if.c revision 1.345 1 /* $NetBSD: if.c,v 1.345 2016/06/22 10:44:32 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.345 2016/06/22 10:44:32 knakahara Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140
141 #ifdef INET6
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146 #include "ether.h"
147 #include "fddi.h"
148 #include "token.h"
149
150 #include "carp.h"
151 #if NCARP > 0
152 #include <netinet/ip_carp.h>
153 #endif
154
155 #include <compat/sys/sockio.h>
156 #include <compat/sys/socket.h>
157
158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
160
161 /*
162 * Global list of interfaces.
163 */
164 /* DEPRECATED. Remove it once kvm(3) users disappeared */
165 struct ifnet_head ifnet_list;
166
167 struct pslist_head ifnet_pslist;
168 static ifnet_t ** ifindex2ifnet = NULL;
169 static u_int if_index = 1;
170 static size_t if_indexlim = 0;
171 static uint64_t index_gen;
172 /* Mutex to protect the above objects. */
173 kmutex_t ifnet_mtx __cacheline_aligned;
174 struct psref_class *ifnet_psref_class __read_mostly;
175 static pserialize_t ifnet_psz;
176
177 static kmutex_t if_clone_mtx;
178
179 struct ifnet *lo0ifp;
180 int ifqmaxlen = IFQ_MAXLEN;
181
182 static int if_rt_walktree(struct rtentry *, void *);
183
184 static struct if_clone *if_clone_lookup(const char *, int *);
185
186 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
187 static int if_cloners_count;
188
189 /* Packet filtering hook for interfaces. */
190 pfil_head_t * if_pfil;
191
192 static kauth_listener_t if_listener;
193
194 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
197 struct ifaltq *);
198 static void if_slowtimo(void *);
199 static void if_free_sadl(struct ifnet *);
200 static void if_attachdomain1(struct ifnet *);
201 static int ifconf(u_long, void *);
202 static int if_transmit(struct ifnet *, struct mbuf *);
203 static int if_clone_create(const char *);
204 static int if_clone_destroy(const char *);
205 static void if_link_state_change_si(void *);
206
207 struct if_percpuq {
208 struct ifnet *ipq_ifp;
209 void *ipq_si;
210 struct percpu *ipq_ifqs; /* struct ifqueue */
211 };
212
213 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
214
215 static void if_percpuq_drops(void *, void *, struct cpu_info *);
216 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
217 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
218 struct if_percpuq *);
219
220 #if defined(INET) || defined(INET6)
221 static void sysctl_net_pktq_setup(struct sysctllog **, int);
222 #endif
223
224 static int
225 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
226 void *arg0, void *arg1, void *arg2, void *arg3)
227 {
228 int result;
229 enum kauth_network_req req;
230
231 result = KAUTH_RESULT_DEFER;
232 req = (enum kauth_network_req)arg1;
233
234 if (action != KAUTH_NETWORK_INTERFACE)
235 return result;
236
237 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
238 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
239 result = KAUTH_RESULT_ALLOW;
240
241 return result;
242 }
243
244 /*
245 * Network interface utility routines.
246 *
247 * Routines with ifa_ifwith* names take sockaddr *'s as
248 * parameters.
249 */
250 void
251 ifinit(void)
252 {
253 #if defined(INET)
254 sysctl_net_pktq_setup(NULL, PF_INET);
255 #endif
256 #ifdef INET6
257 if (in6_present)
258 sysctl_net_pktq_setup(NULL, PF_INET6);
259 #endif
260
261 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
262 if_listener_cb, NULL);
263
264 /* interfaces are available, inform socket code */
265 ifioctl = doifioctl;
266 }
267
268 /*
269 * XXX Initialization before configure().
270 * XXX hack to get pfil_add_hook working in autoconf.
