Home | History | Annotate | Line # | Download | only in net
if.c revision 1.301
      1 /*	$NetBSD: if.c,v 1.301 2014/12/01 00:27:05 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.301 2014/12/01 00:27:05 christos Exp $");
     94 
     95 #include "opt_inet.h"
     96 
     97 #include "opt_atalk.h"
     98 #include "opt_natm.h"
     99 #include "opt_wlan.h"
    100 
    101 #include <sys/param.h>
    102 #include <sys/mbuf.h>
    103 #include <sys/systm.h>
    104 #include <sys/callout.h>
    105 #include <sys/proc.h>
    106 #include <sys/socket.h>
    107 #include <sys/socketvar.h>
    108 #include <sys/domain.h>
    109 #include <sys/protosw.h>
    110 #include <sys/kernel.h>
    111 #include <sys/ioctl.h>
    112 #include <sys/sysctl.h>
    113 #include <sys/syslog.h>
    114 #include <sys/kauth.h>
    115 #include <sys/kmem.h>
    116 #include <sys/xcall.h>
    117 
    118 #include <net/if.h>
    119 #include <net/if_dl.h>
    120 #include <net/if_ether.h>
    121 #include <net/if_media.h>
    122 #include <net80211/ieee80211.h>
    123 #include <net80211/ieee80211_ioctl.h>
    124 #include <net/if_types.h>
    125 #include <net/radix.h>
    126 #include <net/route.h>
    127 #include <net/netisr.h>
    128 #include <sys/module.h>
    129 #ifdef NETATALK
    130 #include <netatalk/at_extern.h>
    131 #include <netatalk/at.h>
    132 #endif
    133 #include <net/pfil.h>
    134 #include <netinet/in.h>
    135 #include <netinet/in_var.h>
    136 
    137 #ifdef INET6
    138 #include <netinet6/in6_var.h>
    139 #include <netinet6/nd6.h>
    140 #endif
    141 
    142 #include "ether.h"
    143 #include "fddi.h"
    144 #include "token.h"
    145 
    146 #include "carp.h"
    147 #if NCARP > 0
    148 #include <netinet/ip_carp.h>
    149 #endif
    150 
    151 #include <compat/sys/sockio.h>
    152 #include <compat/sys/socket.h>
    153 
    154 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    155 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    156 
    157 /*
    158  * Global list of interfaces.
    159  */
    160 struct ifnet_head		ifnet_list;
    161 static ifnet_t **		ifindex2ifnet = NULL;
    162 
    163 static u_int			if_index = 1;
    164 static size_t			if_indexlim = 0;
    165 static uint64_t			index_gen;
    166 static kmutex_t			index_gen_mtx;
    167 static kmutex_t			if_clone_mtx;
    168 
    169 static struct ifaddr **		ifnet_addrs = NULL;
    170 
    171 struct ifnet *lo0ifp;
    172 int	ifqmaxlen = IFQ_MAXLEN;
    173 
    174 static int	if_rt_walktree(struct rtentry *, void *);
    175 
    176 static struct if_clone *if_clone_lookup(const char *, int *);
    177 static int	if_clone_list(struct if_clonereq *);
    178 
    179 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    180 static int if_cloners_count;
    181 
    182 /* Packet filtering hook for interfaces. */
    183 pfil_head_t *	if_pfil;
    184 
    185 static kauth_listener_t if_listener;
    186 
    187 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    188 static int ifioctl_attach(struct ifnet *);
    189 static void ifioctl_detach(struct ifnet *);
    190 static void ifnet_lock_enter(struct ifnet_lock *);
    191 static void ifnet_lock_exit(struct ifnet_lock *);
    192 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    193 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    194     struct ifaltq *);
    195 static void if_slowtimo(void *);
    196 static void if_free_sadl(struct ifnet *);
    197 
    198 #if defined(INET) || defined(INET6)
    199 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    200 #endif
    201 
    202 static int
    203 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    204     void *arg0, void *arg1, void *arg2, void *arg3)
    205 {
    206 	int result;
    207 	enum kauth_network_req req;
    208 
    209 	result = KAUTH_RESULT_DEFER;
    210 	req = (enum kauth_network_req)arg1;
    211 
    212 	if (action != KAUTH_NETWORK_INTERFACE)
    213 		return result;
    214 
    215 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    216 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    217 		result = KAUTH_RESULT_ALLOW;
    218 
    219 	return result;
    220 }
    221 
    222 /*
    223  * Network interface utility routines.
    224  *
    225  * Routines with ifa_ifwith* names take sockaddr *'s as
    226  * parameters.
    227  */
    228 void
    229 ifinit(void)
    230 {
    231 #if defined(INET)
    232 	sysctl_net_pktq_setup(NULL, PF_INET);
    233 #endif
    234 #ifdef INET6
    235 	sysctl_net_pktq_setup(NULL, PF_INET6);
    236 #endif
    237 
    238 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    239 	    if_listener_cb, NULL);
    240 
    241 	/* interfaces are available, inform socket code */
    242 	ifioctl = doifioctl;
    243 }
    244 
    245 /*
    246  * XXX Initialization before configure().
    247  * XXX hack to get pfil_add_hook working in autoconf.
    248  */
    249 void
    250 ifinit1(void)
    251 {
    252 	mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
    253 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    254 	TAILQ_INIT(&ifnet_list);
    255 	if_indexlim = 8;
    256 
    257 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    258 	KASSERT(if_pfil != NULL);
    259 
    260 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    261 	etherinit();
    262 #endif
    263 }
    264 
    265 ifnet_t *
    266 if_alloc(u_char type)
    267 {
    268 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    269 }
    270 
    271 void
    272 if_free(ifnet_t *ifp)
    273 {
    274 	kmem_free(ifp, sizeof(ifnet_t));
    275 }
    276 
    277 void
    278 if_initname(struct ifnet *ifp, const char *name, int unit)
    279 {
    280 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    281 	    "%s%d", name, unit);
    282 }
    283 
    284 /*
    285  * Null routines used while an interface is going away.  These routines
    286  * just return an error.
    287  */
    288 
    289 int
    290 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    291     const struct sockaddr *so, struct rtentry *rt)
    292 {
    293 
    294 	return ENXIO;
    295 }
    296 
    297 void
    298 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    299 {
    300 
    301 	/* Nothing. */
    302 }
    303 
    304 void
    305 if_nullstart(struct ifnet *ifp)
    306 {
    307 
    308 	/* Nothing. */
    309 }
    310 
    311 int
    312 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    313 {
    314 
    315 	/* Wake ifioctl_detach(), who may wait for all threads to
    316 	 * quit the critical section.
    317 	 */
    318 	cv_signal(&ifp->if_ioctl_lock->il_emptied);
    319 	return ENXIO;
    320 }
    321 
    322 int
    323 if_nullinit(struct ifnet *ifp)
    324 {
    325 
    326 	return ENXIO;
    327 }
    328 
    329 void
    330 if_nullstop(struct ifnet *ifp, int disable)
    331 {
    332 
    333 	/* Nothing. */
    334 }
    335 
    336 void
    337 if_nullslowtimo(struct ifnet *ifp)
    338 {
    339 
    340 	/* Nothing. */
    341 }
    342 
    343 void
    344 if_nulldrain(struct ifnet *ifp)
    345 {
    346 
    347 	/* Nothing. */
    348 }
    349 
    350 void
    351 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    352 {
    353 	struct ifaddr *ifa;
    354 	struct sockaddr_dl *sdl;
    355 
    356 	ifp->if_addrlen = addrlen;
    357 	if_alloc_sadl(ifp);
    358 	ifa = ifp->if_dl;
    359 	sdl = satosdl(ifa->ifa_addr);
    360 
    361 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    362 	if (factory) {
    363 		ifp->if_hwdl = ifp->if_dl;
    364 		ifaref(ifp->if_hwdl);
    365 	}
    366 	/* TBD routing socket */
    367 }
    368 
    369 struct ifaddr *
    370 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    371 {
    372 	unsigned socksize, ifasize;
    373 	int addrlen, namelen;
    374 	struct sockaddr_dl *mask, *sdl;
    375 	struct ifaddr *ifa;
    376 
    377 	namelen = strlen(ifp->if_xname);
    378 	addrlen = ifp->if_addrlen;
    379 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    380 	ifasize = sizeof(*ifa) + 2 * socksize;
    381 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    382 
    383 	sdl = (struct sockaddr_dl *)(ifa + 1);
    384 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    385 
    386 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    387 	    ifp->if_xname, namelen, NULL, addrlen);
    388 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    389 	memset(&mask->sdl_data[0], 0xff, namelen);
    390 	ifa->ifa_rtrequest = link_rtrequest;
    391 	ifa->ifa_addr = (struct sockaddr *)sdl;
    392 	ifa->ifa_netmask = (struct sockaddr *)mask;
    393 
    394 	*sdlp = sdl;
    395 
    396 	return ifa;
    397 }
    398 
    399 static void
    400 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    401 {
    402 	const struct sockaddr_dl *sdl;
    403 	ifnet_addrs[ifp->if_index] = ifa;
    404 	ifaref(ifa);
    405 	ifp->if_dl = ifa;
    406 	ifaref(ifa);
    407 	sdl = satosdl(ifa->ifa_addr);
    408 	ifp->if_sadl = sdl;
    409 }
    410 
    411 /*
    412  * Allocate the link level name for the specified interface.  This
    413  * is an attachment helper.  It must be called after ifp->if_addrlen
    414  * is initialized, which may not be the case when if_attach() is
    415  * called.
    416  */
    417 void
    418 if_alloc_sadl(struct ifnet *ifp)
    419 {
    420 	struct ifaddr *ifa;
    421 	const struct sockaddr_dl *sdl;
    422 
    423 	/*
    424 	 * If the interface already has a link name, release it
    425 	 * now.  This is useful for interfaces that can change
    426 	 * link types, and thus switch link names often.
