Home | History | Annotate | Line # | Download | only in net
if.c revision 1.323
      1 /*	$NetBSD: if.c,v 1.323 2016/02/09 08:32:12 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.323 2016/02/09 08:32:12 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 
     98 #include "opt_atalk.h"
     99 #include "opt_natm.h"
    100 #include "opt_wlan.h"
    101 #include "opt_net_mpsafe.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 
    123 #include <net/if.h>
    124 #include <net/if_dl.h>
    125 #include <net/if_ether.h>
    126 #include <net/if_media.h>
    127 #include <net80211/ieee80211.h>
    128 #include <net80211/ieee80211_ioctl.h>
    129 #include <net/if_types.h>
    130 #include <net/radix.h>
    131 #include <net/route.h>
    132 #include <net/netisr.h>
    133 #include <sys/module.h>
    134 #ifdef NETATALK
    135 #include <netatalk/at_extern.h>
    136 #include <netatalk/at.h>
    137 #endif
    138 #include <net/pfil.h>
    139 #include <netinet/in.h>
    140 #include <netinet/in_var.h>
    141 
    142 #ifdef INET6
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/nd6.h>
    145 #endif
    146 
    147 #include "ether.h"
    148 #include "fddi.h"
    149 #include "token.h"
    150 
    151 #include "carp.h"
    152 #if NCARP > 0
    153 #include <netinet/ip_carp.h>
    154 #endif
    155 
    156 #include <compat/sys/sockio.h>
    157 #include <compat/sys/socket.h>
    158 
    159 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    160 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    161 
    162 /*
    163  * Global list of interfaces.
    164  */
    165 struct ifnet_head		ifnet_list;
    166 static ifnet_t **		ifindex2ifnet = NULL;
    167 
    168 static u_int			if_index = 1;
    169 static size_t			if_indexlim = 0;
    170 static uint64_t			index_gen;
    171 static kmutex_t			index_gen_mtx;
    172 static kmutex_t			if_clone_mtx;
    173 
    174 struct ifnet *lo0ifp;
    175 int	ifqmaxlen = IFQ_MAXLEN;
    176 
    177 static int	if_rt_walktree(struct rtentry *, void *);
    178 
    179 static struct if_clone *if_clone_lookup(const char *, int *);
    180 
    181 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    182 static int if_cloners_count;
    183 
    184 /* Packet filtering hook for interfaces. */
    185 pfil_head_t *	if_pfil;
    186 
    187 static kauth_listener_t if_listener;
    188 
    189 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    190 static int ifioctl_attach(struct ifnet *);
    191 static void ifioctl_detach(struct ifnet *);
    192 static void ifnet_lock_enter(struct ifnet_lock *);
    193 static void ifnet_lock_exit(struct ifnet_lock *);
    194 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    195 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    196     struct ifaltq *);
    197 static void if_slowtimo(void *);
    198 static void if_free_sadl(struct ifnet *);
    199 static void if_attachdomain1(struct ifnet *);
    200 static int ifconf(u_long, void *);
    201 static int if_clone_create(const char *);
    202 static int if_clone_destroy(const char *);
    203 
    204 struct if_percpuq {
    205 	struct ifnet	*ipq_ifp;
    206 	void		*ipq_si;
    207 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    208 };
    209 
    210 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    211 
    212 #if defined(INET) || defined(INET6)
    213 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    214 #endif
    215 
    216 static int
    217 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    218     void *arg0, void *arg1, void *arg2, void *arg3)
    219 {
    220 	int result;
    221 	enum kauth_network_req req;
    222 
    223 	result = KAUTH_RESULT_DEFER;
    224 	req = (enum kauth_network_req)arg1;
    225 
    226 	if (action != KAUTH_NETWORK_INTERFACE)
    227 		return result;
    228 
    229 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    230 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    231 		result = KAUTH_RESULT_ALLOW;
    232 
    233 	return result;
    234 }
    235 
    236 /*
    237  * Network interface utility routines.
    238  *
    239  * Routines with ifa_ifwith* names take sockaddr *'s as
    240  * parameters.
    241  */
    242 void
    243 ifinit(void)
    244 {
    245 #if defined(INET)
    246 	sysctl_net_pktq_setup(NULL, PF_INET);
    247 #endif
    248 #ifdef INET6
    249 	if (in6_present)
    250 		sysctl_net_pktq_setup(NULL, PF_INET6);
    251 #endif
    252 
    253 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    254 	    if_listener_cb, NULL);
    255 
    256 	/* interfaces are available, inform socket code */
    257 	ifioctl = doifioctl;
    258 }
    259 
    260 /*
    261  * XXX Initialization before configure().
    262  * XXX hack to get pfil_add_hook working in autoconf.
    263  */
    264 void
    265 ifinit1(void)
    266 {
    267 	mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
    268 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    269 	TAILQ_INIT(&ifnet_list);
    270 	if_indexlim = 8;
    271 
    272 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    273 	KASSERT(if_pfil != NULL);
    274 
    275 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    276 	etherinit();
    277 #endif
    278 }
    279 
    280 ifnet_t *
    281 if_alloc(u_char type)
    282 {
    283 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    284 }
    285 
    286 void
    287 if_free(ifnet_t *ifp)
    288 {
    289 	kmem_free(ifp, sizeof(ifnet_t));
    290 }
    291 
    292 void
    293 if_initname(struct ifnet *ifp, const char *name, int unit)
    294 {
    295 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    296 	    "%s%d", name, unit);
    297 }
    298 
    299 /*
    300  * Null routines used while an interface is going away.  These routines
    301  * just return an error.
    302  */
    303 
    304 int
    305 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    306     const struct sockaddr *so, struct rtentry *rt)
    307 {
    308 
    309 	return ENXIO;
    310 }
    311 
    312 void
    313 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    314 {
    315 
    316 	/* Nothing. */
    317 }
    318 
    319 void
    320 if_nullstart(struct ifnet *ifp)
    321 {
    322 
    323 	/* Nothing. */
    324 }
    325 
    326 int
    327 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    328 {
    329 
    330 	/* Wake ifioctl_detach(), who may wait for all threads to
    331 	 * quit the critical section.
    332 	 */
    333 	cv_signal(&ifp->if_ioctl_lock->il_emptied);
    334 	return ENXIO;
    335 }
    336 
    337 int
    338 if_nullinit(struct ifnet *ifp)
    339 {
    340 
    341 	return ENXIO;
    342 }
    343 
    344 void
    345 if_nullstop(struct ifnet *ifp, int disable)
    346 {
    347 
    348 	/* Nothing. */
    349 }
    350 
    351 void
    352 if_nullslowtimo(struct ifnet *ifp)
    353 {
    354 
    355 	/* Nothing. */
    356 }
    357 
    358 void
    359 if_nulldrain(struct ifnet *ifp)
    360 {
    361 
    362 	/* Nothing. */
    363 }
    364 
    365 void
    366 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    367 {
    368 	struct ifaddr *ifa;
    369 	struct sockaddr_dl *sdl;
    370 
    371 	ifp->if_addrlen = addrlen;
    372 	if_alloc_sadl(ifp);
    373 	ifa = ifp->if_dl;
    374 	sdl = satosdl(ifa->ifa_addr);
    375 
    376 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    377 	if (factory) {
    378 		ifp->if_hwdl = ifp->if_dl;
    379 		ifaref(ifp->if_hwdl);
    380 	}
    381 	/* TBD routing socket */
    382 }
    383 
    384 struct ifaddr *
    385 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    386 {
    387 	unsigned socksize, ifasize;
    388 	int addrlen, namelen;
    389 	struct sockaddr_dl *mask, *sdl;
    390 	struct ifaddr *ifa;
    391 
    392 	namelen = strlen(ifp->if_xname);
    393 	addrlen = ifp->if_addrlen;
    394 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    395 	ifasize = sizeof(*ifa) + 2 * socksize;
    396 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    397 
    398 	sdl = (struct sockaddr_dl *)(ifa + 1);
    399 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    400 
    401 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    402 	    ifp->if_xname, namelen, NULL, addrlen);
    403 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    404 	memset(&mask->sdl_data[0], 0xff, namelen);
    405 	ifa->ifa_rtrequest = link_rtrequest;
    406 	ifa->ifa_addr = (struct sockaddr *)sdl;
    407 	ifa->ifa_netmask = (struct sockaddr *)mask;
    408 
    409 	*sdlp = sdl;
    410 
    411 	return ifa;
    412 }
    413 
    414 static void
    415 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    416 {
    417 	const struct sockaddr_dl *sdl;
    418 
    419 	ifp->if_dl = ifa;
    420 	ifaref(ifa);
    421 	sdl = satosdl(ifa->ifa_addr);
    422 	ifp->if_sadl = sdl;
    423 }
    424 
    425 /*
    426  * Allocate the link level name for the specified interface.  This
    427  * is an attachment helper.  It must be called after ifp->if_addrlen
    428  * is initialized, which may not be the case when if_attach() is
    429  * called.
    430  */
    431 void
    432 if_alloc_sadl(struct ifnet *ifp)
    433 {
    434 	struct ifaddr *ifa;
    435 	const struct sockaddr_dl *sdl;
    436 
    437 	/*
    438 	 * If the interface already has a link name, release it
    439 	 * now.  This is useful for interfaces that can change
    440 	 * link types, and thus switch link names often.
    441 	 */
    442 	if (ifp->if_sadl != NULL)
    443 		if_free_sadl(ifp);
    444 
    445 	ifa = if_dl_create(ifp, &sdl);
    446 
    447 	ifa_insert(ifp, ifa);
    448 	if_sadl_setrefs(ifp, ifa);
    449 }
    450 
    451 static void
    452 if_deactivate_sadl(struct ifnet *ifp)
    453 {
    454 	struct ifaddr *ifa;
    455 
    456 	KASSERT(ifp->if_dl != NULL);
    457 
    458 	ifa = ifp->if_dl;
    459 
    460 	ifp->if_sadl = NULL;
    461 
    462 	ifp->if_dl = NULL;
    463 	ifafree(ifa);
    464 }
    465 
    466 void
    467 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
    468     const struct sockaddr_dl *sdl)
    469 {
    470 	int s;
    471 
    472 	s = splnet();
    473 
    474 	if_deactivate_sadl(ifp);
    475 
    476 	if_sadl_setrefs(ifp, ifa);
    477 	IFADDR_FOREACH(ifa, ifp)
    478 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    479 	splx(s);
    480 }
    481 
    482 /*
    483  * Free the link level name for the specified interface.  This is
    484  * a detach helper.  This is called from if_detach().
