if.c revision 1.330 1 /* $NetBSD: if.c,v 1.330 2016/04/20 09:01:04 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.330 2016/04/20 09:01:04 knakahara Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140
141 #ifdef INET6
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146 #include "ether.h"
147 #include "fddi.h"
148 #include "token.h"
149
150 #include "carp.h"
151 #if NCARP > 0
152 #include <netinet/ip_carp.h>
153 #endif
154
155 #include <compat/sys/sockio.h>
156 #include <compat/sys/socket.h>
157
158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
160
161 /*
162 * Global list of interfaces.
163 */
164 struct ifnet_head ifnet_list;
165 static ifnet_t ** ifindex2ifnet = NULL;
166
167 static u_int if_index = 1;
168 static size_t if_indexlim = 0;
169 static uint64_t index_gen;
170 static kmutex_t index_gen_mtx;
171 static kmutex_t if_clone_mtx;
172
173 struct ifnet *lo0ifp;
174 int ifqmaxlen = IFQ_MAXLEN;
175
176 static int if_rt_walktree(struct rtentry *, void *);
177
178 static struct if_clone *if_clone_lookup(const char *, int *);
179
180 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
181 static int if_cloners_count;
182
183 /* Packet filtering hook for interfaces. */
184 pfil_head_t * if_pfil;
185
186 static kauth_listener_t if_listener;
187
188 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
189 static int ifioctl_attach(struct ifnet *);
190 static void ifioctl_detach(struct ifnet *);
191 static void ifnet_lock_enter(struct ifnet_lock *);
192 static void ifnet_lock_exit(struct ifnet_lock *);
193 static void if_detach_queues(struct ifnet *, struct ifqueue *);
194 static void sysctl_sndq_setup(struct sysctllog **, const char *,
195 struct ifaltq *);
196 static void if_slowtimo(void *);
197 static void if_free_sadl(struct ifnet *);
198 static void if_attachdomain1(struct ifnet *);
199 static int ifconf(u_long, void *);
200 static int if_clone_create(const char *);
201 static int if_clone_destroy(const char *);
202 static void if_link_state_change_si(void *);
203
204 struct if_percpuq {
205 struct ifnet *ipq_ifp;
206 void *ipq_si;
207 struct percpu *ipq_ifqs; /* struct ifqueue */
208 };
209
210 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
211
212 static void if_percpuq_drops(void *, void *, struct cpu_info *);
213 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
214 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
215 struct if_percpuq *);
216
217 #if defined(INET) || defined(INET6)
218 static void sysctl_net_pktq_setup(struct sysctllog **, int);
219 #endif
220
221 static int
222 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
223 void *arg0, void *arg1, void *arg2, void *arg3)
224 {
225 int result;
226 enum kauth_network_req req;
227
228 result = KAUTH_RESULT_DEFER;
229 req = (enum kauth_network_req)arg1;
230
231 if (action != KAUTH_NETWORK_INTERFACE)
232 return result;
233
234 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
235 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
236 result = KAUTH_RESULT_ALLOW;
237
238 return result;
239 }
240
241 /*
242 * Network interface utility routines.
243 *
244 * Routines with ifa_ifwith* names take sockaddr *'s as
245 * parameters.
246 */
247 void
248 ifinit(void)
249 {
250 #if defined(INET)
251 sysctl_net_pktq_setup(NULL, PF_INET);
252 #endif
253 #ifdef INET6
254 if (in6_present)
255 sysctl_net_pktq_setup(NULL, PF_INET6);
256 #endif
257
258 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
259 if_listener_cb, NULL);
260
261 /* interfaces are available, inform socket code */
262 ifioctl = doifioctl;
263 }
264
265 /*
266 * XXX Initialization before configure().
267 * XXX hack to get pfil_add_hook working in autoconf.
268 */
269 void
270 ifinit1(void)
271 {
272 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
273 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
274 TAILQ_INIT(&ifnet_list);
275 if_indexlim = 8;
276
277 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
278 KASSERT(if_pfil != NULL);
279
280 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
281 etherinit();
282 #endif
283 }
284
285 ifnet_t *
286 if_alloc(u_char type)
287 {
288 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
289 }
290
291 void
292 if_free(ifnet_t *ifp)
293 {
294 kmem_free(ifp, sizeof(ifnet_t));
295 }
296
297 void
298 if_initname(struct ifnet *ifp, const char *name, int unit)
299 {
300 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
301 "%s%d", name, unit);
302 }
303
304 /*
305 * Null routines used while an interface is going away. These routines
306 * just return an error.
307 */
308
309 int
310 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
311 const struct sockaddr *so, struct rtentry *rt)
312 {
313
314 return ENXIO;
315 }
316
317 void
318 if_nullinput(struct ifnet *ifp, struct mbuf *m)
319 {
320
321 /* Nothing. */
322 }
323
324 void
325 if_nullstart(struct ifnet *ifp)
326 {
327
328 /* Nothing. */
329 }
330
331 int
332 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
333 {
334
335 /* Wake ifioctl_detach(), who may wait for all threads to
336 * quit the critical section.
337 */
338 cv_signal(&ifp->if_ioctl_lock->il_emptied);
339 return ENXIO;
340 }
341
342 int
343 if_nullinit(struct ifnet *ifp)
344 {
345
346 return ENXIO;
347 }
348
349 void
350 if_nullstop(struct ifnet *ifp, int disable)
351 {
352
353 /* Nothing. */
354 }
355
356 void
357 if_nullslowtimo(struct ifnet *ifp)
358 {
359
360 /* Nothing. */
361 }
362
363 void
364 if_nulldrain(struct ifnet *ifp)
365 {
366
367 /* Nothing. */
368 }
369
370 void
371 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
372 {
373 struct ifaddr *ifa;
374 struct sockaddr_dl *sdl;
375
376 ifp->if_addrlen = addrlen;
377 if_alloc_sadl(ifp);
378 ifa = ifp->if_dl;
379 sdl = satosdl(ifa->ifa_addr);
380
381 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
382 if (factory) {
383 ifp->if_hwdl = ifp->if_dl;
384 ifaref(ifp->if_hwdl);
385 }
386 /* TBD routing socket */
387 }
388
389 struct ifaddr *
390 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
391 {
392 unsigned socksize, ifasize;
393 int addrlen, namelen;
394 struct sockaddr_dl *mask, *sdl;
395 struct ifaddr *ifa;
396
397 namelen = strlen(ifp->if_xname);
398 addrlen = ifp->if_addrlen;
399 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
400 ifasize = sizeof(*ifa) + 2 * socksize;
401 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
402
403 sdl = (struct sockaddr_dl *)(ifa + 1);
404 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
405
406 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
407 ifp->if_xname, namelen, NULL, addrlen);
408 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
409 memset(&mask->sdl_data[0], 0xff, namelen);
410 ifa->ifa_rtrequest = link_rtrequest;
411 ifa->ifa_addr = (struct sockaddr *)sdl;
412 ifa->ifa_netmask = (struct sockaddr *)mask;
413
414 *sdlp = sdl;
415
416 return ifa;
417 }
418
419 static void
420 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
421 {
422 const struct sockaddr_dl *sdl;
423
424 ifp->if_dl = ifa;
425 ifaref(ifa);
426 sdl = satosdl(ifa->ifa_addr);
427 ifp->if_sadl = sdl;
428 }
429
430 /*
431 * Allocate the link level name for the specified interface. This
432 * is an attachment helper. It must be called after ifp->if_addrlen
433 * is initialized, which may not be the case when if_attach() is
434 * called.
435 */
436 void
437 if_alloc_sadl(struct ifnet *ifp)
438 {
439 struct ifaddr *ifa;
440 const struct sockaddr_dl *sdl;
441
442 /*
443 * If the interface already has a link name, release it
444 * now. This is useful for interfaces that can change
445 * link types, and thus switch link names often.
446 */
447 if (ifp->if_sadl != NULL)
448 if_free_sadl(ifp);
449
450 ifa = if_dl_create(ifp, &sdl);
451
452 ifa_insert(ifp, ifa);
453 if_sadl_setrefs(ifp, ifa);
454 }
455
456 static void
457 if_deactivate_sadl(struct ifnet *ifp)
458 {
459 struct ifaddr *ifa;
460
461 KASSERT(ifp->if_dl != NULL);
462
463 ifa = ifp->if_dl;
464
465 ifp->if_sadl = NULL;
466
467 ifp->if_dl = NULL;
468 ifafree(ifa);
469 }
470
471 void
472 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
473 const struct sockaddr_dl *sdl)
474 {
475 int s;
476
477 s = splnet();
478
479 if_deactivate_sadl(ifp);
480
481 if_sadl_setrefs(ifp, ifa);
482 IFADDR_FOREACH(ifa, ifp)
483 rtinit(ifa, RTM_LLINFO_UPD, 0);
484 splx(s);
485 }
486
487 /*
488 * Free the link level name for the specified interface. This is
489 * a detach helper. This is called from if_detach().
490 */
491 static void
492 if_free_sadl(struct ifnet *ifp)
493 {
494 struct ifaddr *ifa;
495 int s;
496
497 ifa = ifp->if_dl;
498 if (ifa == NULL) {
499 KASSERT(ifp->if_sadl == NULL);
500 return;
501 }
502
503 KASSERT(ifp->if_sadl != NULL);
504
505 s = splnet();
506 rtinit(ifa, RTM_DELETE, 0);
507 ifa_remove(ifp, ifa);
508 if_deactivate_sadl(ifp);
509 if (ifp->if_hwdl == ifa) {
510 ifafree(ifa);
511 ifp->if_hwdl = NULL;
512 }
513 splx(s);
514 }
515
516 static void
517 if_getindex(ifnet_t *ifp)
518 {
519 bool hitlimit = false;
520
521 mutex_enter(&index_gen_mtx);
522 ifp->if_index_gen = index_gen++;
523 mutex_exit(&index_gen_mtx);
524
525 ifp->if_index = if_index;
526 if (ifindex2ifnet == NULL) {
527 if_index++;
528 goto skip;
529 }
530 while (if_byindex(ifp->if_index)) {
531 /*
532 * If we hit USHRT_MAX, we skip back to 0 since
533 * there are a number of places where the value
534 * of if_index or if_index itself is compared
535 * to or stored in an unsigned short. By
536 * jumping back, we won't botch those assignments
537 * or comparisons.
538 */
539 if (++if_index == 0) {
540 if_index = 1;
541 } else if (if_index == USHRT_MAX) {
542 /*
543 * However, if we have to jump back to
544 * zero *twice* without finding an empty
545 * slot in ifindex2ifnet[], then there
546 * there are too many (>65535) interfaces.