271 */
272 void
273 ifinit1(void)
274 {
275 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
276 TAILQ_INIT(&ifnet_list);
277 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
278 ifnet_psz = pserialize_create();
279 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
280 PSLIST_INIT(&ifnet_pslist);
281 if_indexlim = 8;
282
283 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
284 KASSERT(if_pfil != NULL);
285
286 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
287 etherinit();
288 #endif
289 }
290
291 ifnet_t *
292 if_alloc(u_char type)
293 {
294 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
295 }
296
297 void
298 if_free(ifnet_t *ifp)
299 {
300 kmem_free(ifp, sizeof(ifnet_t));
301 }
302
303 void
304 if_initname(struct ifnet *ifp, const char *name, int unit)
305 {
306 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
307 "%s%d", name, unit);
308 }
309
310 /*
311 * Null routines used while an interface is going away. These routines
312 * just return an error.
313 */
314
315 int
316 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
317 const struct sockaddr *so, const struct rtentry *rt)
318 {
319
320 return ENXIO;
321 }
322
323 void
324 if_nullinput(struct ifnet *ifp, struct mbuf *m)
325 {
326
327 /* Nothing. */
328 }
329
330 void
331 if_nullstart(struct ifnet *ifp)
332 {
333
334 /* Nothing. */
335 }
336
337 int
338 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
339 {
340
341 return ENXIO;
342 }
343
344 int
345 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
346 {
347
348 return ENXIO;
349 }
350
351 int
352 if_nullinit(struct ifnet *ifp)
353 {
354
355 return ENXIO;
356 }
357
358 void
359 if_nullstop(struct ifnet *ifp, int disable)
360 {
361
362 /* Nothing. */
363 }
364
365 void
366 if_nullslowtimo(struct ifnet *ifp)
367 {
368
369 /* Nothing. */
370 }
371
372 void
373 if_nulldrain(struct ifnet *ifp)
374 {
375
376 /* Nothing. */
377 }
378
379 void
380 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
381 {
382 struct ifaddr *ifa;
383 struct sockaddr_dl *sdl;
384
385 ifp->if_addrlen = addrlen;
386 if_alloc_sadl(ifp);
387 ifa = ifp->if_dl;
388 sdl = satosdl(ifa->ifa_addr);
389
390 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
391 if (factory) {
392 ifp->if_hwdl = ifp->if_dl;
393 ifaref(ifp->if_hwdl);
394 }
395 /* TBD routing socket */
396 }
397
398 struct ifaddr *
399 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
400 {
401 unsigned socksize, ifasize;
402 int addrlen, namelen;
403 struct sockaddr_dl *mask, *sdl;
404 struct ifaddr *ifa;
405
406 namelen = strlen(ifp->if_xname);
407 addrlen = ifp->if_addrlen;
408 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
409 ifasize = sizeof(*ifa) + 2 * socksize;
410 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
411
412 sdl = (struct sockaddr_dl *)(ifa + 1);
413 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
414
415 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
416 ifp->if_xname, namelen, NULL, addrlen);
417 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
418 memset(&mask->sdl_data[0], 0xff, namelen);
419 ifa->ifa_rtrequest = link_rtrequest;
420 ifa->ifa_addr = (struct sockaddr *)sdl;
421 ifa->ifa_netmask = (struct sockaddr *)mask;
422
423 *sdlp = sdl;
424
425 return ifa;
426 }
427
428 static void
429 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
430 {
431 const struct sockaddr_dl *sdl;
432
433 ifp->if_dl = ifa;
434 ifaref(ifa);
435 sdl = satosdl(ifa->ifa_addr);
436 ifp->if_sadl = sdl;
437 }
438
439 /*
440 * Allocate the link level name for the specified interface. This
441 * is an attachment helper. It must be called after ifp->if_addrlen
442 * is initialized, which may not be the case when if_attach() is
443 * called.
444 */
445 void
446 if_alloc_sadl(struct ifnet *ifp)
447 {
448 struct ifaddr *ifa;
449 const struct sockaddr_dl *sdl;
450
451 /*
452 * If the interface already has a link name, release it
453 * now. This is useful for interfaces that can change
454 * link types, and thus switch link names often.
