if.c revision 1.315 1 /* $NetBSD: if.c,v 1.315 2015/05/18 06:38:59 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.315 2015/05/18 06:38:59 martin Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120
121 #include <net/if.h>
122 #include <net/if_dl.h>
123 #include <net/if_ether.h>
124 #include <net/if_media.h>
125 #include <net80211/ieee80211.h>
126 #include <net80211/ieee80211_ioctl.h>
127 #include <net/if_types.h>
128 #include <net/radix.h>
129 #include <net/route.h>
130 #include <net/netisr.h>
131 #include <sys/module.h>
132 #ifdef NETATALK
133 #include <netatalk/at_extern.h>
134 #include <netatalk/at.h>
135 #endif
136 #include <net/pfil.h>
137 #include <netinet/in.h>
138 #include <netinet/in_var.h>
139
140 #ifdef INET6
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "ether.h"
146 #include "fddi.h"
147 #include "token.h"
148
149 #include "carp.h"
150 #if NCARP > 0
151 #include <netinet/ip_carp.h>
152 #endif
153
154 #include <compat/sys/sockio.h>
155 #include <compat/sys/socket.h>
156
157 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
158 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
159
160 /*
161 * Global list of interfaces.
162 */
163 struct ifnet_head ifnet_list;
164 static ifnet_t ** ifindex2ifnet = NULL;
165
166 static u_int if_index = 1;
167 static size_t if_indexlim = 0;
168 static uint64_t index_gen;
169 static kmutex_t index_gen_mtx;
170 static kmutex_t if_clone_mtx;
171
172 static struct ifaddr ** ifnet_addrs = NULL;
173
174 struct ifnet *lo0ifp;
175 int ifqmaxlen = IFQ_MAXLEN;
176
177 static int if_rt_walktree(struct rtentry *, void *);
178
179 static struct if_clone *if_clone_lookup(const char *, int *);
180
181 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
182 static int if_cloners_count;
183
184 /* Packet filtering hook for interfaces. */
185 pfil_head_t * if_pfil;
186
187 static kauth_listener_t if_listener;
188
189 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
190 static int ifioctl_attach(struct ifnet *);
191 static void ifioctl_detach(struct ifnet *);
192 static void ifnet_lock_enter(struct ifnet_lock *);
193 static void ifnet_lock_exit(struct ifnet_lock *);
194 static void if_detach_queues(struct ifnet *, struct ifqueue *);
195 static void sysctl_sndq_setup(struct sysctllog **, const char *,
196 struct ifaltq *);
197 static void if_slowtimo(void *);
198 static void if_free_sadl(struct ifnet *);
199 static void if_attachdomain1(struct ifnet *);
200 static int ifconf(u_long, void *);
201 static int if_clone_create(const char *);
202 static int if_clone_destroy(const char *);
203
204 #if defined(INET) || defined(INET6)
205 static void sysctl_net_pktq_setup(struct sysctllog **, int);
206 #endif
207
208 static int
209 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
210 void *arg0, void *arg1, void *arg2, void *arg3)
211 {
212 int result;
213 enum kauth_network_req req;
214
215 result = KAUTH_RESULT_DEFER;
216 req = (enum kauth_network_req)arg1;
217
218 if (action != KAUTH_NETWORK_INTERFACE)
219 return result;
220
221 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
222 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
223 result = KAUTH_RESULT_ALLOW;
224
225 return result;
226 }
227
228 /*
229 * Network interface utility routines.
230 *
231 * Routines with ifa_ifwith* names take sockaddr *'s as
232 * parameters.
233 */
234 void
235 ifinit(void)
236 {
237 #if defined(INET)
238 sysctl_net_pktq_setup(NULL, PF_INET);
239 #endif
240 #ifdef INET6
241 if (in6_present)
242 sysctl_net_pktq_setup(NULL, PF_INET6);
243 #endif
244
245 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
246 if_listener_cb, NULL);
247
248 /* interfaces are available, inform socket code */
249 ifioctl = doifioctl;
250 }
251
252 /*
253 * XXX Initialization before configure().
254 * XXX hack to get pfil_add_hook working in autoconf.
255 */
256 void
257 ifinit1(void)
258 {
259 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
260 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
261 TAILQ_INIT(&ifnet_list);
262 if_indexlim = 8;
263
264 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
265 KASSERT(if_pfil != NULL);
266
267 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
268 etherinit();
269 #endif
270 }
271
272 ifnet_t *
273 if_alloc(u_char type)
274 {
275 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
276 }
277
278 void
279 if_free(ifnet_t *ifp)
280 {
281 kmem_free(ifp, sizeof(ifnet_t));
282 }
283
284 void
285 if_initname(struct ifnet *ifp, const char *name, int unit)
286 {
287 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
288 "%s%d", name, unit);
289 }
290
291 /*
292 * Null routines used while an interface is going away. These routines
293 * just return an error.
294 */
295
296 int
297 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
298 const struct sockaddr *so, struct rtentry *rt)
299 {
300
301 return ENXIO;
302 }
303
304 void
305 if_nullinput(struct ifnet *ifp, struct mbuf *m)
306 {
307
308 /* Nothing. */
309 }
310
311 void
312 if_nullstart(struct ifnet *ifp)
313 {
314
315 /* Nothing. */
316 }
317
318 int
319 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
320 {
321
322 /* Wake ifioctl_detach(), who may wait for all threads to
323 * quit the critical section.
324 */
325 cv_signal(&ifp->if_ioctl_lock->il_emptied);
326 return ENXIO;
327 }
328
329 int
330 if_nullinit(struct ifnet *ifp)
331 {
332
333 return ENXIO;
334 }
335
336 void
337 if_nullstop(struct ifnet *ifp, int disable)
338 {
339
340 /* Nothing. */
341 }
342
343 void
344 if_nullslowtimo(struct ifnet *ifp)
345 {
346
347 /* Nothing. */
348 }
349
350 void
351 if_nulldrain(struct ifnet *ifp)
352 {
353
354 /* Nothing. */
355 }
356
357 void
358 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
359 {
360 struct ifaddr *ifa;
361 struct sockaddr_dl *sdl;
362
363 ifp->if_addrlen = addrlen;
364 if_alloc_sadl(ifp);
365 ifa = ifp->if_dl;
366 sdl = satosdl(ifa->ifa_addr);
367
368 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
369 if (factory) {
370 ifp->if_hwdl = ifp->if_dl;
371 ifaref(ifp->if_hwdl);
372 }
373 /* TBD routing socket */
374 }
375
376 struct ifaddr *
377 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
378 {
379 unsigned socksize, ifasize;
380 int addrlen, namelen;
381 struct sockaddr_dl *mask, *sdl;
382 struct ifaddr *ifa;
383
384 namelen = strlen(ifp->if_xname);
385 addrlen = ifp->if_addrlen;
386 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
387 ifasize = sizeof(*ifa) + 2 * socksize;
388 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
389
390 sdl = (struct sockaddr_dl *)(ifa + 1);
391 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
392
393 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
394 ifp->if_xname, namelen, NULL, addrlen);
395 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
396 memset(&mask->sdl_data[0], 0xff, namelen);
397 ifa->ifa_rtrequest = link_rtrequest;
398 ifa->ifa_addr = (struct sockaddr *)sdl;
399 ifa->ifa_netmask = (struct sockaddr *)mask;
400
401 *sdlp = sdl;
402
403 return ifa;
404 }
405
406 static void
407 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
408 {
409 const struct sockaddr_dl *sdl;
410 ifnet_addrs[ifp->if_index] = ifa;
411 ifaref(ifa);
412 ifp->if_dl = ifa;
413 ifaref(ifa);
414 sdl = satosdl(ifa->ifa_addr);
415 ifp->if_sadl = sdl;
416 }
417
418 /*
419 * Allocate the link level name for the specified interface. This
420 * is an attachment helper. It must be called after ifp->if_addrlen
421 * is initialized, which may not be the case when if_attach() is
422 * called.
423 */
424 void
425 if_alloc_sadl(struct ifnet *ifp)
426 {
427 struct ifaddr *ifa;
428 const struct sockaddr_dl *sdl;
429
430 /*
431 * If the interface already has a link name, release it
432 * now. This is useful for interfaces that can change
433 * link types, and thus switch link names often.
434 */
435 if (ifp->if_sadl != NULL)
436 if_free_sadl(ifp);
437
438 ifa = if_dl_create(ifp, &sdl);
439
440 ifa_insert(ifp, ifa);
441 if_sadl_setrefs(ifp, ifa);
442 }
443
444 static void
445 if_deactivate_sadl(struct ifnet *ifp)
446 {
447 struct ifaddr *ifa;
448
449 KASSERT(ifp->if_dl != NULL);
450
451 ifa = ifp->if_dl;
452
453 ifp->if_sadl = NULL;
454
455 ifnet_addrs[ifp->if_index] = NULL;
456 ifafree(ifa);
457 ifp->if_dl = NULL;
458 ifafree(ifa);
459 }
460
461 void
462 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
463 const struct sockaddr_dl *sdl)
464 {
465 int s;
466
467 s = splnet();
468
469 if_deactivate_sadl(ifp);
470
471 if_sadl_setrefs(ifp, ifa);
472 IFADDR_FOREACH(ifa, ifp)
473 rtinit(ifa, RTM_LLINFO_UPD, 0);
474 splx(s);
475 }
476
477 /*
478 * Free the link level name for the specified interface. This is
479 * a detach helper. This is called from if_detach().
