if.c revision 1.336 1 /* $NetBSD: if.c,v 1.336 2016/05/16 01:16:24 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.336 2016/05/16 01:16:24 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140
141 #ifdef INET6
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146 #include "ether.h"
147 #include "fddi.h"
148 #include "token.h"
149
150 #include "carp.h"
151 #if NCARP > 0
152 #include <netinet/ip_carp.h>
153 #endif
154
155 #include <compat/sys/sockio.h>
156 #include <compat/sys/socket.h>
157
158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
160
161 /*
162 * Global list of interfaces.
163 */
164 /* DEPRECATED. Remove it once kvm(3) users disappeared */
165 struct ifnet_head ifnet_list;
166
167 struct pslist_head ifnet_pslist;
168 static ifnet_t ** ifindex2ifnet = NULL;
169 static u_int if_index = 1;
170 static size_t if_indexlim = 0;
171 static uint64_t index_gen;
172 /* Mutex to protect the above objects. */
173 kmutex_t ifnet_mtx __cacheline_aligned;
174 struct psref_class *ifnet_psref_class __read_mostly;
175 static pserialize_t ifnet_psz;
176
177 static kmutex_t if_clone_mtx;
178
179 struct ifnet *lo0ifp;
180 int ifqmaxlen = IFQ_MAXLEN;
181
182 static int if_rt_walktree(struct rtentry *, void *);
183
184 static struct if_clone *if_clone_lookup(const char *, int *);
185
186 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
187 static int if_cloners_count;
188
189 /* Packet filtering hook for interfaces. */
190 pfil_head_t * if_pfil;
191
192 static kauth_listener_t if_listener;
193
194 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
197 struct ifaltq *);
198 static void if_slowtimo(void *);
199 static void if_free_sadl(struct ifnet *);
200 static void if_attachdomain1(struct ifnet *);
201 static int ifconf(u_long, void *);
202 static int if_clone_create(const char *);
203 static int if_clone_destroy(const char *);
204 static void if_link_state_change_si(void *);
205
206 struct if_percpuq {
207 struct ifnet *ipq_ifp;
208 void *ipq_si;
209 struct percpu *ipq_ifqs; /* struct ifqueue */
210 };
211
212 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
213
214 static void if_percpuq_drops(void *, void *, struct cpu_info *);
215 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
216 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
217 struct if_percpuq *);
218
219 #if defined(INET) || defined(INET6)
220 static void sysctl_net_pktq_setup(struct sysctllog **, int);
221 #endif
222
223 static int
224 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
225 void *arg0, void *arg1, void *arg2, void *arg3)
226 {
227 int result;
228 enum kauth_network_req req;
229
230 result = KAUTH_RESULT_DEFER;
231 req = (enum kauth_network_req)arg1;
232
233 if (action != KAUTH_NETWORK_INTERFACE)
234 return result;
235
236 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
237 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
238 result = KAUTH_RESULT_ALLOW;
239
240 return result;
241 }
242
243 /*
244 * Network interface utility routines.
245 *
246 * Routines with ifa_ifwith* names take sockaddr *'s as
247 * parameters.
248 */
249 void
250 ifinit(void)
251 {
252 #if defined(INET)
253 sysctl_net_pktq_setup(NULL, PF_INET);
254 #endif
255 #ifdef INET6
256 if (in6_present)
257 sysctl_net_pktq_setup(NULL, PF_INET6);
258 #endif
259
260 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
261 if_listener_cb, NULL);
262
263 /* interfaces are available, inform socket code */
264 ifioctl = doifioctl;
265 }
266
267 /*
268 * XXX Initialization before configure().
269 * XXX hack to get pfil_add_hook working in autoconf.
270 */
271 void
272 ifinit1(void)
273 {
274 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
275 TAILQ_INIT(&ifnet_list);
276 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
277 ifnet_psz = pserialize_create();
278 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
279 PSLIST_INIT(&ifnet_pslist);
280 if_indexlim = 8;
281
282 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
283 KASSERT(if_pfil != NULL);
284
285 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
286 etherinit();
287 #endif
288 }
289
290 ifnet_t *
291 if_alloc(u_char type)
292 {
293 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
294 }
295
296 void
297 if_free(ifnet_t *ifp)
298 {
299 kmem_free(ifp, sizeof(ifnet_t));
300 }
301
302 void
303 if_initname(struct ifnet *ifp, const char *name, int unit)
304 {
305 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
306 "%s%d", name, unit);
307 }
308
309 /*
310 * Null routines used while an interface is going away. These routines
311 * just return an error.
312 */
313
314 int
315 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
316 const struct sockaddr *so, const struct rtentry *rt)
317 {
318
319 return ENXIO;
320 }
321
322 void
323 if_nullinput(struct ifnet *ifp, struct mbuf *m)
324 {
325
326 /* Nothing. */
327 }
328
329 void
330 if_nullstart(struct ifnet *ifp)
331 {
332
333 /* Nothing. */
334 }
335
336 int
337 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
338 {
339
340 return ENXIO;
341 }
342
343 int
344 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
345 {
346
347 return ENXIO;
348 }
349
350 int
351 if_nullinit(struct ifnet *ifp)
352 {
353
354 return ENXIO;
355 }
356
357 void
358 if_nullstop(struct ifnet *ifp, int disable)
359 {
360
361 /* Nothing. */
362 }
363
364 void
365 if_nullslowtimo(struct ifnet *ifp)
366 {
367
368 /* Nothing. */
369 }
370
371 void
372 if_nulldrain(struct ifnet *ifp)
373 {
374
375 /* Nothing. */
376 }
377
378 void
379 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
380 {
381 struct ifaddr *ifa;
382 struct sockaddr_dl *sdl;
383
384 ifp->if_addrlen = addrlen;
385 if_alloc_sadl(ifp);
386 ifa = ifp->if_dl;
387 sdl = satosdl(ifa->ifa_addr);
388
389 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
390 if (factory) {
391 ifp->if_hwdl = ifp->if_dl;
392 ifaref(ifp->if_hwdl);
393 }
394 /* TBD routing socket */
395 }
396
397 struct ifaddr *
398 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
399 {
400 unsigned socksize, ifasize;
401 int addrlen, namelen;
402 struct sockaddr_dl *mask, *sdl;
403 struct ifaddr *ifa;
404
405 namelen = strlen(ifp->if_xname);
406 addrlen = ifp->if_addrlen;
407 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
408 ifasize = sizeof(*ifa) + 2 * socksize;
409 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
410
411 sdl = (struct sockaddr_dl *)(ifa + 1);
412 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
413
414 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
415 ifp->if_xname, namelen, NULL, addrlen);
416 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
417 memset(&mask->sdl_data[0], 0xff, namelen);
418 ifa->ifa_rtrequest = link_rtrequest;
419 ifa->ifa_addr = (struct sockaddr *)sdl;
420 ifa->ifa_netmask = (struct sockaddr *)mask;
421
422 *sdlp = sdl;
423
424 return ifa;
425 }
426
427 static void
428 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
429 {
430 const struct sockaddr_dl *sdl;
431
432 ifp->if_dl = ifa;
433 ifaref(ifa);
434 sdl = satosdl(ifa->ifa_addr);
435 ifp->if_sadl = sdl;
436 }
437
438 /*
439 * Allocate the link level name for the specified interface. This
440 * is an attachment helper. It must be called after ifp->if_addrlen
441 * is initialized, which may not be the case when if_attach() is
442 * called.
443 */
444 void
445 if_alloc_sadl(struct ifnet *ifp)
446 {
447 struct ifaddr *ifa;
448 const struct sockaddr_dl *sdl;
449
450 /*
451 * If the interface already has a link name, release it
452 * now. This is useful for interfaces that can change
453 * link types, and thus switch link names often.
454 */
455 if (ifp->if_sadl != NULL)
456 if_free_sadl(ifp);
457
458 ifa = if_dl_create(ifp, &sdl);
459
460 ifa_insert(ifp, ifa);
461 if_sadl_setrefs(ifp, ifa);
462 }
463
464 static void
465 if_deactivate_sadl(struct ifnet *ifp)
466 {
467 struct ifaddr *ifa;
468
469 KASSERT(ifp->if_dl != NULL);
470
471 ifa = ifp->if_dl;
472
473 ifp->if_sadl = NULL;
474
475 ifp->if_dl = NULL;
476 ifafree(ifa);
477 }
478
479 void
480 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
481 const struct sockaddr_dl *sdl)
482 {
483 int s;
484
485 s = splnet();
486
487 if_deactivate_sadl(ifp);
488
489 if_sadl_setrefs(ifp, ifa);
490 IFADDR_FOREACH(ifa, ifp)
491 rtinit(ifa, RTM_LLINFO_UPD, 0);
492 splx(s);
493 }
494
495 /*
496 * Free the link level name for the specified interface. This is
497 * a detach helper. This is called from if_detach().
498 */
499 static void
500 if_free_sadl(struct ifnet *ifp)
501 {
502 struct ifaddr *ifa;
503 int s;
504
505 ifa = ifp->if_dl;
506 if (ifa == NULL) {
507 KASSERT(ifp->if_sadl == NULL);
508 return;
509 }
510
511 KASSERT(ifp->if_sadl != NULL);
512
513 s = splnet();
514 rtinit(ifa, RTM_DELETE, 0);
515 ifa_remove(ifp, ifa);
516 if_deactivate_sadl(ifp);
517 if (ifp->if_hwdl == ifa) {
518 ifafree(ifa);
519 ifp->if_hwdl = NULL;
520 }
521 splx(s);
522 }
523
524 static void
525 if_getindex(ifnet_t *ifp)
526 {
527 bool hitlimit = false;
528
529 ifp->if_index_gen = index_gen++;
530
531 ifp->if_index = if_index;
532 if (ifindex2ifnet == NULL) {
533 if_index++;
534 goto skip;
535 }
536 while (if_byindex(ifp->if_index)) {
537 /*
538 * If we hit USHRT_MAX, we skip back to 0 since
539 * there are a number of places where the value
540 * of if_index or if_index itself is compared
541 * to or stored in an unsigned short. By
542 * jumping back, we won't botch those assignments
543 * or comparisons.
544 */
545 if (++if_index == 0) {
546 if_index = 1;
547 } else if (if_index == USHRT_MAX) {
548 /*
549 * However, if we have to jump back to
550 * zero *twice* without finding an empty
551 * slot in ifindex2ifnet[], then there
552 * there are too many (>65535) interfaces.
553 */
554 if (hitlimit) {
555 panic("too many interfaces");
556 }
557 hitlimit = true;
558 if_index = 1;
559 }
560 ifp->if_index = if_index;
561 }
562 skip:
563 /*
564 * ifindex2ifnet is indexed by if_index. Since if_index will
565 * grow dynamically, it should grow too.