547 */
548 if (hitlimit) {
549 panic("too many interfaces");
550 }
551 hitlimit = true;
552 if_index = 1;
553 }
554 ifp->if_index = if_index;
555 }
556 skip:
557 /*
558 * ifindex2ifnet is indexed by if_index. Since if_index will
559 * grow dynamically, it should grow too.
560 */
561 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
562 size_t m, n, oldlim;
563 void *q;
564
565 oldlim = if_indexlim;
566 while (ifp->if_index >= if_indexlim)
567 if_indexlim <<= 1;
568
569 /* grow ifindex2ifnet */
570 m = oldlim * sizeof(struct ifnet *);
571 n = if_indexlim * sizeof(struct ifnet *);
572 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
573 if (ifindex2ifnet != NULL) {
574 memcpy(q, ifindex2ifnet, m);
575 free(ifindex2ifnet, M_IFADDR);
576 }
577 ifindex2ifnet = (struct ifnet **)q;
578 }
579 ifindex2ifnet[ifp->if_index] = ifp;
580 }
581
582 /*
583 * Initialize an interface and assign an index for it.
584 *
585 * It must be called prior to a device specific attach routine
586 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
587 * and be followed by if_register:
588 *
589 * if_initialize(ifp);
590 * ether_ifattach(ifp, enaddr);
591 * if_register(ifp);
592 */
593 void
594 if_initialize(ifnet_t *ifp)
595 {
596 KASSERT(if_indexlim > 0);
597 TAILQ_INIT(&ifp->if_addrlist);
598
599 /*
600 * Link level name is allocated later by a separate call to
601 * if_alloc_sadl().
602 */
603
604 if (ifp->if_snd.ifq_maxlen == 0)
605 ifp->if_snd.ifq_maxlen = ifqmaxlen;
606
607 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
608
609 ifp->if_link_state = LINK_STATE_UNKNOWN;
610 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
611
612 ifp->if_capenable = 0;
613 ifp->if_csum_flags_tx = 0;
614 ifp->if_csum_flags_rx = 0;
615
616 #ifdef ALTQ
617 ifp->if_snd.altq_type = 0;
618 ifp->if_snd.altq_disc = NULL;
619 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
620 ifp->if_snd.altq_tbr = NULL;
621 ifp->if_snd.altq_ifp = ifp;
622 #endif
623
624 #ifdef NET_MPSAFE
625 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
626 #else
627 ifp->if_snd.ifq_lock = NULL;
628 #endif
629
630 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
631 (void)pfil_run_hooks(if_pfil,
632 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
633
634 IF_AFDATA_LOCK_INIT(ifp);
635
636 ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
637 if (ifp->if_link_si == NULL)
638 panic("%s: softint_establish() failed", __func__);
639
640 if_getindex(ifp);
641 }
642
643 /*
644 * Register an interface to the list of "active" interfaces.
645 */
646 void
647 if_register(ifnet_t *ifp)
648 {
649 if (ifioctl_attach(ifp) != 0)
650 panic("%s: ifioctl_attach() failed", __func__);
651
652 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
653
654 if (!STAILQ_EMPTY(&domains))
655 if_attachdomain1(ifp);
656
657 /* Announce the interface. */
658 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
659
660 if (ifp->if_slowtimo != NULL) {
661 ifp->if_slowtimo_ch =
662 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
663 callout_init(ifp->if_slowtimo_ch, 0);
664 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
665 if_slowtimo(ifp);
666 }
667
668 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
669 }
670
671 /*
672 * The if_percpuq framework
673 *
674 * It allows network device drivers to execute the network stack
675 * in softint (so called softint-based if_input). It utilizes
676 * softint and percpu ifqueue. It doesn't distribute any packets
677 * between CPUs, unlike pktqueue(9).
678 *
679 * Currently we support two options for device drivers to apply the framework:
680 * - Use it implicitly with less changes
681 * - If you use if_attach in driver's _attach function and if_input in
682 * driver's Rx interrupt handler, a packet is queued and a softint handles
683 * the packet implicitly
684 * - Use it explicitly in each driver (recommended)
685 * - You can use if_percpuq_* directly in your driver
686 * - In this case, you need to allocate struct if_percpuq in driver's softc
687 * - See wm(4) as a reference implementation
688 */
689
690 static void
691 if_percpuq_softint(void *arg)
692 {
693 struct if_percpuq *ipq = arg;
694 struct ifnet *ifp = ipq->ipq_ifp;
695 struct mbuf *m;
696
697 while ((m = if_percpuq_dequeue(ipq)) != NULL)
698 ifp->_if_input(ifp, m);
699 }
700
701 static void
702 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
703 {
704 struct ifqueue *const ifq = p;
705
706 memset(ifq, 0, sizeof(*ifq));
707 ifq->ifq_maxlen = IFQ_MAXLEN;
708 }
709
710 struct if_percpuq *
711 if_percpuq_create(struct ifnet *ifp)
712 {
713 struct if_percpuq *ipq;
714
715 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
716 if (ipq == NULL)
717 panic("kmem_zalloc failed");
718
719 ipq->ipq_ifp = ifp;
720 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
721 if_percpuq_softint, ipq);
722 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
723 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
724
725 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
726
727 return ipq;
728 }
729
730 static struct mbuf *
731 if_percpuq_dequeue(struct if_percpuq *ipq)
732 {
733 struct mbuf *m;
734 struct ifqueue *ifq;
735 int s;
736
737 s = splnet();
738 ifq = percpu_getref(ipq->ipq_ifqs);
739 IF_DEQUEUE(ifq, m);
740 percpu_putref(ipq->ipq_ifqs);
741 splx(s);
742
743 return m;
744 }
745
746 static void
747 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
748 {
749 struct ifqueue *const ifq = p;
750
751 IF_PURGE(ifq);
752 }
753
754 void
755 if_percpuq_destroy(struct if_percpuq *ipq)
756 {
757
758 /* if_detach may already destroy it */
759 if (ipq == NULL)
760 return;
761
762 softint_disestablish(ipq->ipq_si);
763 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
764 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
765 }
766
767 void
768 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
769 {
770 struct ifqueue *ifq;
771 int s;
772
773 KASSERT(ipq != NULL);
774
775 s = splnet();
776 ifq = percpu_getref(ipq->ipq_ifqs);
777 if (IF_QFULL(ifq)) {
778 IF_DROP(ifq);
779 percpu_putref(ipq->ipq_ifqs);
780 m_freem(m);
781 goto out;
782 }
783 IF_ENQUEUE(ifq, m);
784 percpu_putref(ipq->ipq_ifqs);
785
786 softint_schedule(ipq->ipq_si);
787 out:
788 splx(s);
789 }
790
791 static void
792 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
793 {
794 struct ifqueue *const ifq = p;
795 int *sum = arg;
796
797 *sum += ifq->ifq_drops;
798 }
799
800 static int
801 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
802 {
803 struct sysctlnode node;
804 struct if_percpuq *ipq;
805 int sum = 0;
806 int error;
807
808 node = *rnode;
809 ipq = node.sysctl_data;
810
811 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
812
813 node.sysctl_data = ∑
814 error = sysctl_lookup(SYSCTLFN_CALL(&node));
815 if (error != 0 || newp == NULL)
816 return error;
817
818 return 0;
819 }
820
821 static void
822 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
823 struct if_percpuq *ipq)
824 {
825 const struct sysctlnode *cnode, *rnode;
826
827 if (sysctl_createv(clog, 0, NULL, &rnode,
828 CTLFLAG_PERMANENT,
829 CTLTYPE_NODE, "interfaces",
830 SYSCTL_DESCR("Per-interface controls"),
831 NULL, 0, NULL, 0,
832 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
833 goto bad;
834
835 if (sysctl_createv(clog, 0, &rnode, &rnode,
836 CTLFLAG_PERMANENT,
837 CTLTYPE_NODE, ifname,
838 SYSCTL_DESCR("Interface controls"),
839 NULL, 0, NULL, 0,
840 CTL_CREATE, CTL_EOL) != 0)
841 goto bad;
842
843 if (sysctl_createv(clog, 0, &rnode, &rnode,
844 CTLFLAG_PERMANENT,
845 CTLTYPE_NODE, "rcvq",
846 SYSCTL_DESCR("Interface input queue controls"),
847 NULL, 0, NULL, 0,
848 CTL_CREATE, CTL_EOL) != 0)
849 goto bad;
850
851 #ifdef NOTYET
852 /* XXX Should show each per-CPU queue length? */
853 if (sysctl_createv(clog, 0, &rnode, &rnode,
854 CTLFLAG_PERMANENT,
855 CTLTYPE_INT, "len",
856 SYSCTL_DESCR("Current input queue length"),
857 sysctl_percpuq_len, 0, NULL, 0,
858 CTL_CREATE, CTL_EOL) != 0)
859 goto bad;
860
861 if (sysctl_createv(clog, 0, &rnode, &cnode,
862 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
863 CTLTYPE_INT, "maxlen",
864 SYSCTL_DESCR("Maximum allowed input queue length"),
865 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
866 CTL_CREATE, CTL_EOL) != 0)
867 goto bad;
868 #endif
869
870 if (sysctl_createv(clog, 0, &rnode, &cnode,
871 CTLFLAG_PERMANENT,
872 CTLTYPE_INT, "drops",
873 SYSCTL_DESCR("Total packets dropped due to full input queue"),
874 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
875 CTL_CREATE, CTL_EOL) != 0)
876 goto bad;
877
878 return;
879 bad:
880 printf("%s: could not attach sysctl nodes\n", ifname);
881 return;
882 }
883
884
885 /*
886 * The common interface input routine that is called by device drivers,
887 * which should be used only when the driver's rx handler already runs
888 * in softint.
889 */
890 void
891 if_input(struct ifnet *ifp, struct mbuf *m)
892 {
893
894 KASSERT(ifp->if_percpuq == NULL);
895 KASSERT(!cpu_intr_p());
896
897 ifp->_if_input(ifp, m);
898 }
899
900 /*
901 * DEPRECATED. Use if_initialize and if_register instead.
902 * See the above comment of if_initialize.
903 *
904 * Note that it implicitly enables if_percpuq to make drivers easy to
905 * migrate softinet-based if_input without much changes. If you don't
906 * want to enable it, use if_initialize instead.