480 */
481 static void
482 if_free_sadl(struct ifnet *ifp)
483 {
484 struct ifaddr *ifa;
485 int s;
486
487 ifa = ifnet_addrs[ifp->if_index];
488 if (ifa == NULL) {
489 KASSERT(ifp->if_sadl == NULL);
490 KASSERT(ifp->if_dl == NULL);
491 return;
492 }
493
494 KASSERT(ifp->if_sadl != NULL);
495 KASSERT(ifp->if_dl != NULL);
496
497 s = splnet();
498 rtinit(ifa, RTM_DELETE, 0);
499 ifa_remove(ifp, ifa);
500 if_deactivate_sadl(ifp);
501 if (ifp->if_hwdl == ifa) {
502 ifafree(ifa);
503 ifp->if_hwdl = NULL;
504 }
505 splx(s);
506 }
507
508 static void
509 if_getindex(ifnet_t *ifp)
510 {
511 bool hitlimit = false;
512
513 mutex_enter(&index_gen_mtx);
514 ifp->if_index_gen = index_gen++;
515 mutex_exit(&index_gen_mtx);
516
517 ifp->if_index = if_index;
518 if (ifindex2ifnet == NULL) {
519 if_index++;
520 goto skip;
521 }
522 while (if_byindex(ifp->if_index)) {
523 /*
524 * If we hit USHRT_MAX, we skip back to 0 since
525 * there are a number of places where the value
526 * of if_index or if_index itself is compared
527 * to or stored in an unsigned short. By
528 * jumping back, we won't botch those assignments
529 * or comparisons.
530 */
531 if (++if_index == 0) {
532 if_index = 1;
533 } else if (if_index == USHRT_MAX) {
534 /*
535 * However, if we have to jump back to
536 * zero *twice* without finding an empty
537 * slot in ifindex2ifnet[], then there
538 * there are too many (>65535) interfaces.
539 */
540 if (hitlimit) {
541 panic("too many interfaces");
542 }
543 hitlimit = true;
544 if_index = 1;
545 }
546 ifp->if_index = if_index;
547 }
548 skip:
549 /*
550 * We have some arrays that should be indexed by if_index.
551 * since if_index will grow dynamically, they should grow too.
552 * struct ifadd **ifnet_addrs
553 * struct ifnet **ifindex2ifnet
554 */
555 if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
556 ifp->if_index >= if_indexlim) {
557 size_t m, n, oldlim;
558 void *q;
559
560 oldlim = if_indexlim;
561 while (ifp->if_index >= if_indexlim)
562 if_indexlim <<= 1;
563
564 /* grow ifnet_addrs */
565 m = oldlim * sizeof(struct ifaddr *);
566 n = if_indexlim * sizeof(struct ifaddr *);
567 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
568 if (ifnet_addrs != NULL) {
569 memcpy(q, ifnet_addrs, m);
570 free(ifnet_addrs, M_IFADDR);
571 }
572 ifnet_addrs = (struct ifaddr **)q;
573
574 /* grow ifindex2ifnet */
575 m = oldlim * sizeof(struct ifnet *);
576 n = if_indexlim * sizeof(struct ifnet *);
577 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
578 if (ifindex2ifnet != NULL) {
579 memcpy(q, ifindex2ifnet, m);
580 free(ifindex2ifnet, M_IFADDR);
581 }
582 ifindex2ifnet = (struct ifnet **)q;
583 }
584 ifindex2ifnet[ifp->if_index] = ifp;
585 }
586
587 /*
588 * Initialize an interface and assign an index for it.
589 *
590 * It must be called prior to a device specific attach routine
591 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
592 * and be followed by if_register:
593 *
594 * if_initialize(ifp);
595 * ether_ifattach(ifp, enaddr);
596 * if_register(ifp);
597 */
598 void
599 if_initialize(ifnet_t *ifp)
600 {
601 KASSERT(if_indexlim > 0);
602 TAILQ_INIT(&ifp->if_addrlist);
603
604 /*
605 * Link level name is allocated later by a separate call to
606 * if_alloc_sadl().
607 */
608
609 if (ifp->if_snd.ifq_maxlen == 0)
610 ifp->if_snd.ifq_maxlen = ifqmaxlen;
611
612 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
613
614 ifp->if_link_state = LINK_STATE_UNKNOWN;
615
616 ifp->if_capenable = 0;
617 ifp->if_csum_flags_tx = 0;
618 ifp->if_csum_flags_rx = 0;
619
620 #ifdef ALTQ
621 ifp->if_snd.altq_type = 0;
622 ifp->if_snd.altq_disc = NULL;
623 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
624 ifp->if_snd.altq_tbr = NULL;
625 ifp->if_snd.altq_ifp = ifp;
626 #endif
627
628 #ifdef NET_MPSAFE
629 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
630 #else
631 ifp->if_snd.ifq_lock = NULL;
632 #endif
633
634 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
635 (void)pfil_run_hooks(if_pfil,
636 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
637
638 if_getindex(ifp);
639 }
640
641 /*
642 * Register an interface to the list of "active" interfaces.
643 */
644 void
645 if_register(ifnet_t *ifp)
646 {
647 if (ifioctl_attach(ifp) != 0)
648 panic("%s: ifioctl_attach() failed", __func__);
649
650 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
651
652 if (!STAILQ_EMPTY(&domains))
653 if_attachdomain1(ifp);
654
655 /* Announce the interface. */
656 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
657
658 if (ifp->if_slowtimo != NULL) {
659 ifp->if_slowtimo_ch =
660 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
661 callout_init(ifp->if_slowtimo_ch, 0);
662 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
663 if_slowtimo(ifp);
664 }
665
666 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
667 }
668
669 /*
670 * Deprecated. Use if_initialize and if_register instead.
671 * See the above comment of if_initialize.
672 */
673 void
674 if_attach(ifnet_t *ifp)
675 {
676 if_initialize(ifp);
677 if_register(ifp);
678 }
679
680 void
681 if_attachdomain(void)
682 {
683 struct ifnet *ifp;
684 int s;
685
686 s = splnet();
687 IFNET_FOREACH(ifp)
688 if_attachdomain1(ifp);
689 splx(s);
690 }
691
692 static void
693 if_attachdomain1(struct ifnet *ifp)
694 {
695 struct domain *dp;
696 int s;
697
698 s = splnet();
699
700 /* address family dependent data region */
701 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
702 DOMAIN_FOREACH(dp) {
703 if (dp->dom_ifattach != NULL)
704 ifp->if_afdata[dp->dom_family] =
705 (*dp->dom_ifattach)(ifp);
706 }
707
708 splx(s);
709 }
710
711 /*
712 * Deactivate an interface. This points all of the procedure
713 * handles at error stubs. May be called from interrupt context.
714 */
715 void
716 if_deactivate(struct ifnet *ifp)
717 {
718 int s;
719
720 s = splnet();
721
722 ifp->if_output = if_nulloutput;
723 ifp->if_input = if_nullinput;
724 ifp->if_start = if_nullstart;
725 ifp->if_ioctl = if_nullioctl;
726 ifp->if_init = if_nullinit;
727 ifp->if_stop = if_nullstop;
728 ifp->if_slowtimo = if_nullslowtimo;
729 ifp->if_drain = if_nulldrain;
730
731 /* No more packets may be enqueued. */
732 ifp->if_snd.ifq_maxlen = 0;
733
734 splx(s);
735 }
736
737 void
738 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
739 {
740 struct ifaddr *ifa, *nifa;
741
742 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
743 if (ifa->ifa_addr->sa_family != family)
744 continue;
745 (*purgeaddr)(ifa);
746 }
747 }
748
749 /*
750 * Detach an interface from the list of "active" interfaces,
751 * freeing any resources as we go along.
752 *
753 * NOTE: This routine must be called with a valid thread context,
754 * as it may block.
755 */
756 void
757 if_detach(struct ifnet *ifp)
758 {
759 struct socket so;
760 struct ifaddr *ifa;
761 #ifdef IFAREF_DEBUG
762 struct ifaddr *last_ifa = NULL;
763 #endif
764 struct domain *dp;
765 const struct protosw *pr;
766 int s, i, family, purged;
767 uint64_t xc;
768
769 /*
770 * XXX It's kind of lame that we have to have the
771 * XXX socket structure...
772 */
773 memset(&so, 0, sizeof(so));
774
775 s = splnet();
776
777 if (ifp->if_slowtimo != NULL) {
778 ifp->if_slowtimo = NULL;
779 callout_halt(ifp->if_slowtimo_ch, NULL);
780 callout_destroy(ifp->if_slowtimo_ch);
781 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
782 }
783
784 /*
785 * Do an if_down() to give protocols a chance to do something.
786 */
787 if_down(ifp);
788
789 #ifdef ALTQ
790 if (ALTQ_IS_ENABLED(&ifp->if_snd))
791 altq_disable(&ifp->if_snd);
792 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
793 altq_detach(&ifp->if_snd);
794 #endif
795
796 if (ifp->if_snd.ifq_lock)
797 mutex_obj_free(ifp->if_snd.ifq_lock);
798
799 sysctl_teardown(&ifp->if_sysctl_log);
800
801 #if NCARP > 0
802 /* Remove the interface from any carp group it is a part of. */
803 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
804 carp_ifdetach(ifp);
805 #endif
806
807 /*
808 * Rip all the addresses off the interface. This should make
809 * all of the routes go away.