566 */
567 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
568 size_t m, n, oldlim;
569 void *q;
570
571 oldlim = if_indexlim;
572 while (ifp->if_index >= if_indexlim)
573 if_indexlim <<= 1;
574
575 /* grow ifindex2ifnet */
576 m = oldlim * sizeof(struct ifnet *);
577 n = if_indexlim * sizeof(struct ifnet *);
578 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
579 if (ifindex2ifnet != NULL) {
580 memcpy(q, ifindex2ifnet, m);
581 free(ifindex2ifnet, M_IFADDR);
582 }
583 ifindex2ifnet = (struct ifnet **)q;
584 }
585 ifindex2ifnet[ifp->if_index] = ifp;
586 }
587
588 /*
589 * Initialize an interface and assign an index for it.
590 *
591 * It must be called prior to a device specific attach routine
592 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
593 * and be followed by if_register:
594 *
595 * if_initialize(ifp);
596 * ether_ifattach(ifp, enaddr);
597 * if_register(ifp);
598 */
599 void
600 if_initialize(ifnet_t *ifp)
601 {
602 KASSERT(if_indexlim > 0);
603 TAILQ_INIT(&ifp->if_addrlist);
604
605 /*
606 * Link level name is allocated later by a separate call to
607 * if_alloc_sadl().
608 */
609
610 if (ifp->if_snd.ifq_maxlen == 0)
611 ifp->if_snd.ifq_maxlen = ifqmaxlen;
612
613 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
614
615 ifp->if_link_state = LINK_STATE_UNKNOWN;
616 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
617
618 ifp->if_capenable = 0;
619 ifp->if_csum_flags_tx = 0;
620 ifp->if_csum_flags_rx = 0;
621
622 #ifdef ALTQ
623 ifp->if_snd.altq_type = 0;
624 ifp->if_snd.altq_disc = NULL;
625 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
626 ifp->if_snd.altq_tbr = NULL;
627 ifp->if_snd.altq_ifp = ifp;
628 #endif
629
630 #ifdef NET_MPSAFE
631 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
632 #else
633 ifp->if_snd.ifq_lock = NULL;
634 #endif
635
636 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
637 (void)pfil_run_hooks(if_pfil,
638 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
639
640 IF_AFDATA_LOCK_INIT(ifp);
641
642 ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
643 if (ifp->if_link_si == NULL)
644 panic("%s: softint_establish() failed", __func__);
645
646 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
647 psref_target_init(&ifp->if_psref, ifnet_psref_class);
648 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
649
650 IFNET_LOCK();
651 if_getindex(ifp);
652 IFNET_UNLOCK();
653 }
654
655 /*
656 * Register an interface to the list of "active" interfaces.
657 */
658 void
659 if_register(ifnet_t *ifp)
660 {
661 /*
662 * If the driver has not supplied its own if_ioctl, then
663 * supply the default.
664 */
665 if (ifp->if_ioctl == NULL)
666 ifp->if_ioctl = ifioctl_common;
667
668 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
669
670 if (!STAILQ_EMPTY(&domains))
671 if_attachdomain1(ifp);
672
673 /* Announce the interface. */
674 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
675
676 if (ifp->if_slowtimo != NULL) {
677 ifp->if_slowtimo_ch =
678 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
679 callout_init(ifp->if_slowtimo_ch, 0);
680 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
681 if_slowtimo(ifp);
682 }
683
684 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
685 ifp->if_transmit = if_transmit;
686
687 IFNET_LOCK();
688 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
689 IFNET_WRITER_INSERT_TAIL(ifp);
690 IFNET_UNLOCK();
691 }
692
693 /*
694 * The if_percpuq framework
695 *
696 * It allows network device drivers to execute the network stack
697 * in softint (so called softint-based if_input). It utilizes
698 * softint and percpu ifqueue. It doesn't distribute any packets
699 * between CPUs, unlike pktqueue(9).
700 *
701 * Currently we support two options for device drivers to apply the framework:
702 * - Use it implicitly with less changes
703 * - If you use if_attach in driver's _attach function and if_input in
704 * driver's Rx interrupt handler, a packet is queued and a softint handles
705 * the packet implicitly
706 * - Use it explicitly in each driver (recommended)
707 * - You can use if_percpuq_* directly in your driver
708 * - In this case, you need to allocate struct if_percpuq in driver's softc
709 * - See wm(4) as a reference implementation
710 */
711
712 static void
713 if_percpuq_softint(void *arg)
714 {
715 struct if_percpuq *ipq = arg;
716 struct ifnet *ifp = ipq->ipq_ifp;
717 struct mbuf *m;
718
719 while ((m = if_percpuq_dequeue(ipq)) != NULL)
720 ifp->_if_input(ifp, m);
721 }
722
723 static void
724 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
725 {
726 struct ifqueue *const ifq = p;
727
728 memset(ifq, 0, sizeof(*ifq));
729 ifq->ifq_maxlen = IFQ_MAXLEN;
730 }
731
732 struct if_percpuq *
733 if_percpuq_create(struct ifnet *ifp)
734 {
735 struct if_percpuq *ipq;
736
737 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
738 if (ipq == NULL)
739 panic("kmem_zalloc failed");
740
741 ipq->ipq_ifp = ifp;
742 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
743 if_percpuq_softint, ipq);
744 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
745 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
746
747 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
748
749 return ipq;
750 }
751
752 static struct mbuf *
753 if_percpuq_dequeue(struct if_percpuq *ipq)
754 {
755 struct mbuf *m;
756 struct ifqueue *ifq;
757 int s;
758
759 s = splnet();
760 ifq = percpu_getref(ipq->ipq_ifqs);
761 IF_DEQUEUE(ifq, m);
762 percpu_putref(ipq->ipq_ifqs);
763 splx(s);
764
765 return m;
766 }
767
768 static void
769 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
770 {
771 struct ifqueue *const ifq = p;
772
773 IF_PURGE(ifq);
774 }
775
776 void
777 if_percpuq_destroy(struct if_percpuq *ipq)
778 {
779
780 /* if_detach may already destroy it */
781 if (ipq == NULL)
782 return;
783
784 softint_disestablish(ipq->ipq_si);
785 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
786 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
787 }
788
789 void
790 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
791 {
792 struct ifqueue *ifq;
793 int s;
794
795 KASSERT(ipq != NULL);
796
797 s = splnet();
798 ifq = percpu_getref(ipq->ipq_ifqs);
799 if (IF_QFULL(ifq)) {
800 IF_DROP(ifq);
801 percpu_putref(ipq->ipq_ifqs);
802 m_freem(m);
803 goto out;
804 }
805 IF_ENQUEUE(ifq, m);
806 percpu_putref(ipq->ipq_ifqs);
807
808 softint_schedule(ipq->ipq_si);
809 out:
810 splx(s);
811 }
812
813 static void
814 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
815 {
816 struct ifqueue *const ifq = p;
817 int *sum = arg;
818
819 *sum += ifq->ifq_drops;
820 }
821
822 static int
823 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
824 {
825 struct sysctlnode node;
826 struct if_percpuq *ipq;
827 int sum = 0;
828 int error;
829
830 node = *rnode;
831 ipq = node.sysctl_data;
832
833 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
834
835 node.sysctl_data = ∑
836 error = sysctl_lookup(SYSCTLFN_CALL(&node));
837 if (error != 0 || newp == NULL)
838 return error;
839
840 return 0;
841 }
842
843 static void
844 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
845 struct if_percpuq *ipq)
846 {
847 const struct sysctlnode *cnode, *rnode;
848
849 if (sysctl_createv(clog, 0, NULL, &rnode,
850 CTLFLAG_PERMANENT,
851 CTLTYPE_NODE, "interfaces",
852 SYSCTL_DESCR("Per-interface controls"),
853 NULL, 0, NULL, 0,
854 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
855 goto bad;
856
857 if (sysctl_createv(clog, 0, &rnode, &rnode,
858 CTLFLAG_PERMANENT,
859 CTLTYPE_NODE, ifname,
860 SYSCTL_DESCR("Interface controls"),
861 NULL, 0, NULL, 0,
862 CTL_CREATE, CTL_EOL) != 0)
863 goto bad;
864
865 if (sysctl_createv(clog, 0, &rnode, &rnode,
866 CTLFLAG_PERMANENT,
867 CTLTYPE_NODE, "rcvq",
868 SYSCTL_DESCR("Interface input queue controls"),
869 NULL, 0, NULL, 0,
870 CTL_CREATE, CTL_EOL) != 0)
871 goto bad;
872
873 #ifdef NOTYET
874 /* XXX Should show each per-CPU queue length? */
875 if (sysctl_createv(clog, 0, &rnode, &rnode,
876 CTLFLAG_PERMANENT,
877 CTLTYPE_INT, "len",
878 SYSCTL_DESCR("Current input queue length"),
879 sysctl_percpuq_len, 0, NULL, 0,
880 CTL_CREATE, CTL_EOL) != 0)
881 goto bad;
882
883 if (sysctl_createv(clog, 0, &rnode, &cnode,
884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
885 CTLTYPE_INT, "maxlen",
886 SYSCTL_DESCR("Maximum allowed input queue length"),
887 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
888 CTL_CREATE, CTL_EOL) != 0)
889 goto bad;
890 #endif
891
892 if (sysctl_createv(clog, 0, &rnode, &cnode,
893 CTLFLAG_PERMANENT,
894 CTLTYPE_INT, "drops",
895 SYSCTL_DESCR("Total packets dropped due to full input queue"),
896 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
897 CTL_CREATE, CTL_EOL) != 0)
898 goto bad;
899
900 return;
901 bad:
902 printf("%s: could not attach sysctl nodes\n", ifname);
903 return;
904 }
905
906
907 /*
908 * The common interface input routine that is called by device drivers,
909 * which should be used only when the driver's rx handler already runs
910 * in softint.
911 */
912 void
913 if_input(struct ifnet *ifp, struct mbuf *m)
914 {
915
916 KASSERT(ifp->if_percpuq == NULL);
917 KASSERT(!cpu_intr_p());
918
919 ifp->_if_input(ifp, m);
920 }
921
922 /*
923 * DEPRECATED. Use if_initialize and if_register instead.
924 * See the above comment of if_initialize.
925 *
926 * Note that it implicitly enables if_percpuq to make drivers easy to
927 * migrate softint-based if_input without much changes. If you don't
928 * want to enable it, use if_initialize instead.
