if.c revision 1.308 1 /* $NetBSD: if.c,v 1.308 2015/01/16 10:36:14 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.308 2015/01/16 10:36:14 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120
121 #include <net/if.h>
122 #include <net/if_dl.h>
123 #include <net/if_ether.h>
124 #include <net/if_media.h>
125 #include <net80211/ieee80211.h>
126 #include <net80211/ieee80211_ioctl.h>
127 #include <net/if_types.h>
128 #include <net/radix.h>
129 #include <net/route.h>
130 #include <net/netisr.h>
131 #include <sys/module.h>
132 #ifdef NETATALK
133 #include <netatalk/at_extern.h>
134 #include <netatalk/at.h>
135 #endif
136 #include <net/pfil.h>
137 #include <netinet/in.h>
138 #include <netinet/in_var.h>
139
140 #ifdef INET6
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "ether.h"
146 #include "fddi.h"
147 #include "token.h"
148
149 #include "carp.h"
150 #if NCARP > 0
151 #include <netinet/ip_carp.h>
152 #endif
153
154 #include <compat/sys/sockio.h>
155 #include <compat/sys/socket.h>
156
157 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
158 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
159
160 /*
161 * Global list of interfaces.
162 */
163 struct ifnet_head ifnet_list;
164 static ifnet_t ** ifindex2ifnet = NULL;
165
166 static u_int if_index = 1;
167 static size_t if_indexlim = 0;
168 static uint64_t index_gen;
169 static kmutex_t index_gen_mtx;
170 static kmutex_t if_clone_mtx;
171
172 static struct ifaddr ** ifnet_addrs = NULL;
173
174 struct ifnet *lo0ifp;
175 int ifqmaxlen = IFQ_MAXLEN;
176
177 static int if_rt_walktree(struct rtentry *, void *);
178
179 static struct if_clone *if_clone_lookup(const char *, int *);
180 static int if_clone_list(struct if_clonereq *);
181
182 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
183 static int if_cloners_count;
184
185 /* Packet filtering hook for interfaces. */
186 pfil_head_t * if_pfil;
187
188 static kauth_listener_t if_listener;
189
190 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
191 static int ifioctl_attach(struct ifnet *);
192 static void ifioctl_detach(struct ifnet *);
193 static void ifnet_lock_enter(struct ifnet_lock *);
194 static void ifnet_lock_exit(struct ifnet_lock *);
195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
197 struct ifaltq *);
198 static void if_slowtimo(void *);
199 static void if_free_sadl(struct ifnet *);
200 static void if_attachdomain1(struct ifnet *);
201 static int ifconf(u_long, void *);
202 static int if_clone_create(const char *);
203 static int if_clone_destroy(const char *);
204
205 #if defined(INET) || defined(INET6)
206 static void sysctl_net_pktq_setup(struct sysctllog **, int);
207 #endif
208
209 static int
210 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
211 void *arg0, void *arg1, void *arg2, void *arg3)
212 {
213 int result;
214 enum kauth_network_req req;
215
216 result = KAUTH_RESULT_DEFER;
217 req = (enum kauth_network_req)arg1;
218
219 if (action != KAUTH_NETWORK_INTERFACE)
220 return result;
221
222 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
223 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
224 result = KAUTH_RESULT_ALLOW;
225
226 return result;
227 }
228
229 /*
230 * Network interface utility routines.
231 *
232 * Routines with ifa_ifwith* names take sockaddr *'s as
233 * parameters.
234 */
235 void
236 ifinit(void)
237 {
238 #if defined(INET)
239 sysctl_net_pktq_setup(NULL, PF_INET);
240 #endif
241 #ifdef INET6
242 sysctl_net_pktq_setup(NULL, PF_INET6);
243 #endif
244
245 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
246 if_listener_cb, NULL);
247
248 /* interfaces are available, inform socket code */
249 ifioctl = doifioctl;
250 }
251
252 /*
253 * XXX Initialization before configure().
254 * XXX hack to get pfil_add_hook working in autoconf.
255 */
256 void
257 ifinit1(void)
258 {
259 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
260 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
261 TAILQ_INIT(&ifnet_list);
262 if_indexlim = 8;
263
264 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
265 KASSERT(if_pfil != NULL);
266
267 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
268 etherinit();
269 #endif
270 }
271
272 ifnet_t *
273 if_alloc(u_char type)
274 {
275 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
276 }
277
278 void
279 if_free(ifnet_t *ifp)
280 {
281 kmem_free(ifp, sizeof(ifnet_t));
282 }
283
284 void
285 if_initname(struct ifnet *ifp, const char *name, int unit)
286 {
287 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
288 "%s%d", name, unit);
289 }
290
291 /*
292 * Null routines used while an interface is going away. These routines
293 * just return an error.
294 */
295
296 int
297 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
298 const struct sockaddr *so, struct rtentry *rt)
299 {
300
301 return ENXIO;
302 }
303
304 void
305 if_nullinput(struct ifnet *ifp, struct mbuf *m)
306 {
307
308 /* Nothing. */
309 }
310
311 void
312 if_nullstart(struct ifnet *ifp)
313 {
314
315 /* Nothing. */
316 }
317
318 int
319 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
320 {
321
322 /* Wake ifioctl_detach(), who may wait for all threads to
323 * quit the critical section.
324 */
325 cv_signal(&ifp->if_ioctl_lock->il_emptied);
326 return ENXIO;
327 }
328
329 int
330 if_nullinit(struct ifnet *ifp)
331 {
332
333 return ENXIO;
334 }
335
336 void
337 if_nullstop(struct ifnet *ifp, int disable)
338 {
339
340 /* Nothing. */
341 }
342
343 void
344 if_nullslowtimo(struct ifnet *ifp)
345 {
346
347 /* Nothing. */
348 }
349
350 void
351 if_nulldrain(struct ifnet *ifp)
352 {
353
354 /* Nothing. */
355 }
356
357 void
358 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
359 {
360 struct ifaddr *ifa;
361 struct sockaddr_dl *sdl;
362
363 ifp->if_addrlen = addrlen;
364 if_alloc_sadl(ifp);
365 ifa = ifp->if_dl;
366 sdl = satosdl(ifa->ifa_addr);
367
368 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
369 if (factory) {
370 ifp->if_hwdl = ifp->if_dl;
371 ifaref(ifp->if_hwdl);
372 }
373 /* TBD routing socket */
374 }
375
376 struct ifaddr *
377 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
378 {
379 unsigned socksize, ifasize;
380 int addrlen, namelen;
381 struct sockaddr_dl *mask, *sdl;
382 struct ifaddr *ifa;
383
384 namelen = strlen(ifp->if_xname);
385 addrlen = ifp->if_addrlen;
386 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
387 ifasize = sizeof(*ifa) + 2 * socksize;
388 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
389
390 sdl = (struct sockaddr_dl *)(ifa + 1);
391 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
392
393 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
394 ifp->if_xname, namelen, NULL, addrlen);
395 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
396 memset(&mask->sdl_data[0], 0xff, namelen);
397 ifa->ifa_rtrequest = link_rtrequest;
398 ifa->ifa_addr = (struct sockaddr *)sdl;
399 ifa->ifa_netmask = (struct sockaddr *)mask;
400
401 *sdlp = sdl;
402
403 return ifa;
404 }
405
406 static void
407 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
408 {
409 const struct sockaddr_dl *sdl;
410 ifnet_addrs[ifp->if_index] = ifa;
411 ifaref(ifa);
412 ifp->if_dl = ifa;
413 ifaref(ifa);
414 sdl = satosdl(ifa->ifa_addr);
415 ifp->if_sadl = sdl;
416 }
417
418 /*
419 * Allocate the link level name for the specified interface. This
420 * is an attachment helper. It must be called after ifp->if_addrlen
421 * is initialized, which may not be the case when if_attach() is
422 * called.
423 */
424 void
425 if_alloc_sadl(struct ifnet *ifp)
426 {
427 struct ifaddr *ifa;
428 const struct sockaddr_dl *sdl;
429
430 /*
431 * If the interface already has a link name, release it
432 * now. This is useful for interfaces that can change
433 * link types, and thus switch link names often.
434 */
435 if (ifp->if_sadl != NULL)
436 if_free_sadl(ifp);
437
438 ifa = if_dl_create(ifp, &sdl);
439
440 ifa_insert(ifp, ifa);
441 if_sadl_setrefs(ifp, ifa);
442 }
443
444 static void
445 if_deactivate_sadl(struct ifnet *ifp)
446 {
447 struct ifaddr *ifa;
448
449 KASSERT(ifp->if_dl != NULL);
450
451 ifa = ifp->if_dl;
452
453 ifp->if_sadl = NULL;
454
455 ifnet_addrs[ifp->if_index] = NULL;
456 ifafree(ifa);
457 ifp->if_dl = NULL;
458 ifafree(ifa);
459 }
460
461 void
462 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
463 const struct sockaddr_dl *sdl)
464 {
465 int s;
466
467 s = splnet();
468
469 if_deactivate_sadl(ifp);
470
471 if_sadl_setrefs(ifp, ifa);
472 IFADDR_FOREACH(ifa, ifp)
473 rtinit(ifa, RTM_LLINFO_UPD, 0);
474 splx(s);
475 }
476
477 /*
478 * Free the link level name for the specified interface. This is
479 * a detach helper. This is called from if_detach().
