if.c revision 1.305 1 /* $NetBSD: if.c,v 1.305 2014/12/11 14:33:22 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.305 2014/12/11 14:33:22 martin Exp $");
94
95 #include "opt_inet.h"
96
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99 #include "opt_wlan.h"
100
101 #include <sys/param.h>
102 #include <sys/mbuf.h>
103 #include <sys/systm.h>
104 #include <sys/callout.h>
105 #include <sys/proc.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/kernel.h>
111 #include <sys/ioctl.h>
112 #include <sys/sysctl.h>
113 #include <sys/syslog.h>
114 #include <sys/kauth.h>
115 #include <sys/kmem.h>
116 #include <sys/xcall.h>
117
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_ether.h>
121 #include <net/if_media.h>
122 #include <net80211/ieee80211.h>
123 #include <net80211/ieee80211_ioctl.h>
124 #include <net/if_types.h>
125 #include <net/radix.h>
126 #include <net/route.h>
127 #include <net/netisr.h>
128 #include <sys/module.h>
129 #ifdef NETATALK
130 #include <netatalk/at_extern.h>
131 #include <netatalk/at.h>
132 #endif
133 #include <net/pfil.h>
134 #include <netinet/in.h>
135 #include <netinet/in_var.h>
136
137 #ifdef INET6
138 #include <netinet6/in6_var.h>
139 #include <netinet6/nd6.h>
140 #endif
141
142 #include "ether.h"
143 #include "fddi.h"
144 #include "token.h"
145
146 #include "carp.h"
147 #if NCARP > 0
148 #include <netinet/ip_carp.h>
149 #endif
150
151 #include <compat/sys/sockio.h>
152 #include <compat/sys/socket.h>
153
154 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
155 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
156
157 /*
158 * Global list of interfaces.
159 */
160 struct ifnet_head ifnet_list;
161 static ifnet_t ** ifindex2ifnet = NULL;
162
163 static u_int if_index = 1;
164 static size_t if_indexlim = 0;
165 static uint64_t index_gen;
166 static kmutex_t index_gen_mtx;
167 static kmutex_t if_clone_mtx;
168
169 static struct ifaddr ** ifnet_addrs = NULL;
170
171 struct ifnet *lo0ifp;
172 int ifqmaxlen = IFQ_MAXLEN;
173
174 static int if_rt_walktree(struct rtentry *, void *);
175
176 static struct if_clone *if_clone_lookup(const char *, int *);
177 static int if_clone_list(struct if_clonereq *);
178
179 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
180 static int if_cloners_count;
181
182 /* Packet filtering hook for interfaces. */
183 pfil_head_t * if_pfil;
184
185 static kauth_listener_t if_listener;
186
187 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
188 static int ifioctl_attach(struct ifnet *);
189 static void ifioctl_detach(struct ifnet *);
190 static void ifnet_lock_enter(struct ifnet_lock *);
191 static void ifnet_lock_exit(struct ifnet_lock *);
192 static void if_detach_queues(struct ifnet *, struct ifqueue *);
193 static void sysctl_sndq_setup(struct sysctllog **, const char *,
194 struct ifaltq *);
195 static void if_slowtimo(void *);
196 static void if_free_sadl(struct ifnet *);
197 static void if_attachdomain1(struct ifnet *);
198 static int ifconf(u_long, void *);
199 static int if_clone_create(const char *);
200 static int if_clone_destroy(const char *);
201
202 #if defined(INET) || defined(INET6)
203 static void sysctl_net_pktq_setup(struct sysctllog **, int);
204 #endif
205
206 static int
207 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
208 void *arg0, void *arg1, void *arg2, void *arg3)
209 {
210 int result;
211 enum kauth_network_req req;
212
213 result = KAUTH_RESULT_DEFER;
214 req = (enum kauth_network_req)arg1;
215
216 if (action != KAUTH_NETWORK_INTERFACE)
217 return result;
218
219 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
220 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
221 result = KAUTH_RESULT_ALLOW;
222
223 return result;
224 }
225
226 /*
227 * Network interface utility routines.
228 *
229 * Routines with ifa_ifwith* names take sockaddr *'s as
230 * parameters.
231 */
232 void
233 ifinit(void)
234 {
235 #if defined(INET)
236 sysctl_net_pktq_setup(NULL, PF_INET);
237 #endif
238 #ifdef INET6
239 sysctl_net_pktq_setup(NULL, PF_INET6);
240 #endif
241
242 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
243 if_listener_cb, NULL);
244
245 /* interfaces are available, inform socket code */
246 ifioctl = doifioctl;
247 }
248
249 /*
250 * XXX Initialization before configure().
251 * XXX hack to get pfil_add_hook working in autoconf.
252 */
253 void
254 ifinit1(void)
255 {
256 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
257 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
258 TAILQ_INIT(&ifnet_list);
259 if_indexlim = 8;
260
261 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
262 KASSERT(if_pfil != NULL);
263
264 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
265 etherinit();
266 #endif
267 }
268
269 ifnet_t *
270 if_alloc(u_char type)
271 {
272 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
273 }
274
275 void
276 if_free(ifnet_t *ifp)
277 {
278 kmem_free(ifp, sizeof(ifnet_t));
279 }
280
281 void
282 if_initname(struct ifnet *ifp, const char *name, int unit)
283 {
284 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
285 "%s%d", name, unit);
286 }
287
288 /*
289 * Null routines used while an interface is going away. These routines
290 * just return an error.
291 */
292
293 int
294 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
295 const struct sockaddr *so, struct rtentry *rt)
296 {
297
298 return ENXIO;
299 }
300
301 void
302 if_nullinput(struct ifnet *ifp, struct mbuf *m)
303 {
304
305 /* Nothing. */
306 }
307
308 void
309 if_nullstart(struct ifnet *ifp)
310 {
311
312 /* Nothing. */
313 }
314
315 int
316 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
317 {
318
319 /* Wake ifioctl_detach(), who may wait for all threads to
320 * quit the critical section.
321 */
322 cv_signal(&ifp->if_ioctl_lock->il_emptied);
323 return ENXIO;
324 }
325
326 int
327 if_nullinit(struct ifnet *ifp)
328 {
329
330 return ENXIO;
331 }
332
333 void
334 if_nullstop(struct ifnet *ifp, int disable)
335 {
336
337 /* Nothing. */
338 }
339
340 void
341 if_nullslowtimo(struct ifnet *ifp)
342 {
343
344 /* Nothing. */
345 }
346
347 void
348 if_nulldrain(struct ifnet *ifp)
349 {
350
351 /* Nothing. */
352 }
353
354 void
355 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
356 {
357 struct ifaddr *ifa;
358 struct sockaddr_dl *sdl;
359
360 ifp->if_addrlen = addrlen;
361 if_alloc_sadl(ifp);
362 ifa = ifp->if_dl;
363 sdl = satosdl(ifa->ifa_addr);
364
365 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
366 if (factory) {
367 ifp->if_hwdl = ifp->if_dl;
368 ifaref(ifp->if_hwdl);
369 }
370 /* TBD routing socket */
371 }
372
373 struct ifaddr *
374 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
375 {
376 unsigned socksize, ifasize;
377 int addrlen, namelen;
378 struct sockaddr_dl *mask, *sdl;
379 struct ifaddr *ifa;
380
381 namelen = strlen(ifp->if_xname);
382 addrlen = ifp->if_addrlen;
383 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
384 ifasize = sizeof(*ifa) + 2 * socksize;
385 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
386
387 sdl = (struct sockaddr_dl *)(ifa + 1);
388 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
389
390 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
391 ifp->if_xname, namelen, NULL, addrlen);
392 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
393 memset(&mask->sdl_data[0], 0xff, namelen);
394 ifa->ifa_rtrequest = link_rtrequest;
395 ifa->ifa_addr = (struct sockaddr *)sdl;
396 ifa->ifa_netmask = (struct sockaddr *)mask;
397
398 *sdlp = sdl;
399
400 return ifa;
401 }
402
403 static void
404 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
405 {
406 const struct sockaddr_dl *sdl;
407 ifnet_addrs[ifp->if_index] = ifa;
408 ifaref(ifa);
409 ifp->if_dl = ifa;
410 ifaref(ifa);
411 sdl = satosdl(ifa->ifa_addr);
412 ifp->if_sadl = sdl;
413 }
414
415 /*
416 * Allocate the link level name for the specified interface. This
417 * is an attachment helper. It must be called after ifp->if_addrlen
418 * is initialized, which may not be the case when if_attach() is
419 * called.
420 */
421 void
422 if_alloc_sadl(struct ifnet *ifp)
423 {
424 struct ifaddr *ifa;
425 const struct sockaddr_dl *sdl;
426
427 /*
428 * If the interface already has a link name, release it
429 * now. This is useful for interfaces that can change
430 * link types, and thus switch link names often.
