if.c revision 1.342 1 /* $NetBSD: if.c,v 1.342 2016/06/20 06:41:30 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.342 2016/06/20 06:41:30 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140
141 #ifdef INET6
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146 #include "ether.h"
147 #include "fddi.h"
148 #include "token.h"
149
150 #include "carp.h"
151 #if NCARP > 0
152 #include <netinet/ip_carp.h>
153 #endif
154
155 #include <compat/sys/sockio.h>
156 #include <compat/sys/socket.h>
157
158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
160
161 /*
162 * Global list of interfaces.
163 */
164 /* DEPRECATED. Remove it once kvm(3) users disappeared */
165 struct ifnet_head ifnet_list;
166
167 struct pslist_head ifnet_pslist;
168 static ifnet_t ** ifindex2ifnet = NULL;
169 static u_int if_index = 1;
170 static size_t if_indexlim = 0;
171 static uint64_t index_gen;
172 /* Mutex to protect the above objects. */
173 kmutex_t ifnet_mtx __cacheline_aligned;
174 struct psref_class *ifnet_psref_class __read_mostly;
175 static pserialize_t ifnet_psz;
176
177 static kmutex_t if_clone_mtx;
178
179 struct ifnet *lo0ifp;
180 int ifqmaxlen = IFQ_MAXLEN;
181
182 static int if_rt_walktree(struct rtentry *, void *);
183
184 static struct if_clone *if_clone_lookup(const char *, int *);
185
186 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
187 static int if_cloners_count;
188
189 /* Packet filtering hook for interfaces. */
190 pfil_head_t * if_pfil;
191
192 static kauth_listener_t if_listener;
193
194 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
197 struct ifaltq *);
198 static void if_slowtimo(void *);
199 static void if_free_sadl(struct ifnet *);
200 static void if_attachdomain1(struct ifnet *);
201 static int ifconf(u_long, void *);
202 static int if_clone_create(const char *);
203 static int if_clone_destroy(const char *);
204 static void if_link_state_change_si(void *);
205
206 struct if_percpuq {
207 struct ifnet *ipq_ifp;
208 void *ipq_si;
209 struct percpu *ipq_ifqs; /* struct ifqueue */
210 };
211
212 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
213
214 static void if_percpuq_drops(void *, void *, struct cpu_info *);
215 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
216 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
217 struct if_percpuq *);
218
219 #if defined(INET) || defined(INET6)
220 static void sysctl_net_pktq_setup(struct sysctllog **, int);
221 #endif
222
223 static int
224 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
225 void *arg0, void *arg1, void *arg2, void *arg3)
226 {
227 int result;
228 enum kauth_network_req req;
229
230 result = KAUTH_RESULT_DEFER;
231 req = (enum kauth_network_req)arg1;
232
233 if (action != KAUTH_NETWORK_INTERFACE)
234 return result;
235
236 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
237 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
238 result = KAUTH_RESULT_ALLOW;
239
240 return result;
241 }
242
243 /*
244 * Network interface utility routines.
245 *
246 * Routines with ifa_ifwith* names take sockaddr *'s as
247 * parameters.
248 */
249 void
250 ifinit(void)
251 {
252 #if defined(INET)
253 sysctl_net_pktq_setup(NULL, PF_INET);
254 #endif
255 #ifdef INET6
256 if (in6_present)
257 sysctl_net_pktq_setup(NULL, PF_INET6);
258 #endif
259
260 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
261 if_listener_cb, NULL);
262
263 /* interfaces are available, inform socket code */
264 ifioctl = doifioctl;
265 }
266
267 /*
268 * XXX Initialization before configure().
269 * XXX hack to get pfil_add_hook working in autoconf.
270 */
271 void
272 ifinit1(void)
273 {
274 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
275 TAILQ_INIT(&ifnet_list);
276 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
277 ifnet_psz = pserialize_create();
278 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
279 PSLIST_INIT(&ifnet_pslist);
280 if_indexlim = 8;
281
282 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
283 KASSERT(if_pfil != NULL);
284
285 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
286 etherinit();
287 #endif
288 }
289
290 ifnet_t *
291 if_alloc(u_char type)
292 {
293 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
294 }
295
296 void
297 if_free(ifnet_t *ifp)
298 {
299 kmem_free(ifp, sizeof(ifnet_t));
300 }
301
302 void
303 if_initname(struct ifnet *ifp, const char *name, int unit)
304 {
305 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
306 "%s%d", name, unit);
307 }
308
309 /*
310 * Null routines used while an interface is going away. These routines
311 * just return an error.
312 */
313
314 int
315 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
316 const struct sockaddr *so, const struct rtentry *rt)
317 {
318
319 return ENXIO;
320 }
321
322 void
323 if_nullinput(struct ifnet *ifp, struct mbuf *m)
324 {
325
326 /* Nothing. */
327 }
328
329 void
330 if_nullstart(struct ifnet *ifp)
331 {
332
333 /* Nothing. */
334 }
335
336 int
337 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
338 {
339
340 return ENXIO;
341 }
342
343 int
344 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
345 {
346
347 return ENXIO;
348 }
349
350 int
351 if_nullinit(struct ifnet *ifp)
352 {
353
354 return ENXIO;
355 }
356
357 void
358 if_nullstop(struct ifnet *ifp, int disable)
359 {
360
361 /* Nothing. */
362 }
363
364 void
365 if_nullslowtimo(struct ifnet *ifp)
366 {
367
368 /* Nothing. */
369 }
370
371 void
372 if_nulldrain(struct ifnet *ifp)
373 {
374
375 /* Nothing. */
376 }
377
378 void
379 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
380 {
381 struct ifaddr *ifa;
382 struct sockaddr_dl *sdl;
383
384 ifp->if_addrlen = addrlen;
385 if_alloc_sadl(ifp);
386 ifa = ifp->if_dl;
387 sdl = satosdl(ifa->ifa_addr);
388
389 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
390 if (factory) {
391 ifp->if_hwdl = ifp->if_dl;
392 ifaref(ifp->if_hwdl);
393 }
394 /* TBD routing socket */
395 }
396
397 struct ifaddr *
398 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
399 {
400 unsigned socksize, ifasize;
401 int addrlen, namelen;
402 struct sockaddr_dl *mask, *sdl;
403 struct ifaddr *ifa;
404
405 namelen = strlen(ifp->if_xname);
406 addrlen = ifp->if_addrlen;
407 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
408 ifasize = sizeof(*ifa) + 2 * socksize;
409 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
410
411 sdl = (struct sockaddr_dl *)(ifa + 1);
412 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
413
414 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
415 ifp->if_xname, namelen, NULL, addrlen);
416 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
417 memset(&mask->sdl_data[0], 0xff, namelen);
418 ifa->ifa_rtrequest = link_rtrequest;
419 ifa->ifa_addr = (struct sockaddr *)sdl;
420 ifa->ifa_netmask = (struct sockaddr *)mask;
421
422 *sdlp = sdl;
423
424 return ifa;
425 }
426
427 static void
428 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
429 {
430 const struct sockaddr_dl *sdl;
431
432 ifp->if_dl = ifa;
433 ifaref(ifa);
434 sdl = satosdl(ifa->ifa_addr);
435 ifp->if_sadl = sdl;
436 }
437
438 /*
439 * Allocate the link level name for the specified interface. This
440 * is an attachment helper. It must be called after ifp->if_addrlen
441 * is initialized, which may not be the case when if_attach() is
442 * called.
443 */
444 void
445 if_alloc_sadl(struct ifnet *ifp)
446 {
447 struct ifaddr *ifa;
448 const struct sockaddr_dl *sdl;
449
450 /*
451 * If the interface already has a link name, release it
452 * now. This is useful for interfaces that can change
453 * link types, and thus switch link names often.
454 */
455 if (ifp->if_sadl != NULL)
456 if_free_sadl(ifp);
457
458 ifa = if_dl_create(ifp, &sdl);
459
460 ifa_insert(ifp, ifa);
461 if_sadl_setrefs(ifp, ifa);
462 }
463
464 static void
465 if_deactivate_sadl(struct ifnet *ifp)
466 {
467 struct ifaddr *ifa;
468
469 KASSERT(ifp->if_dl != NULL);
470
471 ifa = ifp->if_dl;
472
473 ifp->if_sadl = NULL;
474
475 ifp->if_dl = NULL;
476 ifafree(ifa);
477 }
478
479 void
480 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
481 const struct sockaddr_dl *sdl)
482 {
483 int s;
484
485 s = splnet();
486
487 if_deactivate_sadl(ifp);
488
489 if_sadl_setrefs(ifp, ifa);
490 IFADDR_FOREACH(ifa, ifp)
491 rtinit(ifa, RTM_LLINFO_UPD, 0);
492 splx(s);
493 }
494
495 /*
496 * Free the link level name for the specified interface. This is
497 * a detach helper. This is called from if_detach().
498 */
499 static void
500 if_free_sadl(struct ifnet *ifp)
501 {
502 struct ifaddr *ifa;
503 int s;
504
505 ifa = ifp->if_dl;
506 if (ifa == NULL) {
507 KASSERT(ifp->if_sadl == NULL);
508 return;
509 }
510
511 KASSERT(ifp->if_sadl != NULL);
512
513 s = splnet();
514 rtinit(ifa, RTM_DELETE, 0);
515 ifa_remove(ifp, ifa);
516 if_deactivate_sadl(ifp);
517 if (ifp->if_hwdl == ifa) {
518 ifafree(ifa);
519 ifp->if_hwdl = NULL;
520 }
521 splx(s);
522 }
523
524 static void
525 if_getindex(ifnet_t *ifp)
526 {
527 bool hitlimit = false;
528
529 ifp->if_index_gen = index_gen++;
530
531 ifp->if_index = if_index;
532 if (ifindex2ifnet == NULL) {
533 if_index++;
534 goto skip;
535 }
536 while (if_byindex(ifp->if_index)) {
537 /*
538 * If we hit USHRT_MAX, we skip back to 0 since
539 * there are a number of places where the value
540 * of if_index or if_index itself is compared
541 * to or stored in an unsigned short. By
542 * jumping back, we won't botch those assignments
543 * or comparisons.
544 */
545 if (++if_index == 0) {
546 if_index = 1;
547 } else if (if_index == USHRT_MAX) {
548 /*
549 * However, if we have to jump back to
550 * zero *twice* without finding an empty
551 * slot in ifindex2ifnet[], then there
552 * there are too many (>65535) interfaces.
553 */
554 if (hitlimit) {
555 panic("too many interfaces");
556 }
557 hitlimit = true;
558 if_index = 1;
559 }
560 ifp->if_index = if_index;
561 }
562 skip:
563 /*
564 * ifindex2ifnet is indexed by if_index. Since if_index will
565 * grow dynamically, it should grow too.
