Home | History | Annotate | Line # | Download | only in net
if.c revision 1.332
      1 /*	$NetBSD: if.c,v 1.332 2016/04/28 01:37:17 knakahara Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.332 2016/04/28 01:37:17 knakahara Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 
     98 #include "opt_atalk.h"
     99 #include "opt_natm.h"
    100 #include "opt_wlan.h"
    101 #include "opt_net_mpsafe.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 
    123 #include <net/if.h>
    124 #include <net/if_dl.h>
    125 #include <net/if_ether.h>
    126 #include <net/if_media.h>
    127 #include <net80211/ieee80211.h>
    128 #include <net80211/ieee80211_ioctl.h>
    129 #include <net/if_types.h>
    130 #include <net/route.h>
    131 #include <net/netisr.h>
    132 #include <sys/module.h>
    133 #ifdef NETATALK
    134 #include <netatalk/at_extern.h>
    135 #include <netatalk/at.h>
    136 #endif
    137 #include <net/pfil.h>
    138 #include <netinet/in.h>
    139 #include <netinet/in_var.h>
    140 
    141 #ifdef INET6
    142 #include <netinet6/in6_var.h>
    143 #include <netinet6/nd6.h>
    144 #endif
    145 
    146 #include "ether.h"
    147 #include "fddi.h"
    148 #include "token.h"
    149 
    150 #include "carp.h"
    151 #if NCARP > 0
    152 #include <netinet/ip_carp.h>
    153 #endif
    154 
    155 #include <compat/sys/sockio.h>
    156 #include <compat/sys/socket.h>
    157 
    158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    160 
    161 /*
    162  * Global list of interfaces.
    163  */
    164 struct ifnet_head		ifnet_list;
    165 static ifnet_t **		ifindex2ifnet = NULL;
    166 
    167 static u_int			if_index = 1;
    168 static size_t			if_indexlim = 0;
    169 static uint64_t			index_gen;
    170 static kmutex_t			index_gen_mtx;
    171 static kmutex_t			if_clone_mtx;
    172 
    173 struct ifnet *lo0ifp;
    174 int	ifqmaxlen = IFQ_MAXLEN;
    175 
    176 static int	if_rt_walktree(struct rtentry *, void *);
    177 
    178 static struct if_clone *if_clone_lookup(const char *, int *);
    179 
    180 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    181 static int if_cloners_count;
    182 
    183 /* Packet filtering hook for interfaces. */
    184 pfil_head_t *	if_pfil;
    185 
    186 static kauth_listener_t if_listener;
    187 
    188 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    189 static int ifioctl_attach(struct ifnet *);
    190 static void ifioctl_detach(struct ifnet *);
    191 static void ifnet_lock_enter(struct ifnet_lock *);
    192 static void ifnet_lock_exit(struct ifnet_lock *);
    193 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    194 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    195     struct ifaltq *);
    196 static void if_slowtimo(void *);
    197 static void if_free_sadl(struct ifnet *);
    198 static void if_attachdomain1(struct ifnet *);
    199 static int ifconf(u_long, void *);
    200 static int if_clone_create(const char *);
    201 static int if_clone_destroy(const char *);
    202 static void if_link_state_change_si(void *);
    203 
    204 struct if_percpuq {
    205 	struct ifnet	*ipq_ifp;
    206 	void		*ipq_si;
    207 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    208 };
    209 
    210 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    211 
    212 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    213 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    214 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    215     struct if_percpuq *);
    216 
    217 #if defined(INET) || defined(INET6)
    218 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    219 #endif
    220 
    221 static int
    222 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    223     void *arg0, void *arg1, void *arg2, void *arg3)
    224 {
    225 	int result;
    226 	enum kauth_network_req req;
    227 
    228 	result = KAUTH_RESULT_DEFER;
    229 	req = (enum kauth_network_req)arg1;
    230 
    231 	if (action != KAUTH_NETWORK_INTERFACE)
    232 		return result;
    233 
    234 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    235 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    236 		result = KAUTH_RESULT_ALLOW;
    237 
    238 	return result;
    239 }
    240 
    241 /*
    242  * Network interface utility routines.
    243  *
    244  * Routines with ifa_ifwith* names take sockaddr *'s as
    245  * parameters.
    246  */
    247 void
    248 ifinit(void)
    249 {
    250 #if defined(INET)
    251 	sysctl_net_pktq_setup(NULL, PF_INET);
    252 #endif
    253 #ifdef INET6
    254 	if (in6_present)
    255 		sysctl_net_pktq_setup(NULL, PF_INET6);
    256 #endif
    257 
    258 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    259 	    if_listener_cb, NULL);
    260 
    261 	/* interfaces are available, inform socket code */
    262 	ifioctl = doifioctl;
    263 }
    264 
    265 /*
    266  * XXX Initialization before configure().
    267  * XXX hack to get pfil_add_hook working in autoconf.
    268  */
    269 void
    270 ifinit1(void)
    271 {
    272 	mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
    273 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    274 	TAILQ_INIT(&ifnet_list);
    275 	if_indexlim = 8;
    276 
    277 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    278 	KASSERT(if_pfil != NULL);
    279 
    280 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    281 	etherinit();
    282 #endif
    283 }
    284 
    285 ifnet_t *
    286 if_alloc(u_char type)
    287 {
    288 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    289 }
    290 
    291 void
    292 if_free(ifnet_t *ifp)
    293 {
    294 	kmem_free(ifp, sizeof(ifnet_t));
    295 }
    296 
    297 void
    298 if_initname(struct ifnet *ifp, const char *name, int unit)
    299 {
    300 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    301 	    "%s%d", name, unit);
    302 }
    303 
    304 /*
    305  * Null routines used while an interface is going away.  These routines
    306  * just return an error.
    307  */
    308 
    309 int
    310 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    311     const struct sockaddr *so, const struct rtentry *rt)
    312 {
    313 
    314 	return ENXIO;
    315 }
    316 
    317 void
    318 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    319 {
    320 
    321 	/* Nothing. */
    322 }
    323 
    324 void
    325 if_nullstart(struct ifnet *ifp)
    326 {
    327 
    328 	/* Nothing. */
    329 }
    330 
    331 int
    332 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    333 {
    334 
    335 	return ENXIO;
    336 }
    337 
    338 int
    339 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    340 {
    341 
    342 	/* Wake ifioctl_detach(), who may wait for all threads to
    343 	 * quit the critical section.
    344 	 */
    345 	cv_signal(&ifp->if_ioctl_lock->il_emptied);
    346 	return ENXIO;
    347 }
    348 
    349 int
    350 if_nullinit(struct ifnet *ifp)
    351 {
    352 
    353 	return ENXIO;
    354 }
    355 
    356 void
    357 if_nullstop(struct ifnet *ifp, int disable)
    358 {
    359 
    360 	/* Nothing. */
    361 }
    362 
    363 void
    364 if_nullslowtimo(struct ifnet *ifp)
    365 {
    366 
    367 	/* Nothing. */
    368 }
    369 
    370 void
    371 if_nulldrain(struct ifnet *ifp)
    372 {
    373 
    374 	/* Nothing. */
    375 }
    376 
    377 void
    378 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    379 {
    380 	struct ifaddr *ifa;
    381 	struct sockaddr_dl *sdl;
    382 
    383 	ifp->if_addrlen = addrlen;
    384 	if_alloc_sadl(ifp);
    385 	ifa = ifp->if_dl;
    386 	sdl = satosdl(ifa->ifa_addr);
    387 
    388 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    389 	if (factory) {
    390 		ifp->if_hwdl = ifp->if_dl;
    391 		ifaref(ifp->if_hwdl);
    392 	}
    393 	/* TBD routing socket */
    394 }
    395 
    396 struct ifaddr *
    397 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    398 {
    399 	unsigned socksize, ifasize;
    400 	int addrlen, namelen;
    401 	struct sockaddr_dl *mask, *sdl;
    402 	struct ifaddr *ifa;
    403 
    404 	namelen = strlen(ifp->if_xname);
    405 	addrlen = ifp->if_addrlen;
    406 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    407 	ifasize = sizeof(*ifa) + 2 * socksize;
    408 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    409 
    410 	sdl = (struct sockaddr_dl *)(ifa + 1);
    411 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    412 
    413 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    414 	    ifp->if_xname, namelen, NULL, addrlen);
    415 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    416 	memset(&mask->sdl_data[0], 0xff, namelen);
    417 	ifa->ifa_rtrequest = link_rtrequest;
    418 	ifa->ifa_addr = (struct sockaddr *)sdl;
    419 	ifa->ifa_netmask = (struct sockaddr *)mask;
    420 
    421 	*sdlp = sdl;
    422 
    423 	return ifa;
    424 }
    425 
    426 static void
    427 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    428 {
    429 	const struct sockaddr_dl *sdl;
    430 
    431 	ifp->if_dl = ifa;
    432 	ifaref(ifa);
    433 	sdl = satosdl(ifa->ifa_addr);
    434 	ifp->if_sadl = sdl;
    435 }
    436 
    437 /*
    438  * Allocate the link level name for the specified interface.  This
    439  * is an attachment helper.  It must be called after ifp->if_addrlen
    440  * is initialized, which may not be the case when if_attach() is
    441  * called.
    442  */
    443 void
    444 if_alloc_sadl(struct ifnet *ifp)
    445 {
    446 	struct ifaddr *ifa;
    447 	const struct sockaddr_dl *sdl;
    448 
    449 	/*
    450 	 * If the interface already has a link name, release it
    451 	 * now.  This is useful for interfaces that can change
    452 	 * link types, and thus switch link names often.
    453 	 */
    454 	if (ifp->if_sadl != NULL)
    455 		if_free_sadl(ifp);
    456 
    457 	ifa = if_dl_create(ifp, &sdl);
    458 
    459 	ifa_insert(ifp, ifa);
    460 	if_sadl_setrefs(ifp, ifa);
    461 }
    462 
    463 static void
    464 if_deactivate_sadl(struct ifnet *ifp)
    465 {
    466 	struct ifaddr *ifa;
    467 
    468 	KASSERT(ifp->if_dl != NULL);
    469 
    470 	ifa = ifp->if_dl;
    471 
    472 	ifp->if_sadl = NULL;
    473 
    474 	ifp->if_dl = NULL;
    475 	ifafree(ifa);
    476 }
    477 
    478 void
    479 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
    480     const struct sockaddr_dl *sdl)
    481 {
    482 	int s;
    483 
    484 	s = splnet();
    485 
    486 	if_deactivate_sadl(ifp);
    487 
    488 	if_sadl_setrefs(ifp, ifa);
    489 	IFADDR_FOREACH(ifa, ifp)
    490 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    491 	splx(s);
    492 }
    493 
    494 /*
    495  * Free the link level name for the specified interface.  This is
    496  * a detach helper.  This is called from if_detach().
    497  */
    498 static void
    499 if_free_sadl(struct ifnet *ifp)
    500 {
    501 	struct ifaddr *ifa;
    502 	int s;
    503 
    504 	ifa = ifp->if_dl;
    505 	if (ifa == NULL) {
    506 		KASSERT(ifp->if_sadl == NULL);
    507 		return;
    508 	}
    509 
    510 	KASSERT(ifp->if_sadl != NULL);
    511 
    512 	s = splnet();
    513 	rtinit(ifa, RTM_DELETE, 0);
    514 	ifa_remove(ifp, ifa);
    515 	if_deactivate_sadl(ifp);
    516 	if (ifp->if_hwdl == ifa) {
    517 		ifafree(ifa);
    518 		ifp->if_hwdl = NULL;
    519 	}
    520 	splx(s);
    521 }
    522 
    523 static void
    524 if_getindex(ifnet_t *ifp)
    525 {
    526 	bool hitlimit = false;
    527 
    528 	mutex_enter(&index_gen_mtx);
    529 	ifp->if_index_gen = index_gen++;
    530 	mutex_exit(&index_gen_mtx);
    531 
    532 	ifp->if_index = if_index;
    533 	if (ifindex2ifnet == NULL) {
    534 		if_index++;
    535 		goto skip;
    536 	}
    537 	while (if_byindex(ifp->if_index)) {
    538 		/*
    539 		 * If we hit USHRT_MAX, we skip back to 0 since
    540 		 * there are a number of places where the value
    541 		 * of if_index or if_index itself is compared
    542 		 * to or stored in an unsigned short.  By
    543 		 * jumping back, we won't botch those assignments
    544 		 * or comparisons.