929 */
930 void
931 if_attach(ifnet_t *ifp)
932 {
933
934 if_initialize(ifp);
935 ifp->if_percpuq = if_percpuq_create(ifp);
936 if_register(ifp);
937 }
938
939 void
940 if_attachdomain(void)
941 {
942 struct ifnet *ifp;
943 int s;
944 int bound = curlwp->l_pflag & LP_BOUND;
945
946 curlwp->l_pflag |= LP_BOUND;
947 s = pserialize_read_enter();
948 IFNET_READER_FOREACH(ifp) {
949 struct psref psref;
950 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
951 pserialize_read_exit(s);
952 if_attachdomain1(ifp);
953 s = pserialize_read_enter();
954 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
955 }
956 pserialize_read_exit(s);
957 curlwp->l_pflag ^= bound ^ LP_BOUND;
958 }
959
960 static void
961 if_attachdomain1(struct ifnet *ifp)
962 {
963 struct domain *dp;
964 int s;
965
966 s = splnet();
967
968 /* address family dependent data region */
969 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
970 DOMAIN_FOREACH(dp) {
971 if (dp->dom_ifattach != NULL)
972 ifp->if_afdata[dp->dom_family] =
973 (*dp->dom_ifattach)(ifp);
974 }
975
976 splx(s);
977 }
978
979 /*
980 * Deactivate an interface. This points all of the procedure
981 * handles at error stubs. May be called from interrupt context.
982 */
983 void
984 if_deactivate(struct ifnet *ifp)
985 {
986 int s;
987
988 s = splnet();
989
990 ifp->if_output = if_nulloutput;
991 ifp->_if_input = if_nullinput;
992 ifp->if_start = if_nullstart;
993 ifp->if_transmit = if_nulltransmit;
994 ifp->if_ioctl = if_nullioctl;
995 ifp->if_init = if_nullinit;
996 ifp->if_stop = if_nullstop;
997 ifp->if_slowtimo = if_nullslowtimo;
998 ifp->if_drain = if_nulldrain;
999
1000 /* No more packets may be enqueued. */
1001 ifp->if_snd.ifq_maxlen = 0;
1002
1003 splx(s);
1004 }
1005
1006 void
1007 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1008 {
1009 struct ifaddr *ifa, *nifa;
1010
1011 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
1012 if (ifa->ifa_addr->sa_family != family)
1013 continue;
1014 (*purgeaddr)(ifa);
1015 }
1016 }
1017
1018 /*
1019 * Detach an interface from the list of "active" interfaces,
1020 * freeing any resources as we go along.
1021 *
1022 * NOTE: This routine must be called with a valid thread context,
1023 * as it may block.
1024 */
1025 void
1026 if_detach(struct ifnet *ifp)
1027 {
1028 struct socket so;
1029 struct ifaddr *ifa;
1030 #ifdef IFAREF_DEBUG
1031 struct ifaddr *last_ifa = NULL;
1032 #endif
1033 struct domain *dp;
1034 const struct protosw *pr;
1035 int s, i, family, purged;
1036 uint64_t xc;
1037
1038 /*
1039 * XXX It's kind of lame that we have to have the
1040 * XXX socket structure...
1041 */
1042 memset(&so, 0, sizeof(so));
1043
1044 s = splnet();
1045
1046 sysctl_teardown(&ifp->if_sysctl_log);
1047 mutex_enter(ifp->if_ioctl_lock);
1048 ifp->if_ioctl = if_nullioctl;
1049 mutex_exit(ifp->if_ioctl_lock);
1050
1051 IFNET_LOCK();
1052 ifindex2ifnet[ifp->if_index] = NULL;
1053 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1054 IFNET_WRITER_REMOVE(ifp);
1055 pserialize_perform(ifnet_psz);
1056 IFNET_UNLOCK();
1057
1058 /* Wait for all readers to drain before freeing. */
1059 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1060 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1061
1062 mutex_obj_free(ifp->if_ioctl_lock);
1063 ifp->if_ioctl_lock = NULL;
1064
1065 if (ifp->if_slowtimo != NULL) {
1066 ifp->if_slowtimo = NULL;
1067 callout_halt(ifp->if_slowtimo_ch, NULL);
1068 callout_destroy(ifp->if_slowtimo_ch);
1069 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1070 }
1071
1072 /*
1073 * Do an if_down() to give protocols a chance to do something.
1074 */
1075 if_down(ifp);
1076
1077 #ifdef ALTQ
1078 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1079 altq_disable(&ifp->if_snd);
1080 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1081 altq_detach(&ifp->if_snd);
1082 #endif
1083
1084 if (ifp->if_snd.ifq_lock)
1085 mutex_obj_free(ifp->if_snd.ifq_lock);
1086
1087 #if NCARP > 0
1088 /* Remove the interface from any carp group it is a part of. */
1089 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1090 carp_ifdetach(ifp);
1091 #endif
1092
1093 /*
1094 * Rip all the addresses off the interface. This should make
1095 * all of the routes go away.
1096 *
1097 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1098 * from the list, including our "cursor", ifa. For safety,
1099 * and to honor the TAILQ abstraction, I just restart the
1100 * loop after each removal. Note that the loop will exit
1101 * when all of the remaining ifaddrs belong to the AF_LINK
1102 * family. I am counting on the historical fact that at
1103 * least one pr_usrreq in each address domain removes at
1104 * least one ifaddr.
1105 */
1106 again:
1107 IFADDR_FOREACH(ifa, ifp) {
1108 family = ifa->ifa_addr->sa_family;
1109 #ifdef IFAREF_DEBUG
1110 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1111 ifa, family, ifa->ifa_refcnt);
1112 if (last_ifa != NULL && ifa == last_ifa)
1113 panic("if_detach: loop detected");
1114 last_ifa = ifa;
1115 #endif
1116 if (family == AF_LINK)
1117 continue;
1118 dp = pffinddomain(family);
1119 #ifdef DIAGNOSTIC
1120 if (dp == NULL)
1121 panic("if_detach: no domain for AF %d",
1122 family);
1123 #endif
1124 /*
1125 * XXX These PURGEIF calls are redundant with the
1126 * purge-all-families calls below, but are left in for
1127 * now both to make a smaller change, and to avoid
1128 * unplanned interactions with clearing of
1129 * ifp->if_addrlist.
1130 */
1131 purged = 0;
1132 for (pr = dp->dom_protosw;
1133 pr < dp->dom_protoswNPROTOSW; pr++) {
1134 so.so_proto = pr;
1135 if (pr->pr_usrreqs) {
1136 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1137 purged = 1;
1138 }
1139 }
1140 if (purged == 0) {
1141 /*
1142 * XXX What's really the best thing to do
1143 * XXX here? --thorpej (at) NetBSD.org
1144 */
1145 printf("if_detach: WARNING: AF %d not purged\n",
1146 family);
1147 ifa_remove(ifp, ifa);
1148 }
1149 goto again;
1150 }
1151
1152 if_free_sadl(ifp);
1153
1154 /* Walk the routing table looking for stragglers. */
1155 for (i = 0; i <= AF_MAX; i++) {
1156 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1157 continue;
1158 }
1159
1160 DOMAIN_FOREACH(dp) {
1161 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1162 {
1163 void *p = ifp->if_afdata[dp->dom_family];
1164 if (p) {
1165 ifp->if_afdata[dp->dom_family] = NULL;
1166 (*dp->dom_ifdetach)(ifp, p);
1167 }
1168 }
1169
1170 /*
1171 * One would expect multicast memberships (INET and
1172 * INET6) on UDP sockets to be purged by the PURGEIF
1173 * calls above, but if all addresses were removed from
1174 * the interface prior to destruction, the calls will
1175 * not be made (e.g. ppp, for which pppd(8) generally
1176 * removes addresses before destroying the interface).
1177 * Because there is no invariant that multicast
1178 * memberships only exist for interfaces with IPv4
1179 * addresses, we must call PURGEIF regardless of
1180 * addresses. (Protocols which might store ifnet
1181 * pointers are marked with PR_PURGEIF.)
1182 */
1183 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1184 so.so_proto = pr;
1185 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1186 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1187 }
1188 }
1189
1190 (void)pfil_run_hooks(if_pfil,
1191 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1192 (void)pfil_head_destroy(ifp->if_pfil);
1193
1194 /* Announce that the interface is gone. */
1195 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1196
1197 IF_AFDATA_LOCK_DESTROY(ifp);
1198
1199 softint_disestablish(ifp->if_link_si);
1200 ifp->if_link_si = NULL;
1201
1202 /*
1203 * remove packets that came from ifp, from software interrupt queues.
1204 */
1205 DOMAIN_FOREACH(dp) {
1206 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1207 struct ifqueue *iq = dp->dom_ifqueues[i];
1208 if (iq == NULL)
1209 break;
1210 dp->dom_ifqueues[i] = NULL;
1211 if_detach_queues(ifp, iq);
1212 }
1213 }
1214
1215 /*
1216 * IP queues have to be processed separately: net-queue barrier
1217 * ensures that the packets are dequeued while a cross-call will
1218 * ensure that the interrupts have completed. FIXME: not quite..
1219 */
1220 #ifdef INET
1221 pktq_barrier(ip_pktq);
1222 #endif
1223 #ifdef INET6
1224 if (in6_present)
1225 pktq_barrier(ip6_pktq);
1226 #endif
1227 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1228 xc_wait(xc);
1229
1230 if (ifp->if_percpuq != NULL) {
1231 if_percpuq_destroy(ifp->if_percpuq);
1232 ifp->if_percpuq = NULL;
1233 }
1234
1235 splx(s);
1236 }
1237
1238 static void
1239 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1240 {
1241 struct mbuf *m, *prev, *next;
1242
1243 prev = NULL;
1244 for (m = q->ifq_head; m != NULL; m = next) {
1245 KASSERT((m->m_flags & M_PKTHDR) != 0);
1246
1247 next = m->m_nextpkt;
1248 if (m->m_pkthdr.rcvif != ifp) {
1249 prev = m;
1250 continue;
1251 }
1252
1253 if (prev != NULL)
1254 prev->m_nextpkt = m->m_nextpkt;
1255 else
1256 q->ifq_head = m->m_nextpkt;
1257 if (q->ifq_tail == m)
1258 q->ifq_tail = prev;
1259 q->ifq_len--;
1260
1261 m->m_nextpkt = NULL;
1262 m_freem(m);
1263 IF_DROP(q);
1264 }
1265 }
1266
1267 /*
1268 * Callback for a radix tree walk to delete all references to an
1269 * ifnet.
1270 */
1271 static int
1272 if_rt_walktree(struct rtentry *rt, void *v)
1273 {
1274 struct ifnet *ifp = (struct ifnet *)v;
1275 int error;
1276 struct rtentry *retrt;
1277
1278 if (rt->rt_ifp != ifp)
1279 return 0;
1280
1281 /* Delete the entry. */
1282 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1283 rt_mask(rt), rt->rt_flags, &retrt);
1284 if (error == 0) {
1285 KASSERT(retrt == rt);
1286 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1287 retrt->rt_ifp = NULL;
1288 rtfree(retrt);
1289 } else {
1290 printf("%s: warning: unable to delete rtentry @ %p, "
1291 "error = %d\n", ifp->if_xname, rt, error);
1292 }
1293 return ERESTART;
1294 }
1295
1296 /*
1297 * Create a clone network interface.