    485  */
    486 static void
    487 if_free_sadl(struct ifnet *ifp)
    488 {
    489 	struct ifaddr *ifa;
    490 	int s;
    491 
    492 	ifa = ifp->if_dl;
    493 	if (ifa == NULL) {
    494 		KASSERT(ifp->if_sadl == NULL);
    495 		return;
    496 	}
    497 
    498 	KASSERT(ifp->if_sadl != NULL);
    499 
    500 	s = splnet();
    501 	rtinit(ifa, RTM_DELETE, 0);
    502 	ifa_remove(ifp, ifa);
    503 	if_deactivate_sadl(ifp);
    504 	if (ifp->if_hwdl == ifa) {
    505 		ifafree(ifa);
    506 		ifp->if_hwdl = NULL;
    507 	}
    508 	splx(s);
    509 }
    510 
    511 static void
    512 if_getindex(ifnet_t *ifp)
    513 {
    514 	bool hitlimit = false;
    515 
    516 	mutex_enter(&index_gen_mtx);
    517 	ifp->if_index_gen = index_gen++;
    518 	mutex_exit(&index_gen_mtx);
    519 
    520 	ifp->if_index = if_index;
    521 	if (ifindex2ifnet == NULL) {
    522 		if_index++;
    523 		goto skip;
    524 	}
    525 	while (if_byindex(ifp->if_index)) {
    526 		/*
    527 		 * If we hit USHRT_MAX, we skip back to 0 since
    528 		 * there are a number of places where the value
    529 		 * of if_index or if_index itself is compared
    530 		 * to or stored in an unsigned short.  By
    531 		 * jumping back, we won't botch those assignments
    532 		 * or comparisons.
    533 		 */
    534 		if (++if_index == 0) {
    535 			if_index = 1;
    536 		} else if (if_index == USHRT_MAX) {
    537 			/*
    538 			 * However, if we have to jump back to
    539 			 * zero *twice* without finding an empty
    540 			 * slot in ifindex2ifnet[], then there
    541 			 * there are too many (>65535) interfaces.
    542 			 */
    543 			if (hitlimit) {
    544 				panic("too many interfaces");
    545 			}
    546 			hitlimit = true;
    547 			if_index = 1;
    548 		}
    549 		ifp->if_index = if_index;
    550 	}
    551 skip:
    552 	/*
    553 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    554 	 * grow dynamically, it should grow too.
    555 	 */
    556 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    557 		size_t m, n, oldlim;
    558 		void *q;
    559 
    560 		oldlim = if_indexlim;
    561 		while (ifp->if_index >= if_indexlim)
    562 			if_indexlim <<= 1;
    563 
    564 		/* grow ifindex2ifnet */
    565 		m = oldlim * sizeof(struct ifnet *);
    566 		n = if_indexlim * sizeof(struct ifnet *);
    567 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    568 		if (ifindex2ifnet != NULL) {
    569 			memcpy(q, ifindex2ifnet, m);
    570 			free(ifindex2ifnet, M_IFADDR);
    571 		}
    572 		ifindex2ifnet = (struct ifnet **)q;
    573 	}
    574 	ifindex2ifnet[ifp->if_index] = ifp;
    575 }
    576 
    577 /*
    578  * Initialize an interface and assign an index for it.
    579  *
    580  * It must be called prior to a device specific attach routine
    581  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    582  * and be followed by if_register:
    583  *
    584  *     if_initialize(ifp);
    585  *     ether_ifattach(ifp, enaddr);
    586  *     if_register(ifp);
    587  */
    588 void
    589 if_initialize(ifnet_t *ifp)
    590 {
    591 	KASSERT(if_indexlim > 0);
    592 	TAILQ_INIT(&ifp->if_addrlist);
    593 
    594 	/*
    595 	 * Link level name is allocated later by a separate call to
    596 	 * if_alloc_sadl().
    597 	 */
    598 
    599 	if (ifp->if_snd.ifq_maxlen == 0)
    600 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    601 
    602 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    603 
    604 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    605 
    606 	ifp->if_capenable = 0;
    607 	ifp->if_csum_flags_tx = 0;
    608 	ifp->if_csum_flags_rx = 0;
    609 
    610 #ifdef ALTQ
    611 	ifp->if_snd.altq_type = 0;
    612 	ifp->if_snd.altq_disc = NULL;
    613 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    614 	ifp->if_snd.altq_tbr  = NULL;
    615 	ifp->if_snd.altq_ifp  = ifp;
    616 #endif
    617 
    618 #ifdef NET_MPSAFE
    619 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
    620 #else
    621 	ifp->if_snd.ifq_lock = NULL;
    622 #endif
    623 
    624 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    625 	(void)pfil_run_hooks(if_pfil,
    626 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
    627 
    628 	IF_AFDATA_LOCK_INIT(ifp);
    629 
    630 	if_getindex(ifp);
    631 }
    632 
    633 /*
    634  * Register an interface to the list of "active" interfaces.
    635  */
    636 void
    637 if_register(ifnet_t *ifp)
    638 {
    639 	if (ifioctl_attach(ifp) != 0)
    640 		panic("%s: ifioctl_attach() failed", __func__);
    641 
    642 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    643 
    644 	if (!STAILQ_EMPTY(&domains))
    645 		if_attachdomain1(ifp);
    646 
    647 	/* Announce the interface. */
    648 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    649 
    650 	if (ifp->if_slowtimo != NULL) {
    651 		ifp->if_slowtimo_ch =
    652 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    653 		callout_init(ifp->if_slowtimo_ch, 0);
    654 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    655 		if_slowtimo(ifp);
    656 	}
    657 
    658 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    659 }
    660 
    661 /*
    662  * The if_percpuq framework
    663  *
    664  * It allows network device drivers to execute the network stack
    665  * in softint (so called softint-based if_input). It utilizes
    666  * softint and percpu ifqueue. It doesn't distribute any packets
    667  * between CPUs, unlike pktqueue(9).
    668  *
    669  * Currently we support two options for device drivers to apply the framework:
    670  * - Use it implicitly with less changes
    671  *   - If you use if_attach in driver's _attach function and if_input in
    672  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    673  *     the packet implicitly
    674  * - Use it explicitly in each driver (recommended)
    675  *   - You can use if_percpuq_* directly in your driver
    676  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    677  *   - See wm(4) as a reference implementation
    678  */
    679 
    680 static void
    681 if_percpuq_softint(void *arg)
    682 {
    683 	struct if_percpuq *ipq = arg;
    684 	struct ifnet *ifp = ipq->ipq_ifp;
    685 	struct mbuf *m;
    686 
    687 	while ((m = if_percpuq_dequeue(ipq)) != NULL)
    688 		ifp->_if_input(ifp, m);
    689 }
    690 
    691 static void
    692 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    693 {
    694 	struct ifqueue *const ifq = p;
    695 
    696 	memset(ifq, 0, sizeof(*ifq));
    697 	ifq->ifq_maxlen = IFQ_MAXLEN;
    698 }
    699 
    700 struct if_percpuq *
    701 if_percpuq_create(struct ifnet *ifp)
    702 {
    703 	struct if_percpuq *ipq;
    704 
    705 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    706 	if (ipq == NULL)
    707 		panic("kmem_zalloc failed");
    708 
    709 	ipq->ipq_ifp = ifp;
    710 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    711 	    if_percpuq_softint, ipq);
    712 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    713 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    714 
    715 	return ipq;
    716 }
    717 
    718 static struct mbuf *
    719 if_percpuq_dequeue(struct if_percpuq *ipq)
    720 {
    721 	struct mbuf *m;
    722 	struct ifqueue *ifq;
    723 	int s;
    724 
    725 	s = splnet();
    726 	ifq = percpu_getref(ipq->ipq_ifqs);
    727 	IF_DEQUEUE(ifq, m);
    728 	percpu_putref(ipq->ipq_ifqs);
    729 	splx(s);
    730 
    731 	return m;
    732 }
    733 
    734 static void
    735 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    736 {
    737 	struct ifqueue *const ifq = p;
    738 
    739 	IF_PURGE(ifq);
    740 }
    741 
    742 void
    743 if_percpuq_destroy(struct if_percpuq *ipq)
    744 {
    745 
    746 	/* if_detach may already destroy it */
    747 	if (ipq == NULL)
    748 		return;
    749 
    750 	softint_disestablish(ipq->ipq_si);
    751 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    752 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    753 }
    754 
    755 void
    756 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    757 {
    758 	struct ifqueue *ifq;
    759 	int s;
    760 
    761 	KASSERT(ipq != NULL);
    762 
    763 	s = splnet();
    764 	ifq = percpu_getref(ipq->ipq_ifqs);
    765 	if (IF_QFULL(ifq)) {
    766 		IF_DROP(ifq);
    767 		m_freem(m);
    768 		goto out;
    769 	}
    770 	IF_ENQUEUE(ifq, m);
    771 	percpu_putref(ipq->ipq_ifqs);
    772 
    773 	softint_schedule(ipq->ipq_si);
    774 out:
    775 	splx(s);
    776 }
    777 
    778 /*
    779  * The common interface input routine that is called by device drivers,
    780  * which should be used only when the driver's rx handler already runs
    781  * in softint.
    782  */
    783 void
    784 if_input(struct ifnet *ifp, struct mbuf *m)
    785 {
    786 
    787 	KASSERT(ifp->if_percpuq == NULL);
    788 	KASSERT(!cpu_intr_p());
    789 
    790 	ifp->_if_input(ifp, m);
    791 }
    792 
    793 /*
    794  * DEPRECATED. Use if_initialize and if_register instead.
    795  * See the above comment of if_initialize.
    796  *
    797  * Note that it implicitly enables if_percpuq to make drivers easy to
    798  * migrate softinet-based if_input without much changes. If you don't
    799  * want to enable it, use if_initialize instead.
    800  */
    801 void
    802 if_attach(ifnet_t *ifp)
    803 {
    804 
    805 	if_initialize(ifp);
    806 	ifp->if_percpuq = if_percpuq_create(ifp);
    807 	if_register(ifp);
    808 }
    809 
    810 void
    811 if_attachdomain(void)
    812 {
    813 	struct ifnet *ifp;
    814 	int s;
    815 
    816 	s = splnet();
    817 	IFNET_FOREACH(ifp)
    818 		if_attachdomain1(ifp);
    819 	splx(s);
    820 }
    821 
    822 static void
    823 if_attachdomain1(struct ifnet *ifp)
    824 {
    825 	struct domain *dp;
    826 	int s;
    827 
    828 	s = splnet();
    829 
    830 	/* address family dependent data region */
    831 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
    832 	DOMAIN_FOREACH(dp) {
    833 		if (dp->dom_ifattach != NULL)
    834 			ifp->if_afdata[dp->dom_family] =
    835 			    (*dp->dom_ifattach)(ifp);
    836 	}
    837 
    838 	splx(s);
    839 }
    840 
    841 /*
    842  * Deactivate an interface.  This points all of the procedure
    843  * handles at error stubs.  May be called from interrupt context.