455 */
456 if (ifp->if_sadl != NULL)
457 if_free_sadl(ifp);
458
459 ifa = if_dl_create(ifp, &sdl);
460
461 ifa_insert(ifp, ifa);
462 if_sadl_setrefs(ifp, ifa);
463 }
464
465 static void
466 if_deactivate_sadl(struct ifnet *ifp)
467 {
468 struct ifaddr *ifa;
469
470 KASSERT(ifp->if_dl != NULL);
471
472 ifa = ifp->if_dl;
473
474 ifp->if_sadl = NULL;
475
476 ifp->if_dl = NULL;
477 ifafree(ifa);
478 }
479
480 void
481 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
482 const struct sockaddr_dl *sdl)
483 {
484 int s;
485
486 s = splnet();
487
488 if_deactivate_sadl(ifp);
489
490 if_sadl_setrefs(ifp, ifa);
491 IFADDR_FOREACH(ifa, ifp)
492 rtinit(ifa, RTM_LLINFO_UPD, 0);
493 splx(s);
494 }
495
496 /*
497 * Free the link level name for the specified interface. This is
498 * a detach helper. This is called from if_detach().
499 */
500 static void
501 if_free_sadl(struct ifnet *ifp)
502 {
503 struct ifaddr *ifa;
504 int s;
505
506 ifa = ifp->if_dl;
507 if (ifa == NULL) {
508 KASSERT(ifp->if_sadl == NULL);
509 return;
510 }
511
512 KASSERT(ifp->if_sadl != NULL);
513
514 s = splnet();
515 rtinit(ifa, RTM_DELETE, 0);
516 ifa_remove(ifp, ifa);
517 if_deactivate_sadl(ifp);
518 if (ifp->if_hwdl == ifa) {
519 ifafree(ifa);
520 ifp->if_hwdl = NULL;
521 }
522 splx(s);
523 }
524
525 static void
526 if_getindex(ifnet_t *ifp)
527 {
528 bool hitlimit = false;
529
530 ifp->if_index_gen = index_gen++;
531
532 ifp->if_index = if_index;
533 if (ifindex2ifnet == NULL) {
534 if_index++;
535 goto skip;
536 }
537 while (if_byindex(ifp->if_index)) {
538 /*
539 * If we hit USHRT_MAX, we skip back to 0 since
540 * there are a number of places where the value
541 * of if_index or if_index itself is compared
542 * to or stored in an unsigned short. By
543 * jumping back, we won't botch those assignments
544 * or comparisons.
545 */
546 if (++if_index == 0) {
547 if_index = 1;
548 } else if (if_index == USHRT_MAX) {
549 /*
550 * However, if we have to jump back to
551 * zero *twice* without finding an empty
552 * slot in ifindex2ifnet[], then there
553 * there are too many (>65535) interfaces.
554 */
555 if (hitlimit) {
556 panic("too many interfaces");
557 }
558 hitlimit = true;
559 if_index = 1;
560 }
561 ifp->if_index = if_index;
562 }
563 skip:
564 /*
565 * ifindex2ifnet is indexed by if_index. Since if_index will
566 * grow dynamically, it should grow too.
567 */
568 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
569 size_t m, n, oldlim;
570 void *q;
571
572 oldlim = if_indexlim;
573 while (ifp->if_index >= if_indexlim)
574 if_indexlim <<= 1;
575
576 /* grow ifindex2ifnet */
577 m = oldlim * sizeof(struct ifnet *);
578 n = if_indexlim * sizeof(struct ifnet *);
579 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
580 if (ifindex2ifnet != NULL) {
581 memcpy(q, ifindex2ifnet, m);
582 free(ifindex2ifnet, M_IFADDR);
583 }
584 ifindex2ifnet = (struct ifnet **)q;
585 }
586 ifindex2ifnet[ifp->if_index] = ifp;
587 }
588
589 /*
590 * Initialize an interface and assign an index for it.
591 *
592 * It must be called prior to a device specific attach routine
593 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
594 * and be followed by if_register:
595 *
596 * if_initialize(ifp);
597 * ether_ifattach(ifp, enaddr);
598 * if_register(ifp);
599 */
600 void
601 if_initialize(ifnet_t *ifp)
602 {
603 KASSERT(if_indexlim > 0);
604 TAILQ_INIT(&ifp->if_addrlist);
605
606 /*
607 * Link level name is allocated later by a separate call to
608 * if_alloc_sadl().