480 */
481 static void
482 if_free_sadl(struct ifnet *ifp)
483 {
484 struct ifaddr *ifa;
485 int s;
486
487 ifa = ifnet_addrs[ifp->if_index];
488 if (ifa == NULL) {
489 KASSERT(ifp->if_sadl == NULL);
490 KASSERT(ifp->if_dl == NULL);
491 return;
492 }
493
494 KASSERT(ifp->if_sadl != NULL);
495 KASSERT(ifp->if_dl != NULL);
496
497 s = splnet();
498 rtinit(ifa, RTM_DELETE, 0);
499 ifa_remove(ifp, ifa);
500 if_deactivate_sadl(ifp);
501 if (ifp->if_hwdl == ifa) {
502 ifafree(ifa);
503 ifp->if_hwdl = NULL;
504 }
505 splx(s);
506 }
507
508 static void
509 if_getindex(ifnet_t *ifp)
510 {
511 bool hitlimit = false;
512
513 mutex_enter(&index_gen_mtx);
514 ifp->if_index_gen = index_gen++;
515 mutex_exit(&index_gen_mtx);
516
517 ifp->if_index = if_index;
518 if (ifindex2ifnet == NULL) {
519 if_index++;
520 goto skip;
521 }
522 while (if_byindex(ifp->if_index)) {
523 /*
524 * If we hit USHRT_MAX, we skip back to 0 since
525 * there are a number of places where the value
526 * of if_index or if_index itself is compared
527 * to or stored in an unsigned short. By
528 * jumping back, we won't botch those assignments
529 * or comparisons.
530 */
531 if (++if_index == 0) {
532 if_index = 1;
533 } else if (if_index == USHRT_MAX) {
534 /*
535 * However, if we have to jump back to
536 * zero *twice* without finding an empty
537 * slot in ifindex2ifnet[], then there
538 * there are too many (>65535) interfaces.
539 */
540 if (hitlimit) {
541 panic("too many interfaces");
542 }
543 hitlimit = true;
544 if_index = 1;
545 }
546 ifp->if_index = if_index;
547 }
548 skip:
549 /*
550 * We have some arrays that should be indexed by if_index.
551 * since if_index will grow dynamically, they should grow too.
552 * struct ifadd **ifnet_addrs
553 * struct ifnet **ifindex2ifnet
554 */
555 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
556 ifp->if_index >= if_indexlim) {
557 size_t m, n, oldlim;
558 void *q;
559
560 oldlim = if_indexlim;
561 while (ifp->if_index >= if_indexlim)
562 if_indexlim <<= 1;
563
564 /* grow ifnet_addrs */
565 m = oldlim * sizeof(struct ifaddr *);
566 n = if_indexlim * sizeof(struct ifaddr *);
567 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
568 if (ifnet_addrs != NULL) {
569 memcpy(q, ifnet_addrs, m);
570 free(ifnet_addrs, M_IFADDR);
571 }
572 ifnet_addrs = (struct ifaddr **)q;
573
574 /* grow ifindex2ifnet */
575 m = oldlim * sizeof(struct ifnet *);
576 n = if_indexlim * sizeof(struct ifnet *);
577 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
578 if (ifindex2ifnet != NULL) {
579 memcpy(q, ifindex2ifnet, m);
580 free(ifindex2ifnet, M_IFADDR);
581 }
582 ifindex2ifnet = (struct ifnet **)q;
583 }
584 ifindex2ifnet[ifp->if_index] = ifp;
585 }
586
587 /*
588 * Initialize an interface and assign an index for it.
589 *
590 * It must be called prior to a device specific attach routine
591 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
592 * and be followed by if_register:
593 *
594 * if_initialize(ifp);
595 * ether_ifattach(ifp, enaddr);
596 * if_register(ifp);
597 */
598 void
599 if_initialize(ifnet_t *ifp)
600 {
601 KASSERT(if_indexlim > 0);
602 TAILQ_INIT(&ifp->if_addrlist);
603
604 /*
605 * Link level name is allocated later by a separate call to
606 * if_alloc_sadl().
607 */
608
609 if (ifp->if_snd.ifq_maxlen == 0)
610 ifp->if_snd.ifq_maxlen = ifqmaxlen;
611
612 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
613
614 ifp->if_link_state = LINK_STATE_UNKNOWN;
615
616 ifp->if_capenable = 0;
617 ifp->if_csum_flags_tx = 0;
618 ifp->if_csum_flags_rx = 0;
619
620 #ifdef ALTQ
621 ifp->if_snd.altq_type = 0;
622 ifp->if_snd.altq_disc = NULL;
623 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
624 ifp->if_snd.altq_tbr = NULL;
625 ifp->if_snd.altq_ifp = ifp;
626 #endif
627
628 #ifdef NET_MPSAFE
629 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
630 #else
631 ifp->if_snd.ifq_lock = NULL;
632 #endif
633
634 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
635 (void)pfil_run_hooks(if_pfil,
636 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
637
638 if_getindex(ifp);
639 }
640
641 /*
642 * Register an interface to the list of "active" interfaces.
643 */
644 void
645 if_register(ifnet_t *ifp)
646 {
647 if (ifioctl_attach(ifp) != 0)
648 panic("%s: ifioctl_attach() failed", __func__);
649
650 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
651
652 if (!STAILQ_EMPTY(&domains))
653 if_attachdomain1(ifp);
654
655 /* Announce the interface. */
656 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
657
658 if (ifp->if_slowtimo != NULL) {
659 ifp->if_slowtimo_ch =
660 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
661 callout_init(ifp->if_slowtimo_ch, 0);
662 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
663 if_slowtimo(ifp);
664 }
665
666 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
667 }
668
669 /*
670 * Deprecated. Use if_initialize and if_register instead.
671 * See the above comment of if_initialize.
672 */
673 void
674 if_attach(ifnet_t *ifp)
675 {
676 if_initialize(ifp);
677 if_register(ifp);
678 }
679
680 void
681 if_attachdomain(void)
682 {
683 struct ifnet *ifp;
684 int s;
685
686 s = splnet();
687 IFNET_FOREACH(ifp)
688 if_attachdomain1(ifp);
689 splx(s);
690 }
691
692 static void
693 if_attachdomain1(struct ifnet *ifp)
694 {
695 struct domain *dp;
696 int s;
697
698 s = splnet();
699
700 /* address family dependent data region */
701 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
702 DOMAIN_FOREACH(dp) {
703 if (dp->dom_ifattach != NULL)
704 ifp->if_afdata[dp->dom_family] =
705 (*dp->dom_ifattach)(ifp);
706 }
707
708 splx(s);
709 }
710
711 /*
712 * Deactivate an interface. This points all of the procedure
713 * handles at error stubs. May be called from interrupt context.
714 */
715 void
716 if_deactivate(struct ifnet *ifp)
717 {
718 int s;
719
720 s = splnet();
721
722 ifp->if_output = if_nulloutput;
723 ifp->if_input = if_nullinput;
724 ifp->if_start = if_nullstart;
725 ifp->if_ioctl = if_nullioctl;
726 ifp->if_init = if_nullinit;
727 ifp->if_stop = if_nullstop;
728 ifp->if_slowtimo = if_nullslowtimo;
729 ifp->if_drain = if_nulldrain;
730
731 /* No more packets may be enqueued. */
732 ifp->if_snd.ifq_maxlen = 0;
733
734 splx(s);
735 }
736
737 void
738 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
739 {
740 struct ifaddr *ifa, *nifa;
741
742 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
743 if (ifa->ifa_addr->sa_family != family)
744 continue;
745 (*purgeaddr)(ifa);
746 }
747 }
748
749 /*
750 * Detach an interface from the list of "active" interfaces,
751 * freeing any resources as we go along.
752 *
753 * NOTE: This routine must be called with a valid thread context,
754 * as it may block.
755 */
756 void
757 if_detach(struct ifnet *ifp)
758 {
759 struct socket so;
760 struct ifaddr *ifa;
761 #ifdef IFAREF_DEBUG
762 struct ifaddr *last_ifa = NULL;
763 #endif
764 struct domain *dp;
765 const struct protosw *pr;
766 int s, i, family, purged;
767 uint64_t xc;
768
769 /*
770 * XXX It's kind of lame that we have to have the
771 * XXX socket structure...
772 */
773 memset(&so, 0, sizeof(so));
774
775 s = splnet();
776
777 if (ifp->if_slowtimo != NULL) {
778 ifp->if_slowtimo = NULL;
779 callout_halt(ifp->if_slowtimo_ch, NULL);
780 callout_destroy(ifp->if_slowtimo_ch);
781 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
782 }
783
784 /*
785 * Do an if_down() to give protocols a chance to do something.