810 *
811 * pr_usrreq calls can remove an arbitrary number of ifaddrs
812 * from the list, including our "cursor", ifa. For safety,
813 * and to honor the TAILQ abstraction, I just restart the
814 * loop after each removal. Note that the loop will exit
815 * when all of the remaining ifaddrs belong to the AF_LINK
816 * family. I am counting on the historical fact that at
817 * least one pr_usrreq in each address domain removes at
818 * least one ifaddr.
819 */
820 again:
821 IFADDR_FOREACH(ifa, ifp) {
822 family = ifa->ifa_addr->sa_family;
823 #ifdef IFAREF_DEBUG
824 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
825 ifa, family, ifa->ifa_refcnt);
826 if (last_ifa != NULL && ifa == last_ifa)
827 panic("if_detach: loop detected");
828 last_ifa = ifa;
829 #endif
830 if (family == AF_LINK)
831 continue;
832 dp = pffinddomain(family);
833 #ifdef DIAGNOSTIC
834 if (dp == NULL)
835 panic("if_detach: no domain for AF %d",
836 family);
837 #endif
838 /*
839 * XXX These PURGEIF calls are redundant with the
840 * purge-all-families calls below, but are left in for
841 * now both to make a smaller change, and to avoid
842 * unplanned interactions with clearing of
843 * ifp->if_addrlist.
844 */
845 purged = 0;
846 for (pr = dp->dom_protosw;
847 pr < dp->dom_protoswNPROTOSW; pr++) {
848 so.so_proto = pr;
849 if (pr->pr_usrreqs) {
850 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
851 purged = 1;
852 }
853 }
854 if (purged == 0) {
855 /*
856 * XXX What's really the best thing to do
857 * XXX here? --thorpej (at) NetBSD.org
858 */
859 printf("if_detach: WARNING: AF %d not purged\n",
860 family);
861 ifa_remove(ifp, ifa);
862 }
863 goto again;
864 }
865
866 if_free_sadl(ifp);
867
868 /* Walk the routing table looking for stragglers. */
869 for (i = 0; i <= AF_MAX; i++) {
870 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
871 continue;
872 }
873
874 DOMAIN_FOREACH(dp) {
875 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
876 {
877 void *p = ifp->if_afdata[dp->dom_family];
878 if (p) {
879 ifp->if_afdata[dp->dom_family] = NULL;
880 (*dp->dom_ifdetach)(ifp, p);
881 }
882 }
883
884 /*
885 * One would expect multicast memberships (INET and
886 * INET6) on UDP sockets to be purged by the PURGEIF
887 * calls above, but if all addresses were removed from
888 * the interface prior to destruction, the calls will
889 * not be made (e.g. ppp, for which pppd(8) generally
890 * removes addresses before destroying the interface).
891 * Because there is no invariant that multicast
892 * memberships only exist for interfaces with IPv4
893 * addresses, we must call PURGEIF regardless of
894 * addresses. (Protocols which might store ifnet
895 * pointers are marked with PR_PURGEIF.)
896 */
897 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
898 so.so_proto = pr;
899 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
900 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
901 }
902 }
903
904 (void)pfil_run_hooks(if_pfil,
905 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
906 (void)pfil_head_destroy(ifp->if_pfil);
907
908 /* Announce that the interface is gone. */
909 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
910
911 ifindex2ifnet[ifp->if_index] = NULL;
912
913 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
914
915 ifioctl_detach(ifp);
916
917 /*
918 * remove packets that came from ifp, from software interrupt queues.
919 */
920 DOMAIN_FOREACH(dp) {
921 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
922 struct ifqueue *iq = dp->dom_ifqueues[i];
923 if (iq == NULL)
924 break;
925 dp->dom_ifqueues[i] = NULL;
926 if_detach_queues(ifp, iq);
927 }
928 }
929
930 /*
931 * IP queues have to be processed separately: net-queue barrier
932 * ensures that the packets are dequeued while a cross-call will
933 * ensure that the interrupts have completed. FIXME: not quite..
934 */
935 #ifdef INET
936 pktq_barrier(ip_pktq);
937 #endif
938 #ifdef INET6
939 if (in6_present)
940 pktq_barrier(ip6_pktq);
941 #endif
942 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
943 xc_wait(xc);
944
945 splx(s);
946 }
947
948 static void
949 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
950 {
951 struct mbuf *m, *prev, *next;
952
953 prev = NULL;
954 for (m = q->ifq_head; m != NULL; m = next) {
955 KASSERT((m->m_flags & M_PKTHDR) != 0);
956
957 next = m->m_nextpkt;
958 if (m->m_pkthdr.rcvif != ifp) {
959 prev = m;
960 continue;
961 }
962
963 if (prev != NULL)
964 prev->m_nextpkt = m->m_nextpkt;
965 else
966 q->ifq_head = m->m_nextpkt;
967 if (q->ifq_tail == m)
968 q->ifq_tail = prev;
969 q->ifq_len--;
970
971 m->m_nextpkt = NULL;
972 m_freem(m);
973 IF_DROP(q);
974 }
975 }
976
977 /*
978 * Callback for a radix tree walk to delete all references to an
979 * ifnet.
980 */
981 static int
982 if_rt_walktree(struct rtentry *rt, void *v)
983 {
984 struct ifnet *ifp = (struct ifnet *)v;
985 int error;
986
987 if (rt->rt_ifp != ifp)
988 return 0;
989
990 /* Delete the entry. */
991 ++rt->rt_refcnt;
992 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
993 rt_mask(rt), rt->rt_flags, NULL);
994 KASSERT((rt->rt_flags & RTF_UP) == 0);
995 rt->rt_ifp = NULL;
996 rtfree(rt);
997 if (error != 0)
998 printf("%s: warning: unable to delete rtentry @ %p, "
999 "error = %d\n", ifp->if_xname, rt, error);
1000 return ERESTART;
1001 }
1002
1003 /*
1004 * Create a clone network interface.
1005 */
1006 static int
1007 if_clone_create(const char *name)
1008 {
1009 struct if_clone *ifc;
1010 int unit;
1011
1012 ifc = if_clone_lookup(name, &unit);
1013 if (ifc == NULL)
1014 return EINVAL;
1015
1016 if (ifunit(name) != NULL)
1017 return EEXIST;
1018
1019 return (*ifc->ifc_create)(ifc, unit);
1020 }
1021
1022 /*
1023 * Destroy a clone network interface.
1024 */
1025 static int
1026 if_clone_destroy(const char *name)
1027 {
1028 struct if_clone *ifc;
1029 struct ifnet *ifp;
1030
1031 ifc = if_clone_lookup(name, NULL);
1032 if (ifc == NULL)
1033 return EINVAL;
1034
1035 ifp = ifunit(name);
1036 if (ifp == NULL)
1037 return ENXIO;
1038
1039 if (ifc->ifc_destroy == NULL)
1040 return EOPNOTSUPP;
1041
1042 return (*ifc->ifc_destroy)(ifp);
1043 }
1044
1045 /*
1046 * Look up a network interface cloner.
1047 */
1048 static struct if_clone *
1049 if_clone_lookup(const char *name, int *unitp)
1050 {
1051 struct if_clone *ifc;
1052 const char *cp;
1053 char *dp, ifname[IFNAMSIZ + 3];
1054 int unit;
1055
1056 strcpy(ifname, "if_");
1057 /* separate interface name from unit */
1058 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1059 *cp && (*cp < '0' || *cp > '9');)
1060 *dp++ = *cp++;
1061
1062 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1063 return NULL; /* No name or unit number */
1064 *dp++ = '\0';
1065
1066 again:
1067 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1068 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1069 break;
1070 }
1071
1072 if (ifc == NULL) {
1073 if (*ifname == '\0' ||
1074 module_autoload(ifname, MODULE_CLASS_DRIVER))
1075 return NULL;
1076 *ifname = '\0';
1077 goto again;
1078 }
1079
1080 unit = 0;
1081 while (cp - name < IFNAMSIZ && *cp) {
1082 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1083 /* Bogus unit number. */
1084 return NULL;
1085 }
1086 unit = (unit * 10) + (*cp++ - '0');
1087 }
1088
1089 if (unitp != NULL)
1090 *unitp = unit;
1091 return ifc;
1092 }
1093
1094 /*
1095 * Register a network interface cloner.
1096 */
1097 void
1098 if_clone_attach(struct if_clone *ifc)
1099 {
1100
1101 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1102 if_cloners_count++;
1103 }
1104
1105 /*
1106 * Unregister a network interface cloner.
1107 */
1108 void
1109 if_clone_detach(struct if_clone *ifc)
1110 {
1111
1112 LIST_REMOVE(ifc, ifc_list);
1113 if_cloners_count--;
1114 }
1115
1116 /*
1117 * Provide list of interface cloners to userspace.
1118 */
1119 int
1120 if_clone_list(int buf_count, char *buffer, int *total)
1121 {
1122 char outbuf[IFNAMSIZ], *dst;
1123 struct if_clone *ifc;
1124 int count, error = 0;
1125
1126 *total = if_cloners_count;
1127 if ((dst = buffer) == NULL) {
1128 /* Just asking how many there are. */
1129 return 0;
1130 }
1131
1132 if (buf_count < 0)
1133 return EINVAL;
1134
1135 count = (if_cloners_count < buf_count) ?