1298 */
1299 static int
1300 if_clone_create(const char *name)
1301 {
1302 struct if_clone *ifc;
1303 int unit;
1304 struct ifnet *ifp;
1305 struct psref psref;
1306
1307 ifc = if_clone_lookup(name, &unit);
1308 if (ifc == NULL)
1309 return EINVAL;
1310
1311 ifp = if_get(name, &psref);
1312 if (ifp != NULL) {
1313 if_put(ifp, &psref);
1314 return EEXIST;
1315 }
1316
1317 return (*ifc->ifc_create)(ifc, unit);
1318 }
1319
1320 /*
1321 * Destroy a clone network interface.
1322 */
1323 static int
1324 if_clone_destroy(const char *name)
1325 {
1326 struct if_clone *ifc;
1327 struct ifnet *ifp;
1328 struct psref psref;
1329
1330 ifc = if_clone_lookup(name, NULL);
1331 if (ifc == NULL)
1332 return EINVAL;
1333
1334 if (ifc->ifc_destroy == NULL)
1335 return EOPNOTSUPP;
1336
1337 ifp = if_get(name, &psref);
1338 if (ifp == NULL)
1339 return ENXIO;
1340
1341 /* We have to disable ioctls here */
1342 mutex_enter(ifp->if_ioctl_lock);
1343 ifp->if_ioctl = if_nullioctl;
1344 mutex_exit(ifp->if_ioctl_lock);
1345
1346 /*
1347 * We cannot call ifc_destroy with holding ifp.
1348 * Releasing ifp here is safe thanks to if_clone_mtx.
1349 */
1350 if_put(ifp, &psref);
1351
1352 return (*ifc->ifc_destroy)(ifp);
1353 }
1354
1355 /*
1356 * Look up a network interface cloner.
1357 */
1358 static struct if_clone *
1359 if_clone_lookup(const char *name, int *unitp)
1360 {
1361 struct if_clone *ifc;
1362 const char *cp;
1363 char *dp, ifname[IFNAMSIZ + 3];
1364 int unit;
1365
1366 strcpy(ifname, "if_");
1367 /* separate interface name from unit */
1368 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1369 *cp && (*cp < '0' || *cp > '9');)
1370 *dp++ = *cp++;
1371
1372 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1373 return NULL; /* No name or unit number */
1374 *dp++ = '\0';
1375
1376 again:
1377 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1378 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1379 break;
1380 }
1381
1382 if (ifc == NULL) {
1383 if (*ifname == '\0' ||
1384 module_autoload(ifname, MODULE_CLASS_DRIVER))
1385 return NULL;
1386 *ifname = '\0';
1387 goto again;
1388 }
1389
1390 unit = 0;
1391 while (cp - name < IFNAMSIZ && *cp) {
1392 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1393 /* Bogus unit number. */
1394 return NULL;
1395 }
1396 unit = (unit * 10) + (*cp++ - '0');
1397 }
1398
1399 if (unitp != NULL)
1400 *unitp = unit;
1401 return ifc;
1402 }
1403
1404 /*
1405 * Register a network interface cloner.
1406 */
1407 void
1408 if_clone_attach(struct if_clone *ifc)
1409 {
1410
1411 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1412 if_cloners_count++;
1413 }
1414
1415 /*
1416 * Unregister a network interface cloner.
1417 */
1418 void
1419 if_clone_detach(struct if_clone *ifc)
1420 {
1421
1422 LIST_REMOVE(ifc, ifc_list);
1423 if_cloners_count--;
1424 }
1425
1426 /*
1427 * Provide list of interface cloners to userspace.
1428 */
1429 int
1430 if_clone_list(int buf_count, char *buffer, int *total)
1431 {
1432 char outbuf[IFNAMSIZ], *dst;
1433 struct if_clone *ifc;
1434 int count, error = 0;
1435
1436 *total = if_cloners_count;
1437 if ((dst = buffer) == NULL) {
1438 /* Just asking how many there are. */
1439 return 0;
1440 }
1441
1442 if (buf_count < 0)
1443 return EINVAL;
1444
1445 count = (if_cloners_count < buf_count) ?
1446 if_cloners_count : buf_count;
1447
1448 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1449 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1450 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1451 if (outbuf[sizeof(outbuf) - 1] != '\0')
1452 return ENAMETOOLONG;
1453 error = copyout(outbuf, dst, sizeof(outbuf));
1454 if (error != 0)
1455 break;
1456 }
1457
1458 return error;
1459 }
1460
1461 void
1462 ifaref(struct ifaddr *ifa)
1463 {
1464 ifa->ifa_refcnt++;
1465 }
1466
1467 void
1468 ifafree(struct ifaddr *ifa)
1469 {
1470 KASSERT(ifa != NULL);
1471 KASSERT(ifa->ifa_refcnt > 0);
1472
1473 if (--ifa->ifa_refcnt == 0) {
1474 free(ifa, M_IFADDR);
1475 }
1476 }
1477
1478 void
1479 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1480 {
1481 ifa->ifa_ifp = ifp;
1482 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1483 ifaref(ifa);
1484 }
1485
1486 void
1487 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1488 {
1489 KASSERT(ifa->ifa_ifp == ifp);
1490 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1491 ifafree(ifa);
1492 }
1493
1494 static inline int
1495 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1496 {
1497 return sockaddr_cmp(sa1, sa2) == 0;
1498 }
1499
1500 /*
1501 * Locate an interface based on a complete address.
1502 */
1503 /*ARGSUSED*/
1504 struct ifaddr *
1505 ifa_ifwithaddr(const struct sockaddr *addr)
1506 {
1507 struct ifnet *ifp;
1508 struct ifaddr *ifa;
1509 int s;
1510
1511 s = pserialize_read_enter();
1512 IFNET_READER_FOREACH(ifp) {
1513 if (ifp->if_output == if_nulloutput)
1514 continue;
1515 IFADDR_FOREACH(ifa, ifp) {
1516 if (ifa->ifa_addr->sa_family != addr->sa_family)
1517 continue;
1518 if (equal(addr, ifa->ifa_addr))
1519 return ifa;
1520 if ((ifp->if_flags & IFF_BROADCAST) &&
1521 ifa->ifa_broadaddr &&
1522 /* IP6 doesn't have broadcast */
1523 ifa->ifa_broadaddr->sa_len != 0 &&
1524 equal(ifa->ifa_broadaddr, addr))
1525 return ifa;
1526 }
1527 }
1528 pserialize_read_exit(s);
1529 return NULL;
1530 }
1531
1532 /*
1533 * Locate the point to point interface with a given destination address.
1534 */
1535 /*ARGSUSED*/
1536 struct ifaddr *
1537 ifa_ifwithdstaddr(const struct sockaddr *addr)
1538 {
1539 struct ifnet *ifp;
1540 struct ifaddr *ifa;
1541 int s;
1542
1543 s = pserialize_read_enter();
1544 IFNET_READER_FOREACH(ifp) {
1545 if (ifp->if_output == if_nulloutput)
1546 continue;
1547 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1548 continue;
1549 IFADDR_FOREACH(ifa, ifp) {
1550 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1551 ifa->ifa_dstaddr == NULL)
1552 continue;
1553 if (equal(addr, ifa->ifa_dstaddr))
1554 return ifa;
1555 }
1556 }
1557 pserialize_read_exit(s);
1558 return NULL;
1559 }
1560
1561 /*
1562 * Find an interface on a specific network. If many, choice
1563 * is most specific found.
1564 */
1565 struct ifaddr *
1566 ifa_ifwithnet(const struct sockaddr *addr)
1567 {
1568 struct ifnet *ifp;
1569 struct ifaddr *ifa;
1570 const struct sockaddr_dl *sdl;
1571 struct ifaddr *ifa_maybe = 0;
1572 u_int af = addr->sa_family;
1573 const char *addr_data = addr->sa_data, *cplim;
1574 int s;
1575
1576 if (af == AF_LINK) {
1577 sdl = satocsdl(addr);
1578 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1579 ifindex2ifnet[sdl->sdl_index] &&
1580 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
1581 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1582 }
1583 }
1584 #ifdef NETATALK
1585 if (af == AF_APPLETALK) {
1586 const struct sockaddr_at *sat, *sat2;
1587 sat = (const struct sockaddr_at *)addr;
1588 s = pserialize_read_enter();
1589 IFNET_READER_FOREACH(ifp) {
1590 if (ifp->if_output == if_nulloutput)
1591 continue;
1592 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1593 if (ifa == NULL)
1594 continue;
1595 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1596 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1597 return ifa; /* exact match */
1598 if (ifa_maybe == NULL) {
1599 /* else keep the if with the right range */
1600 ifa_maybe = ifa;
1601 }
1602 }
1603 pserialize_read_exit(s);
1604 return ifa_maybe;
1605 }
1606 #endif
1607 s = pserialize_read_enter();
1608 IFNET_READER_FOREACH(ifp) {
1609 if (ifp->if_output == if_nulloutput)
1610 continue;
1611 IFADDR_FOREACH(ifa, ifp) {
1612 const char *cp, *cp2, *cp3;
1613
1614 if (ifa->ifa_addr->sa_family != af ||
1615 ifa->ifa_netmask == NULL)
1616 next: continue;
1617 cp = addr_data;
1618 cp2 = ifa->ifa_addr->sa_data;
1619 cp3 = ifa->ifa_netmask->sa_data;
1620 cplim = (const char *)ifa->ifa_netmask +
1621 ifa->ifa_netmask->sa_len;
1622 while (cp3 < cplim) {
1623 if ((*cp++ ^ *cp2++) & *cp3++) {
1624 /* want to continue for() loop */
1625 goto next;
1626 }
1627 }
1628 if (ifa_maybe == NULL ||
1629 rt_refines(ifa->ifa_netmask,
1630 ifa_maybe->ifa_netmask))
1631 ifa_maybe = ifa;
1632 }
1633 }
1634 pserialize_read_exit(s);
1635 return ifa_maybe;
1636 }
1637
1638 /*
1639 * Find the interface of the addresss.
1640 */
1641 struct ifaddr *
1642 ifa_ifwithladdr(const struct sockaddr *addr)
1643 {
1644 struct ifaddr *ia;
1645
1646 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1647 (ia = ifa_ifwithnet(addr)))
1648 return ia;
1649 return NULL;
1650 }
1651
1652 /*
1653 * Find an interface using a specific address family
1654 */
1655 struct ifaddr *
1656 ifa_ifwithaf(int af)
1657 {
1658 struct ifnet *ifp;
1659 struct ifaddr *ifa = NULL;
1660 int s;
1661
1662 s = pserialize_read_enter();
1663 IFNET_READER_FOREACH(ifp) {
1664 if (ifp->if_output == if_nulloutput)
1665 continue;
1666 IFADDR_FOREACH(ifa, ifp) {
1667 if (ifa->ifa_addr->sa_family == af)
1668 goto out;
1669 }
1670 }
1671 out:
1672 pserialize_read_exit(s);
1673 return ifa;
1674 }
1675
1676 /*
1677 * Find an interface address specific to an interface best matching
1678 * a given address.