    427 	 */
    428 	if (ifp->if_sadl != NULL)
    429 		if_free_sadl(ifp);
    430 
    431 	ifa = if_dl_create(ifp, &sdl);
    432 
    433 	ifa_insert(ifp, ifa);
    434 	if_sadl_setrefs(ifp, ifa);
    435 }
    436 
    437 static void
    438 if_deactivate_sadl(struct ifnet *ifp)
    439 {
    440 	struct ifaddr *ifa;
    441 
    442 	KASSERT(ifp->if_dl != NULL);
    443 
    444 	ifa = ifp->if_dl;
    445 
    446 	ifp->if_sadl = NULL;
    447 
    448 	ifnet_addrs[ifp->if_index] = NULL;
    449 	ifafree(ifa);
    450 	ifp->if_dl = NULL;
    451 	ifafree(ifa);
    452 }
    453 
    454 void
    455 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
    456     const struct sockaddr_dl *sdl)
    457 {
    458 	int s;
    459 
    460 	s = splnet();
    461 
    462 	if_deactivate_sadl(ifp);
    463 
    464 	if_sadl_setrefs(ifp, ifa);
    465 	IFADDR_FOREACH(ifa, ifp)
    466 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    467 	splx(s);
    468 }
    469 
    470 /*
    471  * Free the link level name for the specified interface.  This is
    472  * a detach helper.  This is called from if_detach().
    473  */
    474 static void
    475 if_free_sadl(struct ifnet *ifp)
    476 {
    477 	struct ifaddr *ifa;
    478 	int s;
    479 
    480 	ifa = ifnet_addrs[ifp->if_index];
    481 	if (ifa == NULL) {
    482 		KASSERT(ifp->if_sadl == NULL);
    483 		KASSERT(ifp->if_dl == NULL);
    484 		return;
    485 	}
    486 
    487 	KASSERT(ifp->if_sadl != NULL);
    488 	KASSERT(ifp->if_dl != NULL);
    489 
    490 	s = splnet();
    491 	rtinit(ifa, RTM_DELETE, 0);
    492 	ifa_remove(ifp, ifa);
    493 	if_deactivate_sadl(ifp);
    494 	if (ifp->if_hwdl == ifa) {
    495 		ifafree(ifa);
    496 		ifp->if_hwdl = NULL;
    497 	}
    498 	splx(s);
    499 }
    500 
    501 static void
    502 if_getindex(ifnet_t *ifp)
    503 {
    504 	bool hitlimit = false;
    505 
    506 	mutex_enter(&index_gen_mtx);
    507 	ifp->if_index_gen = index_gen++;
    508 	mutex_exit(&index_gen_mtx);
    509 
    510 	ifp->if_index = if_index;
    511 	if (ifindex2ifnet == NULL) {
    512 		if_index++;
    513 		goto skip;
    514 	}
    515 	while (if_byindex(ifp->if_index)) {
    516 		/*
    517 		 * If we hit USHRT_MAX, we skip back to 0 since
    518 		 * there are a number of places where the value
    519 		 * of if_index or if_index itself is compared
    520 		 * to or stored in an unsigned short.  By
    521 		 * jumping back, we won't botch those assignments
    522 		 * or comparisons.
    523 		 */
    524 		if (++if_index == 0) {
    525 			if_index = 1;
    526 		} else if (if_index == USHRT_MAX) {
    527 			/*
    528 			 * However, if we have to jump back to
    529 			 * zero *twice* without finding an empty
    530 			 * slot in ifindex2ifnet[], then there
    531 			 * there are too many (>65535) interfaces.
    532 			 */
    533 			if (hitlimit) {
    534 				panic("too many interfaces");
    535 			}
    536 			hitlimit = true;
    537 			if_index = 1;
    538 		}
    539 		ifp->if_index = if_index;
    540 	}
    541 skip:
    542 	/*
    543 	 * We have some arrays that should be indexed by if_index.
    544 	 * since if_index will grow dynamically, they should grow too.
    545 	 *	struct ifadd **ifnet_addrs
    546 	 *	struct ifnet **ifindex2ifnet
    547 	 */
    548 	if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
    549 	    ifp->if_index >= if_indexlim) {
    550 		size_t m, n, oldlim;
    551 		void *q;
    552 
    553 		oldlim = if_indexlim;
    554 		while (ifp->if_index >= if_indexlim)
    555 			if_indexlim <<= 1;
    556 
    557 		/* grow ifnet_addrs */
    558 		m = oldlim * sizeof(struct ifaddr *);
    559 		n = if_indexlim * sizeof(struct ifaddr *);
    560 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    561 		if (ifnet_addrs != NULL) {
    562 			memcpy(q, ifnet_addrs, m);
    563 			free(ifnet_addrs, M_IFADDR);
    564 		}
    565 		ifnet_addrs = (struct ifaddr **)q;
    566 
    567 		/* grow ifindex2ifnet */
    568 		m = oldlim * sizeof(struct ifnet *);
    569 		n = if_indexlim * sizeof(struct ifnet *);
    570 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    571 		if (ifindex2ifnet != NULL) {
    572 			memcpy(q, ifindex2ifnet, m);
    573 			free(ifindex2ifnet, M_IFADDR);
    574 		}
    575 		ifindex2ifnet = (struct ifnet **)q;
    576 	}
    577 	ifindex2ifnet[ifp->if_index] = ifp;
    578 }
    579 
    580 /*
    581  * Attach an interface to the list of "active" interfaces.
    582  */
    583 void
    584 if_attach(ifnet_t *ifp)
    585 {
    586 	KASSERT(if_indexlim > 0);
    587 	TAILQ_INIT(&ifp->if_addrlist);
    588 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    589 
    590 	if (ifioctl_attach(ifp) != 0)
    591 		panic("%s: ifioctl_attach() failed", __func__);
    592 
    593 	if_getindex(ifp);
    594 
    595 	/*
    596 	 * Link level name is allocated later by a separate call to
    597 	 * if_alloc_sadl().
    598 	 */
    599 
    600 	if (ifp->if_snd.ifq_maxlen == 0)
    601 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    602 
    603 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    604 
    605 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    606 
    607 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    608 
    609 	ifp->if_capenable = 0;
    610 	ifp->if_csum_flags_tx = 0;
    611 	ifp->if_csum_flags_rx = 0;
    612 
    613 #ifdef ALTQ
    614 	ifp->if_snd.altq_type = 0;
    615 	ifp->if_snd.altq_disc = NULL;
    616 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    617 	ifp->if_snd.altq_tbr  = NULL;
    618 	ifp->if_snd.altq_ifp  = ifp;
    619 #endif
    620 
    621 #ifdef NET_MPSAFE
    622 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
    623 #else
    624 	ifp->if_snd.ifq_lock = NULL;
    625 #endif
    626 
    627 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    628 	(void)pfil_run_hooks(if_pfil,
    629 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
    630 
    631 	if (!STAILQ_EMPTY(&domains))
    632 		if_attachdomain1(ifp);
    633 
    634 	/* Announce the interface. */
    635 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    636 
    637 	if (ifp->if_slowtimo != NULL) {
    638 		ifp->if_slowtimo_ch =
    639 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    640 		callout_init(ifp->if_slowtimo_ch, 0);
    641 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    642 		if_slowtimo(ifp);
    643 	}
    644 }
    645 
    646 void
    647 if_attachdomain(void)
    648 {
    649 	struct ifnet *ifp;
    650 	int s;
    651 
    652 	s = splnet();
    653 	IFNET_FOREACH(ifp)
    654 		if_attachdomain1(ifp);
    655 	splx(s);
    656 }
    657 
    658 void
    659 if_attachdomain1(struct ifnet *ifp)
    660 {
    661 	struct domain *dp;
    662 	int s;
    663 
    664 	s = splnet();
    665 
    666 	/* address family dependent data region */
    667 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
    668 	DOMAIN_FOREACH(dp) {
    669 		if (dp->dom_ifattach != NULL)
    670 			ifp->if_afdata[dp->dom_family] =
    671 			    (*dp->dom_ifattach)(ifp);
    672 	}
    673 
    674 	splx(s);
    675 }
    676 
    677 /*
    678  * Deactivate an interface.  This points all of the procedure
    679  * handles at error stubs.  May be called from interrupt context.
    680  */
    681 void
    682 if_deactivate(struct ifnet *ifp)
    683 {
    684 	int s;
    685 
    686 	s = splnet();
    687 
    688 	ifp->if_output	 = if_nulloutput;
    689 	ifp->if_input	 = if_nullinput;
    690 	ifp->if_start	 = if_nullstart;
    691 	ifp->if_ioctl	 = if_nullioctl;
    692 	ifp->if_init	 = if_nullinit;
    693 	ifp->if_stop	 = if_nullstop;
    694 	ifp->if_slowtimo = if_nullslowtimo;
    695 	ifp->if_drain	 = if_nulldrain;
    696 
    697 	/* No more packets may be enqueued. */
    698 	ifp->if_snd.ifq_maxlen = 0;
    699 
    700 	splx(s);
    701 }
    702 
    703 void
    704 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
    705 {
    706 	struct ifaddr *ifa, *nifa;
    707 
    708 	IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
    709 		if (ifa->ifa_addr->sa_family != family)
    710 			continue;
    711 		(*purgeaddr)(ifa);
    712 	}
    713 }
    714 
    715 /*
    716  * Detach an interface from the list of "active" interfaces,
    717  * freeing any resources as we go along.
    718  *
    719  * NOTE: This routine must be called with a valid thread context,
    720  * as it may block.
    721  */
    722 void
    723 if_detach(struct ifnet *ifp)
    724 {
    725 	struct socket so;
    726 	struct ifaddr *ifa;
    727 #ifdef IFAREF_DEBUG
    728 	struct ifaddr *last_ifa = NULL;
    729 #endif
    730 	struct domain *dp;
    731 	const struct protosw *pr;
    732 	int s, i, family, purged;
    733 	uint64_t xc;
    734 
    735 	/*
    736 	 * XXX It's kind of lame that we have to have the
    737 	 * XXX socket structure...
