990 {
1991 uint64_t *sum = arg, *nenter = p;
1992
1993 *sum += *nenter;
1994 }
1995
1996 /* Return the number of threads who have entered or who wait
1997 * to enter the critical section on all CPUs.
1998 */
1999 static uint64_t
2000 ifnet_lock_entrances(struct ifnet_lock *il)
2001 {
2002 uint64_t sum = 0;
2003
2004 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2005
2006 return sum;
2007 }
2008
2009 static int
2010 ifioctl_attach(struct ifnet *ifp)
2011 {
2012 struct ifnet_lock *il;
2013
2014 /* If the driver has not supplied its own if_ioctl, then
2015 * supply the default.
2016 */
2017 if (ifp->if_ioctl == NULL)
2018 ifp->if_ioctl = ifioctl_common;
2019
2020 /* Create an ifnet_lock for synchronizing ifioctls. */
2021 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2022 return ENOMEM;
2023
2024 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2025 if (il->il_nenter == NULL) {
2026 kmem_free(il, sizeof(*il));
2027 return ENOMEM;
2028 }
2029
2030 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2031 cv_init(&il->il_emptied, ifp->if_xname);
2032
2033 ifp->if_ioctl_lock = il;
2034
2035 return 0;
2036 }
2037
2038 /*
2039 * This must not be called until after `ifp' has been withdrawn from the
2040 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2041 * ifunit().
2042 */
2043 static void
2044 ifioctl_detach(struct ifnet *ifp)
2045 {
2046 struct ifnet_lock *il;
2047
2048 il = ifp->if_ioctl_lock;
2049 mutex_enter(&il->il_lock);
2050 /* Install if_nullioctl to make sure that any thread that
2051 * subsequently enters the critical section will quit it
2052 * immediately and signal the condition variable that we
2053 * wait on, below.
2054 */
2055 ifp->if_ioctl = if_nullioctl;
2056 /* Sleep while threads are still in the critical section or
2057 * wait to enter it.
2058 */
2059 while (ifnet_lock_entrances(il) != il->il_nexit)
2060 cv_wait(&il->il_emptied, &il->il_lock);
2061 /* At this point, we are the only thread still in the critical
2062 * section, and no new thread can get a handle on the ifioctl
2063 * lock, so it is safe to free its memory.
2064 */
2065 mutex_exit(&il->il_lock);
2066 ifp->if_ioctl_lock = NULL;
2067 percpu_free(il->il_nenter, sizeof(uint64_t));
2068 il->il_nenter = NULL;
2069 cv_destroy(&il->il_emptied);
2070 mutex_destroy(&il->il_lock);
2071 kmem_free(il, sizeof(*il));
2072 }
2073
2074 /*
2075 * Return interface configuration
2076 * of system. List may be used
2077 * in later ioctl's (above) to get
2078 * other information.
2079 *
2080 * Each record is a struct ifreq. Before the addition of
2081 * sockaddr_storage, the API rule was that sockaddr flavors that did
2082 * not fit would extend beyond the struct ifreq, with the next struct
2083 * ifreq starting sa_len beyond the struct sockaddr. Because the
2084 * union in struct ifreq includes struct sockaddr_storage, every kind
2085 * of sockaddr must fit. Thus, there are no longer any overlength
2086 * records.
2087 *
2088 * Records are added to the user buffer if they fit, and ifc_len is
2089 * adjusted to the length that was written. Thus, the user is only
2090 * assured of getting the complete list if ifc_len on return is at
2091 * least sizeof(struct ifreq) less than it was on entry.
2092 *
2093 * If the user buffer pointer is NULL, this routine copies no data and
2094 * returns the amount of space that would be needed.
2095 *
2096 * Invariants:
2097 * ifrp points to the next part of the user's buffer to be used. If
2098 * ifrp != NULL, space holds the number of bytes remaining that we may
2099 * write at ifrp. Otherwise, space holds the number of bytes that
2100 * would have been written had there been adequate space.