566 */
567 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
568 size_t m, n, oldlim;
569 void *q;
570
571 oldlim = if_indexlim;
572 while (ifp->if_index >= if_indexlim)
573 if_indexlim <<= 1;
574
575 /* grow ifindex2ifnet */
576 m = oldlim * sizeof(struct ifnet *);
577 n = if_indexlim * sizeof(struct ifnet *);
578 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
579 if (ifindex2ifnet != NULL) {
580 memcpy(q, ifindex2ifnet, m);
581 free(ifindex2ifnet, M_IFADDR);
582 }
583 ifindex2ifnet = (struct ifnet **)q;
584 }
585 ifindex2ifnet[ifp->if_index] = ifp;
586 }
587
588 /*
589 * Initialize an interface and assign an index for it.
590 *
591 * It must be called prior to a device specific attach routine
592 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
593 * and be followed by if_register:
594 *
595 * if_initialize(ifp);
596 * ether_ifattach(ifp, enaddr);
597 * if_register(ifp);
598 */
599 void
600 if_initialize(ifnet_t *ifp)
601 {
602 KASSERT(if_indexlim > 0);
603 TAILQ_INIT(&ifp->if_addrlist);
604
605 /*
606 * Link level name is allocated later by a separate call to
607 * if_alloc_sadl().
608 */
609
610 if (ifp->if_snd.ifq_maxlen == 0)
611 ifp->if_snd.ifq_maxlen = ifqmaxlen;
612
613 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
614
615 ifp->if_link_state = LINK_STATE_UNKNOWN;
616 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
617
618 ifp->if_capenable = 0;
619 ifp->if_csum_flags_tx = 0;
620 ifp->if_csum_flags_rx = 0;
621
622 #ifdef ALTQ
623 ifp->if_snd.altq_type = 0;
624 ifp->if_snd.altq_disc = NULL;
625 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
626 ifp->if_snd.altq_tbr = NULL;
627 ifp->if_snd.altq_ifp = ifp;
628 #endif
629
630 #ifdef NET_MPSAFE
631 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
632 #else
633 ifp->if_snd.ifq_lock = NULL;
634 #endif
635
636 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
637 (void)pfil_run_hooks(if_pfil,
638 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
639
640 IF_AFDATA_LOCK_INIT(ifp);
641
642 ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
643 if (ifp->if_link_si == NULL)
644 panic("%s: softint_establish() failed", __func__);
645
646 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
647 psref_target_init(&ifp->if_psref, ifnet_psref_class);
648 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
649
650 IFNET_LOCK();
651 if_getindex(ifp);
652 IFNET_UNLOCK();
653 }
654
655 /*
656 * Register an interface to the list of "active" interfaces.
657 */
658 void
659 if_register(ifnet_t *ifp)
660 {
661 /*
662 * If the driver has not supplied its own if_ioctl, then
663 * supply the default.
664 */
665 if (ifp->if_ioctl == NULL)
666 ifp->if_ioctl = ifioctl_common;
667
668 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
669
670 if (!STAILQ_EMPTY(&domains))
671 if_attachdomain1(ifp);
672
673 /* Announce the interface. */
674 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
675
676 if (ifp->if_slowtimo != NULL) {
677 ifp->if_slowtimo_ch =
678 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
679 callout_init(ifp->if_slowtimo_ch, 0);
680 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
681 if_slowtimo(ifp);
682 }
683
684 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
685 ifp->if_transmit = if_transmit;
686
687 IFNET_LOCK();
688 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
689 IFNET_WRITER_INSERT_TAIL(ifp);
690 IFNET_UNLOCK();
691 }
692
693 /*
694 * The if_percpuq framework
695 *
696 * It allows network device drivers to execute the network stack
697 * in softint (so called softint-based if_input). It utilizes
698 * softint and percpu ifqueue. It doesn't distribute any packets
699 * between CPUs, unlike pktqueue(9).
700 *
701 * Currently we support two options for device drivers to apply the framework:
702 * - Use it implicitly with less changes
703 * - If you use if_attach in driver's _attach function and if_input in
704 * driver's Rx interrupt handler, a packet is queued and a softint handles
705 * the packet implicitly
706 * - Use it explicitly in each driver (recommended)
707 * - You can use if_percpuq_* directly in your driver
708 * - In this case, you need to allocate struct if_percpuq in driver's softc
709 * - See wm(4) as a reference implementation
710 */
711
712 static void
713 if_percpuq_softint(void *arg)
714 {
715 struct if_percpuq *ipq = arg;
716 struct ifnet *ifp = ipq->ipq_ifp;
717 struct mbuf *m;
718
719 while ((m = if_percpuq_dequeue(ipq)) != NULL)
720 ifp->_if_input(ifp, m);
721 }
722
723 static void
724 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
725 {
726 struct ifqueue *const ifq = p;
727
728 memset(ifq, 0, sizeof(*ifq));
729 ifq->ifq_maxlen = IFQ_MAXLEN;
730 }
731
732 struct if_percpuq *
733 if_percpuq_create(struct ifnet *ifp)
734 {
735 struct if_percpuq *ipq;
736
737 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
738 if (ipq == NULL)
739 panic("kmem_zalloc failed");
740
741 ipq->ipq_ifp = ifp;
742 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
743 if_percpuq_softint, ipq);
744 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
745 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
746
747 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
748
749 return ipq;
750 }
751
752 static struct mbuf *
753 if_percpuq_dequeue(struct if_percpuq *ipq)
754 {
755 struct mbuf *m;
756 struct ifqueue *ifq;
757 int s;
758
759 s = splnet();
760 ifq = percpu_getref(ipq->ipq_ifqs);
761 IF_DEQUEUE(ifq, m);
762 percpu_putref(ipq->ipq_ifqs);
763 splx(s);
764
765 return m;
766 }
767
768 static void
769 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
770 {
771 struct ifqueue *const ifq = p;
772
773 IF_PURGE(ifq);
774 }
775
776 void
777 if_percpuq_destroy(struct if_percpuq *ipq)
778 {
779
780 /* if_detach may already destroy it */
781 if (ipq == NULL)
782 return;
783
784 softint_disestablish(ipq->ipq_si);
785 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
786 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
787 }
788
789 void
790 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
791 {
792 struct ifqueue *ifq;
793 int s;
794
795 KASSERT(ipq != NULL);
796
797 s = splnet();
798 ifq = percpu_getref(ipq->ipq_ifqs);
799 if (IF_QFULL(ifq)) {
800 IF_DROP(ifq);
801 percpu_putref(ipq->ipq_ifqs);
802 m_freem(m);
803 goto out;
804 }
805 IF_ENQUEUE(ifq, m);
806 percpu_putref(ipq->ipq_ifqs);
807
808 softint_schedule(ipq->ipq_si);
809 out:
810 splx(s);
811 }
812
813 static void
814 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
815 {
816 struct ifqueue *const ifq = p;
817 int *sum = arg;
818
819 *sum += ifq->ifq_drops;
820 }
821
822 static int
823 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
824 {
825 struct sysctlnode node;
826 struct if_percpuq *ipq;
827 int sum = 0;
828 int error;
829
830 node = *rnode;
831 ipq = node.sysctl_data;
832
833 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
834
835 node.sysctl_data = ∑
836 error = sysctl_lookup(SYSCTLFN_CALL(&node));
837 if (error != 0 || newp == NULL)
838 return error;
839
840 return 0;
841 }
842
843 static void
844 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
845 struct if_percpuq *ipq)
846 {
847 const struct sysctlnode *cnode, *rnode;
848
849 if (sysctl_createv(clog, 0, NULL, &rnode,
850 CTLFLAG_PERMANENT,
851 CTLTYPE_NODE, "interfaces",
852 SYSCTL_DESCR("Per-interface controls"),
853 NULL, 0, NULL, 0,
854 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
855 goto bad;
856
857 if (sysctl_createv(clog, 0, &rnode, &rnode,
858 CTLFLAG_PERMANENT,
859 CTLTYPE_NODE, ifname,
860 SYSCTL_DESCR("Interface controls"),
861 NULL, 0, NULL, 0,
862 CTL_CREATE, CTL_EOL) != 0)
863 goto bad;
864
865 if (sysctl_createv(clog, 0, &rnode, &rnode,
866 CTLFLAG_PERMANENT,
867 CTLTYPE_NODE, "rcvq",
868 SYSCTL_DESCR("Interface input queue controls"),
869 NULL, 0, NULL, 0,
870 CTL_CREATE, CTL_EOL) != 0)
871 goto bad;
872
873 #ifdef NOTYET
874 /* XXX Should show each per-CPU queue length? */
875 if (sysctl_createv(clog, 0, &rnode, &rnode,
876 CTLFLAG_PERMANENT,
877 CTLTYPE_INT, "len",
878 SYSCTL_DESCR("Current input queue length"),
879 sysctl_percpuq_len, 0, NULL, 0,
880 CTL_CREATE, CTL_EOL) != 0)
881 goto bad;
882
883 if (sysctl_createv(clog, 0, &rnode, &cnode,
884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
885 CTLTYPE_INT, "maxlen",
886 SYSCTL_DESCR("Maximum allowed input queue length"),
887 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
888 CTL_CREATE, CTL_EOL) != 0)
889 goto bad;
890 #endif
891
892 if (sysctl_createv(clog, 0, &rnode, &cnode,
893 CTLFLAG_PERMANENT,
894 CTLTYPE_INT, "drops",
895 SYSCTL_DESCR("Total packets dropped due to full input queue"),
896 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
897 CTL_CREATE, CTL_EOL) != 0)
898 goto bad;
899
900 return;
901 bad:
902 printf("%s: could not attach sysctl nodes\n", ifname);
903 return;
904 }
905
906
907 /*
908 * The common interface input routine that is called by device drivers,
909 * which should be used only when the driver's rx handler already runs
910 * in softint.
911 */
912 void
913 if_input(struct ifnet *ifp, struct mbuf *m)
914 {
915
916 KASSERT(ifp->if_percpuq == NULL);
917 KASSERT(!cpu_intr_p());
918
919 ifp->_if_input(ifp, m);
920 }
921
922 /*
923 * DEPRECATED. Use if_initialize and if_register instead.
924 * See the above comment of if_initialize.
925 *
926 * Note that it implicitly enables if_percpuq to make drivers easy to
927 * migrate softint-based if_input without much changes. If you don't
928 * want to enable it, use if_initialize instead.
929 */
930 void
931 if_attach(ifnet_t *ifp)
932 {
933
934 if_initialize(ifp);
935 ifp->if_percpuq = if_percpuq_create(ifp);
936 if_register(ifp);
937 }
938
939 void
940 if_attachdomain(void)
941 {
942 struct ifnet *ifp;
943 int s;
944 int bound = curlwp_bind();
945
946 s = pserialize_read_enter();
947 IFNET_READER_FOREACH(ifp) {
948 struct psref psref;
949 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
950 pserialize_read_exit(s);
951 if_attachdomain1(ifp);
952 s = pserialize_read_enter();
953 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
954 }
955 pserialize_read_exit(s);
956 curlwp_bindx(bound);
957 }
958
959 static void
960 if_attachdomain1(struct ifnet *ifp)
961 {
962 struct domain *dp;
963 int s;
964
965 s = splnet();
966
967 /* address family dependent data region */
968 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
969 DOMAIN_FOREACH(dp) {
970 if (dp->dom_ifattach != NULL)
971 ifp->if_afdata[dp->dom_family] =
972 (*dp->dom_ifattach)(ifp);
973 }
974
975 splx(s);
976 }
977
978 /*
979 * Deactivate an interface. This points all of the procedure
980 * handles at error stubs. May be called from interrupt context.