    738 	 */
    739 	memset(&so, 0, sizeof(so));
    740 
    741 	s = splnet();
    742 
    743 	if (ifp->if_slowtimo != NULL) {
    744 		callout_halt(ifp->if_slowtimo_ch, NULL);
    745 		callout_destroy(ifp->if_slowtimo_ch);
    746 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
    747 	}
    748 
    749 	/*
    750 	 * Do an if_down() to give protocols a chance to do something.
    751 	 */
    752 	if_down(ifp);
    753 
    754 #ifdef ALTQ
    755 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
    756 		altq_disable(&ifp->if_snd);
    757 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
    758 		altq_detach(&ifp->if_snd);
    759 #endif
    760 
    761 	if (ifp->if_snd.ifq_lock)
    762 		mutex_obj_free(ifp->if_snd.ifq_lock);
    763 
    764 	sysctl_teardown(&ifp->if_sysctl_log);
    765 
    766 #if NCARP > 0
    767 	/* Remove the interface from any carp group it is a part of.  */
    768 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
    769 		carp_ifdetach(ifp);
    770 #endif
    771 
    772 	/*
    773 	 * Rip all the addresses off the interface.  This should make
    774 	 * all of the routes go away.
    775 	 *
    776 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
    777 	 * from the list, including our "cursor", ifa.  For safety,
    778 	 * and to honor the TAILQ abstraction, I just restart the
    779 	 * loop after each removal.  Note that the loop will exit
    780 	 * when all of the remaining ifaddrs belong to the AF_LINK
    781 	 * family.  I am counting on the historical fact that at
    782 	 * least one pr_usrreq in each address domain removes at
    783 	 * least one ifaddr.
    784 	 */
    785 again:
    786 	IFADDR_FOREACH(ifa, ifp) {
    787 		family = ifa->ifa_addr->sa_family;
    788 #ifdef IFAREF_DEBUG
    789 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
    790 		    ifa, family, ifa->ifa_refcnt);
    791 		if (last_ifa != NULL && ifa == last_ifa)
    792 			panic("if_detach: loop detected");
    793 		last_ifa = ifa;
    794 #endif
    795 		if (family == AF_LINK)
    796 			continue;
    797 		dp = pffinddomain(family);
    798 #ifdef DIAGNOSTIC
    799 		if (dp == NULL)
    800 			panic("if_detach: no domain for AF %d",
    801 			    family);
    802 #endif
    803 		/*
    804 		 * XXX These PURGEIF calls are redundant with the
    805 		 * purge-all-families calls below, but are left in for
    806 		 * now both to make a smaller change, and to avoid
    807 		 * unplanned interactions with clearing of
    808 		 * ifp->if_addrlist.
    809 		 */
    810 		purged = 0;
    811 		for (pr = dp->dom_protosw;
    812 		     pr < dp->dom_protoswNPROTOSW; pr++) {
    813 			so.so_proto = pr;
    814 			if (pr->pr_usrreqs) {
    815 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
    816 				purged = 1;
    817 			}
    818 		}
    819 		if (purged == 0) {
    820 			/*
    821 			 * XXX What's really the best thing to do
    822 			 * XXX here?  --thorpej (at) NetBSD.org
    823 			 */
    824 			printf("if_detach: WARNING: AF %d not purged\n",
    825 			    family);
    826 			ifa_remove(ifp, ifa);
    827 		}
    828 		goto again;
    829 	}
    830 
    831 	if_free_sadl(ifp);
    832 
    833 	/* Walk the routing table looking for stragglers. */
    834 	for (i = 0; i <= AF_MAX; i++) {
    835 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
    836 			continue;
    837 	}
    838 
    839 	DOMAIN_FOREACH(dp) {
    840 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
    841 		{
    842 			void *p = ifp->if_afdata[dp->dom_family];
    843 			if (p) {
    844 				ifp->if_afdata[dp->dom_family] = NULL;
    845 				(*dp->dom_ifdetach)(ifp, p);
    846 			}
    847 		}
    848 
    849 		/*
    850 		 * One would expect multicast memberships (INET and
    851 		 * INET6) on UDP sockets to be purged by the PURGEIF
    852 		 * calls above, but if all addresses were removed from
    853 		 * the interface prior to destruction, the calls will
    854 		 * not be made (e.g. ppp, for which pppd(8) generally
    855 		 * removes addresses before destroying the interface).
    856 		 * Because there is no invariant that multicast
    857 		 * memberships only exist for interfaces with IPv4
    858 		 * addresses, we must call PURGEIF regardless of
    859 		 * addresses.  (Protocols which might store ifnet
    860 		 * pointers are marked with PR_PURGEIF.)
    861 		 */
    862 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
    863 			so.so_proto = pr;
    864 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
    865 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
    866 		}
    867 	}
    868 
    869 	(void)pfil_run_hooks(if_pfil,
    870 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
    871 	(void)pfil_head_destroy(ifp->if_pfil);
    872 
    873 	/* Announce that the interface is gone. */
    874 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
    875 
    876 	ifindex2ifnet[ifp->if_index] = NULL;
    877 
    878 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
    879 
    880 	ifioctl_detach(ifp);
    881 
    882 	/*
    883 	 * remove packets that came from ifp, from software interrupt queues.
    884 	 */
    885 	DOMAIN_FOREACH(dp) {
    886 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
    887 			struct ifqueue *iq = dp->dom_ifqueues[i];
    888 			if (iq == NULL)
    889 				break;
    890 			dp->dom_ifqueues[i] = NULL;
    891 			if_detach_queues(ifp, iq);
    892 		}
    893 	}
    894 
    895 	/*
    896 	 * IP queues have to be processed separately: net-queue barrier
    897 	 * ensures that the packets are dequeued while a cross-call will
    898 	 * ensure that the interrupts have completed. FIXME: not quite..
    899 	 */
    900 #ifdef INET
    901 	pktq_barrier(ip_pktq);
    902 #endif
    903 #ifdef INET6
    904 	if (in6_present)
    905 		pktq_barrier(ip6_pktq);
    906 #endif
    907 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    908 	xc_wait(xc);
    909 
    910 	splx(s);
    911 }
    912 
    913 static void
    914 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
    915 {
    916 	struct mbuf *m, *prev, *next;
    917 
    918 	prev = NULL;
    919 	for (m = q->ifq_head; m != NULL; m = next) {
    920 		KASSERT((m->m_flags & M_PKTHDR) != 0);
    921 
    922 		next = m->m_nextpkt;
    923 		if (m->m_pkthdr.rcvif != ifp) {
    924 			prev = m;
    925 			continue;
    926 		}
    927 
    928 		if (prev != NULL)
    929 			prev->m_nextpkt = m->m_nextpkt;
    930 		else
    931 			q->ifq_head = m->m_nextpkt;
    932 		if (q->ifq_tail == m)
    933 			q->ifq_tail = prev;
    934 		q->ifq_len--;
    935 
    936 		m->m_nextpkt = NULL;
    937 		m_freem(m);
    938 		IF_DROP(q);
    939 	}
    940 }
    941 
    942 /*
    943  * Callback for a radix tree walk to delete all references to an
    944  * ifnet.
    945  */
    946 static int
    947 if_rt_walktree(struct rtentry *rt, void *v)
    948 {
    949 	struct ifnet *ifp = (struct ifnet *)v;
    950 	int error;
    951 
    952 	if (rt->rt_ifp != ifp)
    953 		return 0;
    954 
    955 	/* Delete the entry. */
    956 	++rt->rt_refcnt;
    957 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
    958 	    rt_mask(rt), rt->rt_flags, NULL);
    959 	KASSERT((rt->rt_flags & RTF_UP) == 0);
    960 	rt->rt_ifp = NULL;
    961 	rtfree(rt);
    962 	if (error != 0)
    963 		printf("%s: warning: unable to delete rtentry @ %p, "
    964 		    "error = %d\n", ifp->if_xname, rt, error);
    965 	return ERESTART;
    966 }
    967 
    968 /*
    969  * Create a clone network interface.
    970  */
    971 int
    972 if_clone_create(const char *name)
    973 {
    974 	struct if_clone *ifc;
    975 	int unit;
    976 
    977 	ifc = if_clone_lookup(name, &unit);
    978 	if (ifc == NULL)
    979 		return EINVAL;
    980 
    981 	if (ifunit(name) != NULL)
    982 		return EEXIST;
    983 
    984 	return (*ifc->ifc_create)(ifc, unit);
    985 }
    986 
    987 /*
    988  * Destroy a clone network interface.
    989  */
    990 int
    991 if_clone_destroy(const char *name)
    992 {
    993 	struct if_clone *ifc;
    994 	struct ifnet *ifp;
    995 
    996 	ifc = if_clone_lookup(name, NULL);
    997 	if (ifc == NULL)
    998 		return EINVAL;
    999 
   1000 	ifp = ifunit(name);
   1001 	if (ifp == NULL)
   1002 		return ENXIO;
   1003 
   1004 	if (ifc->ifc_destroy == NULL)
   1005 		return EOPNOTSUPP;
   1006 
   1007 	return (*ifc->ifc_destroy)(ifp);
   1008 }
   1009 
   1010 /*
   1011  * Look up a network interface cloner.
   1012  */
   1013 static struct if_clone *
   1014 if_clone_lookup(const char *name, int *unitp)
   1015 {
   1016 	struct if_clone *ifc;
   1017 	const char *cp;
   1018 	char *dp, ifname[IFNAMSIZ + 3];
   1019 	int unit;
   1020 
   1021 	strcpy(ifname, "if_");
   1022 	/* separate interface name from unit */
   1023 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1024 	    *cp && (*cp < '0' || *cp > '9');)
   1025 		*dp++ = *cp++;
   1026 
   1027 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1028 		return NULL;	/* No name or unit number */
   1029 	*dp++ = '\0';
   1030 
   1031 again:
   1032 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1033 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1034 			break;
   1035 	}
   1036 
   1037 	if (ifc == NULL) {
   1038 		if (*ifname == '\0' ||
   1039 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
   1040 			return NULL;
   1041 		*ifname = '\0';
   1042 		goto again;
   1043 	}
   1044 
   1045 	unit = 0;
   1046 	while (cp - name < IFNAMSIZ && *cp) {
   1047 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1048 			/* Bogus unit number. */
   1049 			return NULL;
   1050 		}
   1051 		unit = (unit * 10) + (*cp++ - '0');
   1052 	}
   1053 
   1054 	if (unitp != NULL)
   1055 		*unitp = unit;
   1056 	return ifc;
   1057 }
   1058 
   1059 /*
   1060  * Register a network interface cloner.