1679 */
1680 struct ifaddr *
1681 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1682 {
1683 struct ifaddr *ifa;
1684 const char *cp, *cp2, *cp3;
1685 const char *cplim;
1686 struct ifaddr *ifa_maybe = 0;
1687 u_int af = addr->sa_family;
1688
1689 if (ifp->if_output == if_nulloutput)
1690 return NULL;
1691
1692 if (af >= AF_MAX)
1693 return NULL;
1694
1695 IFADDR_FOREACH(ifa, ifp) {
1696 if (ifa->ifa_addr->sa_family != af)
1697 continue;
1698 ifa_maybe = ifa;
1699 if (ifa->ifa_netmask == NULL) {
1700 if (equal(addr, ifa->ifa_addr) ||
1701 (ifa->ifa_dstaddr &&
1702 equal(addr, ifa->ifa_dstaddr)))
1703 return ifa;
1704 continue;
1705 }
1706 cp = addr->sa_data;
1707 cp2 = ifa->ifa_addr->sa_data;
1708 cp3 = ifa->ifa_netmask->sa_data;
1709 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1710 for (; cp3 < cplim; cp3++) {
1711 if ((*cp++ ^ *cp2++) & *cp3)
1712 break;
1713 }
1714 if (cp3 == cplim)
1715 return ifa;
1716 }
1717 return ifa_maybe;
1718 }
1719
1720 /*
1721 * Default action when installing a route with a Link Level gateway.
1722 * Lookup an appropriate real ifa to point to.
1723 * This should be moved to /sys/net/link.c eventually.
1724 */
1725 void
1726 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1727 {
1728 struct ifaddr *ifa;
1729 const struct sockaddr *dst;
1730 struct ifnet *ifp;
1731
1732 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1733 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1734 return;
1735 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1736 rt_replace_ifa(rt, ifa);
1737 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1738 ifa->ifa_rtrequest(cmd, rt, info);
1739 }
1740 }
1741
1742 /*
1743 * bitmask macros to manage a densely packed link_state change queue.
1744 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1745 * LINK_STATE_UP(2) we need 2 bits for each state change.
1746 * As a state change to store is 0, treat all bits set as an unset item.
1747 */
1748 #define LQ_ITEM_BITS 2
1749 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1750 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1751 #define LINK_STATE_UNSET LQ_ITEM_MASK
1752 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1753 #define LQ_STORE(q, i, v) \
1754 do { \
1755 (q) &= ~LQ_MASK((i)); \
1756 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1757 } while (0 /* CONSTCOND */)
1758 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1759 #define LQ_POP(q, v) \
1760 do { \
1761 (v) = LQ_ITEM((q), 0); \
1762 (q) >>= LQ_ITEM_BITS; \
1763 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1764 } while (0 /* CONSTCOND */)
1765 #define LQ_PUSH(q, v) \
1766 do { \
1767 (q) >>= LQ_ITEM_BITS; \
1768 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1769 } while (0 /* CONSTCOND */)
1770 #define LQ_FIND_UNSET(q, i) \
1771 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1772 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1773 break; \
1774 }
1775 /*
1776 * Handle a change in the interface link state and
1777 * queue notifications.
1778 */
1779 void
1780 if_link_state_change(struct ifnet *ifp, int link_state)
1781 {
1782 int s, idx;
1783
1784 /* Ensure change is to a valid state */
1785 switch (link_state) {
1786 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1787 case LINK_STATE_DOWN: /* FALLTHROUGH */
1788 case LINK_STATE_UP:
1789 break;
1790 default:
1791 #ifdef DEBUG
1792 printf("%s: invalid link state %d\n",
1793 ifp->if_xname, link_state);
1794 #endif
1795 return;
1796 }
1797
1798 s = splnet();
1799
1800 /* Find the last unset event in the queue. */
1801 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1802
1803 /*
1804 * Ensure link_state doesn't match the last event in the queue.
1805 * ifp->if_link_state is not checked and set here because
1806 * that would present an inconsistent picture to the system.
1807 */
1808 if (idx != 0 &&
1809 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1810 goto out;
1811
1812 /* Handle queue overflow. */
1813 if (idx == LQ_MAX(ifp->if_link_queue)) {
1814 uint8_t lost;
1815
1816 /*
1817 * The DOWN state must be protected from being pushed off
1818 * the queue to ensure that userland will always be
1819 * in a sane state.
1820 * Because DOWN is protected, there is no need to protect
1821 * UNKNOWN.
1822 * It should be invalid to change from any other state to
1823 * UNKNOWN anyway ...
1824 */
1825 lost = LQ_ITEM(ifp->if_link_queue, 0);
1826 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1827 if (lost == LINK_STATE_DOWN) {
1828 lost = LQ_ITEM(ifp->if_link_queue, 0);
1829 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1830 }
1831 printf("%s: lost link state change %s\n",
1832 ifp->if_xname,
1833 lost == LINK_STATE_UP ? "UP" :
1834 lost == LINK_STATE_DOWN ? "DOWN" :
1835 "UNKNOWN");
1836 } else
1837 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1838
1839 softint_schedule(ifp->if_link_si);
1840
1841 out:
1842 splx(s);
1843 }
1844
1845 /*
1846 * Handle interface link state change notifications.
1847 * Must be called at splnet().
1848 */
1849 static void
1850 if_link_state_change0(struct ifnet *ifp, int link_state)
1851 {
1852 struct domain *dp;
1853
1854 /* Ensure the change is still valid. */
1855 if (ifp->if_link_state == link_state)
1856 return;
1857
1858 #ifdef DEBUG
1859 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1860 link_state == LINK_STATE_UP ? "UP" :
1861 link_state == LINK_STATE_DOWN ? "DOWN" :
1862 "UNKNOWN",
1863 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1864 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1865 "UNKNOWN");
1866 #endif
1867
1868 /*
1869 * When going from UNKNOWN to UP, we need to mark existing
1870 * addresses as tentative and restart DAD as we may have
1871 * erroneously not found a duplicate.
1872 *
1873 * This needs to happen before rt_ifmsg to avoid a race where
1874 * listeners would have an address and expect it to work right
1875 * away.
1876 */
1877 if (link_state == LINK_STATE_UP &&
1878 ifp->if_link_state == LINK_STATE_UNKNOWN)
1879 {
1880 DOMAIN_FOREACH(dp) {
1881 if (dp->dom_if_link_state_change != NULL)
1882 dp->dom_if_link_state_change(ifp,
1883 LINK_STATE_DOWN);
1884 }
1885 }
1886
1887 ifp->if_link_state = link_state;
1888
1889 /* Notify that the link state has changed. */
1890 rt_ifmsg(ifp);
1891
1892 #if NCARP > 0
1893 if (ifp->if_carp)
1894 carp_carpdev_state(ifp);
1895 #endif
1896
1897 DOMAIN_FOREACH(dp) {
1898 if (dp->dom_if_link_state_change != NULL)
1899 dp->dom_if_link_state_change(ifp, link_state);
1900 }
1901 }
1902
1903 /*
1904 * Process the interface link state change queue.
1905 */
1906 static void
1907 if_link_state_change_si(void *arg)
1908 {
1909 struct ifnet *ifp = arg;
1910 int s;
1911 uint8_t state;
1912
1913 s = splnet();
1914
1915 /* Pop a link state change from the queue and process it. */
1916 LQ_POP(ifp->if_link_queue, state);
1917 if_link_state_change0(ifp, state);
1918
1919 /* If there is a link state change to come, schedule it. */
1920 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
1921 softint_schedule(ifp->if_link_si);
1922
1923 splx(s);
1924 }
1925
1926 /*
1927 * Default action when installing a local route on a point-to-point
1928 * interface.
1929 */
1930 void
1931 p2p_rtrequest(int req, struct rtentry *rt,
1932 __unused const struct rt_addrinfo *info)
1933 {
1934 struct ifnet *ifp = rt->rt_ifp;
1935 struct ifaddr *ifa, *lo0ifa;
1936
1937 switch (req) {
1938 case RTM_ADD:
1939 if ((rt->rt_flags & RTF_LOCAL) == 0)
1940 break;
1941
1942 IFADDR_FOREACH(ifa, ifp) {
1943 if (equal(rt_getkey(rt), ifa->ifa_addr))
1944 break;
1945 }
1946 if (ifa == NULL)
1947 break;
1948
1949 /*
1950 * Ensure lo0 has an address of the same family.
1951 */
1952 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1953 if (lo0ifa->ifa_addr->sa_family ==
1954 ifa->ifa_addr->sa_family)
1955 break;
1956 }
1957 if (lo0ifa == NULL)
1958 break;
1959
1960 rt->rt_ifp = lo0ifp;
1961
1962 /*
1963 * Make sure to set rt->rt_ifa to the interface
1964 * address we are using, otherwise we will have trouble
1965 * with source address selection.
1966 */
1967 if (ifa != rt->rt_ifa)
1968 rt_replace_ifa(rt, ifa);
1969 break;
1970 case RTM_DELETE:
1971 default:
1972 break;
1973 }
1974 }
1975
1976 /*
1977 * Mark an interface down and notify protocols of
1978 * the transition.
1979 * NOTE: must be called at splsoftnet or equivalent.
1980 */
1981 void
1982 if_down(struct ifnet *ifp)
1983 {
1984 struct ifaddr *ifa;
1985 struct domain *dp;
1986
1987 ifp->if_flags &= ~IFF_UP;
1988 nanotime(&ifp->if_lastchange);
1989 IFADDR_FOREACH(ifa, ifp)
1990 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1991 IFQ_PURGE(&ifp->if_snd);
1992 #if NCARP > 0
1993 if (ifp->if_carp)
1994 carp_carpdev_state(ifp);
1995 #endif
1996 rt_ifmsg(ifp);
1997 DOMAIN_FOREACH(dp) {
1998 if (dp->dom_if_down)
1999 dp->dom_if_down(ifp);
2000 }
2001 }
2002
2003 /*
2004 * Mark an interface up and notify protocols of
2005 * the transition.
2006 * NOTE: must be called at splsoftnet or equivalent.
2007 */
2008 void
2009 if_up(struct ifnet *ifp)
2010 {
2011 #ifdef notyet
2012 struct ifaddr *ifa;
2013 #endif
2014 struct domain *dp;
2015
2016 ifp->if_flags |= IFF_UP;
2017 nanotime(&ifp->if_lastchange);
2018 #ifdef notyet
2019 /* this has no effect on IP, and will kill all ISO connections XXX */
2020 IFADDR_FOREACH(ifa, ifp)
2021 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2022 #endif
2023 #if NCARP > 0
2024 if (ifp->if_carp)
2025 carp_carpdev_state(ifp);
2026 #endif
2027 rt_ifmsg(ifp);
2028 DOMAIN_FOREACH(dp) {
2029 if (dp->dom_if_up)
2030 dp->dom_if_up(ifp);
2031 }
2032 }
2033
2034 /*
2035 * Handle interface slowtimo timer routine. Called
2036 * from softclock, we decrement timer (if set) and
2037 * call the appropriate interface routine on expiration.