    844  */
    845 void
    846 if_deactivate(struct ifnet *ifp)
    847 {
    848 	int s;
    849 
    850 	s = splnet();
    851 
    852 	ifp->if_output	 = if_nulloutput;
    853 	ifp->_if_input	 = if_nullinput;
    854 	ifp->if_start	 = if_nullstart;
    855 	ifp->if_ioctl	 = if_nullioctl;
    856 	ifp->if_init	 = if_nullinit;
    857 	ifp->if_stop	 = if_nullstop;
    858 	ifp->if_slowtimo = if_nullslowtimo;
    859 	ifp->if_drain	 = if_nulldrain;
    860 
    861 	/* No more packets may be enqueued. */
    862 	ifp->if_snd.ifq_maxlen = 0;
    863 
    864 	splx(s);
    865 }
    866 
    867 void
    868 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
    869 {
    870 	struct ifaddr *ifa, *nifa;
    871 
    872 	IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
    873 		if (ifa->ifa_addr->sa_family != family)
    874 			continue;
    875 		(*purgeaddr)(ifa);
    876 	}
    877 }
    878 
    879 /*
    880  * Detach an interface from the list of "active" interfaces,
    881  * freeing any resources as we go along.
    882  *
    883  * NOTE: This routine must be called with a valid thread context,
    884  * as it may block.
    885  */
    886 void
    887 if_detach(struct ifnet *ifp)
    888 {
    889 	struct socket so;
    890 	struct ifaddr *ifa;
    891 #ifdef IFAREF_DEBUG
    892 	struct ifaddr *last_ifa = NULL;
    893 #endif
    894 	struct domain *dp;
    895 	const struct protosw *pr;
    896 	int s, i, family, purged;
    897 	uint64_t xc;
    898 
    899 	/*
    900 	 * XXX It's kind of lame that we have to have the
    901 	 * XXX socket structure...
    902 	 */
    903 	memset(&so, 0, sizeof(so));
    904 
    905 	s = splnet();
    906 
    907 	ifindex2ifnet[ifp->if_index] = NULL;
    908 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
    909 
    910 	if (ifp->if_slowtimo != NULL) {
    911 		ifp->if_slowtimo = NULL;
    912 		callout_halt(ifp->if_slowtimo_ch, NULL);
    913 		callout_destroy(ifp->if_slowtimo_ch);
    914 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
    915 	}
    916 
    917 	/*
    918 	 * Do an if_down() to give protocols a chance to do something.
    919 	 */
    920 	if_down(ifp);
    921 
    922 #ifdef ALTQ
    923 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
    924 		altq_disable(&ifp->if_snd);
    925 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
    926 		altq_detach(&ifp->if_snd);
    927 #endif
    928 
    929 	if (ifp->if_snd.ifq_lock)
    930 		mutex_obj_free(ifp->if_snd.ifq_lock);
    931 
    932 	sysctl_teardown(&ifp->if_sysctl_log);
    933 
    934 #if NCARP > 0
    935 	/* Remove the interface from any carp group it is a part of.  */
    936 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
    937 		carp_ifdetach(ifp);
    938 #endif
    939 
    940 	/*
    941 	 * Rip all the addresses off the interface.  This should make
    942 	 * all of the routes go away.
    943 	 *
    944 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
    945 	 * from the list, including our "cursor", ifa.  For safety,
    946 	 * and to honor the TAILQ abstraction, I just restart the
    947 	 * loop after each removal.  Note that the loop will exit
    948 	 * when all of the remaining ifaddrs belong to the AF_LINK
    949 	 * family.  I am counting on the historical fact that at
    950 	 * least one pr_usrreq in each address domain removes at
    951 	 * least one ifaddr.
    952 	 */
    953 again:
    954 	IFADDR_FOREACH(ifa, ifp) {
    955 		family = ifa->ifa_addr->sa_family;
    956 #ifdef IFAREF_DEBUG
    957 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
    958 		    ifa, family, ifa->ifa_refcnt);
    959 		if (last_ifa != NULL && ifa == last_ifa)
    960 			panic("if_detach: loop detected");
    961 		last_ifa = ifa;
    962 #endif
    963 		if (family == AF_LINK)
    964 			continue;
    965 		dp = pffinddomain(family);
    966 #ifdef DIAGNOSTIC
    967 		if (dp == NULL)
    968 			panic("if_detach: no domain for AF %d",
    969 			    family);
    970 #endif
    971 		/*
    972 		 * XXX These PURGEIF calls are redundant with the
    973 		 * purge-all-families calls below, but are left in for
    974 		 * now both to make a smaller change, and to avoid
    975 		 * unplanned interactions with clearing of
    976 		 * ifp->if_addrlist.
    977 		 */
    978 		purged = 0;
    979 		for (pr = dp->dom_protosw;
    980 		     pr < dp->dom_protoswNPROTOSW; pr++) {
    981 			so.so_proto = pr;
    982 			if (pr->pr_usrreqs) {
    983 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
    984 				purged = 1;
    985 			}
    986 		}
    987 		if (purged == 0) {
    988 			/*
    989 			 * XXX What's really the best thing to do
    990 			 * XXX here?  --thorpej (at) NetBSD.org
    991 			 */
    992 			printf("if_detach: WARNING: AF %d not purged\n",
    993 			    family);
    994 			ifa_remove(ifp, ifa);
    995 		}
    996 		goto again;
    997 	}
    998 
    999 	if_free_sadl(ifp);
   1000 
   1001 	/* Walk the routing table looking for stragglers. */
   1002 	for (i = 0; i <= AF_MAX; i++) {
   1003 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
   1004 			continue;
   1005 	}
   1006 
   1007 	DOMAIN_FOREACH(dp) {
   1008 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1009 		{
   1010 			void *p = ifp->if_afdata[dp->dom_family];
   1011 			if (p) {
   1012 				ifp->if_afdata[dp->dom_family] = NULL;
   1013 				(*dp->dom_ifdetach)(ifp, p);
   1014 			}
   1015 		}
   1016 
   1017 		/*
   1018 		 * One would expect multicast memberships (INET and
   1019 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1020 		 * calls above, but if all addresses were removed from
   1021 		 * the interface prior to destruction, the calls will
   1022 		 * not be made (e.g. ppp, for which pppd(8) generally
   1023 		 * removes addresses before destroying the interface).
   1024 		 * Because there is no invariant that multicast
   1025 		 * memberships only exist for interfaces with IPv4
   1026 		 * addresses, we must call PURGEIF regardless of
   1027 		 * addresses.  (Protocols which might store ifnet
   1028 		 * pointers are marked with PR_PURGEIF.)
   1029 		 */
   1030 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1031 			so.so_proto = pr;
   1032 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1033 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1034 		}
   1035 	}
   1036 
   1037 	(void)pfil_run_hooks(if_pfil,
   1038 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
   1039 	(void)pfil_head_destroy(ifp->if_pfil);
   1040 
   1041 	/* Announce that the interface is gone. */
   1042 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1043 
   1044 	ifioctl_detach(ifp);
   1045 
   1046 	IF_AFDATA_LOCK_DESTROY(ifp);
   1047 
   1048 	/*
   1049 	 * remove packets that came from ifp, from software interrupt queues.
   1050 	 */
   1051 	DOMAIN_FOREACH(dp) {
   1052 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1053 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1054 			if (iq == NULL)
   1055 				break;
   1056 			dp->dom_ifqueues[i] = NULL;
   1057 			if_detach_queues(ifp, iq);
   1058 		}
   1059 	}
   1060 
   1061 	/*
   1062 	 * IP queues have to be processed separately: net-queue barrier
   1063 	 * ensures that the packets are dequeued while a cross-call will
   1064 	 * ensure that the interrupts have completed. FIXME: not quite..
   1065 	 */
   1066 #ifdef INET
   1067 	pktq_barrier(ip_pktq);
   1068 #endif
   1069 #ifdef INET6
   1070 	if (in6_present)
   1071 		pktq_barrier(ip6_pktq);
   1072 #endif
   1073 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1074 	xc_wait(xc);
   1075 
   1076 	if (ifp->if_percpuq != NULL) {
   1077 		if_percpuq_destroy(ifp->if_percpuq);
   1078 		ifp->if_percpuq = NULL;
   1079 	}
   1080 
   1081 	splx(s);
   1082 }
   1083 
   1084 static void
   1085 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1086 {
   1087 	struct mbuf *m, *prev, *next;
   1088 
   1089 	prev = NULL;
   1090 	for (m = q->ifq_head; m != NULL; m = next) {
   1091 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1092 
   1093 		next = m->m_nextpkt;
   1094 		if (m->m_pkthdr.rcvif != ifp) {
   1095 			prev = m;
   1096 			continue;
   1097 		}
   1098 
   1099 		if (prev != NULL)
   1100 			prev->m_nextpkt = m->m_nextpkt;
   1101 		else
   1102 			q->ifq_head = m->m_nextpkt;
   1103 		if (q->ifq_tail == m)
   1104 			q->ifq_tail = prev;
   1105 		q->ifq_len--;
   1106 
   1107 		m->m_nextpkt = NULL;
   1108 		m_freem(m);
   1109 		IF_DROP(q);
   1110 	}
   1111 }
   1112 
   1113 /*
   1114  * Callback for a radix tree walk to delete all references to an
   1115  * ifnet.
   1116  */
   1117 static int
   1118 if_rt_walktree(struct rtentry *rt, void *v)
   1119 {
   1120 	struct ifnet *ifp = (struct ifnet *)v;
   1121 	int error;
   1122 	struct rtentry *retrt;
   1123 
   1124 	if (rt->rt_ifp != ifp)
   1125 		return 0;
   1126 
   1127 	/* Delete the entry. */
   1128 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
   1129 	    rt_mask(rt), rt->rt_flags, &retrt);
   1130 	if (error == 0) {
   1131 		KASSERT(retrt == rt);
   1132 		KASSERT((retrt->rt_flags & RTF_UP) == 0);
   1133 		retrt->rt_ifp = NULL;
   1134 		rtfree(retrt);
   1135 	} else {
   1136 		printf("%s: warning: unable to delete rtentry @ %p, "
   1137 		    "error = %d\n", ifp->if_xname, rt, error);
   1138 	}
   1139 	return ERESTART;
   1140 }
   1141 
   1142 /*
   1143  * Create a clone network interface.
   1144  */
   1145 static int
   1146 if_clone_create(const char *name)
   1147 {
   1148 	struct if_clone *ifc;
   1149 	int unit;
   1150 
   1151 	ifc = if_clone_lookup(name, &unit);
   1152 	if (ifc == NULL)
   1153 		return EINVAL;
   1154 
   1155 	if (ifunit(name) != NULL)
   1156 		return EEXIST;
   1157 
   1158 	return (*ifc->ifc_create)(ifc, unit);
   1159 }
   1160 
   1161 /*
   1162  * Destroy a clone network interface.