   1061  */
   1062 void
   1063 if_clone_attach(struct if_clone *ifc)
   1064 {
   1065 
   1066 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1067 	if_cloners_count++;
   1068 }
   1069 
   1070 /*
   1071  * Unregister a network interface cloner.
   1072  */
   1073 void
   1074 if_clone_detach(struct if_clone *ifc)
   1075 {
   1076 
   1077 	LIST_REMOVE(ifc, ifc_list);
   1078 	if_cloners_count--;
   1079 }
   1080 
   1081 /*
   1082  * Provide list of interface cloners to userspace.
   1083  */
   1084 static int
   1085 if_clone_list(struct if_clonereq *ifcr)
   1086 {
   1087 	char outbuf[IFNAMSIZ], *dst;
   1088 	struct if_clone *ifc;
   1089 	int count, error = 0;
   1090 
   1091 	ifcr->ifcr_total = if_cloners_count;
   1092 	if ((dst = ifcr->ifcr_buffer) == NULL) {
   1093 		/* Just asking how many there are. */
   1094 		return 0;
   1095 	}
   1096 
   1097 	if (ifcr->ifcr_count < 0)
   1098 		return EINVAL;
   1099 
   1100 	count = (if_cloners_count < ifcr->ifcr_count) ?
   1101 	    if_cloners_count : ifcr->ifcr_count;
   1102 
   1103 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1104 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1105 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1106 		if (outbuf[sizeof(outbuf) - 1] != '\0')
   1107 			return ENAMETOOLONG;
   1108 		error = copyout(outbuf, dst, sizeof(outbuf));
   1109 		if (error != 0)
   1110 			break;
   1111 	}
   1112 
   1113 	return error;
   1114 }
   1115 
   1116 void
   1117 ifaref(struct ifaddr *ifa)
   1118 {
   1119 	ifa->ifa_refcnt++;
   1120 }
   1121 
   1122 void
   1123 ifafree(struct ifaddr *ifa)
   1124 {
   1125 	KASSERT(ifa != NULL);
   1126 	KASSERT(ifa->ifa_refcnt > 0);
   1127 
   1128 	if (--ifa->ifa_refcnt == 0) {
   1129 		free(ifa, M_IFADDR);
   1130 	}
   1131 }
   1132 
   1133 void
   1134 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1135 {
   1136 	ifa->ifa_ifp = ifp;
   1137 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1138 	ifaref(ifa);
   1139 }
   1140 
   1141 void
   1142 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1143 {
   1144 	KASSERT(ifa->ifa_ifp == ifp);
   1145 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1146 	ifafree(ifa);
   1147 }
   1148 
   1149 static inline int
   1150 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1151 {
   1152 	return sockaddr_cmp(sa1, sa2) == 0;
   1153 }
   1154 
   1155 /*
   1156  * Locate an interface based on a complete address.
   1157  */
   1158 /*ARGSUSED*/
   1159 struct ifaddr *
   1160 ifa_ifwithaddr(const struct sockaddr *addr)
   1161 {
   1162 	struct ifnet *ifp;
   1163 	struct ifaddr *ifa;
   1164 
   1165 	IFNET_FOREACH(ifp) {
   1166 		if (ifp->if_output == if_nulloutput)
   1167 			continue;
   1168 		IFADDR_FOREACH(ifa, ifp) {
   1169 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1170 				continue;
   1171 			if (equal(addr, ifa->ifa_addr))
   1172 				return ifa;
   1173 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1174 			    ifa->ifa_broadaddr &&
   1175 			    /* IP6 doesn't have broadcast */
   1176 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1177 			    equal(ifa->ifa_broadaddr, addr))
   1178 				return ifa;
   1179 		}
   1180 	}
   1181 	return NULL;
   1182 }
   1183 
   1184 /*
   1185  * Locate the point to point interface with a given destination address.
   1186  */
   1187 /*ARGSUSED*/
   1188 struct ifaddr *
   1189 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1190 {
   1191 	struct ifnet *ifp;
   1192 	struct ifaddr *ifa;
   1193 
   1194 	IFNET_FOREACH(ifp) {
   1195 		if (ifp->if_output == if_nulloutput)
   1196 			continue;
   1197 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1198 			continue;
   1199 		IFADDR_FOREACH(ifa, ifp) {
   1200 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1201 			    ifa->ifa_dstaddr == NULL)
   1202 				continue;
   1203 			if (equal(addr, ifa->ifa_dstaddr))
   1204 				return ifa;
   1205 		}
   1206 	}
   1207 	return NULL;
   1208 }
   1209 
   1210 /*
   1211  * Find an interface on a specific network.  If many, choice
   1212  * is most specific found.
   1213  */
   1214 struct ifaddr *
   1215 ifa_ifwithnet(const struct sockaddr *addr)
   1216 {
   1217 	struct ifnet *ifp;
   1218 	struct ifaddr *ifa;
   1219 	const struct sockaddr_dl *sdl;
   1220 	struct ifaddr *ifa_maybe = 0;
   1221 	u_int af = addr->sa_family;
   1222 	const char *addr_data = addr->sa_data, *cplim;
   1223 
   1224 	if (af == AF_LINK) {
   1225 		sdl = satocsdl(addr);
   1226 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1227 		    ifindex2ifnet[sdl->sdl_index] &&
   1228 		    ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
   1229 			return ifnet_addrs[sdl->sdl_index];
   1230 	}
   1231 #ifdef NETATALK
   1232 	if (af == AF_APPLETALK) {
   1233 		const struct sockaddr_at *sat, *sat2;
   1234 		sat = (const struct sockaddr_at *)addr;
   1235 		IFNET_FOREACH(ifp) {
   1236 			if (ifp->if_output == if_nulloutput)
   1237 				continue;
   1238 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1239 			if (ifa == NULL)
   1240 				continue;
   1241 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1242 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1243 				return ifa; /* exact match */
   1244 			if (ifa_maybe == NULL) {
   1245 				/* else keep the if with the right range */
   1246 				ifa_maybe = ifa;
   1247 			}
   1248 		}
   1249 		return ifa_maybe;
   1250 	}
   1251 #endif
   1252 	IFNET_FOREACH(ifp) {
   1253 		if (ifp->if_output == if_nulloutput)
   1254 			continue;
   1255 		IFADDR_FOREACH(ifa, ifp) {
   1256 			const char *cp, *cp2, *cp3;
   1257 
   1258 			if (ifa->ifa_addr->sa_family != af ||
   1259 			    ifa->ifa_netmask == NULL)
   1260  next:				continue;
   1261 			cp = addr_data;
   1262 			cp2 = ifa->ifa_addr->sa_data;
   1263 			cp3 = ifa->ifa_netmask->sa_data;
   1264 			cplim = (const char *)ifa->ifa_netmask +
   1265 			    ifa->ifa_netmask->sa_len;
   1266 			while (cp3 < cplim) {
   1267 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1268 					/* want to continue for() loop */
   1269 					goto next;
   1270 				}
   1271 			}
   1272 			if (ifa_maybe == NULL ||
   1273 			    rn_refines((void *)ifa->ifa_netmask,
   1274 			    (void *)ifa_maybe->ifa_netmask))
   1275 				ifa_maybe = ifa;
   1276 		}
   1277 	}
   1278 	return ifa_maybe;
   1279 }
   1280 
   1281 /*
   1282  * Find the interface of the addresss.
   1283  */
   1284 struct ifaddr *
   1285 ifa_ifwithladdr(const struct sockaddr *addr)
   1286 {
   1287 	struct ifaddr *ia;
   1288 
   1289 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   1290 	    (ia = ifa_ifwithnet(addr)))
   1291 		return ia;
   1292 	return NULL;
   1293 }
   1294 
   1295 /*
   1296  * Find an interface using a specific address family
   1297  */
   1298 struct ifaddr *
   1299 ifa_ifwithaf(int af)
   1300 {
   1301 	struct ifnet *ifp;
   1302 	struct ifaddr *ifa;
   1303 
   1304 	IFNET_FOREACH(ifp) {
   1305 		if (ifp->if_output == if_nulloutput)
   1306 			continue;
   1307 		IFADDR_FOREACH(ifa, ifp) {
   1308 			if (ifa->ifa_addr->sa_family == af)
   1309 				return ifa;
   1310 		}
   1311 	}
   1312 	return NULL;
   1313 }
   1314 
   1315 /*
   1316  * Find an interface address specific to an interface best matching
   1317  * a given address.
   1318  */
   1319 struct ifaddr *
   1320 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   1321 {
   1322 	struct ifaddr *ifa;
   1323 	const char *cp, *cp2, *cp3;
   1324 	const char *cplim;
   1325 	struct ifaddr *ifa_maybe = 0;
   1326 	u_int af = addr->sa_family;
   1327 
   1328 	if (ifp->if_output == if_nulloutput)
   1329 		return NULL;
   1330 
   1331 	if (af >= AF_MAX)
   1332 		return NULL;
   1333 
   1334 	IFADDR_FOREACH(ifa, ifp) {
   1335 		if (ifa->ifa_addr->sa_family != af)
   1336 			continue;
   1337 		ifa_maybe = ifa;
   1338 		if (ifa->ifa_netmask == NULL) {
   1339 			if (equal(addr, ifa->ifa_addr) ||
   1340 			    (ifa->ifa_dstaddr &&
   1341 			     equal(addr, ifa->ifa_dstaddr)))
   1342 				return ifa;
   1343 			continue;
   1344 		}
   1345 		cp = addr->sa_data;
   1346 		cp2 = ifa->ifa_addr->sa_data;
   1347 		cp3 = ifa->ifa_netmask->sa_data;
   1348 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   1349 		for (; cp3 < cplim; cp3++) {
   1350 			if ((*cp++ ^ *cp2++) & *cp3)
   1351 				break;
   1352 		}
   1353 		if (cp3 == cplim)
   1354 			return ifa;
   1355 	}
   1356 	return ifa_maybe;
   1357 }
   1358 
   1359 /*
   1360  * Default action when installing a route with a Link Level gateway.