786 */
787 if_down(ifp);
788
789 #ifdef ALTQ
790 if (ALTQ_IS_ENABLED(&ifp->if_snd))
791 altq_disable(&ifp->if_snd);
792 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
793 altq_detach(&ifp->if_snd);
794 #endif
795
796 if (ifp->if_snd.ifq_lock)
797 mutex_obj_free(ifp->if_snd.ifq_lock);
798
799 sysctl_teardown(&ifp->if_sysctl_log);
800
801 #if NCARP > 0
802 /* Remove the interface from any carp group it is a part of. */
803 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
804 carp_ifdetach(ifp);
805 #endif
806
807 /*
808 * Rip all the addresses off the interface. This should make
809 * all of the routes go away.
810 *
811 * pr_usrreq calls can remove an arbitrary number of ifaddrs
812 * from the list, including our "cursor", ifa. For safety,
813 * and to honor the TAILQ abstraction, I just restart the
814 * loop after each removal. Note that the loop will exit
815 * when all of the remaining ifaddrs belong to the AF_LINK
816 * family. I am counting on the historical fact that at
817 * least one pr_usrreq in each address domain removes at
818 * least one ifaddr.
819 */
820 again:
821 IFADDR_FOREACH(ifa, ifp) {
822 family = ifa->ifa_addr->sa_family;
823 #ifdef IFAREF_DEBUG
824 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
825 ifa, family, ifa->ifa_refcnt);
826 if (last_ifa != NULL && ifa == last_ifa)
827 panic("if_detach: loop detected");
828 last_ifa = ifa;
829 #endif
830 if (family == AF_LINK)
831 continue;
832 dp = pffinddomain(family);
833 #ifdef DIAGNOSTIC
834 if (dp == NULL)
835 panic("if_detach: no domain for AF %d",
836 family);
837 #endif
838 /*
839 * XXX These PURGEIF calls are redundant with the
840 * purge-all-families calls below, but are left in for
841 * now both to make a smaller change, and to avoid
842 * unplanned interactions with clearing of
843 * ifp->if_addrlist.
844 */
845 purged = 0;
846 for (pr = dp->dom_protosw;
847 pr < dp->dom_protoswNPROTOSW; pr++) {
848 so.so_proto = pr;
849 if (pr->pr_usrreqs) {
850 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
851 purged = 1;
852 }
853 }
854 if (purged == 0) {
855 /*
856 * XXX What's really the best thing to do
857 * XXX here? --thorpej (at) NetBSD.org
858 */
859 printf("if_detach: WARNING: AF %d not purged\n",
860 family);
861 ifa_remove(ifp, ifa);
862 }
863 goto again;
864 }
865
866 if_free_sadl(ifp);
867
868 /* Walk the routing table looking for stragglers. */
869 for (i = 0; i <= AF_MAX; i++) {
870 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
871 continue;
872 }
873
874 DOMAIN_FOREACH(dp) {
875 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
876 {
877 void *p = ifp->if_afdata[dp->dom_family];
878 if (p) {
879 ifp->if_afdata[dp->dom_family] = NULL;
880 (*dp->dom_ifdetach)(ifp, p);
881 }
882 }
883
884 /*
885 * One would expect multicast memberships (INET and
886 * INET6) on UDP sockets to be purged by the PURGEIF
887 * calls above, but if all addresses were removed from
888 * the interface prior to destruction, the calls will
889 * not be made (e.g. ppp, for which pppd(8) generally
890 * removes addresses before destroying the interface).
891 * Because there is no invariant that multicast
892 * memberships only exist for interfaces with IPv4
893 * addresses, we must call PURGEIF regardless of
894 * addresses. (Protocols which might store ifnet
895 * pointers are marked with PR_PURGEIF.)
896 */
897 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
898 so.so_proto = pr;
899 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
900 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
901 }
902 }
903
904 (void)pfil_run_hooks(if_pfil,
905 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
906 (void)pfil_head_destroy(ifp->if_pfil);
907
908 /* Announce that the interface is gone. */
909 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
910
911 ifindex2ifnet[ifp->if_index] = NULL;
912
913 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
914
915 ifioctl_detach(ifp);
916
917 /*
918 * remove packets that came from ifp, from software interrupt queues.
919 */
920 DOMAIN_FOREACH(dp) {
921 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
922 struct ifqueue *iq = dp->dom_ifqueues[i];
923 if (iq == NULL)
924 break;
925 dp->dom_ifqueues[i] = NULL;
926 if_detach_queues(ifp, iq);
927 }
928 }
929
930 /*
931 * IP queues have to be processed separately: net-queue barrier
932 * ensures that the packets are dequeued while a cross-call will
933 * ensure that the interrupts have completed. FIXME: not quite..
934 */
935 #ifdef INET
936 pktq_barrier(ip_pktq);
937 #endif
938 #ifdef INET6
939 if (in6_present)
940 pktq_barrier(ip6_pktq);
941 #endif
942 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
943 xc_wait(xc);
944
945 splx(s);
946 }
947
948 static void
949 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
950 {
951 struct mbuf *m, *prev, *next;
952
953 prev = NULL;
954 for (m = q->ifq_head; m != NULL; m = next) {
955 KASSERT((m->m_flags & M_PKTHDR) != 0);
956
957 next = m->m_nextpkt;
958 if (m->m_pkthdr.rcvif != ifp) {
959 prev = m;
960 continue;
961 }
962
963 if (prev != NULL)
964 prev->m_nextpkt = m->m_nextpkt;
965 else
966 q->ifq_head = m->m_nextpkt;
967 if (q->ifq_tail == m)
968 q->ifq_tail = prev;
969 q->ifq_len--;
970
971 m->m_nextpkt = NULL;
972 m_freem(m);
973 IF_DROP(q);
974 }
975 }
976
977 /*
978 * Callback for a radix tree walk to delete all references to an
979 * ifnet.
980 */
981 static int
982 if_rt_walktree(struct rtentry *rt, void *v)
983 {
984 struct ifnet *ifp = (struct ifnet *)v;
985 int error;
986
987 if (rt->rt_ifp != ifp)
988 return 0;
989
990 /* Delete the entry. */
991 ++rt->rt_refcnt;
992 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
993 rt_mask(rt), rt->rt_flags, NULL);
994 KASSERT((rt->rt_flags & RTF_UP) == 0);
995 rt->rt_ifp = NULL;
996 rtfree(rt);
997 if (error != 0)
998 printf("%s: warning: unable to delete rtentry @ %p, "
999 "error = %d\n", ifp->if_xname, rt, error);
1000 return ERESTART;
1001 }
1002
1003 /*
1004 * Create a clone network interface.
1005 */
1006 static int
1007 if_clone_create(const char *name)
1008 {
1009 struct if_clone *ifc;
1010 int unit;
1011
1012 ifc = if_clone_lookup(name, &unit);
1013 if (ifc == NULL)
1014 return EINVAL;
1015
1016 if (ifunit(name) != NULL)
1017 return EEXIST;
1018
1019 return (*ifc->ifc_create)(ifc, unit);
1020 }
1021
1022 /*
1023 * Destroy a clone network interface.
1024 */
1025 static int
1026 if_clone_destroy(const char *name)
1027 {
1028 struct if_clone *ifc;
1029 struct ifnet *ifp;
1030
1031 ifc = if_clone_lookup(name, NULL);
1032 if (ifc == NULL)
1033 return EINVAL;
1034
1035 ifp = ifunit(name);
1036 if (ifp == NULL)
1037 return ENXIO;
1038
1039 if (ifc->ifc_destroy == NULL)
1040 return EOPNOTSUPP;
1041
1042 return (*ifc->ifc_destroy)(ifp);
1043 }
1044
1045 /*
1046 * Look up a network interface cloner.
1047 */
1048 static struct if_clone *
1049 if_clone_lookup(const char *name, int *unitp)
1050 {
1051 struct if_clone *ifc;
1052 const char *cp;
1053 char *dp, ifname[IFNAMSIZ + 3];
1054 int unit;
1055
1056 strcpy(ifname, "if_");
1057 /* separate interface name from unit */
1058 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1059 *cp && (*cp < '0' || *cp > '9');)
1060 *dp++ = *cp++;
1061
1062 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1063 return NULL; /* No name or unit number */
1064 *dp++ = '\0';
1065
1066 again:
1067 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1068 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1069 break;
1070 }
1071
1072 if (ifc == NULL) {
1073 if (*ifname == '\0' ||
1074 module_autoload(ifname, MODULE_CLASS_DRIVER))
1075 return NULL;
1076 *ifname = '\0';
1077 goto again;
1078 }
1079
1080 unit = 0;
1081 while (cp - name < IFNAMSIZ && *cp) {
1082 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1083 /* Bogus unit number. */
1084 return NULL;
1085 }
1086 unit = (unit * 10) + (*cp++ - '0');
1087 }
1088
1089 if (unitp != NULL)
1090 *unitp = unit;
1091 return ifc;
1092 }
1093
1094 /*
1095 * Register a network interface cloner.