2038 */
2039 static void
2040 if_slowtimo(void *arg)
2041 {
2042 void (*slowtimo)(struct ifnet *);
2043 struct ifnet *ifp = arg;
2044 int s;
2045
2046 slowtimo = ifp->if_slowtimo;
2047 if (__predict_false(slowtimo == NULL))
2048 return;
2049
2050 s = splnet();
2051 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2052 (*slowtimo)(ifp);
2053
2054 splx(s);
2055
2056 if (__predict_true(ifp->if_slowtimo != NULL))
2057 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2058 }
2059
2060 /*
2061 * Set/clear promiscuous mode on interface ifp based on the truth value
2062 * of pswitch. The calls are reference counted so that only the first
2063 * "on" request actually has an effect, as does the final "off" request.
2064 * Results are undefined if the "off" and "on" requests are not matched.
2065 */
2066 int
2067 ifpromisc(struct ifnet *ifp, int pswitch)
2068 {
2069 int pcount, ret;
2070 short nflags;
2071
2072 pcount = ifp->if_pcount;
2073 if (pswitch) {
2074 /*
2075 * Allow the device to be "placed" into promiscuous
2076 * mode even if it is not configured up. It will
2077 * consult IFF_PROMISC when it is brought up.
2078 */
2079 if (ifp->if_pcount++ != 0)
2080 return 0;
2081 nflags = ifp->if_flags | IFF_PROMISC;
2082 } else {
2083 if (--ifp->if_pcount > 0)
2084 return 0;
2085 nflags = ifp->if_flags & ~IFF_PROMISC;
2086 }
2087 ret = if_flags_set(ifp, nflags);
2088 /* Restore interface state if not successful. */
2089 if (ret != 0) {
2090 ifp->if_pcount = pcount;
2091 }
2092 return ret;
2093 }
2094
2095 /*
2096 * Map interface name to
2097 * interface structure pointer.
2098 */
2099 struct ifnet *
2100 ifunit(const char *name)
2101 {
2102 struct ifnet *ifp;
2103 const char *cp = name;
2104 u_int unit = 0;
2105 u_int i;
2106 int s;
2107
2108 /*
2109 * If the entire name is a number, treat it as an ifindex.
2110 */
2111 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2112 unit = unit * 10 + (*cp - '0');
2113 }
2114
2115 /*
2116 * If the number took all of the name, then it's a valid ifindex.
2117 */
2118 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2119 if (unit >= if_indexlim)
2120 return NULL;
2121 ifp = ifindex2ifnet[unit];
2122 if (ifp == NULL || ifp->if_output == if_nulloutput)
2123 return NULL;
2124 return ifp;
2125 }
2126
2127 ifp = NULL;
2128 s = pserialize_read_enter();
2129 IFNET_READER_FOREACH(ifp) {
2130 if (ifp->if_output == if_nulloutput)
2131 continue;
2132 if (strcmp(ifp->if_xname, name) == 0)
2133 goto out;
2134 }
2135 out:
2136 pserialize_read_exit(s);
2137 return ifp;
2138 }
2139
2140 /*
2141 * Get a reference of an ifnet object by an interface name.
2142 * The returned reference is protected by psref(9). The caller
2143 * must release a returned reference by if_put after use.
2144 */
2145 struct ifnet *
2146 if_get(const char *name, struct psref *psref)
2147 {
2148 struct ifnet *ifp;
2149 const char *cp = name;
2150 u_int unit = 0;
2151 u_int i;
2152 int s;
2153
2154 /*
2155 * If the entire name is a number, treat it as an ifindex.
2156 */
2157 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2158 unit = unit * 10 + (*cp - '0');
2159 }
2160
2161 /*
2162 * If the number took all of the name, then it's a valid ifindex.
2163 */
2164 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2165 if (unit >= if_indexlim)
2166 return NULL;
2167 ifp = ifindex2ifnet[unit];
2168 if (ifp == NULL || ifp->if_output == if_nulloutput)
2169 return NULL;
2170 return ifp;
2171 }
2172
2173 ifp = NULL;
2174 s = pserialize_read_enter();
2175 IFNET_READER_FOREACH(ifp) {
2176 if (ifp->if_output == if_nulloutput)
2177 continue;
2178 if (strcmp(ifp->if_xname, name) == 0) {
2179 psref_acquire(psref, &ifp->if_psref,
2180 ifnet_psref_class);
2181 goto out;
2182 }
2183 }
2184 out:
2185 pserialize_read_exit(s);
2186 return ifp;
2187 }
2188
2189 /*
2190 * Release a reference of an ifnet object given by if_get or
2191 * if_get_byindex.
2192 */
2193 void
2194 if_put(const struct ifnet *ifp, struct psref *psref)
2195 {
2196
2197 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2198 }
2199
2200 ifnet_t *
2201 if_byindex(u_int idx)
2202 {
2203 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2204 }
2205
2206 /*
2207 * Get a reference of an ifnet object by an interface index.
2208 * The returned reference is protected by psref(9). The caller
2209 * must release a returned reference by if_put after use.
2210 */
2211 ifnet_t *
2212 if_get_byindex(u_int idx, struct psref *psref)
2213 {
2214 ifnet_t *ifp;
2215 int s;
2216
2217 s = pserialize_read_enter();
2218 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2219 if (ifp != NULL)
2220 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2221 pserialize_read_exit(s);
2222
2223 return ifp;
2224 }
2225
2226 /* common */
2227 int
2228 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2229 {
2230 int s;
2231 struct ifreq *ifr;
2232 struct ifcapreq *ifcr;
2233 struct ifdatareq *ifdr;
2234
2235 switch (cmd) {
2236 case SIOCSIFCAP:
2237 ifcr = data;
2238 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2239 return EINVAL;
2240
2241 if (ifcr->ifcr_capenable == ifp->if_capenable)
2242 return 0;
2243
2244 ifp->if_capenable = ifcr->ifcr_capenable;
2245
2246 /* Pre-compute the checksum flags mask. */
2247 ifp->if_csum_flags_tx = 0;
2248 ifp->if_csum_flags_rx = 0;
2249 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2250 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2251 }
2252 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2253 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2254 }
2255
2256 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2257 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2258 }
2259 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2260 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2261 }
2262
2263 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2264 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2265 }
2266 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2267 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2268 }
2269
2270 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2271 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2272 }
2273 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2274 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2275 }
2276
2277 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2278 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2279 }
2280 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2281 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2282 }
2283 if (ifp->if_flags & IFF_UP)
2284 return ENETRESET;
2285 return 0;
2286 case SIOCSIFFLAGS:
2287 ifr = data;
2288 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2289 s = splnet();
2290 if_down(ifp);
2291 splx(s);
2292 }
2293 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2294 s = splnet();
2295 if_up(ifp);
2296 splx(s);
2297 }
2298 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2299 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2300 break;
2301 case SIOCGIFFLAGS:
2302 ifr = data;
2303 ifr->ifr_flags = ifp->if_flags;
2304 break;
2305
2306 case SIOCGIFMETRIC:
2307 ifr = data;
2308 ifr->ifr_metric = ifp->if_metric;
2309 break;
2310
2311 case SIOCGIFMTU:
2312 ifr = data;
2313 ifr->ifr_mtu = ifp->if_mtu;
2314 break;
2315
2316 case SIOCGIFDLT:
2317 ifr = data;
2318 ifr->ifr_dlt = ifp->if_dlt;
2319 break;
2320
2321 case SIOCGIFCAP:
2322 ifcr = data;
2323 ifcr->ifcr_capabilities = ifp->if_capabilities;
2324 ifcr->ifcr_capenable = ifp->if_capenable;
2325 break;
2326
2327 case SIOCSIFMETRIC:
2328 ifr = data;
2329 ifp->if_metric = ifr->ifr_metric;
2330 break;
2331
2332 case SIOCGIFDATA:
2333 ifdr = data;
2334 ifdr->ifdr_data = ifp->if_data;
2335 break;
2336
2337 case SIOCGIFINDEX:
2338 ifr = data;
2339 ifr->ifr_index = ifp->if_index;
2340 break;
2341
2342 case SIOCZIFDATA:
2343 ifdr = data;
2344 ifdr->ifdr_data = ifp->if_data;
2345 /*
2346 * Assumes that the volatile counters that can be
2347 * zero'ed are at the end of if_data.
2348 */
2349 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2350 offsetof(struct if_data, ifi_ipackets));
2351 /*
2352 * The memset() clears to the bottm of if_data. In the area,
2353 * if_lastchange is included. Please be careful if new entry
2354 * will be added into if_data or rewite this.
2355 *
2356 * And also, update if_lastchnage.
2357 */
2358 getnanotime(&ifp->if_lastchange);
2359 break;
2360 case SIOCSIFMTU:
2361 ifr = data;
2362 if (ifp->if_mtu == ifr->ifr_mtu)
2363 break;
2364 ifp->if_mtu = ifr->ifr_mtu;
2365 /*
2366 * If the link MTU changed, do network layer specific procedure.
2367 */
2368 #ifdef INET6
2369 if (in6_present)
2370 nd6_setmtu(ifp);
2371 #endif
2372 return ENETRESET;
2373 default:
2374 return ENOTTY;
2375 }
2376 return 0;
2377 }
2378
2379 int
2380 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2381 {
2382 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2383 struct ifaddr *ifa;
2384 const struct sockaddr *any, *sa;
2385 union {
2386 struct sockaddr sa;
2387 struct sockaddr_storage ss;
2388 } u, v;
2389
2390 switch (cmd) {
2391 case SIOCSIFADDRPREF:
2392 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2393 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2394 NULL) != 0)
2395 return EPERM;
2396 case SIOCGIFADDRPREF:
2397 break;
2398 default:
2399 return EOPNOTSUPP;
2400 }
2401
2402 /* sanity checks */
2403 if (data == NULL || ifp == NULL) {
2404 panic("invalid argument to %s", __func__);
2405 /*NOTREACHED*/
2406 }
2407
2408 /* address must be specified on ADD and DELETE */
2409 sa = sstocsa(&ifap->ifap_addr);
2410 if (sa->sa_family != sofamily(so))
2411 return EINVAL;
2412 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2413 return EINVAL;
2414
2415 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2416
2417 IFADDR_FOREACH(ifa, ifp) {
2418 if (ifa->ifa_addr->sa_family != sa->sa_family)
2419 continue;
2420 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2421 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2422 break;
2423 }
2424 if (ifa == NULL)
2425 return EADDRNOTAVAIL;
2426
2427 switch (cmd) {
2428 case SIOCSIFADDRPREF:
2429 ifa->ifa_preference = ifap->ifap_preference;
2430 return 0;
2431 case SIOCGIFADDRPREF:
2432 /* fill in the if_laddrreq structure */
2433 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2434 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2435 ifap->ifap_preference = ifa->ifa_preference;
2436 return 0;
2437 default:
2438 return EOPNOTSUPP;
2439 }
2440 }
2441
2442 /*
2443 * Interface ioctls.