431 */
432 if (ifp->if_sadl != NULL)
433 if_free_sadl(ifp);
434
435 ifa = if_dl_create(ifp, &sdl);
436
437 ifa_insert(ifp, ifa);
438 if_sadl_setrefs(ifp, ifa);
439 }
440
441 static void
442 if_deactivate_sadl(struct ifnet *ifp)
443 {
444 struct ifaddr *ifa;
445
446 KASSERT(ifp->if_dl != NULL);
447
448 ifa = ifp->if_dl;
449
450 ifp->if_sadl = NULL;
451
452 ifnet_addrs[ifp->if_index] = NULL;
453 ifafree(ifa);
454 ifp->if_dl = NULL;
455 ifafree(ifa);
456 }
457
458 void
459 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
460 const struct sockaddr_dl *sdl)
461 {
462 int s;
463
464 s = splnet();
465
466 if_deactivate_sadl(ifp);
467
468 if_sadl_setrefs(ifp, ifa);
469 IFADDR_FOREACH(ifa, ifp)
470 rtinit(ifa, RTM_LLINFO_UPD, 0);
471 splx(s);
472 }
473
474 /*
475 * Free the link level name for the specified interface. This is
476 * a detach helper. This is called from if_detach().
477 */
478 static void
479 if_free_sadl(struct ifnet *ifp)
480 {
481 struct ifaddr *ifa;
482 int s;
483
484 ifa = ifnet_addrs[ifp->if_index];
485 if (ifa == NULL) {
486 KASSERT(ifp->if_sadl == NULL);
487 KASSERT(ifp->if_dl == NULL);
488 return;
489 }
490
491 KASSERT(ifp->if_sadl != NULL);
492 KASSERT(ifp->if_dl != NULL);
493
494 s = splnet();
495 rtinit(ifa, RTM_DELETE, 0);
496 ifa_remove(ifp, ifa);
497 if_deactivate_sadl(ifp);
498 if (ifp->if_hwdl == ifa) {
499 ifafree(ifa);
500 ifp->if_hwdl = NULL;
501 }
502 splx(s);
503 }
504
505 static void
506 if_getindex(ifnet_t *ifp)
507 {
508 bool hitlimit = false;
509
510 mutex_enter(&index_gen_mtx);
511 ifp->if_index_gen = index_gen++;
512 mutex_exit(&index_gen_mtx);
513
514 ifp->if_index = if_index;
515 if (ifindex2ifnet == NULL) {
516 if_index++;
517 goto skip;
518 }
519 while (if_byindex(ifp->if_index)) {
520 /*
521 * If we hit USHRT_MAX, we skip back to 0 since
522 * there are a number of places where the value
523 * of if_index or if_index itself is compared
524 * to or stored in an unsigned short. By
525 * jumping back, we won't botch those assignments
526 * or comparisons.
527 */
528 if (++if_index == 0) {
529 if_index = 1;
530 } else if (if_index == USHRT_MAX) {
531 /*
532 * However, if we have to jump back to
533 * zero *twice* without finding an empty
534 * slot in ifindex2ifnet[], then there
535 * there are too many (>65535) interfaces.
536 */
537 if (hitlimit) {
538 panic("too many interfaces");
539 }
540 hitlimit = true;
541 if_index = 1;
542 }
543 ifp->if_index = if_index;
544 }
545 skip:
546 /*
547 * We have some arrays that should be indexed by if_index.
548 * since if_index will grow dynamically, they should grow too.
549 * struct ifadd **ifnet_addrs
550 * struct ifnet **ifindex2ifnet
551 */
552 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
553 ifp->if_index >= if_indexlim) {
554 size_t m, n, oldlim;
555 void *q;
556
557 oldlim = if_indexlim;
558 while (ifp->if_index >= if_indexlim)
559 if_indexlim <<= 1;
560
561 /* grow ifnet_addrs */
562 m = oldlim * sizeof(struct ifaddr *);
563 n = if_indexlim * sizeof(struct ifaddr *);
564 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
565 if (ifnet_addrs != NULL) {
566 memcpy(q, ifnet_addrs, m);
567 free(ifnet_addrs, M_IFADDR);
568 }
569 ifnet_addrs = (struct ifaddr **)q;
570
571 /* grow ifindex2ifnet */
572 m = oldlim * sizeof(struct ifnet *);
573 n = if_indexlim * sizeof(struct ifnet *);
574 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
575 if (ifindex2ifnet != NULL) {
576 memcpy(q, ifindex2ifnet, m);
577 free(ifindex2ifnet, M_IFADDR);
578 }
579 ifindex2ifnet = (struct ifnet **)q;
580 }
581 ifindex2ifnet[ifp->if_index] = ifp;
582 }
583
584 /*
585 * Attach an interface to the list of "active" interfaces.
586 */
587 void
588 if_attach(ifnet_t *ifp)
589 {
590 KASSERT(if_indexlim > 0);
591 TAILQ_INIT(&ifp->if_addrlist);
592 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
593
594 if (ifioctl_attach(ifp) != 0)
595 panic("%s: ifioctl_attach() failed", __func__);
596
597 if_getindex(ifp);
598
599 /*
600 * Link level name is allocated later by a separate call to
601 * if_alloc_sadl().
602 */
603
604 if (ifp->if_snd.ifq_maxlen == 0)
605 ifp->if_snd.ifq_maxlen = ifqmaxlen;
606
607 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
608
609 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
610
611 ifp->if_link_state = LINK_STATE_UNKNOWN;
612
613 ifp->if_capenable = 0;
614 ifp->if_csum_flags_tx = 0;
615 ifp->if_csum_flags_rx = 0;
616
617 #ifdef ALTQ
618 ifp->if_snd.altq_type = 0;
619 ifp->if_snd.altq_disc = NULL;
620 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
621 ifp->if_snd.altq_tbr = NULL;
622 ifp->if_snd.altq_ifp = ifp;
623 #endif
624
625 #ifdef NET_MPSAFE
626 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
627 #else
628 ifp->if_snd.ifq_lock = NULL;
629 #endif
630
631 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
632 (void)pfil_run_hooks(if_pfil,
633 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
634
635 if (!STAILQ_EMPTY(&domains))
636 if_attachdomain1(ifp);
637
638 /* Announce the interface. */
639 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
640
641 if (ifp->if_slowtimo != NULL) {
642 ifp->if_slowtimo_ch =
643 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
644 callout_init(ifp->if_slowtimo_ch, 0);
645 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
646 if_slowtimo(ifp);
647 }
648 }
649
650 void
651 if_attachdomain(void)
652 {
653 struct ifnet *ifp;
654 int s;
655
656 s = splnet();
657 IFNET_FOREACH(ifp)
658 if_attachdomain1(ifp);
659 splx(s);
660 }
661
662 static void
663 if_attachdomain1(struct ifnet *ifp)
664 {
665 struct domain *dp;
666 int s;
667
668 s = splnet();
669
670 /* address family dependent data region */
671 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
672 DOMAIN_FOREACH(dp) {
673 if (dp->dom_ifattach != NULL)
674 ifp->if_afdata[dp->dom_family] =
675 (*dp->dom_ifattach)(ifp);
676 }
677
678 splx(s);
679 }
680
681 /*
682 * Deactivate an interface. This points all of the procedure
683 * handles at error stubs. May be called from interrupt context.
684 */
685 void
686 if_deactivate(struct ifnet *ifp)
687 {
688 int s;
689
690 s = splnet();
691
692 ifp->if_output = if_nulloutput;
693 ifp->if_input = if_nullinput;
694 ifp->if_start = if_nullstart;
695 ifp->if_ioctl = if_nullioctl;
696 ifp->if_init = if_nullinit;
697 ifp->if_stop = if_nullstop;
698 ifp->if_slowtimo = if_nullslowtimo;
699 ifp->if_drain = if_nulldrain;
700
701 /* No more packets may be enqueued. */
702 ifp->if_snd.ifq_maxlen = 0;
703
704 splx(s);
705 }
706
707 void
708 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
709 {
710 struct ifaddr *ifa, *nifa;
711
712 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
713 if (ifa->ifa_addr->sa_family != family)
714 continue;
715 (*purgeaddr)(ifa);
716 }
717 }
718
719 /*
720 * Detach an interface from the list of "active" interfaces,
721 * freeing any resources as we go along.
722 *
723 * NOTE: This routine must be called with a valid thread context,
724 * as it may block.
725 */
726 void
727 if_detach(struct ifnet *ifp)
728 {
729 struct socket so;
730 struct ifaddr *ifa;
731 #ifdef IFAREF_DEBUG
732 struct ifaddr *last_ifa = NULL;
733 #endif
734 struct domain *dp;
735 const struct protosw *pr;
736 int s, i, family, purged;
737 uint64_t xc;
738
739 /*
740 * XXX It's kind of lame that we have to have the
741 * XXX socket structure...
742 */
743 memset(&so, 0, sizeof(so));
744
745 s = splnet();
746
747 if (ifp->if_slowtimo != NULL) {
748 ifp->if_slowtimo = NULL;
749 callout_halt(ifp->if_slowtimo_ch, NULL);
750 callout_destroy(ifp->if_slowtimo_ch);
751 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
752 }
753
754 /*
755 * Do an if_down() to give protocols a chance to do something.