981 */
982 void
983 if_deactivate(struct ifnet *ifp)
984 {
985 int s;
986
987 s = splnet();
988
989 ifp->if_output = if_nulloutput;
990 ifp->_if_input = if_nullinput;
991 ifp->if_start = if_nullstart;
992 ifp->if_transmit = if_nulltransmit;
993 ifp->if_ioctl = if_nullioctl;
994 ifp->if_init = if_nullinit;
995 ifp->if_stop = if_nullstop;
996 ifp->if_slowtimo = if_nullslowtimo;
997 ifp->if_drain = if_nulldrain;
998
999 /* No more packets may be enqueued. */
1000 ifp->if_snd.ifq_maxlen = 0;
1001
1002 splx(s);
1003 }
1004
1005 void
1006 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1007 {
1008 struct ifaddr *ifa, *nifa;
1009
1010 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
1011 if (ifa->ifa_addr->sa_family != family)
1012 continue;
1013 (*purgeaddr)(ifa);
1014 }
1015 }
1016
1017 /*
1018 * Detach an interface from the list of "active" interfaces,
1019 * freeing any resources as we go along.
1020 *
1021 * NOTE: This routine must be called with a valid thread context,
1022 * as it may block.
1023 */
1024 void
1025 if_detach(struct ifnet *ifp)
1026 {
1027 struct socket so;
1028 struct ifaddr *ifa;
1029 #ifdef IFAREF_DEBUG
1030 struct ifaddr *last_ifa = NULL;
1031 #endif
1032 struct domain *dp;
1033 const struct protosw *pr;
1034 int s, i, family, purged;
1035 uint64_t xc;
1036
1037 /*
1038 * XXX It's kind of lame that we have to have the
1039 * XXX socket structure...
1040 */
1041 memset(&so, 0, sizeof(so));
1042
1043 s = splnet();
1044
1045 sysctl_teardown(&ifp->if_sysctl_log);
1046 mutex_enter(ifp->if_ioctl_lock);
1047 ifp->if_ioctl = if_nullioctl;
1048 mutex_exit(ifp->if_ioctl_lock);
1049
1050 IFNET_LOCK();
1051 ifindex2ifnet[ifp->if_index] = NULL;
1052 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1053 IFNET_WRITER_REMOVE(ifp);
1054 pserialize_perform(ifnet_psz);
1055 IFNET_UNLOCK();
1056
1057 mutex_obj_free(ifp->if_ioctl_lock);
1058 ifp->if_ioctl_lock = NULL;
1059
1060 if (ifp->if_slowtimo != NULL) {
1061 ifp->if_slowtimo = NULL;
1062 callout_halt(ifp->if_slowtimo_ch, NULL);
1063 callout_destroy(ifp->if_slowtimo_ch);
1064 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1065 }
1066
1067 /*
1068 * Do an if_down() to give protocols a chance to do something.
1069 */
1070 if_down(ifp);
1071
1072 #ifdef ALTQ
1073 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1074 altq_disable(&ifp->if_snd);
1075 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1076 altq_detach(&ifp->if_snd);
1077 #endif
1078
1079 if (ifp->if_snd.ifq_lock)
1080 mutex_obj_free(ifp->if_snd.ifq_lock);
1081
1082 #if NCARP > 0
1083 /* Remove the interface from any carp group it is a part of. */
1084 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1085 carp_ifdetach(ifp);
1086 #endif
1087
1088 /*
1089 * Rip all the addresses off the interface. This should make
1090 * all of the routes go away.
1091 *
1092 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1093 * from the list, including our "cursor", ifa. For safety,
1094 * and to honor the TAILQ abstraction, I just restart the
1095 * loop after each removal. Note that the loop will exit
1096 * when all of the remaining ifaddrs belong to the AF_LINK
1097 * family. I am counting on the historical fact that at
1098 * least one pr_usrreq in each address domain removes at
1099 * least one ifaddr.
1100 */
1101 again:
1102 IFADDR_FOREACH(ifa, ifp) {
1103 family = ifa->ifa_addr->sa_family;
1104 #ifdef IFAREF_DEBUG
1105 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1106 ifa, family, ifa->ifa_refcnt);
1107 if (last_ifa != NULL && ifa == last_ifa)
1108 panic("if_detach: loop detected");
1109 last_ifa = ifa;
1110 #endif
1111 if (family == AF_LINK)
1112 continue;
1113 dp = pffinddomain(family);
1114 #ifdef DIAGNOSTIC
1115 if (dp == NULL)
1116 panic("if_detach: no domain for AF %d",
1117 family);
1118 #endif
1119 /*
1120 * XXX These PURGEIF calls are redundant with the
1121 * purge-all-families calls below, but are left in for
1122 * now both to make a smaller change, and to avoid
1123 * unplanned interactions with clearing of
1124 * ifp->if_addrlist.
1125 */
1126 purged = 0;
1127 for (pr = dp->dom_protosw;
1128 pr < dp->dom_protoswNPROTOSW; pr++) {
1129 so.so_proto = pr;
1130 if (pr->pr_usrreqs) {
1131 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1132 purged = 1;
1133 }
1134 }
1135 if (purged == 0) {
1136 /*
1137 * XXX What's really the best thing to do
1138 * XXX here? --thorpej (at) NetBSD.org
1139 */
1140 printf("if_detach: WARNING: AF %d not purged\n",
1141 family);
1142 ifa_remove(ifp, ifa);
1143 }
1144 goto again;
1145 }
1146
1147 if_free_sadl(ifp);
1148
1149 /* Walk the routing table looking for stragglers. */
1150 for (i = 0; i <= AF_MAX; i++) {
1151 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1152 continue;
1153 }
1154
1155 DOMAIN_FOREACH(dp) {
1156 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1157 {
1158 void *p = ifp->if_afdata[dp->dom_family];
1159 if (p) {
1160 ifp->if_afdata[dp->dom_family] = NULL;
1161 (*dp->dom_ifdetach)(ifp, p);
1162 }
1163 }
1164
1165 /*
1166 * One would expect multicast memberships (INET and
1167 * INET6) on UDP sockets to be purged by the PURGEIF
1168 * calls above, but if all addresses were removed from
1169 * the interface prior to destruction, the calls will
1170 * not be made (e.g. ppp, for which pppd(8) generally
1171 * removes addresses before destroying the interface).
1172 * Because there is no invariant that multicast
1173 * memberships only exist for interfaces with IPv4
1174 * addresses, we must call PURGEIF regardless of
1175 * addresses. (Protocols which might store ifnet
1176 * pointers are marked with PR_PURGEIF.)
1177 */
1178 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1179 so.so_proto = pr;
1180 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1181 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1182 }
1183 }
1184
1185 (void)pfil_run_hooks(if_pfil,
1186 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1187 (void)pfil_head_destroy(ifp->if_pfil);
1188
1189 /* Announce that the interface is gone. */
1190 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1191
1192 IF_AFDATA_LOCK_DESTROY(ifp);
1193
1194 softint_disestablish(ifp->if_link_si);
1195 ifp->if_link_si = NULL;
1196
1197 /*
1198 * remove packets that came from ifp, from software interrupt queues.
1199 */
1200 DOMAIN_FOREACH(dp) {
1201 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1202 struct ifqueue *iq = dp->dom_ifqueues[i];
1203 if (iq == NULL)
1204 break;
1205 dp->dom_ifqueues[i] = NULL;
1206 if_detach_queues(ifp, iq);
1207 }
1208 }
1209
1210 /*
1211 * IP queues have to be processed separately: net-queue barrier
1212 * ensures that the packets are dequeued while a cross-call will
1213 * ensure that the interrupts have completed. FIXME: not quite..
1214 */
1215 #ifdef INET
1216 pktq_barrier(ip_pktq);
1217 #endif
1218 #ifdef INET6
1219 if (in6_present)
1220 pktq_barrier(ip6_pktq);
1221 #endif
1222 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1223 xc_wait(xc);
1224
1225 /* Wait for all readers to drain before freeing. */
1226 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1227 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1228
1229 if (ifp->if_percpuq != NULL) {
1230 if_percpuq_destroy(ifp->if_percpuq);
1231 ifp->if_percpuq = NULL;
1232 }
1233
1234 splx(s);
1235 }
1236
1237 static void
1238 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1239 {
1240 struct mbuf *m, *prev, *next;
1241
1242 prev = NULL;
1243 for (m = q->ifq_head; m != NULL; m = next) {
1244 KASSERT((m->m_flags & M_PKTHDR) != 0);
1245
1246 next = m->m_nextpkt;
1247 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1248 prev = m;
1249 continue;
1250 }
1251
1252 if (prev != NULL)
1253 prev->m_nextpkt = m->m_nextpkt;
1254 else
1255 q->ifq_head = m->m_nextpkt;
1256 if (q->ifq_tail == m)
1257 q->ifq_tail = prev;
1258 q->ifq_len--;
1259
1260 m->m_nextpkt = NULL;
1261 m_freem(m);
1262 IF_DROP(q);
1263 }
1264 }
1265
1266 /*
1267 * Callback for a radix tree walk to delete all references to an
1268 * ifnet.
1269 */
1270 static int
1271 if_rt_walktree(struct rtentry *rt, void *v)
1272 {
1273 struct ifnet *ifp = (struct ifnet *)v;
1274 int error;
1275 struct rtentry *retrt;
1276
1277 if (rt->rt_ifp != ifp)
1278 return 0;
1279
1280 /* Delete the entry. */
1281 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1282 rt_mask(rt), rt->rt_flags, &retrt);
1283 if (error == 0) {
1284 KASSERT(retrt == rt);
1285 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1286 retrt->rt_ifp = NULL;
1287 rtfree(retrt);
1288 } else {
1289 printf("%s: warning: unable to delete rtentry @ %p, "
1290 "error = %d\n", ifp->if_xname, rt, error);
1291 }
1292 return ERESTART;
1293 }
1294
1295 /*
1296 * Create a clone network interface.
1297 */
1298 static int
1299 if_clone_create(const char *name)
1300 {
1301 struct if_clone *ifc;
1302 int unit;
1303 struct ifnet *ifp;
1304 struct psref psref;
1305
1306 ifc = if_clone_lookup(name, &unit);
1307 if (ifc == NULL)
1308 return EINVAL;
1309
1310 ifp = if_get(name, &psref);
1311 if (ifp != NULL) {
1312 if_put(ifp, &psref);
1313 return EEXIST;
1314 }
1315
1316 return (*ifc->ifc_create)(ifc, unit);
1317 }
1318
1319 /*
1320 * Destroy a clone network interface.