    545 		 */
    546 		if (++if_index == 0) {
    547 			if_index = 1;
    548 		} else if (if_index == USHRT_MAX) {
    549 			/*
    550 			 * However, if we have to jump back to
    551 			 * zero *twice* without finding an empty
    552 			 * slot in ifindex2ifnet[], then there
    553 			 * there are too many (>65535) interfaces.
    554 			 */
    555 			if (hitlimit) {
    556 				panic("too many interfaces");
    557 			}
    558 			hitlimit = true;
    559 			if_index = 1;
    560 		}
    561 		ifp->if_index = if_index;
    562 	}
    563 skip:
    564 	/*
    565 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    566 	 * grow dynamically, it should grow too.
    567 	 */
    568 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    569 		size_t m, n, oldlim;
    570 		void *q;
    571 
    572 		oldlim = if_indexlim;
    573 		while (ifp->if_index >= if_indexlim)
    574 			if_indexlim <<= 1;
    575 
    576 		/* grow ifindex2ifnet */
    577 		m = oldlim * sizeof(struct ifnet *);
    578 		n = if_indexlim * sizeof(struct ifnet *);
    579 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    580 		if (ifindex2ifnet != NULL) {
    581 			memcpy(q, ifindex2ifnet, m);
    582 			free(ifindex2ifnet, M_IFADDR);
    583 		}
    584 		ifindex2ifnet = (struct ifnet **)q;
    585 	}
    586 	ifindex2ifnet[ifp->if_index] = ifp;
    587 }
    588 
    589 /*
    590  * Initialize an interface and assign an index for it.
    591  *
    592  * It must be called prior to a device specific attach routine
    593  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    594  * and be followed by if_register:
    595  *
    596  *     if_initialize(ifp);
    597  *     ether_ifattach(ifp, enaddr);
    598  *     if_register(ifp);
    599  */
    600 void
    601 if_initialize(ifnet_t *ifp)
    602 {
    603 	KASSERT(if_indexlim > 0);
    604 	TAILQ_INIT(&ifp->if_addrlist);
    605 
    606 	/*
    607 	 * Link level name is allocated later by a separate call to
    608 	 * if_alloc_sadl().
    609 	 */
    610 
    611 	if (ifp->if_snd.ifq_maxlen == 0)
    612 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    613 
    614 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    615 
    616 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    617 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    618 
    619 	ifp->if_capenable = 0;
    620 	ifp->if_csum_flags_tx = 0;
    621 	ifp->if_csum_flags_rx = 0;
    622 
    623 #ifdef ALTQ
    624 	ifp->if_snd.altq_type = 0;
    625 	ifp->if_snd.altq_disc = NULL;
    626 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    627 	ifp->if_snd.altq_tbr  = NULL;
    628 	ifp->if_snd.altq_ifp  = ifp;
    629 #endif
    630 
    631 #ifdef NET_MPSAFE
    632 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
    633 #else
    634 	ifp->if_snd.ifq_lock = NULL;
    635 #endif
    636 
    637 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    638 	(void)pfil_run_hooks(if_pfil,
    639 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
    640 
    641 	IF_AFDATA_LOCK_INIT(ifp);
    642 
    643 	ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
    644 	if (ifp->if_link_si == NULL)
    645 		panic("%s: softint_establish() failed", __func__);
    646 
    647 	if_getindex(ifp);
    648 }
    649 
    650 /*
    651  * Register an interface to the list of "active" interfaces.
    652  */
    653 void
    654 if_register(ifnet_t *ifp)
    655 {
    656 	if (ifioctl_attach(ifp) != 0)
    657 		panic("%s: ifioctl_attach() failed", __func__);
    658 
    659 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    660 
    661 	if (!STAILQ_EMPTY(&domains))
    662 		if_attachdomain1(ifp);
    663 
    664 	/* Announce the interface. */
    665 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    666 
    667 	if (ifp->if_slowtimo != NULL) {
    668 		ifp->if_slowtimo_ch =
    669 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    670 		callout_init(ifp->if_slowtimo_ch, 0);
    671 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    672 		if_slowtimo(ifp);
    673 	}
    674 
    675 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    676 		ifp->if_transmit = if_transmit;
    677 
    678 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    679 }
    680 
    681 /*
    682  * The if_percpuq framework
    683  *
    684  * It allows network device drivers to execute the network stack
    685  * in softint (so called softint-based if_input). It utilizes
    686  * softint and percpu ifqueue. It doesn't distribute any packets
    687  * between CPUs, unlike pktqueue(9).
    688  *
    689  * Currently we support two options for device drivers to apply the framework:
    690  * - Use it implicitly with less changes
    691  *   - If you use if_attach in driver's _attach function and if_input in
    692  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    693  *     the packet implicitly
    694  * - Use it explicitly in each driver (recommended)
    695  *   - You can use if_percpuq_* directly in your driver
    696  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    697  *   - See wm(4) as a reference implementation
    698  */
    699 
    700 static void
    701 if_percpuq_softint(void *arg)
    702 {
    703 	struct if_percpuq *ipq = arg;
    704 	struct ifnet *ifp = ipq->ipq_ifp;
    705 	struct mbuf *m;
    706 
    707 	while ((m = if_percpuq_dequeue(ipq)) != NULL)
    708 		ifp->_if_input(ifp, m);
    709 }
    710 
    711 static void
    712 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    713 {
    714 	struct ifqueue *const ifq = p;
    715 
    716 	memset(ifq, 0, sizeof(*ifq));
    717 	ifq->ifq_maxlen = IFQ_MAXLEN;
    718 }
    719 
    720 struct if_percpuq *
    721 if_percpuq_create(struct ifnet *ifp)
    722 {
    723 	struct if_percpuq *ipq;
    724 
    725 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    726 	if (ipq == NULL)
    727 		panic("kmem_zalloc failed");
    728 
    729 	ipq->ipq_ifp = ifp;
    730 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    731 	    if_percpuq_softint, ipq);
    732 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    733 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    734 
    735 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    736 
    737 	return ipq;
    738 }
    739 
    740 static struct mbuf *
    741 if_percpuq_dequeue(struct if_percpuq *ipq)
    742 {
    743 	struct mbuf *m;
    744 	struct ifqueue *ifq;
    745 	int s;
    746 
    747 	s = splnet();
    748 	ifq = percpu_getref(ipq->ipq_ifqs);
    749 	IF_DEQUEUE(ifq, m);
    750 	percpu_putref(ipq->ipq_ifqs);
    751 	splx(s);
    752 
    753 	return m;
    754 }
    755 
    756 static void
    757 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    758 {
    759 	struct ifqueue *const ifq = p;
    760 
    761 	IF_PURGE(ifq);
    762 }
    763 
    764 void
    765 if_percpuq_destroy(struct if_percpuq *ipq)
    766 {
    767 
    768 	/* if_detach may already destroy it */
    769 	if (ipq == NULL)
    770 		return;
    771 
    772 	softint_disestablish(ipq->ipq_si);
    773 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    774 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    775 }
    776 
    777 void
    778 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    779 {
    780 	struct ifqueue *ifq;
    781 	int s;
    782 
    783 	KASSERT(ipq != NULL);
    784 
    785 	s = splnet();
    786 	ifq = percpu_getref(ipq->ipq_ifqs);
    787 	if (IF_QFULL(ifq)) {
    788 		IF_DROP(ifq);
    789 		percpu_putref(ipq->ipq_ifqs);
    790 		m_freem(m);
    791 		goto out;
    792 	}
    793 	IF_ENQUEUE(ifq, m);
    794 	percpu_putref(ipq->ipq_ifqs);
    795 
    796 	softint_schedule(ipq->ipq_si);
    797 out:
    798 	splx(s);
    799 }
    800 
    801 static void
    802 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    803 {
    804 	struct ifqueue *const ifq = p;
    805 	int *sum = arg;
    806 
    807 	*sum += ifq->ifq_drops;
    808 }
    809 
    810 static int
    811 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    812 {
    813 	struct sysctlnode node;
    814 	struct if_percpuq *ipq;
    815 	int sum = 0;
    816 	int error;
    817 
    818 	node = *rnode;
    819 	ipq = node.sysctl_data;
    820 
    821 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    822 
    823 	node.sysctl_data = &sum;
    824 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    825 	if (error != 0 || newp == NULL)
    826 		return error;
    827 
    828 	return 0;
    829 }
    830 
    831 static void
    832 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    833     struct if_percpuq *ipq)
    834 {
    835 	const struct sysctlnode *cnode, *rnode;
    836 
    837 	if (sysctl_createv(clog, 0, NULL, &rnode,
    838 		       CTLFLAG_PERMANENT,
    839 		       CTLTYPE_NODE, "interfaces",
    840 		       SYSCTL_DESCR("Per-interface controls"),
    841 		       NULL, 0, NULL, 0,
    842 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    843 		goto bad;
    844 
    845 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    846 		       CTLFLAG_PERMANENT,
    847 		       CTLTYPE_NODE, ifname,
    848 		       SYSCTL_DESCR("Interface controls"),
    849 		       NULL, 0, NULL, 0,
    850 		       CTL_CREATE, CTL_EOL) != 0)
    851 		goto bad;
    852 
    853 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    854 		       CTLFLAG_PERMANENT,
    855 		       CTLTYPE_NODE, "rcvq",
    856 		       SYSCTL_DESCR("Interface input queue controls"),
    857 		       NULL, 0, NULL, 0,
    858 		       CTL_CREATE, CTL_EOL) != 0)
    859 		goto bad;
    860 
    861 #ifdef NOTYET
    862 	/* XXX Should show each per-CPU queue length? */
    863 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    864 		       CTLFLAG_PERMANENT,
    865 		       CTLTYPE_INT, "len",
    866 		       SYSCTL_DESCR("Current input queue length"),
    867 		       sysctl_percpuq_len, 0, NULL, 0,
    868 		       CTL_CREATE, CTL_EOL) != 0)
    869 		goto bad;
    870 
    871 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    872 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    873 		       CTLTYPE_INT, "maxlen",
    874 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    875 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    876 		       CTL_CREATE, CTL_EOL) != 0)
    877 		goto bad;
    878 #endif
    879 
    880 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    881 		       CTLFLAG_PERMANENT,
    882 		       CTLTYPE_INT, "drops",
    883 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    884 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    885 		       CTL_CREATE, CTL_EOL) != 0)
    886 		goto bad;
    887 
    888 	return;
    889 bad:
    890 	printf("%s: could not attach sysctl nodes\n", ifname);
    891 	return;
    892 }
    893 
    894 
    895 /*
    896  * The common interface input routine that is called by device drivers,
    897  * which should be used only when the driver's rx handler already runs
    898  * in softint.
    899  */
    900 void
    901 if_input(struct ifnet *ifp, struct mbuf *m)
    902 {
    903 
    904 	KASSERT(ifp->if_percpuq == NULL);
    905 	KASSERT(!cpu_intr_p());
    906 
    907 	ifp->_if_input(ifp, m);
    908 }
    909 
    910 /*
    911  * DEPRECATED. Use if_initialize and if_register instead.
    912  * See the above comment of if_initialize.
    913  *
    914  * Note that it implicitly enables if_percpuq to make drivers easy to
    915  * migrate softinet-based if_input without much changes. If you don't
    916  * want to enable it, use if_initialize instead.