1096 */
1097 void
1098 if_clone_attach(struct if_clone *ifc)
1099 {
1100
1101 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1102 if_cloners_count++;
1103 }
1104
1105 /*
1106 * Unregister a network interface cloner.
1107 */
1108 void
1109 if_clone_detach(struct if_clone *ifc)
1110 {
1111
1112 LIST_REMOVE(ifc, ifc_list);
1113 if_cloners_count--;
1114 }
1115
1116 /*
1117 * Provide list of interface cloners to userspace.
1118 */
1119 static int
1120 if_clone_list(struct if_clonereq *ifcr)
1121 {
1122 char outbuf[IFNAMSIZ], *dst;
1123 struct if_clone *ifc;
1124 int count, error = 0;
1125
1126 ifcr->ifcr_total = if_cloners_count;
1127 if ((dst = ifcr->ifcr_buffer) == NULL) {
1128 /* Just asking how many there are. */
1129 return 0;
1130 }
1131
1132 if (ifcr->ifcr_count < 0)
1133 return EINVAL;
1134
1135 count = (if_cloners_count < ifcr->ifcr_count) ?
1136 if_cloners_count : ifcr->ifcr_count;
1137
1138 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1139 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1140 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1141 if (outbuf[sizeof(outbuf) - 1] != '\0')
1142 return ENAMETOOLONG;
1143 error = copyout(outbuf, dst, sizeof(outbuf));
1144 if (error != 0)
1145 break;
1146 }
1147
1148 return error;
1149 }
1150
1151 void
1152 ifaref(struct ifaddr *ifa)
1153 {
1154 ifa->ifa_refcnt++;
1155 }
1156
1157 void
1158 ifafree(struct ifaddr *ifa)
1159 {
1160 KASSERT(ifa != NULL);
1161 KASSERT(ifa->ifa_refcnt > 0);
1162
1163 if (--ifa->ifa_refcnt == 0) {
1164 free(ifa, M_IFADDR);
1165 }
1166 }
1167
1168 void
1169 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1170 {
1171 ifa->ifa_ifp = ifp;
1172 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1173 ifaref(ifa);
1174 }
1175
1176 void
1177 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1178 {
1179 KASSERT(ifa->ifa_ifp == ifp);
1180 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1181 ifafree(ifa);
1182 }
1183
1184 static inline int
1185 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1186 {
1187 return sockaddr_cmp(sa1, sa2) == 0;
1188 }
1189
1190 /*
1191 * Locate an interface based on a complete address.
1192 */
1193 /*ARGSUSED*/
1194 struct ifaddr *
1195 ifa_ifwithaddr(const struct sockaddr *addr)
1196 {
1197 struct ifnet *ifp;
1198 struct ifaddr *ifa;
1199
1200 IFNET_FOREACH(ifp) {
1201 if (ifp->if_output == if_nulloutput)
1202 continue;
1203 IFADDR_FOREACH(ifa, ifp) {
1204 if (ifa->ifa_addr->sa_family != addr->sa_family)
1205 continue;
1206 if (equal(addr, ifa->ifa_addr))
1207 return ifa;
1208 if ((ifp->if_flags & IFF_BROADCAST) &&
1209 ifa->ifa_broadaddr &&
1210 /* IP6 doesn't have broadcast */
1211 ifa->ifa_broadaddr->sa_len != 0 &&
1212 equal(ifa->ifa_broadaddr, addr))
1213 return ifa;
1214 }
1215 }
1216 return NULL;
1217 }
1218
1219 /*
1220 * Locate the point to point interface with a given destination address.
1221 */
1222 /*ARGSUSED*/
1223 struct ifaddr *
1224 ifa_ifwithdstaddr(const struct sockaddr *addr)
1225 {
1226 struct ifnet *ifp;
1227 struct ifaddr *ifa;
1228
1229 IFNET_FOREACH(ifp) {
1230 if (ifp->if_output == if_nulloutput)
1231 continue;
1232 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1233 continue;
1234 IFADDR_FOREACH(ifa, ifp) {
1235 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1236 ifa->ifa_dstaddr == NULL)
1237 continue;
1238 if (equal(addr, ifa->ifa_dstaddr))
1239 return ifa;
1240 }
1241 }
1242 return NULL;
1243 }
1244
1245 /*
1246 * Find an interface on a specific network. If many, choice
1247 * is most specific found.
1248 */
1249 struct ifaddr *
1250 ifa_ifwithnet(const struct sockaddr *addr)
1251 {
1252 struct ifnet *ifp;
1253 struct ifaddr *ifa;
1254 const struct sockaddr_dl *sdl;
1255 struct ifaddr *ifa_maybe = 0;
1256 u_int af = addr->sa_family;
1257 const char *addr_data = addr->sa_data, *cplim;
1258
1259 if (af == AF_LINK) {
1260 sdl = satocsdl(addr);
1261 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1262 ifindex2ifnet[sdl->sdl_index] &&
1263 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1264 return ifnet_addrs[sdl->sdl_index];
1265 }
1266 #ifdef NETATALK
1267 if (af == AF_APPLETALK) {
1268 const struct sockaddr_at *sat, *sat2;
1269 sat = (const struct sockaddr_at *)addr;
1270 IFNET_FOREACH(ifp) {
1271 if (ifp->if_output == if_nulloutput)
1272 continue;
1273 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1274 if (ifa == NULL)
1275 continue;
1276 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1277 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1278 return ifa; /* exact match */
1279 if (ifa_maybe == NULL) {
1280 /* else keep the if with the right range */
1281 ifa_maybe = ifa;
1282 }
1283 }
1284 return ifa_maybe;
1285 }
1286 #endif
1287 IFNET_FOREACH(ifp) {
1288 if (ifp->if_output == if_nulloutput)
1289 continue;
1290 IFADDR_FOREACH(ifa, ifp) {
1291 const char *cp, *cp2, *cp3;
1292
1293 if (ifa->ifa_addr->sa_family != af ||
1294 ifa->ifa_netmask == NULL)
1295 next: continue;
1296 cp = addr_data;
1297 cp2 = ifa->ifa_addr->sa_data;
1298 cp3 = ifa->ifa_netmask->sa_data;
1299 cplim = (const char *)ifa->ifa_netmask +
1300 ifa->ifa_netmask->sa_len;
1301 while (cp3 < cplim) {
1302 if ((*cp++ ^ *cp2++) & *cp3++) {
1303 /* want to continue for() loop */
1304 goto next;
1305 }
1306 }
1307 if (ifa_maybe == NULL ||
1308 rn_refines((void *)ifa->ifa_netmask,
1309 (void *)ifa_maybe->ifa_netmask))
1310 ifa_maybe = ifa;
1311 }
1312 }
1313 return ifa_maybe;
1314 }
1315
1316 /*
1317 * Find the interface of the addresss.
1318 */
1319 struct ifaddr *
1320 ifa_ifwithladdr(const struct sockaddr *addr)
1321 {
1322 struct ifaddr *ia;
1323
1324 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1325 (ia = ifa_ifwithnet(addr)))
1326 return ia;
1327 return NULL;
1328 }
1329
1330 /*
1331 * Find an interface using a specific address family
1332 */
1333 struct ifaddr *
1334 ifa_ifwithaf(int af)
1335 {
1336 struct ifnet *ifp;
1337 struct ifaddr *ifa;
1338
1339 IFNET_FOREACH(ifp) {
1340 if (ifp->if_output == if_nulloutput)
1341 continue;
1342 IFADDR_FOREACH(ifa, ifp) {
1343 if (ifa->ifa_addr->sa_family == af)
1344 return ifa;
1345 }
1346 }
1347 return NULL;
1348 }
1349
1350 /*
1351 * Find an interface address specific to an interface best matching
1352 * a given address.
1353 */
1354 struct ifaddr *
1355 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1356 {
1357 struct ifaddr *ifa;
1358 const char *cp, *cp2, *cp3;
1359 const char *cplim;
1360 struct ifaddr *ifa_maybe = 0;
1361 u_int af = addr->sa_family;
1362
1363 if (ifp->if_output == if_nulloutput)
1364 return NULL;
1365
1366 if (af >= AF_MAX)
1367 return NULL;
1368
1369 IFADDR_FOREACH(ifa, ifp) {
1370 if (ifa->ifa_addr->sa_family != af)
1371 continue;
1372 ifa_maybe = ifa;
1373 if (ifa->ifa_netmask == NULL) {
1374 if (equal(addr, ifa->ifa_addr) ||
1375 (ifa->ifa_dstaddr &&
1376 equal(addr, ifa->ifa_dstaddr)))
1377 return ifa;
1378 continue;
1379 }
1380 cp = addr->sa_data;
1381 cp2 = ifa->ifa_addr->sa_data;
1382 cp3 = ifa->ifa_netmask->sa_data;
1383 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1384 for (; cp3 < cplim; cp3++) {
1385 if ((*cp++ ^ *cp2++) & *cp3)
1386 break;
1387 }
1388 if (cp3 == cplim)
1389 return ifa;
1390 }
1391 return ifa_maybe;
1392 }
1393
1394 /*
1395 * Default action when installing a route with a Link Level gateway.