609 */
610
611 if (ifp->if_snd.ifq_maxlen == 0)
612 ifp->if_snd.ifq_maxlen = ifqmaxlen;
613
614 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
615
616 ifp->if_link_state = LINK_STATE_UNKNOWN;
617 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
618
619 ifp->if_capenable = 0;
620 ifp->if_csum_flags_tx = 0;
621 ifp->if_csum_flags_rx = 0;
622
623 #ifdef ALTQ
624 ifp->if_snd.altq_type = 0;
625 ifp->if_snd.altq_disc = NULL;
626 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
627 ifp->if_snd.altq_tbr = NULL;
628 ifp->if_snd.altq_ifp = ifp;
629 #endif
630
631 #ifdef NET_MPSAFE
632 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
633 #else
634 ifp->if_snd.ifq_lock = NULL;
635 #endif
636
637 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
638 (void)pfil_run_hooks(if_pfil,
639 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
640
641 IF_AFDATA_LOCK_INIT(ifp);
642
643 ifp->if_link_si = softint_establish(SOFTINT_NET, if_link_state_change_si, ifp);
644 if (ifp->if_link_si == NULL)
645 panic("%s: softint_establish() failed", __func__);
646
647 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
648 psref_target_init(&ifp->if_psref, ifnet_psref_class);
649 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
650
651 IFNET_LOCK();
652 if_getindex(ifp);
653 IFNET_UNLOCK();
654 }
655
656 /*
657 * Register an interface to the list of "active" interfaces.
658 */
659 void
660 if_register(ifnet_t *ifp)
661 {
662 /*
663 * If the driver has not supplied its own if_ioctl, then
664 * supply the default.
665 */
666 if (ifp->if_ioctl == NULL)
667 ifp->if_ioctl = ifioctl_common;
668
669 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
670
671 if (!STAILQ_EMPTY(&domains))
672 if_attachdomain1(ifp);
673
674 /* Announce the interface. */
675 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
676
677 if (ifp->if_slowtimo != NULL) {
678 ifp->if_slowtimo_ch =
679 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
680 callout_init(ifp->if_slowtimo_ch, 0);
681 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
682 if_slowtimo(ifp);
683 }
684
685 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
686 ifp->if_transmit = if_transmit;
687
688 IFNET_LOCK();
689 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
690 IFNET_WRITER_INSERT_TAIL(ifp);
691 IFNET_UNLOCK();
692 }
693
694 /*
695 * The if_percpuq framework
696 *
697 * It allows network device drivers to execute the network stack
698 * in softint (so called softint-based if_input). It utilizes
699 * softint and percpu ifqueue. It doesn't distribute any packets
700 * between CPUs, unlike pktqueue(9).
701 *
702 * Currently we support two options for device drivers to apply the framework:
703 * - Use it implicitly with less changes
704 * - If you use if_attach in driver's _attach function and if_input in
705 * driver's Rx interrupt handler, a packet is queued and a softint handles
706 * the packet implicitly
707 * - Use it explicitly in each driver (recommended)
708 * - You can use if_percpuq_* directly in your driver
709 * - In this case, you need to allocate struct if_percpuq in driver's softc
710 * - See wm(4) as a reference implementation
711 */
712
713 static void
714 if_percpuq_softint(void *arg)
715 {
716 struct if_percpuq *ipq = arg;
717 struct ifnet *ifp = ipq->ipq_ifp;
718 struct mbuf *m;
719
720 while ((m = if_percpuq_dequeue(ipq)) != NULL)
721 ifp->_if_input(ifp, m);
722 }
723
724 static void
725 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
726 {
727 struct ifqueue *const ifq = p;
728
729 memset(ifq, 0, sizeof(*ifq));
730 ifq->ifq_maxlen = IFQ_MAXLEN;
731 }
732
733 struct if_percpuq *
734 if_percpuq_create(struct ifnet *ifp)
735 {
736 struct if_percpuq *ipq;
737
738 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
739 if (ipq == NULL)
740 panic("kmem_zalloc failed");
741
742 ipq->ipq_ifp = ifp;
743 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
744 if_percpuq_softint, ipq);
745 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