907 */
908 void
909 if_attach(ifnet_t *ifp)
910 {
911
912 if_initialize(ifp);
913 ifp->if_percpuq = if_percpuq_create(ifp);
914 if_register(ifp);
915 }
916
917 void
918 if_attachdomain(void)
919 {
920 struct ifnet *ifp;
921 int s;
922
923 s = splnet();
924 IFNET_FOREACH(ifp)
925 if_attachdomain1(ifp);
926 splx(s);
927 }
928
929 static void
930 if_attachdomain1(struct ifnet *ifp)
931 {
932 struct domain *dp;
933 int s;
934
935 s = splnet();
936
937 /* address family dependent data region */
938 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
939 DOMAIN_FOREACH(dp) {
940 if (dp->dom_ifattach != NULL)
941 ifp->if_afdata[dp->dom_family] =
942 (*dp->dom_ifattach)(ifp);
943 }
944
945 splx(s);
946 }
947
948 /*
949 * Deactivate an interface. This points all of the procedure
950 * handles at error stubs. May be called from interrupt context.
951 */
952 void
953 if_deactivate(struct ifnet *ifp)
954 {
955 int s;
956
957 s = splnet();
958
959 ifp->if_output = if_nulloutput;
960 ifp->_if_input = if_nullinput;
961 ifp->if_start = if_nullstart;
962 ifp->if_ioctl = if_nullioctl;
963 ifp->if_init = if_nullinit;
964 ifp->if_stop = if_nullstop;
965 ifp->if_slowtimo = if_nullslowtimo;
966 ifp->if_drain = if_nulldrain;
967
968 /* No more packets may be enqueued. */
969 ifp->if_snd.ifq_maxlen = 0;
970
971 splx(s);
972 }
973
974 void
975 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
976 {
977 struct ifaddr *ifa, *nifa;
978
979 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
980 if (ifa->ifa_addr->sa_family != family)
981 continue;
982 (*purgeaddr)(ifa);
983 }
984 }
985
986 /*
987 * Detach an interface from the list of "active" interfaces,
988 * freeing any resources as we go along.
989 *
990 * NOTE: This routine must be called with a valid thread context,
991 * as it may block.
992 */
993 void
994 if_detach(struct ifnet *ifp)
995 {
996 struct socket so;
997 struct ifaddr *ifa;
998 #ifdef IFAREF_DEBUG
999 struct ifaddr *last_ifa = NULL;
1000 #endif
1001 struct domain *dp;
1002 const struct protosw *pr;
1003 int s, i, family, purged;
1004 uint64_t xc;
1005
1006 /*
1007 * XXX It's kind of lame that we have to have the
1008 * XXX socket structure...
1009 */
1010 memset(&so, 0, sizeof(so));
1011
1012 s = splnet();
1013
1014 ifindex2ifnet[ifp->if_index] = NULL;
1015 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1016
1017 if (ifp->if_slowtimo != NULL) {
1018 ifp->if_slowtimo = NULL;
1019 callout_halt(ifp->if_slowtimo_ch, NULL);
1020 callout_destroy(ifp->if_slowtimo_ch);
1021 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1022 }
1023
1024 /*
1025 * Do an if_down() to give protocols a chance to do something.
1026 */
1027 if_down(ifp);
1028
1029 #ifdef ALTQ
1030 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1031 altq_disable(&ifp->if_snd);
1032 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1033 altq_detach(&ifp->if_snd);
1034 #endif
1035
1036 if (ifp->if_snd.ifq_lock)
1037 mutex_obj_free(ifp->if_snd.ifq_lock);
1038
1039 sysctl_teardown(&ifp->if_sysctl_log);
1040
1041 #if NCARP > 0
1042 /* Remove the interface from any carp group it is a part of. */
1043 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1044 carp_ifdetach(ifp);
1045 #endif
1046
1047 /*
1048 * Rip all the addresses off the interface. This should make
1049 * all of the routes go away.
1050 *
1051 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1052 * from the list, including our "cursor", ifa. For safety,
1053 * and to honor the TAILQ abstraction, I just restart the
1054 * loop after each removal. Note that the loop will exit
1055 * when all of the remaining ifaddrs belong to the AF_LINK
1056 * family. I am counting on the historical fact that at
1057 * least one pr_usrreq in each address domain removes at
1058 * least one ifaddr.
1059 */
1060 again:
1061 IFADDR_FOREACH(ifa, ifp) {
1062 family = ifa->ifa_addr->sa_family;
1063 #ifdef IFAREF_DEBUG
1064 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1065 ifa, family, ifa->ifa_refcnt);
1066 if (last_ifa != NULL && ifa == last_ifa)
1067 panic("if_detach: loop detected");
1068 last_ifa = ifa;
1069 #endif
1070 if (family == AF_LINK)
1071 continue;
1072 dp = pffinddomain(family);
1073 #ifdef DIAGNOSTIC
1074 if (dp == NULL)
1075 panic("if_detach: no domain for AF %d",
1076 family);
1077 #endif
1078 /*
1079 * XXX These PURGEIF calls are redundant with the
1080 * purge-all-families calls below, but are left in for
1081 * now both to make a smaller change, and to avoid
1082 * unplanned interactions with clearing of
1083 * ifp->if_addrlist.
1084 */
1085 purged = 0;
1086 for (pr = dp->dom_protosw;
1087 pr < dp->dom_protoswNPROTOSW; pr++) {
1088 so.so_proto = pr;
1089 if (pr->pr_usrreqs) {
1090 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1091 purged = 1;
1092 }
1093 }
1094 if (purged == 0) {
1095 /*
1096 * XXX What's really the best thing to do
1097 * XXX here? --thorpej (at) NetBSD.org
1098 */
1099 printf("if_detach: WARNING: AF %d not purged\n",
1100 family);
1101 ifa_remove(ifp, ifa);
1102 }
1103 goto again;
1104 }
1105
1106 if_free_sadl(ifp);
1107
1108 /* Walk the routing table looking for stragglers. */
1109 for (i = 0; i <= AF_MAX; i++) {
1110 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1111 continue;
1112 }
1113
1114 DOMAIN_FOREACH(dp) {
1115 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1116 {
1117 void *p = ifp->if_afdata[dp->dom_family];
1118 if (p) {
1119 ifp->if_afdata[dp->dom_family] = NULL;
1120 (*dp->dom_ifdetach)(ifp, p);
1121 }
1122 }
1123
1124 /*
1125 * One would expect multicast memberships (INET and
1126 * INET6) on UDP sockets to be purged by the PURGEIF
1127 * calls above, but if all addresses were removed from
1128 * the interface prior to destruction, the calls will
1129 * not be made (e.g. ppp, for which pppd(8) generally
1130 * removes addresses before destroying the interface).
1131 * Because there is no invariant that multicast
1132 * memberships only exist for interfaces with IPv4
1133 * addresses, we must call PURGEIF regardless of
1134 * addresses. (Protocols which might store ifnet
1135 * pointers are marked with PR_PURGEIF.)
1136 */
1137 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1138 so.so_proto = pr;
1139 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1140 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1141 }
1142 }
1143
1144 (void)pfil_run_hooks(if_pfil,
1145 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1146 (void)pfil_head_destroy(ifp->if_pfil);
1147
1148 /* Announce that the interface is gone. */
1149 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1150
1151 ifioctl_detach(ifp);
1152
1153 IF_AFDATA_LOCK_DESTROY(ifp);
1154
1155 softint_disestablish(ifp->if_link_si);
1156 ifp->if_link_si = NULL;
1157
1158 /*
1159 * remove packets that came from ifp, from software interrupt queues.
1160 */
1161 DOMAIN_FOREACH(dp) {
1162 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1163 struct ifqueue *iq = dp->dom_ifqueues[i];
1164 if (iq == NULL)
1165 break;
1166 dp->dom_ifqueues[i] = NULL;
1167 if_detach_queues(ifp, iq);
1168 }
1169 }
1170
1171 /*
1172 * IP queues have to be processed separately: net-queue barrier
1173 * ensures that the packets are dequeued while a cross-call will
1174 * ensure that the interrupts have completed. FIXME: not quite..
1175 */
1176 #ifdef INET
1177 pktq_barrier(ip_pktq);
1178 #endif
1179 #ifdef INET6
1180 if (in6_present)
1181 pktq_barrier(ip6_pktq);
1182 #endif
1183 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1184 xc_wait(xc);
1185
1186 if (ifp->if_percpuq != NULL) {
1187 if_percpuq_destroy(ifp->if_percpuq);
1188 ifp->if_percpuq = NULL;
1189 }
1190
1191 splx(s);
1192 }
1193
1194 static void
1195 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1196 {
1197 struct mbuf *m, *prev, *next;
1198
1199 prev = NULL;
1200 for (m = q->ifq_head; m != NULL; m = next) {
1201 KASSERT((m->m_flags & M_PKTHDR) != 0);
1202
1203 next = m->m_nextpkt;
1204 if (m->m_pkthdr.rcvif != ifp) {
1205 prev = m;
1206 continue;
1207 }
1208
1209 if (prev != NULL)
1210 prev->m_nextpkt = m->m_nextpkt;
1211 else
1212 q->ifq_head = m->m_nextpkt;
1213 if (q->ifq_tail == m)
1214 q->ifq_tail = prev;
1215 q->ifq_len--;
1216
1217 m->m_nextpkt = NULL;
1218 m_freem(m);
1219 IF_DROP(q);
1220 }
1221 }
1222
1223 /*
1224 * Callback for a radix tree walk to delete all references to an
1225 * ifnet.
1226 */
1227 static int
1228 if_rt_walktree(struct rtentry *rt, void *v)
1229 {
1230 struct ifnet *ifp = (struct ifnet *)v;
1231 int error;
1232 struct rtentry *retrt;
1233
1234 if (rt->rt_ifp != ifp)
1235 return 0;
1236
1237 /* Delete the entry. */
1238 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1239 rt_mask(rt), rt->rt_flags, &retrt);
1240 if (error == 0) {
1241 KASSERT(retrt == rt);
1242 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1243 retrt->rt_ifp = NULL;
1244 rtfree(retrt);
1245 } else {
1246 printf("%s: warning: unable to delete rtentry @ %p, "
1247 "error = %d\n", ifp->if_xname, rt, error);
1248 }
1249 return ERESTART;
1250 }
1251
1252 /*
1253 * Create a clone network interface.
1254 */
1255 static int
1256 if_clone_create(const char *name)
1257 {
1258 struct if_clone *ifc;
1259 int unit;
1260
1261 ifc = if_clone_lookup(name, &unit);
1262 if (ifc == NULL)
1263 return EINVAL;
1264
1265 if (ifunit(name) != NULL)
1266 return EEXIST;
1267
1268 return (*ifc->ifc_create)(ifc, unit);
1269 }
1270
1271 /*
1272 * Destroy a clone network interface.