1136 if_cloners_count : buf_count;
1137
1138 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1139 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1140 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1141 if (outbuf[sizeof(outbuf) - 1] != '\0')
1142 return ENAMETOOLONG;
1143 error = copyout(outbuf, dst, sizeof(outbuf));
1144 if (error != 0)
1145 break;
1146 }
1147
1148 return error;
1149 }
1150
1151 void
1152 ifaref(struct ifaddr *ifa)
1153 {
1154 ifa->ifa_refcnt++;
1155 }
1156
1157 void
1158 ifafree(struct ifaddr *ifa)
1159 {
1160 KASSERT(ifa != NULL);
1161 KASSERT(ifa->ifa_refcnt > 0);
1162
1163 if (--ifa->ifa_refcnt == 0) {
1164 free(ifa, M_IFADDR);
1165 }
1166 }
1167
1168 void
1169 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1170 {
1171 ifa->ifa_ifp = ifp;
1172 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1173 ifaref(ifa);
1174 }
1175
1176 void
1177 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1178 {
1179 KASSERT(ifa->ifa_ifp == ifp);
1180 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1181 ifafree(ifa);
1182 }
1183
1184 static inline int
1185 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1186 {
1187 return sockaddr_cmp(sa1, sa2) == 0;
1188 }
1189
1190 /*
1191 * Locate an interface based on a complete address.
1192 */
1193 /*ARGSUSED*/
1194 struct ifaddr *
1195 ifa_ifwithaddr(const struct sockaddr *addr)
1196 {
1197 struct ifnet *ifp;
1198 struct ifaddr *ifa;
1199
1200 IFNET_FOREACH(ifp) {
1201 if (ifp->if_output == if_nulloutput)
1202 continue;
1203 IFADDR_FOREACH(ifa, ifp) {
1204 if (ifa->ifa_addr->sa_family != addr->sa_family)
1205 continue;
1206 if (equal(addr, ifa->ifa_addr))
1207 return ifa;
1208 if ((ifp->if_flags & IFF_BROADCAST) &&
1209 ifa->ifa_broadaddr &&
1210 /* IP6 doesn't have broadcast */
1211 ifa->ifa_broadaddr->sa_len != 0 &&
1212 equal(ifa->ifa_broadaddr, addr))
1213 return ifa;
1214 }
1215 }
1216 return NULL;
1217 }
1218
1219 /*
1220 * Locate the point to point interface with a given destination address.
1221 */
1222 /*ARGSUSED*/
1223 struct ifaddr *
1224 ifa_ifwithdstaddr(const struct sockaddr *addr)
1225 {
1226 struct ifnet *ifp;
1227 struct ifaddr *ifa;
1228
1229 IFNET_FOREACH(ifp) {
1230 if (ifp->if_output == if_nulloutput)
1231 continue;
1232 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1233 continue;
1234 IFADDR_FOREACH(ifa, ifp) {
1235 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1236 ifa->ifa_dstaddr == NULL)
1237 continue;
1238 if (equal(addr, ifa->ifa_dstaddr))
1239 return ifa;
1240 }
1241 }
1242 return NULL;
1243 }
1244
1245 /*
1246 * Find an interface on a specific network. If many, choice
1247 * is most specific found.
1248 */
1249 struct ifaddr *
1250 ifa_ifwithnet(const struct sockaddr *addr)
1251 {
1252 struct ifnet *ifp;
1253 struct ifaddr *ifa;
1254 const struct sockaddr_dl *sdl;
1255 struct ifaddr *ifa_maybe = 0;
1256 u_int af = addr->sa_family;
1257 const char *addr_data = addr->sa_data, *cplim;
1258
1259 if (af == AF_LINK) {
1260 sdl = satocsdl(addr);
1261 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1262 ifindex2ifnet[sdl->sdl_index] &&
1263 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1264 return ifnet_addrs[sdl->sdl_index];
1265 }
1266 #ifdef NETATALK
1267 if (af == AF_APPLETALK) {
1268 const struct sockaddr_at *sat, *sat2;
1269 sat = (const struct sockaddr_at *)addr;
1270 IFNET_FOREACH(ifp) {
1271 if (ifp->if_output == if_nulloutput)
1272 continue;
1273 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1274 if (ifa == NULL)
1275 continue;
1276 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1277 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1278 return ifa; /* exact match */
1279 if (ifa_maybe == NULL) {
1280 /* else keep the if with the right range */
1281 ifa_maybe = ifa;
1282 }
1283 }
1284 return ifa_maybe;
1285 }
1286 #endif
1287 IFNET_FOREACH(ifp) {
1288 if (ifp->if_output == if_nulloutput)
1289 continue;
1290 IFADDR_FOREACH(ifa, ifp) {
1291 const char *cp, *cp2, *cp3;
1292
1293 if (ifa->ifa_addr->sa_family != af ||
1294 ifa->ifa_netmask == NULL)
1295 next: continue;
1296 cp = addr_data;
1297 cp2 = ifa->ifa_addr->sa_data;
1298 cp3 = ifa->ifa_netmask->sa_data;
1299 cplim = (const char *)ifa->ifa_netmask +
1300 ifa->ifa_netmask->sa_len;
1301 while (cp3 < cplim) {
1302 if ((*cp++ ^ *cp2++) & *cp3++) {
1303 /* want to continue for() loop */
1304 goto next;
1305 }
1306 }
1307 if (ifa_maybe == NULL ||
1308 rn_refines((void *)ifa->ifa_netmask,
1309 (void *)ifa_maybe->ifa_netmask))
1310 ifa_maybe = ifa;
1311 }
1312 }
1313 return ifa_maybe;
1314 }
1315
1316 /*
1317 * Find the interface of the addresss.
1318 */
1319 struct ifaddr *
1320 ifa_ifwithladdr(const struct sockaddr *addr)
1321 {
1322 struct ifaddr *ia;
1323
1324 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1325 (ia = ifa_ifwithnet(addr)))
1326 return ia;
1327 return NULL;
1328 }
1329
1330 /*
1331 * Find an interface using a specific address family
1332 */
1333 struct ifaddr *
1334 ifa_ifwithaf(int af)
1335 {
1336 struct ifnet *ifp;
1337 struct ifaddr *ifa;
1338
1339 IFNET_FOREACH(ifp) {
1340 if (ifp->if_output == if_nulloutput)
1341 continue;
1342 IFADDR_FOREACH(ifa, ifp) {
1343 if (ifa->ifa_addr->sa_family == af)
1344 return ifa;
1345 }
1346 }
1347 return NULL;
1348 }
1349
1350 /*
1351 * Find an interface address specific to an interface best matching
1352 * a given address.
1353 */
1354 struct ifaddr *
1355 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1356 {
1357 struct ifaddr *ifa;
1358 const char *cp, *cp2, *cp3;
1359 const char *cplim;
1360 struct ifaddr *ifa_maybe = 0;
1361 u_int af = addr->sa_family;
1362
1363 if (ifp->if_output == if_nulloutput)
1364 return NULL;
1365
1366 if (af >= AF_MAX)
1367 return NULL;
1368
1369 IFADDR_FOREACH(ifa, ifp) {
1370 if (ifa->ifa_addr->sa_family != af)
1371 continue;
1372 ifa_maybe = ifa;
1373 if (ifa->ifa_netmask == NULL) {
1374 if (equal(addr, ifa->ifa_addr) ||
1375 (ifa->ifa_dstaddr &&
1376 equal(addr, ifa->ifa_dstaddr)))
1377 return ifa;
1378 continue;
1379 }
1380 cp = addr->sa_data;
1381 cp2 = ifa->ifa_addr->sa_data;
1382 cp3 = ifa->ifa_netmask->sa_data;
1383 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1384 for (; cp3 < cplim; cp3++) {
1385 if ((*cp++ ^ *cp2++) & *cp3)
1386 break;
1387 }
1388 if (cp3 == cplim)
1389 return ifa;
1390 }
1391 return ifa_maybe;
1392 }
1393
1394 /*
1395 * Default action when installing a route with a Link Level gateway.
1396 * Lookup an appropriate real ifa to point to.
1397 * This should be moved to /sys/net/link.c eventually.
1398 */
1399 void
1400 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1401 {
1402 struct ifaddr *ifa;
1403 const struct sockaddr *dst;
1404 struct ifnet *ifp;
1405
1406 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1407 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1408 return;
1409 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1410 rt_replace_ifa(rt, ifa);
1411 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1412 ifa->ifa_rtrequest(cmd, rt, info);
1413 }
1414 }
1415
1416 /*
1417 * Handle a change in the interface link state.
1418 * XXX: We should listen to the routing socket in-kernel rather
1419 * than calling in6_if_link_* functions directly from here.
1420 */
1421 void
1422 if_link_state_change(struct ifnet *ifp, int link_state)
1423 {
1424 int s;
1425 int old_link_state;
1426 struct domain *dp;
1427
1428 s = splnet();
1429 if (ifp->if_link_state == link_state) {
1430 splx(s);
1431 return;
1432 }
1433
1434 old_link_state = ifp->if_link_state;
1435 ifp->if_link_state = link_state;
1436 #ifdef DEBUG
1437 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1438 link_state == LINK_STATE_UP ? "UP" :
1439 link_state == LINK_STATE_DOWN ? "DOWN" :
1440 "UNKNOWN",
1441 old_link_state == LINK_STATE_UP ? "UP" :
1442 old_link_state == LINK_STATE_DOWN ? "DOWN" :
1443 "UNKNOWN");
1444 #endif
1445
1446 /*
1447 * When going from UNKNOWN to UP, we need to mark existing
1448 * addresses as tentative and restart DAD as we may have
1449 * erroneously not found a duplicate.