    917  */
    918 void
    919 if_attach(ifnet_t *ifp)
    920 {
    921 
    922 	if_initialize(ifp);
    923 	ifp->if_percpuq = if_percpuq_create(ifp);
    924 	if_register(ifp);
    925 }
    926 
    927 void
    928 if_attachdomain(void)
    929 {
    930 	struct ifnet *ifp;
    931 	int s;
    932 
    933 	s = splnet();
    934 	IFNET_FOREACH(ifp)
    935 		if_attachdomain1(ifp);
    936 	splx(s);
    937 }
    938 
    939 static void
    940 if_attachdomain1(struct ifnet *ifp)
    941 {
    942 	struct domain *dp;
    943 	int s;
    944 
    945 	s = splnet();
    946 
    947 	/* address family dependent data region */
    948 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
    949 	DOMAIN_FOREACH(dp) {
    950 		if (dp->dom_ifattach != NULL)
    951 			ifp->if_afdata[dp->dom_family] =
    952 			    (*dp->dom_ifattach)(ifp);
    953 	}
    954 
    955 	splx(s);
    956 }
    957 
    958 /*
    959  * Deactivate an interface.  This points all of the procedure
    960  * handles at error stubs.  May be called from interrupt context.
    961  */
    962 void
    963 if_deactivate(struct ifnet *ifp)
    964 {
    965 	int s;
    966 
    967 	s = splnet();
    968 
    969 	ifp->if_output	 = if_nulloutput;
    970 	ifp->_if_input	 = if_nullinput;
    971 	ifp->if_start	 = if_nullstart;
    972 	ifp->if_transmit = if_nulltransmit;
    973 	ifp->if_ioctl	 = if_nullioctl;
    974 	ifp->if_init	 = if_nullinit;
    975 	ifp->if_stop	 = if_nullstop;
    976 	ifp->if_slowtimo = if_nullslowtimo;
    977 	ifp->if_drain	 = if_nulldrain;
    978 
    979 	/* No more packets may be enqueued. */
    980 	ifp->if_snd.ifq_maxlen = 0;
    981 
    982 	splx(s);
    983 }
    984 
    985 void
    986 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
    987 {
    988 	struct ifaddr *ifa, *nifa;
    989 
    990 	IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
    991 		if (ifa->ifa_addr->sa_family != family)
    992 			continue;
    993 		(*purgeaddr)(ifa);
    994 	}
    995 }
    996 
    997 /*
    998  * Detach an interface from the list of "active" interfaces,
    999  * freeing any resources as we go along.
   1000  *
   1001  * NOTE: This routine must be called with a valid thread context,
   1002  * as it may block.
   1003  */
   1004 void
   1005 if_detach(struct ifnet *ifp)
   1006 {
   1007 	struct socket so;
   1008 	struct ifaddr *ifa;
   1009 #ifdef IFAREF_DEBUG
   1010 	struct ifaddr *last_ifa = NULL;
   1011 #endif
   1012 	struct domain *dp;
   1013 	const struct protosw *pr;
   1014 	int s, i, family, purged;
   1015 	uint64_t xc;
   1016 
   1017 	/*
   1018 	 * XXX It's kind of lame that we have to have the
   1019 	 * XXX socket structure...
   1020 	 */
   1021 	memset(&so, 0, sizeof(so));
   1022 
   1023 	s = splnet();
   1024 
   1025 	ifindex2ifnet[ifp->if_index] = NULL;
   1026 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1027 
   1028 	if (ifp->if_slowtimo != NULL) {
   1029 		ifp->if_slowtimo = NULL;
   1030 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1031 		callout_destroy(ifp->if_slowtimo_ch);
   1032 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1033 	}
   1034 
   1035 	/*
   1036 	 * Do an if_down() to give protocols a chance to do something.
   1037 	 */
   1038 	if_down(ifp);
   1039 
   1040 #ifdef ALTQ
   1041 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1042 		altq_disable(&ifp->if_snd);
   1043 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1044 		altq_detach(&ifp->if_snd);
   1045 #endif
   1046 
   1047 	if (ifp->if_snd.ifq_lock)
   1048 		mutex_obj_free(ifp->if_snd.ifq_lock);
   1049 
   1050 	sysctl_teardown(&ifp->if_sysctl_log);
   1051 
   1052 #if NCARP > 0
   1053 	/* Remove the interface from any carp group it is a part of.  */
   1054 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1055 		carp_ifdetach(ifp);
   1056 #endif
   1057 
   1058 	/*
   1059 	 * Rip all the addresses off the interface.  This should make
   1060 	 * all of the routes go away.
   1061 	 *
   1062 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1063 	 * from the list, including our "cursor", ifa.  For safety,
   1064 	 * and to honor the TAILQ abstraction, I just restart the
   1065 	 * loop after each removal.  Note that the loop will exit
   1066 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1067 	 * family.  I am counting on the historical fact that at
   1068 	 * least one pr_usrreq in each address domain removes at
   1069 	 * least one ifaddr.
   1070 	 */
   1071 again:
   1072 	IFADDR_FOREACH(ifa, ifp) {
   1073 		family = ifa->ifa_addr->sa_family;
   1074 #ifdef IFAREF_DEBUG
   1075 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1076 		    ifa, family, ifa->ifa_refcnt);
   1077 		if (last_ifa != NULL && ifa == last_ifa)
   1078 			panic("if_detach: loop detected");
   1079 		last_ifa = ifa;
   1080 #endif
   1081 		if (family == AF_LINK)
   1082 			continue;
   1083 		dp = pffinddomain(family);
   1084 #ifdef DIAGNOSTIC
   1085 		if (dp == NULL)
   1086 			panic("if_detach: no domain for AF %d",
   1087 			    family);
   1088 #endif
   1089 		/*
   1090 		 * XXX These PURGEIF calls are redundant with the
   1091 		 * purge-all-families calls below, but are left in for
   1092 		 * now both to make a smaller change, and to avoid
   1093 		 * unplanned interactions with clearing of
   1094 		 * ifp->if_addrlist.
   1095 		 */
   1096 		purged = 0;
   1097 		for (pr = dp->dom_protosw;
   1098 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1099 			so.so_proto = pr;
   1100 			if (pr->pr_usrreqs) {
   1101 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1102 				purged = 1;
   1103 			}
   1104 		}
   1105 		if (purged == 0) {
   1106 			/*
   1107 			 * XXX What's really the best thing to do
   1108 			 * XXX here?  --thorpej (at) NetBSD.org
   1109 			 */
   1110 			printf("if_detach: WARNING: AF %d not purged\n",
   1111 			    family);
   1112 			ifa_remove(ifp, ifa);
   1113 		}
   1114 		goto again;
   1115 	}
   1116 
   1117 	if_free_sadl(ifp);
   1118 
   1119 	/* Walk the routing table looking for stragglers. */
   1120 	for (i = 0; i <= AF_MAX; i++) {
   1121 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
   1122 			continue;
   1123 	}
   1124 
   1125 	DOMAIN_FOREACH(dp) {
   1126 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1127 		{
   1128 			void *p = ifp->if_afdata[dp->dom_family];
   1129 			if (p) {
   1130 				ifp->if_afdata[dp->dom_family] = NULL;
   1131 				(*dp->dom_ifdetach)(ifp, p);
   1132 			}
   1133 		}
   1134 
   1135 		/*
   1136 		 * One would expect multicast memberships (INET and
   1137 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1138 		 * calls above, but if all addresses were removed from
   1139 		 * the interface prior to destruction, the calls will
   1140 		 * not be made (e.g. ppp, for which pppd(8) generally
   1141 		 * removes addresses before destroying the interface).
   1142 		 * Because there is no invariant that multicast
   1143 		 * memberships only exist for interfaces with IPv4
   1144 		 * addresses, we must call PURGEIF regardless of
   1145 		 * addresses.  (Protocols which might store ifnet
   1146 		 * pointers are marked with PR_PURGEIF.)
   1147 		 */
   1148 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1149 			so.so_proto = pr;
   1150 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1151 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1152 		}
   1153 	}
   1154 
   1155 	(void)pfil_run_hooks(if_pfil,
   1156 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
   1157 	(void)pfil_head_destroy(ifp->if_pfil);
   1158 
   1159 	/* Announce that the interface is gone. */
   1160 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1161 
   1162 	ifioctl_detach(ifp);
   1163 
   1164 	IF_AFDATA_LOCK_DESTROY(ifp);
   1165 
   1166 	softint_disestablish(ifp->if_link_si);
   1167 	ifp->if_link_si = NULL;
   1168 
   1169 	/*
   1170 	 * remove packets that came from ifp, from software interrupt queues.
   1171 	 */
   1172 	DOMAIN_FOREACH(dp) {
   1173 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1174 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1175 			if (iq == NULL)
   1176 				break;
   1177 			dp->dom_ifqueues[i] = NULL;
   1178 			if_detach_queues(ifp, iq);
   1179 		}
   1180 	}
   1181 
   1182 	/*
   1183 	 * IP queues have to be processed separately: net-queue barrier
   1184 	 * ensures that the packets are dequeued while a cross-call will
   1185 	 * ensure that the interrupts have completed. FIXME: not quite..
   1186 	 */
   1187 #ifdef INET
   1188 	pktq_barrier(ip_pktq);
   1189 #endif
   1190 #ifdef INET6
   1191 	if (in6_present)
   1192 		pktq_barrier(ip6_pktq);
   1193 #endif
   1194 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1195 	xc_wait(xc);
   1196 
   1197 	if (ifp->if_percpuq != NULL) {
   1198 		if_percpuq_destroy(ifp->if_percpuq);
   1199 		ifp->if_percpuq = NULL;
   1200 	}
   1201 
   1202 	splx(s);
   1203 }
   1204 
   1205 static void
   1206 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1207 {
   1208 	struct mbuf *m, *prev, *next;
   1209 
   1210 	prev = NULL;
   1211 	for (m = q->ifq_head; m != NULL; m = next) {
   1212 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1213 
   1214 		next = m->m_nextpkt;
   1215 		if (m->m_pkthdr.rcvif != ifp) {
   1216 			prev = m;
   1217 			continue;
   1218 		}
   1219 
   1220 		if (prev != NULL)
   1221 			prev->m_nextpkt = m->m_nextpkt;
   1222 		else
   1223 			q->ifq_head = m->m_nextpkt;
   1224 		if (q->ifq_tail == m)
   1225 			q->ifq_tail = prev;
   1226 		q->ifq_len--;
   1227 
   1228 		m->m_nextpkt = NULL;
   1229 		m_freem(m);
   1230 		IF_DROP(q);
   1231 	}
   1232 }
   1233 
   1234 /*
   1235  * Callback for a radix tree walk to delete all references to an
   1236  * ifnet.
   1237  */
   1238 static int
   1239 if_rt_walktree(struct rtentry *rt, void *v)
   1240 {
   1241 	struct ifnet *ifp = (struct ifnet *)v;
   1242 	int error;
   1243 	struct rtentry *retrt;
   1244 
   1245 	if (rt->rt_ifp != ifp)
   1246 		return 0;
   1247 
   1248 	/* Delete the entry. */
   1249 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
   1250 	    rt_mask(rt), rt->rt_flags, &retrt);
   1251 	if (error == 0) {
   1252 		KASSERT(retrt == rt);
   1253 		KASSERT((retrt->rt_flags & RTF_UP) == 0);
   1254 		retrt->rt_ifp = NULL;
   1255 		rtfree(retrt);
   1256 	} else {
   1257 		printf("%s: warning: unable to delete rtentry @ %p, "
   1258 		    "error = %d\n", ifp->if_xname, rt, error);
   1259 	}
   1260 	return ERESTART;
   1261 }
   1262 
   1263 /*
   1264  * Create a clone network interface.