2101 */
2102 /*ARGSUSED*/
2103 int
2104 ifconf(u_long cmd, void *data)
2105 {
2106 struct ifconf *ifc = (struct ifconf *)data;
2107 struct ifnet *ifp;
2108 struct ifaddr *ifa;
2109 struct ifreq ifr, *ifrp;
2110 int space, error = 0;
2111 const int sz = (int)sizeof(struct ifreq);
2112
2113 if ((ifrp = ifc->ifc_req) == NULL)
2114 space = 0;
2115 else
2116 space = ifc->ifc_len;
2117 IFNET_FOREACH(ifp) {
2118 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2119 sizeof(ifr.ifr_name));
2120 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2121 return ENAMETOOLONG;
2122 if (IFADDR_EMPTY(ifp)) {
2123 /* Interface with no addresses - send zero sockaddr. */
2124 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2125 if (ifrp == NULL) {
2126 space += sz;
2127 continue;
2128 }
2129 if (space >= sz) {
2130 error = copyout(&ifr, ifrp, sz);
2131 if (error != 0)
2132 return error;
2133 ifrp++;
2134 space -= sz;
2135 }
2136 }
2137
2138 IFADDR_FOREACH(ifa, ifp) {
2139 struct sockaddr *sa = ifa->ifa_addr;
2140 /* all sockaddrs must fit in sockaddr_storage */
2141 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2142
2143 if (ifrp == NULL) {
2144 space += sz;
2145 continue;
2146 }
2147 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2148 if (space >= sz) {
2149 error = copyout(&ifr, ifrp, sz);
2150 if (error != 0)
2151 return (error);
2152 ifrp++; space -= sz;
2153 }
2154 }
2155 }
2156 if (ifrp != NULL) {
2157 KASSERT(0 <= space && space <= ifc->ifc_len);
2158 ifc->ifc_len -= space;
2159 } else {
2160 KASSERT(space >= 0);
2161 ifc->ifc_len = space;
2162 }
2163 return (0);
2164 }
2165
2166 int
2167 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2168 {
2169 uint8_t len;
2170 #ifdef COMPAT_OIFREQ
2171 struct ifreq ifrb;
2172 struct oifreq *oifr = NULL;
2173 u_long ocmd = cmd;
2174 cmd = compat_cvtcmd(cmd);
2175 if (cmd != ocmd) {
2176 oifr = (struct oifreq *)(void *)ifr;
2177 ifr = &ifrb;
2178 ifreqo2n(oifr, ifr);
2179 len = sizeof(oifr->ifr_addr);
2180 } else
2181 #endif
2182 len = sizeof(ifr->ifr_ifru.ifru_space);
2183
2184 if (len < sa->sa_len)
2185 return EFBIG;
2186
2187 memset(&ifr->ifr_addr, 0, len);
2188 sockaddr_copy(&ifr->ifr_addr, len, sa);
2189
2190 #ifdef COMPAT_OIFREQ
2191 if (cmd != ocmd)
2192 ifreqn2o(oifr, ifr);
2193 #endif
2194 return 0;
2195 }
2196
2197 /*
2198 * Queue message on interface, and start output if interface
2199 * not yet active.
2200 */
2201 int
2202 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2203 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2204 {
2205 int len = m->m_pkthdr.len;
2206 int mflags = m->m_flags;
2207 int s = splnet();
2208 int error;
2209
2210 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2211 if (error != 0)
2212 goto out;
2213 ifp->if_obytes += len;
2214 if (mflags & M_MCAST)
2215 ifp->if_omcasts++;
2216 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2217 (*ifp->if_start)(ifp);
2218 out:
2219 splx(s);
2220 return error;
2221 }
2222
2223 /*
2224 * Queue message on interface, possibly using a second fast queue
2225 */
2226 int
2227 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2228 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2229 {
2230 int error = 0;
2231
2232 if (ifq != NULL
2233 #ifdef ALTQ
2234 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2235 #endif
2236 ) {
2237 if (IF_QFULL(ifq)) {
2238 IF_DROP(&ifp->if_snd);
2239 m_freem(m);
2240 if (error == 0)
2241 error = ENOBUFS;
2242 } else
2243 IF_ENQUEUE(ifq, m);
2244 } else
2245 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2246 if (error != 0) {
2247 ++ifp->if_oerrors;
2248 return error;
2249 }
2250 return 0;
2251 }
2252
2253 int
2254 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2255 {
2256 int rc;
2257
2258 if (ifp->if_initaddr != NULL)
2259 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2260 else if (src ||
2261 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2262 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2263
2264 return rc;
2265 }
2266
2267 int
2268 if_flags_set(ifnet_t *ifp, const short flags)
2269 {
2270 int rc;
2271
2272 if (ifp->if_setflags != NULL)
2273 rc = (*ifp->if_setflags)(ifp, flags);
2274 else {
2275 short cantflags, chgdflags;
2276 struct ifreq ifr;
2277
2278 chgdflags = ifp->if_flags ^ flags;
2279 cantflags = chgdflags & IFF_CANTCHANGE;
2280
2281 if (cantflags != 0)
2282 ifp->if_flags ^= cantflags;
2283
2284 /* Traditionally, we do not call if_ioctl after
2285 * setting/clearing only IFF_PROMISC if the interface
2286 * isn't IFF_UP. Uphold that tradition.
