if.c revision 1.335 1 /* $NetBSD: if.c,v 1.335 2016/05/16 01:06:31 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.335 2016/05/16 01:06:31 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140
141 #ifdef INET6
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146 #include "ether.h"
147 #include "fddi.h"
148 #include "token.h"
149
150 #include "carp.h"
151 #if NCARP > 0
152 #include <netinet/ip_carp.h>
153 #endif
154
155 #include <compat/sys/sockio.h>
156 #include <compat/sys/socket.h>
157
158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
160
161 /*
162 * Global list of interfaces.
163 */
164 /* DEPRECATED. Remove it once kvm(3) users disappeared */
165 struct ifnet_head ifnet_list;
166
167 struct pslist_head ifnet_pslist;
168 static ifnet_t ** ifindex2ifnet = NULL;
169 static u_int if_index = 1;
170 static size_t if_indexlim = 0;
171 static uint64_t index_gen;
172 /* Mutex to protect the above objects. */
173 kmutex_t ifnet_mtx __cacheline_aligned;
174 struct psref_class *ifnet_psref_class __read_mostly;
175 static pserialize_t ifnet_psz;
176
177 static kmutex_t if_clone_mtx;
178
179 struct ifnet *lo0ifp;
180 int ifqmaxlen = IFQ_MAXLEN;
181
182 static int if_rt_walktree(struct rtentry *, void *);
183
184 static struct if_clone *if_clone_lookup(const char *, int *);
185
186 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
187 static int if_cloners_count;
188
189 /* Packet filtering hook for interfaces. */
190 pfil_head_t * if_pfil;
191
192 static kauth_listener_t if_listener;
193
194 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
195 static int ifioctl_attach(struct ifnet *);
196 static void ifioctl_detach(struct ifnet *);
197 static void ifnet_lock_enter(struct ifnet_lock *);
198 static void ifnet_lock_exit(struct ifnet_lock *);
199 static void if_detach_queues(struct ifnet *, struct ifqueue *);
200 static void sysctl_sndq_setup(struct sysctllog **, const char *,
201 struct ifaltq *);
202 static void if_slowtimo(void *);
203 static void if_free_sadl(struct ifnet *);
204 static void if_attachdomain1(struct ifnet *);
205 static int ifconf(u_long, void *);
206 static int if_clone_create(const char *);
207 static int if_clone_destroy(const char *);
208 static void if_link_state_change_si(void *);
209
210 struct if_percpuq {
211 struct ifnet *ipq_ifp;
212 void *ipq_si;
213 struct percpu *ipq_ifqs; /* struct ifqueue */
214 };
215
216 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
217
218 static void if_percpuq_drops(void *, void *, struct cpu_info *);
219 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
220 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
221 struct if_percpuq *);
222
223 #if defined(INET) || defined(INET6)
224 static void sysctl_net_pktq_setup(struct sysctllog **, int);
225 #endif
226
227 static int
228 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
229 void *arg0, void *arg1, void *arg2, void *arg3)
230 {
231 int result;
232 enum kauth_network_req req;
233
234 result = KAUTH_RESULT_DEFER;
235 req = (enum kauth_network_req)arg1;
236
237 if (action != KAUTH_NETWORK_INTERFACE)
238 return result;
239
240 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
241 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
242 result = KAUTH_RESULT_ALLOW;
243
244 return result;
245 }
246
247 /*
248 * Network interface utility routines.
249 *
250 * Routines with ifa_ifwith* names take sockaddr *'s as
251 * parameters.
252 */
253 void
254 ifinit(void)
255 {
256 #if defined(INET)
257 sysctl_net_pktq_setup(NULL, PF_INET);
258 #endif
259 #ifdef INET6
260 if (in6_present)
261 sysctl_net_pktq_setup(NULL, PF_INET6);
262 #endif
263
264 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
265 if_listener_cb, NULL);
266
267 /* interfaces are available, inform socket code */
268 ifioctl = doifioctl;
269 }
270
271 /*
272 * XXX Initialization before configure().
273 * XXX hack to get pfil_add_hook working in autoconf.
274 */
275 void
276 ifinit1(void)
277 {
278 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
279 TAILQ_INIT(&ifnet_list);
280 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
281 ifnet_psz = pserialize_create();
282 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
283 PSLIST_INIT(&ifnet_pslist);
284 if_indexlim = 8;
285
286 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
287 KASSERT(if_pfil != NULL);
288
289 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
290 etherinit();
291 #endif
292 }
293
294 ifnet_t *
295 if_alloc(u_char type)
296 {
297 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
298 }
299
300 void
301 if_free(ifnet_t *ifp)
302 {
303 kmem_free(ifp, sizeof(ifnet_t));
304 }
305
306 void
307 if_initname(struct ifnet *ifp, const char *name, int unit)
308 {
309 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
310 "%s%d", name, unit);
311 }
312
313 /*
314 * Null routines used while an interface is going away. These routines
315 * just return an error.
316 */
317
318 int
319 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
320 const struct sockaddr *so, const struct rtentry *rt)
321 {
322
323 return ENXIO;
324 }
325
326 void
327 if_nullinput(struct ifnet *ifp, struct mbuf *m)
328 {
329
330 /* Nothing. */
331 }
332
333 void
334 if_nullstart(struct ifnet *ifp)
335 {
336
337 /* Nothing. */
338 }
339
340 int
341 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
342 {
343
344 return ENXIO;
345 }
346
347 int
348 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
349 {
350
351 /* Wake ifioctl_detach(), who may wait for all threads to
352 * quit the critical section.
353 */
354 cv_signal(&ifp->if_ioctl_lock->il_emptied);
355 return ENXIO;
356 }
357
358 int
359 if_nullinit(struct ifnet *ifp)
360 {
361
362 return ENXIO;
363 }
364
365 void
366 if_nullstop(struct ifnet *ifp, int disable)
367 {
368
369 /* Nothing. */
370 }
371
372 void
373 if_nullslowtimo(struct ifnet *ifp)
374 {
375
376 /* Nothing. */
377 }
378
379 void
380 if_nulldrain(struct ifnet *ifp)
381 {
382
383 /* Nothing. */
384 }
385
386 void
387 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
388 {
389 struct ifaddr *ifa;
390 struct sockaddr_dl *sdl;
391
392 ifp->if_addrlen = addrlen;
393 if_alloc_sadl(ifp);
394 ifa = ifp->if_dl;
395 sdl = satosdl(ifa->ifa_addr);
396
397 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
398 if (factory) {
399 ifp->if_hwdl = ifp->if_dl;
400 ifaref(ifp->if_hwdl);
401 }
402 /* TBD routing socket */
403 }
404
405 struct ifaddr *
406 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
407 {
408 unsigned socksize, ifasize;
409 int addrlen, namelen;
410 struct sockaddr_dl *mask, *sdl;
411 struct ifaddr *ifa;
412
413 namelen = strlen(ifp->if_xname);
414 addrlen = ifp->if_addrlen;
415 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
416 ifasize = sizeof(*ifa) + 2 * socksize;
417 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
418
419 sdl = (struct sockaddr_dl *)(ifa + 1);
420 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
421
422 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
423 ifp->if_xname, namelen, NULL, addrlen);
424 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
425 memset(&mask->sdl_data[0], 0xff, namelen);
426 ifa->ifa_rtrequest = link_rtrequest;
427 ifa->ifa_addr = (struct sockaddr *)sdl;
428 ifa->ifa_netmask = (struct sockaddr *)mask;
429
430 *sdlp = sdl;
431
432 return ifa;
433 }
434
435 static void
436 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
437 {
438 const struct sockaddr_dl *sdl;
439
440 ifp->if_dl = ifa;
441 ifaref(ifa);
442 sdl = satosdl(ifa->ifa_addr);
443 ifp->if_sadl = sdl;
444 }
445
446 /*
447 * Allocate the link level name for the specified interface. This
448 * is an attachment helper. It must be called after ifp->if_addrlen
449 * is initialized, which may not be the case when if_attach() is
450 * called.
451 */
452 void
453 if_alloc_sadl(struct ifnet *ifp)
454 {
455 struct ifaddr *ifa;
456 const struct sockaddr_dl *sdl;
457
458 /*
459 * If the interface already has a link name, release it
460 * now. This is useful for interfaces that can change
461 * link types, and thus switch link names often.
462 */
463 if (ifp->if_sadl != NULL)
464 if_free_sadl(ifp);
465
466 ifa = if_dl_create(ifp, &sdl);
467
468 ifa_insert(ifp, ifa);
469 if_sadl_setrefs(ifp, ifa);
470 }
471
472 static void
473 if_deactivate_sadl(struct ifnet *ifp)
474 {
475 struct ifaddr *ifa;
476
477 KASSERT(ifp->if_dl != NULL);
478
479 ifa = ifp->if_dl;
480
481 ifp->if_sadl = NULL;
482
483 ifp->if_dl = NULL;
484 ifafree(ifa);
485 }
486
487 void
488 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
489 const struct sockaddr_dl *sdl)
490 {
491 int s;
492
493 s = splnet();
494
495 if_deactivate_sadl(ifp);
496
497 if_sadl_setrefs(ifp, ifa);
498 IFADDR_FOREACH(ifa, ifp)
499 rtinit(ifa, RTM_LLINFO_UPD, 0);
500 splx(s);
501 }
502
503 /*
504 * Free the link level name for the specified interface. This is
505 * a detach helper. This is called from if_detach().
506 */
507 static void
508 if_free_sadl(struct ifnet *ifp)
509 {
510 struct ifaddr *ifa;
511 int s;
512
513 ifa = ifp->if_dl;
514 if (ifa == NULL) {
515 KASSERT(ifp->if_sadl == NULL);
516 return;
517 }
518
519 KASSERT(ifp->if_sadl != NULL);
520
521 s = splnet();
522 rtinit(ifa, RTM_DELETE, 0);
523 ifa_remove(ifp, ifa);
524 if_deactivate_sadl(ifp);
525 if (ifp->if_hwdl == ifa) {
526 ifafree(ifa);
527 ifp->if_hwdl = NULL;
528 }
529 splx(s);
530 }
531
532 static void
533 if_getindex(ifnet_t *ifp)
534 {
535 bool hitlimit = false;
536
537 ifp->if_index_gen = index_gen++;
538
539 ifp->if_index = if_index;
540 if (ifindex2ifnet == NULL) {
541 if_index++;
542 goto skip;
543 }
544 while (if_byindex(ifp->if_index)) {
545 /*
546 * If we hit USHRT_MAX, we skip back to 0 since
547 * there are a number of places where the value
548 * of if_index or if_index itself is compared
549 * to or stored in an unsigned short. By
550 * jumping back, we won't botch those assignments
551 * or comparisons.
552 */
553 if (++if_index == 0) {
554 if_index = 1;
555 } else if (if_index == USHRT_MAX) {
556 /*
557 * However, if we have to jump back to
558 * zero *twice* without finding an empty
559 * slot in ifindex2ifnet[], then there
560 * there are too many (>65535) interfaces.
561 */
562 if (hitlimit) {
563 panic("too many interfaces");
564 }
565 hitlimit = true;
566 if_index = 1;
567 }
568 ifp->if_index = if_index;
569 }
570 skip:
571 /*
572 * ifindex2ifnet is indexed by if_index. Since if_index will
573 * grow dynamically, it should grow too.