   1163  */
   1164 static int
   1165 if_clone_destroy(const char *name)
   1166 {
   1167 	struct if_clone *ifc;
   1168 	struct ifnet *ifp;
   1169 
   1170 	ifc = if_clone_lookup(name, NULL);
   1171 	if (ifc == NULL)
   1172 		return EINVAL;
   1173 
   1174 	ifp = ifunit(name);
   1175 	if (ifp == NULL)
   1176 		return ENXIO;
   1177 
   1178 	if (ifc->ifc_destroy == NULL)
   1179 		return EOPNOTSUPP;
   1180 
   1181 	return (*ifc->ifc_destroy)(ifp);
   1182 }
   1183 
   1184 /*
   1185  * Look up a network interface cloner.
   1186  */
   1187 static struct if_clone *
   1188 if_clone_lookup(const char *name, int *unitp)
   1189 {
   1190 	struct if_clone *ifc;
   1191 	const char *cp;
   1192 	char *dp, ifname[IFNAMSIZ + 3];
   1193 	int unit;
   1194 
   1195 	strcpy(ifname, "if_");
   1196 	/* separate interface name from unit */
   1197 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1198 	    *cp && (*cp < '0' || *cp > '9');)
   1199 		*dp++ = *cp++;
   1200 
   1201 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1202 		return NULL;	/* No name or unit number */
   1203 	*dp++ = '\0';
   1204 
   1205 again:
   1206 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1207 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1208 			break;
   1209 	}
   1210 
   1211 	if (ifc == NULL) {
   1212 		if (*ifname == '\0' ||
   1213 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
   1214 			return NULL;
   1215 		*ifname = '\0';
   1216 		goto again;
   1217 	}
   1218 
   1219 	unit = 0;
   1220 	while (cp - name < IFNAMSIZ && *cp) {
   1221 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1222 			/* Bogus unit number. */
   1223 			return NULL;
   1224 		}
   1225 		unit = (unit * 10) + (*cp++ - '0');
   1226 	}
   1227 
   1228 	if (unitp != NULL)
   1229 		*unitp = unit;
   1230 	return ifc;
   1231 }
   1232 
   1233 /*
   1234  * Register a network interface cloner.
   1235  */
   1236 void
   1237 if_clone_attach(struct if_clone *ifc)
   1238 {
   1239 
   1240 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1241 	if_cloners_count++;
   1242 }
   1243 
   1244 /*
   1245  * Unregister a network interface cloner.
   1246  */
   1247 void
   1248 if_clone_detach(struct if_clone *ifc)
   1249 {
   1250 
   1251 	LIST_REMOVE(ifc, ifc_list);
   1252 	if_cloners_count--;
   1253 }
   1254 
   1255 /*
   1256  * Provide list of interface cloners to userspace.
   1257  */
   1258 int
   1259 if_clone_list(int buf_count, char *buffer, int *total)
   1260 {
   1261 	char outbuf[IFNAMSIZ], *dst;
   1262 	struct if_clone *ifc;
   1263 	int count, error = 0;
   1264 
   1265 	*total = if_cloners_count;
   1266 	if ((dst = buffer) == NULL) {
   1267 		/* Just asking how many there are. */
   1268 		return 0;
   1269 	}
   1270 
   1271 	if (buf_count < 0)
   1272 		return EINVAL;
   1273 
   1274 	count = (if_cloners_count < buf_count) ?
   1275 	    if_cloners_count : buf_count;
   1276 
   1277 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1278 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1279 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1280 		if (outbuf[sizeof(outbuf) - 1] != '\0')
   1281 			return ENAMETOOLONG;
   1282 		error = copyout(outbuf, dst, sizeof(outbuf));
   1283 		if (error != 0)
   1284 			break;
   1285 	}
   1286 
   1287 	return error;
   1288 }
   1289 
   1290 void
   1291 ifaref(struct ifaddr *ifa)
   1292 {
   1293 	ifa->ifa_refcnt++;
   1294 }
   1295 
   1296 void
   1297 ifafree(struct ifaddr *ifa)
   1298 {
   1299 	KASSERT(ifa != NULL);
   1300 	KASSERT(ifa->ifa_refcnt > 0);
   1301 
   1302 	if (--ifa->ifa_refcnt == 0) {
   1303 		free(ifa, M_IFADDR);
   1304 	}
   1305 }
   1306 
   1307 void
   1308 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1309 {
   1310 	ifa->ifa_ifp = ifp;
   1311 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1312 	ifaref(ifa);
   1313 }
   1314 
   1315 void
   1316 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1317 {
   1318 	KASSERT(ifa->ifa_ifp == ifp);
   1319 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1320 	ifafree(ifa);
   1321 }
   1322 
   1323 static inline int
   1324 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1325 {
   1326 	return sockaddr_cmp(sa1, sa2) == 0;
   1327 }
   1328 
   1329 /*
   1330  * Locate an interface based on a complete address.
   1331  */
   1332 /*ARGSUSED*/
   1333 struct ifaddr *
   1334 ifa_ifwithaddr(const struct sockaddr *addr)
   1335 {
   1336 	struct ifnet *ifp;
   1337 	struct ifaddr *ifa;
   1338 
   1339 	IFNET_FOREACH(ifp) {
   1340 		if (ifp->if_output == if_nulloutput)
   1341 			continue;
   1342 		IFADDR_FOREACH(ifa, ifp) {
   1343 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1344 				continue;
   1345 			if (equal(addr, ifa->ifa_addr))
   1346 				return ifa;
   1347 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1348 			    ifa->ifa_broadaddr &&
   1349 			    /* IP6 doesn't have broadcast */
   1350 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1351 			    equal(ifa->ifa_broadaddr, addr))
   1352 				return ifa;
   1353 		}
   1354 	}
   1355 	return NULL;
   1356 }
   1357 
   1358 /*
   1359  * Locate the point to point interface with a given destination address.
   1360  */
   1361 /*ARGSUSED*/
   1362 struct ifaddr *
   1363 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1364 {
   1365 	struct ifnet *ifp;
   1366 	struct ifaddr *ifa;
   1367 
   1368 	IFNET_FOREACH(ifp) {
   1369 		if (ifp->if_output == if_nulloutput)
   1370 			continue;
   1371 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1372 			continue;
   1373 		IFADDR_FOREACH(ifa, ifp) {
   1374 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1375 			    ifa->ifa_dstaddr == NULL)
   1376 				continue;
   1377 			if (equal(addr, ifa->ifa_dstaddr))
   1378 				return ifa;
   1379 		}
   1380 	}
   1381 	return NULL;
   1382 }
   1383 
   1384 /*
   1385  * Find an interface on a specific network.  If many, choice
   1386  * is most specific found.
   1387  */
   1388 struct ifaddr *
   1389 ifa_ifwithnet(const struct sockaddr *addr)
   1390 {
   1391 	struct ifnet *ifp;
   1392 	struct ifaddr *ifa;
   1393 	const struct sockaddr_dl *sdl;
   1394 	struct ifaddr *ifa_maybe = 0;
   1395 	u_int af = addr->sa_family;
   1396 	const char *addr_data = addr->sa_data, *cplim;
   1397 
   1398 	if (af == AF_LINK) {
   1399 		sdl = satocsdl(addr);
   1400 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1401 		    ifindex2ifnet[sdl->sdl_index] &&
   1402 		    ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
   1403 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1404 		}
   1405 	}
   1406 #ifdef NETATALK
   1407 	if (af == AF_APPLETALK) {
   1408 		const struct sockaddr_at *sat, *sat2;
   1409 		sat = (const struct sockaddr_at *)addr;
   1410 		IFNET_FOREACH(ifp) {
   1411 			if (ifp->if_output == if_nulloutput)
   1412 				continue;
   1413 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1414 			if (ifa == NULL)
   1415 				continue;
   1416 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1417 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1418 				return ifa; /* exact match */
   1419 			if (ifa_maybe == NULL) {
   1420 				/* else keep the if with the right range */
   1421 				ifa_maybe = ifa;
   1422 			}
   1423 		}
   1424 		return ifa_maybe;
   1425 	}
   1426 #endif
   1427 	IFNET_FOREACH(ifp) {
   1428 		if (ifp->if_output == if_nulloutput)
   1429 			continue;
   1430 		IFADDR_FOREACH(ifa, ifp) {
   1431 			const char *cp, *cp2, *cp3;
   1432 
   1433 			if (ifa->ifa_addr->sa_family != af ||
   1434 			    ifa->ifa_netmask == NULL)
   1435  next:				continue;
   1436 			cp = addr_data;
   1437 			cp2 = ifa->ifa_addr->sa_data;
   1438 			cp3 = ifa->ifa_netmask->sa_data;
   1439 			cplim = (const char *)ifa->ifa_netmask +
   1440 			    ifa->ifa_netmask->sa_len;
   1441 			while (cp3 < cplim) {
   1442 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1443 					/* want to continue for() loop */
   1444 					goto next;
   1445 				}
   1446 			}
   1447 			if (ifa_maybe == NULL ||
   1448 			    rn_refines((void *)ifa->ifa_netmask,
   1449 			    (void *)ifa_maybe->ifa_netmask))
   1450 				ifa_maybe = ifa;
   1451 		}
   1452 	}
   1453 	return ifa_maybe;
   1454 }
   1455 
   1456 /*
   1457  * Find the interface of the addresss.
   1458  */
   1459 struct ifaddr *
   1460 ifa_ifwithladdr(const struct sockaddr *addr)
   1461 {
   1462 	struct ifaddr *ia;
   1463 
   1464 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   1465 	    (ia = ifa_ifwithnet(addr)))
   1466 		return ia;
   1467 	return NULL;
   1468 }
   1469 
   1470 /*
   1471  * Find an interface using a specific address family
   1472  */
   1473 struct ifaddr *
   1474 ifa_ifwithaf(int af)
   1475 {
   1476 	struct ifnet *ifp;
   1477 	struct ifaddr *ifa;
   1478 
   1479 	IFNET_FOREACH(ifp) {
   1480 		if (ifp->if_output == if_nulloutput)
   1481 			continue;
   1482 		IFADDR_FOREACH(ifa, ifp) {
   1483 			if (ifa->ifa_addr->sa_family == af)
   1484 				return ifa;
   1485 		}
   1486 	}
   1487 	return NULL;
   1488 }
   1489 
   1490 /*
   1491  * Find an interface address specific to an interface best matching
   1492  * a given address.
   1493  */
   1494 struct ifaddr *
   1495 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   1496 {
   1497 	struct ifaddr *ifa;
   1498 	const char *cp, *cp2, *cp3;
   1499 	const char *cplim;
   1500 	struct ifaddr *ifa_maybe = 0;
   1501 	u_int af = addr->sa_family;
   1502 
   1503 	if (ifp->if_output == if_nulloutput)
   1504 		return NULL;
   1505 
   1506 	if (af >= AF_MAX)
   1507 		return NULL;
   1508 
   1509 	IFADDR_FOREACH(ifa, ifp) {
   1510 		if (ifa->ifa_addr->sa_family != af)
   1511 			continue;
   1512 		ifa_maybe = ifa;
   1513 		if (ifa->ifa_netmask == NULL) {
   1514 			if (equal(addr, ifa->ifa_addr) ||
   1515 			    (ifa->ifa_dstaddr &&
   1516 			     equal(addr, ifa->ifa_dstaddr)))
   1517 				return ifa;
   1518 			continue;
   1519 		}
   1520 		cp = addr->sa_data;
   1521 		cp2 = ifa->ifa_addr->sa_data;
   1522 		cp3 = ifa->ifa_netmask->sa_data;
   1523 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   1524 		for (; cp3 < cplim; cp3++) {
   1525 			if ((*cp++ ^ *cp2++) & *cp3)
   1526 				break;
   1527 		}
   1528 		if (cp3 == cplim)
   1529 			return ifa;
   1530 	}
   1531 	return ifa_maybe;
   1532 }
   1533 
   1534 /*
   1535  * Default action when installing a route with a Link Level gateway.