1450 *
1451 * This needs to happen before rt_ifmsg to avoid a race where
1452 * listeners would have an address and expect it to work right
1453 * away.
1454 */
1455 if (link_state == LINK_STATE_UP &&
1456 old_link_state == LINK_STATE_UNKNOWN)
1457 {
1458 DOMAIN_FOREACH(dp) {
1459 if (dp->dom_if_link_state_change != NULL)
1460 dp->dom_if_link_state_change(ifp,
1461 LINK_STATE_DOWN);
1462 }
1463 }
1464
1465 /* Notify that the link state has changed. */
1466 rt_ifmsg(ifp);
1467
1468 #if NCARP > 0
1469 if (ifp->if_carp)
1470 carp_carpdev_state(ifp);
1471 #endif
1472
1473 DOMAIN_FOREACH(dp) {
1474 if (dp->dom_if_link_state_change != NULL)
1475 dp->dom_if_link_state_change(ifp, link_state);
1476 }
1477
1478 splx(s);
1479 }
1480
1481 /*
1482 * Default action when installing a local route on a point-to-point
1483 * interface.
1484 */
1485 void
1486 p2p_rtrequest(int req, struct rtentry *rt,
1487 __unused const struct rt_addrinfo *info)
1488 {
1489 struct ifnet *ifp = rt->rt_ifp;
1490 struct ifaddr *ifa, *lo0ifa;
1491
1492 switch (req) {
1493 case RTM_ADD:
1494 if ((rt->rt_flags & RTF_LOCAL) == 0)
1495 break;
1496
1497 IFADDR_FOREACH(ifa, ifp) {
1498 if (equal(rt_getkey(rt), ifa->ifa_addr))
1499 break;
1500 }
1501 if (ifa == NULL)
1502 break;
1503
1504 /*
1505 * Ensure lo0 has an address of the same family.
1506 */
1507 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1508 if (lo0ifa->ifa_addr->sa_family ==
1509 ifa->ifa_addr->sa_family)
1510 break;
1511 }
1512 if (lo0ifa == NULL)
1513 break;
1514
1515 rt->rt_ifp = lo0ifp;
1516 rt->rt_flags &= ~RTF_LLINFO;
1517
1518 /*
1519 * Make sure to set rt->rt_ifa to the interface
1520 * address we are using, otherwise we will have trouble
1521 * with source address selection.
1522 */
1523 if (ifa != rt->rt_ifa)
1524 rt_replace_ifa(rt, ifa);
1525 break;
1526 case RTM_DELETE:
1527 case RTM_RESOLVE:
1528 default:
1529 break;
1530 }
1531 }
1532
1533 /*
1534 * Mark an interface down and notify protocols of
1535 * the transition.
1536 * NOTE: must be called at splsoftnet or equivalent.
1537 */
1538 void
1539 if_down(struct ifnet *ifp)
1540 {
1541 struct ifaddr *ifa;
1542 struct domain *dp;
1543
1544 ifp->if_flags &= ~IFF_UP;
1545 nanotime(&ifp->if_lastchange);
1546 IFADDR_FOREACH(ifa, ifp)
1547 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1548 IFQ_PURGE(&ifp->if_snd);
1549 #if NCARP > 0
1550 if (ifp->if_carp)
1551 carp_carpdev_state(ifp);
1552 #endif
1553 rt_ifmsg(ifp);
1554 DOMAIN_FOREACH(dp) {
1555 if (dp->dom_if_down)
1556 dp->dom_if_down(ifp);
1557 }
1558 }
1559
1560 /*
1561 * Mark an interface up and notify protocols of
1562 * the transition.
1563 * NOTE: must be called at splsoftnet or equivalent.
1564 */
1565 void
1566 if_up(struct ifnet *ifp)
1567 {
1568 #ifdef notyet
1569 struct ifaddr *ifa;
1570 #endif
1571 struct domain *dp;
1572
1573 ifp->if_flags |= IFF_UP;
1574 nanotime(&ifp->if_lastchange);
1575 #ifdef notyet
1576 /* this has no effect on IP, and will kill all ISO connections XXX */
1577 IFADDR_FOREACH(ifa, ifp)
1578 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1579 #endif
1580 #if NCARP > 0
1581 if (ifp->if_carp)
1582 carp_carpdev_state(ifp);
1583 #endif
1584 rt_ifmsg(ifp);
1585 DOMAIN_FOREACH(dp) {
1586 if (dp->dom_if_up)
1587 dp->dom_if_up(ifp);
1588 }
1589 }
1590
1591 /*
1592 * Handle interface slowtimo timer routine. Called
1593 * from softclock, we decrement timer (if set) and
1594 * call the appropriate interface routine on expiration.
1595 */
1596 static void
1597 if_slowtimo(void *arg)
1598 {
1599 void (*slowtimo)(struct ifnet *);
1600 struct ifnet *ifp = arg;
1601 int s;
1602
1603 slowtimo = ifp->if_slowtimo;
1604 if (__predict_false(slowtimo == NULL))
1605 return;
1606
1607 s = splnet();
1608 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
1609 (*slowtimo)(ifp);
1610
1611 splx(s);
1612
1613 if (__predict_true(ifp->if_slowtimo != NULL))
1614 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
1615 }
1616
1617 /*
1618 * Set/clear promiscuous mode on interface ifp based on the truth value
1619 * of pswitch. The calls are reference counted so that only the first
1620 * "on" request actually has an effect, as does the final "off" request.
1621 * Results are undefined if the "off" and "on" requests are not matched.
1622 */
1623 int
1624 ifpromisc(struct ifnet *ifp, int pswitch)
1625 {
1626 int pcount, ret;
1627 short nflags;
1628
1629 pcount = ifp->if_pcount;
1630 if (pswitch) {
1631 /*
1632 * Allow the device to be "placed" into promiscuous
1633 * mode even if it is not configured up. It will
1634 * consult IFF_PROMISC when it is brought up.
1635 */
1636 if (ifp->if_pcount++ != 0)
1637 return 0;
1638 nflags = ifp->if_flags | IFF_PROMISC;
1639 } else {
1640 if (--ifp->if_pcount > 0)
1641 return 0;
1642 nflags = ifp->if_flags & ~IFF_PROMISC;
1643 }
1644 ret = if_flags_set(ifp, nflags);
1645 /* Restore interface state if not successful. */
1646 if (ret != 0) {
1647 ifp->if_pcount = pcount;
1648 }
1649 return ret;
1650 }
1651
1652 /*
1653 * Map interface name to
1654 * interface structure pointer.
1655 */
1656 struct ifnet *
1657 ifunit(const char *name)
1658 {
1659 struct ifnet *ifp;
1660 const char *cp = name;
1661 u_int unit = 0;
1662 u_int i;
1663
1664 /*
1665 * If the entire name is a number, treat it as an ifindex.
1666 */
1667 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1668 unit = unit * 10 + (*cp - '0');
1669 }
1670
1671 /*
1672 * If the number took all of the name, then it's a valid ifindex.
1673 */
1674 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1675 if (unit >= if_indexlim)
1676 return NULL;
1677 ifp = ifindex2ifnet[unit];
1678 if (ifp == NULL || ifp->if_output == if_nulloutput)
1679 return NULL;
1680 return ifp;
1681 }
1682
1683 IFNET_FOREACH(ifp) {
1684 if (ifp->if_output == if_nulloutput)
1685 continue;
1686 if (strcmp(ifp->if_xname, name) == 0)
1687 return ifp;
1688 }
1689 return NULL;
1690 }
1691
1692 ifnet_t *
1693 if_byindex(u_int idx)
1694 {
1695 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1696 }
1697
1698 /* common */
1699 int
1700 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1701 {
1702 int s;
1703 struct ifreq *ifr;
1704 struct ifcapreq *ifcr;
1705 struct ifdatareq *ifdr;
1706
1707 switch (cmd) {
1708 case SIOCSIFCAP:
1709 ifcr = data;
1710 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1711 return EINVAL;
1712
1713 if (ifcr->ifcr_capenable == ifp->if_capenable)
1714 return 0;
1715
1716 ifp->if_capenable = ifcr->ifcr_capenable;
1717
1718 /* Pre-compute the checksum flags mask. */
1719 ifp->if_csum_flags_tx = 0;
1720 ifp->if_csum_flags_rx = 0;
1721 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1722 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1723 }
1724 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1725 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1726 }
1727
1728 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1729 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1730 }
1731 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1732 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1733 }
1734
1735 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1736 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1737 }
1738 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1739 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1740 }
1741
1742 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1743 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1744 }
1745 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1746 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1747 }
1748
1749 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1750 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1751 }
1752 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1753 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1754 }
1755 if (ifp->if_flags & IFF_UP)
1756 return ENETRESET;
1757 return 0;
1758 case SIOCSIFFLAGS:
1759 ifr = data;
1760 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1761 s = splnet();
1762 if_down(ifp);
1763 splx(s);
1764 }
1765 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1766 s = splnet();
1767 if_up(ifp);
1768 splx(s);
1769 }
1770 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1771 (ifr->ifr_flags &~ IFF_CANTCHANGE);
1772 break;
1773 case SIOCGIFFLAGS:
1774 ifr = data;
1775 ifr->ifr_flags = ifp->if_flags;
1776 break;
1777
1778 case SIOCGIFMETRIC:
1779 ifr = data;
1780 ifr->ifr_metric = ifp->if_metric;
1781 break;
1782
1783 case SIOCGIFMTU:
1784 ifr = data;
1785 ifr->ifr_mtu = ifp->if_mtu;
1786 break;
1787
1788 case SIOCGIFDLT:
1789 ifr = data;
1790 ifr->ifr_dlt = ifp->if_dlt;
1791 break;
1792
1793 case SIOCGIFCAP:
1794 ifcr = data;
1795 ifcr->ifcr_capabilities = ifp->if_capabilities;
1796 ifcr->ifcr_capenable = ifp->if_capenable;
1797 break;
1798
1799 case SIOCSIFMETRIC:
1800 ifr = data;
1801 ifp->if_metric = ifr->ifr_metric;
1802 break;
1803
1804 case SIOCGIFDATA:
1805 ifdr = data;
1806 ifdr->ifdr_data = ifp->if_data;
1807 break;
1808
1809 case SIOCGIFINDEX:
1810 ifr = data;
1811 ifr->ifr_index = ifp->if_index;
1812 break;
1813
1814 case SIOCZIFDATA:
1815 ifdr = data;
1816 ifdr->ifdr_data = ifp->if_data;
1817 /*
1818 * Assumes that the volatile counters that can be
1819 * zero'ed are at the end of if_data.