756 */
757 if_down(ifp);
758
759 #ifdef ALTQ
760 if (ALTQ_IS_ENABLED(&ifp->if_snd))
761 altq_disable(&ifp->if_snd);
762 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
763 altq_detach(&ifp->if_snd);
764 #endif
765
766 if (ifp->if_snd.ifq_lock)
767 mutex_obj_free(ifp->if_snd.ifq_lock);
768
769 sysctl_teardown(&ifp->if_sysctl_log);
770
771 #if NCARP > 0
772 /* Remove the interface from any carp group it is a part of. */
773 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
774 carp_ifdetach(ifp);
775 #endif
776
777 /*
778 * Rip all the addresses off the interface. This should make
779 * all of the routes go away.
780 *
781 * pr_usrreq calls can remove an arbitrary number of ifaddrs
782 * from the list, including our "cursor", ifa. For safety,
783 * and to honor the TAILQ abstraction, I just restart the
784 * loop after each removal. Note that the loop will exit
785 * when all of the remaining ifaddrs belong to the AF_LINK
786 * family. I am counting on the historical fact that at
787 * least one pr_usrreq in each address domain removes at
788 * least one ifaddr.
789 */
790 again:
791 IFADDR_FOREACH(ifa, ifp) {
792 family = ifa->ifa_addr->sa_family;
793 #ifdef IFAREF_DEBUG
794 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
795 ifa, family, ifa->ifa_refcnt);
796 if (last_ifa != NULL && ifa == last_ifa)
797 panic("if_detach: loop detected");
798 last_ifa = ifa;
799 #endif
800 if (family == AF_LINK)
801 continue;
802 dp = pffinddomain(family);
803 #ifdef DIAGNOSTIC
804 if (dp == NULL)
805 panic("if_detach: no domain for AF %d",
806 family);
807 #endif
808 /*
809 * XXX These PURGEIF calls are redundant with the
810 * purge-all-families calls below, but are left in for
811 * now both to make a smaller change, and to avoid
812 * unplanned interactions with clearing of
813 * ifp->if_addrlist.
814 */
815 purged = 0;
816 for (pr = dp->dom_protosw;
817 pr < dp->dom_protoswNPROTOSW; pr++) {
818 so.so_proto = pr;
819 if (pr->pr_usrreqs) {
820 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
821 purged = 1;
822 }
823 }
824 if (purged == 0) {
825 /*
826 * XXX What's really the best thing to do
827 * XXX here? --thorpej (at) NetBSD.org
828 */
829 printf("if_detach: WARNING: AF %d not purged\n",
830 family);
831 ifa_remove(ifp, ifa);
832 }
833 goto again;
834 }
835
836 if_free_sadl(ifp);
837
838 /* Walk the routing table looking for stragglers. */
839 for (i = 0; i <= AF_MAX; i++) {
840 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
841 continue;
842 }
843
844 DOMAIN_FOREACH(dp) {
845 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
846 {
847 void *p = ifp->if_afdata[dp->dom_family];
848 if (p) {
849 ifp->if_afdata[dp->dom_family] = NULL;
850 (*dp->dom_ifdetach)(ifp, p);
851 }
852 }
853
854 /*
855 * One would expect multicast memberships (INET and
856 * INET6) on UDP sockets to be purged by the PURGEIF
857 * calls above, but if all addresses were removed from
858 * the interface prior to destruction, the calls will
859 * not be made (e.g. ppp, for which pppd(8) generally
860 * removes addresses before destroying the interface).
861 * Because there is no invariant that multicast
862 * memberships only exist for interfaces with IPv4
863 * addresses, we must call PURGEIF regardless of
864 * addresses. (Protocols which might store ifnet
865 * pointers are marked with PR_PURGEIF.)
866 */
867 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
868 so.so_proto = pr;
869 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
870 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
871 }
872 }
873
874 (void)pfil_run_hooks(if_pfil,
875 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
876 (void)pfil_head_destroy(ifp->if_pfil);
877
878 /* Announce that the interface is gone. */
879 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
880
881 ifindex2ifnet[ifp->if_index] = NULL;
882
883 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
884
885 ifioctl_detach(ifp);
886
887 /*
888 * remove packets that came from ifp, from software interrupt queues.
889 */
890 DOMAIN_FOREACH(dp) {
891 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
892 struct ifqueue *iq = dp->dom_ifqueues[i];
893 if (iq == NULL)
894 break;
895 dp->dom_ifqueues[i] = NULL;
896 if_detach_queues(ifp, iq);
897 }
898 }
899
900 /*
901 * IP queues have to be processed separately: net-queue barrier
902 * ensures that the packets are dequeued while a cross-call will
903 * ensure that the interrupts have completed. FIXME: not quite..
904 */
905 #ifdef INET
906 pktq_barrier(ip_pktq);
907 #endif
908 #ifdef INET6
909 if (in6_present)
910 pktq_barrier(ip6_pktq);
911 #endif
912 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
913 xc_wait(xc);
914
915 splx(s);
916 }
917
918 static void
919 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
920 {
921 struct mbuf *m, *prev, *next;
922
923 prev = NULL;
924 for (m = q->ifq_head; m != NULL; m = next) {
925 KASSERT((m->m_flags & M_PKTHDR) != 0);
926
927 next = m->m_nextpkt;
928 if (m->m_pkthdr.rcvif != ifp) {
929 prev = m;
930 continue;
931 }
932
933 if (prev != NULL)
934 prev->m_nextpkt = m->m_nextpkt;
935 else
936 q->ifq_head = m->m_nextpkt;
937 if (q->ifq_tail == m)
938 q->ifq_tail = prev;
939 q->ifq_len--;
940
941 m->m_nextpkt = NULL;
942 m_freem(m);
943 IF_DROP(q);
944 }
945 }
946
947 /*
948 * Callback for a radix tree walk to delete all references to an
949 * ifnet.
950 */
951 static int
952 if_rt_walktree(struct rtentry *rt, void *v)
953 {
954 struct ifnet *ifp = (struct ifnet *)v;
955 int error;
956
957 if (rt->rt_ifp != ifp)
958 return 0;
959
960 /* Delete the entry. */
961 ++rt->rt_refcnt;
962 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
963 rt_mask(rt), rt->rt_flags, NULL);
964 KASSERT((rt->rt_flags & RTF_UP) == 0);
965 rt->rt_ifp = NULL;
966 rtfree(rt);
967 if (error != 0)
968 printf("%s: warning: unable to delete rtentry @ %p, "
969 "error = %d\n", ifp->if_xname, rt, error);
970 return ERESTART;
971 }
972
973 /*
974 * Create a clone network interface.
975 */
976 static int
977 if_clone_create(const char *name)
978 {
979 struct if_clone *ifc;
980 int unit;
981
982 ifc = if_clone_lookup(name, &unit);
983 if (ifc == NULL)
984 return EINVAL;
985
986 if (ifunit(name) != NULL)
987 return EEXIST;
988
989 return (*ifc->ifc_create)(ifc, unit);
990 }
991
992 /*
993 * Destroy a clone network interface.
994 */
995 static int
996 if_clone_destroy(const char *name)
997 {
998 struct if_clone *ifc;
999 struct ifnet *ifp;
1000
1001 ifc = if_clone_lookup(name, NULL);
1002 if (ifc == NULL)
1003 return EINVAL;
1004
1005 ifp = ifunit(name);
1006 if (ifp == NULL)
1007 return ENXIO;
1008
1009 if (ifc->ifc_destroy == NULL)
1010 return EOPNOTSUPP;
1011
1012 return (*ifc->ifc_destroy)(ifp);
1013 }
1014
1015 /*
1016 * Look up a network interface cloner.
1017 */
1018 static struct if_clone *
1019 if_clone_lookup(const char *name, int *unitp)
1020 {
1021 struct if_clone *ifc;
1022 const char *cp;
1023 char *dp, ifname[IFNAMSIZ + 3];
1024 int unit;
1025
1026 strcpy(ifname, "if_");
1027 /* separate interface name from unit */
1028 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1029 *cp && (*cp < '0' || *cp > '9');)
1030 *dp++ = *cp++;
1031
1032 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1033 return NULL; /* No name or unit number */
1034 *dp++ = '\0';
1035
1036 again:
1037 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1038 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1039 break;
1040 }
1041
1042 if (ifc == NULL) {
1043 if (*ifname == '\0' ||
1044 module_autoload(ifname, MODULE_CLASS_DRIVER))
1045 return NULL;
1046 *ifname = '\0';
1047 goto again;
1048 }
1049
1050 unit = 0;
1051 while (cp - name < IFNAMSIZ && *cp) {
1052 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1053 /* Bogus unit number. */
1054 return NULL;
1055 }
1056 unit = (unit * 10) + (*cp++ - '0');
1057 }
1058
1059 if (unitp != NULL)
1060 *unitp = unit;
1061 return ifc;
1062 }
1063
1064 /*
1065 * Register a network interface cloner.