1273 */
1274 static int
1275 if_clone_destroy(const char *name)
1276 {
1277 struct if_clone *ifc;
1278 struct ifnet *ifp;
1279
1280 ifc = if_clone_lookup(name, NULL);
1281 if (ifc == NULL)
1282 return EINVAL;
1283
1284 ifp = ifunit(name);
1285 if (ifp == NULL)
1286 return ENXIO;
1287
1288 if (ifc->ifc_destroy == NULL)
1289 return EOPNOTSUPP;
1290
1291 return (*ifc->ifc_destroy)(ifp);
1292 }
1293
1294 /*
1295 * Look up a network interface cloner.
1296 */
1297 static struct if_clone *
1298 if_clone_lookup(const char *name, int *unitp)
1299 {
1300 struct if_clone *ifc;
1301 const char *cp;
1302 char *dp, ifname[IFNAMSIZ + 3];
1303 int unit;
1304
1305 strcpy(ifname, "if_");
1306 /* separate interface name from unit */
1307 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1308 *cp && (*cp < '0' || *cp > '9');)
1309 *dp++ = *cp++;
1310
1311 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1312 return NULL; /* No name or unit number */
1313 *dp++ = '\0';
1314
1315 again:
1316 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1317 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1318 break;
1319 }
1320
1321 if (ifc == NULL) {
1322 if (*ifname == '\0' ||
1323 module_autoload(ifname, MODULE_CLASS_DRIVER))
1324 return NULL;
1325 *ifname = '\0';
1326 goto again;
1327 }
1328
1329 unit = 0;
1330 while (cp - name < IFNAMSIZ && *cp) {
1331 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1332 /* Bogus unit number. */
1333 return NULL;
1334 }
1335 unit = (unit * 10) + (*cp++ - '0');
1336 }
1337
1338 if (unitp != NULL)
1339 *unitp = unit;
1340 return ifc;
1341 }
1342
1343 /*
1344 * Register a network interface cloner.
1345 */
1346 void
1347 if_clone_attach(struct if_clone *ifc)
1348 {
1349
1350 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1351 if_cloners_count++;
1352 }
1353
1354 /*
1355 * Unregister a network interface cloner.
1356 */
1357 void
1358 if_clone_detach(struct if_clone *ifc)
1359 {
1360
1361 LIST_REMOVE(ifc, ifc_list);
1362 if_cloners_count--;
1363 }
1364
1365 /*
1366 * Provide list of interface cloners to userspace.
1367 */
1368 int
1369 if_clone_list(int buf_count, char *buffer, int *total)
1370 {
1371 char outbuf[IFNAMSIZ], *dst;
1372 struct if_clone *ifc;
1373 int count, error = 0;
1374
1375 *total = if_cloners_count;
1376 if ((dst = buffer) == NULL) {
1377 /* Just asking how many there are. */
1378 return 0;
1379 }
1380
1381 if (buf_count < 0)
1382 return EINVAL;
1383
1384 count = (if_cloners_count < buf_count) ?
1385 if_cloners_count : buf_count;
1386
1387 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1388 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1389 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1390 if (outbuf[sizeof(outbuf) - 1] != '\0')
1391 return ENAMETOOLONG;
1392 error = copyout(outbuf, dst, sizeof(outbuf));
1393 if (error != 0)
1394 break;
1395 }
1396
1397 return error;
1398 }
1399
1400 void
1401 ifaref(struct ifaddr *ifa)
1402 {
1403 ifa->ifa_refcnt++;
1404 }
1405
1406 void
1407 ifafree(struct ifaddr *ifa)
1408 {
1409 KASSERT(ifa != NULL);
1410 KASSERT(ifa->ifa_refcnt > 0);
1411
1412 if (--ifa->ifa_refcnt == 0) {
1413 free(ifa, M_IFADDR);
1414 }
1415 }
1416
1417 void
1418 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1419 {
1420 ifa->ifa_ifp = ifp;
1421 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1422 ifaref(ifa);
1423 }
1424
1425 void
1426 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1427 {
1428 KASSERT(ifa->ifa_ifp == ifp);
1429 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1430 ifafree(ifa);
1431 }
1432
1433 static inline int
1434 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1435 {
1436 return sockaddr_cmp(sa1, sa2) == 0;
1437 }
1438
1439 /*
1440 * Locate an interface based on a complete address.
1441 */
1442 /*ARGSUSED*/
1443 struct ifaddr *
1444 ifa_ifwithaddr(const struct sockaddr *addr)
1445 {
1446 struct ifnet *ifp;
1447 struct ifaddr *ifa;
1448
1449 IFNET_FOREACH(ifp) {
1450 if (ifp->if_output == if_nulloutput)
1451 continue;
1452 IFADDR_FOREACH(ifa, ifp) {
1453 if (ifa->ifa_addr->sa_family != addr->sa_family)
1454 continue;
1455 if (equal(addr, ifa->ifa_addr))
1456 return ifa;
1457 if ((ifp->if_flags & IFF_BROADCAST) &&
1458 ifa->ifa_broadaddr &&
1459 /* IP6 doesn't have broadcast */
1460 ifa->ifa_broadaddr->sa_len != 0 &&
1461 equal(ifa->ifa_broadaddr, addr))
1462 return ifa;
1463 }
1464 }
1465 return NULL;
1466 }
1467
1468 /*
1469 * Locate the point to point interface with a given destination address.
1470 */
1471 /*ARGSUSED*/
1472 struct ifaddr *
1473 ifa_ifwithdstaddr(const struct sockaddr *addr)
1474 {
1475 struct ifnet *ifp;
1476 struct ifaddr *ifa;
1477
1478 IFNET_FOREACH(ifp) {
1479 if (ifp->if_output == if_nulloutput)
1480 continue;
1481 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1482 continue;
1483 IFADDR_FOREACH(ifa, ifp) {
1484 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1485 ifa->ifa_dstaddr == NULL)
1486 continue;
1487 if (equal(addr, ifa->ifa_dstaddr))
1488 return ifa;
1489 }
1490 }
1491 return NULL;
1492 }
1493
1494 /*
1495 * Find an interface on a specific network. If many, choice
1496 * is most specific found.
1497 */
1498 struct ifaddr *
1499 ifa_ifwithnet(const struct sockaddr *addr)
1500 {
1501 struct ifnet *ifp;
1502 struct ifaddr *ifa;
1503 const struct sockaddr_dl *sdl;
1504 struct ifaddr *ifa_maybe = 0;
1505 u_int af = addr->sa_family;
1506 const char *addr_data = addr->sa_data, *cplim;
1507
1508 if (af == AF_LINK) {
1509 sdl = satocsdl(addr);
1510 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1511 ifindex2ifnet[sdl->sdl_index] &&
1512 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
1513 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1514 }
1515 }
1516 #ifdef NETATALK
1517 if (af == AF_APPLETALK) {
1518 const struct sockaddr_at *sat, *sat2;
1519 sat = (const struct sockaddr_at *)addr;
1520 IFNET_FOREACH(ifp) {
1521 if (ifp->if_output == if_nulloutput)
1522 continue;
1523 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1524 if (ifa == NULL)
1525 continue;
1526 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1527 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1528 return ifa; /* exact match */
1529 if (ifa_maybe == NULL) {
1530 /* else keep the if with the right range */
1531 ifa_maybe = ifa;
1532 }
1533 }
1534 return ifa_maybe;
1535 }
1536 #endif
1537 IFNET_FOREACH(ifp) {
1538 if (ifp->if_output == if_nulloutput)
1539 continue;
1540 IFADDR_FOREACH(ifa, ifp) {
1541 const char *cp, *cp2, *cp3;
1542
1543 if (ifa->ifa_addr->sa_family != af ||
1544 ifa->ifa_netmask == NULL)
1545 next: continue;
1546 cp = addr_data;
1547 cp2 = ifa->ifa_addr->sa_data;
1548 cp3 = ifa->ifa_netmask->sa_data;
1549 cplim = (const char *)ifa->ifa_netmask +
1550 ifa->ifa_netmask->sa_len;
1551 while (cp3 < cplim) {
1552 if ((*cp++ ^ *cp2++) & *cp3++) {
1553 /* want to continue for() loop */
1554 goto next;
1555 }
1556 }
1557 if (ifa_maybe == NULL ||
1558 rt_refines(ifa->ifa_netmask,
1559 ifa_maybe->ifa_netmask))
1560 ifa_maybe = ifa;
1561 }
1562 }
1563 return ifa_maybe;
1564 }
1565
1566 /*
1567 * Find the interface of the addresss.
1568 */
1569 struct ifaddr *
1570 ifa_ifwithladdr(const struct sockaddr *addr)
1571 {
1572 struct ifaddr *ia;
1573
1574 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1575 (ia = ifa_ifwithnet(addr)))
1576 return ia;
1577 return NULL;
1578 }
1579
1580 /*
1581 * Find an interface using a specific address family
1582 */
1583 struct ifaddr *
1584 ifa_ifwithaf(int af)
1585 {
1586 struct ifnet *ifp;
1587 struct ifaddr *ifa;
1588
1589 IFNET_FOREACH(ifp) {
1590 if (ifp->if_output == if_nulloutput)
1591 continue;
1592 IFADDR_FOREACH(ifa, ifp) {
1593 if (ifa->ifa_addr->sa_family == af)
1594 return ifa;
1595 }
1596 }
1597 return NULL;
1598 }
1599
1600 /*
1601 * Find an interface address specific to an interface best matching
1602 * a given address.
1603 */
1604 struct ifaddr *
1605 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1606 {
1607 struct ifaddr *ifa;
1608 const char *cp, *cp2, *cp3;
1609 const char *cplim;
1610 struct ifaddr *ifa_maybe = 0;
1611 u_int af = addr->sa_family;
1612
1613 if (ifp->if_output == if_nulloutput)
1614 return NULL;
1615
1616 if (af >= AF_MAX)
1617 return NULL;
1618
1619 IFADDR_FOREACH(ifa, ifp) {
1620 if (ifa->ifa_addr->sa_family != af)
1621 continue;
1622 ifa_maybe = ifa;
1623 if (ifa->ifa_netmask == NULL) {
1624 if (equal(addr, ifa->ifa_addr) ||
1625 (ifa->ifa_dstaddr &&
1626 equal(addr, ifa->ifa_dstaddr)))
1627 return ifa;
1628 continue;
1629 }
1630 cp = addr->sa_data;
1631 cp2 = ifa->ifa_addr->sa_data;
1632 cp3 = ifa->ifa_netmask->sa_data;
1633 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1634 for (; cp3 < cplim; cp3++) {
1635 if ((*cp++ ^ *cp2++) & *cp3)
1636 break;
1637 }
1638 if (cp3 == cplim)
1639 return ifa;
1640 }
1641 return ifa_maybe;
1642 }
1643
1644 /*
1645 * Default action when installing a route with a Link Level gateway.