   1536  * Lookup an appropriate real ifa to point to.
   1537  * This should be moved to /sys/net/link.c eventually.
   1538  */
   1539 void
   1540 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   1541 {
   1542 	struct ifaddr *ifa;
   1543 	const struct sockaddr *dst;
   1544 	struct ifnet *ifp;
   1545 
   1546 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   1547 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   1548 		return;
   1549 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
   1550 		rt_replace_ifa(rt, ifa);
   1551 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   1552 			ifa->ifa_rtrequest(cmd, rt, info);
   1553 	}
   1554 }
   1555 
   1556 /*
   1557  * Handle a change in the interface link state.
   1558  * XXX: We should listen to the routing socket in-kernel rather
   1559  * than calling in6_if_link_* functions directly from here.
   1560  */
   1561 void
   1562 if_link_state_change(struct ifnet *ifp, int link_state)
   1563 {
   1564 	int s;
   1565 	int old_link_state;
   1566 	struct domain *dp;
   1567 
   1568 	s = splnet();
   1569 	if (ifp->if_link_state == link_state) {
   1570 		splx(s);
   1571 		return;
   1572 	}
   1573 
   1574 	old_link_state = ifp->if_link_state;
   1575 	ifp->if_link_state = link_state;
   1576 #ifdef DEBUG
   1577 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   1578 		link_state == LINK_STATE_UP ? "UP" :
   1579 		link_state == LINK_STATE_DOWN ? "DOWN" :
   1580 		"UNKNOWN",
   1581 		 old_link_state == LINK_STATE_UP ? "UP" :
   1582 		old_link_state == LINK_STATE_DOWN ? "DOWN" :
   1583 		"UNKNOWN");
   1584 #endif
   1585 
   1586 	/*
   1587 	 * When going from UNKNOWN to UP, we need to mark existing
   1588 	 * addresses as tentative and restart DAD as we may have
   1589 	 * erroneously not found a duplicate.
   1590 	 *
   1591 	 * This needs to happen before rt_ifmsg to avoid a race where
   1592 	 * listeners would have an address and expect it to work right
   1593 	 * away.
   1594 	 */
   1595 	if (link_state == LINK_STATE_UP &&
   1596 	    old_link_state == LINK_STATE_UNKNOWN)
   1597 	{
   1598 		DOMAIN_FOREACH(dp) {
   1599 			if (dp->dom_if_link_state_change != NULL)
   1600 				dp->dom_if_link_state_change(ifp,
   1601 				    LINK_STATE_DOWN);
   1602 		}
   1603 	}
   1604 
   1605 	/* Notify that the link state has changed. */
   1606 	rt_ifmsg(ifp);
   1607 
   1608 #if NCARP > 0
   1609 	if (ifp->if_carp)
   1610 		carp_carpdev_state(ifp);
   1611 #endif
   1612 
   1613 	DOMAIN_FOREACH(dp) {
   1614 		if (dp->dom_if_link_state_change != NULL)
   1615 			dp->dom_if_link_state_change(ifp, link_state);
   1616 	}
   1617 
   1618 	splx(s);
   1619 }
   1620 
   1621 /*
   1622  * Default action when installing a local route on a point-to-point
   1623  * interface.
   1624  */
   1625 void
   1626 p2p_rtrequest(int req, struct rtentry *rt,
   1627     __unused const struct rt_addrinfo *info)
   1628 {
   1629 	struct ifnet *ifp = rt->rt_ifp;
   1630 	struct ifaddr *ifa, *lo0ifa;
   1631 
   1632 	switch (req) {
   1633 	case RTM_ADD:
   1634 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   1635 			break;
   1636 
   1637 		IFADDR_FOREACH(ifa, ifp) {
   1638 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   1639 				break;
   1640 		}
   1641 		if (ifa == NULL)
   1642 			break;
   1643 
   1644 		/*
   1645 		 * Ensure lo0 has an address of the same family.
   1646 		 */
   1647 		IFADDR_FOREACH(lo0ifa, lo0ifp) {
   1648 			if (lo0ifa->ifa_addr->sa_family ==
   1649 			    ifa->ifa_addr->sa_family)
   1650 				break;
   1651 		}
   1652 		if (lo0ifa == NULL)
   1653 			break;
   1654 
   1655 		rt->rt_ifp = lo0ifp;
   1656 		rt->rt_flags &= ~RTF_LLINFO;
   1657 
   1658 		/*
   1659 		 * Make sure to set rt->rt_ifa to the interface
   1660 		 * address we are using, otherwise we will have trouble
   1661 		 * with source address selection.
   1662 		 */
   1663 		if (ifa != rt->rt_ifa)
   1664 			rt_replace_ifa(rt, ifa);
   1665 		break;
   1666 	case RTM_DELETE:
   1667 	case RTM_RESOLVE:
   1668 	default:
   1669 		break;
   1670 	}
   1671 }
   1672 
   1673 /*
   1674  * Mark an interface down and notify protocols of
   1675  * the transition.
   1676  * NOTE: must be called at splsoftnet or equivalent.
   1677  */
   1678 void
   1679 if_down(struct ifnet *ifp)
   1680 {
   1681 	struct ifaddr *ifa;
   1682 	struct domain *dp;
   1683 
   1684 	ifp->if_flags &= ~IFF_UP;
   1685 	nanotime(&ifp->if_lastchange);
   1686 	IFADDR_FOREACH(ifa, ifp)
   1687 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   1688 	IFQ_PURGE(&ifp->if_snd);
   1689 #if NCARP > 0
   1690 	if (ifp->if_carp)
   1691 		carp_carpdev_state(ifp);
   1692 #endif
   1693 	rt_ifmsg(ifp);
   1694 	DOMAIN_FOREACH(dp) {
   1695 		if (dp->dom_if_down)
   1696 			dp->dom_if_down(ifp);
   1697 	}
   1698 }
   1699 
   1700 /*
   1701  * Mark an interface up and notify protocols of
   1702  * the transition.
   1703  * NOTE: must be called at splsoftnet or equivalent.
   1704  */
   1705 void
   1706 if_up(struct ifnet *ifp)
   1707 {
   1708 #ifdef notyet
   1709 	struct ifaddr *ifa;
   1710 #endif
   1711 	struct domain *dp;
   1712 
   1713 	ifp->if_flags |= IFF_UP;
   1714 	nanotime(&ifp->if_lastchange);
   1715 #ifdef notyet
   1716 	/* this has no effect on IP, and will kill all ISO connections XXX */
   1717 	IFADDR_FOREACH(ifa, ifp)
   1718 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   1719 #endif
   1720 #if NCARP > 0
   1721 	if (ifp->if_carp)
   1722 		carp_carpdev_state(ifp);
   1723 #endif
   1724 	rt_ifmsg(ifp);
   1725 	DOMAIN_FOREACH(dp) {
   1726 		if (dp->dom_if_up)
   1727 			dp->dom_if_up(ifp);
   1728 	}
   1729 }
   1730 
   1731 /*
   1732  * Handle interface slowtimo timer routine.  Called
   1733  * from softclock, we decrement timer (if set) and
   1734  * call the appropriate interface routine on expiration.
   1735  */
   1736 static void
   1737 if_slowtimo(void *arg)
   1738 {
   1739 	void (*slowtimo)(struct ifnet *);
   1740 	struct ifnet *ifp = arg;
   1741 	int s;
   1742 
   1743 	slowtimo = ifp->if_slowtimo;
   1744 	if (__predict_false(slowtimo == NULL))
   1745 		return;
   1746 
   1747 	s = splnet();
   1748 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   1749 		(*slowtimo)(ifp);
   1750 
   1751 	splx(s);
   1752 
   1753 	if (__predict_true(ifp->if_slowtimo != NULL))
   1754 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   1755 }
   1756 
   1757 /*
   1758  * Set/clear promiscuous mode on interface ifp based on the truth value
   1759  * of pswitch.  The calls are reference counted so that only the first
   1760  * "on" request actually has an effect, as does the final "off" request.
   1761  * Results are undefined if the "off" and "on" requests are not matched.
   1762  */
   1763 int
   1764 ifpromisc(struct ifnet *ifp, int pswitch)
   1765 {
   1766 	int pcount, ret;
   1767 	short nflags;
   1768 
   1769 	pcount = ifp->if_pcount;
   1770 	if (pswitch) {
   1771 		/*
   1772 		 * Allow the device to be "placed" into promiscuous
   1773 		 * mode even if it is not configured up.  It will
   1774 		 * consult IFF_PROMISC when it is brought up.
   1775 		 */
   1776 		if (ifp->if_pcount++ != 0)
   1777 			return 0;
   1778 		nflags = ifp->if_flags | IFF_PROMISC;
   1779 	} else {
   1780 		if (--ifp->if_pcount > 0)
   1781 			return 0;
   1782 		nflags = ifp->if_flags & ~IFF_PROMISC;
   1783 	}
   1784 	ret = if_flags_set(ifp, nflags);
   1785 	/* Restore interface state if not successful. */
   1786 	if (ret != 0) {
   1787 		ifp->if_pcount = pcount;
   1788 	}
   1789 	return ret;
   1790 }
   1791 
   1792 /*
   1793  * Map interface name to
   1794  * interface structure pointer.
   1795  */
   1796 struct ifnet *
   1797 ifunit(const char *name)
   1798 {
   1799 	struct ifnet *ifp;
   1800 	const char *cp = name;
   1801 	u_int unit = 0;
   1802 	u_int i;
   1803 
   1804 	/*
   1805 	 * If the entire name is a number, treat it as an ifindex.
   1806 	 */
   1807 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   1808 		unit = unit * 10 + (*cp - '0');
   1809 	}
   1810 
   1811 	/*
   1812 	 * If the number took all of the name, then it's a valid ifindex.