746 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
747
748 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
749
750 return ipq;
751 }
752
753 static struct mbuf *
754 if_percpuq_dequeue(struct if_percpuq *ipq)
755 {
756 struct mbuf *m;
757 struct ifqueue *ifq;
758 int s;
759
760 s = splnet();
761 ifq = percpu_getref(ipq->ipq_ifqs);
762 IF_DEQUEUE(ifq, m);
763 percpu_putref(ipq->ipq_ifqs);
764 splx(s);
765
766 return m;
767 }
768
769 static void
770 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
771 {
772 struct ifqueue *const ifq = p;
773
774 IF_PURGE(ifq);
775 }
776
777 void
778 if_percpuq_destroy(struct if_percpuq *ipq)
779 {
780
781 /* if_detach may already destroy it */
782 if (ipq == NULL)
783 return;
784
785 softint_disestablish(ipq->ipq_si);
786 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
787 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
788 }
789
790 void
791 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
792 {
793 struct ifqueue *ifq;
794 int s;
795
796 KASSERT(ipq != NULL);
797
798 s = splnet();
799 ifq = percpu_getref(ipq->ipq_ifqs);
800 if (IF_QFULL(ifq)) {
801 IF_DROP(ifq);
802 percpu_putref(ipq->ipq_ifqs);
803 m_freem(m);
804 goto out;
805 }
806 IF_ENQUEUE(ifq, m);
807 percpu_putref(ipq->ipq_ifqs);
808
809 softint_schedule(ipq->ipq_si);
810 out:
811 splx(s);
812 }
813
814 static void
815 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
816 {
817 struct ifqueue *const ifq = p;
818 int *sum = arg;
819
820 *sum += ifq->ifq_drops;
821 }
822
823 static int
824 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
825 {
826 struct sysctlnode node;
827 struct if_percpuq *ipq;
828 int sum = 0;
829 int error;
830
831 node = *rnode;
832 ipq = node.sysctl_data;
833
834 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
835
836 node.sysctl_data = ∑
837 error = sysctl_lookup(SYSCTLFN_CALL(&node));
838 if (error != 0 || newp == NULL)
839 return error;
840
841 return 0;
842 }
843
844 static void
845 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
846 struct if_percpuq *ipq)
847 {
848 const struct sysctlnode *cnode, *rnode;
849
850 if (sysctl_createv(clog, 0, NULL, &rnode,
851 CTLFLAG_PERMANENT,
852 CTLTYPE_NODE, "interfaces",
853 SYSCTL_DESCR("Per-interface controls"),
854 NULL, 0, NULL, 0,
855 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
856 goto bad;
857
858 if (sysctl_createv(clog, 0, &rnode, &rnode,
859 CTLFLAG_PERMANENT,
860 CTLTYPE_NODE, ifname,
861 SYSCTL_DESCR("Interface controls"),
862 NULL, 0, NULL, 0,
863 CTL_CREATE, CTL_EOL) != 0)
864 goto bad;
865
866 if (sysctl_createv(clog, 0, &rnode, &rnode,
867 CTLFLAG_PERMANENT,
868 CTLTYPE_NODE, "rcvq",
869 SYSCTL_DESCR("Interface input queue controls"),
870 NULL, 0, NULL, 0,
871 CTL_CREATE, CTL_EOL) != 0)
872 goto bad;
873
874 #ifdef NOTYET
875 /* XXX Should show each per-CPU queue length? */
876 if (sysctl_createv(clog, 0, &rnode, &rnode,
877 CTLFLAG_PERMANENT,
878 CTLTYPE_INT, "len",
879 SYSCTL_DESCR("Current input queue length"),
880 sysctl_percpuq_len, 0, NULL, 0,
881 CTL_CREATE, CTL_EOL) != 0)
882 goto bad;
883
884 if (sysctl_createv(clog, 0, &rnode, &cnode,
885 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
886 CTLTYPE_INT, "maxlen",
887 SYSCTL_DESCR("Maximum allowed input queue length"),
888 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
889 CTL_CREATE, CTL_EOL) != 0)
890 goto bad;
891 #endif
892
893 if (sysctl_createv(clog, 0, &rnode, &cnode,
894 CTLFLAG_PERMANENT,
895 CTLTYPE_INT, "drops",
896 SYSCTL_DESCR("Total packets dropped due to full input queue"),
897 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
898 CTL_CREATE, CTL_EOL) != 0)
899 goto bad;
900
901 return;
902 bad:
903 printf("%s: could not attach sysctl nodes\n", ifname);
904 return;
905 }
906
907
908 /*
909 * The common interface input routine that is called by device drivers,
910 * which should be used only when the driver's rx handler already runs
911 * in softint.