1646 * Lookup an appropriate real ifa to point to.
1647 * This should be moved to /sys/net/link.c eventually.
1648 */
1649 void
1650 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1651 {
1652 struct ifaddr *ifa;
1653 const struct sockaddr *dst;
1654 struct ifnet *ifp;
1655
1656 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1657 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1658 return;
1659 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1660 rt_replace_ifa(rt, ifa);
1661 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1662 ifa->ifa_rtrequest(cmd, rt, info);
1663 }
1664 }
1665
1666 /*
1667 * bitmask macros to manage a densely packed link_state change queue.
1668 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1669 * LINK_STATE_UP(2) we need 2 bits for each state change.
1670 * As a state change to store is 0, treat all bits set as an unset item.
1671 */
1672 #define LQ_ITEM_BITS 2
1673 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1674 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1675 #define LINK_STATE_UNSET LQ_ITEM_MASK
1676 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1677 #define LQ_STORE(q, i, v) \
1678 do { \
1679 (q) &= ~LQ_MASK((i)); \
1680 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1681 } while (0 /* CONSTCOND */)
1682 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1683 #define LQ_POP(q, v) \
1684 do { \
1685 (v) = LQ_ITEM((q), 0); \
1686 (q) >>= LQ_ITEM_BITS; \
1687 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1688 } while (0 /* CONSTCOND */)
1689 #define LQ_PUSH(q, v) \
1690 do { \
1691 (q) >>= LQ_ITEM_BITS; \
1692 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1693 } while (0 /* CONSTCOND */)
1694 #define LQ_FIND_UNSET(q, i) \
1695 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1696 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1697 break; \
1698 }
1699 /*
1700 * Handle a change in the interface link state and
1701 * queue notifications.
1702 */
1703 void
1704 if_link_state_change(struct ifnet *ifp, int link_state)
1705 {
1706 int s, idx;
1707
1708 /* Ensure change is to a valid state */
1709 switch (link_state) {
1710 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1711 case LINK_STATE_DOWN: /* FALLTHROUGH */
1712 case LINK_STATE_UP:
1713 break;
1714 default:
1715 #ifdef DEBUG
1716 printf("%s: invalid link state %d\n",
1717 ifp->if_xname, link_state);
1718 #endif
1719 return;
1720 }
1721
1722 s = splnet();
1723
1724 /* Find the last unset event in the queue. */
1725 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1726
1727 /*
1728 * Ensure link_state doesn't match the last event in the queue.
1729 * ifp->if_link_state is not checked and set here because
1730 * that would present an inconsistent picture to the system.
1731 */
1732 if (idx != 0 &&
1733 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1734 goto out;
1735
1736 /* Handle queue overflow. */
1737 if (idx == LQ_MAX(ifp->if_link_queue)) {
1738 uint8_t lost;
1739
1740 /*
1741 * The DOWN state must be protected from being pushed off
1742 * the queue to ensure that userland will always be
1743 * in a sane state.
1744 * Because DOWN is protected, there is no need to protect
1745 * UNKNOWN.
1746 * It should be invalid to change from any other state to
1747 * UNKNOWN anyway ...
1748 */
1749 lost = LQ_ITEM(ifp->if_link_queue, 0);
1750 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1751 if (lost == LINK_STATE_DOWN) {
1752 lost = LQ_ITEM(ifp->if_link_queue, 0);
1753 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1754 }
1755 printf("%s: lost link state change %s\n",
1756 ifp->if_xname,
1757 lost == LINK_STATE_UP ? "UP" :
1758 lost == LINK_STATE_DOWN ? "DOWN" :
1759 "UNKNOWN");
1760 } else
1761 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1762
1763 softint_schedule(ifp->if_link_si);
1764
1765 out:
1766 splx(s);
1767 }
1768
1769 /*
1770 * Handle interface link state change notifications.
1771 * Must be called at splnet().
1772 */
1773 static void
1774 if_link_state_change0(struct ifnet *ifp, int link_state)
1775 {
1776 struct domain *dp;
1777
1778 /* Ensure the change is still valid. */
1779 if (ifp->if_link_state == link_state)
1780 return;
1781
1782 #ifdef DEBUG
1783 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1784 link_state == LINK_STATE_UP ? "UP" :
1785 link_state == LINK_STATE_DOWN ? "DOWN" :
1786 "UNKNOWN",
1787 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1788 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1789 "UNKNOWN");
1790 #endif
1791
1792 /*
1793 * When going from UNKNOWN to UP, we need to mark existing
1794 * addresses as tentative and restart DAD as we may have
1795 * erroneously not found a duplicate.
1796 *
1797 * This needs to happen before rt_ifmsg to avoid a race where
1798 * listeners would have an address and expect it to work right
1799 * away.
1800 */
1801 if (link_state == LINK_STATE_UP &&
1802 ifp->if_link_state == LINK_STATE_UNKNOWN)
1803 {
1804 DOMAIN_FOREACH(dp) {
1805 if (dp->dom_if_link_state_change != NULL)
1806 dp->dom_if_link_state_change(ifp,
1807 LINK_STATE_DOWN);
1808 }
1809 }
1810
1811 ifp->if_link_state = link_state;
1812
1813 /* Notify that the link state has changed. */
1814 rt_ifmsg(ifp);
1815
1816 #if NCARP > 0
1817 if (ifp->if_carp)
1818 carp_carpdev_state(ifp);
1819 #endif
1820
1821 DOMAIN_FOREACH(dp) {
1822 if (dp->dom_if_link_state_change != NULL)
1823 dp->dom_if_link_state_change(ifp, link_state);
1824 }
1825 }
1826
1827 /*
1828 * Process the interface link state change queue.
1829 */
1830 static void
1831 if_link_state_change_si(void *arg)
1832 {
1833 struct ifnet *ifp = arg;
1834 int s;
1835 uint8_t state;
1836
1837 s = splnet();
1838
1839 /* Pop a link state change from the queue and process it. */
1840 LQ_POP(ifp->if_link_queue, state);
1841 if_link_state_change0(ifp, state);
1842
1843 /* If there is a link state change to come, schedule it. */
1844 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
1845 softint_schedule(ifp->if_link_si);
1846
1847 splx(s);
1848 }
1849
1850 /*
1851 * Default action when installing a local route on a point-to-point
1852 * interface.
1853 */
1854 void
1855 p2p_rtrequest(int req, struct rtentry *rt,
1856 __unused const struct rt_addrinfo *info)
1857 {
1858 struct ifnet *ifp = rt->rt_ifp;
1859 struct ifaddr *ifa, *lo0ifa;
1860
1861 switch (req) {
1862 case RTM_ADD:
1863 if ((rt->rt_flags & RTF_LOCAL) == 0)
1864 break;
1865
1866 IFADDR_FOREACH(ifa, ifp) {
1867 if (equal(rt_getkey(rt), ifa->ifa_addr))
1868 break;
1869 }
1870 if (ifa == NULL)
1871 break;
1872
1873 /*
1874 * Ensure lo0 has an address of the same family.
1875 */
1876 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1877 if (lo0ifa->ifa_addr->sa_family ==
1878 ifa->ifa_addr->sa_family)
1879 break;
1880 }
1881 if (lo0ifa == NULL)
1882 break;
1883
1884 rt->rt_ifp = lo0ifp;
1885
1886 /*
1887 * Make sure to set rt->rt_ifa to the interface
1888 * address we are using, otherwise we will have trouble
1889 * with source address selection.
1890 */
1891 if (ifa != rt->rt_ifa)
1892 rt_replace_ifa(rt, ifa);
1893 break;
1894 case RTM_DELETE:
1895 default:
1896 break;
1897 }
1898 }
1899
1900 /*
1901 * Mark an interface down and notify protocols of
1902 * the transition.
1903 * NOTE: must be called at splsoftnet or equivalent.
1904 */
1905 void
1906 if_down(struct ifnet *ifp)
1907 {
1908 struct ifaddr *ifa;
1909 struct domain *dp;
1910
1911 ifp->if_flags &= ~IFF_UP;
1912 nanotime(&ifp->if_lastchange);
1913 IFADDR_FOREACH(ifa, ifp)
1914 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1915 IFQ_PURGE(&ifp->if_snd);
1916 #if NCARP > 0
1917 if (ifp->if_carp)
1918 carp_carpdev_state(ifp);
1919 #endif
1920 rt_ifmsg(ifp);
1921 DOMAIN_FOREACH(dp) {
1922 if (dp->dom_if_down)
1923 dp->dom_if_down(ifp);
1924 }
1925 }
1926
1927 /*
1928 * Mark an interface up and notify protocols of
1929 * the transition.
1930 * NOTE: must be called at splsoftnet or equivalent.
1931 */
1932 void
1933 if_up(struct ifnet *ifp)
1934 {
1935 #ifdef notyet
1936 struct ifaddr *ifa;
1937 #endif
1938 struct domain *dp;
1939
1940 ifp->if_flags |= IFF_UP;
1941 nanotime(&ifp->if_lastchange);
1942 #ifdef notyet
1943 /* this has no effect on IP, and will kill all ISO connections XXX */
1944 IFADDR_FOREACH(ifa, ifp)
1945 pfctlinput(PRC_IFUP, ifa->ifa_addr);
1946 #endif
1947 #if NCARP > 0
1948 if (ifp->if_carp)
1949 carp_carpdev_state(ifp);
1950 #endif
1951 rt_ifmsg(ifp);
1952 DOMAIN_FOREACH(dp) {
1953 if (dp->dom_if_up)
1954 dp->dom_if_up(ifp);
1955 }
1956 }
1957
1958 /*
1959 * Handle interface slowtimo timer routine. Called
1960 * from softclock, we decrement timer (if set) and
1961 * call the appropriate interface routine on expiration.
1962 */
1963 static void
1964 if_slowtimo(void *arg)
1965 {
1966 void (*slowtimo)(struct ifnet *);
1967 struct ifnet *ifp = arg;
1968 int s;
1969
1970 slowtimo = ifp->if_slowtimo;
1971 if (__predict_false(slowtimo == NULL))
1972 return;
1973
1974 s = splnet();
1975 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
1976 (*slowtimo)(ifp);
1977
1978 splx(s);
1979
1980 if (__predict_true(ifp->if_slowtimo != NULL))
1981 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
1982 }
1983
1984 /*
1985 * Set/clear promiscuous mode on interface ifp based on the truth value
1986 * of pswitch. The calls are reference counted so that only the first
1987 * "on" request actually has an effect, as does the final "off" request.