   1361  * Lookup an appropriate real ifa to point to.
   1362  * This should be moved to /sys/net/link.c eventually.
   1363  */
   1364 void
   1365 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   1366 {
   1367 	struct ifaddr *ifa;
   1368 	const struct sockaddr *dst;
   1369 	struct ifnet *ifp;
   1370 
   1371 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   1372 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   1373 		return;
   1374 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
   1375 		rt_replace_ifa(rt, ifa);
   1376 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   1377 			ifa->ifa_rtrequest(cmd, rt, info);
   1378 	}
   1379 }
   1380 
   1381 /*
   1382  * Handle a change in the interface link state.
   1383  * XXX: We should listen to the routing socket in-kernel rather
   1384  * than calling in6_if_link_* functions directly from here.
   1385  */
   1386 void
   1387 if_link_state_change(struct ifnet *ifp, int link_state)
   1388 {
   1389 	int s;
   1390 #if defined(DEBUG) || defined(INET6)
   1391 	int old_link_state;
   1392 #endif
   1393 
   1394 	s = splnet();
   1395 	if (ifp->if_link_state == link_state) {
   1396 		splx(s);
   1397 		return;
   1398 	}
   1399 
   1400 #if defined(DEBUG) || defined(INET6)
   1401 	old_link_state = ifp->if_link_state;
   1402 #endif
   1403 	ifp->if_link_state = link_state;
   1404 #ifdef DEBUG
   1405 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   1406 		link_state == LINK_STATE_UP ? "UP" :
   1407 		link_state == LINK_STATE_DOWN ? "DOWN" :
   1408 		"UNKNOWN",
   1409 		 old_link_state == LINK_STATE_UP ? "UP" :
   1410 		old_link_state == LINK_STATE_DOWN ? "DOWN" :
   1411 		"UNKNOWN");
   1412 #endif
   1413 
   1414 #ifdef INET6
   1415 	/*
   1416 	 * When going from UNKNOWN to UP, we need to mark existing
   1417 	 * IPv6 addresses as tentative and restart DAD as we may have
   1418 	 * erroneously not found a duplicate.
   1419 	 *
   1420 	 * This needs to happen before rt_ifmsg to avoid a race where
   1421 	 * listeners would have an address and expect it to work right
   1422 	 * away.
   1423 	 */
   1424 	if (in6_present && link_state == LINK_STATE_UP &&
   1425 	    old_link_state == LINK_STATE_UNKNOWN)
   1426 		in6_if_link_down(ifp);
   1427 #endif
   1428 
   1429 	/* Notify that the link state has changed. */
   1430 	rt_ifmsg(ifp);
   1431 
   1432 #if NCARP > 0
   1433 	if (ifp->if_carp)
   1434 		carp_carpdev_state(ifp);
   1435 #endif
   1436 
   1437 #ifdef INET6
   1438 	if (in6_present) {
   1439 		if (link_state == LINK_STATE_DOWN)
   1440 			in6_if_link_down(ifp);
   1441 		else if (link_state == LINK_STATE_UP)
   1442 			in6_if_link_up(ifp);
   1443 	}
   1444 #endif
   1445 
   1446 	splx(s);
   1447 }
   1448 
   1449 /*
   1450  * Mark an interface down and notify protocols of
   1451  * the transition.
   1452  * NOTE: must be called at splsoftnet or equivalent.
   1453  */
   1454 void
   1455 if_down(struct ifnet *ifp)
   1456 {
   1457 	struct ifaddr *ifa;
   1458 
   1459 	ifp->if_flags &= ~IFF_UP;
   1460 	nanotime(&ifp->if_lastchange);
   1461 	IFADDR_FOREACH(ifa, ifp)
   1462 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   1463 	IFQ_PURGE(&ifp->if_snd);
   1464 #if NCARP > 0
   1465 	if (ifp->if_carp)
   1466 		carp_carpdev_state(ifp);
   1467 #endif
   1468 	rt_ifmsg(ifp);
   1469 #ifdef INET6
   1470 	if (in6_present)
   1471 		in6_if_down(ifp);
   1472 #endif
   1473 }
   1474 
   1475 /*
   1476  * Mark an interface up and notify protocols of
   1477  * the transition.
   1478  * NOTE: must be called at splsoftnet or equivalent.
   1479  */
   1480 void
   1481 if_up(struct ifnet *ifp)
   1482 {
   1483 #ifdef notyet
   1484 	struct ifaddr *ifa;
   1485 #endif
   1486 
   1487 	ifp->if_flags |= IFF_UP;
   1488 	nanotime(&ifp->if_lastchange);
   1489 #ifdef notyet
   1490 	/* this has no effect on IP, and will kill all ISO connections XXX */
   1491 	IFADDR_FOREACH(ifa, ifp)
   1492 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   1493 #endif
   1494 #if NCARP > 0
   1495 	if (ifp->if_carp)
   1496 		carp_carpdev_state(ifp);
   1497 #endif
   1498 	rt_ifmsg(ifp);
   1499 #ifdef INET6
   1500 	if (in6_present)
   1501 		in6_if_up(ifp);
   1502 #endif
   1503 }
   1504 
   1505 /*
   1506  * Handle interface slowtimo timer routine.  Called
   1507  * from softclock, we decrement timer (if set) and
   1508  * call the appropriate interface routine on expiration.
   1509  */
   1510 static void
   1511 if_slowtimo(void *arg)
   1512 {
   1513 	struct ifnet *ifp = arg;
   1514 	int s = splnet();
   1515 
   1516 	KASSERT(ifp->if_slowtimo != NULL);
   1517 
   1518 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   1519 		(*ifp->if_slowtimo)(ifp);
   1520 
   1521 	splx(s);
   1522 	callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   1523 }
   1524 
   1525 /*
   1526  * Set/clear promiscuous mode on interface ifp based on the truth value
   1527  * of pswitch.  The calls are reference counted so that only the first
   1528  * "on" request actually has an effect, as does the final "off" request.
   1529  * Results are undefined if the "off" and "on" requests are not matched.
   1530  */
   1531 int
   1532 ifpromisc(struct ifnet *ifp, int pswitch)
   1533 {
   1534 	int pcount, ret;
   1535 	short nflags;
   1536 
   1537 	pcount = ifp->if_pcount;
   1538 	if (pswitch) {
   1539 		/*
   1540 		 * Allow the device to be "placed" into promiscuous
   1541 		 * mode even if it is not configured up.  It will
   1542 		 * consult IFF_PROMISC when it is brought up.
   1543 		 */
   1544 		if (ifp->if_pcount++ != 0)
   1545 			return 0;
   1546 		nflags = ifp->if_flags | IFF_PROMISC;
   1547 	} else {
   1548 		if (--ifp->if_pcount > 0)
   1549 			return 0;
   1550 		nflags = ifp->if_flags & ~IFF_PROMISC;
   1551 	}
   1552 	ret = if_flags_set(ifp, nflags);
   1553 	/* Restore interface state if not successful. */
   1554 	if (ret != 0) {
   1555 		ifp->if_pcount = pcount;
   1556 	}
   1557 	return ret;
   1558 }
   1559 
   1560 /*
   1561  * Map interface name to
   1562  * interface structure pointer.
   1563  */
   1564 struct ifnet *
   1565 ifunit(const char *name)
   1566 {
   1567 	struct ifnet *ifp;
   1568 	const char *cp = name;
   1569 	u_int unit = 0;
   1570 	u_int i;
   1571 
   1572 	/*
   1573 	 * If the entire name is a number, treat it as an ifindex.
   1574 	 */
   1575 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   1576 		unit = unit * 10 + (*cp - '0');
   1577 	}
   1578 
   1579 	/*
   1580 	 * If the number took all of the name, then it's a valid ifindex.
   1581 	 */
   1582 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
   1583 		if (unit >= if_indexlim)
   1584 			return NULL;
   1585 		ifp = ifindex2ifnet[unit];
   1586 		if (ifp == NULL || ifp->if_output == if_nulloutput)
   1587 			return NULL;
   1588 		return ifp;
   1589 	}
   1590 
   1591 	IFNET_FOREACH(ifp) {
   1592 		if (ifp->if_output == if_nulloutput)
   1593 			continue;
   1594 	 	if (strcmp(ifp->if_xname, name) == 0)
   1595 			return ifp;
   1596 	}
   1597 	return NULL;
   1598 }
   1599 
   1600 ifnet_t *
   1601 if_byindex(u_int idx)
   1602 {
   1603 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
   1604 }
   1605 
   1606 /* common */
   1607 int
   1608 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   1609 {
   1610 	int s;
   1611 	struct ifreq *ifr;
   1612 	struct ifcapreq *ifcr;
   1613 	struct ifdatareq *ifdr;
   1614 
   1615 	switch (cmd) {
   1616 	case SIOCSIFCAP:
   1617 		ifcr = data;
   1618 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   1619 			return EINVAL;
   1620 
   1621 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   1622 			return 0;
   1623 
   1624 		ifp->if_capenable = ifcr->ifcr_capenable;
   1625 
   1626 		/* Pre-compute the checksum flags mask. */
   1627 		ifp->if_csum_flags_tx = 0;
   1628 		ifp->if_csum_flags_rx = 0;
   1629 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   1630 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   1631 		}
   1632 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1633 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   1634 		}
   1635 
   1636 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   1637 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   1638 		}
   1639 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   1640 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   1641 		}
   1642 
   1643 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   1644 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   1645 		}
   1646 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   1647 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   1648 		}
   1649 
   1650 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   1651 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   1652 		}
   1653 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   1654 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   1655 		}
   1656 
   1657 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   1658 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   1659 		}
   1660 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   1661 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   1662 		}
   1663 		if (ifp->if_flags & IFF_UP)
   1664 			return ENETRESET;
   1665 		return 0;
   1666 	case SIOCSIFFLAGS:
   1667 		ifr = data;
   1668 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   1669 			s = splnet();
   1670 			if_down(ifp);
   1671 			splx(s);
   1672 		}
   1673 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   1674 			s = splnet();
   1675 			if_up(ifp);
   1676 			splx(s);
   1677 		}
   1678 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   1679 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   1680 		break;
   1681 	case SIOCGIFFLAGS:
   1682 		ifr = data;
   1683 		ifr->ifr_flags = ifp->if_flags;
   1684 		break;
   1685 
   1686 	case SIOCGIFMETRIC:
   1687 		ifr = data;
   1688 		ifr->ifr_metric = ifp->if_metric;
   1689 		break;
   1690 
   1691 	case SIOCGIFMTU:
   1692 		ifr = data;
   1693 		ifr->ifr_mtu = ifp->if_mtu;
   1694 		break;
   1695 
   1696 	case SIOCGIFDLT:
   1697 		ifr = data;
   1698 		ifr->ifr_dlt = ifp->if_dlt;
   1699 		break;
   1700 
   1701 	case SIOCGIFCAP:
   1702 		ifcr = data;
   1703 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   1704 		ifcr->ifcr_capenable = ifp->if_capenable;
   1705 		break;
   1706 
   1707 	case SIOCSIFMETRIC:
   1708 		ifr = data;
   1709 		ifp->if_metric = ifr->ifr_metric;
   1710 		break;
   1711 
   1712 	case SIOCGIFDATA:
   1713 		ifdr = data;
   1714 		ifdr->ifdr_data = ifp->if_data;
   1715 		break;
   1716 
   1717 	case SIOCGIFINDEX:
   1718 		ifr = data;
   1719 		ifr->ifr_index = ifp->if_index;
   1720 		break;
   1721 
   1722 	case SIOCZIFDATA:
   1723 		ifdr = data;
   1724 		ifdr->ifdr_data = ifp->if_data;
   1725 		/*
   1726 		 * Assumes that the volatile counters that can be
   1727 		 * zero'ed are at the end of if_data.