574 */
575 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
576 size_t m, n, oldlim;
577 void *q;
578
579 oldlim = if_indexlim;
580 while (ifp->if_index >= if_indexlim)
581 if_indexlim <<= 1;
582
583 /* grow ifindex2ifnet */
584 m = oldlim * sizeof(struct ifnet *);
585 n = if_indexlim * sizeof(struct ifnet *);
586 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
587 if (ifindex2ifnet != NULL) {
588 memcpy(q, ifindex2ifnet, m);
589 free(ifindex2ifnet, M_IFADDR);
590 }
591 ifindex2ifnet = (struct ifnet **)q;
592 }
593 ifindex2ifnet[ifp->if_index] = ifp;
594 }
595
596 /*
597 * Initialize an interface and assign an index for it.
598 *
599 * It must be called prior to a device specific attach routine
600 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
601 * and be followed by if_register:
602 *
603 * if_initialize(ifp);
604 * ether_ifattach(ifp, enaddr);
605 * if_register(ifp);
606 */
607 void
608 if_initialize(ifnet_t *ifp)
609 {
610 KASSERT(if_indexlim > 0);
611 TAILQ_INIT(&ifp->if_addrlist);
612
613 /*
614 * Link level name is allocated later by a separate call to
615 * if_alloc_sadl().
616 */
617
618 if (ifp->if_snd.ifq_maxlen == 0)
619 ifp->if_snd.ifq_maxlen = ifqmaxlen;
620
621 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
622
623 ifp->if_link_state = LINK_STATE_UNKNOWN;
624 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
625
626 ifp->if_capenable = 0;
627 ifp->if_csum_flags_tx = 0;
628 ifp->if_csum_flags_rx = 0;
629
630 #ifdef ALTQ
631 ifp->if_snd.altq_type = 0;
632 ifp->if_snd.altq_disc = NULL;
633 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
634 ifp->if_snd.altq_tbr = NULL;
635 ifp->if_snd.altq_ifp = ifp;
636 #endif
637
638 #ifdef NET_MPSAFE
639 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
640 #else
641 ifp->if_snd.ifq_lock = NULL;
642 #endif
643
644 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
645 (void)pfil_run_hooks(if_pfil,
646 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
647
648 IF_AFDATA_LOCK_INIT(ifp);
649
650 ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
651 if (ifp->if_link_si == NULL)
652 panic("%s: softint_establish() failed", __func__);
653
654 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
655 psref_target_init(&ifp->if_psref, ifnet_psref_class);
656
657 IFNET_LOCK();
658 if_getindex(ifp);
659 IFNET_UNLOCK();
660 }
661
662 /*
663 * Register an interface to the list of "active" interfaces.
664 */
665 void
666 if_register(ifnet_t *ifp)
667 {
668 if (ifioctl_attach(ifp) != 0)
669 panic("%s: ifioctl_attach() failed", __func__);
670
671 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
672
673 if (!STAILQ_EMPTY(&domains))
674 if_attachdomain1(ifp);
675
676 /* Announce the interface. */
677 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
678
679 if (ifp->if_slowtimo != NULL) {
680 ifp->if_slowtimo_ch =
681 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
682 callout_init(ifp->if_slowtimo_ch, 0);
683 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
684 if_slowtimo(ifp);
685 }
686
687 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
688 ifp->if_transmit = if_transmit;
689
690 IFNET_LOCK();
691 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
692 IFNET_WRITER_INSERT_TAIL(ifp);
693 IFNET_UNLOCK();
694 }
695
696 /*
697 * The if_percpuq framework
698 *
699 * It allows network device drivers to execute the network stack
700 * in softint (so called softint-based if_input). It utilizes
701 * softint and percpu ifqueue. It doesn't distribute any packets
702 * between CPUs, unlike pktqueue(9).
703 *
704 * Currently we support two options for device drivers to apply the framework:
705 * - Use it implicitly with less changes
706 * - If you use if_attach in driver's _attach function and if_input in
707 * driver's Rx interrupt handler, a packet is queued and a softint handles
708 * the packet implicitly
709 * - Use it explicitly in each driver (recommended)
710 * - You can use if_percpuq_* directly in your driver
711 * - In this case, you need to allocate struct if_percpuq in driver's softc
712 * - See wm(4) as a reference implementation
713 */
714
715 static void
716 if_percpuq_softint(void *arg)
717 {
718 struct if_percpuq *ipq = arg;
719 struct ifnet *ifp = ipq->ipq_ifp;
720 struct mbuf *m;
721
722 while ((m = if_percpuq_dequeue(ipq)) != NULL)
723 ifp->_if_input(ifp, m);
724 }
725
726 static void
727 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
728 {
729 struct ifqueue *const ifq = p;
730
731 memset(ifq, 0, sizeof(*ifq));
732 ifq->ifq_maxlen = IFQ_MAXLEN;
733 }
734
735 struct if_percpuq *
736 if_percpuq_create(struct ifnet *ifp)
737 {
738 struct if_percpuq *ipq;
739
740 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
741 if (ipq == NULL)
742 panic("kmem_zalloc failed");
743
744 ipq->ipq_ifp = ifp;
745 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
746 if_percpuq_softint, ipq);
747 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
748 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
749
750 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
751
752 return ipq;
753 }
754
755 static struct mbuf *
756 if_percpuq_dequeue(struct if_percpuq *ipq)
757 {
758 struct mbuf *m;
759 struct ifqueue *ifq;
760 int s;
761
762 s = splnet();
763 ifq = percpu_getref(ipq->ipq_ifqs);
764 IF_DEQUEUE(ifq, m);
765 percpu_putref(ipq->ipq_ifqs);
766 splx(s);
767
768 return m;
769 }
770
771 static void
772 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
773 {
774 struct ifqueue *const ifq = p;
775
776 IF_PURGE(ifq);
777 }
778
779 void
780 if_percpuq_destroy(struct if_percpuq *ipq)
781 {
782
783 /* if_detach may already destroy it */
784 if (ipq == NULL)
785 return;
786
787 softint_disestablish(ipq->ipq_si);
788 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
789 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
790 }
791
792 void
793 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
794 {
795 struct ifqueue *ifq;
796 int s;
797
798 KASSERT(ipq != NULL);
799
800 s = splnet();
801 ifq = percpu_getref(ipq->ipq_ifqs);
802 if (IF_QFULL(ifq)) {
803 IF_DROP(ifq);
804 percpu_putref(ipq->ipq_ifqs);
805 m_freem(m);
806 goto out;
807 }
808 IF_ENQUEUE(ifq, m);
809 percpu_putref(ipq->ipq_ifqs);
810
811 softint_schedule(ipq->ipq_si);
812 out:
813 splx(s);
814 }
815
816 static void
817 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
818 {
819 struct ifqueue *const ifq = p;
820 int *sum = arg;
821
822 *sum += ifq->ifq_drops;
823 }
824
825 static int
826 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
827 {
828 struct sysctlnode node;
829 struct if_percpuq *ipq;
830 int sum = 0;
831 int error;
832
833 node = *rnode;
834 ipq = node.sysctl_data;
835
836 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
837
838 node.sysctl_data = ∑
839 error = sysctl_lookup(SYSCTLFN_CALL(&node));
840 if (error != 0 || newp == NULL)
841 return error;
842
843 return 0;
844 }
845
846 static void
847 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
848 struct if_percpuq *ipq)
849 {
850 const struct sysctlnode *cnode, *rnode;
851
852 if (sysctl_createv(clog, 0, NULL, &rnode,
853 CTLFLAG_PERMANENT,
854 CTLTYPE_NODE, "interfaces",
855 SYSCTL_DESCR("Per-interface controls"),
856 NULL, 0, NULL, 0,
857 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
858 goto bad;
859
860 if (sysctl_createv(clog, 0, &rnode, &rnode,
861 CTLFLAG_PERMANENT,
862 CTLTYPE_NODE, ifname,
863 SYSCTL_DESCR("Interface controls"),
864 NULL, 0, NULL, 0,
865 CTL_CREATE, CTL_EOL) != 0)
866 goto bad;
867
868 if (sysctl_createv(clog, 0, &rnode, &rnode,
869 CTLFLAG_PERMANENT,
870 CTLTYPE_NODE, "rcvq",
871 SYSCTL_DESCR("Interface input queue controls"),
872 NULL, 0, NULL, 0,
873 CTL_CREATE, CTL_EOL) != 0)
874 goto bad;
875
876 #ifdef NOTYET
877 /* XXX Should show each per-CPU queue length? */
878 if (sysctl_createv(clog, 0, &rnode, &rnode,
879 CTLFLAG_PERMANENT,
880 CTLTYPE_INT, "len",
881 SYSCTL_DESCR("Current input queue length"),
882 sysctl_percpuq_len, 0, NULL, 0,
883 CTL_CREATE, CTL_EOL) != 0)
884 goto bad;
885
886 if (sysctl_createv(clog, 0, &rnode, &cnode,
887 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
888 CTLTYPE_INT, "maxlen",
889 SYSCTL_DESCR("Maximum allowed input queue length"),
890 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
891 CTL_CREATE, CTL_EOL) != 0)
892 goto bad;
893 #endif
894
895 if (sysctl_createv(clog, 0, &rnode, &cnode,
896 CTLFLAG_PERMANENT,
897 CTLTYPE_INT, "drops",
898 SYSCTL_DESCR("Total packets dropped due to full input queue"),
899 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
900 CTL_CREATE, CTL_EOL) != 0)
901 goto bad;
902
903 return;
904 bad:
905 printf("%s: could not attach sysctl nodes\n", ifname);
906 return;
907 }
908
909
910 /*
911 * The common interface input routine that is called by device drivers,
912 * which should be used only when the driver's rx handler already runs
913 * in softint.
914 */
915 void
916 if_input(struct ifnet *ifp, struct mbuf *m)
917 {
918
919 KASSERT(ifp->if_percpuq == NULL);
920 KASSERT(!cpu_intr_p());
921
922 ifp->_if_input(ifp, m);
923 }
924
925 /*
926 * DEPRECATED. Use if_initialize and if_register instead.
927 * See the above comment of if_initialize.
928 *
929 * Note that it implicitly enables if_percpuq to make drivers easy to
930 * migrate softint-based if_input without much changes. If you don't
931 * want to enable it, use if_initialize instead.
932 */
933 void
934 if_attach(ifnet_t *ifp)
935 {
936
937 if_initialize(ifp);
938 ifp->if_percpuq = if_percpuq_create(ifp);
939 if_register(ifp);
940 }
941
942 void
943 if_attachdomain(void)
944 {
945 struct ifnet *ifp;
946 int s;
947 int bound = curlwp->l_pflag & LP_BOUND;
948
949 curlwp->l_pflag |= LP_BOUND;
950 s = pserialize_read_enter();
951 IFNET_READER_FOREACH(ifp) {
952 struct psref psref;
953 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
954 pserialize_read_exit(s);
955 if_attachdomain1(ifp);
956 s = pserialize_read_enter();
957 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
958 }
959 pserialize_read_exit(s);
960 curlwp->l_pflag ^= bound ^ LP_BOUND;
961 }
962
963 static void
964 if_attachdomain1(struct ifnet *ifp)
965 {
966 struct domain *dp;
967 int s;
968
969 s = splnet();
970
971 /* address family dependent data region */
972 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
973 DOMAIN_FOREACH(dp) {
974 if (dp->dom_ifattach != NULL)
975 ifp->if_afdata[dp->dom_family] =
976 (*dp->dom_ifattach)(ifp);
977 }
978
979 splx(s);
980 }
981
982 /*
983 * Deactivate an interface. This points all of the procedure
984 * handles at error stubs. May be called from interrupt context.