1820 */
1821 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1822 offsetof(struct if_data, ifi_ipackets));
1823 /*
1824 * The memset() clears to the bottm of if_data. In the area,
1825 * if_lastchange is included. Please be careful if new entry
1826 * will be added into if_data or rewite this.
1827 *
1828 * And also, update if_lastchnage.
1829 */
1830 getnanotime(&ifp->if_lastchange);
1831 break;
1832 case SIOCSIFMTU:
1833 ifr = data;
1834 if (ifp->if_mtu == ifr->ifr_mtu)
1835 break;
1836 ifp->if_mtu = ifr->ifr_mtu;
1837 /*
1838 * If the link MTU changed, do network layer specific procedure.
1839 */
1840 #ifdef INET6
1841 if (in6_present)
1842 nd6_setmtu(ifp);
1843 #endif
1844 return ENETRESET;
1845 default:
1846 return ENOTTY;
1847 }
1848 return 0;
1849 }
1850
1851 int
1852 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1853 {
1854 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1855 struct ifaddr *ifa;
1856 const struct sockaddr *any, *sa;
1857 union {
1858 struct sockaddr sa;
1859 struct sockaddr_storage ss;
1860 } u, v;
1861
1862 switch (cmd) {
1863 case SIOCSIFADDRPREF:
1864 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1865 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1866 NULL) != 0)
1867 return EPERM;
1868 case SIOCGIFADDRPREF:
1869 break;
1870 default:
1871 return EOPNOTSUPP;
1872 }
1873
1874 /* sanity checks */
1875 if (data == NULL || ifp == NULL) {
1876 panic("invalid argument to %s", __func__);
1877 /*NOTREACHED*/
1878 }
1879
1880 /* address must be specified on ADD and DELETE */
1881 sa = sstocsa(&ifap->ifap_addr);
1882 if (sa->sa_family != sofamily(so))
1883 return EINVAL;
1884 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1885 return EINVAL;
1886
1887 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1888
1889 IFADDR_FOREACH(ifa, ifp) {
1890 if (ifa->ifa_addr->sa_family != sa->sa_family)
1891 continue;
1892 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1893 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1894 break;
1895 }
1896 if (ifa == NULL)
1897 return EADDRNOTAVAIL;
1898
1899 switch (cmd) {
1900 case SIOCSIFADDRPREF:
1901 ifa->ifa_preference = ifap->ifap_preference;
1902 return 0;
1903 case SIOCGIFADDRPREF:
1904 /* fill in the if_laddrreq structure */
1905 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1906 sizeof(ifap->ifap_addr), ifa->ifa_addr);
1907 ifap->ifap_preference = ifa->ifa_preference;
1908 return 0;
1909 default:
1910 return EOPNOTSUPP;
1911 }
1912 }
1913
1914 static void
1915 ifnet_lock_enter(struct ifnet_lock *il)
1916 {
1917 uint64_t *nenter;
1918
1919 /* Before trying to acquire the mutex, increase the count of threads
1920 * who have entered or who wait to enter the critical section.
1921 * Avoid one costly locked memory transaction by keeping a count for
1922 * each CPU.
1923 */
1924 nenter = percpu_getref(il->il_nenter);
1925 (*nenter)++;
1926 percpu_putref(il->il_nenter);
1927 mutex_enter(&il->il_lock);
1928 }
1929
1930 static void
1931 ifnet_lock_exit(struct ifnet_lock *il)
1932 {
1933 /* Increase the count of threads who have exited the critical
1934 * section. Increase while we still hold the lock.
1935 */
1936 il->il_nexit++;
1937 mutex_exit(&il->il_lock);
1938 }
1939
1940 /*
1941 * Interface ioctls.
1942 */
1943 static int
1944 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1945 {
1946 struct ifnet *ifp;
1947 struct ifreq *ifr;
1948 int error = 0;
1949 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1950 u_long ocmd = cmd;
1951 #endif
1952 short oif_flags;
1953 #ifdef COMPAT_OIFREQ
1954 struct ifreq ifrb;
1955 struct oifreq *oifr = NULL;
1956 #endif
1957 int r;
1958
1959 switch (cmd) {
1960 #ifdef COMPAT_OIFREQ
1961 case OSIOCGIFCONF:
1962 case OOSIOCGIFCONF:
1963 return compat_ifconf(cmd, data);
1964 #endif
1965 #ifdef COMPAT_OIFDATA
1966 case OSIOCGIFDATA:
1967 case OSIOCZIFDATA:
1968 return compat_ifdatareq(l, cmd, data);
1969 #endif
1970 case SIOCGIFCONF:
1971 return ifconf(cmd, data);
1972 case SIOCINITIFADDR:
1973 return EPERM;
1974 }
1975
1976 #ifdef COMPAT_OIFREQ
1977 cmd = compat_cvtcmd(cmd);
1978 if (cmd != ocmd) {
1979 oifr = data;
1980 data = ifr = &ifrb;
1981 ifreqo2n(oifr, ifr);
1982 } else
1983 #endif
1984 ifr = data;
1985
1986 ifp = ifunit(ifr->ifr_name);
1987
1988 switch (cmd) {
1989 case SIOCIFCREATE:
1990 case SIOCIFDESTROY:
1991 if (l != NULL) {
1992 error = kauth_authorize_network(l->l_cred,
1993 KAUTH_NETWORK_INTERFACE,
1994 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1995 (void *)cmd, NULL);
1996 if (error != 0)
1997 return error;
1998 }
1999 mutex_enter(&if_clone_mtx);
2000 r = (cmd == SIOCIFCREATE) ?
2001 if_clone_create(ifr->ifr_name) :
2002 if_clone_destroy(ifr->ifr_name);
2003 mutex_exit(&if_clone_mtx);
2004 return r;
2005
2006 case SIOCIFGCLONERS:
2007 {
2008 struct if_clonereq *req = (struct if_clonereq *)data;
2009 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2010 &req->ifcr_total);
2011 }
2012 }
2013
2014 if (ifp == NULL)
2015 return ENXIO;
2016
2017 switch (cmd) {
2018 case SIOCALIFADDR:
2019 case SIOCDLIFADDR:
2020 case SIOCSIFADDRPREF:
2021 case SIOCSIFFLAGS:
2022 case SIOCSIFCAP:
2023 case SIOCSIFMETRIC:
2024 case SIOCZIFDATA:
2025 case SIOCSIFMTU:
2026 case SIOCSIFPHYADDR:
2027 case SIOCDIFPHYADDR:
2028 #ifdef INET6
2029 case SIOCSIFPHYADDR_IN6:
2030 #endif
2031 case SIOCSLIFPHYADDR:
2032 case SIOCADDMULTI:
2033 case SIOCDELMULTI:
2034 case SIOCSIFMEDIA:
2035 case SIOCSDRVSPEC:
2036 case SIOCG80211:
2037 case SIOCS80211:
2038 case SIOCS80211NWID:
2039 case SIOCS80211NWKEY:
2040 case SIOCS80211POWER:
2041 case SIOCS80211BSSID:
2042 case SIOCS80211CHANNEL:
2043 case SIOCSLINKSTR:
2044 if (l != NULL) {
2045 error = kauth_authorize_network(l->l_cred,
2046 KAUTH_NETWORK_INTERFACE,
2047 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2048 (void *)cmd, NULL);
2049 if (error != 0)
2050 return error;
2051 }
2052 }
2053
2054 oif_flags = ifp->if_flags;
2055
2056 ifnet_lock_enter(ifp->if_ioctl_lock);
2057 error = (*ifp->if_ioctl)(ifp, cmd, data);
2058 if (error != ENOTTY)
2059 ;
2060 else if (so->so_proto == NULL)
2061 error = EOPNOTSUPP;
2062 else {
2063 #ifdef COMPAT_OSOCK
2064 error = compat_ifioctl(so, ocmd, cmd, data, l);
2065 #else
2066 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2067 cmd, data, ifp);
2068 #endif
2069 }
2070
2071 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2072 if ((ifp->if_flags & IFF_UP) != 0) {
2073 int s = splnet();
2074 if_up(ifp);
2075 splx(s);
2076 }
2077 }
2078 #ifdef COMPAT_OIFREQ
2079 if (cmd != ocmd)
2080 ifreqn2o(oifr, ifr);
2081 #endif
2082
2083 ifnet_lock_exit(ifp->if_ioctl_lock);
2084 return error;
2085 }
2086
2087 /* This callback adds to the sum in `arg' the number of
2088 * threads on `ci' who have entered or who wait to enter the
2089 * critical section.