1066 */
1067 void
1068 if_clone_attach(struct if_clone *ifc)
1069 {
1070
1071 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1072 if_cloners_count++;
1073 }
1074
1075 /*
1076 * Unregister a network interface cloner.
1077 */
1078 void
1079 if_clone_detach(struct if_clone *ifc)
1080 {
1081
1082 LIST_REMOVE(ifc, ifc_list);
1083 if_cloners_count--;
1084 }
1085
1086 /*
1087 * Provide list of interface cloners to userspace.
1088 */
1089 static int
1090 if_clone_list(struct if_clonereq *ifcr)
1091 {
1092 char outbuf[IFNAMSIZ], *dst;
1093 struct if_clone *ifc;
1094 int count, error = 0;
1095
1096 ifcr->ifcr_total = if_cloners_count;
1097 if ((dst = ifcr->ifcr_buffer) == NULL) {
1098 /* Just asking how many there are. */
1099 return 0;
1100 }
1101
1102 if (ifcr->ifcr_count < 0)
1103 return EINVAL;
1104
1105 count = (if_cloners_count < ifcr->ifcr_count) ?
1106 if_cloners_count : ifcr->ifcr_count;
1107
1108 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1109 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1110 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1111 if (outbuf[sizeof(outbuf) - 1] != '\0')
1112 return ENAMETOOLONG;
1113 error = copyout(outbuf, dst, sizeof(outbuf));
1114 if (error != 0)
1115 break;
1116 }
1117
1118 return error;
1119 }
1120
1121 void
1122 ifaref(struct ifaddr *ifa)
1123 {
1124 ifa->ifa_refcnt++;
1125 }
1126
1127 void
1128 ifafree(struct ifaddr *ifa)
1129 {
1130 KASSERT(ifa != NULL);
1131 KASSERT(ifa->ifa_refcnt > 0);
1132
1133 if (--ifa->ifa_refcnt == 0) {
1134 free(ifa, M_IFADDR);
1135 }
1136 }
1137
1138 void
1139 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1140 {
1141 ifa->ifa_ifp = ifp;
1142 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1143 ifaref(ifa);
1144 }
1145
1146 void
1147 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1148 {
1149 KASSERT(ifa->ifa_ifp == ifp);
1150 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1151 ifafree(ifa);
1152 }
1153
1154 static inline int
1155 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1156 {
1157 return sockaddr_cmp(sa1, sa2) == 0;
1158 }
1159
1160 /*
1161 * Locate an interface based on a complete address.
1162 */
1163 /*ARGSUSED*/
1164 struct ifaddr *
1165 ifa_ifwithaddr(const struct sockaddr *addr)
1166 {
1167 struct ifnet *ifp;
1168 struct ifaddr *ifa;
1169
1170 IFNET_FOREACH(ifp) {
1171 if (ifp->if_output == if_nulloutput)
1172 continue;
1173 IFADDR_FOREACH(ifa, ifp) {
1174 if (ifa->ifa_addr->sa_family != addr->sa_family)
1175 continue;
1176 if (equal(addr, ifa->ifa_addr))
1177 return ifa;
1178 if ((ifp->if_flags & IFF_BROADCAST) &&
1179 ifa->ifa_broadaddr &&
1180 /* IP6 doesn't have broadcast */
1181 ifa->ifa_broadaddr->sa_len != 0 &&
1182 equal(ifa->ifa_broadaddr, addr))
1183 return ifa;
1184 }
1185 }
1186 return NULL;
1187 }
1188
1189 /*
1190 * Locate the point to point interface with a given destination address.
1191 */
1192 /*ARGSUSED*/
1193 struct ifaddr *
1194 ifa_ifwithdstaddr(const struct sockaddr *addr)
1195 {
1196 struct ifnet *ifp;
1197 struct ifaddr *ifa;
1198
1199 IFNET_FOREACH(ifp) {
1200 if (ifp->if_output == if_nulloutput)
1201 continue;
1202 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1203 continue;
1204 IFADDR_FOREACH(ifa, ifp) {
1205 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1206 ifa->ifa_dstaddr == NULL)
1207 continue;
1208 if (equal(addr, ifa->ifa_dstaddr))
1209 return ifa;
1210 }
1211 }
1212 return NULL;
1213 }
1214
1215 /*
1216 * Find an interface on a specific network. If many, choice
1217 * is most specific found.
1218 */
1219 struct ifaddr *
1220 ifa_ifwithnet(const struct sockaddr *addr)
1221 {
1222 struct ifnet *ifp;
1223 struct ifaddr *ifa;
1224 const struct sockaddr_dl *sdl;
1225 struct ifaddr *ifa_maybe = 0;
1226 u_int af = addr->sa_family;
1227 const char *addr_data = addr->sa_data, *cplim;
1228
1229 if (af == AF_LINK) {
1230 sdl = satocsdl(addr);
1231 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1232 ifindex2ifnet[sdl->sdl_index] &&
1233 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1234 return ifnet_addrs[sdl->sdl_index];
1235 }
1236 #ifdef NETATALK
1237 if (af == AF_APPLETALK) {
1238 const struct sockaddr_at *sat, *sat2;
1239 sat = (const struct sockaddr_at *)addr;
1240 IFNET_FOREACH(ifp) {
1241 if (ifp->if_output == if_nulloutput)
1242 continue;
1243 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1244 if (ifa == NULL)
1245 continue;
1246 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1247 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1248 return ifa; /* exact match */
1249 if (ifa_maybe == NULL) {
1250 /* else keep the if with the right range */
1251 ifa_maybe = ifa;
1252 }
1253 }
1254 return ifa_maybe;
1255 }
1256 #endif
1257 IFNET_FOREACH(ifp) {
1258 if (ifp->if_output == if_nulloutput)
1259 continue;
1260 IFADDR_FOREACH(ifa, ifp) {
1261 const char *cp, *cp2, *cp3;
1262
1263 if (ifa->ifa_addr->sa_family != af ||
1264 ifa->ifa_netmask == NULL)
1265 next: continue;
1266 cp = addr_data;
1267 cp2 = ifa->ifa_addr->sa_data;
1268 cp3 = ifa->ifa_netmask->sa_data;
1269 cplim = (const char *)ifa->ifa_netmask +
1270 ifa->ifa_netmask->sa_len;
1271 while (cp3 < cplim) {
1272 if ((*cp++ ^ *cp2++) & *cp3++) {
1273 /* want to continue for() loop */
1274 goto next;
1275 }
1276 }
1277 if (ifa_maybe == NULL ||
1278 rn_refines((void *)ifa->ifa_netmask,
1279 (void *)ifa_maybe->ifa_netmask))
1280 ifa_maybe = ifa;
1281 }
1282 }
1283 return ifa_maybe;
1284 }
1285
1286 /*
1287 * Find the interface of the addresss.
1288 */
1289 struct ifaddr *
1290 ifa_ifwithladdr(const struct sockaddr *addr)
1291 {
1292 struct ifaddr *ia;
1293
1294 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1295 (ia = ifa_ifwithnet(addr)))
1296 return ia;
1297 return NULL;
1298 }
1299
1300 /*
1301 * Find an interface using a specific address family
1302 */
1303 struct ifaddr *
1304 ifa_ifwithaf(int af)
1305 {
1306 struct ifnet *ifp;
1307 struct ifaddr *ifa;
1308
1309 IFNET_FOREACH(ifp) {
1310 if (ifp->if_output == if_nulloutput)
1311 continue;
1312 IFADDR_FOREACH(ifa, ifp) {
1313 if (ifa->ifa_addr->sa_family == af)
1314 return ifa;
1315 }
1316 }
1317 return NULL;
1318 }
1319
1320 /*
1321 * Find an interface address specific to an interface best matching
1322 * a given address.
1323 */
1324 struct ifaddr *
1325 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1326 {
1327 struct ifaddr *ifa;
1328 const char *cp, *cp2, *cp3;
1329 const char *cplim;
1330 struct ifaddr *ifa_maybe = 0;
1331 u_int af = addr->sa_family;
1332
1333 if (ifp->if_output == if_nulloutput)
1334 return NULL;
1335
1336 if (af >= AF_MAX)
1337 return NULL;
1338
1339 IFADDR_FOREACH(ifa, ifp) {
1340 if (ifa->ifa_addr->sa_family != af)
1341 continue;
1342 ifa_maybe = ifa;
1343 if (ifa->ifa_netmask == NULL) {
1344 if (equal(addr, ifa->ifa_addr) ||
1345 (ifa->ifa_dstaddr &&
1346 equal(addr, ifa->ifa_dstaddr)))
1347 return ifa;
1348 continue;
1349 }
1350 cp = addr->sa_data;
1351 cp2 = ifa->ifa_addr->sa_data;
1352 cp3 = ifa->ifa_netmask->sa_data;
1353 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1354 for (; cp3 < cplim; cp3++) {
1355 if ((*cp++ ^ *cp2++) & *cp3)
1356 break;
1357 }
1358 if (cp3 == cplim)
1359 return ifa;
1360 }
1361 return ifa_maybe;
1362 }
1363
1364 /*
1365 * Default action when installing a route with a Link Level gateway.