1321 */
1322 static int
1323 if_clone_destroy(const char *name)
1324 {
1325 struct if_clone *ifc;
1326 struct ifnet *ifp;
1327 struct psref psref;
1328
1329 ifc = if_clone_lookup(name, NULL);
1330 if (ifc == NULL)
1331 return EINVAL;
1332
1333 if (ifc->ifc_destroy == NULL)
1334 return EOPNOTSUPP;
1335
1336 ifp = if_get(name, &psref);
1337 if (ifp == NULL)
1338 return ENXIO;
1339
1340 /* We have to disable ioctls here */
1341 mutex_enter(ifp->if_ioctl_lock);
1342 ifp->if_ioctl = if_nullioctl;
1343 mutex_exit(ifp->if_ioctl_lock);
1344
1345 /*
1346 * We cannot call ifc_destroy with holding ifp.
1347 * Releasing ifp here is safe thanks to if_clone_mtx.
1348 */
1349 if_put(ifp, &psref);
1350
1351 return (*ifc->ifc_destroy)(ifp);
1352 }
1353
1354 /*
1355 * Look up a network interface cloner.
1356 */
1357 static struct if_clone *
1358 if_clone_lookup(const char *name, int *unitp)
1359 {
1360 struct if_clone *ifc;
1361 const char *cp;
1362 char *dp, ifname[IFNAMSIZ + 3];
1363 int unit;
1364
1365 strcpy(ifname, "if_");
1366 /* separate interface name from unit */
1367 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1368 *cp && (*cp < '0' || *cp > '9');)
1369 *dp++ = *cp++;
1370
1371 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1372 return NULL; /* No name or unit number */
1373 *dp++ = '\0';
1374
1375 again:
1376 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1377 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1378 break;
1379 }
1380
1381 if (ifc == NULL) {
1382 if (*ifname == '\0' ||
1383 module_autoload(ifname, MODULE_CLASS_DRIVER))
1384 return NULL;
1385 *ifname = '\0';
1386 goto again;
1387 }
1388
1389 unit = 0;
1390 while (cp - name < IFNAMSIZ && *cp) {
1391 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1392 /* Bogus unit number. */
1393 return NULL;
1394 }
1395 unit = (unit * 10) + (*cp++ - '0');
1396 }
1397
1398 if (unitp != NULL)
1399 *unitp = unit;
1400 return ifc;
1401 }
1402
1403 /*
1404 * Register a network interface cloner.
1405 */
1406 void
1407 if_clone_attach(struct if_clone *ifc)
1408 {
1409
1410 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1411 if_cloners_count++;
1412 }
1413
1414 /*
1415 * Unregister a network interface cloner.
1416 */
1417 void
1418 if_clone_detach(struct if_clone *ifc)
1419 {
1420
1421 LIST_REMOVE(ifc, ifc_list);
1422 if_cloners_count--;
1423 }
1424
1425 /*
1426 * Provide list of interface cloners to userspace.
1427 */
1428 int
1429 if_clone_list(int buf_count, char *buffer, int *total)
1430 {
1431 char outbuf[IFNAMSIZ], *dst;
1432 struct if_clone *ifc;
1433 int count, error = 0;
1434
1435 *total = if_cloners_count;
1436 if ((dst = buffer) == NULL) {
1437 /* Just asking how many there are. */
1438 return 0;
1439 }
1440
1441 if (buf_count < 0)
1442 return EINVAL;
1443
1444 count = (if_cloners_count < buf_count) ?
1445 if_cloners_count : buf_count;
1446
1447 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1448 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1449 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1450 if (outbuf[sizeof(outbuf) - 1] != '\0')
1451 return ENAMETOOLONG;
1452 error = copyout(outbuf, dst, sizeof(outbuf));
1453 if (error != 0)
1454 break;
1455 }
1456
1457 return error;
1458 }
1459
1460 void
1461 ifaref(struct ifaddr *ifa)
1462 {
1463 ifa->ifa_refcnt++;
1464 }
1465
1466 void
1467 ifafree(struct ifaddr *ifa)
1468 {
1469 KASSERT(ifa != NULL);
1470 KASSERT(ifa->ifa_refcnt > 0);
1471
1472 if (--ifa->ifa_refcnt == 0) {
1473 free(ifa, M_IFADDR);
1474 }
1475 }
1476
1477 void
1478 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1479 {
1480 ifa->ifa_ifp = ifp;
1481 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1482 ifaref(ifa);
1483 }
1484
1485 void
1486 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1487 {
1488 KASSERT(ifa->ifa_ifp == ifp);
1489 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1490 ifafree(ifa);
1491 }
1492
1493 static inline int
1494 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1495 {
1496 return sockaddr_cmp(sa1, sa2) == 0;
1497 }
1498
1499 /*
1500 * Locate an interface based on a complete address.
1501 */
1502 /*ARGSUSED*/
1503 struct ifaddr *
1504 ifa_ifwithaddr(const struct sockaddr *addr)
1505 {
1506 struct ifnet *ifp;
1507 struct ifaddr *ifa;
1508 int s;
1509
1510 s = pserialize_read_enter();
1511 IFNET_READER_FOREACH(ifp) {
1512 if (ifp->if_output == if_nulloutput)
1513 continue;
1514 IFADDR_FOREACH(ifa, ifp) {
1515 if (ifa->ifa_addr->sa_family != addr->sa_family)
1516 continue;
1517 if (equal(addr, ifa->ifa_addr))
1518 return ifa;
1519 if ((ifp->if_flags & IFF_BROADCAST) &&
1520 ifa->ifa_broadaddr &&
1521 /* IP6 doesn't have broadcast */
1522 ifa->ifa_broadaddr->sa_len != 0 &&
1523 equal(ifa->ifa_broadaddr, addr))
1524 return ifa;
1525 }
1526 }
1527 pserialize_read_exit(s);
1528 return NULL;
1529 }
1530
1531 /*
1532 * Locate the point to point interface with a given destination address.
1533 */
1534 /*ARGSUSED*/
1535 struct ifaddr *
1536 ifa_ifwithdstaddr(const struct sockaddr *addr)
1537 {
1538 struct ifnet *ifp;
1539 struct ifaddr *ifa;
1540 int s;
1541
1542 s = pserialize_read_enter();
1543 IFNET_READER_FOREACH(ifp) {
1544 if (ifp->if_output == if_nulloutput)
1545 continue;
1546 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1547 continue;
1548 IFADDR_FOREACH(ifa, ifp) {
1549 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1550 ifa->ifa_dstaddr == NULL)
1551 continue;
1552 if (equal(addr, ifa->ifa_dstaddr))
1553 return ifa;
1554 }
1555 }
1556 pserialize_read_exit(s);
1557 return NULL;
1558 }
1559
1560 /*
1561 * Find an interface on a specific network. If many, choice
1562 * is most specific found.
1563 */
1564 struct ifaddr *
1565 ifa_ifwithnet(const struct sockaddr *addr)
1566 {
1567 struct ifnet *ifp;
1568 struct ifaddr *ifa;
1569 const struct sockaddr_dl *sdl;
1570 struct ifaddr *ifa_maybe = 0;
1571 u_int af = addr->sa_family;
1572 const char *addr_data = addr->sa_data, *cplim;
1573 int s;
1574
1575 if (af == AF_LINK) {
1576 sdl = satocsdl(addr);
1577 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1578 ifindex2ifnet[sdl->sdl_index] &&
1579 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
1580 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1581 }
1582 }
1583 #ifdef NETATALK
1584 if (af == AF_APPLETALK) {
1585 const struct sockaddr_at *sat, *sat2;
1586 sat = (const struct sockaddr_at *)addr;
1587 s = pserialize_read_enter();
1588 IFNET_READER_FOREACH(ifp) {
1589 if (ifp->if_output == if_nulloutput)
1590 continue;
1591 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1592 if (ifa == NULL)
1593 continue;
1594 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1595 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1596 return ifa; /* exact match */
1597 if (ifa_maybe == NULL) {
1598 /* else keep the if with the right range */
1599 ifa_maybe = ifa;
1600 }
1601 }
1602 pserialize_read_exit(s);
1603 return ifa_maybe;
1604 }
1605 #endif
1606 s = pserialize_read_enter();
1607 IFNET_READER_FOREACH(ifp) {
1608 if (ifp->if_output == if_nulloutput)
1609 continue;
1610 IFADDR_FOREACH(ifa, ifp) {
1611 const char *cp, *cp2, *cp3;
1612
1613 if (ifa->ifa_addr->sa_family != af ||
1614 ifa->ifa_netmask == NULL)
1615 next: continue;
1616 cp = addr_data;
1617 cp2 = ifa->ifa_addr->sa_data;
1618 cp3 = ifa->ifa_netmask->sa_data;
1619 cplim = (const char *)ifa->ifa_netmask +
1620 ifa->ifa_netmask->sa_len;
1621 while (cp3 < cplim) {
1622 if ((*cp++ ^ *cp2++) & *cp3++) {
1623 /* want to continue for() loop */
1624 goto next;
1625 }
1626 }
1627 if (ifa_maybe == NULL ||
1628 rt_refines(ifa->ifa_netmask,
1629 ifa_maybe->ifa_netmask))
1630 ifa_maybe = ifa;
1631 }
1632 }
1633 pserialize_read_exit(s);
1634 return ifa_maybe;
1635 }
1636
1637 /*
1638 * Find the interface of the addresss.
1639 */
1640 struct ifaddr *
1641 ifa_ifwithladdr(const struct sockaddr *addr)
1642 {
1643 struct ifaddr *ia;
1644
1645 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1646 (ia = ifa_ifwithnet(addr)))
1647 return ia;
1648 return NULL;
1649 }
1650
1651 /*
1652 * Find an interface using a specific address family
1653 */
1654 struct ifaddr *
1655 ifa_ifwithaf(int af)
1656 {
1657 struct ifnet *ifp;
1658 struct ifaddr *ifa = NULL;
1659 int s;
1660
1661 s = pserialize_read_enter();
1662 IFNET_READER_FOREACH(ifp) {
1663 if (ifp->if_output == if_nulloutput)
1664 continue;
1665 IFADDR_FOREACH(ifa, ifp) {
1666 if (ifa->ifa_addr->sa_family == af)
1667 goto out;
1668 }
1669 }
1670 out:
1671 pserialize_read_exit(s);
1672 return ifa;
1673 }
1674
1675 /*
1676 * Find an interface address specific to an interface best matching
1677 * a given address.