985 */
986 void
987 if_deactivate(struct ifnet *ifp)
988 {
989 int s;
990
991 s = splnet();
992
993 ifp->if_output = if_nulloutput;
994 ifp->_if_input = if_nullinput;
995 ifp->if_start = if_nullstart;
996 ifp->if_transmit = if_nulltransmit;
997 ifp->if_ioctl = if_nullioctl;
998 ifp->if_init = if_nullinit;
999 ifp->if_stop = if_nullstop;
1000 ifp->if_slowtimo = if_nullslowtimo;
1001 ifp->if_drain = if_nulldrain;
1002
1003 /* No more packets may be enqueued. */
1004 ifp->if_snd.ifq_maxlen = 0;
1005
1006 splx(s);
1007 }
1008
1009 void
1010 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1011 {
1012 struct ifaddr *ifa, *nifa;
1013
1014 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
1015 if (ifa->ifa_addr->sa_family != family)
1016 continue;
1017 (*purgeaddr)(ifa);
1018 }
1019 }
1020
1021 /*
1022 * Detach an interface from the list of "active" interfaces,
1023 * freeing any resources as we go along.
1024 *
1025 * NOTE: This routine must be called with a valid thread context,
1026 * as it may block.
1027 */
1028 void
1029 if_detach(struct ifnet *ifp)
1030 {
1031 struct socket so;
1032 struct ifaddr *ifa;
1033 #ifdef IFAREF_DEBUG
1034 struct ifaddr *last_ifa = NULL;
1035 #endif
1036 struct domain *dp;
1037 const struct protosw *pr;
1038 int s, i, family, purged;
1039 uint64_t xc;
1040
1041 /*
1042 * XXX It's kind of lame that we have to have the
1043 * XXX socket structure...
1044 */
1045 memset(&so, 0, sizeof(so));
1046
1047 s = splnet();
1048
1049 sysctl_teardown(&ifp->if_sysctl_log);
1050
1051 IFNET_LOCK();
1052 ifindex2ifnet[ifp->if_index] = NULL;
1053 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1054 IFNET_WRITER_REMOVE(ifp);
1055 pserialize_perform(ifnet_psz);
1056 IFNET_UNLOCK();
1057
1058 /* Wait for all readers to drain before freeing. */
1059 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1060 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1061
1062 if (ifp->if_slowtimo != NULL) {
1063 ifp->if_slowtimo = NULL;
1064 callout_halt(ifp->if_slowtimo_ch, NULL);
1065 callout_destroy(ifp->if_slowtimo_ch);
1066 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1067 }
1068
1069 /*
1070 * Do an if_down() to give protocols a chance to do something.
1071 */
1072 if_down(ifp);
1073
1074 #ifdef ALTQ
1075 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1076 altq_disable(&ifp->if_snd);
1077 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1078 altq_detach(&ifp->if_snd);
1079 #endif
1080
1081 if (ifp->if_snd.ifq_lock)
1082 mutex_obj_free(ifp->if_snd.ifq_lock);
1083
1084 #if NCARP > 0
1085 /* Remove the interface from any carp group it is a part of. */
1086 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1087 carp_ifdetach(ifp);
1088 #endif
1089
1090 /*
1091 * Rip all the addresses off the interface. This should make
1092 * all of the routes go away.
1093 *
1094 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1095 * from the list, including our "cursor", ifa. For safety,
1096 * and to honor the TAILQ abstraction, I just restart the
1097 * loop after each removal. Note that the loop will exit
1098 * when all of the remaining ifaddrs belong to the AF_LINK
1099 * family. I am counting on the historical fact that at
1100 * least one pr_usrreq in each address domain removes at
1101 * least one ifaddr.
1102 */
1103 again:
1104 IFADDR_FOREACH(ifa, ifp) {
1105 family = ifa->ifa_addr->sa_family;
1106 #ifdef IFAREF_DEBUG
1107 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1108 ifa, family, ifa->ifa_refcnt);
1109 if (last_ifa != NULL && ifa == last_ifa)
1110 panic("if_detach: loop detected");
1111 last_ifa = ifa;
1112 #endif
1113 if (family == AF_LINK)
1114 continue;
1115 dp = pffinddomain(family);
1116 #ifdef DIAGNOSTIC
1117 if (dp == NULL)
1118 panic("if_detach: no domain for AF %d",
1119 family);
1120 #endif
1121 /*
1122 * XXX These PURGEIF calls are redundant with the
1123 * purge-all-families calls below, but are left in for
1124 * now both to make a smaller change, and to avoid
1125 * unplanned interactions with clearing of
1126 * ifp->if_addrlist.
1127 */
1128 purged = 0;
1129 for (pr = dp->dom_protosw;
1130 pr < dp->dom_protoswNPROTOSW; pr++) {
1131 so.so_proto = pr;
1132 if (pr->pr_usrreqs) {
1133 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1134 purged = 1;
1135 }
1136 }
1137 if (purged == 0) {
1138 /*
1139 * XXX What's really the best thing to do
1140 * XXX here? --thorpej (at) NetBSD.org
1141 */
1142 printf("if_detach: WARNING: AF %d not purged\n",
1143 family);
1144 ifa_remove(ifp, ifa);
1145 }
1146 goto again;
1147 }
1148
1149 if_free_sadl(ifp);
1150
1151 /* Walk the routing table looking for stragglers. */
1152 for (i = 0; i <= AF_MAX; i++) {
1153 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1154 continue;
1155 }
1156
1157 DOMAIN_FOREACH(dp) {
1158 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1159 {
1160 void *p = ifp->if_afdata[dp->dom_family];
1161 if (p) {
1162 ifp->if_afdata[dp->dom_family] = NULL;
1163 (*dp->dom_ifdetach)(ifp, p);
1164 }
1165 }
1166
1167 /*
1168 * One would expect multicast memberships (INET and
1169 * INET6) on UDP sockets to be purged by the PURGEIF
1170 * calls above, but if all addresses were removed from
1171 * the interface prior to destruction, the calls will
1172 * not be made (e.g. ppp, for which pppd(8) generally
1173 * removes addresses before destroying the interface).
1174 * Because there is no invariant that multicast
1175 * memberships only exist for interfaces with IPv4
1176 * addresses, we must call PURGEIF regardless of
1177 * addresses. (Protocols which might store ifnet
1178 * pointers are marked with PR_PURGEIF.)
1179 */
1180 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1181 so.so_proto = pr;
1182 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1183 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1184 }
1185 }
1186
1187 (void)pfil_run_hooks(if_pfil,
1188 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1189 (void)pfil_head_destroy(ifp->if_pfil);
1190
1191 /* Announce that the interface is gone. */
1192 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1193
1194 ifioctl_detach(ifp);
1195
1196 IF_AFDATA_LOCK_DESTROY(ifp);
1197
1198 softint_disestablish(ifp->if_link_si);
1199 ifp->if_link_si = NULL;
1200
1201 /*
1202 * remove packets that came from ifp, from software interrupt queues.
1203 */
1204 DOMAIN_FOREACH(dp) {
1205 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1206 struct ifqueue *iq = dp->dom_ifqueues[i];
1207 if (iq == NULL)
1208 break;
1209 dp->dom_ifqueues[i] = NULL;
1210 if_detach_queues(ifp, iq);
1211 }
1212 }
1213
1214 /*
1215 * IP queues have to be processed separately: net-queue barrier
1216 * ensures that the packets are dequeued while a cross-call will
1217 * ensure that the interrupts have completed. FIXME: not quite..
1218 */
1219 #ifdef INET
1220 pktq_barrier(ip_pktq);
1221 #endif
1222 #ifdef INET6
1223 if (in6_present)
1224 pktq_barrier(ip6_pktq);
1225 #endif
1226 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1227 xc_wait(xc);
1228
1229 if (ifp->if_percpuq != NULL) {
1230 if_percpuq_destroy(ifp->if_percpuq);
1231 ifp->if_percpuq = NULL;
1232 }
1233
1234 splx(s);
1235 }
1236
1237 static void
1238 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1239 {
1240 struct mbuf *m, *prev, *next;
1241
1242 prev = NULL;
1243 for (m = q->ifq_head; m != NULL; m = next) {
1244 KASSERT((m->m_flags & M_PKTHDR) != 0);
1245
1246 next = m->m_nextpkt;
1247 if (m->m_pkthdr.rcvif != ifp) {
1248 prev = m;
1249 continue;
1250 }
1251
1252 if (prev != NULL)
1253 prev->m_nextpkt = m->m_nextpkt;
1254 else
1255 q->ifq_head = m->m_nextpkt;
1256 if (q->ifq_tail == m)
1257 q->ifq_tail = prev;
1258 q->ifq_len--;
1259
1260 m->m_nextpkt = NULL;
1261 m_freem(m);
1262 IF_DROP(q);
1263 }
1264 }
1265
1266 /*
1267 * Callback for a radix tree walk to delete all references to an
1268 * ifnet.
1269 */
1270 static int
1271 if_rt_walktree(struct rtentry *rt, void *v)
1272 {
1273 struct ifnet *ifp = (struct ifnet *)v;
1274 int error;
1275 struct rtentry *retrt;
1276
1277 if (rt->rt_ifp != ifp)
1278 return 0;
1279
1280 /* Delete the entry. */
1281 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1282 rt_mask(rt), rt->rt_flags, &retrt);
1283 if (error == 0) {
1284 KASSERT(retrt == rt);
1285 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1286 retrt->rt_ifp = NULL;
1287 rtfree(retrt);
1288 } else {
1289 printf("%s: warning: unable to delete rtentry @ %p, "
1290 "error = %d\n", ifp->if_xname, rt, error);
1291 }
1292 return ERESTART;
1293 }
1294
1295 /*
1296 * Create a clone network interface.
1297 */
1298 static int
1299 if_clone_create(const char *name)
1300 {
1301 struct if_clone *ifc;
1302 int unit;
1303
1304 ifc = if_clone_lookup(name, &unit);
1305 if (ifc == NULL)
1306 return EINVAL;
1307
1308 if (ifunit(name) != NULL)
1309 return EEXIST;
1310
1311 return (*ifc->ifc_create)(ifc, unit);
1312 }
1313
1314 /*
1315 * Destroy a clone network interface.
1316 */
1317 static int
1318 if_clone_destroy(const char *name)
1319 {
1320 struct if_clone *ifc;
1321 struct ifnet *ifp;
1322
1323 ifc = if_clone_lookup(name, NULL);
1324 if (ifc == NULL)
1325 return EINVAL;
1326
1327 ifp = ifunit(name);
1328 if (ifp == NULL)
1329 return ENXIO;
1330
1331 if (ifc->ifc_destroy == NULL)
1332 return EOPNOTSUPP;
1333
1334 return (*ifc->ifc_destroy)(ifp);
1335 }
1336
1337 /*
1338 * Look up a network interface cloner.