1396 * Lookup an appropriate real ifa to point to.
1397 * This should be moved to /sys/net/link.c eventually.
1398 */
1399 void
1400 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1401 {
1402 struct ifaddr *ifa;
1403 const struct sockaddr *dst;
1404 struct ifnet *ifp;
1405
1406 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1407 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1408 return;
1409 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1410 rt_replace_ifa(rt, ifa);
1411 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1412 ifa->ifa_rtrequest(cmd, rt, info);
1413 }
1414 }
1415
1416 /*
1417 * Handle a change in the interface link state.
1418 * XXX: We should listen to the routing socket in-kernel rather
1419 * than calling in6_if_link_* functions directly from here.
1420 */
1421 void
1422 if_link_state_change(struct ifnet *ifp, int link_state)
1423 {
1424 int s;
1425 #if defined(DEBUG) || defined(INET6)
1426 int old_link_state;
1427 #endif
1428
1429 s = splnet();
1430 if (ifp->if_link_state == link_state) {
1431 splx(s);
1432 return;
1433 }
1434
1435 #if defined(DEBUG) || defined(INET6)
1436 old_link_state = ifp->if_link_state;
1437 #endif
1438 ifp->if_link_state = link_state;
1439 #ifdef DEBUG
1440 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1441 link_state == LINK_STATE_UP ? "UP" :
1442 link_state == LINK_STATE_DOWN ? "DOWN" :
1443 "UNKNOWN",
1444 old_link_state == LINK_STATE_UP ? "UP" :
1445 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1446 "UNKNOWN");
1447 #endif
1448
1449 #ifdef INET6
1450 /*
1451 * When going from UNKNOWN to UP, we need to mark existing
1452 * IPv6 addresses as tentative and restart DAD as we may have
1453 * erroneously not found a duplicate.
1454 *
1455 * This needs to happen before rt_ifmsg to avoid a race where
1456 * listeners would have an address and expect it to work right
1457 * away.
1458 */
1459 if (in6_present && link_state == LINK_STATE_UP &&
1460 old_link_state == LINK_STATE_UNKNOWN)
1461 in6_if_link_down(ifp);
1462 #endif
1463
1464 /* Notify that the link state has changed. */
1465 rt_ifmsg(ifp);
1466
1467 #if NCARP > 0
1468 if (ifp->if_carp)
1469 carp_carpdev_state(ifp);
1470 #endif
1471
1472 #ifdef INET6
1473 if (in6_present) {
1474 if (link_state == LINK_STATE_DOWN)
1475 in6_if_link_down(ifp);
1476 else if (link_state == LINK_STATE_UP)
1477 in6_if_link_up(ifp);
1478 }
1479 #endif
1480
1481 splx(s);
1482 }
1483
1484 /*
1485 * Mark an interface down and notify protocols of
1486 * the transition.
1487 * NOTE: must be called at splsoftnet or equivalent.
1488 */
1489 void
1490 if_down(struct ifnet *ifp)
1491 {
1492 struct ifaddr *ifa;
1493
1494 ifp->if_flags &= ~IFF_UP;
1495 nanotime(&ifp->if_lastchange);
1496 IFADDR_FOREACH(ifa, ifp)
1497 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1498 IFQ_PURGE(&ifp->if_snd);
1499 #if NCARP > 0
1500 if (ifp->if_carp)
1501 carp_carpdev_state(ifp);
1502 #endif
1503 rt_ifmsg(ifp);
1504 #ifdef INET6
1505 if (in6_present)
1506 in6_if_down(ifp);
1507 #endif
1508 }
1509
1510 /*
1511 * Mark an interface up and notify protocols of
1512 * the transition.
1513 * NOTE: must be called at splsoftnet or equivalent.
1514 */
1515 void
1516 if_up(struct ifnet *ifp)
1517 {
1518 #ifdef notyet
1519 struct ifaddr *ifa;
1520 #endif
1521
1522 ifp->if_flags |= IFF_UP;
1523 nanotime(&ifp->if_lastchange);
1524 #ifdef notyet
1525 /* this has no effect on IP, and will kill all ISO connections XXX */
1526 IFADDR_FOREACH(ifa, ifp)
1527 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1528 #endif
1529 #if NCARP > 0
1530 if (ifp->if_carp)
1531 carp_carpdev_state(ifp);
1532 #endif
1533 rt_ifmsg(ifp);
1534 #ifdef INET6
1535 if (in6_present)
1536 in6_if_up(ifp);
1537 #endif
1538 }
1539
1540 /*
1541 * Handle interface slowtimo timer routine. Called
1542 * from softclock, we decrement timer (if set) and
1543 * call the appropriate interface routine on expiration.
1544 */
1545 static void
1546 if_slowtimo(void *arg)
1547 {
1548 void (*slowtimo)(struct ifnet *);
1549 struct ifnet *ifp = arg;
1550 int s;
1551
1552 slowtimo = ifp->if_slowtimo;
1553 if (__predict_false(slowtimo == NULL))
1554 return;
1555
1556 s = splnet();
1557 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
1558 (*slowtimo)(ifp);
1559
1560 splx(s);
1561
1562 if (__predict_true(ifp->if_slowtimo != NULL))
1563 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
1564 }
1565
1566 /*
1567 * Set/clear promiscuous mode on interface ifp based on the truth value
1568 * of pswitch. The calls are reference counted so that only the first
1569 * "on" request actually has an effect, as does the final "off" request.
1570 * Results are undefined if the "off" and "on" requests are not matched.
1571 */
1572 int
1573 ifpromisc(struct ifnet *ifp, int pswitch)
1574 {
1575 int pcount, ret;
1576 short nflags;
1577
1578 pcount = ifp->if_pcount;
1579 if (pswitch) {
1580 /*
1581 * Allow the device to be "placed" into promiscuous
1582 * mode even if it is not configured up. It will
1583 * consult IFF_PROMISC when it is brought up.
1584 */
1585 if (ifp->if_pcount++ != 0)
1586 return 0;
1587 nflags = ifp->if_flags | IFF_PROMISC;
1588 } else {
1589 if (--ifp->if_pcount > 0)
1590 return 0;
1591 nflags = ifp->if_flags & ~IFF_PROMISC;
1592 }
1593 ret = if_flags_set(ifp, nflags);
1594 /* Restore interface state if not successful. */
1595 if (ret != 0) {
1596 ifp->if_pcount = pcount;
1597 }
1598 return ret;
1599 }
1600
1601 /*
1602 * Map interface name to
1603 * interface structure pointer.
1604 */
1605 struct ifnet *
1606 ifunit(const char *name)
1607 {
1608 struct ifnet *ifp;
1609 const char *cp = name;
1610 u_int unit = 0;
1611 u_int i;
1612
1613 /*
1614 * If the entire name is a number, treat it as an ifindex.
1615 */
1616 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1617 unit = unit * 10 + (*cp - '0');
1618 }
1619
1620 /*
1621 * If the number took all of the name, then it's a valid ifindex.
1622 */
1623 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1624 if (unit >= if_indexlim)
1625 return NULL;
1626 ifp = ifindex2ifnet[unit];
1627 if (ifp == NULL || ifp->if_output == if_nulloutput)
1628 return NULL;
1629 return ifp;
1630 }
1631
1632 IFNET_FOREACH(ifp) {
1633 if (ifp->if_output == if_nulloutput)
1634 continue;
1635 if (strcmp(ifp->if_xname, name) == 0)
1636 return ifp;
1637 }
1638 return NULL;
1639 }
1640
1641 ifnet_t *
1642 if_byindex(u_int idx)
1643 {
1644 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1645 }
1646
1647 /* common */
1648 int
1649 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1650 {
1651 int s;
1652 struct ifreq *ifr;
1653 struct ifcapreq *ifcr;
1654 struct ifdatareq *ifdr;
1655
1656 switch (cmd) {
1657 case SIOCSIFCAP:
1658 ifcr = data;
1659 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1660 return EINVAL;
1661
1662 if (ifcr->ifcr_capenable == ifp->if_capenable)
1663 return 0;
1664
1665 ifp->if_capenable = ifcr->ifcr_capenable;
1666
1667 /* Pre-compute the checksum flags mask. */
1668 ifp->if_csum_flags_tx = 0;
1669 ifp->if_csum_flags_rx = 0;
1670 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1671 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1672 }
1673 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1674 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1675 }
1676
1677 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1678 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1679 }
1680 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1681 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1682 }
1683
1684 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1685 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1686 }
1687 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1688 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1689 }
1690
1691 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1692 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1693 }
1694 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1695 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1696 }
1697
1698 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1699 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1700 }
1701 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1702 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1703 }
1704 if (ifp->if_flags & IFF_UP)
1705 return ENETRESET;
1706 return 0;
1707 case SIOCSIFFLAGS:
1708 ifr = data;
1709 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1710 s = splnet();
1711 if_down(ifp);
1712 splx(s);
1713 }
1714 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1715 s = splnet();
1716 if_up(ifp);
1717 splx(s);
1718 }
1719 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1720 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1721 break;
1722 case SIOCGIFFLAGS:
1723 ifr = data;
1724 ifr->ifr_flags = ifp->if_flags;
1725 break;
1726
1727 case SIOCGIFMETRIC:
1728 ifr = data;
1729 ifr->ifr_metric = ifp->if_metric;
1730 break;
1731
1732 case SIOCGIFMTU:
1733 ifr = data;
1734 ifr->ifr_mtu = ifp->if_mtu;
1735 break;
1736
1737 case SIOCGIFDLT:
1738 ifr = data;
1739 ifr->ifr_dlt = ifp->if_dlt;
1740 break;
1741
1742 case SIOCGIFCAP:
1743 ifcr = data;
1744 ifcr->ifcr_capabilities = ifp->if_capabilities;
1745 ifcr->ifcr_capenable = ifp->if_capenable;
1746 break;
1747
1748 case SIOCSIFMETRIC:
1749 ifr = data;
1750 ifp->if_metric = ifr->ifr_metric;
1751 break;
1752
1753 case SIOCGIFDATA:
1754 ifdr = data;
1755 ifdr->ifdr_data = ifp->if_data;
1756 break;
1757
1758 case SIOCGIFINDEX:
1759 ifr = data;
1760 ifr->ifr_index = ifp->if_index;
1761 break;
1762
1763 case SIOCZIFDATA:
1764 ifdr = data;
1765 ifdr->ifdr_data = ifp->if_data;
1766 /*
1767 * Assumes that the volatile counters that can be
1768 * zero'ed are at the end of if_data.