2090 */
2091 static void
2092 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2093 {
2094 uint64_t *sum = arg, *nenter = p;
2095
2096 *sum += *nenter;
2097 }
2098
2099 /* Return the number of threads who have entered or who wait
2100 * to enter the critical section on all CPUs.
2101 */
2102 static uint64_t
2103 ifnet_lock_entrances(struct ifnet_lock *il)
2104 {
2105 uint64_t sum = 0;
2106
2107 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2108
2109 return sum;
2110 }
2111
2112 static int
2113 ifioctl_attach(struct ifnet *ifp)
2114 {
2115 struct ifnet_lock *il;
2116
2117 /* If the driver has not supplied its own if_ioctl, then
2118 * supply the default.
2119 */
2120 if (ifp->if_ioctl == NULL)
2121 ifp->if_ioctl = ifioctl_common;
2122
2123 /* Create an ifnet_lock for synchronizing ifioctls. */
2124 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2125 return ENOMEM;
2126
2127 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2128 if (il->il_nenter == NULL) {
2129 kmem_free(il, sizeof(*il));
2130 return ENOMEM;
2131 }
2132
2133 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2134 cv_init(&il->il_emptied, ifp->if_xname);
2135
2136 ifp->if_ioctl_lock = il;
2137
2138 return 0;
2139 }
2140
2141 /*
2142 * This must not be called until after `ifp' has been withdrawn from the
2143 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2144 * ifunit().
2145 */
2146 static void
2147 ifioctl_detach(struct ifnet *ifp)
2148 {
2149 struct ifnet_lock *il;
2150
2151 il = ifp->if_ioctl_lock;
2152 mutex_enter(&il->il_lock);
2153 /* Install if_nullioctl to make sure that any thread that
2154 * subsequently enters the critical section will quit it
2155 * immediately and signal the condition variable that we
2156 * wait on, below.
2157 */
2158 ifp->if_ioctl = if_nullioctl;
2159 /* Sleep while threads are still in the critical section or
2160 * wait to enter it.
2161 */
2162 while (ifnet_lock_entrances(il) != il->il_nexit)
2163 cv_wait(&il->il_emptied, &il->il_lock);
2164 /* At this point, we are the only thread still in the critical
2165 * section, and no new thread can get a handle on the ifioctl
2166 * lock, so it is safe to free its memory.
2167 */
2168 mutex_exit(&il->il_lock);
2169 ifp->if_ioctl_lock = NULL;
2170 percpu_free(il->il_nenter, sizeof(uint64_t));
2171 il->il_nenter = NULL;
2172 cv_destroy(&il->il_emptied);
2173 mutex_destroy(&il->il_lock);
2174 kmem_free(il, sizeof(*il));
2175 }
2176
2177 /*
2178 * Return interface configuration
2179 * of system. List may be used
2180 * in later ioctl's (above) to get
2181 * other information.
2182 *
2183 * Each record is a struct ifreq. Before the addition of
2184 * sockaddr_storage, the API rule was that sockaddr flavors that did
2185 * not fit would extend beyond the struct ifreq, with the next struct
2186 * ifreq starting sa_len beyond the struct sockaddr. Because the
2187 * union in struct ifreq includes struct sockaddr_storage, every kind
2188 * of sockaddr must fit. Thus, there are no longer any overlength
2189 * records.
2190 *
2191 * Records are added to the user buffer if they fit, and ifc_len is
2192 * adjusted to the length that was written. Thus, the user is only
2193 * assured of getting the complete list if ifc_len on return is at
2194 * least sizeof(struct ifreq) less than it was on entry.
2195 *
2196 * If the user buffer pointer is NULL, this routine copies no data and
2197 * returns the amount of space that would be needed.
2198 *
2199 * Invariants:
2200 * ifrp points to the next part of the user's buffer to be used. If
2201 * ifrp != NULL, space holds the number of bytes remaining that we may
2202 * write at ifrp. Otherwise, space holds the number of bytes that
2203 * would have been written had there been adequate space.
2204 */
2205 /*ARGSUSED*/
2206 static int
2207 ifconf(u_long cmd, void *data)
2208 {
2209 struct ifconf *ifc = (struct ifconf *)data;
2210 struct ifnet *ifp;
2211 struct ifaddr *ifa;
2212 struct ifreq ifr, *ifrp = NULL;
2213 int space = 0, error = 0;
2214 const int sz = (int)sizeof(struct ifreq);
2215 const bool docopy = ifc->ifc_req != NULL;
2216
2217 if (docopy) {
2218 space = ifc->ifc_len;
2219 ifrp = ifc->ifc_req;
2220 }
2221
2222 IFNET_FOREACH(ifp) {
2223 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2224 sizeof(ifr.ifr_name));
2225 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2226 return ENAMETOOLONG;
2227 if (IFADDR_EMPTY(ifp)) {
2228 /* Interface with no addresses - send zero sockaddr. */
2229 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2230 if (!docopy) {
2231 space += sz;
2232 continue;
2233 }
2234 if (space >= sz) {
2235 error = copyout(&ifr, ifrp, sz);
2236 if (error != 0)
2237 return error;
2238 ifrp++;
2239 space -= sz;
2240 }
2241 }
2242
2243 IFADDR_FOREACH(ifa, ifp) {
2244 struct sockaddr *sa = ifa->ifa_addr;
2245 /* all sockaddrs must fit in sockaddr_storage */
2246 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2247
2248 if (!docopy) {
2249 space += sz;
2250 continue;
2251 }
2252 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2253 if (space >= sz) {
2254 error = copyout(&ifr, ifrp, sz);
2255 if (error != 0)
2256 return (error);
2257 ifrp++; space -= sz;
2258 }
2259 }
2260 }
2261 if (docopy) {
2262 KASSERT(0 <= space && space <= ifc->ifc_len);
2263 ifc->ifc_len -= space;
2264 } else {
2265 KASSERT(space >= 0);
2266 ifc->ifc_len = space;
2267 }
2268 return (0);
2269 }
2270
2271 int
2272 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2273 {
2274 uint8_t len;
2275 #ifdef COMPAT_OIFREQ
2276 struct ifreq ifrb;
2277 struct oifreq *oifr = NULL;
2278 u_long ocmd = cmd;
2279 cmd = compat_cvtcmd(cmd);
2280 if (cmd != ocmd) {
2281 oifr = (struct oifreq *)(void *)ifr;
2282 ifr = &ifrb;
2283 ifreqo2n(oifr, ifr);
2284 len = sizeof(oifr->ifr_addr);
2285 } else
2286 #endif
2287 len = sizeof(ifr->ifr_ifru.ifru_space);
2288
2289 if (len < sa->sa_len)
2290 return EFBIG;
2291
2292 memset(&ifr->ifr_addr, 0, len);
2293 sockaddr_copy(&ifr->ifr_addr, len, sa);
2294
2295 #ifdef COMPAT_OIFREQ
2296 if (cmd != ocmd)
2297 ifreqn2o(oifr, ifr);
2298 #endif
2299 return 0;
2300 }
2301
2302 /*
2303 * Queue message on interface, and start output if interface
2304 * not yet active.
2305 */
2306 int
2307 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2308 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2309 {
2310 int len = m->m_pkthdr.len;
2311 int mflags = m->m_flags;
2312 int s = splnet();
2313 int error;
2314
2315 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2316 if (error != 0)
2317 goto out;
2318 ifp->if_obytes += len;
2319 if (mflags & M_MCAST)
2320 ifp->if_omcasts++;
2321 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2322 (*ifp->if_start)(ifp);
2323 out:
2324 splx(s);
2325 return error;
2326 }
2327
2328 /*
2329 * Queue message on interface, possibly using a second fast queue
2330 */
2331 int
2332 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2333 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2334 {
2335 int error = 0;
2336
2337 if (ifq != NULL
2338 #ifdef ALTQ
2339 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2340 #endif
2341 ) {
2342 if (IF_QFULL(ifq)) {
2343 IF_DROP(&ifp->if_snd);
2344 m_freem(m);
2345 if (error == 0)
2346 error = ENOBUFS;
2347 } else
2348 IF_ENQUEUE(ifq, m);
2349 } else
2350 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2351 if (error != 0) {
2352 ++ifp->if_oerrors;
2353 return error;
2354 }
2355 return 0;
2356 }
2357
2358 int
2359 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2360 {
2361 int rc;
2362
2363 if (ifp->if_initaddr != NULL)
2364 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2365 else if (src ||
2366 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2367 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2368
2369 return rc;
2370 }
2371
2372 int
2373 if_do_dad(struct ifnet *ifp)
2374 {
2375 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2376 return 0;
2377
2378 switch (ifp->if_type) {
2379 case IFT_FAITH:
2380 /*
2381 * These interfaces do not have the IFF_LOOPBACK flag,
2382 * but loop packets back. We do not have to do DAD on such
2383 * interfaces. We should even omit it, because loop-backed
2384 * responses would confuse the DAD procedure.