2444 */
2445 static int
2446 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2447 {
2448 struct ifnet *ifp;
2449 struct ifreq *ifr;
2450 int error = 0;
2451 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2452 u_long ocmd = cmd;
2453 #endif
2454 short oif_flags;
2455 #ifdef COMPAT_OIFREQ
2456 struct ifreq ifrb;
2457 struct oifreq *oifr = NULL;
2458 #endif
2459 int r;
2460 struct psref psref;
2461 int bound = curlwp->l_pflag & LP_BOUND;
2462
2463 switch (cmd) {
2464 #ifdef COMPAT_OIFREQ
2465 case OSIOCGIFCONF:
2466 case OOSIOCGIFCONF:
2467 return compat_ifconf(cmd, data);
2468 #endif
2469 #ifdef COMPAT_OIFDATA
2470 case OSIOCGIFDATA:
2471 case OSIOCZIFDATA:
2472 return compat_ifdatareq(l, cmd, data);
2473 #endif
2474 case SIOCGIFCONF:
2475 return ifconf(cmd, data);
2476 case SIOCINITIFADDR:
2477 return EPERM;
2478 }
2479
2480 #ifdef COMPAT_OIFREQ
2481 cmd = compat_cvtcmd(cmd);
2482 if (cmd != ocmd) {
2483 oifr = data;
2484 data = ifr = &ifrb;
2485 ifreqo2n(oifr, ifr);
2486 } else
2487 #endif
2488 ifr = data;
2489
2490 switch (cmd) {
2491 case SIOCIFCREATE:
2492 case SIOCIFDESTROY:
2493 curlwp->l_pflag |= LP_BOUND;
2494 if (l != NULL) {
2495 ifp = if_get(ifr->ifr_name, &psref);
2496 error = kauth_authorize_network(l->l_cred,
2497 KAUTH_NETWORK_INTERFACE,
2498 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2499 (void *)cmd, NULL);
2500 if (ifp != NULL)
2501 if_put(ifp, &psref);
2502 if (error != 0) {
2503 curlwp->l_pflag ^= bound ^ LP_BOUND;
2504 return error;
2505 }
2506 }
2507 mutex_enter(&if_clone_mtx);
2508 r = (cmd == SIOCIFCREATE) ?
2509 if_clone_create(ifr->ifr_name) :
2510 if_clone_destroy(ifr->ifr_name);
2511 mutex_exit(&if_clone_mtx);
2512 curlwp->l_pflag ^= bound ^ LP_BOUND;
2513 return r;
2514
2515 case SIOCIFGCLONERS:
2516 {
2517 struct if_clonereq *req = (struct if_clonereq *)data;
2518 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2519 &req->ifcr_total);
2520 }
2521 }
2522
2523 curlwp->l_pflag |= LP_BOUND;
2524 ifp = if_get(ifr->ifr_name, &psref);
2525 if (ifp == NULL) {
2526 curlwp->l_pflag ^= bound ^ LP_BOUND;
2527 return ENXIO;
2528 }
2529
2530 switch (cmd) {
2531 case SIOCALIFADDR:
2532 case SIOCDLIFADDR:
2533 case SIOCSIFADDRPREF:
2534 case SIOCSIFFLAGS:
2535 case SIOCSIFCAP:
2536 case SIOCSIFMETRIC:
2537 case SIOCZIFDATA:
2538 case SIOCSIFMTU:
2539 case SIOCSIFPHYADDR:
2540 case SIOCDIFPHYADDR:
2541 #ifdef INET6
2542 case SIOCSIFPHYADDR_IN6:
2543 #endif
2544 case SIOCSLIFPHYADDR:
2545 case SIOCADDMULTI:
2546 case SIOCDELMULTI:
2547 case SIOCSIFMEDIA:
2548 case SIOCSDRVSPEC:
2549 case SIOCG80211:
2550 case SIOCS80211:
2551 case SIOCS80211NWID:
2552 case SIOCS80211NWKEY:
2553 case SIOCS80211POWER:
2554 case SIOCS80211BSSID:
2555 case SIOCS80211CHANNEL:
2556 case SIOCSLINKSTR:
2557 if (l != NULL) {
2558 error = kauth_authorize_network(l->l_cred,
2559 KAUTH_NETWORK_INTERFACE,
2560 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2561 (void *)cmd, NULL);
2562 if (error != 0)
2563 goto out;
2564 }
2565 }
2566
2567 oif_flags = ifp->if_flags;
2568
2569 mutex_enter(ifp->if_ioctl_lock);
2570
2571 error = (*ifp->if_ioctl)(ifp, cmd, data);
2572 if (error != ENOTTY)
2573 ;
2574 else if (so->so_proto == NULL)
2575 error = EOPNOTSUPP;
2576 else {
2577 #ifdef COMPAT_OSOCK
2578 error = compat_ifioctl(so, ocmd, cmd, data, l);
2579 #else
2580 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2581 cmd, data, ifp);
2582 #endif
2583 }
2584
2585 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2586 if ((ifp->if_flags & IFF_UP) != 0) {
2587 int s = splnet();
2588 if_up(ifp);
2589 splx(s);
2590 }
2591 }
2592 #ifdef COMPAT_OIFREQ
2593 if (cmd != ocmd)
2594 ifreqn2o(oifr, ifr);
2595 #endif
2596
2597 mutex_exit(ifp->if_ioctl_lock);
2598 out:
2599 if_put(ifp, &psref);
2600 curlwp->l_pflag ^= bound ^ LP_BOUND;
2601 return error;
2602 }
2603
2604 /*
2605 * Return interface configuration
2606 * of system. List may be used
2607 * in later ioctl's (above) to get
2608 * other information.
2609 *
2610 * Each record is a struct ifreq. Before the addition of
2611 * sockaddr_storage, the API rule was that sockaddr flavors that did
2612 * not fit would extend beyond the struct ifreq, with the next struct
2613 * ifreq starting sa_len beyond the struct sockaddr. Because the
2614 * union in struct ifreq includes struct sockaddr_storage, every kind
2615 * of sockaddr must fit. Thus, there are no longer any overlength
2616 * records.
2617 *
2618 * Records are added to the user buffer if they fit, and ifc_len is
2619 * adjusted to the length that was written. Thus, the user is only
2620 * assured of getting the complete list if ifc_len on return is at
2621 * least sizeof(struct ifreq) less than it was on entry.
2622 *
2623 * If the user buffer pointer is NULL, this routine copies no data and
2624 * returns the amount of space that would be needed.
2625 *
2626 * Invariants:
2627 * ifrp points to the next part of the user's buffer to be used. If
2628 * ifrp != NULL, space holds the number of bytes remaining that we may
2629 * write at ifrp. Otherwise, space holds the number of bytes that
2630 * would have been written had there been adequate space.
2631 */
2632 /*ARGSUSED*/
2633 static int
2634 ifconf(u_long cmd, void *data)
2635 {
2636 struct ifconf *ifc = (struct ifconf *)data;
2637 struct ifnet *ifp;
2638 struct ifaddr *ifa;
2639 struct ifreq ifr, *ifrp = NULL;
2640 int space = 0, error = 0;
2641 const int sz = (int)sizeof(struct ifreq);
2642 const bool docopy = ifc->ifc_req != NULL;
2643 int s;
2644 int bound = curlwp->l_pflag & LP_BOUND;
2645 struct psref psref;
2646
2647 if (docopy) {
2648 space = ifc->ifc_len;
2649 ifrp = ifc->ifc_req;
2650 }
2651
2652 curlwp->l_pflag |= LP_BOUND;
2653 s = pserialize_read_enter();
2654 IFNET_READER_FOREACH(ifp) {
2655 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2656 pserialize_read_exit(s);
2657
2658 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2659 sizeof(ifr.ifr_name));
2660 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2661 error = ENAMETOOLONG;
2662 goto release_exit;
2663 }
2664 if (IFADDR_EMPTY(ifp)) {
2665 /* Interface with no addresses - send zero sockaddr. */
2666 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2667 if (!docopy) {
2668 space += sz;
2669 continue;
2670 }
2671 if (space >= sz) {
2672 error = copyout(&ifr, ifrp, sz);
2673 if (error != 0)
2674 goto release_exit;
2675 ifrp++;
2676 space -= sz;
2677 }
2678 }
2679
2680 IFADDR_FOREACH(ifa, ifp) {
2681 struct sockaddr *sa = ifa->ifa_addr;
2682 /* all sockaddrs must fit in sockaddr_storage */
2683 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2684
2685 if (!docopy) {
2686 space += sz;
2687 continue;
2688 }
2689 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2690 if (space >= sz) {
2691 error = copyout(&ifr, ifrp, sz);
2692 if (error != 0)
2693 goto release_exit;
2694 ifrp++; space -= sz;
2695 }
2696 }
2697
2698 s = pserialize_read_enter();
2699 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2700 }
2701 pserialize_read_exit(s);
2702 curlwp->l_pflag ^= bound ^ LP_BOUND;
2703
2704 if (docopy) {
2705 KASSERT(0 <= space && space <= ifc->ifc_len);
2706 ifc->ifc_len -= space;
2707 } else {
2708 KASSERT(space >= 0);
2709 ifc->ifc_len = space;
2710 }
2711 return (0);
2712
2713 release_exit:
2714 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2715 curlwp->l_pflag ^= bound ^ LP_BOUND;
2716 return error;
2717 }
2718
2719 int
2720 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2721 {
2722 uint8_t len;
2723 #ifdef COMPAT_OIFREQ
2724 struct ifreq ifrb;
2725 struct oifreq *oifr = NULL;
2726 u_long ocmd = cmd;
2727 cmd = compat_cvtcmd(cmd);
2728 if (cmd != ocmd) {
2729 oifr = (struct oifreq *)(void *)ifr;
2730 ifr = &ifrb;
2731 ifreqo2n(oifr, ifr);
2732 len = sizeof(oifr->ifr_addr);
2733 } else
2734 #endif
2735 len = sizeof(ifr->ifr_ifru.ifru_space);
2736
2737 if (len < sa->sa_len)
2738 return EFBIG;
2739
2740 memset(&ifr->ifr_addr, 0, len);
2741 sockaddr_copy(&ifr->ifr_addr, len, sa);
2742
2743 #ifdef COMPAT_OIFREQ
2744 if (cmd != ocmd)
2745 ifreqn2o(oifr, ifr);
2746 #endif
2747 return 0;
2748 }
2749
2750 /*
2751 * wrapper function for the drivers which doesn't have if_transmit().