1366 * Lookup an appropriate real ifa to point to.
1367 * This should be moved to /sys/net/link.c eventually.
1368 */
1369 void
1370 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1371 {
1372 struct ifaddr *ifa;
1373 const struct sockaddr *dst;
1374 struct ifnet *ifp;
1375
1376 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1377 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1378 return;
1379 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1380 rt_replace_ifa(rt, ifa);
1381 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1382 ifa->ifa_rtrequest(cmd, rt, info);
1383 }
1384 }
1385
1386 /*
1387 * Handle a change in the interface link state.
1388 * XXX: We should listen to the routing socket in-kernel rather
1389 * than calling in6_if_link_* functions directly from here.
1390 */
1391 void
1392 if_link_state_change(struct ifnet *ifp, int link_state)
1393 {
1394 int s;
1395 #if defined(DEBUG) || defined(INET6)
1396 int old_link_state;
1397 #endif
1398
1399 s = splnet();
1400 if (ifp->if_link_state == link_state) {
1401 splx(s);
1402 return;
1403 }
1404
1405 #if defined(DEBUG) || defined(INET6)
1406 old_link_state = ifp->if_link_state;
1407 #endif
1408 ifp->if_link_state = link_state;
1409 #ifdef DEBUG
1410 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1411 link_state == LINK_STATE_UP ? "UP" :
1412 link_state == LINK_STATE_DOWN ? "DOWN" :
1413 "UNKNOWN",
1414 old_link_state == LINK_STATE_UP ? "UP" :
1415 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1416 "UNKNOWN");
1417 #endif
1418
1419 #ifdef INET6
1420 /*
1421 * When going from UNKNOWN to UP, we need to mark existing
1422 * IPv6 addresses as tentative and restart DAD as we may have
1423 * erroneously not found a duplicate.
1424 *
1425 * This needs to happen before rt_ifmsg to avoid a race where
1426 * listeners would have an address and expect it to work right
1427 * away.
1428 */
1429 if (in6_present && link_state == LINK_STATE_UP &&
1430 old_link_state == LINK_STATE_UNKNOWN)
1431 in6_if_link_down(ifp);
1432 #endif
1433
1434 /* Notify that the link state has changed. */
1435 rt_ifmsg(ifp);
1436
1437 #if NCARP > 0
1438 if (ifp->if_carp)
1439 carp_carpdev_state(ifp);
1440 #endif
1441
1442 #ifdef INET6
1443 if (in6_present) {
1444 if (link_state == LINK_STATE_DOWN)
1445 in6_if_link_down(ifp);
1446 else if (link_state == LINK_STATE_UP)
1447 in6_if_link_up(ifp);
1448 }
1449 #endif
1450
1451 splx(s);
1452 }
1453
1454 /*
1455 * Mark an interface down and notify protocols of
1456 * the transition.
1457 * NOTE: must be called at splsoftnet or equivalent.
1458 */
1459 void
1460 if_down(struct ifnet *ifp)
1461 {
1462 struct ifaddr *ifa;
1463
1464 ifp->if_flags &= ~IFF_UP;
1465 nanotime(&ifp->if_lastchange);
1466 IFADDR_FOREACH(ifa, ifp)
1467 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1468 IFQ_PURGE(&ifp->if_snd);
1469 #if NCARP > 0
1470 if (ifp->if_carp)
1471 carp_carpdev_state(ifp);
1472 #endif
1473 rt_ifmsg(ifp);
1474 #ifdef INET6
1475 if (in6_present)
1476 in6_if_down(ifp);
1477 #endif
1478 }
1479
1480 /*
1481 * Mark an interface up and notify protocols of
1482 * the transition.
1483 * NOTE: must be called at splsoftnet or equivalent.
1484 */
1485 void
1486 if_up(struct ifnet *ifp)
1487 {
1488 #ifdef notyet
1489 struct ifaddr *ifa;
1490 #endif
1491
1492 ifp->if_flags |= IFF_UP;
1493 nanotime(&ifp->if_lastchange);
1494 #ifdef notyet
1495 /* this has no effect on IP, and will kill all ISO connections XXX */
1496 IFADDR_FOREACH(ifa, ifp)
1497 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1498 #endif
1499 #if NCARP > 0
1500 if (ifp->if_carp)
1501 carp_carpdev_state(ifp);
1502 #endif
1503 rt_ifmsg(ifp);
1504 #ifdef INET6
1505 if (in6_present)
1506 in6_if_up(ifp);
1507 #endif
1508 }
1509
1510 /*
1511 * Handle interface slowtimo timer routine. Called
1512 * from softclock, we decrement timer (if set) and
1513 * call the appropriate interface routine on expiration.
1514 */
1515 static void
1516 if_slowtimo(void *arg)
1517 {
1518 struct ifnet *ifp = arg;
1519 int s;
1520
1521 if (__predict_false(ifp->if_slowtimo == NULL))
1522 return;
1523
1524 s = splnet();
1525 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
1526 (*ifp->if_slowtimo)(ifp);
1527
1528 splx(s);
1529
1530 if (__predict_true(ifp->if_slowtimo != NULL))
1531 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
1532 }
1533
1534 /*
1535 * Set/clear promiscuous mode on interface ifp based on the truth value
1536 * of pswitch. The calls are reference counted so that only the first
1537 * "on" request actually has an effect, as does the final "off" request.
1538 * Results are undefined if the "off" and "on" requests are not matched.
1539 */
1540 int
1541 ifpromisc(struct ifnet *ifp, int pswitch)
1542 {
1543 int pcount, ret;
1544 short nflags;
1545
1546 pcount = ifp->if_pcount;
1547 if (pswitch) {
1548 /*
1549 * Allow the device to be "placed" into promiscuous
1550 * mode even if it is not configured up. It will
1551 * consult IFF_PROMISC when it is brought up.
1552 */
1553 if (ifp->if_pcount++ != 0)
1554 return 0;
1555 nflags = ifp->if_flags | IFF_PROMISC;
1556 } else {
1557 if (--ifp->if_pcount > 0)
1558 return 0;
1559 nflags = ifp->if_flags & ~IFF_PROMISC;
1560 }
1561 ret = if_flags_set(ifp, nflags);
1562 /* Restore interface state if not successful. */
1563 if (ret != 0) {
1564 ifp->if_pcount = pcount;
1565 }
1566 return ret;
1567 }
1568
1569 /*
1570 * Map interface name to
1571 * interface structure pointer.
1572 */
1573 struct ifnet *
1574 ifunit(const char *name)
1575 {
1576 struct ifnet *ifp;
1577 const char *cp = name;
1578 u_int unit = 0;
1579 u_int i;
1580
1581 /*
1582 * If the entire name is a number, treat it as an ifindex.
1583 */
1584 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1585 unit = unit * 10 + (*cp - '0');
1586 }
1587
1588 /*
1589 * If the number took all of the name, then it's a valid ifindex.
1590 */
1591 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1592 if (unit >= if_indexlim)
1593 return NULL;
1594 ifp = ifindex2ifnet[unit];
1595 if (ifp == NULL || ifp->if_output == if_nulloutput)
1596 return NULL;
1597 return ifp;
1598 }
1599
1600 IFNET_FOREACH(ifp) {
1601 if (ifp->if_output == if_nulloutput)
1602 continue;
1603 if (strcmp(ifp->if_xname, name) == 0)
1604 return ifp;
1605 }
1606 return NULL;
1607 }
1608
1609 ifnet_t *
1610 if_byindex(u_int idx)
1611 {
1612 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1613 }
1614
1615 /* common */
1616 int
1617 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1618 {
1619 int s;
1620 struct ifreq *ifr;
1621 struct ifcapreq *ifcr;
1622 struct ifdatareq *ifdr;
1623
1624 switch (cmd) {
1625 case SIOCSIFCAP:
1626 ifcr = data;
1627 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1628 return EINVAL;
1629
1630 if (ifcr->ifcr_capenable == ifp->if_capenable)
1631 return 0;
1632
1633 ifp->if_capenable = ifcr->ifcr_capenable;
1634
1635 /* Pre-compute the checksum flags mask. */
1636 ifp->if_csum_flags_tx = 0;
1637 ifp->if_csum_flags_rx = 0;
1638 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1639 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1640 }
1641 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1642 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1643 }
1644
1645 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1646 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1647 }
1648 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1649 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1650 }
1651
1652 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1653 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1654 }
1655 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1656 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1657 }
1658
1659 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1660 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1661 }
1662 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1663 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1664 }
1665
1666 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1667 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1668 }
1669 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1670 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1671 }
1672 if (ifp->if_flags & IFF_UP)
1673 return ENETRESET;
1674 return 0;
1675 case SIOCSIFFLAGS:
1676 ifr = data;
1677 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1678 s = splnet();
1679 if_down(ifp);
1680 splx(s);
1681 }
1682 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1683 s = splnet();
1684 if_up(ifp);
1685 splx(s);
1686 }
1687 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1688 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1689 break;
1690 case SIOCGIFFLAGS:
1691 ifr = data;
1692 ifr->ifr_flags = ifp->if_flags;
1693 break;
1694
1695 case SIOCGIFMETRIC:
1696 ifr = data;
1697 ifr->ifr_metric = ifp->if_metric;
1698 break;
1699
1700 case SIOCGIFMTU:
1701 ifr = data;
1702 ifr->ifr_mtu = ifp->if_mtu;
1703 break;
1704
1705 case SIOCGIFDLT:
1706 ifr = data;
1707 ifr->ifr_dlt = ifp->if_dlt;
1708 break;
1709
1710 case SIOCGIFCAP:
1711 ifcr = data;
1712 ifcr->ifcr_capabilities = ifp->if_capabilities;
1713 ifcr->ifcr_capenable = ifp->if_capenable;
1714 break;
1715
1716 case SIOCSIFMETRIC:
1717 ifr = data;
1718 ifp->if_metric = ifr->ifr_metric;
1719 break;
1720
1721 case SIOCGIFDATA:
1722 ifdr = data;
1723 ifdr->ifdr_data = ifp->if_data;
1724 break;
1725
1726 case SIOCGIFINDEX:
1727 ifr = data;
1728 ifr->ifr_index = ifp->if_index;
1729 break;
1730
1731 case SIOCZIFDATA:
1732 ifdr = data;
1733 ifdr->ifdr_data = ifp->if_data;
1734 /*
1735 * Assumes that the volatile counters that can be
1736 * zero'ed are at the end of if_data.