1769 */
1770 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1771 offsetof(struct if_data, ifi_ipackets));
1772 /*
1773 * The memset() clears to the bottm of if_data. In the area,
1774 * if_lastchange is included. Please be careful if new entry
1775 * will be added into if_data or rewite this.
1776 *
1777 * And also, update if_lastchnage.
1778 */
1779 getnanotime(&ifp->if_lastchange);
1780 break;
1781 case SIOCSIFMTU:
1782 ifr = data;
1783 if (ifp->if_mtu == ifr->ifr_mtu)
1784 break;
1785 ifp->if_mtu = ifr->ifr_mtu;
1786 /*
1787 * If the link MTU changed, do network layer specific procedure.
1788 */
1789 #ifdef INET6
1790 if (in6_present)
1791 nd6_setmtu(ifp);
1792 #endif
1793 return ENETRESET;
1794 default:
1795 return ENOTTY;
1796 }
1797 return 0;
1798 }
1799
1800 int
1801 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1802 {
1803 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1804 struct ifaddr *ifa;
1805 const struct sockaddr *any, *sa;
1806 union {
1807 struct sockaddr sa;
1808 struct sockaddr_storage ss;
1809 } u, v;
1810
1811 switch (cmd) {
1812 case SIOCSIFADDRPREF:
1813 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1814 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1815 NULL) != 0)
1816 return EPERM;
1817 case SIOCGIFADDRPREF:
1818 break;
1819 default:
1820 return EOPNOTSUPP;
1821 }
1822
1823 /* sanity checks */
1824 if (data == NULL || ifp == NULL) {
1825 panic("invalid argument to %s", __func__);
1826 /*NOTREACHED*/
1827 }
1828
1829 /* address must be specified on ADD and DELETE */
1830 sa = sstocsa(&ifap->ifap_addr);
1831 if (sa->sa_family != sofamily(so))
1832 return EINVAL;
1833 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1834 return EINVAL;
1835
1836 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1837
1838 IFADDR_FOREACH(ifa, ifp) {
1839 if (ifa->ifa_addr->sa_family != sa->sa_family)
1840 continue;
1841 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1842 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1843 break;
1844 }
1845 if (ifa == NULL)
1846 return EADDRNOTAVAIL;
1847
1848 switch (cmd) {
1849 case SIOCSIFADDRPREF:
1850 ifa->ifa_preference = ifap->ifap_preference;
1851 return 0;
1852 case SIOCGIFADDRPREF:
1853 /* fill in the if_laddrreq structure */
1854 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1855 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1856 ifap->ifap_preference = ifa->ifa_preference;
1857 return 0;
1858 default:
1859 return EOPNOTSUPP;
1860 }
1861 }
1862
1863 static void
1864 ifnet_lock_enter(struct ifnet_lock *il)
1865 {
1866 uint64_t *nenter;
1867
1868 /* Before trying to acquire the mutex, increase the count of threads
1869 * who have entered or who wait to enter the critical section.
1870 * Avoid one costly locked memory transaction by keeping a count for
1871 * each CPU.
1872 */
1873 nenter = percpu_getref(il->il_nenter);
1874 (*nenter)++;
1875 percpu_putref(il->il_nenter);
1876 mutex_enter(&il->il_lock);
1877 }
1878
1879 static void
1880 ifnet_lock_exit(struct ifnet_lock *il)
1881 {
1882 /* Increase the count of threads who have exited the critical
1883 * section. Increase while we still hold the lock.
1884 */
1885 il->il_nexit++;
1886 mutex_exit(&il->il_lock);
1887 }
1888
1889 /*
1890 * Interface ioctls.
1891 */
1892 static int
1893 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1894 {
1895 struct ifnet *ifp;
1896 struct ifreq *ifr;
1897 int error = 0;
1898 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1899 u_long ocmd = cmd;
1900 #endif
1901 short oif_flags;
1902 #ifdef COMPAT_OIFREQ
1903 struct ifreq ifrb;
1904 struct oifreq *oifr = NULL;
1905 #endif
1906 int r;
1907
1908 switch (cmd) {
1909 #ifdef COMPAT_OIFREQ
1910 case OSIOCGIFCONF:
1911 case OOSIOCGIFCONF:
1912 return compat_ifconf(cmd, data);
1913 #endif
1914 #ifdef COMPAT_OIFDATA
1915 case OSIOCGIFDATA:
1916 case OSIOCZIFDATA:
1917 return compat_ifdatareq(l, cmd, data);
1918 #endif
1919 case SIOCGIFCONF:
1920 return ifconf(cmd, data);
1921 case SIOCINITIFADDR:
1922 return EPERM;
1923 }
1924
1925 #ifdef COMPAT_OIFREQ
1926 cmd = compat_cvtcmd(cmd);
1927 if (cmd != ocmd) {
1928 oifr = data;
1929 data = ifr = &ifrb;
1930 ifreqo2n(oifr, ifr);
1931 } else
1932 #endif
1933 ifr = data;
1934
1935 ifp = ifunit(ifr->ifr_name);
1936
1937 switch (cmd) {
1938 case SIOCIFCREATE:
1939 case SIOCIFDESTROY:
1940 if (l != NULL) {
1941 error = kauth_authorize_network(l->l_cred,
1942 KAUTH_NETWORK_INTERFACE,
1943 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1944 (void *)cmd, NULL);
1945 if (error != 0)
1946 return error;
1947 }
1948 mutex_enter(&if_clone_mtx);
1949 r = (cmd == SIOCIFCREATE) ?
1950 if_clone_create(ifr->ifr_name) :
1951 if_clone_destroy(ifr->ifr_name);
1952 mutex_exit(&if_clone_mtx);
1953 return r;
1954
1955 case SIOCIFGCLONERS:
1956 return if_clone_list((struct if_clonereq *)data);
1957 }
1958
1959 if (ifp == NULL)
1960 return ENXIO;
1961
1962 switch (cmd) {
1963 case SIOCALIFADDR:
1964 case SIOCDLIFADDR:
1965 case SIOCSIFADDRPREF:
1966 case SIOCSIFFLAGS:
1967 case SIOCSIFCAP:
1968 case SIOCSIFMETRIC:
1969 case SIOCZIFDATA:
1970 case SIOCSIFMTU:
1971 case SIOCSIFPHYADDR:
1972 case SIOCDIFPHYADDR:
1973 #ifdef INET6
1974 case SIOCSIFPHYADDR_IN6:
1975 #endif
1976 case SIOCSLIFPHYADDR:
1977 case SIOCADDMULTI:
1978 case SIOCDELMULTI:
1979 case SIOCSIFMEDIA:
1980 case SIOCSDRVSPEC:
1981 case SIOCG80211:
1982 case SIOCS80211:
1983 case SIOCS80211NWID:
1984 case SIOCS80211NWKEY:
1985 case SIOCS80211POWER:
1986 case SIOCS80211BSSID:
1987 case SIOCS80211CHANNEL:
1988 case SIOCSLINKSTR:
1989 if (l != NULL) {
1990 error = kauth_authorize_network(l->l_cred,
1991 KAUTH_NETWORK_INTERFACE,
1992 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1993 (void *)cmd, NULL);
1994 if (error != 0)
1995 return error;
1996 }
1997 }
1998
1999 oif_flags = ifp->if_flags;
2000
2001 ifnet_lock_enter(ifp->if_ioctl_lock);
2002 error = (*ifp->if_ioctl)(ifp, cmd, data);
2003 if (error != ENOTTY)
2004 ;
2005 else if (so->so_proto == NULL)
2006 error = EOPNOTSUPP;
2007 else {
2008 #ifdef COMPAT_OSOCK
2009 error = compat_ifioctl(so, ocmd, cmd, data, l);
2010 #else
2011 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2012 cmd, data, ifp);
2013 #endif
2014 }
2015
2016 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2017 #ifdef INET6
2018 if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
2019 int s = splnet();
2020 in6_if_up(ifp);
2021 splx(s);
2022 }
2023 #endif
2024 }
2025 #ifdef COMPAT_OIFREQ
2026 if (cmd != ocmd)
2027 ifreqn2o(oifr, ifr);
2028 #endif
2029
2030 ifnet_lock_exit(ifp->if_ioctl_lock);
2031 return error;
2032 }
2033
2034 /* This callback adds to the sum in `arg' the number of
2035 * threads on `ci' who have entered or who wait to enter the
2036 * critical section.