   1265  */
   1266 static int
   1267 if_clone_create(const char *name)
   1268 {
   1269 	struct if_clone *ifc;
   1270 	int unit;
   1271 
   1272 	ifc = if_clone_lookup(name, &unit);
   1273 	if (ifc == NULL)
   1274 		return EINVAL;
   1275 
   1276 	if (ifunit(name) != NULL)
   1277 		return EEXIST;
   1278 
   1279 	return (*ifc->ifc_create)(ifc, unit);
   1280 }
   1281 
   1282 /*
   1283  * Destroy a clone network interface.
   1284  */
   1285 static int
   1286 if_clone_destroy(const char *name)
   1287 {
   1288 	struct if_clone *ifc;
   1289 	struct ifnet *ifp;
   1290 
   1291 	ifc = if_clone_lookup(name, NULL);
   1292 	if (ifc == NULL)
   1293 		return EINVAL;
   1294 
   1295 	ifp = ifunit(name);
   1296 	if (ifp == NULL)
   1297 		return ENXIO;
   1298 
   1299 	if (ifc->ifc_destroy == NULL)
   1300 		return EOPNOTSUPP;
   1301 
   1302 	return (*ifc->ifc_destroy)(ifp);
   1303 }
   1304 
   1305 /*
   1306  * Look up a network interface cloner.
   1307  */
   1308 static struct if_clone *
   1309 if_clone_lookup(const char *name, int *unitp)
   1310 {
   1311 	struct if_clone *ifc;
   1312 	const char *cp;
   1313 	char *dp, ifname[IFNAMSIZ + 3];
   1314 	int unit;
   1315 
   1316 	strcpy(ifname, "if_");
   1317 	/* separate interface name from unit */
   1318 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1319 	    *cp && (*cp < '0' || *cp > '9');)
   1320 		*dp++ = *cp++;
   1321 
   1322 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1323 		return NULL;	/* No name or unit number */
   1324 	*dp++ = '\0';
   1325 
   1326 again:
   1327 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1328 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1329 			break;
   1330 	}
   1331 
   1332 	if (ifc == NULL) {
   1333 		if (*ifname == '\0' ||
   1334 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
   1335 			return NULL;
   1336 		*ifname = '\0';
   1337 		goto again;
   1338 	}
   1339 
   1340 	unit = 0;
   1341 	while (cp - name < IFNAMSIZ && *cp) {
   1342 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1343 			/* Bogus unit number. */
   1344 			return NULL;
   1345 		}
   1346 		unit = (unit * 10) + (*cp++ - '0');
   1347 	}
   1348 
   1349 	if (unitp != NULL)
   1350 		*unitp = unit;
   1351 	return ifc;
   1352 }
   1353 
   1354 /*
   1355  * Register a network interface cloner.
   1356  */
   1357 void
   1358 if_clone_attach(struct if_clone *ifc)
   1359 {
   1360 
   1361 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1362 	if_cloners_count++;
   1363 }
   1364 
   1365 /*
   1366  * Unregister a network interface cloner.
   1367  */
   1368 void
   1369 if_clone_detach(struct if_clone *ifc)
   1370 {
   1371 
   1372 	LIST_REMOVE(ifc, ifc_list);
   1373 	if_cloners_count--;
   1374 }
   1375 
   1376 /*
   1377  * Provide list of interface cloners to userspace.
   1378  */
   1379 int
   1380 if_clone_list(int buf_count, char *buffer, int *total)
   1381 {
   1382 	char outbuf[IFNAMSIZ], *dst;
   1383 	struct if_clone *ifc;
   1384 	int count, error = 0;
   1385 
   1386 	*total = if_cloners_count;
   1387 	if ((dst = buffer) == NULL) {
   1388 		/* Just asking how many there are. */
   1389 		return 0;
   1390 	}
   1391 
   1392 	if (buf_count < 0)
   1393 		return EINVAL;
   1394 
   1395 	count = (if_cloners_count < buf_count) ?
   1396 	    if_cloners_count : buf_count;
   1397 
   1398 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1399 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1400 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1401 		if (outbuf[sizeof(outbuf) - 1] != '\0')
   1402 			return ENAMETOOLONG;
   1403 		error = copyout(outbuf, dst, sizeof(outbuf));
   1404 		if (error != 0)
   1405 			break;
   1406 	}
   1407 
   1408 	return error;
   1409 }
   1410 
   1411 void
   1412 ifaref(struct ifaddr *ifa)
   1413 {
   1414 	ifa->ifa_refcnt++;
   1415 }
   1416 
   1417 void
   1418 ifafree(struct ifaddr *ifa)
   1419 {
   1420 	KASSERT(ifa != NULL);
   1421 	KASSERT(ifa->ifa_refcnt > 0);
   1422 
   1423 	if (--ifa->ifa_refcnt == 0) {
   1424 		free(ifa, M_IFADDR);
   1425 	}
   1426 }
   1427 
   1428 void
   1429 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1430 {
   1431 	ifa->ifa_ifp = ifp;
   1432 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1433 	ifaref(ifa);
   1434 }
   1435 
   1436 void
   1437 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1438 {
   1439 	KASSERT(ifa->ifa_ifp == ifp);
   1440 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1441 	ifafree(ifa);
   1442 }
   1443 
   1444 static inline int
   1445 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1446 {
   1447 	return sockaddr_cmp(sa1, sa2) == 0;
   1448 }
   1449 
   1450 /*
   1451  * Locate an interface based on a complete address.
   1452  */
   1453 /*ARGSUSED*/
   1454 struct ifaddr *
   1455 ifa_ifwithaddr(const struct sockaddr *addr)
   1456 {
   1457 	struct ifnet *ifp;
   1458 	struct ifaddr *ifa;
   1459 
   1460 	IFNET_FOREACH(ifp) {
   1461 		if (ifp->if_output == if_nulloutput)
   1462 			continue;
   1463 		IFADDR_FOREACH(ifa, ifp) {
   1464 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1465 				continue;
   1466 			if (equal(addr, ifa->ifa_addr))
   1467 				return ifa;
   1468 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1469 			    ifa->ifa_broadaddr &&
   1470 			    /* IP6 doesn't have broadcast */
   1471 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1472 			    equal(ifa->ifa_broadaddr, addr))
   1473 				return ifa;
   1474 		}
   1475 	}
   1476 	return NULL;
   1477 }
   1478 
   1479 /*
   1480  * Locate the point to point interface with a given destination address.
   1481  */
   1482 /*ARGSUSED*/
   1483 struct ifaddr *
   1484 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1485 {
   1486 	struct ifnet *ifp;
   1487 	struct ifaddr *ifa;
   1488 
   1489 	IFNET_FOREACH(ifp) {
   1490 		if (ifp->if_output == if_nulloutput)
   1491 			continue;
   1492 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1493 			continue;
   1494 		IFADDR_FOREACH(ifa, ifp) {
   1495 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1496 			    ifa->ifa_dstaddr == NULL)
   1497 				continue;
   1498 			if (equal(addr, ifa->ifa_dstaddr))
   1499 				return ifa;
   1500 		}
   1501 	}
   1502 	return NULL;
   1503 }
   1504 
   1505 /*
   1506  * Find an interface on a specific network.  If many, choice
   1507  * is most specific found.
   1508  */
   1509 struct ifaddr *
   1510 ifa_ifwithnet(const struct sockaddr *addr)
   1511 {
   1512 	struct ifnet *ifp;
   1513 	struct ifaddr *ifa;
   1514 	const struct sockaddr_dl *sdl;
   1515 	struct ifaddr *ifa_maybe = 0;
   1516 	u_int af = addr->sa_family;
   1517 	const char *addr_data = addr->sa_data, *cplim;
   1518 
   1519 	if (af == AF_LINK) {
   1520 		sdl = satocsdl(addr);
   1521 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1522 		    ifindex2ifnet[sdl->sdl_index] &&
   1523 		    ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
   1524 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1525 		}
   1526 	}
   1527 #ifdef NETATALK
   1528 	if (af == AF_APPLETALK) {
   1529 		const struct sockaddr_at *sat, *sat2;
   1530 		sat = (const struct sockaddr_at *)addr;
   1531 		IFNET_FOREACH(ifp) {
   1532 			if (ifp->if_output == if_nulloutput)
   1533 				continue;
   1534 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1535 			if (ifa == NULL)
   1536 				continue;
   1537 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1538 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1539 				return ifa; /* exact match */
   1540 			if (ifa_maybe == NULL) {
   1541 				/* else keep the if with the right range */
   1542 				ifa_maybe = ifa;
   1543 			}
   1544 		}
   1545 		return ifa_maybe;
   1546 	}
   1547 #endif
   1548 	IFNET_FOREACH(ifp) {
   1549 		if (ifp->if_output == if_nulloutput)
   1550 			continue;
   1551 		IFADDR_FOREACH(ifa, ifp) {
   1552 			const char *cp, *cp2, *cp3;
   1553 
   1554 			if (ifa->ifa_addr->sa_family != af ||
   1555 			    ifa->ifa_netmask == NULL)
   1556  next:				continue;
   1557 			cp = addr_data;
   1558 			cp2 = ifa->ifa_addr->sa_data;
   1559 			cp3 = ifa->ifa_netmask->sa_data;
   1560 			cplim = (const char *)ifa->ifa_netmask +
   1561 			    ifa->ifa_netmask->sa_len;
   1562 			while (cp3 < cplim) {
   1563 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1564 					/* want to continue for() loop */
   1565 					goto next;
   1566 				}
   1567 			}
   1568 			if (ifa_maybe == NULL ||
   1569 			    rt_refines(ifa->ifa_netmask,
   1570 			               ifa_maybe->ifa_netmask))
   1571 				ifa_maybe = ifa;
   1572 		}
   1573 	}
   1574 	return ifa_maybe;
   1575 }
   1576 
   1577 /*
   1578  * Find the interface of the addresss.
   1579  */
   1580 struct ifaddr *
   1581 ifa_ifwithladdr(const struct sockaddr *addr)
   1582 {
   1583 	struct ifaddr *ia;
   1584 
   1585 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   1586 	    (ia = ifa_ifwithnet(addr)))
   1587 		return ia;
   1588 	return NULL;
   1589 }
   1590 
   1591 /*
   1592  * Find an interface using a specific address family
   1593  */
   1594 struct ifaddr *
   1595 ifa_ifwithaf(int af)
   1596 {
   1597 	struct ifnet *ifp;
   1598 	struct ifaddr *ifa;
   1599 
   1600 	IFNET_FOREACH(ifp) {
   1601 		if (ifp->if_output == if_nulloutput)
   1602 			continue;
   1603 		IFADDR_FOREACH(ifa, ifp) {
   1604 			if (ifa->ifa_addr->sa_family == af)
   1605 				return ifa;
   1606 		}
   1607 	}
   1608 	return NULL;
   1609 }
   1610 
   1611 /*
   1612  * Find an interface address specific to an interface best matching
   1613  * a given address.
   1614  */
   1615 struct ifaddr *
   1616 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   1617 {
   1618 	struct ifaddr *ifa;
   1619 	const char *cp, *cp2, *cp3;
   1620 	const char *cplim;
   1621 	struct ifaddr *ifa_maybe = 0;
   1622 	u_int af = addr->sa_family;
   1623 
   1624 	if (ifp->if_output == if_nulloutput)
   1625 		return NULL;
   1626 
   1627 	if (af >= AF_MAX)
   1628 		return NULL;
   1629 
   1630 	IFADDR_FOREACH(ifa, ifp) {
   1631 		if (ifa->ifa_addr->sa_family != af)
   1632 			continue;
   1633 		ifa_maybe = ifa;
   1634 		if (ifa->ifa_netmask == NULL) {
   1635 			if (equal(addr, ifa->ifa_addr) ||
   1636 			    (ifa->ifa_dstaddr &&
   1637 			     equal(addr, ifa->ifa_dstaddr)))
   1638 				return ifa;
   1639 			continue;
   1640 		}
   1641 		cp = addr->sa_data;
   1642 		cp2 = ifa->ifa_addr->sa_data;
   1643 		cp3 = ifa->ifa_netmask->sa_data;
   1644 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   1645 		for (; cp3 < cplim; cp3++) {
   1646 			if ((*cp++ ^ *cp2++) & *cp3)
   1647 				break;
   1648 		}
   1649 		if (cp3 == cplim)
   1650 			return ifa;
   1651 	}
   1652 	return ifa_maybe;
   1653 }
   1654 
   1655 /*
   1656  * Default action when installing a route with a Link Level gateway.