912 */
913 void
914 if_input(struct ifnet *ifp, struct mbuf *m)
915 {
916
917 KASSERT(ifp->if_percpuq == NULL);
918 KASSERT(!cpu_intr_p());
919
920 ifp->_if_input(ifp, m);
921 }
922
923 /*
924 * DEPRECATED. Use if_initialize and if_register instead.
925 * See the above comment of if_initialize.
926 *
927 * Note that it implicitly enables if_percpuq to make drivers easy to
928 * migrate softint-based if_input without much changes. If you don't
929 * want to enable it, use if_initialize instead.
930 */
931 void
932 if_attach(ifnet_t *ifp)
933 {
934
935 if_initialize(ifp);
936 ifp->if_percpuq = if_percpuq_create(ifp);
937 if_register(ifp);
938 }
939
940 void
941 if_attachdomain(void)
942 {
943 struct ifnet *ifp;
944 int s;
945 int bound = curlwp_bind();
946
947 s = pserialize_read_enter();
948 IFNET_READER_FOREACH(ifp) {
949 struct psref psref;
950 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
951 pserialize_read_exit(s);
952 if_attachdomain1(ifp);
953 s = pserialize_read_enter();
954 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
955 }
956 pserialize_read_exit(s);
957 curlwp_bindx(bound);
958 }
959
960 static void
961 if_attachdomain1(struct ifnet *ifp)
962 {
963 struct domain *dp;
964 int s;
965
966 s = splnet();
967
968 /* address family dependent data region */
969 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
970 DOMAIN_FOREACH(dp) {
971 if (dp->dom_ifattach != NULL)
972 ifp->if_afdata[dp->dom_family] =
973 (*dp->dom_ifattach)(ifp);
974 }
975
976 splx(s);
977 }
978
979 /*
980 * Deactivate an interface. This points all of the procedure
981 * handles at error stubs. May be called from interrupt context.
982 */
983 void
984 if_deactivate(struct ifnet *ifp)
985 {
986 int s;
987
988 s = splnet();
989
990 ifp->if_output = if_nulloutput;
991 ifp->_if_input = if_nullinput;
992 ifp->if_start = if_nullstart;
993 ifp->if_transmit = if_nulltransmit;
994 ifp->if_ioctl = if_nullioctl;
995 ifp->if_init = if_nullinit;
996 ifp->if_stop = if_nullstop;
997 ifp->if_slowtimo = if_nullslowtimo;
998 ifp->if_drain = if_nulldrain;
999
1000 /* No more packets may be enqueued. */
1001 ifp->if_snd.ifq_maxlen = 0;
1002
1003 splx(s);
1004 }
1005
1006 void
1007 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1008 {
1009 struct ifaddr *ifa, *nifa;
1010
1011 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
1012 if (ifa->ifa_addr->sa_family != family)
1013 continue;
1014 (*purgeaddr)(ifa);
1015 }
1016 }
1017
1018 /*
1019 * Detach an interface from the list of "active" interfaces,
1020 * freeing any resources as we go along.
1021 *
1022 * NOTE: This routine must be called with a valid thread context,
1023 * as it may block.
1024 */
1025 void
1026 if_detach(struct ifnet *ifp)
1027 {
1028 struct socket so;
1029 struct ifaddr *ifa;
1030 #ifdef IFAREF_DEBUG
1031 struct ifaddr *last_ifa = NULL;
1032 #endif
1033 struct domain *dp;
1034 const struct protosw *pr;
1035 int s, i, family, purged;
1036 uint64_t xc;
1037
1038 /*
1039 * XXX It's kind of lame that we have to have the
1040 * XXX socket structure...