   1813 	 */
   1814 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
   1815 		if (unit >= if_indexlim)
   1816 			return NULL;
   1817 		ifp = ifindex2ifnet[unit];
   1818 		if (ifp == NULL || ifp->if_output == if_nulloutput)
   1819 			return NULL;
   1820 		return ifp;
   1821 	}
   1822 
   1823 	IFNET_FOREACH(ifp) {
   1824 		if (ifp->if_output == if_nulloutput)
   1825 			continue;
   1826 	 	if (strcmp(ifp->if_xname, name) == 0)
   1827 			return ifp;
   1828 	}
   1829 	return NULL;
   1830 }
   1831 
   1832 ifnet_t *
   1833 if_byindex(u_int idx)
   1834 {
   1835 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
   1836 }
   1837 
   1838 /* common */
   1839 int
   1840 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   1841 {
   1842 	int s;
   1843 	struct ifreq *ifr;
   1844 	struct ifcapreq *ifcr;
   1845 	struct ifdatareq *ifdr;
   1846 
   1847 	switch (cmd) {
   1848 	case SIOCSIFCAP:
   1849 		ifcr = data;
   1850 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   1851 			return EINVAL;
   1852 
   1853 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   1854 			return 0;
   1855 
   1856 		ifp->if_capenable = ifcr->ifcr_capenable;
   1857 
   1858 		/* Pre-compute the checksum flags mask. */
   1859 		ifp->if_csum_flags_tx = 0;
   1860 		ifp->if_csum_flags_rx = 0;
   1861 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   1862 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   1863 		}
   1864 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   1865 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   1866 		}
   1867 
   1868 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   1869 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   1870 		}
   1871 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   1872 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   1873 		}
   1874 
   1875 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   1876 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   1877 		}
   1878 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   1879 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   1880 		}
   1881 
   1882 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   1883 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   1884 		}
   1885 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   1886 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   1887 		}
   1888 
   1889 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   1890 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   1891 		}
   1892 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   1893 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   1894 		}
   1895 		if (ifp->if_flags & IFF_UP)
   1896 			return ENETRESET;
   1897 		return 0;
   1898 	case SIOCSIFFLAGS:
   1899 		ifr = data;
   1900 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   1901 			s = splnet();
   1902 			if_down(ifp);
   1903 			splx(s);
   1904 		}
   1905 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   1906 			s = splnet();
   1907 			if_up(ifp);
   1908 			splx(s);
   1909 		}
   1910 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   1911 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   1912 		break;
   1913 	case SIOCGIFFLAGS:
   1914 		ifr = data;
   1915 		ifr->ifr_flags = ifp->if_flags;
   1916 		break;
   1917 
   1918 	case SIOCGIFMETRIC:
   1919 		ifr = data;
   1920 		ifr->ifr_metric = ifp->if_metric;
   1921 		break;
   1922 
   1923 	case SIOCGIFMTU:
   1924 		ifr = data;
   1925 		ifr->ifr_mtu = ifp->if_mtu;
   1926 		break;
   1927 
   1928 	case SIOCGIFDLT:
   1929 		ifr = data;
   1930 		ifr->ifr_dlt = ifp->if_dlt;
   1931 		break;
   1932 
   1933 	case SIOCGIFCAP:
   1934 		ifcr = data;
   1935 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   1936 		ifcr->ifcr_capenable = ifp->if_capenable;
   1937 		break;
   1938 
   1939 	case SIOCSIFMETRIC:
   1940 		ifr = data;
   1941 		ifp->if_metric = ifr->ifr_metric;
   1942 		break;
   1943 
   1944 	case SIOCGIFDATA:
   1945 		ifdr = data;
   1946 		ifdr->ifdr_data = ifp->if_data;
   1947 		break;
   1948 
   1949 	case SIOCGIFINDEX:
   1950 		ifr = data;
   1951 		ifr->ifr_index = ifp->if_index;
   1952 		break;
   1953 
   1954 	case SIOCZIFDATA:
   1955 		ifdr = data;
   1956 		ifdr->ifdr_data = ifp->if_data;
   1957 		/*
   1958 		 * Assumes that the volatile counters that can be
   1959 		 * zero'ed are at the end of if_data.
   1960 		 */
   1961 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   1962 		    offsetof(struct if_data, ifi_ipackets));
   1963 		/*
   1964 		 * The memset() clears to the bottm of if_data. In the area,
   1965 		 * if_lastchange is included. Please be careful if new entry
   1966 		 * will be added into if_data or rewite this.
   1967 		 *
   1968 		 * And also, update if_lastchnage.
   1969 		 */
   1970 		getnanotime(&ifp->if_lastchange);
   1971 		break;
   1972 	case SIOCSIFMTU:
   1973 		ifr = data;
   1974 		if (ifp->if_mtu == ifr->ifr_mtu)
   1975 			break;
   1976 		ifp->if_mtu = ifr->ifr_mtu;
   1977 		/*
   1978 		 * If the link MTU changed, do network layer specific procedure.
   1979 		 */
   1980 #ifdef INET6
   1981 		if (in6_present)
   1982 			nd6_setmtu(ifp);
   1983 #endif
   1984 		return ENETRESET;
   1985 	default:
   1986 		return ENOTTY;
   1987 	}
   1988 	return 0;
   1989 }
   1990 
   1991 int
   1992 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   1993 {
   1994 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   1995 	struct ifaddr *ifa;
   1996 	const struct sockaddr *any, *sa;
   1997 	union {
   1998 		struct sockaddr sa;
   1999 		struct sockaddr_storage ss;
   2000 	} u, v;
   2001 
   2002 	switch (cmd) {
   2003 	case SIOCSIFADDRPREF:
   2004 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   2005 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   2006 		    NULL) != 0)
   2007 			return EPERM;
   2008 	case SIOCGIFADDRPREF:
   2009 		break;
   2010 	default:
   2011 		return EOPNOTSUPP;
   2012 	}
   2013 
   2014 	/* sanity checks */
   2015 	if (data == NULL || ifp == NULL) {
   2016 		panic("invalid argument to %s", __func__);
   2017 		/*NOTREACHED*/
   2018 	}
   2019 
   2020 	/* address must be specified on ADD and DELETE */
   2021 	sa = sstocsa(&ifap->ifap_addr);
   2022 	if (sa->sa_family != sofamily(so))
   2023 		return EINVAL;
   2024 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   2025 		return EINVAL;
   2026 
   2027 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   2028 
   2029 	IFADDR_FOREACH(ifa, ifp) {
   2030 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   2031 			continue;
   2032 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   2033 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   2034 			break;
   2035 	}
   2036 	if (ifa == NULL)
   2037 		return EADDRNOTAVAIL;
   2038 
   2039 	switch (cmd) {
   2040 	case SIOCSIFADDRPREF:
   2041 		ifa->ifa_preference = ifap->ifap_preference;
   2042 		return 0;
   2043 	case SIOCGIFADDRPREF:
   2044 		/* fill in the if_laddrreq structure */
   2045 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   2046 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   2047 		ifap->ifap_preference = ifa->ifa_preference;
   2048 		return 0;
   2049 	default:
   2050 		return EOPNOTSUPP;
   2051 	}
   2052 }
   2053 
   2054 static void
   2055 ifnet_lock_enter(struct ifnet_lock *il)
   2056 {
   2057 	uint64_t *nenter;
   2058 
   2059 	/* Before trying to acquire the mutex, increase the count of threads
   2060 	 * who have entered or who wait to enter the critical section.
   2061 	 * Avoid one costly locked memory transaction by keeping a count for
   2062 	 * each CPU.
   2063 	 */
   2064 	nenter = percpu_getref(il->il_nenter);
   2065 	(*nenter)++;
   2066 	percpu_putref(il->il_nenter);
   2067 	mutex_enter(&il->il_lock);
   2068 }
   2069 
   2070 static void
   2071 ifnet_lock_exit(struct ifnet_lock *il)
   2072 {
   2073 	/* Increase the count of threads who have exited the critical
   2074 	 * section.  Increase while we still hold the lock.
   2075 	 */
   2076 	il->il_nexit++;
   2077 	mutex_exit(&il->il_lock);
   2078 }
   2079 
   2080 /*
   2081  * Interface ioctls.
   2082  */
   2083 static int
   2084 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   2085 {
   2086 	struct ifnet *ifp;
   2087 	struct ifreq *ifr;
   2088 	int error = 0;
   2089 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   2090 	u_long ocmd = cmd;
   2091 #endif
   2092 	short oif_flags;
   2093 #ifdef COMPAT_OIFREQ
   2094 	struct ifreq ifrb;
   2095 	struct oifreq *oifr = NULL;
   2096 #endif
   2097 	int r;
   2098 
   2099 	switch (cmd) {
   2100 #ifdef COMPAT_OIFREQ
   2101 	case OSIOCGIFCONF:
   2102 	case OOSIOCGIFCONF:
   2103 		return compat_ifconf(cmd, data);
   2104 #endif
   2105 #ifdef COMPAT_OIFDATA
   2106 	case OSIOCGIFDATA:
   2107 	case OSIOCZIFDATA:
   2108 		return compat_ifdatareq(l, cmd, data);
   2109 #endif
   2110 	case SIOCGIFCONF:
   2111 		return ifconf(cmd, data);
   2112 	case SIOCINITIFADDR:
   2113 		return EPERM;
   2114 	}
   2115 
   2116 #ifdef COMPAT_OIFREQ
   2117 	cmd = compat_cvtcmd(cmd);
   2118 	if (cmd != ocmd) {
   2119 		oifr = data;
   2120 		data = ifr = &ifrb;
   2121 		ifreqo2n(oifr, ifr);
   2122 	} else
   2123 #endif
   2124 		ifr = data;
   2125 
   2126 	ifp = ifunit(ifr->ifr_name);
   2127 
   2128 	switch (cmd) {
   2129 	case SIOCIFCREATE:
   2130 	case SIOCIFDESTROY:
   2131 		if (l != NULL) {
   2132 			error = kauth_authorize_network(l->l_cred,
   2133 			    KAUTH_NETWORK_INTERFACE,
   2134 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2135 			    (void *)cmd, NULL);
   2136 			if (error != 0)
   2137 				return error;
   2138 		}
   2139 		mutex_enter(&if_clone_mtx);
   2140 		r = (cmd == SIOCIFCREATE) ?