   1657  * Lookup an appropriate real ifa to point to.
   1658  * This should be moved to /sys/net/link.c eventually.
   1659  */
   1660 void
   1661 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   1662 {
   1663 	struct ifaddr *ifa;
   1664 	const struct sockaddr *dst;
   1665 	struct ifnet *ifp;
   1666 
   1667 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   1668 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   1669 		return;
   1670 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
   1671 		rt_replace_ifa(rt, ifa);
   1672 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   1673 			ifa->ifa_rtrequest(cmd, rt, info);
   1674 	}
   1675 }
   1676 
   1677 /*
   1678  * bitmask macros to manage a densely packed link_state change queue.
   1679  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   1680  * LINK_STATE_UP(2) we need 2 bits for each state change.
   1681  * As a state change to store is 0, treat all bits set as an unset item.
   1682  */
   1683 #define LQ_ITEM_BITS		2
   1684 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   1685 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   1686 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   1687 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   1688 #define LQ_STORE(q, i, v)						      \
   1689 	do {								      \
   1690 		(q) &= ~LQ_MASK((i));					      \
   1691 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   1692 	} while (0 /* CONSTCOND */)
   1693 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   1694 #define LQ_POP(q, v)							      \
   1695 	do {								      \
   1696 		(v) = LQ_ITEM((q), 0);					      \
   1697 		(q) >>= LQ_ITEM_BITS;					      \
   1698 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   1699 	} while (0 /* CONSTCOND */)
   1700 #define LQ_PUSH(q, v)							      \
   1701 	do {								      \
   1702 		(q) >>= LQ_ITEM_BITS;					      \
   1703 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   1704 	} while (0 /* CONSTCOND */)
   1705 #define LQ_FIND_UNSET(q, i)						      \
   1706 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   1707 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   1708 			break;						      \
   1709 	}
   1710 /*
   1711  * Handle a change in the interface link state and
   1712  * queue notifications.
   1713  */
   1714 void
   1715 if_link_state_change(struct ifnet *ifp, int link_state)
   1716 {
   1717 	int s, idx;
   1718 
   1719 	/* Ensure change is to a valid state */
   1720 	switch (link_state) {
   1721 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   1722 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   1723 	case LINK_STATE_UP:
   1724 		break;
   1725 	default:
   1726 #ifdef DEBUG
   1727 		printf("%s: invalid link state %d\n",
   1728 		    ifp->if_xname, link_state);
   1729 #endif
   1730 		return;
   1731 	}
   1732 
   1733 	s = splnet();
   1734 
   1735 	/* Find the last unset event in the queue. */
   1736 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   1737 
   1738 	/*
   1739 	 * Ensure link_state doesn't match the last event in the queue.
   1740 	 * ifp->if_link_state is not checked and set here because
   1741 	 * that would present an inconsistent picture to the system.
   1742 	 */
   1743 	if (idx != 0 &&
   1744 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   1745 		goto out;
   1746 
   1747 	/* Handle queue overflow. */
   1748 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   1749 		uint8_t lost;
   1750 
   1751 		/*
   1752 		 * The DOWN state must be protected from being pushed off
   1753 		 * the queue to ensure that userland will always be
   1754 		 * in a sane state.
   1755 		 * Because DOWN is protected, there is no need to protect
   1756 		 * UNKNOWN.
   1757 		 * It should be invalid to change from any other state to
   1758 		 * UNKNOWN anyway ...
   1759 		 */
   1760 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   1761 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   1762 		if (lost == LINK_STATE_DOWN) {
   1763 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   1764 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   1765 		}
   1766 		printf("%s: lost link state change %s\n",
   1767 		    ifp->if_xname,
   1768 		    lost == LINK_STATE_UP ? "UP" :
   1769 		    lost == LINK_STATE_DOWN ? "DOWN" :
   1770 		    "UNKNOWN");
   1771 	} else
   1772 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   1773 
   1774 	softint_schedule(ifp->if_link_si);
   1775 
   1776 out:
   1777 	splx(s);
   1778 }
   1779 
   1780 /*
   1781  * Handle interface link state change notifications.
   1782  * Must be called at splnet().
   1783  */
   1784 static void
   1785 if_link_state_change0(struct ifnet *ifp, int link_state)
   1786 {
   1787 	struct domain *dp;
   1788 
   1789 	/* Ensure the change is still valid. */
   1790 	if (ifp->if_link_state == link_state)
   1791 		return;
   1792 
   1793 #ifdef DEBUG
   1794 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   1795 		link_state == LINK_STATE_UP ? "UP" :
   1796 		link_state == LINK_STATE_DOWN ? "DOWN" :
   1797 		"UNKNOWN",
   1798 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   1799 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   1800 		"UNKNOWN");
   1801 #endif
   1802 
   1803 	/*
   1804 	 * When going from UNKNOWN to UP, we need to mark existing
   1805 	 * addresses as tentative and restart DAD as we may have
   1806 	 * erroneously not found a duplicate.
   1807 	 *
   1808 	 * This needs to happen before rt_ifmsg to avoid a race where
   1809 	 * listeners would have an address and expect it to work right
   1810 	 * away.
   1811 	 */
   1812 	if (link_state == LINK_STATE_UP &&
   1813 	    ifp->if_link_state == LINK_STATE_UNKNOWN)
   1814 	{
   1815 		DOMAIN_FOREACH(dp) {
   1816 			if (dp->dom_if_link_state_change != NULL)
   1817 				dp->dom_if_link_state_change(ifp,
   1818 				    LINK_STATE_DOWN);
   1819 		}
   1820 	}
   1821 
   1822 	ifp->if_link_state = link_state;
   1823 
   1824 	/* Notify that the link state has changed. */
   1825 	rt_ifmsg(ifp);
   1826 
   1827 #if NCARP > 0
   1828 	if (ifp->if_carp)
   1829 		carp_carpdev_state(ifp);
   1830 #endif
   1831 
   1832 	DOMAIN_FOREACH(dp) {
   1833 		if (dp->dom_if_link_state_change != NULL)
   1834 			dp->dom_if_link_state_change(ifp, link_state);
   1835 	}
   1836 }
   1837 
   1838 /*
   1839  * Process the interface link state change queue.
   1840  */
   1841 static void
   1842 if_link_state_change_si(void *arg)
   1843 {
   1844 	struct ifnet *ifp = arg;
   1845 	int s;
   1846 	uint8_t state;
   1847 
   1848 	s = splnet();
   1849 
   1850 	/* Pop a link state change from the queue and process it. */
   1851 	LQ_POP(ifp->if_link_queue, state);
   1852 	if_link_state_change0(ifp, state);
   1853 
   1854 	/* If there is a link state change to come, schedule it. */
   1855 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
   1856 		softint_schedule(ifp->if_link_si);
   1857 
   1858 	splx(s);
   1859 }
   1860 
   1861 /*
   1862  * Default action when installing a local route on a point-to-point
   1863  * interface.
   1864  */
   1865 void
   1866 p2p_rtrequest(int req, struct rtentry *rt,
   1867     __unused const struct rt_addrinfo *info)
   1868 {
   1869 	struct ifnet *ifp = rt->rt_ifp;
   1870 	struct ifaddr *ifa, *lo0ifa;
   1871 
   1872 	switch (req) {
   1873 	case RTM_ADD:
   1874 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   1875 			break;
   1876 
   1877 		IFADDR_FOREACH(ifa, ifp) {
   1878 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   1879 				break;
   1880 		}
   1881 		if (ifa == NULL)
   1882 			break;
   1883 
   1884 		/*
   1885 		 * Ensure lo0 has an address of the same family.
   1886 		 */
   1887 		IFADDR_FOREACH(lo0ifa, lo0ifp) {
   1888 			if (lo0ifa->ifa_addr->sa_family ==
   1889 			    ifa->ifa_addr->sa_family)
   1890 				break;
   1891 		}
   1892 		if (lo0ifa == NULL)
   1893 			break;
   1894 
   1895 		rt->rt_ifp = lo0ifp;
   1896 
   1897 		/*
   1898 		 * Make sure to set rt->rt_ifa to the interface
   1899 		 * address we are using, otherwise we will have trouble
   1900 		 * with source address selection.
   1901 		 */
   1902 		if (ifa != rt->rt_ifa)
   1903 			rt_replace_ifa(rt, ifa);
   1904 		break;
   1905 	case RTM_DELETE:
   1906 	default:
   1907 		break;
   1908 	}
   1909 }
   1910 
   1911 /*
   1912  * Mark an interface down and notify protocols of
   1913  * the transition.
   1914  * NOTE: must be called at splsoftnet or equivalent.
   1915  */
   1916 void
   1917 if_down(struct ifnet *ifp)
   1918 {
   1919 	struct ifaddr *ifa;
   1920 	struct domain *dp;
   1921 
   1922 	ifp->if_flags &= ~IFF_UP;
   1923 	nanotime(&ifp->if_lastchange);
   1924 	IFADDR_FOREACH(ifa, ifp)
   1925 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   1926 	IFQ_PURGE(&ifp->if_snd);
   1927 #if NCARP > 0
   1928 	if (ifp->if_carp)
   1929 		carp_carpdev_state(ifp);
   1930 #endif
   1931 	rt_ifmsg(ifp);
   1932 	DOMAIN_FOREACH(dp) {
   1933 		if (dp->dom_if_down)
   1934 			dp->dom_if_down(ifp);
   1935 	}
   1936 }
   1937 
   1938 /*
   1939  * Mark an interface up and notify protocols of
   1940  * the transition.
   1941  * NOTE: must be called at splsoftnet or equivalent.
   1942  */
   1943 void
   1944 if_up(struct ifnet *ifp)
   1945 {
   1946 #ifdef notyet
   1947 	struct ifaddr *ifa;
   1948 #endif
   1949 	struct domain *dp;
   1950 
   1951 	ifp->if_flags |= IFF_UP;
   1952 	nanotime(&ifp->if_lastchange);
   1953 #ifdef notyet
   1954 	/* this has no effect on IP, and will kill all ISO connections XXX */
   1955 	IFADDR_FOREACH(ifa, ifp)
   1956 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   1957 #endif
   1958 #if NCARP > 0
   1959 	if (ifp->if_carp)
   1960 		carp_carpdev_state(ifp);
   1961 #endif
   1962 	rt_ifmsg(ifp);
   1963 	DOMAIN_FOREACH(dp) {
   1964 		if (dp->dom_if_up)
   1965 			dp->dom_if_up(ifp);
   1966 	}
   1967 }
   1968 
   1969 /*
   1970  * Handle interface slowtimo timer routine.  Called
   1971  * from softclock, we decrement timer (if set) and
   1972  * call the appropriate interface routine on expiration.
   1973  */
   1974 static void
   1975 if_slowtimo(void *arg)
   1976 {
   1977 	void (*slowtimo)(struct ifnet *);
   1978 	struct ifnet *ifp = arg;
   1979 	int s;
   1980 
   1981 	slowtimo = ifp->if_slowtimo;
   1982 	if (__predict_false(slowtimo == NULL))
   1983 		return;
   1984 
   1985 	s = splnet();
   1986 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   1987 		(*slowtimo)(ifp);
   1988 
   1989 	splx(s);
   1990 
   1991 	if (__predict_true(ifp->if_slowtimo != NULL))
   1992 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   1993 }
   1994 
   1995 /*
   1996  * Set/clear promiscuous mode on interface ifp based on the truth value
   1997  * of pswitch.  The calls are reference counted so that only the first
   1998  * "on" request actually has an effect, as does the final "off" request.