2037 */
2038 static void
2039 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2040 {
2041 uint64_t *sum = arg, *nenter = p;
2042
2043 *sum += *nenter;
2044 }
2045
2046 /* Return the number of threads who have entered or who wait
2047 * to enter the critical section on all CPUs.
2048 */
2049 static uint64_t
2050 ifnet_lock_entrances(struct ifnet_lock *il)
2051 {
2052 uint64_t sum = 0;
2053
2054 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2055
2056 return sum;
2057 }
2058
2059 static int
2060 ifioctl_attach(struct ifnet *ifp)
2061 {
2062 struct ifnet_lock *il;
2063
2064 /* If the driver has not supplied its own if_ioctl, then
2065 * supply the default.
2066 */
2067 if (ifp->if_ioctl == NULL)
2068 ifp->if_ioctl = ifioctl_common;
2069
2070 /* Create an ifnet_lock for synchronizing ifioctls. */
2071 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2072 return ENOMEM;
2073
2074 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2075 if (il->il_nenter == NULL) {
2076 kmem_free(il, sizeof(*il));
2077 return ENOMEM;
2078 }
2079
2080 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2081 cv_init(&il->il_emptied, ifp->if_xname);
2082
2083 ifp->if_ioctl_lock = il;
2084
2085 return 0;
2086 }
2087
2088 /*
2089 * This must not be called until after `ifp' has been withdrawn from the
2090 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2091 * ifunit().
2092 */
2093 static void
2094 ifioctl_detach(struct ifnet *ifp)
2095 {
2096 struct ifnet_lock *il;
2097
2098 il = ifp->if_ioctl_lock;
2099 mutex_enter(&il->il_lock);
2100 /* Install if_nullioctl to make sure that any thread that
2101 * subsequently enters the critical section will quit it
2102 * immediately and signal the condition variable that we
2103 * wait on, below.
2104 */
2105 ifp->if_ioctl = if_nullioctl;
2106 /* Sleep while threads are still in the critical section or
2107 * wait to enter it.
2108 */
2109 while (ifnet_lock_entrances(il) != il->il_nexit)
2110 cv_wait(&il->il_emptied, &il->il_lock);
2111 /* At this point, we are the only thread still in the critical
2112 * section, and no new thread can get a handle on the ifioctl
2113 * lock, so it is safe to free its memory.
2114 */
2115 mutex_exit(&il->il_lock);
2116 ifp->if_ioctl_lock = NULL;
2117 percpu_free(il->il_nenter, sizeof(uint64_t));
2118 il->il_nenter = NULL;
2119 cv_destroy(&il->il_emptied);
2120 mutex_destroy(&il->il_lock);
2121 kmem_free(il, sizeof(*il));
2122 }
2123
2124 /*
2125 * Return interface configuration
2126 * of system. List may be used
2127 * in later ioctl's (above) to get
2128 * other information.
2129 *
2130 * Each record is a struct ifreq. Before the addition of
2131 * sockaddr_storage, the API rule was that sockaddr flavors that did
2132 * not fit would extend beyond the struct ifreq, with the next struct
2133 * ifreq starting sa_len beyond the struct sockaddr. Because the
2134 * union in struct ifreq includes struct sockaddr_storage, every kind
2135 * of sockaddr must fit. Thus, there are no longer any overlength
2136 * records.
2137 *
2138 * Records are added to the user buffer if they fit, and ifc_len is
2139 * adjusted to the length that was written. Thus, the user is only
2140 * assured of getting the complete list if ifc_len on return is at
2141 * least sizeof(struct ifreq) less than it was on entry.
2142 *
2143 * If the user buffer pointer is NULL, this routine copies no data and
2144 * returns the amount of space that would be needed.
2145 *
2146 * Invariants:
2147 * ifrp points to the next part of the user's buffer to be used. If
2148 * ifrp != NULL, space holds the number of bytes remaining that we may
2149 * write at ifrp. Otherwise, space holds the number of bytes that
2150 * would have been written had there been adequate space.
2151 */
2152 /*ARGSUSED*/
2153 static int
2154 ifconf(u_long cmd, void *data)
2155 {
2156 struct ifconf *ifc = (struct ifconf *)data;
2157 struct ifnet *ifp;
2158 struct ifaddr *ifa;
2159 struct ifreq ifr, *ifrp = NULL;
2160 int space = 0, error = 0;
2161 const int sz = (int)sizeof(struct ifreq);
2162 const bool docopy = ifc->ifc_req != NULL;
2163
2164 if (docopy) {
2165 space = ifc->ifc_len;
2166 ifrp = ifc->ifc_req;
2167 }
2168
2169 IFNET_FOREACH(ifp) {
2170 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2171 sizeof(ifr.ifr_name));
2172 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2173 return ENAMETOOLONG;
2174 if (IFADDR_EMPTY(ifp)) {
2175 /* Interface with no addresses - send zero sockaddr. */
2176 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2177 if (!docopy) {
2178 space += sz;
2179 continue;
2180 }
2181 if (space >= sz) {
2182 error = copyout(&ifr, ifrp, sz);
2183 if (error != 0)
2184 return error;
2185 ifrp++;
2186 space -= sz;
2187 }
2188 }
2189
2190 IFADDR_FOREACH(ifa, ifp) {
2191 struct sockaddr *sa = ifa->ifa_addr;
2192 /* all sockaddrs must fit in sockaddr_storage */
2193 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2194
2195 if (!docopy) {
2196 space += sz;
2197 continue;
2198 }
2199 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2200 if (space >= sz) {
2201 error = copyout(&ifr, ifrp, sz);
2202 if (error != 0)
2203 return (error);
2204 ifrp++; space -= sz;
2205 }
2206 }
2207 }
2208 if (docopy) {
2209 KASSERT(0 <= space && space <= ifc->ifc_len);
2210 ifc->ifc_len -= space;
2211 } else {
2212 KASSERT(space >= 0);
2213 ifc->ifc_len = space;
2214 }
2215 return (0);
2216 }
2217
2218 int
2219 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2220 {
2221 uint8_t len;
2222 #ifdef COMPAT_OIFREQ
2223 struct ifreq ifrb;
2224 struct oifreq *oifr = NULL;
2225 u_long ocmd = cmd;
2226 cmd = compat_cvtcmd(cmd);
2227 if (cmd != ocmd) {
2228 oifr = (struct oifreq *)(void *)ifr;
2229 ifr = &ifrb;
2230 ifreqo2n(oifr, ifr);
2231 len = sizeof(oifr->ifr_addr);
2232 } else
2233 #endif
2234 len = sizeof(ifr->ifr_ifru.ifru_space);
2235
2236 if (len < sa->sa_len)
2237 return EFBIG;
2238
2239 memset(&ifr->ifr_addr, 0, len);
2240 sockaddr_copy(&ifr->ifr_addr, len, sa);
2241
2242 #ifdef COMPAT_OIFREQ
2243 if (cmd != ocmd)
2244 ifreqn2o(oifr, ifr);
2245 #endif
2246 return 0;
2247 }
2248
2249 /*
2250 * Queue message on interface, and start output if interface
2251 * not yet active.