1339 */
1340 static struct if_clone *
1341 if_clone_lookup(const char *name, int *unitp)
1342 {
1343 struct if_clone *ifc;
1344 const char *cp;
1345 char *dp, ifname[IFNAMSIZ + 3];
1346 int unit;
1347
1348 strcpy(ifname, "if_");
1349 /* separate interface name from unit */
1350 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1351 *cp && (*cp < '0' || *cp > '9');)
1352 *dp++ = *cp++;
1353
1354 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1355 return NULL; /* No name or unit number */
1356 *dp++ = '\0';
1357
1358 again:
1359 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1360 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1361 break;
1362 }
1363
1364 if (ifc == NULL) {
1365 if (*ifname == '\0' ||
1366 module_autoload(ifname, MODULE_CLASS_DRIVER))
1367 return NULL;
1368 *ifname = '\0';
1369 goto again;
1370 }
1371
1372 unit = 0;
1373 while (cp - name < IFNAMSIZ && *cp) {
1374 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1375 /* Bogus unit number. */
1376 return NULL;
1377 }
1378 unit = (unit * 10) + (*cp++ - '0');
1379 }
1380
1381 if (unitp != NULL)
1382 *unitp = unit;
1383 return ifc;
1384 }
1385
1386 /*
1387 * Register a network interface cloner.
1388 */
1389 void
1390 if_clone_attach(struct if_clone *ifc)
1391 {
1392
1393 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1394 if_cloners_count++;
1395 }
1396
1397 /*
1398 * Unregister a network interface cloner.
1399 */
1400 void
1401 if_clone_detach(struct if_clone *ifc)
1402 {
1403
1404 LIST_REMOVE(ifc, ifc_list);
1405 if_cloners_count--;
1406 }
1407
1408 /*
1409 * Provide list of interface cloners to userspace.
1410 */
1411 int
1412 if_clone_list(int buf_count, char *buffer, int *total)
1413 {
1414 char outbuf[IFNAMSIZ], *dst;
1415 struct if_clone *ifc;
1416 int count, error = 0;
1417
1418 *total = if_cloners_count;
1419 if ((dst = buffer) == NULL) {
1420 /* Just asking how many there are. */
1421 return 0;
1422 }
1423
1424 if (buf_count < 0)
1425 return EINVAL;
1426
1427 count = (if_cloners_count < buf_count) ?
1428 if_cloners_count : buf_count;
1429
1430 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1431 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1432 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1433 if (outbuf[sizeof(outbuf) - 1] != '\0')
1434 return ENAMETOOLONG;
1435 error = copyout(outbuf, dst, sizeof(outbuf));
1436 if (error != 0)
1437 break;
1438 }
1439
1440 return error;
1441 }
1442
1443 void
1444 ifaref(struct ifaddr *ifa)
1445 {
1446 ifa->ifa_refcnt++;
1447 }
1448
1449 void
1450 ifafree(struct ifaddr *ifa)
1451 {
1452 KASSERT(ifa != NULL);
1453 KASSERT(ifa->ifa_refcnt > 0);
1454
1455 if (--ifa->ifa_refcnt == 0) {
1456 free(ifa, M_IFADDR);
1457 }
1458 }
1459
1460 void
1461 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1462 {
1463 ifa->ifa_ifp = ifp;
1464 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1465 ifaref(ifa);
1466 }
1467
1468 void
1469 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1470 {
1471 KASSERT(ifa->ifa_ifp == ifp);
1472 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1473 ifafree(ifa);
1474 }
1475
1476 static inline int
1477 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1478 {
1479 return sockaddr_cmp(sa1, sa2) == 0;
1480 }
1481
1482 /*
1483 * Locate an interface based on a complete address.
1484 */
1485 /*ARGSUSED*/
1486 struct ifaddr *
1487 ifa_ifwithaddr(const struct sockaddr *addr)
1488 {
1489 struct ifnet *ifp;
1490 struct ifaddr *ifa;
1491 int s;
1492
1493 s = pserialize_read_enter();
1494 IFNET_READER_FOREACH(ifp) {
1495 if (ifp->if_output == if_nulloutput)
1496 continue;
1497 IFADDR_FOREACH(ifa, ifp) {
1498 if (ifa->ifa_addr->sa_family != addr->sa_family)
1499 continue;
1500 if (equal(addr, ifa->ifa_addr))
1501 return ifa;
1502 if ((ifp->if_flags & IFF_BROADCAST) &&
1503 ifa->ifa_broadaddr &&
1504 /* IP6 doesn't have broadcast */
1505 ifa->ifa_broadaddr->sa_len != 0 &&
1506 equal(ifa->ifa_broadaddr, addr))
1507 return ifa;
1508 }
1509 }
1510 pserialize_read_exit(s);
1511 return NULL;
1512 }
1513
1514 /*
1515 * Locate the point to point interface with a given destination address.
1516 */
1517 /*ARGSUSED*/
1518 struct ifaddr *
1519 ifa_ifwithdstaddr(const struct sockaddr *addr)
1520 {
1521 struct ifnet *ifp;
1522 struct ifaddr *ifa;
1523 int s;
1524
1525 s = pserialize_read_enter();
1526 IFNET_READER_FOREACH(ifp) {
1527 if (ifp->if_output == if_nulloutput)
1528 continue;
1529 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1530 continue;
1531 IFADDR_FOREACH(ifa, ifp) {
1532 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1533 ifa->ifa_dstaddr == NULL)
1534 continue;
1535 if (equal(addr, ifa->ifa_dstaddr))
1536 return ifa;
1537 }
1538 }
1539 pserialize_read_exit(s);
1540 return NULL;
1541 }
1542
1543 /*
1544 * Find an interface on a specific network. If many, choice
1545 * is most specific found.
1546 */
1547 struct ifaddr *
1548 ifa_ifwithnet(const struct sockaddr *addr)
1549 {
1550 struct ifnet *ifp;
1551 struct ifaddr *ifa;
1552 const struct sockaddr_dl *sdl;
1553 struct ifaddr *ifa_maybe = 0;
1554 u_int af = addr->sa_family;
1555 const char *addr_data = addr->sa_data, *cplim;
1556 int s;
1557
1558 if (af == AF_LINK) {
1559 sdl = satocsdl(addr);
1560 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1561 ifindex2ifnet[sdl->sdl_index] &&
1562 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
1563 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1564 }
1565 }
1566 #ifdef NETATALK
1567 if (af == AF_APPLETALK) {
1568 const struct sockaddr_at *sat, *sat2;
1569 sat = (const struct sockaddr_at *)addr;
1570 s = pserialize_read_enter();
1571 IFNET_READER_FOREACH(ifp) {
1572 if (ifp->if_output == if_nulloutput)
1573 continue;
1574 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1575 if (ifa == NULL)
1576 continue;
1577 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1578 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1579 return ifa; /* exact match */
1580 if (ifa_maybe == NULL) {
1581 /* else keep the if with the right range */
1582 ifa_maybe = ifa;
1583 }
1584 }
1585 pserialize_read_exit(s);
1586 return ifa_maybe;
1587 }
1588 #endif
1589 s = pserialize_read_enter();
1590 IFNET_READER_FOREACH(ifp) {
1591 if (ifp->if_output == if_nulloutput)
1592 continue;
1593 IFADDR_FOREACH(ifa, ifp) {
1594 const char *cp, *cp2, *cp3;
1595
1596 if (ifa->ifa_addr->sa_family != af ||
1597 ifa->ifa_netmask == NULL)
1598 next: continue;
1599 cp = addr_data;
1600 cp2 = ifa->ifa_addr->sa_data;
1601 cp3 = ifa->ifa_netmask->sa_data;
1602 cplim = (const char *)ifa->ifa_netmask +
1603 ifa->ifa_netmask->sa_len;
1604 while (cp3 < cplim) {
1605 if ((*cp++ ^ *cp2++) & *cp3++) {
1606 /* want to continue for() loop */
1607 goto next;
1608 }
1609 }
1610 if (ifa_maybe == NULL ||
1611 rt_refines(ifa->ifa_netmask,
1612 ifa_maybe->ifa_netmask))
1613 ifa_maybe = ifa;
1614 }
1615 }
1616 pserialize_read_exit(s);
1617 return ifa_maybe;
1618 }
1619
1620 /*
1621 * Find the interface of the addresss.
1622 */
1623 struct ifaddr *
1624 ifa_ifwithladdr(const struct sockaddr *addr)
1625 {
1626 struct ifaddr *ia;
1627
1628 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1629 (ia = ifa_ifwithnet(addr)))
1630 return ia;
1631 return NULL;
1632 }
1633
1634 /*
1635 * Find an interface using a specific address family
1636 */
1637 struct ifaddr *
1638 ifa_ifwithaf(int af)
1639 {
1640 struct ifnet *ifp;
1641 struct ifaddr *ifa = NULL;
1642 int s;
1643
1644 s = pserialize_read_enter();
1645 IFNET_READER_FOREACH(ifp) {
1646 if (ifp->if_output == if_nulloutput)
1647 continue;
1648 IFADDR_FOREACH(ifa, ifp) {
1649 if (ifa->ifa_addr->sa_family == af)
1650 goto out;
1651 }
1652 }
1653 out:
1654 pserialize_read_exit(s);
1655 return ifa;
1656 }
1657
1658 /*
1659 * Find an interface address specific to an interface best matching
1660 * a given address.
1661 */
1662 struct ifaddr *
1663 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1664 {
1665 struct ifaddr *ifa;
1666 const char *cp, *cp2, *cp3;
1667 const char *cplim;
1668 struct ifaddr *ifa_maybe = 0;
1669 u_int af = addr->sa_family;
1670
1671 if (ifp->if_output == if_nulloutput)
1672 return NULL;
1673
1674 if (af >= AF_MAX)
1675 return NULL;
1676
1677 IFADDR_FOREACH(ifa, ifp) {
1678 if (ifa->ifa_addr->sa_family != af)
1679 continue;
1680 ifa_maybe = ifa;
1681 if (ifa->ifa_netmask == NULL) {
1682 if (equal(addr, ifa->ifa_addr) ||
1683 (ifa->ifa_dstaddr &&
1684 equal(addr, ifa->ifa_dstaddr)))
1685 return ifa;
1686 continue;
1687 }
1688 cp = addr->sa_data;
1689 cp2 = ifa->ifa_addr->sa_data;
1690 cp3 = ifa->ifa_netmask->sa_data;
1691 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1692 for (; cp3 < cplim; cp3++) {
1693 if ((*cp++ ^ *cp2++) & *cp3)
1694 break;
1695 }
1696 if (cp3 == cplim)
1697 return ifa;
1698 }
1699 return ifa_maybe;
1700 }
1701
1702 /*
1703 * Default action when installing a route with a Link Level gateway.
1704 * Lookup an appropriate real ifa to point to.
1705 * This should be moved to /sys/net/link.c eventually.