1678 */
1679 struct ifaddr *
1680 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1681 {
1682 struct ifaddr *ifa;
1683 const char *cp, *cp2, *cp3;
1684 const char *cplim;
1685 struct ifaddr *ifa_maybe = 0;
1686 u_int af = addr->sa_family;
1687
1688 if (ifp->if_output == if_nulloutput)
1689 return NULL;
1690
1691 if (af >= AF_MAX)
1692 return NULL;
1693
1694 IFADDR_FOREACH(ifa, ifp) {
1695 if (ifa->ifa_addr->sa_family != af)
1696 continue;
1697 ifa_maybe = ifa;
1698 if (ifa->ifa_netmask == NULL) {
1699 if (equal(addr, ifa->ifa_addr) ||
1700 (ifa->ifa_dstaddr &&
1701 equal(addr, ifa->ifa_dstaddr)))
1702 return ifa;
1703 continue;
1704 }
1705 cp = addr->sa_data;
1706 cp2 = ifa->ifa_addr->sa_data;
1707 cp3 = ifa->ifa_netmask->sa_data;
1708 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1709 for (; cp3 < cplim; cp3++) {
1710 if ((*cp++ ^ *cp2++) & *cp3)
1711 break;
1712 }
1713 if (cp3 == cplim)
1714 return ifa;
1715 }
1716 return ifa_maybe;
1717 }
1718
1719 /*
1720 * Default action when installing a route with a Link Level gateway.
1721 * Lookup an appropriate real ifa to point to.
1722 * This should be moved to /sys/net/link.c eventually.
1723 */
1724 void
1725 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1726 {
1727 struct ifaddr *ifa;
1728 const struct sockaddr *dst;
1729 struct ifnet *ifp;
1730
1731 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1732 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1733 return;
1734 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1735 rt_replace_ifa(rt, ifa);
1736 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1737 ifa->ifa_rtrequest(cmd, rt, info);
1738 }
1739 }
1740
1741 /*
1742 * bitmask macros to manage a densely packed link_state change queue.
1743 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1744 * LINK_STATE_UP(2) we need 2 bits for each state change.
1745 * As a state change to store is 0, treat all bits set as an unset item.
1746 */
1747 #define LQ_ITEM_BITS 2
1748 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1749 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1750 #define LINK_STATE_UNSET LQ_ITEM_MASK
1751 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1752 #define LQ_STORE(q, i, v) \
1753 do { \
1754 (q) &= ~LQ_MASK((i)); \
1755 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1756 } while (0 /* CONSTCOND */)
1757 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1758 #define LQ_POP(q, v) \
1759 do { \
1760 (v) = LQ_ITEM((q), 0); \
1761 (q) >>= LQ_ITEM_BITS; \
1762 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1763 } while (0 /* CONSTCOND */)
1764 #define LQ_PUSH(q, v) \
1765 do { \
1766 (q) >>= LQ_ITEM_BITS; \
1767 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1768 } while (0 /* CONSTCOND */)
1769 #define LQ_FIND_UNSET(q, i) \
1770 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1771 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1772 break; \
1773 }
1774 /*
1775 * Handle a change in the interface link state and
1776 * queue notifications.
1777 */
1778 void
1779 if_link_state_change(struct ifnet *ifp, int link_state)
1780 {
1781 int s, idx;
1782
1783 /* Ensure change is to a valid state */
1784 switch (link_state) {
1785 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1786 case LINK_STATE_DOWN: /* FALLTHROUGH */
1787 case LINK_STATE_UP:
1788 break;
1789 default:
1790 #ifdef DEBUG
1791 printf("%s: invalid link state %d\n",
1792 ifp->if_xname, link_state);
1793 #endif
1794 return;
1795 }
1796
1797 s = splnet();
1798
1799 /* Find the last unset event in the queue. */
1800 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1801
1802 /*
1803 * Ensure link_state doesn't match the last event in the queue.
1804 * ifp->if_link_state is not checked and set here because
1805 * that would present an inconsistent picture to the system.
1806 */
1807 if (idx != 0 &&
1808 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1809 goto out;
1810
1811 /* Handle queue overflow. */
1812 if (idx == LQ_MAX(ifp->if_link_queue)) {
1813 uint8_t lost;
1814
1815 /*
1816 * The DOWN state must be protected from being pushed off
1817 * the queue to ensure that userland will always be
1818 * in a sane state.
1819 * Because DOWN is protected, there is no need to protect
1820 * UNKNOWN.
1821 * It should be invalid to change from any other state to
1822 * UNKNOWN anyway ...
1823 */
1824 lost = LQ_ITEM(ifp->if_link_queue, 0);
1825 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1826 if (lost == LINK_STATE_DOWN) {
1827 lost = LQ_ITEM(ifp->if_link_queue, 0);
1828 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1829 }
1830 printf("%s: lost link state change %s\n",
1831 ifp->if_xname,
1832 lost == LINK_STATE_UP ? "UP" :
1833 lost == LINK_STATE_DOWN ? "DOWN" :
1834 "UNKNOWN");
1835 } else
1836 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1837
1838 softint_schedule(ifp->if_link_si);
1839
1840 out:
1841 splx(s);
1842 }
1843
1844 /*
1845 * Handle interface link state change notifications.
1846 * Must be called at splnet().
1847 */
1848 static void
1849 if_link_state_change0(struct ifnet *ifp, int link_state)
1850 {
1851 struct domain *dp;
1852
1853 /* Ensure the change is still valid. */
1854 if (ifp->if_link_state == link_state)
1855 return;
1856
1857 #ifdef DEBUG
1858 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1859 link_state == LINK_STATE_UP ? "UP" :
1860 link_state == LINK_STATE_DOWN ? "DOWN" :
1861 "UNKNOWN",
1862 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1863 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1864 "UNKNOWN");
1865 #endif
1866
1867 /*
1868 * When going from UNKNOWN to UP, we need to mark existing
1869 * addresses as tentative and restart DAD as we may have
1870 * erroneously not found a duplicate.
1871 *
1872 * This needs to happen before rt_ifmsg to avoid a race where
1873 * listeners would have an address and expect it to work right
1874 * away.
1875 */
1876 if (link_state == LINK_STATE_UP &&
1877 ifp->if_link_state == LINK_STATE_UNKNOWN)
1878 {
1879 DOMAIN_FOREACH(dp) {
1880 if (dp->dom_if_link_state_change != NULL)
1881 dp->dom_if_link_state_change(ifp,
1882 LINK_STATE_DOWN);
1883 }
1884 }
1885
1886 ifp->if_link_state = link_state;
1887
1888 /* Notify that the link state has changed. */
1889 rt_ifmsg(ifp);
1890
1891 #if NCARP > 0
1892 if (ifp->if_carp)
1893 carp_carpdev_state(ifp);
1894 #endif
1895
1896 DOMAIN_FOREACH(dp) {
1897 if (dp->dom_if_link_state_change != NULL)
1898 dp->dom_if_link_state_change(ifp, link_state);
1899 }
1900 }
1901
1902 /*
1903 * Process the interface link state change queue.
1904 */
1905 static void
1906 if_link_state_change_si(void *arg)
1907 {
1908 struct ifnet *ifp = arg;
1909 int s;
1910 uint8_t state;
1911
1912 s = splnet();
1913
1914 /* Pop a link state change from the queue and process it. */
1915 LQ_POP(ifp->if_link_queue, state);
1916 if_link_state_change0(ifp, state);
1917
1918 /* If there is a link state change to come, schedule it. */
1919 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
1920 softint_schedule(ifp->if_link_si);
1921
1922 splx(s);
1923 }
1924
1925 /*
1926 * Default action when installing a local route on a point-to-point
1927 * interface.
1928 */
1929 void
1930 p2p_rtrequest(int req, struct rtentry *rt,
1931 __unused const struct rt_addrinfo *info)
1932 {
1933 struct ifnet *ifp = rt->rt_ifp;
1934 struct ifaddr *ifa, *lo0ifa;
1935
1936 switch (req) {
1937 case RTM_ADD:
1938 if ((rt->rt_flags & RTF_LOCAL) == 0)
1939 break;
1940
1941 IFADDR_FOREACH(ifa, ifp) {
1942 if (equal(rt_getkey(rt), ifa->ifa_addr))
1943 break;
1944 }
1945 if (ifa == NULL)
1946 break;
1947
1948 /*
1949 * Ensure lo0 has an address of the same family.
1950 */
1951 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1952 if (lo0ifa->ifa_addr->sa_family ==
1953 ifa->ifa_addr->sa_family)
1954 break;
1955 }
1956 if (lo0ifa == NULL)
1957 break;
1958
1959 rt->rt_ifp = lo0ifp;
1960
1961 /*
1962 * Make sure to set rt->rt_ifa to the interface
1963 * address we are using, otherwise we will have trouble
1964 * with source address selection.
1965 */
1966 if (ifa != rt->rt_ifa)
1967 rt_replace_ifa(rt, ifa);
1968 break;
1969 case RTM_DELETE:
1970 default:
1971 break;
1972 }
1973 }
1974
1975 /*
1976 * Mark an interface down and notify protocols of
1977 * the transition.
1978 * NOTE: must be called at splsoftnet or equivalent.
1979 */
1980 void
1981 if_down(struct ifnet *ifp)
1982 {
1983 struct ifaddr *ifa;
1984 struct domain *dp;
1985
1986 ifp->if_flags &= ~IFF_UP;
1987 nanotime(&ifp->if_lastchange);
1988 IFADDR_FOREACH(ifa, ifp)
1989 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1990 IFQ_PURGE(&ifp->if_snd);
1991 #if NCARP > 0
1992 if (ifp->if_carp)
1993 carp_carpdev_state(ifp);
1994 #endif
1995 rt_ifmsg(ifp);
1996 DOMAIN_FOREACH(dp) {
1997 if (dp->dom_if_down)
1998 dp->dom_if_down(ifp);
1999 }
2000 }
2001
2002 /*
2003 * Mark an interface up and notify protocols of
2004 * the transition.
2005 * NOTE: must be called at splsoftnet or equivalent.
2006 */
2007 void
2008 if_up(struct ifnet *ifp)
2009 {
2010 #ifdef notyet
2011 struct ifaddr *ifa;
2012 #endif
2013 struct domain *dp;
2014
2015 ifp->if_flags |= IFF_UP;
2016 nanotime(&ifp->if_lastchange);
2017 #ifdef notyet
2018 /* this has no effect on IP, and will kill all ISO connections XXX */
2019 IFADDR_FOREACH(ifa, ifp)
2020 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2021 #endif
2022 #if NCARP > 0
2023 if (ifp->if_carp)
2024 carp_carpdev_state(ifp);
2025 #endif
2026 rt_ifmsg(ifp);
2027 DOMAIN_FOREACH(dp) {
2028 if (dp->dom_if_up)
2029 dp->dom_if_up(ifp);
2030 }
2031 }
2032
2033 /*
2034 * Handle interface slowtimo timer routine. Called
2035 * from softclock, we decrement timer (if set) and
2036 * call the appropriate interface routine on expiration.