1988 * Results are undefined if the "off" and "on" requests are not matched.
1989 */
1990 int
1991 ifpromisc(struct ifnet *ifp, int pswitch)
1992 {
1993 int pcount, ret;
1994 short nflags;
1995
1996 pcount = ifp->if_pcount;
1997 if (pswitch) {
1998 /*
1999 * Allow the device to be "placed" into promiscuous
2000 * mode even if it is not configured up. It will
2001 * consult IFF_PROMISC when it is brought up.
2002 */
2003 if (ifp->if_pcount++ != 0)
2004 return 0;
2005 nflags = ifp->if_flags | IFF_PROMISC;
2006 } else {
2007 if (--ifp->if_pcount > 0)
2008 return 0;
2009 nflags = ifp->if_flags & ~IFF_PROMISC;
2010 }
2011 ret = if_flags_set(ifp, nflags);
2012 /* Restore interface state if not successful. */
2013 if (ret != 0) {
2014 ifp->if_pcount = pcount;
2015 }
2016 return ret;
2017 }
2018
2019 /*
2020 * Map interface name to
2021 * interface structure pointer.
2022 */
2023 struct ifnet *
2024 ifunit(const char *name)
2025 {
2026 struct ifnet *ifp;
2027 const char *cp = name;
2028 u_int unit = 0;
2029 u_int i;
2030
2031 /*
2032 * If the entire name is a number, treat it as an ifindex.
2033 */
2034 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2035 unit = unit * 10 + (*cp - '0');
2036 }
2037
2038 /*
2039 * If the number took all of the name, then it's a valid ifindex.
2040 */
2041 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2042 if (unit >= if_indexlim)
2043 return NULL;
2044 ifp = ifindex2ifnet[unit];
2045 if (ifp == NULL || ifp->if_output == if_nulloutput)
2046 return NULL;
2047 return ifp;
2048 }
2049
2050 IFNET_FOREACH(ifp) {
2051 if (ifp->if_output == if_nulloutput)
2052 continue;
2053 if (strcmp(ifp->if_xname, name) == 0)
2054 return ifp;
2055 }
2056 return NULL;
2057 }
2058
2059 ifnet_t *
2060 if_byindex(u_int idx)
2061 {
2062 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2063 }
2064
2065 /* common */
2066 int
2067 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2068 {
2069 int s;
2070 struct ifreq *ifr;
2071 struct ifcapreq *ifcr;
2072 struct ifdatareq *ifdr;
2073
2074 switch (cmd) {
2075 case SIOCSIFCAP:
2076 ifcr = data;
2077 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2078 return EINVAL;
2079
2080 if (ifcr->ifcr_capenable == ifp->if_capenable)
2081 return 0;
2082
2083 ifp->if_capenable = ifcr->ifcr_capenable;
2084
2085 /* Pre-compute the checksum flags mask. */
2086 ifp->if_csum_flags_tx = 0;
2087 ifp->if_csum_flags_rx = 0;
2088 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2089 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2090 }
2091 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2092 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2093 }
2094
2095 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2096 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2097 }
2098 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2099 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2100 }
2101
2102 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2103 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2104 }
2105 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2106 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2107 }
2108
2109 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2110 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2111 }
2112 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2113 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2114 }
2115
2116 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2117 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2118 }
2119 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2120 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2121 }
2122 if (ifp->if_flags & IFF_UP)
2123 return ENETRESET;
2124 return 0;
2125 case SIOCSIFFLAGS:
2126 ifr = data;
2127 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2128 s = splnet();
2129 if_down(ifp);
2130 splx(s);
2131 }
2132 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2133 s = splnet();
2134 if_up(ifp);
2135 splx(s);
2136 }
2137 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2138 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2139 break;
2140 case SIOCGIFFLAGS:
2141 ifr = data;
2142 ifr->ifr_flags = ifp->if_flags;
2143 break;
2144
2145 case SIOCGIFMETRIC:
2146 ifr = data;
2147 ifr->ifr_metric = ifp->if_metric;
2148 break;
2149
2150 case SIOCGIFMTU:
2151 ifr = data;
2152 ifr->ifr_mtu = ifp->if_mtu;
2153 break;
2154
2155 case SIOCGIFDLT:
2156 ifr = data;
2157 ifr->ifr_dlt = ifp->if_dlt;
2158 break;
2159
2160 case SIOCGIFCAP:
2161 ifcr = data;
2162 ifcr->ifcr_capabilities = ifp->if_capabilities;
2163 ifcr->ifcr_capenable = ifp->if_capenable;
2164 break;
2165
2166 case SIOCSIFMETRIC:
2167 ifr = data;
2168 ifp->if_metric = ifr->ifr_metric;
2169 break;
2170
2171 case SIOCGIFDATA:
2172 ifdr = data;
2173 ifdr->ifdr_data = ifp->if_data;
2174 break;
2175
2176 case SIOCGIFINDEX:
2177 ifr = data;
2178 ifr->ifr_index = ifp->if_index;
2179 break;
2180
2181 case SIOCZIFDATA:
2182 ifdr = data;
2183 ifdr->ifdr_data = ifp->if_data;
2184 /*
2185 * Assumes that the volatile counters that can be
2186 * zero'ed are at the end of if_data.
2187 */
2188 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2189 offsetof(struct if_data, ifi_ipackets));
2190 /*
2191 * The memset() clears to the bottm of if_data. In the area,
2192 * if_lastchange is included. Please be careful if new entry
2193 * will be added into if_data or rewite this.
2194 *
2195 * And also, update if_lastchnage.
2196 */
2197 getnanotime(&ifp->if_lastchange);
2198 break;
2199 case SIOCSIFMTU:
2200 ifr = data;
2201 if (ifp->if_mtu == ifr->ifr_mtu)
2202 break;
2203 ifp->if_mtu = ifr->ifr_mtu;
2204 /*
2205 * If the link MTU changed, do network layer specific procedure.
2206 */
2207 #ifdef INET6
2208 if (in6_present)
2209 nd6_setmtu(ifp);
2210 #endif
2211 return ENETRESET;
2212 default:
2213 return ENOTTY;
2214 }
2215 return 0;
2216 }
2217
2218 int
2219 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2220 {
2221 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2222 struct ifaddr *ifa;
2223 const struct sockaddr *any, *sa;
2224 union {
2225 struct sockaddr sa;
2226 struct sockaddr_storage ss;
2227 } u, v;
2228
2229 switch (cmd) {
2230 case SIOCSIFADDRPREF:
2231 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2232 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2233 NULL) != 0)
2234 return EPERM;
2235 case SIOCGIFADDRPREF:
2236 break;
2237 default:
2238 return EOPNOTSUPP;
2239 }
2240
2241 /* sanity checks */
2242 if (data == NULL || ifp == NULL) {
2243 panic("invalid argument to %s", __func__);
2244 /*NOTREACHED*/
2245 }
2246
2247 /* address must be specified on ADD and DELETE */
2248 sa = sstocsa(&ifap->ifap_addr);
2249 if (sa->sa_family != sofamily(so))
2250 return EINVAL;
2251 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2252 return EINVAL;
2253
2254 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2255
2256 IFADDR_FOREACH(ifa, ifp) {
2257 if (ifa->ifa_addr->sa_family != sa->sa_family)
2258 continue;
2259 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2260 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2261 break;
2262 }
2263 if (ifa == NULL)
2264 return EADDRNOTAVAIL;
2265
2266 switch (cmd) {
2267 case SIOCSIFADDRPREF:
2268 ifa->ifa_preference = ifap->ifap_preference;
2269 return 0;
2270 case SIOCGIFADDRPREF:
2271 /* fill in the if_laddrreq structure */
2272 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2273 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2274 ifap->ifap_preference = ifa->ifa_preference;
2275 return 0;
2276 default:
2277 return EOPNOTSUPP;
2278 }
2279 }
2280
2281 static void
2282 ifnet_lock_enter(struct ifnet_lock *il)
2283 {
2284 uint64_t *nenter;
2285
2286 /* Before trying to acquire the mutex, increase the count of threads
2287 * who have entered or who wait to enter the critical section.
2288 * Avoid one costly locked memory transaction by keeping a count for
2289 * each CPU.
2290 */
2291 nenter = percpu_getref(il->il_nenter);
2292 (*nenter)++;
2293 percpu_putref(il->il_nenter);
2294 mutex_enter(&il->il_lock);
2295 }
2296
2297 static void
2298 ifnet_lock_exit(struct ifnet_lock *il)
2299 {
2300 /* Increase the count of threads who have exited the critical
2301 * section. Increase while we still hold the lock.
2302 */
2303 il->il_nexit++;
2304 mutex_exit(&il->il_lock);
2305 }
2306
2307 /*
2308 * Interface ioctls.
2309 */
2310 static int
2311 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2312 {
2313 struct ifnet *ifp;
2314 struct ifreq *ifr;
2315 int error = 0;
2316 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2317 u_long ocmd = cmd;
2318 #endif
2319 short oif_flags;
2320 #ifdef COMPAT_OIFREQ
2321 struct ifreq ifrb;
2322 struct oifreq *oifr = NULL;
2323 #endif
2324 int r;
2325
2326 switch (cmd) {
2327 #ifdef COMPAT_OIFREQ
2328 case OSIOCGIFCONF:
2329 case OOSIOCGIFCONF:
2330 return compat_ifconf(cmd, data);
2331 #endif
2332 #ifdef COMPAT_OIFDATA
2333 case OSIOCGIFDATA:
2334 case OSIOCZIFDATA:
2335 return compat_ifdatareq(l, cmd, data);
2336 #endif
2337 case SIOCGIFCONF:
2338 return ifconf(cmd, data);
2339 case SIOCINITIFADDR:
2340 return EPERM;
2341 }
2342
2343 #ifdef COMPAT_OIFREQ
2344 cmd = compat_cvtcmd(cmd);
2345 if (cmd != ocmd) {
2346 oifr = data;
2347 data = ifr = &ifrb;
2348 ifreqo2n(oifr, ifr);
2349 } else
2350 #endif
2351 ifr = data;
2352
2353 ifp = ifunit(ifr->ifr_name);
2354
2355 switch (cmd) {
2356 case SIOCIFCREATE:
2357 case SIOCIFDESTROY:
2358 if (l != NULL) {
2359 error = kauth_authorize_network(l->l_cred,
2360 KAUTH_NETWORK_INTERFACE,
2361 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2362 (void *)cmd, NULL);
2363 if (error != 0)
2364 return error;
2365 }
2366 mutex_enter(&if_clone_mtx);
2367 r = (cmd == SIOCIFCREATE) ?