1706 */
1707 void
1708 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1709 {
1710 struct ifaddr *ifa;
1711 const struct sockaddr *dst;
1712 struct ifnet *ifp;
1713
1714 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1715 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1716 return;
1717 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1718 rt_replace_ifa(rt, ifa);
1719 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1720 ifa->ifa_rtrequest(cmd, rt, info);
1721 }
1722 }
1723
1724 /*
1725 * bitmask macros to manage a densely packed link_state change queue.
1726 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1727 * LINK_STATE_UP(2) we need 2 bits for each state change.
1728 * As a state change to store is 0, treat all bits set as an unset item.
1729 */
1730 #define LQ_ITEM_BITS 2
1731 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1732 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1733 #define LINK_STATE_UNSET LQ_ITEM_MASK
1734 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1735 #define LQ_STORE(q, i, v) \
1736 do { \
1737 (q) &= ~LQ_MASK((i)); \
1738 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1739 } while (0 /* CONSTCOND */)
1740 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1741 #define LQ_POP(q, v) \
1742 do { \
1743 (v) = LQ_ITEM((q), 0); \
1744 (q) >>= LQ_ITEM_BITS; \
1745 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1746 } while (0 /* CONSTCOND */)
1747 #define LQ_PUSH(q, v) \
1748 do { \
1749 (q) >>= LQ_ITEM_BITS; \
1750 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1751 } while (0 /* CONSTCOND */)
1752 #define LQ_FIND_UNSET(q, i) \
1753 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1754 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1755 break; \
1756 }
1757 /*
1758 * Handle a change in the interface link state and
1759 * queue notifications.
1760 */
1761 void
1762 if_link_state_change(struct ifnet *ifp, int link_state)
1763 {
1764 int s, idx;
1765
1766 /* Ensure change is to a valid state */
1767 switch (link_state) {
1768 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1769 case LINK_STATE_DOWN: /* FALLTHROUGH */
1770 case LINK_STATE_UP:
1771 break;
1772 default:
1773 #ifdef DEBUG
1774 printf("%s: invalid link state %d\n",
1775 ifp->if_xname, link_state);
1776 #endif
1777 return;
1778 }
1779
1780 s = splnet();
1781
1782 /* Find the last unset event in the queue. */
1783 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1784
1785 /*
1786 * Ensure link_state doesn't match the last event in the queue.
1787 * ifp->if_link_state is not checked and set here because
1788 * that would present an inconsistent picture to the system.
1789 */
1790 if (idx != 0 &&
1791 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1792 goto out;
1793
1794 /* Handle queue overflow. */
1795 if (idx == LQ_MAX(ifp->if_link_queue)) {
1796 uint8_t lost;
1797
1798 /*
1799 * The DOWN state must be protected from being pushed off
1800 * the queue to ensure that userland will always be
1801 * in a sane state.
1802 * Because DOWN is protected, there is no need to protect
1803 * UNKNOWN.
1804 * It should be invalid to change from any other state to
1805 * UNKNOWN anyway ...
1806 */
1807 lost = LQ_ITEM(ifp->if_link_queue, 0);
1808 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1809 if (lost == LINK_STATE_DOWN) {
1810 lost = LQ_ITEM(ifp->if_link_queue, 0);
1811 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1812 }
1813 printf("%s: lost link state change %s\n",
1814 ifp->if_xname,
1815 lost == LINK_STATE_UP ? "UP" :
1816 lost == LINK_STATE_DOWN ? "DOWN" :
1817 "UNKNOWN");
1818 } else
1819 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1820
1821 softint_schedule(ifp->if_link_si);
1822
1823 out:
1824 splx(s);
1825 }
1826
1827 /*
1828 * Handle interface link state change notifications.
1829 * Must be called at splnet().
1830 */
1831 static void
1832 if_link_state_change0(struct ifnet *ifp, int link_state)
1833 {
1834 struct domain *dp;
1835
1836 /* Ensure the change is still valid. */
1837 if (ifp->if_link_state == link_state)
1838 return;
1839
1840 #ifdef DEBUG
1841 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1842 link_state == LINK_STATE_UP ? "UP" :
1843 link_state == LINK_STATE_DOWN ? "DOWN" :
1844 "UNKNOWN",
1845 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1846 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1847 "UNKNOWN");
1848 #endif
1849
1850 /*
1851 * When going from UNKNOWN to UP, we need to mark existing
1852 * addresses as tentative and restart DAD as we may have
1853 * erroneously not found a duplicate.
1854 *
1855 * This needs to happen before rt_ifmsg to avoid a race where
1856 * listeners would have an address and expect it to work right
1857 * away.
1858 */
1859 if (link_state == LINK_STATE_UP &&
1860 ifp->if_link_state == LINK_STATE_UNKNOWN)
1861 {
1862 DOMAIN_FOREACH(dp) {
1863 if (dp->dom_if_link_state_change != NULL)
1864 dp->dom_if_link_state_change(ifp,
1865 LINK_STATE_DOWN);
1866 }
1867 }
1868
1869 ifp->if_link_state = link_state;
1870
1871 /* Notify that the link state has changed. */
1872 rt_ifmsg(ifp);
1873
1874 #if NCARP > 0
1875 if (ifp->if_carp)
1876 carp_carpdev_state(ifp);
1877 #endif
1878
1879 DOMAIN_FOREACH(dp) {
1880 if (dp->dom_if_link_state_change != NULL)
1881 dp->dom_if_link_state_change(ifp, link_state);
1882 }
1883 }
1884
1885 /*
1886 * Process the interface link state change queue.
1887 */
1888 static void
1889 if_link_state_change_si(void *arg)
1890 {
1891 struct ifnet *ifp = arg;
1892 int s;
1893 uint8_t state;
1894
1895 s = splnet();
1896
1897 /* Pop a link state change from the queue and process it. */
1898 LQ_POP(ifp->if_link_queue, state);
1899 if_link_state_change0(ifp, state);
1900
1901 /* If there is a link state change to come, schedule it. */
1902 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
1903 softint_schedule(ifp->if_link_si);
1904
1905 splx(s);
1906 }
1907
1908 /*
1909 * Default action when installing a local route on a point-to-point
1910 * interface.
1911 */
1912 void
1913 p2p_rtrequest(int req, struct rtentry *rt,
1914 __unused const struct rt_addrinfo *info)
1915 {
1916 struct ifnet *ifp = rt->rt_ifp;
1917 struct ifaddr *ifa, *lo0ifa;
1918
1919 switch (req) {
1920 case RTM_ADD:
1921 if ((rt->rt_flags & RTF_LOCAL) == 0)
1922 break;
1923
1924 IFADDR_FOREACH(ifa, ifp) {
1925 if (equal(rt_getkey(rt), ifa->ifa_addr))
1926 break;
1927 }
1928 if (ifa == NULL)
1929 break;
1930
1931 /*
1932 * Ensure lo0 has an address of the same family.
1933 */
1934 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1935 if (lo0ifa->ifa_addr->sa_family ==
1936 ifa->ifa_addr->sa_family)
1937 break;
1938 }
1939 if (lo0ifa == NULL)
1940 break;
1941
1942 rt->rt_ifp = lo0ifp;
1943
1944 /*
1945 * Make sure to set rt->rt_ifa to the interface
1946 * address we are using, otherwise we will have trouble
1947 * with source address selection.
1948 */
1949 if (ifa != rt->rt_ifa)
1950 rt_replace_ifa(rt, ifa);
1951 break;
1952 case RTM_DELETE:
1953 default:
1954 break;
1955 }
1956 }
1957
1958 /*
1959 * Mark an interface down and notify protocols of
1960 * the transition.
1961 * NOTE: must be called at splsoftnet or equivalent.
1962 */
1963 void
1964 if_down(struct ifnet *ifp)
1965 {
1966 struct ifaddr *ifa;
1967 struct domain *dp;
1968
1969 ifp->if_flags &= ~IFF_UP;
1970 nanotime(&ifp->if_lastchange);
1971 IFADDR_FOREACH(ifa, ifp)
1972 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1973 IFQ_PURGE(&ifp->if_snd);
1974 #if NCARP > 0
1975 if (ifp->if_carp)
1976 carp_carpdev_state(ifp);
1977 #endif
1978 rt_ifmsg(ifp);
1979 DOMAIN_FOREACH(dp) {
1980 if (dp->dom_if_down)
1981 dp->dom_if_down(ifp);
1982 }
1983 }
1984
1985 /*
1986 * Mark an interface up and notify protocols of
1987 * the transition.
1988 * NOTE: must be called at splsoftnet or equivalent.
1989 */
1990 void
1991 if_up(struct ifnet *ifp)
1992 {
1993 #ifdef notyet
1994 struct ifaddr *ifa;
1995 #endif
1996 struct domain *dp;
1997
1998 ifp->if_flags |= IFF_UP;
1999 nanotime(&ifp->if_lastchange);
2000 #ifdef notyet
2001 /* this has no effect on IP, and will kill all ISO connections XXX */
2002 IFADDR_FOREACH(ifa, ifp)
2003 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2004 #endif
2005 #if NCARP > 0
2006 if (ifp->if_carp)
2007 carp_carpdev_state(ifp);
2008 #endif
2009 rt_ifmsg(ifp);
2010 DOMAIN_FOREACH(dp) {
2011 if (dp->dom_if_up)
2012 dp->dom_if_up(ifp);
2013 }
2014 }
2015
2016 /*
2017 * Handle interface slowtimo timer routine. Called
2018 * from softclock, we decrement timer (if set) and
2019 * call the appropriate interface routine on expiration.
2020 */
2021 static void
2022 if_slowtimo(void *arg)
2023 {
2024 void (*slowtimo)(struct ifnet *);
2025 struct ifnet *ifp = arg;
2026 int s;
2027
2028 slowtimo = ifp->if_slowtimo;
2029 if (__predict_false(slowtimo == NULL))
2030 return;
2031
2032 s = splnet();
2033 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2034 (*slowtimo)(ifp);
2035
2036 splx(s);
2037
2038 if (__predict_true(ifp->if_slowtimo != NULL))
2039 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2040 }
2041
2042 /*
2043 * Set/clear promiscuous mode on interface ifp based on the truth value
2044 * of pswitch. The calls are reference counted so that only the first
2045 * "on" request actually has an effect, as does the final "off" request.
2046 * Results are undefined if the "off" and "on" requests are not matched.
2047 */
2048 int
2049 ifpromisc(struct ifnet *ifp, int pswitch)
2050 {
2051 int pcount, ret;
2052 short nflags;
2053
2054 pcount = ifp->if_pcount;
2055 if (pswitch) {
2056 /*
2057 * Allow the device to be "placed" into promiscuous
2058 * mode even if it is not configured up. It will
2059 * consult IFF_PROMISC when it is brought up.
2060 */
2061 if (ifp->if_pcount++ != 0)
2062 return 0;
2063 nflags = ifp->if_flags | IFF_PROMISC;
2064 } else {
2065 if (--ifp->if_pcount > 0)
2066 return 0;
2067 nflags = ifp->if_flags & ~IFF_PROMISC;
2068 }
2069 ret = if_flags_set(ifp, nflags);
2070 /* Restore interface state if not successful. */
2071 if (ret != 0) {
2072 ifp->if_pcount = pcount;
2073 }
2074 return ret;
2075 }
2076
2077 /*
2078 * Map interface name to
2079 * interface structure pointer.