   1999  * Results are undefined if the "off" and "on" requests are not matched.
   2000  */
   2001 int
   2002 ifpromisc(struct ifnet *ifp, int pswitch)
   2003 {
   2004 	int pcount, ret;
   2005 	short nflags;
   2006 
   2007 	pcount = ifp->if_pcount;
   2008 	if (pswitch) {
   2009 		/*
   2010 		 * Allow the device to be "placed" into promiscuous
   2011 		 * mode even if it is not configured up.  It will
   2012 		 * consult IFF_PROMISC when it is brought up.
   2013 		 */
   2014 		if (ifp->if_pcount++ != 0)
   2015 			return 0;
   2016 		nflags = ifp->if_flags | IFF_PROMISC;
   2017 	} else {
   2018 		if (--ifp->if_pcount > 0)
   2019 			return 0;
   2020 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2021 	}
   2022 	ret = if_flags_set(ifp, nflags);
   2023 	/* Restore interface state if not successful. */
   2024 	if (ret != 0) {
   2025 		ifp->if_pcount = pcount;
   2026 	}
   2027 	return ret;
   2028 }
   2029 
   2030 /*
   2031  * Map interface name to
   2032  * interface structure pointer.
   2033  */
   2034 struct ifnet *
   2035 ifunit(const char *name)
   2036 {
   2037 	struct ifnet *ifp;
   2038 	const char *cp = name;
   2039 	u_int unit = 0;
   2040 	u_int i;
   2041 
   2042 	/*
   2043 	 * If the entire name is a number, treat it as an ifindex.
   2044 	 */
   2045 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2046 		unit = unit * 10 + (*cp - '0');
   2047 	}
   2048 
   2049 	/*
   2050 	 * If the number took all of the name, then it's a valid ifindex.
   2051 	 */
   2052 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
   2053 		if (unit >= if_indexlim)
   2054 			return NULL;
   2055 		ifp = ifindex2ifnet[unit];
   2056 		if (ifp == NULL || ifp->if_output == if_nulloutput)
   2057 			return NULL;
   2058 		return ifp;
   2059 	}
   2060 
   2061 	IFNET_FOREACH(ifp) {
   2062 		if (ifp->if_output == if_nulloutput)
   2063 			continue;
   2064 	 	if (strcmp(ifp->if_xname, name) == 0)
   2065 			return ifp;
   2066 	}
   2067 	return NULL;
   2068 }
   2069 
   2070 ifnet_t *
   2071 if_byindex(u_int idx)
   2072 {
   2073 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
   2074 }
   2075 
   2076 /* common */
   2077 int
   2078 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2079 {
   2080 	int s;
   2081 	struct ifreq *ifr;
   2082 	struct ifcapreq *ifcr;
   2083 	struct ifdatareq *ifdr;
   2084 
   2085 	switch (cmd) {
   2086 	case SIOCSIFCAP:
   2087 		ifcr = data;
   2088 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2089 			return EINVAL;
   2090 
   2091 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2092 			return 0;
   2093 
   2094 		ifp->if_capenable = ifcr->ifcr_capenable;
   2095 
   2096 		/* Pre-compute the checksum flags mask. */
   2097 		ifp->if_csum_flags_tx = 0;
   2098 		ifp->if_csum_flags_rx = 0;
   2099 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2100 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2101 		}
   2102 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2103 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2104 		}
   2105 
   2106 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2107 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2108 		}
   2109 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2110 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2111 		}
   2112 
   2113 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2114 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2115 		}
   2116 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2117 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2118 		}
   2119 
   2120 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2121 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2122 		}
   2123 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2124 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2125 		}
   2126 
   2127 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2128 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2129 		}
   2130 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2131 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2132 		}
   2133 		if (ifp->if_flags & IFF_UP)
   2134 			return ENETRESET;
   2135 		return 0;
   2136 	case SIOCSIFFLAGS:
   2137 		ifr = data;
   2138 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2139 			s = splnet();
   2140 			if_down(ifp);
   2141 			splx(s);
   2142 		}
   2143 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2144 			s = splnet();
   2145 			if_up(ifp);
   2146 			splx(s);
   2147 		}
   2148 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2149 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2150 		break;
   2151 	case SIOCGIFFLAGS:
   2152 		ifr = data;
   2153 		ifr->ifr_flags = ifp->if_flags;
   2154 		break;
   2155 
   2156 	case SIOCGIFMETRIC:
   2157 		ifr = data;
   2158 		ifr->ifr_metric = ifp->if_metric;
   2159 		break;
   2160 
   2161 	case SIOCGIFMTU:
   2162 		ifr = data;
   2163 		ifr->ifr_mtu = ifp->if_mtu;
   2164 		break;
   2165 
   2166 	case SIOCGIFDLT:
   2167 		ifr = data;
   2168 		ifr->ifr_dlt = ifp->if_dlt;
   2169 		break;
   2170 
   2171 	case SIOCGIFCAP:
   2172 		ifcr = data;
   2173 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2174 		ifcr->ifcr_capenable = ifp->if_capenable;
   2175 		break;
   2176 
   2177 	case SIOCSIFMETRIC:
   2178 		ifr = data;
   2179 		ifp->if_metric = ifr->ifr_metric;
   2180 		break;
   2181 
   2182 	case SIOCGIFDATA:
   2183 		ifdr = data;
   2184 		ifdr->ifdr_data = ifp->if_data;
   2185 		break;
   2186 
   2187 	case SIOCGIFINDEX:
   2188 		ifr = data;
   2189 		ifr->ifr_index = ifp->if_index;
   2190 		break;
   2191 
   2192 	case SIOCZIFDATA:
   2193 		ifdr = data;
   2194 		ifdr->ifdr_data = ifp->if_data;
   2195 		/*
   2196 		 * Assumes that the volatile counters that can be
   2197 		 * zero'ed are at the end of if_data.
   2198 		 */
   2199 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   2200 		    offsetof(struct if_data, ifi_ipackets));
   2201 		/*
   2202 		 * The memset() clears to the bottm of if_data. In the area,
   2203 		 * if_lastchange is included. Please be careful if new entry
   2204 		 * will be added into if_data or rewite this.
   2205 		 *
   2206 		 * And also, update if_lastchnage.
   2207 		 */
   2208 		getnanotime(&ifp->if_lastchange);
   2209 		break;
   2210 	case SIOCSIFMTU:
   2211 		ifr = data;
   2212 		if (ifp->if_mtu == ifr->ifr_mtu)
   2213 			break;
   2214 		ifp->if_mtu = ifr->ifr_mtu;
   2215 		/*
   2216 		 * If the link MTU changed, do network layer specific procedure.
   2217 		 */
   2218 #ifdef INET6
   2219 		if (in6_present)
   2220 			nd6_setmtu(ifp);
   2221 #endif
   2222 		return ENETRESET;
   2223 	default:
   2224 		return ENOTTY;
   2225 	}
   2226 	return 0;
   2227 }
   2228 
   2229 int
   2230 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   2231 {
   2232 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   2233 	struct ifaddr *ifa;
   2234 	const struct sockaddr *any, *sa;
   2235 	union {
   2236 		struct sockaddr sa;
   2237 		struct sockaddr_storage ss;
   2238 	} u, v;
   2239 
   2240 	switch (cmd) {
   2241 	case SIOCSIFADDRPREF:
   2242 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   2243 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   2244 		    NULL) != 0)
   2245 			return EPERM;
   2246 	case SIOCGIFADDRPREF:
   2247 		break;
   2248 	default:
   2249 		return EOPNOTSUPP;
   2250 	}
   2251 
   2252 	/* sanity checks */
   2253 	if (data == NULL || ifp == NULL) {
   2254 		panic("invalid argument to %s", __func__);
   2255 		/*NOTREACHED*/
   2256 	}
   2257 
   2258 	/* address must be specified on ADD and DELETE */
   2259 	sa = sstocsa(&ifap->ifap_addr);
   2260 	if (sa->sa_family != sofamily(so))
   2261 		return EINVAL;
   2262 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   2263 		return EINVAL;
   2264 
   2265 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   2266 
   2267 	IFADDR_FOREACH(ifa, ifp) {
   2268 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   2269 			continue;
   2270 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   2271 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   2272 			break;
   2273 	}
   2274 	if (ifa == NULL)
   2275 		return EADDRNOTAVAIL;
   2276 
   2277 	switch (cmd) {
   2278 	case SIOCSIFADDRPREF:
   2279 		ifa->ifa_preference = ifap->ifap_preference;
   2280 		return 0;
   2281 	case SIOCGIFADDRPREF:
   2282 		/* fill in the if_laddrreq structure */
   2283 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   2284 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   2285 		ifap->ifap_preference = ifa->ifa_preference;
   2286 		return 0;
   2287 	default:
   2288 		return EOPNOTSUPP;
   2289 	}
   2290 }
   2291 
   2292 static void
   2293 ifnet_lock_enter(struct ifnet_lock *il)
   2294 {
   2295 	uint64_t *nenter;
   2296 
   2297 	/* Before trying to acquire the mutex, increase the count of threads
   2298 	 * who have entered or who wait to enter the critical section.
   2299 	 * Avoid one costly locked memory transaction by keeping a count for
   2300 	 * each CPU.
   2301 	 */
   2302 	nenter = percpu_getref(il->il_nenter);
   2303 	(*nenter)++;
   2304 	percpu_putref(il->il_nenter);
   2305 	mutex_enter(&il->il_lock);
   2306 }
   2307 
   2308 static void
   2309 ifnet_lock_exit(struct ifnet_lock *il)
   2310 {
   2311 	/* Increase the count of threads who have exited the critical
   2312 	 * section.  Increase while we still hold the lock.
   2313 	 */
   2314 	il->il_nexit++;
   2315 	mutex_exit(&il->il_lock);
   2316 }
   2317 
   2318 /*
   2319  * Interface ioctls.
   2320  */
   2321 static int
   2322 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   2323 {
   2324 	struct ifnet *ifp;
   2325 	struct ifreq *ifr;
   2326 	int error = 0;
   2327 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   2328 	u_long ocmd = cmd;
   2329 #endif
   2330 	short oif_flags;
   2331 #ifdef COMPAT_OIFREQ
   2332 	struct ifreq ifrb;
   2333 	struct oifreq *oifr = NULL;
   2334 #endif
   2335 	int r;
   2336 
   2337 	switch (cmd) {
   2338 #ifdef COMPAT_OIFREQ
   2339 	case OSIOCGIFCONF:
   2340 	case OOSIOCGIFCONF:
   2341 		return compat_ifconf(cmd, data);
   2342 #endif
   2343 #ifdef COMPAT_OIFDATA
   2344 	case OSIOCGIFDATA:
   2345 	case OSIOCZIFDATA:
   2346 		return compat_ifdatareq(l, cmd, data);
   2347 #endif
   2348 	case SIOCGIFCONF:
   2349 		return ifconf(cmd, data);
   2350 	case SIOCINITIFADDR:
   2351 		return EPERM;
   2352 	}
   2353 
   2354 #ifdef COMPAT_OIFREQ
   2355 	cmd = compat_cvtcmd(cmd);
   2356 	if (cmd != ocmd) {
   2357 		oifr = data;
   2358 		data = ifr = &ifrb;
   2359 		ifreqo2n(oifr, ifr);
   2360 	} else
   2361 #endif
   2362 		ifr = data;
   2363 
   2364 	ifp = ifunit(ifr->ifr_name);
   2365 
   2366 	switch (cmd) {
   2367 	case SIOCIFCREATE:
   2368 	case SIOCIFDESTROY:
   2369 		if (l != NULL) {
   2370 			error = kauth_authorize_network(l->l_cred,
   2371 			    KAUTH_NETWORK_INTERFACE,
   2372 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2373 			    (void *)cmd, NULL);
   2374 			if (error != 0)
   2375 				return error;
   2376 		}
   2377 		mutex_enter(&if_clone_mtx);
   2378 		r = (cmd == SIOCIFCREATE) ?