2287 */
2288 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2289 return 0;
2290
2291 memset(&ifr, 0, sizeof(ifr));
2292
2293 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2294 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2295
2296 if (rc != 0 && cantflags != 0)
2297 ifp->if_flags ^= cantflags;
2298 }
2299
2300 return rc;
2301 }
2302
2303 int
2304 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2305 {
2306 int rc;
2307 struct ifreq ifr;
2308
2309 if (ifp->if_mcastop != NULL)
2310 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2311 else {
2312 ifreq_setaddr(cmd, &ifr, sa);
2313 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2314 }
2315
2316 return rc;
2317 }
2318
2319 static void
2320 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2321 struct ifaltq *ifq)
2322 {
2323 const struct sysctlnode *cnode, *rnode;
2324
2325 if (sysctl_createv(clog, 0, NULL, &rnode,
2326 CTLFLAG_PERMANENT,
2327 CTLTYPE_NODE, "interfaces",
2328 SYSCTL_DESCR("Per-interface controls"),
2329 NULL, 0, NULL, 0,
2330 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2331 goto bad;
2332
2333 if (sysctl_createv(clog, 0, &rnode, &rnode,
2334 CTLFLAG_PERMANENT,
2335 CTLTYPE_NODE, ifname,
2336 SYSCTL_DESCR("Interface controls"),
2337 NULL, 0, NULL, 0,
2338 CTL_CREATE, CTL_EOL) != 0)
2339 goto bad;
2340
2341 if (sysctl_createv(clog, 0, &rnode, &rnode,
2342 CTLFLAG_PERMANENT,
2343 CTLTYPE_NODE, "sndq",
2344 SYSCTL_DESCR("Interface output queue controls"),
2345 NULL, 0, NULL, 0,
2346 CTL_CREATE, CTL_EOL) != 0)
2347 goto bad;
2348
2349 if (sysctl_createv(clog, 0, &rnode, &cnode,
2350 CTLFLAG_PERMANENT,
2351 CTLTYPE_INT, "len",
2352 SYSCTL_DESCR("Current output queue length"),
2353 NULL, 0, &ifq->ifq_len, 0,
2354 CTL_CREATE, CTL_EOL) != 0)
2355 goto bad;
2356
2357 if (sysctl_createv(clog, 0, &rnode, &cnode,
2358 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2359 CTLTYPE_INT, "maxlen",
2360 SYSCTL_DESCR("Maximum allowed output queue length"),
2361 NULL, 0, &ifq->ifq_maxlen, 0,
2362 CTL_CREATE, CTL_EOL) != 0)
2363 goto bad;
2364
2365 if (sysctl_createv(clog, 0, &rnode, &cnode,
2366 CTLFLAG_PERMANENT,
2367 CTLTYPE_INT, "drops",
2368 SYSCTL_DESCR("Packets dropped due to full output queue"),
2369 NULL, 0, &ifq->ifq_drops, 0,
2370 CTL_CREATE, CTL_EOL) != 0)
2371 goto bad;
2372
2373 return;
2374 bad:
2375 printf("%s: could not attach sysctl nodes\n", ifname);
2376 return;
2377 }
2378
2379 #if defined(INET) || defined(INET6)
2380
2381 #define SYSCTL_NET_PKTQ(q, cn, c) \
2382 static int \
2383 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2384 { \
2385 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2386 }
2387
2388 #if defined(INET)
2389 static int
2390 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2391 {
2392 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2393 }
2394 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2395 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2396 #endif
2397
2398 #if defined(INET6)
2399 static int
2400 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2401 {
2402 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2403 }