2080 */
2081 struct ifnet *
2082 ifunit(const char *name)
2083 {
2084 struct ifnet *ifp;
2085 const char *cp = name;
2086 u_int unit = 0;
2087 u_int i;
2088 int s;
2089
2090 /*
2091 * If the entire name is a number, treat it as an ifindex.
2092 */
2093 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2094 unit = unit * 10 + (*cp - '0');
2095 }
2096
2097 /*
2098 * If the number took all of the name, then it's a valid ifindex.
2099 */
2100 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2101 if (unit >= if_indexlim)
2102 return NULL;
2103 ifp = ifindex2ifnet[unit];
2104 if (ifp == NULL || ifp->if_output == if_nulloutput)
2105 return NULL;
2106 return ifp;
2107 }
2108
2109 ifp = NULL;
2110 s = pserialize_read_enter();
2111 IFNET_READER_FOREACH(ifp) {
2112 if (ifp->if_output == if_nulloutput)
2113 continue;
2114 if (strcmp(ifp->if_xname, name) == 0)
2115 goto out;
2116 }
2117 out:
2118 pserialize_read_exit(s);
2119 return ifp;
2120 }
2121
2122 /*
2123 * Get a reference of an ifnet object by an interface name.
2124 * The returned reference is protected by psref(9). The caller
2125 * must release a returned reference by if_put after use.
2126 */
2127 struct ifnet *
2128 if_get(const char *name, struct psref *psref)
2129 {
2130 struct ifnet *ifp;
2131 const char *cp = name;
2132 u_int unit = 0;
2133 u_int i;
2134 int s;
2135
2136 /*
2137 * If the entire name is a number, treat it as an ifindex.
2138 */
2139 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2140 unit = unit * 10 + (*cp - '0');
2141 }
2142
2143 /*
2144 * If the number took all of the name, then it's a valid ifindex.
2145 */
2146 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2147 if (unit >= if_indexlim)
2148 return NULL;
2149 ifp = ifindex2ifnet[unit];
2150 if (ifp == NULL || ifp->if_output == if_nulloutput)
2151 return NULL;
2152 return ifp;
2153 }
2154
2155 ifp = NULL;
2156 s = pserialize_read_enter();
2157 IFNET_READER_FOREACH(ifp) {
2158 if (ifp->if_output == if_nulloutput)
2159 continue;
2160 if (strcmp(ifp->if_xname, name) == 0) {
2161 psref_acquire(psref, &ifp->if_psref,
2162 ifnet_psref_class);
2163 goto out;
2164 }
2165 }
2166 out:
2167 pserialize_read_exit(s);
2168 return ifp;
2169 }
2170
2171 /*
2172 * Release a reference of an ifnet object given by if_get or
2173 * if_get_byindex.
2174 */
2175 void
2176 if_put(const struct ifnet *ifp, struct psref *psref)
2177 {
2178
2179 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2180 }
2181
2182 ifnet_t *
2183 if_byindex(u_int idx)
2184 {
2185 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2186 }
2187
2188 /*
2189 * Get a reference of an ifnet object by an interface index.
2190 * The returned reference is protected by psref(9). The caller
2191 * must release a returned reference by if_put after use.
2192 */
2193 ifnet_t *
2194 if_get_byindex(u_int idx, struct psref *psref)
2195 {
2196 ifnet_t *ifp;
2197 int s;
2198
2199 s = pserialize_read_enter();
2200 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2201 if (ifp != NULL)
2202 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2203 pserialize_read_exit(s);
2204
2205 return ifp;
2206 }
2207
2208 /* common */
2209 int
2210 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2211 {
2212 int s;
2213 struct ifreq *ifr;
2214 struct ifcapreq *ifcr;
2215 struct ifdatareq *ifdr;
2216
2217 switch (cmd) {
2218 case SIOCSIFCAP:
2219 ifcr = data;
2220 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2221 return EINVAL;
2222
2223 if (ifcr->ifcr_capenable == ifp->if_capenable)
2224 return 0;
2225
2226 ifp->if_capenable = ifcr->ifcr_capenable;
2227
2228 /* Pre-compute the checksum flags mask. */
2229 ifp->if_csum_flags_tx = 0;
2230 ifp->if_csum_flags_rx = 0;
2231 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2232 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2233 }
2234 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2235 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2236 }
2237
2238 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2239 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2240 }
2241 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2242 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2243 }
2244
2245 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2246 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2247 }
2248 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2249 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2250 }
2251
2252 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2253 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2254 }
2255 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2256 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2257 }
2258
2259 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2260 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2261 }
2262 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2263 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2264 }
2265 if (ifp->if_flags & IFF_UP)
2266 return ENETRESET;
2267 return 0;
2268 case SIOCSIFFLAGS:
2269 ifr = data;
2270 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2271 s = splnet();
2272 if_down(ifp);
2273 splx(s);
2274 }
2275 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2276 s = splnet();
2277 if_up(ifp);
2278 splx(s);
2279 }
2280 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2281 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2282 break;
2283 case SIOCGIFFLAGS:
2284 ifr = data;
2285 ifr->ifr_flags = ifp->if_flags;
2286 break;
2287
2288 case SIOCGIFMETRIC:
2289 ifr = data;
2290 ifr->ifr_metric = ifp->if_metric;
2291 break;
2292
2293 case SIOCGIFMTU:
2294 ifr = data;
2295 ifr->ifr_mtu = ifp->if_mtu;
2296 break;
2297
2298 case SIOCGIFDLT:
2299 ifr = data;
2300 ifr->ifr_dlt = ifp->if_dlt;
2301 break;
2302
2303 case SIOCGIFCAP:
2304 ifcr = data;
2305 ifcr->ifcr_capabilities = ifp->if_capabilities;
2306 ifcr->ifcr_capenable = ifp->if_capenable;
2307 break;
2308
2309 case SIOCSIFMETRIC:
2310 ifr = data;
2311 ifp->if_metric = ifr->ifr_metric;
2312 break;
2313
2314 case SIOCGIFDATA:
2315 ifdr = data;
2316 ifdr->ifdr_data = ifp->if_data;
2317 break;
2318
2319 case SIOCGIFINDEX:
2320 ifr = data;
2321 ifr->ifr_index = ifp->if_index;
2322 break;
2323
2324 case SIOCZIFDATA:
2325 ifdr = data;
2326 ifdr->ifdr_data = ifp->if_data;
2327 /*
2328 * Assumes that the volatile counters that can be
2329 * zero'ed are at the end of if_data.
2330 */
2331 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2332 offsetof(struct if_data, ifi_ipackets));
2333 /*
2334 * The memset() clears to the bottm of if_data. In the area,
2335 * if_lastchange is included. Please be careful if new entry
2336 * will be added into if_data or rewite this.
2337 *
2338 * And also, update if_lastchnage.
2339 */
2340 getnanotime(&ifp->if_lastchange);
2341 break;
2342 case SIOCSIFMTU:
2343 ifr = data;
2344 if (ifp->if_mtu == ifr->ifr_mtu)
2345 break;
2346 ifp->if_mtu = ifr->ifr_mtu;
2347 /*
2348 * If the link MTU changed, do network layer specific procedure.
2349 */
2350 #ifdef INET6
2351 if (in6_present)
2352 nd6_setmtu(ifp);
2353 #endif
2354 return ENETRESET;
2355 default:
2356 return ENOTTY;
2357 }
2358 return 0;
2359 }
2360
2361 int
2362 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2363 {
2364 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2365 struct ifaddr *ifa;
2366 const struct sockaddr *any, *sa;
2367 union {
2368 struct sockaddr sa;
2369 struct sockaddr_storage ss;
2370 } u, v;
2371
2372 switch (cmd) {
2373 case SIOCSIFADDRPREF:
2374 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2375 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2376 NULL) != 0)
2377 return EPERM;
2378 case SIOCGIFADDRPREF:
2379 break;
2380 default:
2381 return EOPNOTSUPP;
2382 }
2383
2384 /* sanity checks */
2385 if (data == NULL || ifp == NULL) {
2386 panic("invalid argument to %s", __func__);
2387 /*NOTREACHED*/
2388 }
2389
2390 /* address must be specified on ADD and DELETE */
2391 sa = sstocsa(&ifap->ifap_addr);
2392 if (sa->sa_family != sofamily(so))
2393 return EINVAL;
2394 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2395 return EINVAL;
2396
2397 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2398
2399 IFADDR_FOREACH(ifa, ifp) {
2400 if (ifa->ifa_addr->sa_family != sa->sa_family)
2401 continue;
2402 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2403 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2404 break;
2405 }
2406 if (ifa == NULL)
2407 return EADDRNOTAVAIL;
2408
2409 switch (cmd) {
2410 case SIOCSIFADDRPREF:
2411 ifa->ifa_preference = ifap->ifap_preference;
2412 return 0;
2413 case SIOCGIFADDRPREF:
2414 /* fill in the if_laddrreq structure */
2415 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2416 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2417 ifap->ifap_preference = ifa->ifa_preference;
2418 return 0;
2419 default:
2420 return EOPNOTSUPP;
2421 }
2422 }
2423
2424 static void
2425 ifnet_lock_enter(struct ifnet_lock *il)
2426 {
2427 uint64_t *nenter;
2428
2429 /* Before trying to acquire the mutex, increase the count of threads
2430 * who have entered or who wait to enter the critical section.
2431 * Avoid one costly locked memory transaction by keeping a count for
2432 * each CPU.
2433 */
2434 nenter = percpu_getref(il->il_nenter);
2435 (*nenter)++;
2436 percpu_putref(il->il_nenter);
2437 mutex_enter(&il->il_lock);
2438 }
2439
2440 static void
2441 ifnet_lock_exit(struct ifnet_lock *il)
2442 {
2443 /* Increase the count of threads who have exited the critical
2444 * section. Increase while we still hold the lock.
2445 */
2446 il->il_nexit++;
2447 mutex_exit(&il->il_lock);
2448 }
2449
2450 /*
2451 * Interface ioctls.
2452 */
2453 static int
2454 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2455 {
2456 struct ifnet *ifp;
2457 struct ifreq *ifr;
2458 int error = 0;
2459 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2460 u_long ocmd = cmd;
2461 #endif
2462 short oif_flags;
2463 #ifdef COMPAT_OIFREQ
2464 struct ifreq ifrb;
2465 struct oifreq *oifr = NULL;
2466 #endif
2467 int r;
2468
2469 switch (cmd) {
2470 #ifdef COMPAT_OIFREQ
2471 case OSIOCGIFCONF:
2472 case OOSIOCGIFCONF:
2473 return compat_ifconf(cmd, data);
2474 #endif
2475 #ifdef COMPAT_OIFDATA
2476 case OSIOCGIFDATA:
2477 case OSIOCZIFDATA:
2478 return compat_ifdatareq(l, cmd, data);
2479 #endif
2480 case SIOCGIFCONF:
2481 return ifconf(cmd, data);
2482 case SIOCINITIFADDR:
2483 return EPERM;
2484 }
2485
2486 #ifdef COMPAT_OIFREQ
2487 cmd = compat_cvtcmd(cmd);
2488 if (cmd != ocmd) {
2489 oifr = data;
2490 data = ifr = &ifrb;
2491 ifreqo2n(oifr, ifr);
2492 } else
2493 #endif
2494 ifr = data;
2495
2496 ifp = ifunit(ifr->ifr_name);
2497
2498 switch (cmd) {
2499 case SIOCIFCREATE:
2500 case SIOCIFDESTROY:
2501 if (l != NULL) {
2502 error = kauth_authorize_network(l->l_cred,
2503 KAUTH_NETWORK_INTERFACE,
2504 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2505 (void *)cmd, NULL);
2506 if (error != 0)
2507 return error;
2508 }
2509 mutex_enter(&if_clone_mtx);
2510 r = (cmd == SIOCIFCREATE) ?