   2379 			if_clone_create(ifr->ifr_name) :
   2380 			if_clone_destroy(ifr->ifr_name);
   2381 		mutex_exit(&if_clone_mtx);
   2382 		return r;
   2383 
   2384 	case SIOCIFGCLONERS:
   2385 		{
   2386 			struct if_clonereq *req = (struct if_clonereq *)data;
   2387 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   2388 			    &req->ifcr_total);
   2389 		}
   2390 	}
   2391 
   2392 	if (ifp == NULL)
   2393 		return ENXIO;
   2394 
   2395 	switch (cmd) {
   2396 	case SIOCALIFADDR:
   2397 	case SIOCDLIFADDR:
   2398 	case SIOCSIFADDRPREF:
   2399 	case SIOCSIFFLAGS:
   2400 	case SIOCSIFCAP:
   2401 	case SIOCSIFMETRIC:
   2402 	case SIOCZIFDATA:
   2403 	case SIOCSIFMTU:
   2404 	case SIOCSIFPHYADDR:
   2405 	case SIOCDIFPHYADDR:
   2406 #ifdef INET6
   2407 	case SIOCSIFPHYADDR_IN6:
   2408 #endif
   2409 	case SIOCSLIFPHYADDR:
   2410 	case SIOCADDMULTI:
   2411 	case SIOCDELMULTI:
   2412 	case SIOCSIFMEDIA:
   2413 	case SIOCSDRVSPEC:
   2414 	case SIOCG80211:
   2415 	case SIOCS80211:
   2416 	case SIOCS80211NWID:
   2417 	case SIOCS80211NWKEY:
   2418 	case SIOCS80211POWER:
   2419 	case SIOCS80211BSSID:
   2420 	case SIOCS80211CHANNEL:
   2421 	case SIOCSLINKSTR:
   2422 		if (l != NULL) {
   2423 			error = kauth_authorize_network(l->l_cred,
   2424 			    KAUTH_NETWORK_INTERFACE,
   2425 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2426 			    (void *)cmd, NULL);
   2427 			if (error != 0)
   2428 				return error;
   2429 		}
   2430 	}
   2431 
   2432 	oif_flags = ifp->if_flags;
   2433 
   2434 	ifnet_lock_enter(ifp->if_ioctl_lock);
   2435 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   2436 	if (error != ENOTTY)
   2437 		;
   2438 	else if (so->so_proto == NULL)
   2439 		error = EOPNOTSUPP;
   2440 	else {
   2441 #ifdef COMPAT_OSOCK
   2442 		error = compat_ifioctl(so, ocmd, cmd, data, l);
   2443 #else
   2444 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   2445 		    cmd, data, ifp);
   2446 #endif
   2447 	}
   2448 
   2449 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   2450 		if ((ifp->if_flags & IFF_UP) != 0) {
   2451 			int s = splnet();
   2452 			if_up(ifp);
   2453 			splx(s);
   2454 		}
   2455 	}
   2456 #ifdef COMPAT_OIFREQ
   2457 	if (cmd != ocmd)
   2458 		ifreqn2o(oifr, ifr);
   2459 #endif
   2460 
   2461 	ifnet_lock_exit(ifp->if_ioctl_lock);
   2462 	return error;
   2463 }
   2464 
   2465 /* This callback adds to the sum in `arg' the number of
   2466  * threads on `ci' who have entered or who wait to enter the
   2467  * critical section.
   2468  */
   2469 static void
   2470 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
   2471 {
   2472 	uint64_t *sum = arg, *nenter = p;
   2473 
   2474 	*sum += *nenter;
   2475 }
   2476 
   2477 /* Return the number of threads who have entered or who wait
   2478  * to enter the critical section on all CPUs.
   2479  */
   2480 static uint64_t
   2481 ifnet_lock_entrances(struct ifnet_lock *il)
   2482 {
   2483 	uint64_t sum = 0;
   2484 
   2485 	percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
   2486 
   2487 	return sum;
   2488 }
   2489 
   2490 static int
   2491 ifioctl_attach(struct ifnet *ifp)
   2492 {
   2493 	struct ifnet_lock *il;
   2494 
   2495 	/* If the driver has not supplied its own if_ioctl, then
   2496 	 * supply the default.
   2497 	 */
   2498 	if (ifp->if_ioctl == NULL)
   2499 		ifp->if_ioctl = ifioctl_common;
   2500 
   2501 	/* Create an ifnet_lock for synchronizing ifioctls. */
   2502 	if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
   2503 		return ENOMEM;
   2504 
   2505 	il->il_nenter = percpu_alloc(sizeof(uint64_t));
   2506 	if (il->il_nenter == NULL) {
   2507 		kmem_free(il, sizeof(*il));
   2508 		return ENOMEM;
   2509 	}
   2510 
   2511 	mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
   2512 	cv_init(&il->il_emptied, ifp->if_xname);
   2513 
   2514 	ifp->if_ioctl_lock = il;
   2515 
   2516 	return 0;
   2517 }
   2518 
   2519 /*
   2520  * This must not be called until after `ifp' has been withdrawn from the
   2521  * ifnet tables so that ifioctl() cannot get a handle on it by calling
   2522  * ifunit().
   2523  */
   2524 static void
   2525 ifioctl_detach(struct ifnet *ifp)
   2526 {
   2527 	struct ifnet_lock *il;
   2528 
   2529 	il = ifp->if_ioctl_lock;
   2530 	mutex_enter(&il->il_lock);
   2531 	/* Install if_nullioctl to make sure that any thread that
   2532 	 * subsequently enters the critical section will quit it
   2533 	 * immediately and signal the condition variable that we
   2534 	 * wait on, below.
   2535 	 */
   2536 	ifp->if_ioctl = if_nullioctl;
   2537 	/* Sleep while threads are still in the critical section or
   2538 	 * wait to enter it.
   2539 	 */
   2540 	while (ifnet_lock_entrances(il) != il->il_nexit)
   2541 		cv_wait(&il->il_emptied, &il->il_lock);
   2542 	/* At this point, we are the only thread still in the critical
   2543 	 * section, and no new thread can get a handle on the ifioctl
   2544 	 * lock, so it is safe to free its memory.
   2545 	 */
   2546 	mutex_exit(&il->il_lock);
   2547 	ifp->if_ioctl_lock = NULL;
   2548 	percpu_free(il->il_nenter, sizeof(uint64_t));
   2549 	il->il_nenter = NULL;
   2550 	cv_destroy(&il->il_emptied);
   2551 	mutex_destroy(&il->il_lock);
   2552 	kmem_free(il, sizeof(*il));
   2553 }
   2554 
   2555 /*
   2556  * Return interface configuration
   2557  * of system.  List may be used
   2558  * in later ioctl's (above) to get
   2559  * other information.
   2560  *
   2561  * Each record is a struct ifreq.  Before the addition of
   2562  * sockaddr_storage, the API rule was that sockaddr flavors that did
   2563  * not fit would extend beyond the struct ifreq, with the next struct
   2564  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   2565  * union in struct ifreq includes struct sockaddr_storage, every kind
   2566  * of sockaddr must fit.  Thus, there are no longer any overlength
   2567  * records.
   2568  *
   2569  * Records are added to the user buffer if they fit, and ifc_len is
   2570  * adjusted to the length that was written.  Thus, the user is only
   2571  * assured of getting the complete list if ifc_len on return is at
   2572  * least sizeof(struct ifreq) less than it was on entry.
   2573  *
   2574  * If the user buffer pointer is NULL, this routine copies no data and
   2575  * returns the amount of space that would be needed.
   2576  *
   2577  * Invariants:
   2578  * ifrp points to the next part of the user's buffer to be used.  If
   2579  * ifrp != NULL, space holds the number of bytes remaining that we may
   2580  * write at ifrp.  Otherwise, space holds the number of bytes that
   2581  * would have been written had there been adequate space.
   2582  */
   2583 /*ARGSUSED*/
   2584 static int
   2585 ifconf(u_long cmd, void *data)
   2586 {
   2587 	struct ifconf *ifc = (struct ifconf *)data;
   2588 	struct ifnet *ifp;
   2589 	struct ifaddr *ifa;
   2590 	struct ifreq ifr, *ifrp = NULL;
   2591 	int space = 0, error = 0;
   2592 	const int sz = (int)sizeof(struct ifreq);
   2593 	const bool docopy = ifc->ifc_req != NULL;
   2594 
   2595 	if (docopy) {
   2596 		space = ifc->ifc_len;
   2597 		ifrp = ifc->ifc_req;
   2598 	}
   2599 
   2600 	IFNET_FOREACH(ifp) {
   2601 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   2602 		    sizeof(ifr.ifr_name));
   2603 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
   2604 			return ENAMETOOLONG;
   2605 		if (IFADDR_EMPTY(ifp)) {
   2606 			/* Interface with no addresses - send zero sockaddr. */
   2607 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   2608 			if (!docopy) {
   2609 				space += sz;
   2610 				continue;
   2611 			}
   2612 			if (space >= sz) {
   2613 				error = copyout(&ifr, ifrp, sz);
   2614 				if (error != 0)
   2615 					return error;
   2616 				ifrp++;
   2617 				space -= sz;
   2618 			}
   2619 		}
   2620 
   2621 		IFADDR_FOREACH(ifa, ifp) {
   2622 			struct sockaddr *sa = ifa->ifa_addr;
   2623 			/* all sockaddrs must fit in sockaddr_storage */
   2624 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   2625 
   2626 			if (!docopy) {
   2627 				space += sz;
   2628 				continue;
   2629 			}
   2630 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   2631 			if (space >= sz) {
   2632 				error = copyout(&ifr, ifrp, sz);
   2633 				if (error != 0)
   2634 					return (error);
   2635 				ifrp++; space -= sz;
   2636 			}
   2637 		}
   2638 	}
   2639 	if (docopy) {
   2640 		KASSERT(0 <= space && space <= ifc->ifc_len);
   2641 		ifc->ifc_len -= space;
   2642 	} else {
   2643 		KASSERT(space >= 0);
   2644 		ifc->ifc_len = space;
   2645 	}
   2646 	return (0);
   2647 }
   2648 
   2649 int
   2650 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   2651 {
   2652 	uint8_t len;
   2653 #ifdef COMPAT_OIFREQ
   2654 	struct ifreq ifrb;
   2655 	struct oifreq *oifr = NULL;
   2656 	u_long ocmd = cmd;
   2657 	cmd = compat_cvtcmd(cmd);
   2658 	if (cmd != ocmd) {
   2659 		oifr = (struct oifreq *)(void *)ifr;
   2660 		ifr = &ifrb;
   2661 		ifreqo2n(oifr, ifr);
   2662 		len = sizeof(oifr->ifr_addr);
   2663 	} else
   2664 #endif
   2665 		len = sizeof(ifr->ifr_ifru.ifru_space);
   2666 
   2667 	if (len < sa->sa_len)
   2668 		return EFBIG;
   2669 
   2670 	memset(&ifr->ifr_addr, 0, len);
   2671 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   2672 
   2673 #ifdef COMPAT_OIFREQ
   2674 	if (cmd != ocmd)
   2675 		ifreqn2o(oifr, ifr);
   2676 #endif
   2677 	return 0;
   2678 }
   2679 
   2680 /*
   2681  * wrapper function for the drivers which doesn't have if_transmit().