   2141 			if_clone_create(ifr->ifr_name) :
   2142 			if_clone_destroy(ifr->ifr_name);
   2143 		mutex_exit(&if_clone_mtx);
   2144 		return r;
   2145 
   2146 	case SIOCIFGCLONERS:
   2147 		{
   2148 			struct if_clonereq *req = (struct if_clonereq *)data;
   2149 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   2150 			    &req->ifcr_total);
   2151 		}
   2152 	}
   2153 
   2154 	if (ifp == NULL)
   2155 		return ENXIO;
   2156 
   2157 	switch (cmd) {
   2158 	case SIOCALIFADDR:
   2159 	case SIOCDLIFADDR:
   2160 	case SIOCSIFADDRPREF:
   2161 	case SIOCSIFFLAGS:
   2162 	case SIOCSIFCAP:
   2163 	case SIOCSIFMETRIC:
   2164 	case SIOCZIFDATA:
   2165 	case SIOCSIFMTU:
   2166 	case SIOCSIFPHYADDR:
   2167 	case SIOCDIFPHYADDR:
   2168 #ifdef INET6
   2169 	case SIOCSIFPHYADDR_IN6:
   2170 #endif
   2171 	case SIOCSLIFPHYADDR:
   2172 	case SIOCADDMULTI:
   2173 	case SIOCDELMULTI:
   2174 	case SIOCSIFMEDIA:
   2175 	case SIOCSDRVSPEC:
   2176 	case SIOCG80211:
   2177 	case SIOCS80211:
   2178 	case SIOCS80211NWID:
   2179 	case SIOCS80211NWKEY:
   2180 	case SIOCS80211POWER:
   2181 	case SIOCS80211BSSID:
   2182 	case SIOCS80211CHANNEL:
   2183 	case SIOCSLINKSTR:
   2184 		if (l != NULL) {
   2185 			error = kauth_authorize_network(l->l_cred,
   2186 			    KAUTH_NETWORK_INTERFACE,
   2187 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2188 			    (void *)cmd, NULL);
   2189 			if (error != 0)
   2190 				return error;
   2191 		}
   2192 	}
   2193 
   2194 	oif_flags = ifp->if_flags;
   2195 
   2196 	ifnet_lock_enter(ifp->if_ioctl_lock);
   2197 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   2198 	if (error != ENOTTY)
   2199 		;
   2200 	else if (so->so_proto == NULL)
   2201 		error = EOPNOTSUPP;
   2202 	else {
   2203 #ifdef COMPAT_OSOCK
   2204 		error = compat_ifioctl(so, ocmd, cmd, data, l);
   2205 #else
   2206 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   2207 		    cmd, data, ifp);
   2208 #endif
   2209 	}
   2210 
   2211 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   2212 		if ((ifp->if_flags & IFF_UP) != 0) {
   2213 			int s = splnet();
   2214 			if_up(ifp);
   2215 			splx(s);
   2216 		}
   2217 	}
   2218 #ifdef COMPAT_OIFREQ
   2219 	if (cmd != ocmd)
   2220 		ifreqn2o(oifr, ifr);
   2221 #endif
   2222 
   2223 	ifnet_lock_exit(ifp->if_ioctl_lock);
   2224 	return error;
   2225 }
   2226 
   2227 /* This callback adds to the sum in `arg' the number of
   2228  * threads on `ci' who have entered or who wait to enter the
   2229  * critical section.
   2230  */
   2231 static void
   2232 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
   2233 {
   2234 	uint64_t *sum = arg, *nenter = p;
   2235 
   2236 	*sum += *nenter;
   2237 }
   2238 
   2239 /* Return the number of threads who have entered or who wait
   2240  * to enter the critical section on all CPUs.
   2241  */
   2242 static uint64_t
   2243 ifnet_lock_entrances(struct ifnet_lock *il)
   2244 {
   2245 	uint64_t sum = 0;
   2246 
   2247 	percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
   2248 
   2249 	return sum;
   2250 }
   2251 
   2252 static int
   2253 ifioctl_attach(struct ifnet *ifp)
   2254 {
   2255 	struct ifnet_lock *il;
   2256 
   2257 	/* If the driver has not supplied its own if_ioctl, then
   2258 	 * supply the default.
   2259 	 */
   2260 	if (ifp->if_ioctl == NULL)
   2261 		ifp->if_ioctl = ifioctl_common;
   2262 
   2263 	/* Create an ifnet_lock for synchronizing ifioctls. */
   2264 	if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
   2265 		return ENOMEM;
   2266 
   2267 	il->il_nenter = percpu_alloc(sizeof(uint64_t));
   2268 	if (il->il_nenter == NULL) {
   2269 		kmem_free(il, sizeof(*il));
   2270 		return ENOMEM;
   2271 	}
   2272 
   2273 	mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
   2274 	cv_init(&il->il_emptied, ifp->if_xname);
   2275 
   2276 	ifp->if_ioctl_lock = il;
   2277 
   2278 	return 0;
   2279 }
   2280 
   2281 /*
   2282  * This must not be called until after `ifp' has been withdrawn from the
   2283  * ifnet tables so that ifioctl() cannot get a handle on it by calling
   2284  * ifunit().
   2285  */
   2286 static void
   2287 ifioctl_detach(struct ifnet *ifp)
   2288 {
   2289 	struct ifnet_lock *il;
   2290 
   2291 	il = ifp->if_ioctl_lock;
   2292 	mutex_enter(&il->il_lock);
   2293 	/* Install if_nullioctl to make sure that any thread that
   2294 	 * subsequently enters the critical section will quit it
   2295 	 * immediately and signal the condition variable that we
   2296 	 * wait on, below.
   2297 	 */
   2298 	ifp->if_ioctl = if_nullioctl;
   2299 	/* Sleep while threads are still in the critical section or
   2300 	 * wait to enter it.
   2301 	 */
   2302 	while (ifnet_lock_entrances(il) != il->il_nexit)
   2303 		cv_wait(&il->il_emptied, &il->il_lock);
   2304 	/* At this point, we are the only thread still in the critical
   2305 	 * section, and no new thread can get a handle on the ifioctl
   2306 	 * lock, so it is safe to free its memory.
   2307 	 */
   2308 	mutex_exit(&il->il_lock);
   2309 	ifp->if_ioctl_lock = NULL;
   2310 	percpu_free(il->il_nenter, sizeof(uint64_t));
   2311 	il->il_nenter = NULL;
   2312 	cv_destroy(&il->il_emptied);
   2313 	mutex_destroy(&il->il_lock);
   2314 	kmem_free(il, sizeof(*il));
   2315 }
   2316 
   2317 /*
   2318  * Return interface configuration
   2319  * of system.  List may be used
   2320  * in later ioctl's (above) to get
   2321  * other information.
   2322  *
   2323  * Each record is a struct ifreq.  Before the addition of
   2324  * sockaddr_storage, the API rule was that sockaddr flavors that did
   2325  * not fit would extend beyond the struct ifreq, with the next struct
   2326  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   2327  * union in struct ifreq includes struct sockaddr_storage, every kind
   2328  * of sockaddr must fit.  Thus, there are no longer any overlength
   2329  * records.
   2330  *
   2331  * Records are added to the user buffer if they fit, and ifc_len is
   2332  * adjusted to the length that was written.  Thus, the user is only
   2333  * assured of getting the complete list if ifc_len on return is at
   2334  * least sizeof(struct ifreq) less than it was on entry.
   2335  *
   2336  * If the user buffer pointer is NULL, this routine copies no data and
   2337  * returns the amount of space that would be needed.
   2338  *
   2339  * Invariants:
   2340  * ifrp points to the next part of the user's buffer to be used.  If
   2341  * ifrp != NULL, space holds the number of bytes remaining that we may
   2342  * write at ifrp.  Otherwise, space holds the number of bytes that
   2343  * would have been written had there been adequate space.
   2344  */
   2345 /*ARGSUSED*/
   2346 static int
   2347 ifconf(u_long cmd, void *data)
   2348 {
   2349 	struct ifconf *ifc = (struct ifconf *)data;
   2350 	struct ifnet *ifp;
   2351 	struct ifaddr *ifa;
   2352 	struct ifreq ifr, *ifrp = NULL;
   2353 	int space = 0, error = 0;
   2354 	const int sz = (int)sizeof(struct ifreq);
   2355 	const bool docopy = ifc->ifc_req != NULL;
   2356 
   2357 	if (docopy) {
   2358 		space = ifc->ifc_len;
   2359 		ifrp = ifc->ifc_req;
   2360 	}
   2361 
   2362 	IFNET_FOREACH(ifp) {
   2363 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   2364 		    sizeof(ifr.ifr_name));
   2365 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
   2366 			return ENAMETOOLONG;
   2367 		if (IFADDR_EMPTY(ifp)) {
   2368 			/* Interface with no addresses - send zero sockaddr. */
   2369 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   2370 			if (!docopy) {
   2371 				space += sz;
   2372 				continue;
   2373 			}
   2374 			if (space >= sz) {
   2375 				error = copyout(&ifr, ifrp, sz);
   2376 				if (error != 0)
   2377 					return error;
   2378 				ifrp++;
   2379 				space -= sz;
   2380 			}
   2381 		}
   2382 
   2383 		IFADDR_FOREACH(ifa, ifp) {
   2384 			struct sockaddr *sa = ifa->ifa_addr;
   2385 			/* all sockaddrs must fit in sockaddr_storage */
   2386 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   2387 
   2388 			if (!docopy) {
   2389 				space += sz;
   2390 				continue;
   2391 			}
   2392 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   2393 			if (space >= sz) {
   2394 				error = copyout(&ifr, ifrp, sz);
   2395 				if (error != 0)
   2396 					return (error);
   2397 				ifrp++; space -= sz;
   2398 			}
   2399 		}
   2400 	}
   2401 	if (docopy) {
   2402 		KASSERT(0 <= space && space <= ifc->ifc_len);
   2403 		ifc->ifc_len -= space;
   2404 	} else {
   2405 		KASSERT(space >= 0);
   2406 		ifc->ifc_len = space;
   2407 	}
   2408 	return (0);
   2409 }
   2410 
   2411 int
   2412 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   2413 {
   2414 	uint8_t len;
   2415 #ifdef COMPAT_OIFREQ
   2416 	struct ifreq ifrb;
   2417 	struct oifreq *oifr = NULL;
   2418 	u_long ocmd = cmd;
   2419 	cmd = compat_cvtcmd(cmd);
   2420 	if (cmd != ocmd) {
   2421 		oifr = (struct oifreq *)(void *)ifr;
   2422 		ifr = &ifrb;
   2423 		ifreqo2n(oifr, ifr);
   2424 		len = sizeof(oifr->ifr_addr);
   2425 	} else
   2426 #endif
   2427 		len = sizeof(ifr->ifr_ifru.ifru_space);
   2428 
   2429 	if (len < sa->sa_len)
   2430 		return EFBIG;
   2431 
   2432 	memset(&ifr->ifr_addr, 0, len);
   2433 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   2434 
   2435 #ifdef COMPAT_OIFREQ
   2436 	if (cmd != ocmd)
   2437 		ifreqn2o(oifr, ifr);
   2438 #endif
   2439 	return 0;
   2440 }
   2441 
   2442 /*
   2443  * Queue message on interface, and start output if interface
   2444  * not yet active.