2385 */
2386 return 0;
2387 default:
2388 /*
2389 * Our DAD routine requires the interface up and running.
2390 * However, some interfaces can be up before the RUNNING
2391 * status. Additionaly, users may try to assign addresses
2392 * before the interface becomes up (or running).
2393 * We simply skip DAD in such a case as a work around.
2394 * XXX: we should rather mark "tentative" on such addresses,
2395 * and do DAD after the interface becomes ready.
2396 */
2397 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2398 (IFF_UP|IFF_RUNNING))
2399 return 0;
2400
2401 return 1;
2402 }
2403 }
2404
2405 int
2406 if_flags_set(ifnet_t *ifp, const short flags)
2407 {
2408 int rc;
2409
2410 if (ifp->if_setflags != NULL)
2411 rc = (*ifp->if_setflags)(ifp, flags);
2412 else {
2413 short cantflags, chgdflags;
2414 struct ifreq ifr;
2415
2416 chgdflags = ifp->if_flags ^ flags;
2417 cantflags = chgdflags & IFF_CANTCHANGE;
2418
2419 if (cantflags != 0)
2420 ifp->if_flags ^= cantflags;
2421
2422 /* Traditionally, we do not call if_ioctl after
2423 * setting/clearing only IFF_PROMISC if the interface
2424 * isn't IFF_UP. Uphold that tradition.
2425 */
2426 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2427 return 0;
2428
2429 memset(&ifr, 0, sizeof(ifr));
2430
2431 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2432 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2433
2434 if (rc != 0 && cantflags != 0)
2435 ifp->if_flags ^= cantflags;
2436 }
2437
2438 return rc;
2439 }
2440
2441 int
2442 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2443 {
2444 int rc;
2445 struct ifreq ifr;
2446
2447 if (ifp->if_mcastop != NULL)
2448 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2449 else {
2450 ifreq_setaddr(cmd, &ifr, sa);
2451 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2452 }
2453
2454 return rc;
2455 }
2456
2457 static void
2458 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2459 struct ifaltq *ifq)
2460 {
2461 const struct sysctlnode *cnode, *rnode;
2462
2463 if (sysctl_createv(clog, 0, NULL, &rnode,
2464 CTLFLAG_PERMANENT,
2465 CTLTYPE_NODE, "interfaces",
2466 SYSCTL_DESCR("Per-interface controls"),
2467 NULL, 0, NULL, 0,
2468 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2469 goto bad;
2470
2471 if (sysctl_createv(clog, 0, &rnode, &rnode,
2472 CTLFLAG_PERMANENT,
2473 CTLTYPE_NODE, ifname,
2474 SYSCTL_DESCR("Interface controls"),
2475 NULL, 0, NULL, 0,
2476 CTL_CREATE, CTL_EOL) != 0)
2477 goto bad;
2478
2479 if (sysctl_createv(clog, 0, &rnode, &rnode,
2480 CTLFLAG_PERMANENT,
2481 CTLTYPE_NODE, "sndq",
2482 SYSCTL_DESCR("Interface output queue controls"),
2483 NULL, 0, NULL, 0,
2484 CTL_CREATE, CTL_EOL) != 0)
2485 goto bad;
2486
2487 if (sysctl_createv(clog, 0, &rnode, &cnode,
2488 CTLFLAG_PERMANENT,
2489 CTLTYPE_INT, "len",
2490 SYSCTL_DESCR("Current output queue length"),
2491 NULL, 0, &ifq->ifq_len, 0,
2492 CTL_CREATE, CTL_EOL) != 0)
2493 goto bad;
2494
2495 if (sysctl_createv(clog, 0, &rnode, &cnode,
2496 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2497 CTLTYPE_INT, "maxlen",
2498 SYSCTL_DESCR("Maximum allowed output queue length"),
2499 NULL, 0, &ifq->ifq_maxlen, 0,
2500 CTL_CREATE, CTL_EOL) != 0)
2501 goto bad;
2502
2503 if (sysctl_createv(clog, 0, &rnode, &cnode,
2504 CTLFLAG_PERMANENT,
2505 CTLTYPE_INT, "drops",
2506 SYSCTL_DESCR("Packets dropped due to full output queue"),
2507 NULL, 0, &ifq->ifq_drops, 0,
2508 CTL_CREATE, CTL_EOL) != 0)
2509 goto bad;
2510
2511 return;
2512 bad:
2513 printf("%s: could not attach sysctl nodes\n", ifname);
2514 return;
2515 }
2516
2517 #if defined(INET) || defined(INET6)
2518
2519 #define SYSCTL_NET_PKTQ(q, cn, c) \
2520 static int \
2521 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2522 { \
2523 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2524 }
2525
2526 #if defined(INET)
2527 static int
2528 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2529 {
2530 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2531 }
2532 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2533 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2534 #endif
2535
2536 #if defined(INET6)
2537 static int
2538 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2539 {
2540 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2541 }
2542 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2543 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2544 #endif
2545
2546 static void
2547 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2548 {
2549 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2550 const char *pfname = NULL, *ipname = NULL;
2551 int ipn = 0, qid = 0;
2552
2553 switch (pf) {
2554 #if defined(INET)
2555 case PF_INET:
2556 len_func = sysctl_net_ip_pktq_items;
2557 maxlen_func = sysctl_net_ip_pktq_maxlen;
2558 drops_func = sysctl_net_ip_pktq_drops;
2559 pfname = "inet", ipn = IPPROTO_IP;
2560 ipname = "ip", qid = IPCTL_IFQ;
2561 break;
2562 #endif
2563 #if defined(INET6)
2564 case PF_INET6:
2565 len_func = sysctl_net_ip6_pktq_items;
2566 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2567 drops_func = sysctl_net_ip6_pktq_drops;
2568 pfname = "inet6", ipn = IPPROTO_IPV6;
2569 ipname = "ip6", qid = IPV6CTL_IFQ;
2570 break;
2571 #endif
2572 default:
2573 KASSERT(false);
2574 }
2575
2576 sysctl_createv(clog, 0, NULL, NULL,
2577 CTLFLAG_PERMANENT,
2578 CTLTYPE_NODE, pfname, NULL,
2579 NULL, 0, NULL, 0,
2580 CTL_NET, pf, CTL_EOL);
2581 sysctl_createv(clog, 0, NULL, NULL,
2582 CTLFLAG_PERMANENT,
2583 CTLTYPE_NODE, ipname, NULL,
2584 NULL, 0, NULL, 0,
2585 CTL_NET, pf, ipn, CTL_EOL);
2586 sysctl_createv(clog, 0, NULL, NULL,
2587 CTLFLAG_PERMANENT,
2588 CTLTYPE_NODE, "ifq",
2589 SYSCTL_DESCR("Protocol input queue controls"),
2590 NULL, 0, NULL, 0,
2591 CTL_NET, pf, ipn, qid, CTL_EOL);
2592
2593 sysctl_createv(clog, 0, NULL, NULL,
2594 CTLFLAG_PERMANENT,
2595 CTLTYPE_INT, "len",
2596 SYSCTL_DESCR("Current input queue length"),
2597 len_func, 0, NULL, 0,
2598 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2599 sysctl_createv(clog, 0, NULL, NULL,
2600 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2601 CTLTYPE_INT, "maxlen",
2602 SYSCTL_DESCR("Maximum allowed input queue length"),
2603 maxlen_func, 0, NULL, 0,
2604 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2605 sysctl_createv(clog, 0, NULL, NULL,
2606 CTLFLAG_PERMANENT,
2607 CTLTYPE_INT, "drops",
2608 SYSCTL_DESCR("Packets dropped due to full input queue"),
2609 drops_func, 0, NULL, 0,
2610 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2611 }
2612 #endif /* INET || INET6 */
2613
2614 static int
2615 if_sdl_sysctl(SYSCTLFN_ARGS)
2616 {
2617 struct ifnet *ifp;
2618 const struct sockaddr_dl *sdl;
2619
2620 if (namelen != 1)
2621 return EINVAL;
2622
2623 ifp = if_byindex(name[0]);
2624 if (ifp == NULL)
2625 return ENODEV;
2626
2627 sdl = ifp->if_sadl;
2628 if (sdl == NULL) {
2629 *oldlenp = 0;
2630 return 0;
2631 }
2632
2633 if (oldp == NULL) {
2634 *oldlenp = sdl->sdl_alen;
2635 return 0;
2636 }
2637
2638 if (*oldlenp >= sdl->sdl_alen)
2639 *oldlenp = sdl->sdl_alen;
2640 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2641 }
2642
2643 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2644 {
2645 const struct sysctlnode *rnode = NULL;
2646
2647 sysctl_createv(clog, 0, NULL, &rnode,
2648 CTLFLAG_PERMANENT,
2649 CTLTYPE_NODE, "sdl",
2650 SYSCTL_DESCR("Get active link-layer address"),
2651 if_sdl_sysctl, 0, NULL, 0,
2652 CTL_NET, CTL_CREATE, CTL_EOL);
2653 }
2654