2511 if_clone_create(ifr->ifr_name) :
2512 if_clone_destroy(ifr->ifr_name);
2513 mutex_exit(&if_clone_mtx);
2514 return r;
2515
2516 case SIOCIFGCLONERS:
2517 {
2518 struct if_clonereq *req = (struct if_clonereq *)data;
2519 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2520 &req->ifcr_total);
2521 }
2522 }
2523
2524 if (ifp == NULL)
2525 return ENXIO;
2526
2527 switch (cmd) {
2528 case SIOCALIFADDR:
2529 case SIOCDLIFADDR:
2530 case SIOCSIFADDRPREF:
2531 case SIOCSIFFLAGS:
2532 case SIOCSIFCAP:
2533 case SIOCSIFMETRIC:
2534 case SIOCZIFDATA:
2535 case SIOCSIFMTU:
2536 case SIOCSIFPHYADDR:
2537 case SIOCDIFPHYADDR:
2538 #ifdef INET6
2539 case SIOCSIFPHYADDR_IN6:
2540 #endif
2541 case SIOCSLIFPHYADDR:
2542 case SIOCADDMULTI:
2543 case SIOCDELMULTI:
2544 case SIOCSIFMEDIA:
2545 case SIOCSDRVSPEC:
2546 case SIOCG80211:
2547 case SIOCS80211:
2548 case SIOCS80211NWID:
2549 case SIOCS80211NWKEY:
2550 case SIOCS80211POWER:
2551 case SIOCS80211BSSID:
2552 case SIOCS80211CHANNEL:
2553 case SIOCSLINKSTR:
2554 if (l != NULL) {
2555 error = kauth_authorize_network(l->l_cred,
2556 KAUTH_NETWORK_INTERFACE,
2557 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2558 (void *)cmd, NULL);
2559 if (error != 0)
2560 return error;
2561 }
2562 }
2563
2564 oif_flags = ifp->if_flags;
2565
2566 ifnet_lock_enter(ifp->if_ioctl_lock);
2567 error = (*ifp->if_ioctl)(ifp, cmd, data);
2568 if (error != ENOTTY)
2569 ;
2570 else if (so->so_proto == NULL)
2571 error = EOPNOTSUPP;
2572 else {
2573 #ifdef COMPAT_OSOCK
2574 error = compat_ifioctl(so, ocmd, cmd, data, l);
2575 #else
2576 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2577 cmd, data, ifp);
2578 #endif
2579 }
2580
2581 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2582 if ((ifp->if_flags & IFF_UP) != 0) {
2583 int s = splnet();
2584 if_up(ifp);
2585 splx(s);
2586 }
2587 }
2588 #ifdef COMPAT_OIFREQ
2589 if (cmd != ocmd)
2590 ifreqn2o(oifr, ifr);
2591 #endif
2592
2593 ifnet_lock_exit(ifp->if_ioctl_lock);
2594 return error;
2595 }
2596
2597 /* This callback adds to the sum in `arg' the number of
2598 * threads on `ci' who have entered or who wait to enter the
2599 * critical section.
2600 */
2601 static void
2602 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2603 {
2604 uint64_t *sum = arg, *nenter = p;
2605
2606 *sum += *nenter;
2607 }
2608
2609 /* Return the number of threads who have entered or who wait
2610 * to enter the critical section on all CPUs.
2611 */
2612 static uint64_t
2613 ifnet_lock_entrances(struct ifnet_lock *il)
2614 {
2615 uint64_t sum = 0;
2616
2617 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2618
2619 return sum;
2620 }
2621
2622 static int
2623 ifioctl_attach(struct ifnet *ifp)
2624 {
2625 struct ifnet_lock *il;
2626
2627 /* If the driver has not supplied its own if_ioctl, then
2628 * supply the default.
2629 */
2630 if (ifp->if_ioctl == NULL)
2631 ifp->if_ioctl = ifioctl_common;
2632
2633 /* Create an ifnet_lock for synchronizing ifioctls. */
2634 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2635 return ENOMEM;
2636
2637 il->il_nenter = percpu_alloc(sizeof(uint64_t));
2638 if (il->il_nenter == NULL) {
2639 kmem_free(il, sizeof(*il));
2640 return ENOMEM;
2641 }
2642
2643 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2644 cv_init(&il->il_emptied, ifp->if_xname);
2645
2646 ifp->if_ioctl_lock = il;
2647
2648 return 0;
2649 }
2650
2651 /*
2652 * This must not be called until after `ifp' has been withdrawn from the
2653 * ifnet tables so that ifioctl() cannot get a handle on it by calling
2654 * ifunit().
2655 */
2656 static void
2657 ifioctl_detach(struct ifnet *ifp)
2658 {
2659 struct ifnet_lock *il;
2660
2661 il = ifp->if_ioctl_lock;
2662 mutex_enter(&il->il_lock);
2663 /* Install if_nullioctl to make sure that any thread that
2664 * subsequently enters the critical section will quit it
2665 * immediately and signal the condition variable that we
2666 * wait on, below.
2667 */
2668 ifp->if_ioctl = if_nullioctl;
2669 /* Sleep while threads are still in the critical section or
2670 * wait to enter it.
2671 */
2672 while (ifnet_lock_entrances(il) != il->il_nexit)
2673 cv_wait(&il->il_emptied, &il->il_lock);
2674 /* At this point, we are the only thread still in the critical
2675 * section, and no new thread can get a handle on the ifioctl
2676 * lock, so it is safe to free its memory.
2677 */
2678 mutex_exit(&il->il_lock);
2679 ifp->if_ioctl_lock = NULL;
2680 percpu_free(il->il_nenter, sizeof(uint64_t));
2681 il->il_nenter = NULL;
2682 cv_destroy(&il->il_emptied);
2683 mutex_destroy(&il->il_lock);
2684 kmem_free(il, sizeof(*il));
2685 }
2686
2687 /*
2688 * Return interface configuration
2689 * of system. List may be used
2690 * in later ioctl's (above) to get
2691 * other information.
2692 *
2693 * Each record is a struct ifreq. Before the addition of
2694 * sockaddr_storage, the API rule was that sockaddr flavors that did
2695 * not fit would extend beyond the struct ifreq, with the next struct
2696 * ifreq starting sa_len beyond the struct sockaddr. Because the
2697 * union in struct ifreq includes struct sockaddr_storage, every kind
2698 * of sockaddr must fit. Thus, there are no longer any overlength
2699 * records.
2700 *
2701 * Records are added to the user buffer if they fit, and ifc_len is
2702 * adjusted to the length that was written. Thus, the user is only
2703 * assured of getting the complete list if ifc_len on return is at
2704 * least sizeof(struct ifreq) less than it was on entry.
2705 *
2706 * If the user buffer pointer is NULL, this routine copies no data and
2707 * returns the amount of space that would be needed.
2708 *
2709 * Invariants:
2710 * ifrp points to the next part of the user's buffer to be used. If
2711 * ifrp != NULL, space holds the number of bytes remaining that we may
2712 * write at ifrp. Otherwise, space holds the number of bytes that
2713 * would have been written had there been adequate space.
2714 */
2715 /*ARGSUSED*/
2716 static int
2717 ifconf(u_long cmd, void *data)
2718 {
2719 struct ifconf *ifc = (struct ifconf *)data;
2720 struct ifnet *ifp;
2721 struct ifaddr *ifa;
2722 struct ifreq ifr, *ifrp = NULL;
2723 int space = 0, error = 0;
2724 const int sz = (int)sizeof(struct ifreq);
2725 const bool docopy = ifc->ifc_req != NULL;
2726 int s;
2727 int bound = curlwp->l_pflag & LP_BOUND;
2728 struct psref psref;
2729
2730 if (docopy) {
2731 space = ifc->ifc_len;
2732 ifrp = ifc->ifc_req;
2733 }
2734
2735 curlwp->l_pflag |= LP_BOUND;
2736 s = pserialize_read_enter();
2737 IFNET_READER_FOREACH(ifp) {
2738 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2739 pserialize_read_exit(s);
2740
2741 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2742 sizeof(ifr.ifr_name));
2743 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2744 error = ENAMETOOLONG;
2745 goto release_exit;
2746 }
2747 if (IFADDR_EMPTY(ifp)) {
2748 /* Interface with no addresses - send zero sockaddr. */
2749 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2750 if (!docopy) {
2751 space += sz;
2752 continue;
2753 }
2754 if (space >= sz) {
2755 error = copyout(&ifr, ifrp, sz);
2756 if (error != 0)
2757 goto release_exit;
2758 ifrp++;
2759 space -= sz;
2760 }
2761 }
2762
2763 IFADDR_FOREACH(ifa, ifp) {
2764 struct sockaddr *sa = ifa->ifa_addr;
2765 /* all sockaddrs must fit in sockaddr_storage */
2766 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2767
2768 if (!docopy) {
2769 space += sz;
2770 continue;
2771 }
2772 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2773 if (space >= sz) {
2774 error = copyout(&ifr, ifrp, sz);
2775 if (error != 0)
2776 goto release_exit;
2777 ifrp++; space -= sz;
2778 }
2779 }
2780
2781 s = pserialize_read_enter();
2782 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2783 }
2784 pserialize_read_exit(s);
2785 curlwp->l_pflag ^= bound ^ LP_BOUND;
2786
2787 if (docopy) {
2788 KASSERT(0 <= space && space <= ifc->ifc_len);
2789 ifc->ifc_len -= space;
2790 } else {
2791 KASSERT(space >= 0);
2792 ifc->ifc_len = space;
2793 }
2794 return (0);
2795
2796 release_exit:
2797 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2798 curlwp->l_pflag ^= bound ^ LP_BOUND;
2799 return error;
2800 }
2801
2802 int
2803 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2804 {
2805 uint8_t len;
2806 #ifdef COMPAT_OIFREQ
2807 struct ifreq ifrb;
2808 struct oifreq *oifr = NULL;
2809 u_long ocmd = cmd;
2810 cmd = compat_cvtcmd(cmd);
2811 if (cmd != ocmd) {
2812 oifr = (struct oifreq *)(void *)ifr;
2813 ifr = &ifrb;
2814 ifreqo2n(oifr, ifr);
2815 len = sizeof(oifr->ifr_addr);
2816 } else
2817 #endif
2818 len = sizeof(ifr->ifr_ifru.ifru_space);
2819
2820 if (len < sa->sa_len)
2821 return EFBIG;
2822
2823 memset(&ifr->ifr_addr, 0, len);
2824 sockaddr_copy(&ifr->ifr_addr, len, sa);
2825
2826 #ifdef COMPAT_OIFREQ
2827 if (cmd != ocmd)
2828 ifreqn2o(oifr, ifr);
2829 #endif
2830 return 0;
2831 }
2832
2833 /*
2834 * wrapper function for the drivers which doesn't have if_transmit().