2037 */
2038 static void
2039 if_slowtimo(void *arg)
2040 {
2041 void (*slowtimo)(struct ifnet *);
2042 struct ifnet *ifp = arg;
2043 int s;
2044
2045 slowtimo = ifp->if_slowtimo;
2046 if (__predict_false(slowtimo == NULL))
2047 return;
2048
2049 s = splnet();
2050 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2051 (*slowtimo)(ifp);
2052
2053 splx(s);
2054
2055 if (__predict_true(ifp->if_slowtimo != NULL))
2056 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2057 }
2058
2059 /*
2060 * Set/clear promiscuous mode on interface ifp based on the truth value
2061 * of pswitch. The calls are reference counted so that only the first
2062 * "on" request actually has an effect, as does the final "off" request.
2063 * Results are undefined if the "off" and "on" requests are not matched.
2064 */
2065 int
2066 ifpromisc(struct ifnet *ifp, int pswitch)
2067 {
2068 int pcount, ret;
2069 short nflags;
2070
2071 pcount = ifp->if_pcount;
2072 if (pswitch) {
2073 /*
2074 * Allow the device to be "placed" into promiscuous
2075 * mode even if it is not configured up. It will
2076 * consult IFF_PROMISC when it is brought up.
2077 */
2078 if (ifp->if_pcount++ != 0)
2079 return 0;
2080 nflags = ifp->if_flags | IFF_PROMISC;
2081 } else {
2082 if (--ifp->if_pcount > 0)
2083 return 0;
2084 nflags = ifp->if_flags & ~IFF_PROMISC;
2085 }
2086 ret = if_flags_set(ifp, nflags);
2087 /* Restore interface state if not successful. */
2088 if (ret != 0) {
2089 ifp->if_pcount = pcount;
2090 }
2091 return ret;
2092 }
2093
2094 /*
2095 * Map interface name to
2096 * interface structure pointer.
2097 */
2098 struct ifnet *
2099 ifunit(const char *name)
2100 {
2101 struct ifnet *ifp;
2102 const char *cp = name;
2103 u_int unit = 0;
2104 u_int i;
2105 int s;
2106
2107 /*
2108 * If the entire name is a number, treat it as an ifindex.
2109 */
2110 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2111 unit = unit * 10 + (*cp - '0');
2112 }
2113
2114 /*
2115 * If the number took all of the name, then it's a valid ifindex.
2116 */
2117 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2118 if (unit >= if_indexlim)
2119 return NULL;
2120 ifp = ifindex2ifnet[unit];
2121 if (ifp == NULL || ifp->if_output == if_nulloutput)
2122 return NULL;
2123 return ifp;
2124 }
2125
2126 ifp = NULL;
2127 s = pserialize_read_enter();
2128 IFNET_READER_FOREACH(ifp) {
2129 if (ifp->if_output == if_nulloutput)
2130 continue;
2131 if (strcmp(ifp->if_xname, name) == 0)
2132 goto out;
2133 }
2134 out:
2135 pserialize_read_exit(s);
2136 return ifp;
2137 }
2138
2139 /*
2140 * Get a reference of an ifnet object by an interface name.
2141 * The returned reference is protected by psref(9). The caller
2142 * must release a returned reference by if_put after use.
2143 */
2144 struct ifnet *
2145 if_get(const char *name, struct psref *psref)
2146 {
2147 struct ifnet *ifp;
2148 const char *cp = name;
2149 u_int unit = 0;
2150 u_int i;
2151 int s;
2152
2153 /*
2154 * If the entire name is a number, treat it as an ifindex.
2155 */
2156 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2157 unit = unit * 10 + (*cp - '0');
2158 }
2159
2160 /*
2161 * If the number took all of the name, then it's a valid ifindex.
2162 */
2163 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2164 if (unit >= if_indexlim)
2165 return NULL;
2166 ifp = ifindex2ifnet[unit];
2167 if (ifp == NULL || ifp->if_output == if_nulloutput)
2168 return NULL;
2169 return ifp;
2170 }
2171
2172 ifp = NULL;
2173 s = pserialize_read_enter();
2174 IFNET_READER_FOREACH(ifp) {
2175 if (ifp->if_output == if_nulloutput)
2176 continue;
2177 if (strcmp(ifp->if_xname, name) == 0) {
2178 psref_acquire(psref, &ifp->if_psref,
2179 ifnet_psref_class);
2180 goto out;
2181 }
2182 }
2183 out:
2184 pserialize_read_exit(s);
2185 return ifp;
2186 }
2187
2188 /*
2189 * Release a reference of an ifnet object given by if_get or
2190 * if_get_byindex.
2191 */
2192 void
2193 if_put(const struct ifnet *ifp, struct psref *psref)
2194 {
2195
2196 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2197 }
2198
2199 ifnet_t *
2200 if_byindex(u_int idx)
2201 {
2202 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2203 }
2204
2205 /*
2206 * Get a reference of an ifnet object by an interface index.
2207 * The returned reference is protected by psref(9). The caller
2208 * must release a returned reference by if_put after use.
2209 */
2210 ifnet_t *
2211 if_get_byindex(u_int idx, struct psref *psref)
2212 {
2213 ifnet_t *ifp;
2214 int s;
2215
2216 s = pserialize_read_enter();
2217 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2218 if (__predict_true(ifp != NULL))
2219 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2220 pserialize_read_exit(s);
2221
2222 return ifp;
2223 }
2224
2225 /*
2226 * XXX unsafe
2227 */
2228 void
2229 if_acquire_unsafe(struct ifnet *ifp, struct psref *psref)
2230 {
2231
2232 KASSERT(ifp->if_index != 0);
2233 KASSERT(if_byindex(ifp->if_index) != NULL);
2234 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2235 }
2236
2237 bool
2238 if_held(struct ifnet *ifp)
2239 {
2240
2241 return psref_held(&ifp->if_psref, ifnet_psref_class);
2242 }
2243
2244
2245 /* common */
2246 int
2247 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2248 {
2249 int s;
2250 struct ifreq *ifr;
2251 struct ifcapreq *ifcr;
2252 struct ifdatareq *ifdr;
2253
2254 switch (cmd) {
2255 case SIOCSIFCAP:
2256 ifcr = data;
2257 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2258 return EINVAL;
2259
2260 if (ifcr->ifcr_capenable == ifp->if_capenable)
2261 return 0;
2262
2263 ifp->if_capenable = ifcr->ifcr_capenable;
2264
2265 /* Pre-compute the checksum flags mask. */
2266 ifp->if_csum_flags_tx = 0;
2267 ifp->if_csum_flags_rx = 0;
2268 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2269 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2270 }
2271 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2272 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2273 }
2274
2275 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2276 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2277 }
2278 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2279 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2280 }
2281
2282 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2283 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2284 }
2285 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2286 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2287 }
2288
2289 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2290 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2291 }
2292 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2293 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2294 }
2295
2296 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2297 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2298 }
2299 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2300 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2301 }
2302 if (ifp->if_flags & IFF_UP)
2303 return ENETRESET;
2304 return 0;
2305 case SIOCSIFFLAGS:
2306 ifr = data;
2307 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2308 s = splnet();
2309 if_down(ifp);
2310 splx(s);
2311 }
2312 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2313 s = splnet();
2314 if_up(ifp);
2315 splx(s);
2316 }
2317 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2318 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2319 break;
2320 case SIOCGIFFLAGS:
2321 ifr = data;
2322 ifr->ifr_flags = ifp->if_flags;
2323 break;
2324
2325 case SIOCGIFMETRIC:
2326 ifr = data;
2327 ifr->ifr_metric = ifp->if_metric;
2328 break;
2329
2330 case SIOCGIFMTU:
2331 ifr = data;
2332 ifr->ifr_mtu = ifp->if_mtu;
2333 break;
2334
2335 case SIOCGIFDLT:
2336 ifr = data;
2337 ifr->ifr_dlt = ifp->if_dlt;
2338 break;
2339
2340 case SIOCGIFCAP:
2341 ifcr = data;
2342 ifcr->ifcr_capabilities = ifp->if_capabilities;
2343 ifcr->ifcr_capenable = ifp->if_capenable;
2344 break;
2345
2346 case SIOCSIFMETRIC:
2347 ifr = data;
2348 ifp->if_metric = ifr->ifr_metric;
2349 break;
2350
2351 case SIOCGIFDATA:
2352 ifdr = data;
2353 ifdr->ifdr_data = ifp->if_data;
2354 break;
2355
2356 case SIOCGIFINDEX:
2357 ifr = data;
2358 ifr->ifr_index = ifp->if_index;
2359 break;
2360
2361 case SIOCZIFDATA:
2362 ifdr = data;
2363 ifdr->ifdr_data = ifp->if_data;
2364 /*
2365 * Assumes that the volatile counters that can be
2366 * zero'ed are at the end of if_data.
2367 */
2368 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2369 offsetof(struct if_data, ifi_ipackets));
2370 /*
2371 * The memset() clears to the bottm of if_data. In the area,
2372 * if_lastchange is included. Please be careful if new entry
2373 * will be added into if_data or rewite this.
2374 *
2375 * And also, update if_lastchnage.
2376 */
2377 getnanotime(&ifp->if_lastchange);
2378 break;
2379 case SIOCSIFMTU:
2380 ifr = data;
2381 if (ifp->if_mtu == ifr->ifr_mtu)
2382 break;
2383 ifp->if_mtu = ifr->ifr_mtu;
2384 /*
2385 * If the link MTU changed, do network layer specific procedure.
2386 */
2387 #ifdef INET6
2388 if (in6_present)
2389 nd6_setmtu(ifp);
2390 #endif
2391 return ENETRESET;
2392 default:
2393 return ENOTTY;
2394 }
2395 return 0;
2396 }
2397
2398 int
2399 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2400 {
2401 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2402 struct ifaddr *ifa;
2403 const struct sockaddr *any, *sa;
2404 union {
2405 struct sockaddr sa;
2406 struct sockaddr_storage ss;
2407 } u, v;
2408
2409 switch (cmd) {
2410 case SIOCSIFADDRPREF:
2411 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2412 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2413 NULL) != 0)
2414 return EPERM;
2415 case SIOCGIFADDRPREF:
2416 break;
2417 default:
2418 return EOPNOTSUPP;
2419 }
2420
2421 /* sanity checks */
2422 if (data == NULL || ifp == NULL) {
2423 panic("invalid argument to %s", __func__);
2424 /*NOTREACHED*/
2425 }
2426
2427 /* address must be specified on ADD and DELETE */
2428 sa = sstocsa(&ifap->ifap_addr);
2429 if (sa->sa_family != sofamily(so))
2430 return EINVAL;
2431 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2432 return EINVAL;
2433
2434 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2435
2436 IFADDR_FOREACH(ifa, ifp) {
2437 if (ifa->ifa_addr->sa_family != sa->sa_family)
2438 continue;
2439 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2440 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2441 break;
2442 }
2443 if (ifa == NULL)
2444 return EADDRNOTAVAIL;
2445
2446 switch (cmd) {
2447 case SIOCSIFADDRPREF:
2448 ifa->ifa_preference = ifap->ifap_preference;
2449 return 0;
2450 case SIOCGIFADDRPREF:
2451 /* fill in the if_laddrreq structure */
2452 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2453 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2454 ifap->ifap_preference = ifa->ifa_preference;
2455 return 0;
2456 default:
2457 return EOPNOTSUPP;
2458 }
2459 }
2460
2461 /*
2462 * Interface ioctls.