   1728 		 */
   1729 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   1730 		    offsetof(struct if_data, ifi_ipackets));
   1731 		/*
   1732 		 * The memset() clears to the bottm of if_data. In the area,
   1733 		 * if_lastchange is included. Please be careful if new entry
   1734 		 * will be added into if_data or rewite this.
   1735 		 *
   1736 		 * And also, update if_lastchnage.
   1737 		 */
   1738 		getnanotime(&ifp->if_lastchange);
   1739 		break;
   1740 	case SIOCSIFMTU:
   1741 		ifr = data;
   1742 		if (ifp->if_mtu == ifr->ifr_mtu)
   1743 			break;
   1744 		ifp->if_mtu = ifr->ifr_mtu;
   1745 		/*
   1746 		 * If the link MTU changed, do network layer specific procedure.
   1747 		 */
   1748 #ifdef INET6
   1749 		if (in6_present)
   1750 			nd6_setmtu(ifp);
   1751 #endif
   1752 		return ENETRESET;
   1753 	default:
   1754 		return ENOTTY;
   1755 	}
   1756 	return 0;
   1757 }
   1758 
   1759 int
   1760 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   1761 {
   1762 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   1763 	struct ifaddr *ifa;
   1764 	const struct sockaddr *any, *sa;
   1765 	union {
   1766 		struct sockaddr sa;
   1767 		struct sockaddr_storage ss;
   1768 	} u, v;
   1769 
   1770 	switch (cmd) {
   1771 	case SIOCSIFADDRPREF:
   1772 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   1773 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   1774 		    NULL) != 0)
   1775 			return EPERM;
   1776 	case SIOCGIFADDRPREF:
   1777 		break;
   1778 	default:
   1779 		return EOPNOTSUPP;
   1780 	}
   1781 
   1782 	/* sanity checks */
   1783 	if (data == NULL || ifp == NULL) {
   1784 		panic("invalid argument to %s", __func__);
   1785 		/*NOTREACHED*/
   1786 	}
   1787 
   1788 	/* address must be specified on ADD and DELETE */
   1789 	sa = sstocsa(&ifap->ifap_addr);
   1790 	if (sa->sa_family != sofamily(so))
   1791 		return EINVAL;
   1792 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   1793 		return EINVAL;
   1794 
   1795 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   1796 
   1797 	IFADDR_FOREACH(ifa, ifp) {
   1798 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   1799 			continue;
   1800 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   1801 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   1802 			break;
   1803 	}
   1804 	if (ifa == NULL)
   1805 		return EADDRNOTAVAIL;
   1806 
   1807 	switch (cmd) {
   1808 	case SIOCSIFADDRPREF:
   1809 		ifa->ifa_preference = ifap->ifap_preference;
   1810 		return 0;
   1811 	case SIOCGIFADDRPREF:
   1812 		/* fill in the if_laddrreq structure */
   1813 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   1814 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   1815 		ifap->ifap_preference = ifa->ifa_preference;
   1816 		return 0;
   1817 	default:
   1818 		return EOPNOTSUPP;
   1819 	}
   1820 }
   1821 
   1822 static void
   1823 ifnet_lock_enter(struct ifnet_lock *il)
   1824 {
   1825 	uint64_t *nenter;
   1826 
   1827 	/* Before trying to acquire the mutex, increase the count of threads
   1828 	 * who have entered or who wait to enter the critical section.
   1829 	 * Avoid one costly locked memory transaction by keeping a count for
   1830 	 * each CPU.
   1831 	 */
   1832 	nenter = percpu_getref(il->il_nenter);
   1833 	(*nenter)++;
   1834 	percpu_putref(il->il_nenter);
   1835 	mutex_enter(&il->il_lock);
   1836 }
   1837 
   1838 static void
   1839 ifnet_lock_exit(struct ifnet_lock *il)
   1840 {
   1841 	/* Increase the count of threads who have exited the critical
   1842 	 * section.  Increase while we still hold the lock.
   1843 	 */
   1844 	il->il_nexit++;
   1845 	mutex_exit(&il->il_lock);
   1846 }
   1847 
   1848 /*
   1849  * Interface ioctls.
   1850  */
   1851 static int
   1852 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   1853 {
   1854 	struct ifnet *ifp;
   1855 	struct ifreq *ifr;
   1856 	int error = 0;
   1857 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   1858 	u_long ocmd = cmd;
   1859 #endif
   1860 	short oif_flags;
   1861 #ifdef COMPAT_OIFREQ
   1862 	struct ifreq ifrb;
   1863 	struct oifreq *oifr = NULL;
   1864 #endif
   1865 	int r;
   1866 
   1867 	switch (cmd) {
   1868 #ifdef COMPAT_OIFREQ
   1869 	case OSIOCGIFCONF:
   1870 	case OOSIOCGIFCONF:
   1871 		return compat_ifconf(cmd, data);
   1872 #endif
   1873 #ifdef COMPAT_OIFDATA
   1874 	case OSIOCGIFDATA:
   1875 	case OSIOCZIFDATA:
   1876 		return compat_ifdatareq(l, cmd, data);
   1877 #endif
   1878 	case SIOCGIFCONF:
   1879 		return ifconf(cmd, data);
   1880 	case SIOCINITIFADDR:
   1881 		return EPERM;
   1882 	}
   1883 
   1884 #ifdef COMPAT_OIFREQ
   1885 	cmd = compat_cvtcmd(cmd);
   1886 	if (cmd != ocmd) {
   1887 		oifr = data;
   1888 		data = ifr = &ifrb;
   1889 		ifreqo2n(oifr, ifr);
   1890 	} else
   1891 #endif
   1892 		ifr = data;
   1893 
   1894 	ifp = ifunit(ifr->ifr_name);
   1895 
   1896 	switch (cmd) {
   1897 	case SIOCIFCREATE:
   1898 	case SIOCIFDESTROY:
   1899 		if (l != NULL) {
   1900 			error = kauth_authorize_network(l->l_cred,
   1901 			    KAUTH_NETWORK_INTERFACE,
   1902 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   1903 			    (void *)cmd, NULL);
   1904 			if (error != 0)
   1905 				return error;
   1906 		}
   1907 		mutex_enter(&if_clone_mtx);
   1908 		r = (cmd == SIOCIFCREATE) ?
   1909 			if_clone_create(ifr->ifr_name) :
   1910 			if_clone_destroy(ifr->ifr_name);
   1911 		mutex_exit(&if_clone_mtx);
   1912 		return r;
   1913 
   1914 	case SIOCIFGCLONERS:
   1915 		return if_clone_list((struct if_clonereq *)data);
   1916 	}
   1917 
   1918 	if (ifp == NULL)
   1919 		return ENXIO;
   1920 
   1921 	switch (cmd) {
   1922 	case SIOCALIFADDR:
   1923 	case SIOCDLIFADDR:
   1924 	case SIOCSIFADDRPREF:
   1925 	case SIOCSIFFLAGS:
   1926 	case SIOCSIFCAP:
   1927 	case SIOCSIFMETRIC:
   1928 	case SIOCZIFDATA:
   1929 	case SIOCSIFMTU:
   1930 	case SIOCSIFPHYADDR:
   1931 	case SIOCDIFPHYADDR:
   1932 #ifdef INET6
   1933 	case SIOCSIFPHYADDR_IN6:
   1934 #endif
   1935 	case SIOCSLIFPHYADDR:
   1936 	case SIOCADDMULTI:
   1937 	case SIOCDELMULTI:
   1938 	case SIOCSIFMEDIA:
   1939 	case SIOCSDRVSPEC:
   1940 	case SIOCG80211:
   1941 	case SIOCS80211:
   1942 	case SIOCS80211NWID:
   1943 	case SIOCS80211NWKEY:
   1944 	case SIOCS80211POWER:
   1945 	case SIOCS80211BSSID:
   1946 	case SIOCS80211CHANNEL:
   1947 	case SIOCSLINKSTR:
   1948 		if (l != NULL) {
   1949 			error = kauth_authorize_network(l->l_cred,
   1950 			    KAUTH_NETWORK_INTERFACE,
   1951 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   1952 			    (void *)cmd, NULL);
   1953 			if (error != 0)
   1954 				return error;
   1955 		}
   1956 	}
   1957 
   1958 	oif_flags = ifp->if_flags;
   1959 
   1960 	ifnet_lock_enter(ifp->if_ioctl_lock);
   1961 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   1962 	if (error != ENOTTY)
   1963 		;
   1964 	else if (so->so_proto == NULL)
   1965 		error = EOPNOTSUPP;
   1966 	else {
   1967 #ifdef COMPAT_OSOCK
   1968 		error = compat_ifioctl(so, ocmd, cmd, data, l);
   1969 #else
   1970 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   1971 		    cmd, data, ifp);
   1972 #endif
   1973 	}
   1974 
   1975 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   1976 #ifdef INET6
   1977 		if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
   1978 			int s = splnet();
   1979 			in6_if_up(ifp);
   1980 			splx(s);
   1981 		}
   1982 #endif
   1983 	}
   1984 #ifdef COMPAT_OIFREQ
   1985 	if (cmd != ocmd)
   1986 		ifreqn2o(oifr, ifr);
   1987 #endif
   1988 
   1989 	ifnet_lock_exit(ifp->if_ioctl_lock);
   1990 	return error;
   1991 }
   1992 
   1993 /* This callback adds to the sum in `arg' the number of
   1994  * threads on `ci' who have entered or who wait to enter the
   1995  * critical section.