2368 if_clone_create(ifr->ifr_name) :
2369 if_clone_destroy(ifr->ifr_name);
2370 mutex_exit(&if_clone_mtx);
2371 return r;
2372
2373 case SIOCIFGCLONERS:
2374 {
2375 struct if_clonereq *req = (struct if_clonereq *)data;
2376 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2377 &req->ifcr_total);
2378 }
2379 }
2380
2381 if (ifp == NULL)
2382 return ENXIO;
2383
2384 switch (cmd) {
2385 case SIOCALIFADDR:
2386 case SIOCDLIFADDR:
2387 case SIOCSIFADDRPREF:
2388 case SIOCSIFFLAGS:
2389 case SIOCSIFCAP:
2390 case SIOCSIFMETRIC:
2391 case SIOCZIFDATA:
2392 case SIOCSIFMTU:
2393 case SIOCSIFPHYADDR:
2394 case SIOCDIFPHYADDR:
2395 #ifdef INET6
2396 case SIOCSIFPHYADDR_IN6:
2397 #endif
2398 case SIOCSLIFPHYADDR:
2399 case SIOCADDMULTI:
2400 case SIOCDELMULTI:
2401 case SIOCSIFMEDIA:
2402 case SIOCSDRVSPEC:
2403 case SIOCG80211:
2404 case SIOCS80211:
2405 case SIOCS80211NWID:
2406 case SIOCS80211NWKEY:
2407 case SIOCS80211POWER:
2408 case SIOCS80211BSSID:
2409 case SIOCS80211CHANNEL:
2410 case SIOCSLINKSTR:
2411 if (l != NULL) {
2412 error = kauth_authorize_network(l->l_cred,
2413 KAUTH_NETWORK_INTERFACE,
2414 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2415 (void *)cmd, NULL);
2416 if (error != 0)
2417 return error;
2418 }
2419 }
2420
2421 oif_flags = ifp->if_flags;
2422
2423 ifnet_lock_enter(ifp->if_ioctl_lock);
2424 error = (*ifp->if_ioctl)(ifp, cmd, data);
2425 if (error != ENOTTY)
2426 ;
2427 else if (so->so_proto == NULL)
2428 error = EOPNOTSUPP;
2429 else {
2430 #ifdef COMPAT_OSOCK
2431 error = compat_ifioctl(so, ocmd, cmd, data, l);
2432 #else
2433 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2434 cmd, data, ifp);
2435 #endif
2436 }
2437
2438 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2439 if ((ifp->if_flags & IFF_UP) != 0) {
2440 int s = splnet();
2441 if_up(ifp);
2442 splx(s);
2443 }
2444 }
2445 #ifdef COMPAT_OIFREQ
2446 if (cmd != ocmd)
2447 ifreqn2o(oifr, ifr);
2448 #endif
2449
2450 ifnet_lock_exit(ifp->if_ioctl_lock);
2451 return error;
2452 }
2453
2454 /* This callback adds to the sum in `arg' the number of
2455 * threads on `ci' who have entered or who wait to enter the
2456 * critical section.
2457 */
2458 static void
2459 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2460 {
2461 uint64_t *sum = arg, *nenter = p;
2462
2463 *sum += *nenter;
2464 }
2465
2466 /* Return the number of threads who have entered or who wait
2467 * to enter the critical section on all CPUs.
2468 */
2469 static uint64_t
2470 ifnet_lock_entrances(struct ifnet_lock *il)
2471 {
2472 uint64_t sum = 0;
2473
2474 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2475
2476 return sum;
2477 }
2478
2479 static int
2480 ifioctl_attach(struct ifnet *ifp)
2481 {
2482 struct ifnet_lock *il;
2483
2484 /* If the driver has not supplied its own if_ioctl, then
2485 * supply the default.
2486 */
2487 if (ifp->if_ioctl == NULL)
2488 ifp->if_ioctl = ifioctl_common;
2489
2490 /* Create an ifnet_lock for synchronizing ifioctls. */
2491 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2492 return ENOMEM;
2493
2494 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2495 if (il->il_nenter == NULL) {
2496 kmem_free(il, sizeof(*il));
2497 return ENOMEM;
2498 }
2499
2500 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2501 cv_init(&il->il_emptied, ifp->if_xname);
2502
2503 ifp->if_ioctl_lock = il;
2504
2505 return 0;
2506 }
2507
2508 /*
2509 * This must not be called until after `ifp' has been withdrawn from the
2510 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2511 * ifunit().
2512 */
2513 static void
2514 ifioctl_detach(struct ifnet *ifp)
2515 {
2516 struct ifnet_lock *il;
2517
2518 il = ifp->if_ioctl_lock;
2519 mutex_enter(&il->il_lock);
2520 /* Install if_nullioctl to make sure that any thread that
2521 * subsequently enters the critical section will quit it
2522 * immediately and signal the condition variable that we
2523 * wait on, below.
2524 */
2525 ifp->if_ioctl = if_nullioctl;
2526 /* Sleep while threads are still in the critical section or
2527 * wait to enter it.
2528 */
2529 while (ifnet_lock_entrances(il) != il->il_nexit)
2530 cv_wait(&il->il_emptied, &il->il_lock);
2531 /* At this point, we are the only thread still in the critical
2532 * section, and no new thread can get a handle on the ifioctl
2533 * lock, so it is safe to free its memory.
2534 */
2535 mutex_exit(&il->il_lock);
2536 ifp->if_ioctl_lock = NULL;
2537 percpu_free(il->il_nenter, sizeof(uint64_t));
2538 il->il_nenter = NULL;
2539 cv_destroy(&il->il_emptied);
2540 mutex_destroy(&il->il_lock);
2541 kmem_free(il, sizeof(*il));
2542 }
2543
2544 /*
2545 * Return interface configuration
2546 * of system. List may be used
2547 * in later ioctl's (above) to get
2548 * other information.
2549 *
2550 * Each record is a struct ifreq. Before the addition of
2551 * sockaddr_storage, the API rule was that sockaddr flavors that did
2552 * not fit would extend beyond the struct ifreq, with the next struct
2553 * ifreq starting sa_len beyond the struct sockaddr. Because the
2554 * union in struct ifreq includes struct sockaddr_storage, every kind
2555 * of sockaddr must fit. Thus, there are no longer any overlength
2556 * records.
2557 *
2558 * Records are added to the user buffer if they fit, and ifc_len is
2559 * adjusted to the length that was written. Thus, the user is only
2560 * assured of getting the complete list if ifc_len on return is at
2561 * least sizeof(struct ifreq) less than it was on entry.
2562 *
2563 * If the user buffer pointer is NULL, this routine copies no data and
2564 * returns the amount of space that would be needed.
2565 *
2566 * Invariants:
2567 * ifrp points to the next part of the user's buffer to be used. If
2568 * ifrp != NULL, space holds the number of bytes remaining that we may
2569 * write at ifrp. Otherwise, space holds the number of bytes that
2570 * would have been written had there been adequate space.
2571 */
2572 /*ARGSUSED*/
2573 static int
2574 ifconf(u_long cmd, void *data)
2575 {
2576 struct ifconf *ifc = (struct ifconf *)data;
2577 struct ifnet *ifp;
2578 struct ifaddr *ifa;
2579 struct ifreq ifr, *ifrp = NULL;
2580 int space = 0, error = 0;
2581 const int sz = (int)sizeof(struct ifreq);
2582 const bool docopy = ifc->ifc_req != NULL;
2583
2584 if (docopy) {
2585 space = ifc->ifc_len;
2586 ifrp = ifc->ifc_req;
2587 }
2588
2589 IFNET_FOREACH(ifp) {
2590 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2591 sizeof(ifr.ifr_name));
2592 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2593 return ENAMETOOLONG;
2594 if (IFADDR_EMPTY(ifp)) {
2595 /* Interface with no addresses - send zero sockaddr. */
2596 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2597 if (!docopy) {
2598 space += sz;
2599 continue;
2600 }
2601 if (space >= sz) {
2602 error = copyout(&ifr, ifrp, sz);
2603 if (error != 0)
2604 return error;
2605 ifrp++;
2606 space -= sz;
2607 }
2608 }
2609
2610 IFADDR_FOREACH(ifa, ifp) {
2611 struct sockaddr *sa = ifa->ifa_addr;
2612 /* all sockaddrs must fit in sockaddr_storage */
2613 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2614
2615 if (!docopy) {
2616 space += sz;
2617 continue;
2618 }
2619 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2620 if (space >= sz) {
2621 error = copyout(&ifr, ifrp, sz);
2622 if (error != 0)
2623 return (error);
2624 ifrp++; space -= sz;
2625 }
2626 }
2627 }
2628 if (docopy) {
2629 KASSERT(0 <= space && space <= ifc->ifc_len);
2630 ifc->ifc_len -= space;
2631 } else {
2632 KASSERT(space >= 0);
2633 ifc->ifc_len = space;
2634 }
2635 return (0);
2636 }
2637
2638 int
2639 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2640 {
2641 uint8_t len;
2642 #ifdef COMPAT_OIFREQ
2643 struct ifreq ifrb;
2644 struct oifreq *oifr = NULL;
2645 u_long ocmd = cmd;
2646 cmd = compat_cvtcmd(cmd);
2647 if (cmd != ocmd) {
2648 oifr = (struct oifreq *)(void *)ifr;
2649 ifr = &ifrb;
2650 ifreqo2n(oifr, ifr);
2651 len = sizeof(oifr->ifr_addr);
2652 } else
2653 #endif
2654 len = sizeof(ifr->ifr_ifru.ifru_space);
2655
2656 if (len < sa->sa_len)
2657 return EFBIG;
2658
2659 memset(&ifr->ifr_addr, 0, len);
2660 sockaddr_copy(&ifr->ifr_addr, len, sa);
2661
2662 #ifdef COMPAT_OIFREQ
2663 if (cmd != ocmd)
2664 ifreqn2o(oifr, ifr);
2665 #endif
2666 return 0;
2667 }
2668
2669 /*
2670 * Queue message on interface, and start output if interface
2671 * not yet active.