2463 */
2464 static int
2465 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2466 {
2467 struct ifnet *ifp;
2468 struct ifreq *ifr;
2469 int error = 0;
2470 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2471 u_long ocmd = cmd;
2472 #endif
2473 short oif_flags;
2474 #ifdef COMPAT_OIFREQ
2475 struct ifreq ifrb;
2476 struct oifreq *oifr = NULL;
2477 #endif
2478 int r;
2479 struct psref psref;
2480 int bound;
2481
2482 switch (cmd) {
2483 #ifdef COMPAT_OIFREQ
2484 case OSIOCGIFCONF:
2485 case OOSIOCGIFCONF:
2486 return compat_ifconf(cmd, data);
2487 #endif
2488 #ifdef COMPAT_OIFDATA
2489 case OSIOCGIFDATA:
2490 case OSIOCZIFDATA:
2491 return compat_ifdatareq(l, cmd, data);
2492 #endif
2493 case SIOCGIFCONF:
2494 return ifconf(cmd, data);
2495 case SIOCINITIFADDR:
2496 return EPERM;
2497 }
2498
2499 #ifdef COMPAT_OIFREQ
2500 cmd = compat_cvtcmd(cmd);
2501 if (cmd != ocmd) {
2502 oifr = data;
2503 data = ifr = &ifrb;
2504 ifreqo2n(oifr, ifr);
2505 } else
2506 #endif
2507 ifr = data;
2508
2509 switch (cmd) {
2510 case SIOCIFCREATE:
2511 case SIOCIFDESTROY:
2512 bound = curlwp_bind();
2513 if (l != NULL) {
2514 ifp = if_get(ifr->ifr_name, &psref);
2515 error = kauth_authorize_network(l->l_cred,
2516 KAUTH_NETWORK_INTERFACE,
2517 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2518 (void *)cmd, NULL);
2519 if (ifp != NULL)
2520 if_put(ifp, &psref);
2521 if (error != 0) {
2522 curlwp_bindx(bound);
2523 return error;
2524 }
2525 }
2526 mutex_enter(&if_clone_mtx);
2527 r = (cmd == SIOCIFCREATE) ?
2528 if_clone_create(ifr->ifr_name) :
2529 if_clone_destroy(ifr->ifr_name);
2530 mutex_exit(&if_clone_mtx);
2531 curlwp_bindx(bound);
2532 return r;
2533
2534 case SIOCIFGCLONERS:
2535 {
2536 struct if_clonereq *req = (struct if_clonereq *)data;
2537 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2538 &req->ifcr_total);
2539 }
2540 }
2541
2542 bound = curlwp_bind();
2543 ifp = if_get(ifr->ifr_name, &psref);
2544 if (ifp == NULL) {
2545 curlwp_bindx(bound);
2546 return ENXIO;
2547 }
2548
2549 switch (cmd) {
2550 case SIOCALIFADDR:
2551 case SIOCDLIFADDR:
2552 case SIOCSIFADDRPREF:
2553 case SIOCSIFFLAGS:
2554 case SIOCSIFCAP:
2555 case SIOCSIFMETRIC:
2556 case SIOCZIFDATA:
2557 case SIOCSIFMTU:
2558 case SIOCSIFPHYADDR:
2559 case SIOCDIFPHYADDR:
2560 #ifdef INET6
2561 case SIOCSIFPHYADDR_IN6:
2562 #endif
2563 case SIOCSLIFPHYADDR:
2564 case SIOCADDMULTI:
2565 case SIOCDELMULTI:
2566 case SIOCSIFMEDIA:
2567 case SIOCSDRVSPEC:
2568 case SIOCG80211:
2569 case SIOCS80211:
2570 case SIOCS80211NWID:
2571 case SIOCS80211NWKEY:
2572 case SIOCS80211POWER:
2573 case SIOCS80211BSSID:
2574 case SIOCS80211CHANNEL:
2575 case SIOCSLINKSTR:
2576 if (l != NULL) {
2577 error = kauth_authorize_network(l->l_cred,
2578 KAUTH_NETWORK_INTERFACE,
2579 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2580 (void *)cmd, NULL);
2581 if (error != 0)
2582 goto out;
2583 }
2584 }
2585
2586 oif_flags = ifp->if_flags;
2587
2588 mutex_enter(ifp->if_ioctl_lock);
2589
2590 error = (*ifp->if_ioctl)(ifp, cmd, data);
2591 if (error != ENOTTY)
2592 ;
2593 else if (so->so_proto == NULL)
2594 error = EOPNOTSUPP;
2595 else {
2596 #ifdef COMPAT_OSOCK
2597 error = compat_ifioctl(so, ocmd, cmd, data, l);
2598 #else
2599 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2600 cmd, data, ifp);
2601 #endif
2602 }
2603
2604 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2605 if ((ifp->if_flags & IFF_UP) != 0) {
2606 int s = splnet();
2607 if_up(ifp);
2608 splx(s);
2609 }
2610 }
2611 #ifdef COMPAT_OIFREQ
2612 if (cmd != ocmd)
2613 ifreqn2o(oifr, ifr);
2614 #endif
2615
2616 mutex_exit(ifp->if_ioctl_lock);
2617 out:
2618 if_put(ifp, &psref);
2619 curlwp_bindx(bound);
2620 return error;
2621 }
2622
2623 /*
2624 * Return interface configuration
2625 * of system. List may be used
2626 * in later ioctl's (above) to get
2627 * other information.
2628 *
2629 * Each record is a struct ifreq. Before the addition of
2630 * sockaddr_storage, the API rule was that sockaddr flavors that did
2631 * not fit would extend beyond the struct ifreq, with the next struct
2632 * ifreq starting sa_len beyond the struct sockaddr. Because the
2633 * union in struct ifreq includes struct sockaddr_storage, every kind
2634 * of sockaddr must fit. Thus, there are no longer any overlength
2635 * records.
2636 *
2637 * Records are added to the user buffer if they fit, and ifc_len is
2638 * adjusted to the length that was written. Thus, the user is only
2639 * assured of getting the complete list if ifc_len on return is at
2640 * least sizeof(struct ifreq) less than it was on entry.
2641 *
2642 * If the user buffer pointer is NULL, this routine copies no data and
2643 * returns the amount of space that would be needed.
2644 *
2645 * Invariants:
2646 * ifrp points to the next part of the user's buffer to be used. If
2647 * ifrp != NULL, space holds the number of bytes remaining that we may
2648 * write at ifrp. Otherwise, space holds the number of bytes that
2649 * would have been written had there been adequate space.
2650 */
2651 /*ARGSUSED*/
2652 static int
2653 ifconf(u_long cmd, void *data)
2654 {
2655 struct ifconf *ifc = (struct ifconf *)data;
2656 struct ifnet *ifp;
2657 struct ifaddr *ifa;
2658 struct ifreq ifr, *ifrp = NULL;
2659 int space = 0, error = 0;
2660 const int sz = (int)sizeof(struct ifreq);
2661 const bool docopy = ifc->ifc_req != NULL;
2662 int s;
2663 int bound;
2664 struct psref psref;
2665
2666 if (docopy) {
2667 space = ifc->ifc_len;
2668 ifrp = ifc->ifc_req;
2669 }
2670
2671 bound = curlwp_bind();
2672 s = pserialize_read_enter();
2673 IFNET_READER_FOREACH(ifp) {
2674 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2675 pserialize_read_exit(s);
2676
2677 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2678 sizeof(ifr.ifr_name));
2679 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2680 error = ENAMETOOLONG;
2681 goto release_exit;
2682 }
2683 if (IFADDR_EMPTY(ifp)) {
2684 /* Interface with no addresses - send zero sockaddr. */
2685 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2686 if (!docopy) {
2687 space += sz;
2688 continue;
2689 }
2690 if (space >= sz) {
2691 error = copyout(&ifr, ifrp, sz);
2692 if (error != 0)
2693 goto release_exit;
2694 ifrp++;
2695 space -= sz;
2696 }
2697 }
2698
2699 IFADDR_FOREACH(ifa, ifp) {
2700 struct sockaddr *sa = ifa->ifa_addr;
2701 /* all sockaddrs must fit in sockaddr_storage */
2702 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2703
2704 if (!docopy) {
2705 space += sz;
2706 continue;
2707 }
2708 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2709 if (space >= sz) {
2710 error = copyout(&ifr, ifrp, sz);
2711 if (error != 0)
2712 goto release_exit;
2713 ifrp++; space -= sz;
2714 }
2715 }
2716
2717 s = pserialize_read_enter();
2718 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2719 }
2720 pserialize_read_exit(s);
2721 curlwp_bindx(bound);
2722
2723 if (docopy) {
2724 KASSERT(0 <= space && space <= ifc->ifc_len);
2725 ifc->ifc_len -= space;
2726 } else {
2727 KASSERT(space >= 0);
2728 ifc->ifc_len = space;
2729 }
2730 return (0);
2731
2732 release_exit:
2733 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2734 curlwp_bindx(bound);
2735 return error;
2736 }
2737
2738 int
2739 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2740 {
2741 uint8_t len;
2742 #ifdef COMPAT_OIFREQ
2743 struct ifreq ifrb;
2744 struct oifreq *oifr = NULL;
2745 u_long ocmd = cmd;
2746 cmd = compat_cvtcmd(cmd);
2747 if (cmd != ocmd) {
2748 oifr = (struct oifreq *)(void *)ifr;
2749 ifr = &ifrb;
2750 ifreqo2n(oifr, ifr);
2751 len = sizeof(oifr->ifr_addr);
2752 } else
2753 #endif
2754 len = sizeof(ifr->ifr_ifru.ifru_space);
2755
2756 if (len < sa->sa_len)
2757 return EFBIG;
2758
2759 memset(&ifr->ifr_addr, 0, len);
2760 sockaddr_copy(&ifr->ifr_addr, len, sa);
2761
2762 #ifdef COMPAT_OIFREQ
2763 if (cmd != ocmd)
2764 ifreqn2o(oifr, ifr);
2765 #endif
2766 return 0;
2767 }
2768
2769 /*
2770 * wrapper function for the drivers which doesn't have if_transmit().
2771 */
2772 int
2773 if_transmit(struct ifnet *ifp, struct mbuf *m)
2774 {
2775 int s, error;
2776
2777 s = splnet();
2778
2779 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2780 if (error != 0) {
2781 /* mbuf is already freed */
2782 goto out;
2783 }
2784
2785 ifp->if_obytes += m->m_pkthdr.len;;
2786 if (m->m_flags & M_MCAST)
2787 ifp->if_omcasts++;
2788
2789 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2790 (*ifp->if_start)(ifp);
2791 out:
2792 splx(s);
2793
2794 return error;
2795 }
2796
2797 /*
2798 * Queue message on interface, and start output if interface
2799 * not yet active.