1737 */
1738 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1739 offsetof(struct if_data, ifi_ipackets));
1740 /*
1741 * The memset() clears to the bottm of if_data. In the area,
1742 * if_lastchange is included. Please be careful if new entry
1743 * will be added into if_data or rewite this.
1744 *
1745 * And also, update if_lastchnage.
1746 */
1747 getnanotime(&ifp->if_lastchange);
1748 break;
1749 case SIOCSIFMTU:
1750 ifr = data;
1751 if (ifp->if_mtu == ifr->ifr_mtu)
1752 break;
1753 ifp->if_mtu = ifr->ifr_mtu;
1754 /*
1755 * If the link MTU changed, do network layer specific procedure.
1756 */
1757 #ifdef INET6
1758 if (in6_present)
1759 nd6_setmtu(ifp);
1760 #endif
1761 return ENETRESET;
1762 default:
1763 return ENOTTY;
1764 }
1765 return 0;
1766 }
1767
1768 int
1769 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1770 {
1771 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1772 struct ifaddr *ifa;
1773 const struct sockaddr *any, *sa;
1774 union {
1775 struct sockaddr sa;
1776 struct sockaddr_storage ss;
1777 } u, v;
1778
1779 switch (cmd) {
1780 case SIOCSIFADDRPREF:
1781 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1782 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1783 NULL) != 0)
1784 return EPERM;
1785 case SIOCGIFADDRPREF:
1786 break;
1787 default:
1788 return EOPNOTSUPP;
1789 }
1790
1791 /* sanity checks */
1792 if (data == NULL || ifp == NULL) {
1793 panic("invalid argument to %s", __func__);
1794 /*NOTREACHED*/
1795 }
1796
1797 /* address must be specified on ADD and DELETE */
1798 sa = sstocsa(&ifap->ifap_addr);
1799 if (sa->sa_family != sofamily(so))
1800 return EINVAL;
1801 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1802 return EINVAL;
1803
1804 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1805
1806 IFADDR_FOREACH(ifa, ifp) {
1807 if (ifa->ifa_addr->sa_family != sa->sa_family)
1808 continue;
1809 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1810 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1811 break;
1812 }
1813 if (ifa == NULL)
1814 return EADDRNOTAVAIL;
1815
1816 switch (cmd) {
1817 case SIOCSIFADDRPREF:
1818 ifa->ifa_preference = ifap->ifap_preference;
1819 return 0;
1820 case SIOCGIFADDRPREF:
1821 /* fill in the if_laddrreq structure */
1822 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1823 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1824 ifap->ifap_preference = ifa->ifa_preference;
1825 return 0;
1826 default:
1827 return EOPNOTSUPP;
1828 }
1829 }
1830
1831 static void
1832 ifnet_lock_enter(struct ifnet_lock *il)
1833 {
1834 uint64_t *nenter;
1835
1836 /* Before trying to acquire the mutex, increase the count of threads
1837 * who have entered or who wait to enter the critical section.
1838 * Avoid one costly locked memory transaction by keeping a count for
1839 * each CPU.
1840 */
1841 nenter = percpu_getref(il->il_nenter);
1842 (*nenter)++;
1843 percpu_putref(il->il_nenter);
1844 mutex_enter(&il->il_lock);
1845 }
1846
1847 static void
1848 ifnet_lock_exit(struct ifnet_lock *il)
1849 {
1850 /* Increase the count of threads who have exited the critical
1851 * section. Increase while we still hold the lock.
1852 */
1853 il->il_nexit++;
1854 mutex_exit(&il->il_lock);
1855 }
1856
1857 /*
1858 * Interface ioctls.
1859 */
1860 static int
1861 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1862 {
1863 struct ifnet *ifp;
1864 struct ifreq *ifr;
1865 int error = 0;
1866 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1867 u_long ocmd = cmd;
1868 #endif
1869 short oif_flags;
1870 #ifdef COMPAT_OIFREQ
1871 struct ifreq ifrb;
1872 struct oifreq *oifr = NULL;
1873 #endif
1874 int r;
1875
1876 switch (cmd) {
1877 #ifdef COMPAT_OIFREQ
1878 case OSIOCGIFCONF:
1879 case OOSIOCGIFCONF:
1880 return compat_ifconf(cmd, data);
1881 #endif
1882 #ifdef COMPAT_OIFDATA
1883 case OSIOCGIFDATA:
1884 case OSIOCZIFDATA:
1885 return compat_ifdatareq(l, cmd, data);
1886 #endif
1887 case SIOCGIFCONF:
1888 return ifconf(cmd, data);
1889 case SIOCINITIFADDR:
1890 return EPERM;
1891 }
1892
1893 #ifdef COMPAT_OIFREQ
1894 cmd = compat_cvtcmd(cmd);
1895 if (cmd != ocmd) {
1896 oifr = data;
1897 data = ifr = &ifrb;
1898 ifreqo2n(oifr, ifr);
1899 } else
1900 #endif
1901 ifr = data;
1902
1903 ifp = ifunit(ifr->ifr_name);
1904
1905 switch (cmd) {
1906 case SIOCIFCREATE:
1907 case SIOCIFDESTROY:
1908 if (l != NULL) {
1909 error = kauth_authorize_network(l->l_cred,
1910 KAUTH_NETWORK_INTERFACE,
1911 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1912 (void *)cmd, NULL);
1913 if (error != 0)
1914 return error;
1915 }
1916 mutex_enter(&if_clone_mtx);
1917 r = (cmd == SIOCIFCREATE) ?
1918 if_clone_create(ifr->ifr_name) :
1919 if_clone_destroy(ifr->ifr_name);
1920 mutex_exit(&if_clone_mtx);
1921 return r;
1922
1923 case SIOCIFGCLONERS:
1924 return if_clone_list((struct if_clonereq *)data);
1925 }
1926
1927 if (ifp == NULL)
1928 return ENXIO;
1929
1930 switch (cmd) {
1931 case SIOCALIFADDR:
1932 case SIOCDLIFADDR:
1933 case SIOCSIFADDRPREF:
1934 case SIOCSIFFLAGS:
1935 case SIOCSIFCAP:
1936 case SIOCSIFMETRIC:
1937 case SIOCZIFDATA:
1938 case SIOCSIFMTU:
1939 case SIOCSIFPHYADDR:
1940 case SIOCDIFPHYADDR:
1941 #ifdef INET6
1942 case SIOCSIFPHYADDR_IN6:
1943 #endif
1944 case SIOCSLIFPHYADDR:
1945 case SIOCADDMULTI:
1946 case SIOCDELMULTI:
1947 case SIOCSIFMEDIA:
1948 case SIOCSDRVSPEC:
1949 case SIOCG80211:
1950 case SIOCS80211:
1951 case SIOCS80211NWID:
1952 case SIOCS80211NWKEY:
1953 case SIOCS80211POWER:
1954 case SIOCS80211BSSID:
1955 case SIOCS80211CHANNEL:
1956 case SIOCSLINKSTR:
1957 if (l != NULL) {
1958 error = kauth_authorize_network(l->l_cred,
1959 KAUTH_NETWORK_INTERFACE,
1960 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1961 (void *)cmd, NULL);
1962 if (error != 0)
1963 return error;
1964 }
1965 }
1966
1967 oif_flags = ifp->if_flags;
1968
1969 ifnet_lock_enter(ifp->if_ioctl_lock);
1970 error = (*ifp->if_ioctl)(ifp, cmd, data);
1971 if (error != ENOTTY)
1972 ;
1973 else if (so->so_proto == NULL)
1974 error = EOPNOTSUPP;
1975 else {
1976 #ifdef COMPAT_OSOCK
1977 error = compat_ifioctl(so, ocmd, cmd, data, l);
1978 #else
1979 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
1980 cmd, data, ifp);
1981 #endif
1982 }
1983
1984 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1985 #ifdef INET6
1986 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
1987 int s = splnet();
1988 in6_if_up(ifp);
1989 splx(s);
1990 }
1991 #endif
1992 }
1993 #ifdef COMPAT_OIFREQ
1994 if (cmd != ocmd)
1995 ifreqn2o(oifr, ifr);
1996 #endif
1997
1998 ifnet_lock_exit(ifp->if_ioctl_lock);
1999 return error;
2000 }
2001
2002 /* This callback adds to the sum in `arg' the number of
2003 * threads on `ci' who have entered or who wait to enter the
2004 * critical section.