2404 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2405 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2406 #endif
2407
2408 static void
2409 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2410 {
2411 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2412 const char *pfname = NULL, *ipname = NULL;
2413 int ipn = 0, qid = 0;
2414
2415 switch (pf) {
2416 #if defined(INET)
2417 case PF_INET:
2418 len_func = sysctl_net_ip_pktq_items;
2419 maxlen_func = sysctl_net_ip_pktq_maxlen;
2420 drops_func = sysctl_net_ip_pktq_drops;
2421 pfname = "inet", ipn = IPPROTO_IP;
2422 ipname = "ip", qid = IPCTL_IFQ;
2423 break;
2424 #endif
2425 #if defined(INET6)
2426 case PF_INET6:
2427 len_func = sysctl_net_ip6_pktq_items;
2428 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2429 drops_func = sysctl_net_ip6_pktq_drops;
2430 pfname = "inet6", ipn = IPPROTO_IPV6;
2431 ipname = "ip6", qid = IPV6CTL_IFQ;
2432 break;
2433 #endif
2434 default:
2435 KASSERT(false);
2436 }
2437
2438 sysctl_createv(clog, 0, NULL, NULL,
2439 CTLFLAG_PERMANENT,
2440 CTLTYPE_NODE, pfname, NULL,
2441 NULL, 0, NULL, 0,
2442 CTL_NET, pf, CTL_EOL);
2443 sysctl_createv(clog, 0, NULL, NULL,
2444 CTLFLAG_PERMANENT,
2445 CTLTYPE_NODE, ipname, NULL,
2446 NULL, 0, NULL, 0,
2447 CTL_NET, pf, ipn, CTL_EOL);
2448 sysctl_createv(clog, 0, NULL, NULL,
2449 CTLFLAG_PERMANENT,
2450 CTLTYPE_NODE, "ifq",
2451 SYSCTL_DESCR("Protocol input queue controls"),
2452 NULL, 0, NULL, 0,
2453 CTL_NET, pf, ipn, qid, CTL_EOL);
2454
2455 sysctl_createv(clog, 0, NULL, NULL,
2456 CTLFLAG_PERMANENT,
2457 CTLTYPE_INT, "len",
2458 SYSCTL_DESCR("Current input queue length"),
2459 len_func, 0, NULL, 0,
2460 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2461 sysctl_createv(clog, 0, NULL, NULL,
2462 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2463 CTLTYPE_INT, "maxlen",
2464 SYSCTL_DESCR("Maximum allowed input queue length"),
2465 maxlen_func, 0, NULL, 0,
2466 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2467 sysctl_createv(clog, 0, NULL, NULL,
2468 CTLFLAG_PERMANENT,
2469 CTLTYPE_INT, "drops",
2470 SYSCTL_DESCR("Packets dropped due to full input queue"),
2471 drops_func, 0, NULL, 0,
2472 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2473 }
2474 #endif /* INET || INET6 */
2475
2476 static int
2477 if_sdl_sysctl(SYSCTLFN_ARGS)
2478 {
2479 struct ifnet *ifp;
2480 const struct sockaddr_dl *sdl;
2481
2482 if (namelen != 1)
2483 return EINVAL;
2484
2485 ifp = if_byindex(name[0]);
2486 if (ifp == NULL)
2487 return ENODEV;
2488
2489 sdl = ifp->if_sadl;
2490 if (sdl == NULL) {
2491 *oldlenp = 0;
2492 return 0;
2493 }
2494
2495 if (oldp == NULL) {
2496 *oldlenp = sdl->sdl_alen;
2497 return 0;
2498 }
2499
2500 if (*oldlenp >= sdl->sdl_alen)
2501 *oldlenp = sdl->sdl_alen;
2502 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2503 }
2504
2505 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2506 {
2507 const struct sysctlnode *rnode = NULL;
2508
2509 sysctl_createv(clog, 0, NULL, &rnode,
2510 CTLFLAG_PERMANENT,
2511 CTLTYPE_NODE, "sdl",
2512 SYSCTL_DESCR("Get active link-layer address"),
2513 if_sdl_sysctl, 0, NULL, 0,
2514 CTL_NET, CTL_CREATE, CTL_EOL);
2515 }
2516