2800 */
2801 int
2802 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2803 {
2804
2805 return (*ifp->if_transmit)(ifp, m);
2806 }
2807
2808 /*
2809 * Queue message on interface, possibly using a second fast queue
2810 */
2811 int
2812 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2813 {
2814 int error = 0;
2815
2816 if (ifq != NULL
2817 #ifdef ALTQ
2818 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2819 #endif
2820 ) {
2821 if (IF_QFULL(ifq)) {
2822 IF_DROP(&ifp->if_snd);
2823 m_freem(m);
2824 if (error == 0)
2825 error = ENOBUFS;
2826 } else
2827 IF_ENQUEUE(ifq, m);
2828 } else
2829 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2830 if (error != 0) {
2831 ++ifp->if_oerrors;
2832 return error;
2833 }
2834 return 0;
2835 }
2836
2837 int
2838 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2839 {
2840 int rc;
2841
2842 if (ifp->if_initaddr != NULL)
2843 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2844 else if (src ||
2845 /* FIXME: may not hold if_ioctl_lock */
2846 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2847 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2848
2849 return rc;
2850 }
2851
2852 int
2853 if_do_dad(struct ifnet *ifp)
2854 {
2855 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2856 return 0;
2857
2858 switch (ifp->if_type) {
2859 case IFT_FAITH:
2860 /*
2861 * These interfaces do not have the IFF_LOOPBACK flag,
2862 * but loop packets back. We do not have to do DAD on such
2863 * interfaces. We should even omit it, because loop-backed
2864 * responses would confuse the DAD procedure.
2865 */
2866 return 0;
2867 default:
2868 /*
2869 * Our DAD routine requires the interface up and running.
2870 * However, some interfaces can be up before the RUNNING
2871 * status. Additionaly, users may try to assign addresses
2872 * before the interface becomes up (or running).
2873 * We simply skip DAD in such a case as a work around.
2874 * XXX: we should rather mark "tentative" on such addresses,
2875 * and do DAD after the interface becomes ready.
2876 */
2877 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2878 (IFF_UP|IFF_RUNNING))
2879 return 0;
2880
2881 return 1;
2882 }
2883 }
2884
2885 int
2886 if_flags_set(ifnet_t *ifp, const short flags)
2887 {
2888 int rc;
2889
2890 if (ifp->if_setflags != NULL)
2891 rc = (*ifp->if_setflags)(ifp, flags);
2892 else {
2893 short cantflags, chgdflags;
2894 struct ifreq ifr;
2895
2896 chgdflags = ifp->if_flags ^ flags;
2897 cantflags = chgdflags & IFF_CANTCHANGE;
2898
2899 if (cantflags != 0)
2900 ifp->if_flags ^= cantflags;
2901
2902 /* Traditionally, we do not call if_ioctl after
2903 * setting/clearing only IFF_PROMISC if the interface
2904 * isn't IFF_UP. Uphold that tradition.
2905 */
2906 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2907 return 0;
2908
2909 memset(&ifr, 0, sizeof(ifr));
2910
2911 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2912 /* FIXME: may not hold if_ioctl_lock */
2913 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2914
2915 if (rc != 0 && cantflags != 0)
2916 ifp->if_flags ^= cantflags;
2917 }
2918
2919 return rc;
2920 }
2921
2922 int
2923 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2924 {
2925 int rc;
2926 struct ifreq ifr;
2927
2928 if (ifp->if_mcastop != NULL)
2929 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2930 else {
2931 ifreq_setaddr(cmd, &ifr, sa);
2932 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2933 }
2934
2935 return rc;
2936 }
2937
2938 static void
2939 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2940 struct ifaltq *ifq)
2941 {
2942 const struct sysctlnode *cnode, *rnode;
2943
2944 if (sysctl_createv(clog, 0, NULL, &rnode,
2945 CTLFLAG_PERMANENT,
2946 CTLTYPE_NODE, "interfaces",
2947 SYSCTL_DESCR("Per-interface controls"),
2948 NULL, 0, NULL, 0,
2949 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2950 goto bad;
2951
2952 if (sysctl_createv(clog, 0, &rnode, &rnode,
2953 CTLFLAG_PERMANENT,
2954 CTLTYPE_NODE, ifname,
2955 SYSCTL_DESCR("Interface controls"),
2956 NULL, 0, NULL, 0,
2957 CTL_CREATE, CTL_EOL) != 0)
2958 goto bad;
2959
2960 if (sysctl_createv(clog, 0, &rnode, &rnode,
2961 CTLFLAG_PERMANENT,
2962 CTLTYPE_NODE, "sndq",
2963 SYSCTL_DESCR("Interface output queue controls"),
2964 NULL, 0, NULL, 0,
2965 CTL_CREATE, CTL_EOL) != 0)
2966 goto bad;
2967
2968 if (sysctl_createv(clog, 0, &rnode, &cnode,
2969 CTLFLAG_PERMANENT,
2970 CTLTYPE_INT, "len",
2971 SYSCTL_DESCR("Current output queue length"),
2972 NULL, 0, &ifq->ifq_len, 0,
2973 CTL_CREATE, CTL_EOL) != 0)
2974 goto bad;
2975
2976 if (sysctl_createv(clog, 0, &rnode, &cnode,
2977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2978 CTLTYPE_INT, "maxlen",
2979 SYSCTL_DESCR("Maximum allowed output queue length"),
2980 NULL, 0, &ifq->ifq_maxlen, 0,
2981 CTL_CREATE, CTL_EOL) != 0)
2982 goto bad;
2983
2984 if (sysctl_createv(clog, 0, &rnode, &cnode,
2985 CTLFLAG_PERMANENT,
2986 CTLTYPE_INT, "drops",
2987 SYSCTL_DESCR("Packets dropped due to full output queue"),
2988 NULL, 0, &ifq->ifq_drops, 0,
2989 CTL_CREATE, CTL_EOL) != 0)
2990 goto bad;
2991
2992 return;
2993 bad:
2994 printf("%s: could not attach sysctl nodes\n", ifname);
2995 return;
2996 }
2997
2998 #if defined(INET) || defined(INET6)
2999
3000 #define SYSCTL_NET_PKTQ(q, cn, c) \
3001 static int \
3002 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3003 { \
3004 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3005 }
3006
3007 #if defined(INET)
3008 static int
3009 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3010 {
3011 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3012 }
3013 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3014 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3015 #endif
3016
3017 #if defined(INET6)
3018 static int
3019 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3020 {
3021 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3022 }
3023 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3024 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3025 #endif
3026
3027 static void
3028 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3029 {
3030 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3031 const char *pfname = NULL, *ipname = NULL;
3032 int ipn = 0, qid = 0;
3033
3034 switch (pf) {
3035 #if defined(INET)
3036 case PF_INET:
3037 len_func = sysctl_net_ip_pktq_items;
3038 maxlen_func = sysctl_net_ip_pktq_maxlen;
3039 drops_func = sysctl_net_ip_pktq_drops;
3040 pfname = "inet", ipn = IPPROTO_IP;
3041 ipname = "ip", qid = IPCTL_IFQ;
3042 break;
3043 #endif
3044 #if defined(INET6)
3045 case PF_INET6:
3046 len_func = sysctl_net_ip6_pktq_items;
3047 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3048 drops_func = sysctl_net_ip6_pktq_drops;
3049 pfname = "inet6", ipn = IPPROTO_IPV6;
3050 ipname = "ip6", qid = IPV6CTL_IFQ;
3051 break;
3052 #endif
3053 default:
3054 KASSERT(false);
3055 }
3056
3057 sysctl_createv(clog, 0, NULL, NULL,
3058 CTLFLAG_PERMANENT,
3059 CTLTYPE_NODE, pfname, NULL,
3060 NULL, 0, NULL, 0,
3061 CTL_NET, pf, CTL_EOL);
3062 sysctl_createv(clog, 0, NULL, NULL,
3063 CTLFLAG_PERMANENT,
3064 CTLTYPE_NODE, ipname, NULL,
3065 NULL, 0, NULL, 0,
3066 CTL_NET, pf, ipn, CTL_EOL);
3067 sysctl_createv(clog, 0, NULL, NULL,
3068 CTLFLAG_PERMANENT,
3069 CTLTYPE_NODE, "ifq",
3070 SYSCTL_DESCR("Protocol input queue controls"),
3071 NULL, 0, NULL, 0,
3072 CTL_NET, pf, ipn, qid, CTL_EOL);
3073
3074 sysctl_createv(clog, 0, NULL, NULL,
3075 CTLFLAG_PERMANENT,
3076 CTLTYPE_INT, "len",
3077 SYSCTL_DESCR("Current input queue length"),
3078 len_func, 0, NULL, 0,
3079 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3080 sysctl_createv(clog, 0, NULL, NULL,
3081 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3082 CTLTYPE_INT, "maxlen",
3083 SYSCTL_DESCR("Maximum allowed input queue length"),
3084 maxlen_func, 0, NULL, 0,
3085 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3086 sysctl_createv(clog, 0, NULL, NULL,
3087 CTLFLAG_PERMANENT,
3088 CTLTYPE_INT, "drops",
3089 SYSCTL_DESCR("Packets dropped due to full input queue"),
3090 drops_func, 0, NULL, 0,
3091 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3092 }
3093 #endif /* INET || INET6 */
3094
3095 static int
3096 if_sdl_sysctl(SYSCTLFN_ARGS)
3097 {
3098 struct ifnet *ifp;
3099 const struct sockaddr_dl *sdl;
3100 struct psref psref;
3101 int error = 0;
3102 int bound;
3103
3104 if (namelen != 1)
3105 return EINVAL;
3106
3107 bound = curlwp_bind();
3108 ifp = if_get_byindex(name[0], &psref);
3109 if (ifp == NULL) {
3110 error = ENODEV;
3111 goto out0;
3112 }
3113
3114 sdl = ifp->if_sadl;
3115 if (sdl == NULL) {
3116 *oldlenp = 0;
3117 goto out1;
3118 }
3119
3120 if (oldp == NULL) {
3121 *oldlenp = sdl->sdl_alen;
3122 goto out1;
3123 }
3124
3125 if (*oldlenp >= sdl->sdl_alen)
3126 *oldlenp = sdl->sdl_alen;
3127 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3128 out1:
3129 if_put(ifp, &psref);
3130 out0:
3131 curlwp_bindx(bound);
3132 return error;
3133 }
3134
3135 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3136 {
3137 const struct sysctlnode *rnode = NULL;
3138
3139 sysctl_createv(clog, 0, NULL, &rnode,
3140 CTLFLAG_PERMANENT,
3141 CTLTYPE_NODE, "sdl",
3142 SYSCTL_DESCR("Get active link-layer address"),
3143 if_sdl_sysctl, 0, NULL, 0,
3144 CTL_NET, CTL_CREATE, CTL_EOL);
3145 }
3146