   2445  */
   2446 int
   2447 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
   2448     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
   2449 {
   2450 	int len = m->m_pkthdr.len;
   2451 	int mflags = m->m_flags;
   2452 	int s = splnet();
   2453 	int error;
   2454 
   2455 	IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
   2456 	if (error != 0)
   2457 		goto out;
   2458 	ifp->if_obytes += len;
   2459 	if (mflags & M_MCAST)
   2460 		ifp->if_omcasts++;
   2461 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   2462 		(*ifp->if_start)(ifp);
   2463 out:
   2464 	splx(s);
   2465 	return error;
   2466 }
   2467 
   2468 /*
   2469  * Queue message on interface, possibly using a second fast queue
   2470  */
   2471 int
   2472 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
   2473     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
   2474 {
   2475 	int error = 0;
   2476 
   2477 	if (ifq != NULL
   2478 #ifdef ALTQ
   2479 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   2480 #endif
   2481 	    ) {
   2482 		if (IF_QFULL(ifq)) {
   2483 			IF_DROP(&ifp->if_snd);
   2484 			m_freem(m);
   2485 			if (error == 0)
   2486 				error = ENOBUFS;
   2487 		} else
   2488 			IF_ENQUEUE(ifq, m);
   2489 	} else
   2490 		IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
   2491 	if (error != 0) {
   2492 		++ifp->if_oerrors;
   2493 		return error;
   2494 	}
   2495 	return 0;
   2496 }
   2497 
   2498 int
   2499 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   2500 {
   2501 	int rc;
   2502 
   2503 	if (ifp->if_initaddr != NULL)
   2504 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   2505 	else if (src ||
   2506 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   2507 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   2508 
   2509 	return rc;
   2510 }
   2511 
   2512 int
   2513 if_do_dad(struct ifnet *ifp)
   2514 {
   2515 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2516 		return 0;
   2517 
   2518 	switch (ifp->if_type) {
   2519 	case IFT_FAITH:
   2520 		/*
   2521 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2522 		 * but loop packets back.  We do not have to do DAD on such
   2523 		 * interfaces.  We should even omit it, because loop-backed
   2524 		 * responses would confuse the DAD procedure.
   2525 		 */
   2526 		return 0;
   2527 	default:
   2528 		/*
   2529 		 * Our DAD routine requires the interface up and running.
   2530 		 * However, some interfaces can be up before the RUNNING
   2531 		 * status.  Additionaly, users may try to assign addresses
   2532 		 * before the interface becomes up (or running).
   2533 		 * We simply skip DAD in such a case as a work around.
   2534 		 * XXX: we should rather mark "tentative" on such addresses,
   2535 		 * and do DAD after the interface becomes ready.
   2536 		 */
   2537 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2538 		    (IFF_UP|IFF_RUNNING))
   2539 			return 0;
   2540 
   2541 		return 1;
   2542 	}
   2543 }
   2544 
   2545 int
   2546 if_flags_set(ifnet_t *ifp, const short flags)
   2547 {
   2548 	int rc;
   2549 
   2550 	if (ifp->if_setflags != NULL)
   2551 		rc = (*ifp->if_setflags)(ifp, flags);
   2552 	else {
   2553 		short cantflags, chgdflags;
   2554 		struct ifreq ifr;
   2555 
   2556 		chgdflags = ifp->if_flags ^ flags;
   2557 		cantflags = chgdflags & IFF_CANTCHANGE;
   2558 
   2559 		if (cantflags != 0)
   2560 			ifp->if_flags ^= cantflags;
   2561 
   2562                 /* Traditionally, we do not call if_ioctl after
   2563                  * setting/clearing only IFF_PROMISC if the interface
   2564                  * isn't IFF_UP.  Uphold that tradition.
   2565 		 */
   2566 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   2567 			return 0;
   2568 
   2569 		memset(&ifr, 0, sizeof(ifr));
   2570 
   2571 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   2572 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   2573 
   2574 		if (rc != 0 && cantflags != 0)
   2575 			ifp->if_flags ^= cantflags;
   2576 	}
   2577 
   2578 	return rc;
   2579 }
   2580 
   2581 int
   2582 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   2583 {
   2584 	int rc;
   2585 	struct ifreq ifr;
   2586 
   2587 	if (ifp->if_mcastop != NULL)
   2588 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   2589 	else {
   2590 		ifreq_setaddr(cmd, &ifr, sa);
   2591 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   2592 	}
   2593 
   2594 	return rc;
   2595 }
   2596 
   2597 static void
   2598 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   2599     struct ifaltq *ifq)
   2600 {
   2601 	const struct sysctlnode *cnode, *rnode;
   2602 
   2603 	if (sysctl_createv(clog, 0, NULL, &rnode,
   2604 		       CTLFLAG_PERMANENT,
   2605 		       CTLTYPE_NODE, "interfaces",
   2606 		       SYSCTL_DESCR("Per-interface controls"),
   2607 		       NULL, 0, NULL, 0,
   2608 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   2609 		goto bad;
   2610 
   2611 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2612 		       CTLFLAG_PERMANENT,
   2613 		       CTLTYPE_NODE, ifname,
   2614 		       SYSCTL_DESCR("Interface controls"),
   2615 		       NULL, 0, NULL, 0,
   2616 		       CTL_CREATE, CTL_EOL) != 0)
   2617 		goto bad;
   2618 
   2619 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2620 		       CTLFLAG_PERMANENT,
   2621 		       CTLTYPE_NODE, "sndq",
   2622 		       SYSCTL_DESCR("Interface output queue controls"),
   2623 		       NULL, 0, NULL, 0,
   2624 		       CTL_CREATE, CTL_EOL) != 0)
   2625 		goto bad;
   2626 
   2627 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2628 		       CTLFLAG_PERMANENT,
   2629 		       CTLTYPE_INT, "len",
   2630 		       SYSCTL_DESCR("Current output queue length"),
   2631 		       NULL, 0, &ifq->ifq_len, 0,
   2632 		       CTL_CREATE, CTL_EOL) != 0)
   2633 		goto bad;
   2634 
   2635 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2636 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2637 		       CTLTYPE_INT, "maxlen",
   2638 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   2639 		       NULL, 0, &ifq->ifq_maxlen, 0,
   2640 		       CTL_CREATE, CTL_EOL) != 0)
   2641 		goto bad;
   2642 
   2643 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2644 		       CTLFLAG_PERMANENT,
   2645 		       CTLTYPE_INT, "drops",
   2646 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   2647 		       NULL, 0, &ifq->ifq_drops, 0,
   2648 		       CTL_CREATE, CTL_EOL) != 0)
   2649 		goto bad;
   2650 
   2651 	return;
   2652 bad:
   2653 	printf("%s: could not attach sysctl nodes\n", ifname);
   2654 	return;
   2655 }
   2656 
   2657 #if defined(INET) || defined(INET6)
   2658 
   2659 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   2660 	static int							\
   2661 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   2662 	{								\
   2663 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   2664 	}
   2665 
   2666 #if defined(INET)
   2667 static int
   2668 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   2669 {
   2670 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   2671 }
   2672 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   2673 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   2674 #endif
   2675 
   2676 #if defined(INET6)
   2677 static int
   2678 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   2679 {
   2680 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   2681 }
   2682 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   2683 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   2684 #endif
   2685 
   2686 static void
   2687 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   2688 {
   2689 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   2690 	const char *pfname = NULL, *ipname = NULL;
   2691 	int ipn = 0, qid = 0;
   2692 
   2693 	switch (pf) {
   2694 #if defined(INET)
   2695 	case PF_INET:
   2696 		len_func = sysctl_net_ip_pktq_items;
   2697 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   2698 		drops_func = sysctl_net_ip_pktq_drops;
   2699 		pfname = "inet", ipn = IPPROTO_IP;
   2700 		ipname = "ip", qid = IPCTL_IFQ;
   2701 		break;
   2702 #endif
   2703 #if defined(INET6)
   2704 	case PF_INET6:
   2705 		len_func = sysctl_net_ip6_pktq_items;
   2706 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   2707 		drops_func = sysctl_net_ip6_pktq_drops;
   2708 		pfname = "inet6", ipn = IPPROTO_IPV6;
   2709 		ipname = "ip6", qid = IPV6CTL_IFQ;
   2710 		break;
   2711 #endif
   2712 	default:
   2713 		KASSERT(false);
   2714 	}
   2715 
   2716 	sysctl_createv(clog, 0, NULL, NULL,
   2717 		       CTLFLAG_PERMANENT,
   2718 		       CTLTYPE_NODE, pfname, NULL,
   2719 		       NULL, 0, NULL, 0,
   2720 		       CTL_NET, pf, CTL_EOL);
   2721 	sysctl_createv(clog, 0, NULL, NULL,
   2722 		       CTLFLAG_PERMANENT,
   2723 		       CTLTYPE_NODE, ipname, NULL,
   2724 		       NULL, 0, NULL, 0,
   2725 		       CTL_NET, pf, ipn, CTL_EOL);
   2726 	sysctl_createv(clog, 0, NULL, NULL,
   2727 		       CTLFLAG_PERMANENT,
   2728 		       CTLTYPE_NODE, "ifq",
   2729 		       SYSCTL_DESCR("Protocol input queue controls"),
   2730 		       NULL, 0, NULL, 0,
   2731 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   2732 
   2733 	sysctl_createv(clog, 0, NULL, NULL,
   2734 		       CTLFLAG_PERMANENT,
   2735 		       CTLTYPE_INT, "len",
   2736 		       SYSCTL_DESCR("Current input queue length"),
   2737 		       len_func, 0, NULL, 0,
   2738 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   2739 	sysctl_createv(clog, 0, NULL, NULL,
   2740 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2741 		       CTLTYPE_INT, "maxlen",
   2742 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   2743 		       maxlen_func, 0, NULL, 0,
   2744 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   2745 	sysctl_createv(clog, 0, NULL, NULL,
   2746 		       CTLFLAG_PERMANENT,
   2747 		       CTLTYPE_INT, "drops",
   2748 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   2749 		       drops_func, 0, NULL, 0,
   2750 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   2751 }
   2752 #endif /* INET || INET6 */
   2753 
   2754 static int
   2755 if_sdl_sysctl(SYSCTLFN_ARGS)
   2756 {
   2757 	struct ifnet *ifp;
   2758 	const struct sockaddr_dl *sdl;
   2759 
   2760 	if (namelen != 1)
   2761 		return EINVAL;
   2762 
   2763 	ifp = if_byindex(name[0]);
   2764 	if (ifp == NULL)
   2765 		return ENODEV;
   2766 
   2767 	sdl = ifp->if_sadl;
   2768 	if (sdl == NULL) {
   2769 		*oldlenp = 0;
   2770 		return 0;
   2771 	}
   2772 
   2773 	if (oldp == NULL) {
   2774 		*oldlenp = sdl->sdl_alen;
   2775 		return 0;
   2776 	}
   2777 
   2778 	if (*oldlenp >= sdl->sdl_alen)
   2779 		*oldlenp = sdl->sdl_alen;
   2780 	return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   2781 }
   2782 
   2783 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
   2784 {
   2785 	const struct sysctlnode *rnode = NULL;
   2786 
   2787 	sysctl_createv(clog, 0, NULL, &rnode,
   2788 		       CTLFLAG_PERMANENT,
   2789 		       CTLTYPE_NODE, "sdl",
   2790 		       SYSCTL_DESCR("Get active link-layer address"),
   2791 		       if_sdl_sysctl, 0, NULL, 0,
   2792 		       CTL_NET, CTL_CREATE, CTL_EOL);
   2793 }
   2794