2752 */
2753 int
2754 if_transmit(struct ifnet *ifp, struct mbuf *m)
2755 {
2756 int s, error;
2757
2758 s = splnet();
2759
2760 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2761 if (error != 0) {
2762 /* mbuf is already freed */
2763 goto out;
2764 }
2765
2766 ifp->if_obytes += m->m_pkthdr.len;;
2767 if (m->m_flags & M_MCAST)
2768 ifp->if_omcasts++;
2769
2770 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2771 (*ifp->if_start)(ifp);
2772 out:
2773 splx(s);
2774
2775 return error;
2776 }
2777
2778 /*
2779 * Queue message on interface, and start output if interface
2780 * not yet active.
2781 */
2782 int
2783 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2784 {
2785
2786 return (*ifp->if_transmit)(ifp, m);
2787 }
2788
2789 /*
2790 * Queue message on interface, possibly using a second fast queue
2791 */
2792 int
2793 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2794 {
2795 int error = 0;
2796
2797 if (ifq != NULL
2798 #ifdef ALTQ
2799 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2800 #endif
2801 ) {
2802 if (IF_QFULL(ifq)) {
2803 IF_DROP(&ifp->if_snd);
2804 m_freem(m);
2805 if (error == 0)
2806 error = ENOBUFS;
2807 } else
2808 IF_ENQUEUE(ifq, m);
2809 } else
2810 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2811 if (error != 0) {
2812 ++ifp->if_oerrors;
2813 return error;
2814 }
2815 return 0;
2816 }
2817
2818 int
2819 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2820 {
2821 int rc;
2822
2823 if (ifp->if_initaddr != NULL)
2824 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2825 else if (src ||
2826 /* FIXME: may not hold if_ioctl_lock */
2827 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2828 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2829
2830 return rc;
2831 }
2832
2833 int
2834 if_do_dad(struct ifnet *ifp)
2835 {
2836 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2837 return 0;
2838
2839 switch (ifp->if_type) {
2840 case IFT_FAITH:
2841 /*
2842 * These interfaces do not have the IFF_LOOPBACK flag,
2843 * but loop packets back. We do not have to do DAD on such
2844 * interfaces. We should even omit it, because loop-backed
2845 * responses would confuse the DAD procedure.
2846 */
2847 return 0;
2848 default:
2849 /*
2850 * Our DAD routine requires the interface up and running.
2851 * However, some interfaces can be up before the RUNNING
2852 * status. Additionaly, users may try to assign addresses
2853 * before the interface becomes up (or running).
2854 * We simply skip DAD in such a case as a work around.
2855 * XXX: we should rather mark "tentative" on such addresses,
2856 * and do DAD after the interface becomes ready.
2857 */
2858 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2859 (IFF_UP|IFF_RUNNING))
2860 return 0;
2861
2862 return 1;
2863 }
2864 }
2865
2866 int
2867 if_flags_set(ifnet_t *ifp, const short flags)
2868 {
2869 int rc;
2870
2871 if (ifp->if_setflags != NULL)
2872 rc = (*ifp->if_setflags)(ifp, flags);
2873 else {
2874 short cantflags, chgdflags;
2875 struct ifreq ifr;
2876
2877 chgdflags = ifp->if_flags ^ flags;
2878 cantflags = chgdflags & IFF_CANTCHANGE;
2879
2880 if (cantflags != 0)
2881 ifp->if_flags ^= cantflags;
2882
2883 /* Traditionally, we do not call if_ioctl after
2884 * setting/clearing only IFF_PROMISC if the interface
2885 * isn't IFF_UP. Uphold that tradition.
2886 */
2887 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2888 return 0;
2889
2890 memset(&ifr, 0, sizeof(ifr));
2891
2892 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2893 /* FIXME: may not hold if_ioctl_lock */
2894 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2895
2896 if (rc != 0 && cantflags != 0)
2897 ifp->if_flags ^= cantflags;
2898 }
2899
2900 return rc;
2901 }
2902
2903 int
2904 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2905 {
2906 int rc;
2907 struct ifreq ifr;
2908
2909 if (ifp->if_mcastop != NULL)
2910 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2911 else {
2912 ifreq_setaddr(cmd, &ifr, sa);
2913 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2914 }
2915
2916 return rc;
2917 }
2918
2919 static void
2920 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2921 struct ifaltq *ifq)
2922 {
2923 const struct sysctlnode *cnode, *rnode;
2924
2925 if (sysctl_createv(clog, 0, NULL, &rnode,
2926 CTLFLAG_PERMANENT,
2927 CTLTYPE_NODE, "interfaces",
2928 SYSCTL_DESCR("Per-interface controls"),
2929 NULL, 0, NULL, 0,
2930 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2931 goto bad;
2932
2933 if (sysctl_createv(clog, 0, &rnode, &rnode,
2934 CTLFLAG_PERMANENT,
2935 CTLTYPE_NODE, ifname,
2936 SYSCTL_DESCR("Interface controls"),
2937 NULL, 0, NULL, 0,
2938 CTL_CREATE, CTL_EOL) != 0)
2939 goto bad;
2940
2941 if (sysctl_createv(clog, 0, &rnode, &rnode,
2942 CTLFLAG_PERMANENT,
2943 CTLTYPE_NODE, "sndq",
2944 SYSCTL_DESCR("Interface output queue controls"),
2945 NULL, 0, NULL, 0,
2946 CTL_CREATE, CTL_EOL) != 0)
2947 goto bad;
2948
2949 if (sysctl_createv(clog, 0, &rnode, &cnode,
2950 CTLFLAG_PERMANENT,
2951 CTLTYPE_INT, "len",
2952 SYSCTL_DESCR("Current output queue length"),
2953 NULL, 0, &ifq->ifq_len, 0,
2954 CTL_CREATE, CTL_EOL) != 0)
2955 goto bad;
2956
2957 if (sysctl_createv(clog, 0, &rnode, &cnode,
2958 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2959 CTLTYPE_INT, "maxlen",
2960 SYSCTL_DESCR("Maximum allowed output queue length"),
2961 NULL, 0, &ifq->ifq_maxlen, 0,
2962 CTL_CREATE, CTL_EOL) != 0)
2963 goto bad;
2964
2965 if (sysctl_createv(clog, 0, &rnode, &cnode,
2966 CTLFLAG_PERMANENT,
2967 CTLTYPE_INT, "drops",
2968 SYSCTL_DESCR("Packets dropped due to full output queue"),
2969 NULL, 0, &ifq->ifq_drops, 0,
2970 CTL_CREATE, CTL_EOL) != 0)
2971 goto bad;
2972
2973 return;
2974 bad:
2975 printf("%s: could not attach sysctl nodes\n", ifname);
2976 return;
2977 }
2978
2979 #if defined(INET) || defined(INET6)
2980
2981 #define SYSCTL_NET_PKTQ(q, cn, c) \
2982 static int \
2983 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
2984 { \
2985 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
2986 }
2987
2988 #if defined(INET)
2989 static int
2990 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2991 {
2992 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2993 }
2994 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2995 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2996 #endif
2997
2998 #if defined(INET6)
2999 static int
3000 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3001 {
3002 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3003 }
3004 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3005 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3006 #endif
3007
3008 static void
3009 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3010 {
3011 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3012 const char *pfname = NULL, *ipname = NULL;
3013 int ipn = 0, qid = 0;
3014
3015 switch (pf) {
3016 #if defined(INET)
3017 case PF_INET:
3018 len_func = sysctl_net_ip_pktq_items;
3019 maxlen_func = sysctl_net_ip_pktq_maxlen;
3020 drops_func = sysctl_net_ip_pktq_drops;
3021 pfname = "inet", ipn = IPPROTO_IP;
3022 ipname = "ip", qid = IPCTL_IFQ;
3023 break;
3024 #endif
3025 #if defined(INET6)
3026 case PF_INET6:
3027 len_func = sysctl_net_ip6_pktq_items;
3028 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3029 drops_func = sysctl_net_ip6_pktq_drops;
3030 pfname = "inet6", ipn = IPPROTO_IPV6;
3031 ipname = "ip6", qid = IPV6CTL_IFQ;
3032 break;
3033 #endif
3034 default:
3035 KASSERT(false);
3036 }
3037
3038 sysctl_createv(clog, 0, NULL, NULL,
3039 CTLFLAG_PERMANENT,
3040 CTLTYPE_NODE, pfname, NULL,
3041 NULL, 0, NULL, 0,
3042 CTL_NET, pf, CTL_EOL);
3043 sysctl_createv(clog, 0, NULL, NULL,
3044 CTLFLAG_PERMANENT,
3045 CTLTYPE_NODE, ipname, NULL,
3046 NULL, 0, NULL, 0,
3047 CTL_NET, pf, ipn, CTL_EOL);
3048 sysctl_createv(clog, 0, NULL, NULL,
3049 CTLFLAG_PERMANENT,
3050 CTLTYPE_NODE, "ifq",
3051 SYSCTL_DESCR("Protocol input queue controls"),
3052 NULL, 0, NULL, 0,
3053 CTL_NET, pf, ipn, qid, CTL_EOL);
3054
3055 sysctl_createv(clog, 0, NULL, NULL,
3056 CTLFLAG_PERMANENT,
3057 CTLTYPE_INT, "len",
3058 SYSCTL_DESCR("Current input queue length"),
3059 len_func, 0, NULL, 0,
3060 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3061 sysctl_createv(clog, 0, NULL, NULL,
3062 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3063 CTLTYPE_INT, "maxlen",
3064 SYSCTL_DESCR("Maximum allowed input queue length"),
3065 maxlen_func, 0, NULL, 0,
3066 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3067 sysctl_createv(clog, 0, NULL, NULL,
3068 CTLFLAG_PERMANENT,
3069 CTLTYPE_INT, "drops",
3070 SYSCTL_DESCR("Packets dropped due to full input queue"),
3071 drops_func, 0, NULL, 0,
3072 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3073 }
3074 #endif /* INET || INET6 */
3075
3076 static int
3077 if_sdl_sysctl(SYSCTLFN_ARGS)
3078 {
3079 struct ifnet *ifp;
3080 const struct sockaddr_dl *sdl;
3081
3082 if (namelen != 1)
3083 return EINVAL;
3084
3085 ifp = if_byindex(name[0]);
3086 if (ifp == NULL)
3087 return ENODEV;
3088
3089 sdl = ifp->if_sadl;
3090 if (sdl == NULL) {
3091 *oldlenp = 0;
3092 return 0;
3093 }
3094
3095 if (oldp == NULL) {
3096 *oldlenp = sdl->sdl_alen;
3097 return 0;
3098 }
3099
3100 if (*oldlenp >= sdl->sdl_alen)
3101 *oldlenp = sdl->sdl_alen;
3102 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3103 }
3104
3105 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3106 {
3107 const struct sysctlnode *rnode = NULL;
3108
3109 sysctl_createv(clog, 0, NULL, &rnode,
3110 CTLFLAG_PERMANENT,
3111 CTLTYPE_NODE, "sdl",
3112 SYSCTL_DESCR("Get active link-layer address"),
3113 if_sdl_sysctl, 0, NULL, 0,
3114 CTL_NET, CTL_CREATE, CTL_EOL);
3115 }
3116