   1996  */
   1997 static void
   1998 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
   1999 {
   2000 	uint64_t *sum = arg, *nenter = p;
   2001 
   2002 	*sum += *nenter;
   2003 }
   2004 
   2005 /* Return the number of threads who have entered or who wait
   2006  * to enter the critical section on all CPUs.
   2007  */
   2008 static uint64_t
   2009 ifnet_lock_entrances(struct ifnet_lock *il)
   2010 {
   2011 	uint64_t sum = 0;
   2012 
   2013 	percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
   2014 
   2015 	return sum;
   2016 }
   2017 
   2018 static int
   2019 ifioctl_attach(struct ifnet *ifp)
   2020 {
   2021 	struct ifnet_lock *il;
   2022 
   2023 	/* If the driver has not supplied its own if_ioctl, then
   2024 	 * supply the default.
   2025 	 */
   2026 	if (ifp->if_ioctl == NULL)
   2027 		ifp->if_ioctl = ifioctl_common;
   2028 
   2029 	/* Create an ifnet_lock for synchronizing ifioctls. */
   2030 	if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
   2031 		return ENOMEM;
   2032 
   2033 	il->il_nenter = percpu_alloc(sizeof(uint64_t));
   2034 	if (il->il_nenter == NULL) {
   2035 		kmem_free(il, sizeof(*il));
   2036 		return ENOMEM;
   2037 	}
   2038 
   2039 	mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
   2040 	cv_init(&il->il_emptied, ifp->if_xname);
   2041 
   2042 	ifp->if_ioctl_lock = il;
   2043 
   2044 	return 0;
   2045 }
   2046 
   2047 /*
   2048  * This must not be called until after `ifp' has been withdrawn from the
   2049  * ifnet tables so that ifioctl() cannot get a handle on it by calling
   2050  * ifunit().
   2051  */
   2052 static void
   2053 ifioctl_detach(struct ifnet *ifp)
   2054 {
   2055 	struct ifnet_lock *il;
   2056 
   2057 	il = ifp->if_ioctl_lock;
   2058 	mutex_enter(&il->il_lock);
   2059 	/* Install if_nullioctl to make sure that any thread that
   2060 	 * subsequently enters the critical section will quit it
   2061 	 * immediately and signal the condition variable that we
   2062 	 * wait on, below.
   2063 	 */
   2064 	ifp->if_ioctl = if_nullioctl;
   2065 	/* Sleep while threads are still in the critical section or
   2066 	 * wait to enter it.
   2067 	 */
   2068 	while (ifnet_lock_entrances(il) != il->il_nexit)
   2069 		cv_wait(&il->il_emptied, &il->il_lock);
   2070 	/* At this point, we are the only thread still in the critical
   2071 	 * section, and no new thread can get a handle on the ifioctl
   2072 	 * lock, so it is safe to free its memory.
   2073 	 */
   2074 	mutex_exit(&il->il_lock);
   2075 	ifp->if_ioctl_lock = NULL;
   2076 	percpu_free(il->il_nenter, sizeof(uint64_t));
   2077 	il->il_nenter = NULL;
   2078 	cv_destroy(&il->il_emptied);
   2079 	mutex_destroy(&il->il_lock);
   2080 	kmem_free(il, sizeof(*il));
   2081 }
   2082 
   2083 /*
   2084  * Return interface configuration
   2085  * of system.  List may be used
   2086  * in later ioctl's (above) to get
   2087  * other information.
   2088  *
   2089  * Each record is a struct ifreq.  Before the addition of
   2090  * sockaddr_storage, the API rule was that sockaddr flavors that did
   2091  * not fit would extend beyond the struct ifreq, with the next struct
   2092  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   2093  * union in struct ifreq includes struct sockaddr_storage, every kind
   2094  * of sockaddr must fit.  Thus, there are no longer any overlength
   2095  * records.
   2096  *
   2097  * Records are added to the user buffer if they fit, and ifc_len is
   2098  * adjusted to the length that was written.  Thus, the user is only
   2099  * assured of getting the complete list if ifc_len on return is at
   2100  * least sizeof(struct ifreq) less than it was on entry.
   2101  *
   2102  * If the user buffer pointer is NULL, this routine copies no data and
   2103  * returns the amount of space that would be needed.
   2104  *
   2105  * Invariants:
   2106  * ifrp points to the next part of the user's buffer to be used.  If
   2107  * ifrp != NULL, space holds the number of bytes remaining that we may
   2108  * write at ifrp.  Otherwise, space holds the number of bytes that
   2109  * would have been written had there been adequate space.
   2110  */
   2111 /*ARGSUSED*/
   2112 int
   2113 ifconf(u_long cmd, void *data)
   2114 {
   2115 	struct ifconf *ifc = (struct ifconf *)data;
   2116 	struct ifnet *ifp;
   2117 	struct ifaddr *ifa;
   2118 	struct ifreq ifr, *ifrp;
   2119 	int space, error = 0;
   2120 	const int sz = (int)sizeof(struct ifreq);
   2121 
   2122 	if ((ifrp = ifc->ifc_req) == NULL)
   2123 		space = 0;
   2124 	else
   2125 		space = ifc->ifc_len;
   2126 	IFNET_FOREACH(ifp) {
   2127 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   2128 		    sizeof(ifr.ifr_name));
   2129 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
   2130 			return ENAMETOOLONG;
   2131 		if (IFADDR_EMPTY(ifp)) {
   2132 			/* Interface with no addresses - send zero sockaddr. */
   2133 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   2134 			if (ifrp == NULL) {
   2135 				space += sz;
   2136 				continue;
   2137 			}
   2138 			if (space >= sz) {
   2139 				error = copyout(&ifr, ifrp, sz);
   2140 				if (error != 0)
   2141 					return error;
   2142 				ifrp++;
   2143 				space -= sz;
   2144 			}
   2145 		}
   2146 
   2147 		IFADDR_FOREACH(ifa, ifp) {
   2148 			struct sockaddr *sa = ifa->ifa_addr;
   2149 			/* all sockaddrs must fit in sockaddr_storage */
   2150 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   2151 
   2152 			if (ifrp == NULL) {
   2153 				space += sz;
   2154 				continue;
   2155 			}
   2156 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   2157 			if (space >= sz) {
   2158 				error = copyout(&ifr, ifrp, sz);
   2159 				if (error != 0)
   2160 					return (error);
   2161 				ifrp++; space -= sz;
   2162 			}
   2163 		}
   2164 	}
   2165 	if (ifrp != NULL) {
   2166 		KASSERT(0 <= space && space <= ifc->ifc_len);
   2167 		ifc->ifc_len -= space;
   2168 	} else {
   2169 		KASSERT(space >= 0);
   2170 		ifc->ifc_len = space;
   2171 	}
   2172 	return (0);
   2173 }
   2174 
   2175 int
   2176 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   2177 {
   2178 	uint8_t len;
   2179 #ifdef COMPAT_OIFREQ
   2180 	struct ifreq ifrb;
   2181 	struct oifreq *oifr = NULL;
   2182 	u_long ocmd = cmd;
   2183 	cmd = compat_cvtcmd(cmd);
   2184 	if (cmd != ocmd) {
   2185 		oifr = (struct oifreq *)(void *)ifr;
   2186 		ifr = &ifrb;
   2187 		ifreqo2n(oifr, ifr);
   2188 		len = sizeof(oifr->ifr_addr);
   2189 	} else
   2190 #endif
   2191 		len = sizeof(ifr->ifr_ifru.ifru_space);
   2192 
   2193 	if (len < sa->sa_len)
   2194 		return EFBIG;
   2195 
   2196 	memset(&ifr->ifr_addr, 0, len);
   2197 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   2198 
   2199 #ifdef COMPAT_OIFREQ
   2200 	if (cmd != ocmd)
   2201 		ifreqn2o(oifr, ifr);
   2202 #endif
   2203 	return 0;
   2204 }
   2205 
   2206 /*
   2207  * Queue message on interface, and start output if interface
   2208  * not yet active.