2672 */
2673 int
2674 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2675 {
2676 int len = m->m_pkthdr.len;
2677 int mflags = m->m_flags;
2678 int s = splnet();
2679 int error;
2680
2681 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2682 if (error != 0)
2683 goto out;
2684 ifp->if_obytes += len;
2685 if (mflags & M_MCAST)
2686 ifp->if_omcasts++;
2687 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2688 (*ifp->if_start)(ifp);
2689 out:
2690 splx(s);
2691 return error;
2692 }
2693
2694 /*
2695 * Queue message on interface, possibly using a second fast queue
2696 */
2697 int
2698 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2699 {
2700 int error = 0;
2701
2702 if (ifq != NULL
2703 #ifdef ALTQ
2704 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2705 #endif
2706 ) {
2707 if (IF_QFULL(ifq)) {
2708 IF_DROP(&ifp->if_snd);
2709 m_freem(m);
2710 if (error == 0)
2711 error = ENOBUFS;
2712 } else
2713 IF_ENQUEUE(ifq, m);
2714 } else
2715 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2716 if (error != 0) {
2717 ++ifp->if_oerrors;
2718 return error;
2719 }
2720 return 0;
2721 }
2722
2723 int
2724 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2725 {
2726 int rc;
2727
2728 if (ifp->if_initaddr != NULL)
2729 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2730 else if (src ||
2731 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2732 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2733
2734 return rc;
2735 }
2736
2737 int
2738 if_do_dad(struct ifnet *ifp)
2739 {
2740 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2741 return 0;
2742
2743 switch (ifp->if_type) {
2744 case IFT_FAITH:
2745 /*
2746 * These interfaces do not have the IFF_LOOPBACK flag,
2747 * but loop packets back. We do not have to do DAD on such
2748 * interfaces. We should even omit it, because loop-backed
2749 * responses would confuse the DAD procedure.
2750 */
2751 return 0;
2752 default:
2753 /*
2754 * Our DAD routine requires the interface up and running.
2755 * However, some interfaces can be up before the RUNNING
2756 * status. Additionaly, users may try to assign addresses
2757 * before the interface becomes up (or running).
2758 * We simply skip DAD in such a case as a work around.
2759 * XXX: we should rather mark "tentative" on such addresses,
2760 * and do DAD after the interface becomes ready.
2761 */
2762 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2763 (IFF_UP|IFF_RUNNING))
2764 return 0;
2765
2766 return 1;
2767 }
2768 }
2769
2770 int
2771 if_flags_set(ifnet_t *ifp, const short flags)
2772 {
2773 int rc;
2774
2775 if (ifp->if_setflags != NULL)
2776 rc = (*ifp->if_setflags)(ifp, flags);
2777 else {
2778 short cantflags, chgdflags;
2779 struct ifreq ifr;
2780
2781 chgdflags = ifp->if_flags ^ flags;
2782 cantflags = chgdflags & IFF_CANTCHANGE;
2783
2784 if (cantflags != 0)
2785 ifp->if_flags ^= cantflags;
2786
2787 /* Traditionally, we do not call if_ioctl after
2788 * setting/clearing only IFF_PROMISC if the interface
2789 * isn't IFF_UP. Uphold that tradition.
2790 */
2791 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2792 return 0;
2793
2794 memset(&ifr, 0, sizeof(ifr));
2795
2796 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2797 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2798
2799 if (rc != 0 && cantflags != 0)
2800 ifp->if_flags ^= cantflags;
2801 }
2802
2803 return rc;
2804 }
2805
2806 int
2807 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2808 {
2809 int rc;
2810 struct ifreq ifr;
2811
2812 if (ifp->if_mcastop != NULL)
2813 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2814 else {
2815 ifreq_setaddr(cmd, &ifr, sa);
2816 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2817 }
2818
2819 return rc;
2820 }
2821
2822 static void
2823 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2824 struct ifaltq *ifq)
2825 {
2826 const struct sysctlnode *cnode, *rnode;
2827
2828 if (sysctl_createv(clog, 0, NULL, &rnode,
2829 CTLFLAG_PERMANENT,
2830 CTLTYPE_NODE, "interfaces",
2831 SYSCTL_DESCR("Per-interface controls"),
2832 NULL, 0, NULL, 0,
2833 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2834 goto bad;
2835
2836 if (sysctl_createv(clog, 0, &rnode, &rnode,
2837 CTLFLAG_PERMANENT,
2838 CTLTYPE_NODE, ifname,
2839 SYSCTL_DESCR("Interface controls"),
2840 NULL, 0, NULL, 0,
2841 CTL_CREATE, CTL_EOL) != 0)
2842 goto bad;
2843
2844 if (sysctl_createv(clog, 0, &rnode, &rnode,
2845 CTLFLAG_PERMANENT,
2846 CTLTYPE_NODE, "sndq",
2847 SYSCTL_DESCR("Interface output queue controls"),
2848 NULL, 0, NULL, 0,
2849 CTL_CREATE, CTL_EOL) != 0)
2850 goto bad;
2851
2852 if (sysctl_createv(clog, 0, &rnode, &cnode,
2853 CTLFLAG_PERMANENT,
2854 CTLTYPE_INT, "len",
2855 SYSCTL_DESCR("Current output queue length"),
2856 NULL, 0, &ifq->ifq_len, 0,
2857 CTL_CREATE, CTL_EOL) != 0)
2858 goto bad;
2859
2860 if (sysctl_createv(clog, 0, &rnode, &cnode,
2861 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2862 CTLTYPE_INT, "maxlen",
2863 SYSCTL_DESCR("Maximum allowed output queue length"),
2864 NULL, 0, &ifq->ifq_maxlen, 0,
2865 CTL_CREATE, CTL_EOL) != 0)
2866 goto bad;
2867
2868 if (sysctl_createv(clog, 0, &rnode, &cnode,
2869 CTLFLAG_PERMANENT,
2870 CTLTYPE_INT, "drops",
2871 SYSCTL_DESCR("Packets dropped due to full output queue"),
2872 NULL, 0, &ifq->ifq_drops, 0,
2873 CTL_CREATE, CTL_EOL) != 0)
2874 goto bad;
2875
2876 return;
2877 bad:
2878 printf("%s: could not attach sysctl nodes\n", ifname);
2879 return;
2880 }
2881
2882 #if defined(INET) || defined(INET6)
2883
2884 #define SYSCTL_NET_PKTQ(q, cn, c) \
2885 static int \
2886 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2887 { \
2888 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2889 }
2890
2891 #if defined(INET)
2892 static int
2893 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2894 {
2895 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2896 }
2897 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2898 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2899 #endif
2900
2901 #if defined(INET6)
2902 static int
2903 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2904 {
2905 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2906 }
2907 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2908 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2909 #endif
2910
2911 static void
2912 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2913 {
2914 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2915 const char *pfname = NULL, *ipname = NULL;
2916 int ipn = 0, qid = 0;
2917
2918 switch (pf) {
2919 #if defined(INET)
2920 case PF_INET:
2921 len_func = sysctl_net_ip_pktq_items;
2922 maxlen_func = sysctl_net_ip_pktq_maxlen;
2923 drops_func = sysctl_net_ip_pktq_drops;
2924 pfname = "inet", ipn = IPPROTO_IP;
2925 ipname = "ip", qid = IPCTL_IFQ;
2926 break;
2927 #endif
2928 #if defined(INET6)
2929 case PF_INET6:
2930 len_func = sysctl_net_ip6_pktq_items;
2931 maxlen_func = sysctl_net_ip6_pktq_maxlen;
2932 drops_func = sysctl_net_ip6_pktq_drops;
2933 pfname = "inet6", ipn = IPPROTO_IPV6;
2934 ipname = "ip6", qid = IPV6CTL_IFQ;
2935 break;
2936 #endif
2937 default:
2938 KASSERT(false);
2939 }
2940
2941 sysctl_createv(clog, 0, NULL, NULL,
2942 CTLFLAG_PERMANENT,
2943 CTLTYPE_NODE, pfname, NULL,
2944 NULL, 0, NULL, 0,
2945 CTL_NET, pf, CTL_EOL);
2946 sysctl_createv(clog, 0, NULL, NULL,
2947 CTLFLAG_PERMANENT,
2948 CTLTYPE_NODE, ipname, NULL,
2949 NULL, 0, NULL, 0,
2950 CTL_NET, pf, ipn, CTL_EOL);
2951 sysctl_createv(clog, 0, NULL, NULL,
2952 CTLFLAG_PERMANENT,
2953 CTLTYPE_NODE, "ifq",
2954 SYSCTL_DESCR("Protocol input queue controls"),
2955 NULL, 0, NULL, 0,
2956 CTL_NET, pf, ipn, qid, CTL_EOL);
2957
2958 sysctl_createv(clog, 0, NULL, NULL,
2959 CTLFLAG_PERMANENT,
2960 CTLTYPE_INT, "len",
2961 SYSCTL_DESCR("Current input queue length"),
2962 len_func, 0, NULL, 0,
2963 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2964 sysctl_createv(clog, 0, NULL, NULL,
2965 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2966 CTLTYPE_INT, "maxlen",
2967 SYSCTL_DESCR("Maximum allowed input queue length"),
2968 maxlen_func, 0, NULL, 0,
2969 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2970 sysctl_createv(clog, 0, NULL, NULL,
2971 CTLFLAG_PERMANENT,
2972 CTLTYPE_INT, "drops",
2973 SYSCTL_DESCR("Packets dropped due to full input queue"),
2974 drops_func, 0, NULL, 0,
2975 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2976 }
2977 #endif /* INET || INET6 */
2978
2979 static int
2980 if_sdl_sysctl(SYSCTLFN_ARGS)
2981 {
2982 struct ifnet *ifp;
2983 const struct sockaddr_dl *sdl;
2984
2985 if (namelen != 1)
2986 return EINVAL;
2987
2988 ifp = if_byindex(name[0]);
2989 if (ifp == NULL)
2990 return ENODEV;
2991
2992 sdl = ifp->if_sadl;
2993 if (sdl == NULL) {
2994 *oldlenp = 0;
2995 return 0;
2996 }
2997
2998 if (oldp == NULL) {
2999 *oldlenp = sdl->sdl_alen;
3000 return 0;
3001 }
3002
3003 if (*oldlenp >= sdl->sdl_alen)
3004 *oldlenp = sdl->sdl_alen;
3005 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3006 }
3007
3008 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3009 {
3010 const struct sysctlnode *rnode = NULL;
3011
3012 sysctl_createv(clog, 0, NULL, &rnode,
3013 CTLFLAG_PERMANENT,
3014 CTLTYPE_NODE, "sdl",
3015 SYSCTL_DESCR("Get active link-layer address"),
3016 if_sdl_sysctl, 0, NULL, 0,
3017 CTL_NET, CTL_CREATE, CTL_EOL);
3018 }
3019