2005 */
2006 static void
2007 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2008 {
2009 uint64_t *sum = arg, *nenter = p;
2010
2011 *sum += *nenter;
2012 }
2013
2014 /* Return the number of threads who have entered or who wait
2015 * to enter the critical section on all CPUs.
2016 */
2017 static uint64_t
2018 ifnet_lock_entrances(struct ifnet_lock *il)
2019 {
2020 uint64_t sum = 0;
2021
2022 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2023
2024 return sum;
2025 }
2026
2027 static int
2028 ifioctl_attach(struct ifnet *ifp)
2029 {
2030 struct ifnet_lock *il;
2031
2032 /* If the driver has not supplied its own if_ioctl, then
2033 * supply the default.
2034 */
2035 if (ifp->if_ioctl == NULL)
2036 ifp->if_ioctl = ifioctl_common;
2037
2038 /* Create an ifnet_lock for synchronizing ifioctls. */
2039 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2040 return ENOMEM;
2041
2042 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2043 if (il->il_nenter == NULL) {
2044 kmem_free(il, sizeof(*il));
2045 return ENOMEM;
2046 }
2047
2048 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2049 cv_init(&il->il_emptied, ifp->if_xname);
2050
2051 ifp->if_ioctl_lock = il;
2052
2053 return 0;
2054 }
2055
2056 /*
2057 * This must not be called until after `ifp' has been withdrawn from the
2058 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2059 * ifunit().
2060 */
2061 static void
2062 ifioctl_detach(struct ifnet *ifp)
2063 {
2064 struct ifnet_lock *il;
2065
2066 il = ifp->if_ioctl_lock;
2067 mutex_enter(&il->il_lock);
2068 /* Install if_nullioctl to make sure that any thread that
2069 * subsequently enters the critical section will quit it
2070 * immediately and signal the condition variable that we
2071 * wait on, below.
2072 */
2073 ifp->if_ioctl = if_nullioctl;
2074 /* Sleep while threads are still in the critical section or
2075 * wait to enter it.
2076 */
2077 while (ifnet_lock_entrances(il) != il->il_nexit)
2078 cv_wait(&il->il_emptied, &il->il_lock);
2079 /* At this point, we are the only thread still in the critical
2080 * section, and no new thread can get a handle on the ifioctl
2081 * lock, so it is safe to free its memory.
2082 */
2083 mutex_exit(&il->il_lock);
2084 ifp->if_ioctl_lock = NULL;
2085 percpu_free(il->il_nenter, sizeof(uint64_t));
2086 il->il_nenter = NULL;
2087 cv_destroy(&il->il_emptied);
2088 mutex_destroy(&il->il_lock);
2089 kmem_free(il, sizeof(*il));
2090 }
2091
2092 /*
2093 * Return interface configuration
2094 * of system. List may be used
2095 * in later ioctl's (above) to get
2096 * other information.
2097 *
2098 * Each record is a struct ifreq. Before the addition of
2099 * sockaddr_storage, the API rule was that sockaddr flavors that did
2100 * not fit would extend beyond the struct ifreq, with the next struct
2101 * ifreq starting sa_len beyond the struct sockaddr. Because the
2102 * union in struct ifreq includes struct sockaddr_storage, every kind
2103 * of sockaddr must fit. Thus, there are no longer any overlength
2104 * records.
2105 *
2106 * Records are added to the user buffer if they fit, and ifc_len is
2107 * adjusted to the length that was written. Thus, the user is only
2108 * assured of getting the complete list if ifc_len on return is at
2109 * least sizeof(struct ifreq) less than it was on entry.
2110 *
2111 * If the user buffer pointer is NULL, this routine copies no data and
2112 * returns the amount of space that would be needed.
2113 *
2114 * Invariants:
2115 * ifrp points to the next part of the user's buffer to be used. If
2116 * ifrp != NULL, space holds the number of bytes remaining that we may
2117 * write at ifrp. Otherwise, space holds the number of bytes that
2118 * would have been written had there been adequate space.
2119 */
2120 /*ARGSUSED*/
2121 static int
2122 ifconf(u_long cmd, void *data)
2123 {
2124 struct ifconf *ifc = (struct ifconf *)data;
2125 struct ifnet *ifp;
2126 struct ifaddr *ifa;
2127 struct ifreq ifr, *ifrp = NULL;
2128 int space = 0, error = 0;
2129 const int sz = (int)sizeof(struct ifreq);
2130 const bool docopy = ifc->ifc_req != NULL;
2131
2132 if (docopy) {
2133 space = ifc->ifc_len;
2134 ifrp = ifc->ifc_req;
2135 }
2136
2137 IFNET_FOREACH(ifp) {
2138 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2139 sizeof(ifr.ifr_name));
2140 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2141 return ENAMETOOLONG;
2142 if (IFADDR_EMPTY(ifp)) {
2143 /* Interface with no addresses - send zero sockaddr. */
2144 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2145 if (!docopy) {
2146 space += sz;
2147 continue;
2148 }
2149 if (space >= sz) {
2150 error = copyout(&ifr, ifrp, sz);
2151 if (error != 0)
2152 return error;
2153 ifrp++;
2154 space -= sz;
2155 }
2156 }
2157
2158 IFADDR_FOREACH(ifa, ifp) {
2159 struct sockaddr *sa = ifa->ifa_addr;
2160 /* all sockaddrs must fit in sockaddr_storage */
2161 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2162
2163 if (!docopy) {
2164 space += sz;
2165 continue;
2166 }
2167 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2168 if (space >= sz) {
2169 error = copyout(&ifr, ifrp, sz);
2170 if (error != 0)
2171 return (error);
2172 ifrp++; space -= sz;
2173 }
2174 }
2175 }
2176 if (docopy) {
2177 KASSERT(0 <= space && space <= ifc->ifc_len);
2178 ifc->ifc_len -= space;
2179 } else {
2180 KASSERT(space >= 0);
2181 ifc->ifc_len = space;
2182 }
2183 return (0);
2184 }
2185
2186 int
2187 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2188 {
2189 uint8_t len;
2190 #ifdef COMPAT_OIFREQ
2191 struct ifreq ifrb;
2192 struct oifreq *oifr = NULL;
2193 u_long ocmd = cmd;
2194 cmd = compat_cvtcmd(cmd);
2195 if (cmd != ocmd) {
2196 oifr = (struct oifreq *)(void *)ifr;
2197 ifr = &ifrb;
2198 ifreqo2n(oifr, ifr);
2199 len = sizeof(oifr->ifr_addr);
2200 } else
2201 #endif
2202 len = sizeof(ifr->ifr_ifru.ifru_space);
2203
2204 if (len < sa->sa_len)
2205 return EFBIG;
2206
2207 memset(&ifr->ifr_addr, 0, len);
2208 sockaddr_copy(&ifr->ifr_addr, len, sa);
2209
2210 #ifdef COMPAT_OIFREQ
2211 if (cmd != ocmd)
2212 ifreqn2o(oifr, ifr);
2213 #endif
2214 return 0;
2215 }
2216
2217 /*
2218 * Queue message on interface, and start output if interface
2219 * not yet active.