   2209  */
   2210 int
   2211 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
   2212     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
   2213 {
   2214 	int len = m->m_pkthdr.len;
   2215 	int mflags = m->m_flags;
   2216 	int s = splnet();
   2217 	int error;
   2218 
   2219 	IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
   2220 	if (error != 0)
   2221 		goto out;
   2222 	ifp->if_obytes += len;
   2223 	if (mflags & M_MCAST)
   2224 		ifp->if_omcasts++;
   2225 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   2226 		(*ifp->if_start)(ifp);
   2227 out:
   2228 	splx(s);
   2229 	return error;
   2230 }
   2231 
   2232 /*
   2233  * Queue message on interface, possibly using a second fast queue
   2234  */
   2235 int
   2236 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
   2237     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
   2238 {
   2239 	int error = 0;
   2240 
   2241 	if (ifq != NULL
   2242 #ifdef ALTQ
   2243 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   2244 #endif
   2245 	    ) {
   2246 		if (IF_QFULL(ifq)) {
   2247 			IF_DROP(&ifp->if_snd);
   2248 			m_freem(m);
   2249 			if (error == 0)
   2250 				error = ENOBUFS;
   2251 		} else
   2252 			IF_ENQUEUE(ifq, m);
   2253 	} else
   2254 		IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
   2255 	if (error != 0) {
   2256 		++ifp->if_oerrors;
   2257 		return error;
   2258 	}
   2259 	return 0;
   2260 }
   2261 
   2262 int
   2263 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   2264 {
   2265 	int rc;
   2266 
   2267 	if (ifp->if_initaddr != NULL)
   2268 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   2269 	else if (src ||
   2270 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   2271 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   2272 
   2273 	return rc;
   2274 }
   2275 
   2276 int
   2277 if_flags_set(ifnet_t *ifp, const short flags)
   2278 {
   2279 	int rc;
   2280 
   2281 	if (ifp->if_setflags != NULL)
   2282 		rc = (*ifp->if_setflags)(ifp, flags);
   2283 	else {
   2284 		short cantflags, chgdflags;
   2285 		struct ifreq ifr;
   2286 
   2287 		chgdflags = ifp->if_flags ^ flags;
   2288 		cantflags = chgdflags & IFF_CANTCHANGE;
   2289 
   2290 		if (cantflags != 0)
   2291 			ifp->if_flags ^= cantflags;
   2292 
   2293                 /* Traditionally, we do not call if_ioctl after
   2294                  * setting/clearing only IFF_PROMISC if the interface
   2295                  * isn't IFF_UP.  Uphold that tradition.
   2296 		 */
   2297 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   2298 			return 0;
   2299 
   2300 		memset(&ifr, 0, sizeof(ifr));
   2301 
   2302 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   2303 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   2304 
   2305 		if (rc != 0 && cantflags != 0)
   2306 			ifp->if_flags ^= cantflags;
   2307 	}
   2308 
   2309 	return rc;
   2310 }
   2311 
   2312 int
   2313 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   2314 {
   2315 	int rc;
   2316 	struct ifreq ifr;
   2317 
   2318 	if (ifp->if_mcastop != NULL)
   2319 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   2320 	else {
   2321 		ifreq_setaddr(cmd, &ifr, sa);
   2322 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   2323 	}
   2324 
   2325 	return rc;
   2326 }
   2327 
   2328 void
   2329 if_drain_all(void)
   2330 {
   2331 	struct ifnet *ifp;
   2332 
   2333 	IFNET_FOREACH(ifp) {
   2334 		if (ifp->if_drain)
   2335 			(*ifp->if_drain)(ifp);
   2336 	}
   2337 }
   2338 
   2339 static void
   2340 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   2341     struct ifaltq *ifq)
   2342 {
   2343 	const struct sysctlnode *cnode, *rnode;
   2344 
   2345 	if (sysctl_createv(clog, 0, NULL, &rnode,
   2346 		       CTLFLAG_PERMANENT,
   2347 		       CTLTYPE_NODE, "interfaces",
   2348 		       SYSCTL_DESCR("Per-interface controls"),
   2349 		       NULL, 0, NULL, 0,
   2350 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   2351 		goto bad;
   2352 
   2353 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2354 		       CTLFLAG_PERMANENT,
   2355 		       CTLTYPE_NODE, ifname,
   2356 		       SYSCTL_DESCR("Interface controls"),
   2357 		       NULL, 0, NULL, 0,
   2358 		       CTL_CREATE, CTL_EOL) != 0)
   2359 		goto bad;
   2360 
   2361 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2362 		       CTLFLAG_PERMANENT,
   2363 		       CTLTYPE_NODE, "sndq",
   2364 		       SYSCTL_DESCR("Interface output queue controls"),
   2365 		       NULL, 0, NULL, 0,
   2366 		       CTL_CREATE, CTL_EOL) != 0)
   2367 		goto bad;
   2368 
   2369 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2370 		       CTLFLAG_PERMANENT,
   2371 		       CTLTYPE_INT, "len",
   2372 		       SYSCTL_DESCR("Current output queue length"),
   2373 		       NULL, 0, &ifq->ifq_len, 0,
   2374 		       CTL_CREATE, CTL_EOL) != 0)
   2375 		goto bad;
   2376 
   2377 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2378 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2379 		       CTLTYPE_INT, "maxlen",
   2380 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   2381 		       NULL, 0, &ifq->ifq_maxlen, 0,
   2382 		       CTL_CREATE, CTL_EOL) != 0)
   2383 		goto bad;
   2384 
   2385 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2386 		       CTLFLAG_PERMANENT,
   2387 		       CTLTYPE_INT, "drops",
   2388 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   2389 		       NULL, 0, &ifq->ifq_drops, 0,
   2390 		       CTL_CREATE, CTL_EOL) != 0)
   2391 		goto bad;
   2392 
   2393 	return;
   2394 bad:
   2395 	printf("%s: could not attach sysctl nodes\n", ifname);
   2396 	return;
   2397 }
   2398 
   2399 #if defined(INET) || defined(INET6)
   2400 
   2401 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   2402 	static int							\
   2403 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   2404 	{								\
   2405 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   2406 	}
   2407 
   2408 #if defined(INET)
   2409 static int
   2410 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   2411 {
   2412 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   2413 }
   2414 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   2415 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   2416 #endif
   2417 
   2418 #if defined(INET6)
   2419 static int
   2420 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   2421 {
   2422 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   2423 }
   2424 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   2425 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   2426 #endif
   2427 
   2428 static void
   2429 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   2430 {
   2431 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   2432 	const char *pfname = NULL, *ipname = NULL;
   2433 	int ipn = 0, qid = 0;
   2434 
   2435 	switch (pf) {
   2436 #if defined(INET)
   2437 	case PF_INET:
   2438 		len_func = sysctl_net_ip_pktq_items;
   2439 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   2440 		drops_func = sysctl_net_ip_pktq_drops;
   2441 		pfname = "inet", ipn = IPPROTO_IP;
   2442 		ipname = "ip", qid = IPCTL_IFQ;
   2443 		break;
   2444 #endif
   2445 #if defined(INET6)
   2446 	case PF_INET6:
   2447 		len_func = sysctl_net_ip6_pktq_items;
   2448 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   2449 		drops_func = sysctl_net_ip6_pktq_drops;
   2450 		pfname = "inet6", ipn = IPPROTO_IPV6;
   2451 		ipname = "ip6", qid = IPV6CTL_IFQ;
   2452 		break;
   2453 #endif
   2454 	default:
   2455 		KASSERT(false);
   2456 	}
   2457 
   2458 	sysctl_createv(clog, 0, NULL, NULL,
   2459 		       CTLFLAG_PERMANENT,
   2460 		       CTLTYPE_NODE, pfname, NULL,
   2461 		       NULL, 0, NULL, 0,
   2462 		       CTL_NET, pf, CTL_EOL);
   2463 	sysctl_createv(clog, 0, NULL, NULL,
   2464 		       CTLFLAG_PERMANENT,
   2465 		       CTLTYPE_NODE, ipname, NULL,
   2466 		       NULL, 0, NULL, 0,
   2467 		       CTL_NET, pf, ipn, CTL_EOL);
   2468 	sysctl_createv(clog, 0, NULL, NULL,
   2469 		       CTLFLAG_PERMANENT,
   2470 		       CTLTYPE_NODE, "ifq",
   2471 		       SYSCTL_DESCR("Protocol input queue controls"),
   2472 		       NULL, 0, NULL, 0,
   2473 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   2474 
   2475 	sysctl_createv(clog, 0, NULL, NULL,
   2476 		       CTLFLAG_PERMANENT,
   2477 		       CTLTYPE_INT, "len",
   2478 		       SYSCTL_DESCR("Current input queue length"),
   2479 		       len_func, 0, NULL, 0,
   2480 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   2481 	sysctl_createv(clog, 0, NULL, NULL,
   2482 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2483 		       CTLTYPE_INT, "maxlen",
   2484 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   2485 		       maxlen_func, 0, NULL, 0,
   2486 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   2487 	sysctl_createv(clog, 0, NULL, NULL,
   2488 		       CTLFLAG_PERMANENT,
   2489 		       CTLTYPE_INT, "drops",
   2490 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   2491 		       drops_func, 0, NULL, 0,
   2492 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   2493 }
   2494 #endif /* INET || INET6 */
   2495 
   2496 static int
   2497 if_sdl_sysctl(SYSCTLFN_ARGS)
   2498 {
   2499 	struct ifnet *ifp;
   2500 	const struct sockaddr_dl *sdl;
   2501 
   2502 	if (namelen != 1)
   2503 		return EINVAL;
   2504 
   2505 	ifp = if_byindex(name[0]);
   2506 	if (ifp == NULL)
   2507 		return ENODEV;
   2508 
   2509 	sdl = ifp->if_sadl;
   2510 	if (sdl == NULL) {
   2511 		*oldlenp = 0;
   2512 		return 0;
   2513 	}
   2514 
   2515 	if (oldp == NULL) {
   2516 		*oldlenp = sdl->sdl_alen;
   2517 		return 0;
   2518 	}
   2519 
   2520 	if (*oldlenp >= sdl->sdl_alen)
   2521 		*oldlenp = sdl->sdl_alen;
   2522 	return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   2523 }
   2524 
   2525 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
   2526 {
   2527 	const struct sysctlnode *rnode = NULL;
   2528 
   2529 	sysctl_createv(clog, 0, NULL, &rnode,
   2530 		       CTLFLAG_PERMANENT,
   2531 		       CTLTYPE_NODE, "sdl",
   2532 		       SYSCTL_DESCR("Get active link-layer address"),
   2533 		       if_sdl_sysctl, 0, NULL, 0,
   2534 		       CTL_NET, CTL_CREATE, CTL_EOL);
   2535 }
   2536