2835 */
2836 int
2837 if_transmit(struct ifnet *ifp, struct mbuf *m)
2838 {
2839 int s, error;
2840
2841 s = splnet();
2842
2843 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2844 if (error != 0) {
2845 /* mbuf is already freed */
2846 goto out;
2847 }
2848
2849 ifp->if_obytes += m->m_pkthdr.len;;
2850 if (m->m_flags & M_MCAST)
2851 ifp->if_omcasts++;
2852
2853 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2854 (*ifp->if_start)(ifp);
2855 out:
2856 splx(s);
2857
2858 return error;
2859 }
2860
2861 /*
2862 * Queue message on interface, and start output if interface
2863 * not yet active.
2864 */
2865 int
2866 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2867 {
2868
2869 return (*ifp->if_transmit)(ifp, m);
2870 }
2871
2872 /*
2873 * Queue message on interface, possibly using a second fast queue
2874 */
2875 int
2876 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2877 {
2878 int error = 0;
2879
2880 if (ifq != NULL
2881 #ifdef ALTQ
2882 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2883 #endif
2884 ) {
2885 if (IF_QFULL(ifq)) {
2886 IF_DROP(&ifp->if_snd);
2887 m_freem(m);
2888 if (error == 0)
2889 error = ENOBUFS;
2890 } else
2891 IF_ENQUEUE(ifq, m);
2892 } else
2893 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2894 if (error != 0) {
2895 ++ifp->if_oerrors;
2896 return error;
2897 }
2898 return 0;
2899 }
2900
2901 int
2902 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2903 {
2904 int rc;
2905
2906 if (ifp->if_initaddr != NULL)
2907 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2908 else if (src ||
2909 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2910 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2911
2912 return rc;
2913 }
2914
2915 int
2916 if_do_dad(struct ifnet *ifp)
2917 {
2918 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2919 return 0;
2920
2921 switch (ifp->if_type) {
2922 case IFT_FAITH:
2923 /*
2924 * These interfaces do not have the IFF_LOOPBACK flag,
2925 * but loop packets back. We do not have to do DAD on such
2926 * interfaces. We should even omit it, because loop-backed
2927 * responses would confuse the DAD procedure.
2928 */
2929 return 0;
2930 default:
2931 /*
2932 * Our DAD routine requires the interface up and running.
2933 * However, some interfaces can be up before the RUNNING
2934 * status. Additionaly, users may try to assign addresses
2935 * before the interface becomes up (or running).
2936 * We simply skip DAD in such a case as a work around.
2937 * XXX: we should rather mark "tentative" on such addresses,
2938 * and do DAD after the interface becomes ready.
2939 */
2940 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2941 (IFF_UP|IFF_RUNNING))
2942 return 0;
2943
2944 return 1;
2945 }
2946 }
2947
2948 int
2949 if_flags_set(ifnet_t *ifp, const short flags)
2950 {
2951 int rc;
2952
2953 if (ifp->if_setflags != NULL)
2954 rc = (*ifp->if_setflags)(ifp, flags);
2955 else {
2956 short cantflags, chgdflags;
2957 struct ifreq ifr;
2958
2959 chgdflags = ifp->if_flags ^ flags;
2960 cantflags = chgdflags & IFF_CANTCHANGE;
2961
2962 if (cantflags != 0)
2963 ifp->if_flags ^= cantflags;
2964
2965 /* Traditionally, we do not call if_ioctl after
2966 * setting/clearing only IFF_PROMISC if the interface
2967 * isn't IFF_UP. Uphold that tradition.
2968 */
2969 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2970 return 0;
2971
2972 memset(&ifr, 0, sizeof(ifr));
2973
2974 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2975 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2976
2977 if (rc != 0 && cantflags != 0)
2978 ifp->if_flags ^= cantflags;
2979 }
2980
2981 return rc;
2982 }
2983
2984 int
2985 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2986 {
2987 int rc;
2988 struct ifreq ifr;
2989
2990 if (ifp->if_mcastop != NULL)
2991 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2992 else {
2993 ifreq_setaddr(cmd, &ifr, sa);
2994 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2995 }
2996
2997 return rc;
2998 }
2999
3000 static void
3001 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3002 struct ifaltq *ifq)
3003 {
3004 const struct sysctlnode *cnode, *rnode;
3005
3006 if (sysctl_createv(clog, 0, NULL, &rnode,
3007 CTLFLAG_PERMANENT,
3008 CTLTYPE_NODE, "interfaces",
3009 SYSCTL_DESCR("Per-interface controls"),
3010 NULL, 0, NULL, 0,
3011 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3012 goto bad;
3013
3014 if (sysctl_createv(clog, 0, &rnode, &rnode,
3015 CTLFLAG_PERMANENT,
3016 CTLTYPE_NODE, ifname,
3017 SYSCTL_DESCR("Interface controls"),
3018 NULL, 0, NULL, 0,
3019 CTL_CREATE, CTL_EOL) != 0)
3020 goto bad;
3021
3022 if (sysctl_createv(clog, 0, &rnode, &rnode,
3023 CTLFLAG_PERMANENT,
3024 CTLTYPE_NODE, "sndq",
3025 SYSCTL_DESCR("Interface output queue controls"),
3026 NULL, 0, NULL, 0,
3027 CTL_CREATE, CTL_EOL) != 0)
3028 goto bad;
3029
3030 if (sysctl_createv(clog, 0, &rnode, &cnode,
3031 CTLFLAG_PERMANENT,
3032 CTLTYPE_INT, "len",
3033 SYSCTL_DESCR("Current output queue length"),
3034 NULL, 0, &ifq->ifq_len, 0,
3035 CTL_CREATE, CTL_EOL) != 0)
3036 goto bad;
3037
3038 if (sysctl_createv(clog, 0, &rnode, &cnode,
3039 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3040 CTLTYPE_INT, "maxlen",
3041 SYSCTL_DESCR("Maximum allowed output queue length"),
3042 NULL, 0, &ifq->ifq_maxlen, 0,
3043 CTL_CREATE, CTL_EOL) != 0)
3044 goto bad;
3045
3046 if (sysctl_createv(clog, 0, &rnode, &cnode,
3047 CTLFLAG_PERMANENT,
3048 CTLTYPE_INT, "drops",
3049 SYSCTL_DESCR("Packets dropped due to full output queue"),
3050 NULL, 0, &ifq->ifq_drops, 0,
3051 CTL_CREATE, CTL_EOL) != 0)
3052 goto bad;
3053
3054 return;
3055 bad:
3056 printf("%s: could not attach sysctl nodes\n", ifname);
3057 return;
3058 }
3059
3060 #if defined(INET) || defined(INET6)
3061
3062 #define SYSCTL_NET_PKTQ(q, cn, c) \
3063 static int \
3064 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3065 { \
3066 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3067 }
3068
3069 #if defined(INET)
3070 static int
3071 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3072 {
3073 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3074 }
3075 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3076 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3077 #endif
3078
3079 #if defined(INET6)
3080 static int
3081 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3082 {
3083 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3084 }
3085 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3086 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3087 #endif
3088
3089 static void
3090 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3091 {
3092 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3093 const char *pfname = NULL, *ipname = NULL;
3094 int ipn = 0, qid = 0;
3095
3096 switch (pf) {
3097 #if defined(INET)
3098 case PF_INET:
3099 len_func = sysctl_net_ip_pktq_items;
3100 maxlen_func = sysctl_net_ip_pktq_maxlen;
3101 drops_func = sysctl_net_ip_pktq_drops;
3102 pfname = "inet", ipn = IPPROTO_IP;
3103 ipname = "ip", qid = IPCTL_IFQ;
3104 break;
3105 #endif
3106 #if defined(INET6)
3107 case PF_INET6:
3108 len_func = sysctl_net_ip6_pktq_items;
3109 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3110 drops_func = sysctl_net_ip6_pktq_drops;
3111 pfname = "inet6", ipn = IPPROTO_IPV6;
3112 ipname = "ip6", qid = IPV6CTL_IFQ;
3113 break;
3114 #endif
3115 default:
3116 KASSERT(false);
3117 }
3118
3119 sysctl_createv(clog, 0, NULL, NULL,
3120 CTLFLAG_PERMANENT,
3121 CTLTYPE_NODE, pfname, NULL,
3122 NULL, 0, NULL, 0,
3123 CTL_NET, pf, CTL_EOL);
3124 sysctl_createv(clog, 0, NULL, NULL,
3125 CTLFLAG_PERMANENT,
3126 CTLTYPE_NODE, ipname, NULL,
3127 NULL, 0, NULL, 0,
3128 CTL_NET, pf, ipn, CTL_EOL);
3129 sysctl_createv(clog, 0, NULL, NULL,
3130 CTLFLAG_PERMANENT,
3131 CTLTYPE_NODE, "ifq",
3132 SYSCTL_DESCR("Protocol input queue controls"),
3133 NULL, 0, NULL, 0,
3134 CTL_NET, pf, ipn, qid, CTL_EOL);
3135
3136 sysctl_createv(clog, 0, NULL, NULL,
3137 CTLFLAG_PERMANENT,
3138 CTLTYPE_INT, "len",
3139 SYSCTL_DESCR("Current input queue length"),
3140 len_func, 0, NULL, 0,
3141 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3142 sysctl_createv(clog, 0, NULL, NULL,
3143 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3144 CTLTYPE_INT, "maxlen",
3145 SYSCTL_DESCR("Maximum allowed input queue length"),
3146 maxlen_func, 0, NULL, 0,
3147 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3148 sysctl_createv(clog, 0, NULL, NULL,
3149 CTLFLAG_PERMANENT,
3150 CTLTYPE_INT, "drops",
3151 SYSCTL_DESCR("Packets dropped due to full input queue"),
3152 drops_func, 0, NULL, 0,
3153 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3154 }
3155 #endif /* INET || INET6 */
3156
3157 static int
3158 if_sdl_sysctl(SYSCTLFN_ARGS)
3159 {
3160 struct ifnet *ifp;
3161 const struct sockaddr_dl *sdl;
3162
3163 if (namelen != 1)
3164 return EINVAL;
3165
3166 ifp = if_byindex(name[0]);
3167 if (ifp == NULL)
3168 return ENODEV;
3169
3170 sdl = ifp->if_sadl;
3171 if (sdl == NULL) {
3172 *oldlenp = 0;
3173 return 0;
3174 }
3175
3176 if (oldp == NULL) {
3177 *oldlenp = sdl->sdl_alen;
3178 return 0;
3179 }
3180
3181 if (*oldlenp >= sdl->sdl_alen)
3182 *oldlenp = sdl->sdl_alen;
3183 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3184 }
3185
3186 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3187 {
3188 const struct sysctlnode *rnode = NULL;
3189
3190 sysctl_createv(clog, 0, NULL, &rnode,
3191 CTLFLAG_PERMANENT,
3192 CTLTYPE_NODE, "sdl",
3193 SYSCTL_DESCR("Get active link-layer address"),
3194 if_sdl_sysctl, 0, NULL, 0,
3195 CTL_NET, CTL_CREATE, CTL_EOL);
3196 }
3197