2252 */
2253 int
2254 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2255 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2256 {
2257 int len = m->m_pkthdr.len;
2258 int mflags = m->m_flags;
2259 int s = splnet();
2260 int error;
2261
2262 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2263 if (error != 0)
2264 goto out;
2265 ifp->if_obytes += len;
2266 if (mflags & M_MCAST)
2267 ifp->if_omcasts++;
2268 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2269 (*ifp->if_start)(ifp);
2270 out:
2271 splx(s);
2272 return error;
2273 }
2274
2275 /*
2276 * Queue message on interface, possibly using a second fast queue
2277 */
2278 int
2279 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2280 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2281 {
2282 int error = 0;
2283
2284 if (ifq != NULL
2285 #ifdef ALTQ
2286 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2287 #endif
2288 ) {
2289 if (IF_QFULL(ifq)) {
2290 IF_DROP(&ifp->if_snd);
2291 m_freem(m);
2292 if (error == 0)
2293 error = ENOBUFS;
2294 } else
2295 IF_ENQUEUE(ifq, m);
2296 } else
2297 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2298 if (error != 0) {
2299 ++ifp->if_oerrors;
2300 return error;
2301 }
2302 return 0;
2303 }
2304
2305 int
2306 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2307 {
2308 int rc;
2309
2310 if (ifp->if_initaddr != NULL)
2311 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2312 else if (src ||
2313 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2314 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2315
2316 return rc;
2317 }
2318
2319 int
2320 if_flags_set(ifnet_t *ifp, const short flags)
2321 {
2322 int rc;
2323
2324 if (ifp->if_setflags != NULL)
2325 rc = (*ifp->if_setflags)(ifp, flags);
2326 else {
2327 short cantflags, chgdflags;
2328 struct ifreq ifr;
2329
2330 chgdflags = ifp->if_flags ^ flags;
2331 cantflags = chgdflags & IFF_CANTCHANGE;
2332
2333 if (cantflags != 0)
2334 ifp->if_flags ^= cantflags;
2335
2336 /* Traditionally, we do not call if_ioctl after
2337 * setting/clearing only IFF_PROMISC if the interface
2338 * isn't IFF_UP. Uphold that tradition.
2339 */
2340 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2341 return 0;
2342
2343 memset(&ifr, 0, sizeof(ifr));
2344
2345 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2346 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2347
2348 if (rc != 0 && cantflags != 0)
2349 ifp->if_flags ^= cantflags;
2350 }
2351
2352 return rc;
2353 }
2354
2355 int
2356 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2357 {
2358 int rc;
2359 struct ifreq ifr;
2360
2361 if (ifp->if_mcastop != NULL)
2362 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2363 else {
2364 ifreq_setaddr(cmd, &ifr, sa);
2365 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2366 }
2367
2368 return rc;
2369 }
2370
2371 static void
2372 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2373 struct ifaltq *ifq)
2374 {
2375 const struct sysctlnode *cnode, *rnode;
2376
2377 if (sysctl_createv(clog, 0, NULL, &rnode,
2378 CTLFLAG_PERMANENT,
2379 CTLTYPE_NODE, "interfaces",
2380 SYSCTL_DESCR("Per-interface controls"),
2381 NULL, 0, NULL, 0,
2382 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2383 goto bad;
2384
2385 if (sysctl_createv(clog, 0, &rnode, &rnode,
2386 CTLFLAG_PERMANENT,
2387 CTLTYPE_NODE, ifname,
2388 SYSCTL_DESCR("Interface controls"),
2389 NULL, 0, NULL, 0,
2390 CTL_CREATE, CTL_EOL) != 0)
2391 goto bad;
2392
2393 if (sysctl_createv(clog, 0, &rnode, &rnode,
2394 CTLFLAG_PERMANENT,
2395 CTLTYPE_NODE, "sndq",
2396 SYSCTL_DESCR("Interface output queue controls"),
2397 NULL, 0, NULL, 0,
2398 CTL_CREATE, CTL_EOL) != 0)
2399 goto bad;
2400
2401 if (sysctl_createv(clog, 0, &rnode, &cnode,
2402 CTLFLAG_PERMANENT,
2403 CTLTYPE_INT, "len",
2404 SYSCTL_DESCR("Current output queue length"),
2405 NULL, 0, &ifq->ifq_len, 0,
2406 CTL_CREATE, CTL_EOL) != 0)
2407 goto bad;
2408
2409 if (sysctl_createv(clog, 0, &rnode, &cnode,
2410 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2411 CTLTYPE_INT, "maxlen",
2412 SYSCTL_DESCR("Maximum allowed output queue length"),
2413 NULL, 0, &ifq->ifq_maxlen, 0,
2414 CTL_CREATE, CTL_EOL) != 0)
2415 goto bad;
2416
2417 if (sysctl_createv(clog, 0, &rnode, &cnode,
2418 CTLFLAG_PERMANENT,
2419 CTLTYPE_INT, "drops",
2420 SYSCTL_DESCR("Packets dropped due to full output queue"),
2421 NULL, 0, &ifq->ifq_drops, 0,
2422 CTL_CREATE, CTL_EOL) != 0)
2423 goto bad;
2424
2425 return;
2426 bad:
2427 printf("%s: could not attach sysctl nodes\n", ifname);
2428 return;
2429 }
2430
2431 #if defined(INET) || defined(INET6)
2432
2433 #define SYSCTL_NET_PKTQ(q, cn, c) \
2434 static int \
2435 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2436 { \
2437 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2438 }
2439
2440 #if defined(INET)
2441 static int
2442 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2443 {
2444 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2445 }
2446 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2447 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2448 #endif
2449
2450 #if defined(INET6)
2451 static int
2452 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2453 {
2454 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2455 }
2456 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2457 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2458 #endif
2459
2460 static void
2461 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2462 {
2463 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2464 const char *pfname = NULL, *ipname = NULL;
2465 int ipn = 0, qid = 0;
2466
2467 switch (pf) {
2468 #if defined(INET)
2469 case PF_INET:
2470 len_func = sysctl_net_ip_pktq_items;
2471 maxlen_func = sysctl_net_ip_pktq_maxlen;
2472 drops_func = sysctl_net_ip_pktq_drops;
2473 pfname = "inet", ipn = IPPROTO_IP;
2474 ipname = "ip", qid = IPCTL_IFQ;
2475 break;
2476 #endif
2477 #if defined(INET6)
2478 case PF_INET6:
2479 len_func = sysctl_net_ip6_pktq_items;
2480 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2481 drops_func = sysctl_net_ip6_pktq_drops;
2482 pfname = "inet6", ipn = IPPROTO_IPV6;
2483 ipname = "ip6", qid = IPV6CTL_IFQ;
2484 break;
2485 #endif
2486 default:
2487 KASSERT(false);
2488 }
2489
2490 sysctl_createv(clog, 0, NULL, NULL,
2491 CTLFLAG_PERMANENT,
2492 CTLTYPE_NODE, pfname, NULL,
2493 NULL, 0, NULL, 0,
2494 CTL_NET, pf, CTL_EOL);
2495 sysctl_createv(clog, 0, NULL, NULL,
2496 CTLFLAG_PERMANENT,
2497 CTLTYPE_NODE, ipname, NULL,
2498 NULL, 0, NULL, 0,
2499 CTL_NET, pf, ipn, CTL_EOL);
2500 sysctl_createv(clog, 0, NULL, NULL,
2501 CTLFLAG_PERMANENT,
2502 CTLTYPE_NODE, "ifq",
2503 SYSCTL_DESCR("Protocol input queue controls"),
2504 NULL, 0, NULL, 0,
2505 CTL_NET, pf, ipn, qid, CTL_EOL);
2506
2507 sysctl_createv(clog, 0, NULL, NULL,
2508 CTLFLAG_PERMANENT,
2509 CTLTYPE_INT, "len",
2510 SYSCTL_DESCR("Current input queue length"),
2511 len_func, 0, NULL, 0,
2512 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2513 sysctl_createv(clog, 0, NULL, NULL,
2514 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2515 CTLTYPE_INT, "maxlen",
2516 SYSCTL_DESCR("Maximum allowed input queue length"),
2517 maxlen_func, 0, NULL, 0,
2518 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2519 sysctl_createv(clog, 0, NULL, NULL,
2520 CTLFLAG_PERMANENT,
2521 CTLTYPE_INT, "drops",
2522 SYSCTL_DESCR("Packets dropped due to full input queue"),
2523 drops_func, 0, NULL, 0,
2524 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2525 }
2526 #endif /* INET || INET6 */
2527
2528 static int
2529 if_sdl_sysctl(SYSCTLFN_ARGS)
2530 {
2531 struct ifnet *ifp;
2532 const struct sockaddr_dl *sdl;
2533
2534 if (namelen != 1)
2535 return EINVAL;
2536
2537 ifp = if_byindex(name[0]);
2538 if (ifp == NULL)
2539 return ENODEV;
2540
2541 sdl = ifp->if_sadl;
2542 if (sdl == NULL) {
2543 *oldlenp = 0;
2544 return 0;
2545 }
2546
2547 if (oldp == NULL) {
2548 *oldlenp = sdl->sdl_alen;
2549 return 0;
2550 }
2551
2552 if (*oldlenp >= sdl->sdl_alen)
2553 *oldlenp = sdl->sdl_alen;
2554 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2555 }
2556
2557 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2558 {
2559 const struct sysctlnode *rnode = NULL;
2560
2561 sysctl_createv(clog, 0, NULL, &rnode,
2562 CTLFLAG_PERMANENT,
2563 CTLTYPE_NODE, "sdl",
2564 SYSCTL_DESCR("Get active link-layer address"),
2565 if_sdl_sysctl, 0, NULL, 0,
2566 CTL_NET, CTL_CREATE, CTL_EOL);
2567 }
2568