2220 */
2221 int
2222 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2223 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2224 {
2225 int len = m->m_pkthdr.len;
2226 int mflags = m->m_flags;
2227 int s = splnet();
2228 int error;
2229
2230 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2231 if (error != 0)
2232 goto out;
2233 ifp->if_obytes += len;
2234 if (mflags & M_MCAST)
2235 ifp->if_omcasts++;
2236 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2237 (*ifp->if_start)(ifp);
2238 out:
2239 splx(s);
2240 return error;
2241 }
2242
2243 /*
2244 * Queue message on interface, possibly using a second fast queue
2245 */
2246 int
2247 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2248 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2249 {
2250 int error = 0;
2251
2252 if (ifq != NULL
2253 #ifdef ALTQ
2254 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2255 #endif
2256 ) {
2257 if (IF_QFULL(ifq)) {
2258 IF_DROP(&ifp->if_snd);
2259 m_freem(m);
2260 if (error == 0)
2261 error = ENOBUFS;
2262 } else
2263 IF_ENQUEUE(ifq, m);
2264 } else
2265 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2266 if (error != 0) {
2267 ++ifp->if_oerrors;
2268 return error;
2269 }
2270 return 0;
2271 }
2272
2273 int
2274 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2275 {
2276 int rc;
2277
2278 if (ifp->if_initaddr != NULL)
2279 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2280 else if (src ||
2281 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2282 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2283
2284 return rc;
2285 }
2286
2287 int
2288 if_flags_set(ifnet_t *ifp, const short flags)
2289 {
2290 int rc;
2291
2292 if (ifp->if_setflags != NULL)
2293 rc = (*ifp->if_setflags)(ifp, flags);
2294 else {
2295 short cantflags, chgdflags;
2296 struct ifreq ifr;
2297
2298 chgdflags = ifp->if_flags ^ flags;
2299 cantflags = chgdflags & IFF_CANTCHANGE;
2300
2301 if (cantflags != 0)
2302 ifp->if_flags ^= cantflags;
2303
2304 /* Traditionally, we do not call if_ioctl after
2305 * setting/clearing only IFF_PROMISC if the interface
2306 * isn't IFF_UP. Uphold that tradition.
2307 */
2308 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2309 return 0;
2310
2311 memset(&ifr, 0, sizeof(ifr));
2312
2313 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2314 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2315
2316 if (rc != 0 && cantflags != 0)
2317 ifp->if_flags ^= cantflags;
2318 }
2319
2320 return rc;
2321 }
2322
2323 int
2324 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2325 {
2326 int rc;
2327 struct ifreq ifr;
2328
2329 if (ifp->if_mcastop != NULL)
2330 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2331 else {
2332 ifreq_setaddr(cmd, &ifr, sa);
2333 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2334 }
2335
2336 return rc;
2337 }
2338
2339 static void
2340 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2341 struct ifaltq *ifq)
2342 {
2343 const struct sysctlnode *cnode, *rnode;
2344
2345 if (sysctl_createv(clog, 0, NULL, &rnode,
2346 CTLFLAG_PERMANENT,
2347 CTLTYPE_NODE, "interfaces",
2348 SYSCTL_DESCR("Per-interface controls"),
2349 NULL, 0, NULL, 0,
2350 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2351 goto bad;
2352
2353 if (sysctl_createv(clog, 0, &rnode, &rnode,
2354 CTLFLAG_PERMANENT,
2355 CTLTYPE_NODE, ifname,
2356 SYSCTL_DESCR("Interface controls"),
2357 NULL, 0, NULL, 0,
2358 CTL_CREATE, CTL_EOL) != 0)
2359 goto bad;
2360
2361 if (sysctl_createv(clog, 0, &rnode, &rnode,
2362 CTLFLAG_PERMANENT,
2363 CTLTYPE_NODE, "sndq",
2364 SYSCTL_DESCR("Interface output queue controls"),
2365 NULL, 0, NULL, 0,
2366 CTL_CREATE, CTL_EOL) != 0)
2367 goto bad;
2368
2369 if (sysctl_createv(clog, 0, &rnode, &cnode,
2370 CTLFLAG_PERMANENT,
2371 CTLTYPE_INT, "len",
2372 SYSCTL_DESCR("Current output queue length"),
2373 NULL, 0, &ifq->ifq_len, 0,
2374 CTL_CREATE, CTL_EOL) != 0)
2375 goto bad;
2376
2377 if (sysctl_createv(clog, 0, &rnode, &cnode,
2378 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2379 CTLTYPE_INT, "maxlen",
2380 SYSCTL_DESCR("Maximum allowed output queue length"),
2381 NULL, 0, &ifq->ifq_maxlen, 0,
2382 CTL_CREATE, CTL_EOL) != 0)
2383 goto bad;
2384
2385 if (sysctl_createv(clog, 0, &rnode, &cnode,
2386 CTLFLAG_PERMANENT,
2387 CTLTYPE_INT, "drops",
2388 SYSCTL_DESCR("Packets dropped due to full output queue"),
2389 NULL, 0, &ifq->ifq_drops, 0,
2390 CTL_CREATE, CTL_EOL) != 0)
2391 goto bad;
2392
2393 return;
2394 bad:
2395 printf("%s: could not attach sysctl nodes\n", ifname);
2396 return;
2397 }
2398
2399 #if defined(INET) || defined(INET6)
2400
2401 #define SYSCTL_NET_PKTQ(q, cn, c) \
2402 static int \
2403 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2404 { \
2405 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2406 }
2407
2408 #if defined(INET)
2409 static int
2410 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2411 {
2412 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2413 }
2414 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2415 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2416 #endif
2417
2418 #if defined(INET6)
2419 static int
2420 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2421 {
2422 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2423 }
2424 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2425 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2426 #endif
2427
2428 static void
2429 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2430 {
2431 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2432 const char *pfname = NULL, *ipname = NULL;
2433 int ipn = 0, qid = 0;
2434
2435 switch (pf) {
2436 #if defined(INET)
2437 case PF_INET:
2438 len_func = sysctl_net_ip_pktq_items;
2439 maxlen_func = sysctl_net_ip_pktq_maxlen;
2440 drops_func = sysctl_net_ip_pktq_drops;
2441 pfname = "inet", ipn = IPPROTO_IP;
2442 ipname = "ip", qid = IPCTL_IFQ;
2443 break;
2444 #endif
2445 #if defined(INET6)
2446 case PF_INET6:
2447 len_func = sysctl_net_ip6_pktq_items;
2448 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2449 drops_func = sysctl_net_ip6_pktq_drops;
2450 pfname = "inet6", ipn = IPPROTO_IPV6;
2451 ipname = "ip6", qid = IPV6CTL_IFQ;
2452 break;
2453 #endif
2454 default:
2455 KASSERT(false);
2456 }
2457
2458 sysctl_createv(clog, 0, NULL, NULL,
2459 CTLFLAG_PERMANENT,
2460 CTLTYPE_NODE, pfname, NULL,
2461 NULL, 0, NULL, 0,
2462 CTL_NET, pf, CTL_EOL);
2463 sysctl_createv(clog, 0, NULL, NULL,
2464 CTLFLAG_PERMANENT,
2465 CTLTYPE_NODE, ipname, NULL,
2466 NULL, 0, NULL, 0,
2467 CTL_NET, pf, ipn, CTL_EOL);
2468 sysctl_createv(clog, 0, NULL, NULL,
2469 CTLFLAG_PERMANENT,
2470 CTLTYPE_NODE, "ifq",
2471 SYSCTL_DESCR("Protocol input queue controls"),
2472 NULL, 0, NULL, 0,
2473 CTL_NET, pf, ipn, qid, CTL_EOL);
2474
2475 sysctl_createv(clog, 0, NULL, NULL,
2476 CTLFLAG_PERMANENT,
2477 CTLTYPE_INT, "len",
2478 SYSCTL_DESCR("Current input queue length"),
2479 len_func, 0, NULL, 0,
2480 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2481 sysctl_createv(clog, 0, NULL, NULL,
2482 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2483 CTLTYPE_INT, "maxlen",
2484 SYSCTL_DESCR("Maximum allowed input queue length"),
2485 maxlen_func, 0, NULL, 0,
2486 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2487 sysctl_createv(clog, 0, NULL, NULL,
2488 CTLFLAG_PERMANENT,
2489 CTLTYPE_INT, "drops",
2490 SYSCTL_DESCR("Packets dropped due to full input queue"),
2491 drops_func, 0, NULL, 0,
2492 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2493 }
2494 #endif /* INET || INET6 */
2495
2496 static int
2497 if_sdl_sysctl(SYSCTLFN_ARGS)
2498 {
2499 struct ifnet *ifp;
2500 const struct sockaddr_dl *sdl;
2501
2502 if (namelen != 1)
2503 return EINVAL;
2504
2505 ifp = if_byindex(name[0]);
2506 if (ifp == NULL)
2507 return ENODEV;
2508
2509 sdl = ifp->if_sadl;
2510 if (sdl == NULL) {
2511 *oldlenp = 0;
2512 return 0;
2513 }
2514
2515 if (oldp == NULL) {
2516 *oldlenp = sdl->sdl_alen;
2517 return 0;
2518 }
2519
2520 if (*oldlenp >= sdl->sdl_alen)
2521 *oldlenp = sdl->sdl_alen;
2522 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2523 }
2524
2525 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2526 {
2527 const struct sysctlnode *rnode = NULL;
2528
2529 sysctl_createv(clog, 0, NULL, &rnode,
2530 CTLFLAG_PERMANENT,
2531 CTLTYPE_NODE, "sdl",
2532 SYSCTL_DESCR("Get active link-layer address"),
2533 if_sdl_sysctl, 0, NULL, 0,
2534 CTL_NET, CTL_CREATE, CTL_EOL);
2535 }
2536