   2682  */
   2683 int
   2684 if_transmit(struct ifnet *ifp, struct mbuf *m)
   2685 {
   2686 	int s, error;
   2687 
   2688 	s = splnet();
   2689 
   2690 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   2691 	if (error != 0) {
   2692 		/* mbuf is already freed */
   2693 		goto out;
   2694 	}
   2695 
   2696 	ifp->if_obytes += m->m_pkthdr.len;;
   2697 	if (m->m_flags & M_MCAST)
   2698 		ifp->if_omcasts++;
   2699 
   2700 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   2701 		(*ifp->if_start)(ifp);
   2702 out:
   2703 	splx(s);
   2704 
   2705 	return error;
   2706 }
   2707 
   2708 /*
   2709  * Queue message on interface, and start output if interface
   2710  * not yet active.
   2711  */
   2712 int
   2713 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   2714 {
   2715 
   2716 	return (*ifp->if_transmit)(ifp, m);
   2717 }
   2718 
   2719 /*
   2720  * Queue message on interface, possibly using a second fast queue
   2721  */
   2722 int
   2723 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   2724 {
   2725 	int error = 0;
   2726 
   2727 	if (ifq != NULL
   2728 #ifdef ALTQ
   2729 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   2730 #endif
   2731 	    ) {
   2732 		if (IF_QFULL(ifq)) {
   2733 			IF_DROP(&ifp->if_snd);
   2734 			m_freem(m);
   2735 			if (error == 0)
   2736 				error = ENOBUFS;
   2737 		} else
   2738 			IF_ENQUEUE(ifq, m);
   2739 	} else
   2740 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   2741 	if (error != 0) {
   2742 		++ifp->if_oerrors;
   2743 		return error;
   2744 	}
   2745 	return 0;
   2746 }
   2747 
   2748 int
   2749 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   2750 {
   2751 	int rc;
   2752 
   2753 	if (ifp->if_initaddr != NULL)
   2754 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   2755 	else if (src ||
   2756 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   2757 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   2758 
   2759 	return rc;
   2760 }
   2761 
   2762 int
   2763 if_do_dad(struct ifnet *ifp)
   2764 {
   2765 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2766 		return 0;
   2767 
   2768 	switch (ifp->if_type) {
   2769 	case IFT_FAITH:
   2770 		/*
   2771 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2772 		 * but loop packets back.  We do not have to do DAD on such
   2773 		 * interfaces.  We should even omit it, because loop-backed
   2774 		 * responses would confuse the DAD procedure.
   2775 		 */
   2776 		return 0;
   2777 	default:
   2778 		/*
   2779 		 * Our DAD routine requires the interface up and running.
   2780 		 * However, some interfaces can be up before the RUNNING
   2781 		 * status.  Additionaly, users may try to assign addresses
   2782 		 * before the interface becomes up (or running).
   2783 		 * We simply skip DAD in such a case as a work around.
   2784 		 * XXX: we should rather mark "tentative" on such addresses,
   2785 		 * and do DAD after the interface becomes ready.
   2786 		 */
   2787 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2788 		    (IFF_UP|IFF_RUNNING))
   2789 			return 0;
   2790 
   2791 		return 1;
   2792 	}
   2793 }
   2794 
   2795 int
   2796 if_flags_set(ifnet_t *ifp, const short flags)
   2797 {
   2798 	int rc;
   2799 
   2800 	if (ifp->if_setflags != NULL)
   2801 		rc = (*ifp->if_setflags)(ifp, flags);
   2802 	else {
   2803 		short cantflags, chgdflags;
   2804 		struct ifreq ifr;
   2805 
   2806 		chgdflags = ifp->if_flags ^ flags;
   2807 		cantflags = chgdflags & IFF_CANTCHANGE;
   2808 
   2809 		if (cantflags != 0)
   2810 			ifp->if_flags ^= cantflags;
   2811 
   2812                 /* Traditionally, we do not call if_ioctl after
   2813                  * setting/clearing only IFF_PROMISC if the interface
   2814                  * isn't IFF_UP.  Uphold that tradition.
   2815 		 */
   2816 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   2817 			return 0;
   2818 
   2819 		memset(&ifr, 0, sizeof(ifr));
   2820 
   2821 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   2822 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   2823 
   2824 		if (rc != 0 && cantflags != 0)
   2825 			ifp->if_flags ^= cantflags;
   2826 	}
   2827 
   2828 	return rc;
   2829 }
   2830 
   2831 int
   2832 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   2833 {
   2834 	int rc;
   2835 	struct ifreq ifr;
   2836 
   2837 	if (ifp->if_mcastop != NULL)
   2838 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   2839 	else {
   2840 		ifreq_setaddr(cmd, &ifr, sa);
   2841 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   2842 	}
   2843 
   2844 	return rc;
   2845 }
   2846 
   2847 static void
   2848 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   2849     struct ifaltq *ifq)
   2850 {
   2851 	const struct sysctlnode *cnode, *rnode;
   2852 
   2853 	if (sysctl_createv(clog, 0, NULL, &rnode,
   2854 		       CTLFLAG_PERMANENT,
   2855 		       CTLTYPE_NODE, "interfaces",
   2856 		       SYSCTL_DESCR("Per-interface controls"),
   2857 		       NULL, 0, NULL, 0,
   2858 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   2859 		goto bad;
   2860 
   2861 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2862 		       CTLFLAG_PERMANENT,
   2863 		       CTLTYPE_NODE, ifname,
   2864 		       SYSCTL_DESCR("Interface controls"),
   2865 		       NULL, 0, NULL, 0,
   2866 		       CTL_CREATE, CTL_EOL) != 0)
   2867 		goto bad;
   2868 
   2869 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2870 		       CTLFLAG_PERMANENT,
   2871 		       CTLTYPE_NODE, "sndq",
   2872 		       SYSCTL_DESCR("Interface output queue controls"),
   2873 		       NULL, 0, NULL, 0,
   2874 		       CTL_CREATE, CTL_EOL) != 0)
   2875 		goto bad;
   2876 
   2877 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2878 		       CTLFLAG_PERMANENT,
   2879 		       CTLTYPE_INT, "len",
   2880 		       SYSCTL_DESCR("Current output queue length"),
   2881 		       NULL, 0, &ifq->ifq_len, 0,
   2882 		       CTL_CREATE, CTL_EOL) != 0)
   2883 		goto bad;
   2884 
   2885 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2886 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2887 		       CTLTYPE_INT, "maxlen",
   2888 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   2889 		       NULL, 0, &ifq->ifq_maxlen, 0,
   2890 		       CTL_CREATE, CTL_EOL) != 0)
   2891 		goto bad;
   2892 
   2893 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   2894 		       CTLFLAG_PERMANENT,
   2895 		       CTLTYPE_INT, "drops",
   2896 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   2897 		       NULL, 0, &ifq->ifq_drops, 0,
   2898 		       CTL_CREATE, CTL_EOL) != 0)
   2899 		goto bad;
   2900 
   2901 	return;
   2902 bad:
   2903 	printf("%s: could not attach sysctl nodes\n", ifname);
   2904 	return;
   2905 }
   2906 
   2907 #if defined(INET) || defined(INET6)
   2908 
   2909 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   2910 	static int							\
   2911 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   2912 	{								\
   2913 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   2914 	}
   2915 
   2916 #if defined(INET)
   2917 static int
   2918 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   2919 {
   2920 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   2921 }
   2922 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   2923 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   2924 #endif
   2925 
   2926 #if defined(INET6)
   2927 static int
   2928 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   2929 {
   2930 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   2931 }
   2932 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   2933 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   2934 #endif
   2935 
   2936 static void
   2937 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   2938 {
   2939 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   2940 	const char *pfname = NULL, *ipname = NULL;
   2941 	int ipn = 0, qid = 0;
   2942 
   2943 	switch (pf) {
   2944 #if defined(INET)
   2945 	case PF_INET:
   2946 		len_func = sysctl_net_ip_pktq_items;
   2947 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   2948 		drops_func = sysctl_net_ip_pktq_drops;
   2949 		pfname = "inet", ipn = IPPROTO_IP;
   2950 		ipname = "ip", qid = IPCTL_IFQ;
   2951 		break;
   2952 #endif
   2953 #if defined(INET6)
   2954 	case PF_INET6:
   2955 		len_func = sysctl_net_ip6_pktq_items;
   2956 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   2957 		drops_func = sysctl_net_ip6_pktq_drops;
   2958 		pfname = "inet6", ipn = IPPROTO_IPV6;
   2959 		ipname = "ip6", qid = IPV6CTL_IFQ;
   2960 		break;
   2961 #endif
   2962 	default:
   2963 		KASSERT(false);
   2964 	}
   2965 
   2966 	sysctl_createv(clog, 0, NULL, NULL,
   2967 		       CTLFLAG_PERMANENT,
   2968 		       CTLTYPE_NODE, pfname, NULL,
   2969 		       NULL, 0, NULL, 0,
   2970 		       CTL_NET, pf, CTL_EOL);
   2971 	sysctl_createv(clog, 0, NULL, NULL,
   2972 		       CTLFLAG_PERMANENT,
   2973 		       CTLTYPE_NODE, ipname, NULL,
   2974 		       NULL, 0, NULL, 0,
   2975 		       CTL_NET, pf, ipn, CTL_EOL);
   2976 	sysctl_createv(clog, 0, NULL, NULL,
   2977 		       CTLFLAG_PERMANENT,
   2978 		       CTLTYPE_NODE, "ifq",
   2979 		       SYSCTL_DESCR("Protocol input queue controls"),
   2980 		       NULL, 0, NULL, 0,
   2981 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   2982 
   2983 	sysctl_createv(clog, 0, NULL, NULL,
   2984 		       CTLFLAG_PERMANENT,
   2985 		       CTLTYPE_INT, "len",
   2986 		       SYSCTL_DESCR("Current input queue length"),
   2987 		       len_func, 0, NULL, 0,
   2988 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   2989 	sysctl_createv(clog, 0, NULL, NULL,
   2990 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2991 		       CTLTYPE_INT, "maxlen",
   2992 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   2993 		       maxlen_func, 0, NULL, 0,
   2994 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   2995 	sysctl_createv(clog, 0, NULL, NULL,
   2996 		       CTLFLAG_PERMANENT,
   2997 		       CTLTYPE_INT, "drops",
   2998 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   2999 		       drops_func, 0, NULL, 0,
   3000 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3001 }
   3002 #endif /* INET || INET6 */
   3003 
   3004 static int
   3005 if_sdl_sysctl(SYSCTLFN_ARGS)
   3006 {
   3007 	struct ifnet *ifp;
   3008 	const struct sockaddr_dl *sdl;
   3009 
   3010 	if (namelen != 1)
   3011 		return EINVAL;
   3012 
   3013 	ifp = if_byindex(name[0]);
   3014 	if (ifp == NULL)
   3015 		return ENODEV;
   3016 
   3017 	sdl = ifp->if_sadl;
   3018 	if (sdl == NULL) {
   3019 		*oldlenp = 0;
   3020 		return 0;
   3021 	}
   3022 
   3023 	if (oldp == NULL) {
   3024 		*oldlenp = sdl->sdl_alen;
   3025 		return 0;
   3026 	}
   3027 
   3028 	if (*oldlenp >= sdl->sdl_alen)
   3029 		*oldlenp = sdl->sdl_alen;
   3030 	return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3031 }
   3032 
   3033 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
   3034 {
   3035 	const struct sysctlnode *rnode = NULL;
   3036 
   3037 	sysctl_createv(clog, 0, NULL, &rnode,
   3038 		       CTLFLAG_PERMANENT,
   3039 		       CTLTYPE_NODE, "sdl",
   3040 		       SYSCTL_DESCR("Get active link-layer address"),
   3041 		       if_sdl_sysctl, 0, NULL, 0,
   3042 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3043 }
   3044