1041 */
1042 memset(&so, 0, sizeof(so));
1043
1044 s = splnet();
1045
1046 sysctl_teardown(&ifp->if_sysctl_log);
1047 mutex_enter(ifp->if_ioctl_lock);
1048 ifp->if_ioctl = if_nullioctl;
1049 mutex_exit(ifp->if_ioctl_lock);
1050
1051 IFNET_LOCK();
1052 ifindex2ifnet[ifp->if_index] = NULL;
1053 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1054 IFNET_WRITER_REMOVE(ifp);
1055 pserialize_perform(ifnet_psz);
1056 IFNET_UNLOCK();
1057
1058 mutex_obj_free(ifp->if_ioctl_lock);
1059 ifp->if_ioctl_lock = NULL;
1060
1061 if (ifp->if_slowtimo != NULL) {
1062 ifp->if_slowtimo = NULL;
1063 callout_halt(ifp->if_slowtimo_ch, NULL);
1064 callout_destroy(ifp->if_slowtimo_ch);
1065 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1066 }
1067
1068 /*
1069 * Do an if_down() to give protocols a chance to do something.
1070 */
1071 if_down(ifp);
1072
1073 #ifdef ALTQ
1074 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1075 altq_disable(&ifp->if_snd);
1076 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1077 altq_detach(&ifp->if_snd);
1078 #endif
1079
1080 if (ifp->if_snd.ifq_lock)
1081 mutex_obj_free(ifp->if_snd.ifq_lock);
1082
1083 #if NCARP > 0
1084 /* Remove the interface from any carp group it is a part of. */
1085 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1086 carp_ifdetach(ifp);
1087 #endif
1088
1089 /*
1090 * Rip all the addresses off the interface. This should make
1091 * all of the routes go away.
1092 *
1093 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1094 * from the list, including our "cursor", ifa. For safety,
1095 * and to honor the TAILQ abstraction, I just restart the
1096 * loop after each removal. Note that the loop will exit
1097 * when all of the remaining ifaddrs belong to the AF_LINK
1098 * family. I am counting on the historical fact that at
1099 * least one pr_usrreq in each address domain removes at
1100 * least one ifaddr.
1101 */
1102 again:
1103 IFADDR_FOREACH(ifa, ifp) {
1104 family = ifa->ifa_addr->sa_family;
1105 #ifdef IFAREF_DEBUG
1106 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1107 ifa, family, ifa->ifa_refcnt);
1108 if (last_ifa != NULL && ifa == last_ifa)
1109 panic("if_detach: loop detected");
1110 last_ifa = ifa;
1111 #endif
1112 if (family == AF_LINK)
1113 continue;
1114 dp = pffinddomain(family);
1115 #ifdef DIAGNOSTIC
1116 if (dp == NULL)
1117 panic("if_detach: no domain for AF %d",
1118 family);
1119 #endif
1120 /*
1121 * XXX These PURGEIF calls are redundant with the
1122 * purge-all-families calls below, but are left in for
1123 * now both to make a smaller change, and to avoid
1124 * unplanned interactions with clearing of
1125 * ifp->if_addrlist.
1126 */
1127 purged = 0;
1128 for (pr = dp->dom_protosw;
1129 pr < dp->dom_protoswNPROTOSW; pr++) {
1130 so.so_proto = pr;
1131 if (pr->pr_usrreqs) {
1132 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1133 purged = 1;
1134 }
1135 }
1136 if (purged == 0) {
1137 /*
1138 * XXX What's really the best thing to do
1139 * XXX here? --thorpej (at) NetBSD.org
1140 */
1141 printf("if_detach: WARNING: AF %d not purged\n",
1142 family);
1143 ifa_remove(ifp, ifa);
1144 }
1145 goto again;
1146 }
1147
1148 if_free_sadl(ifp);
1149
1150 /* Walk the routing table looking for stragglers. */
1151 for (i = 0; i <= AF_MAX; i++) {
1152 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1153 continue;
1154 }
1155
1156 DOMAIN_FOREACH(dp) {
1157 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1158 {
1159 void *p = ifp->if_afdata[dp->dom_family];
1160 if (p) {
1161 ifp->if_afdata[dp->dom_family] = NULL;
1162 (*dp->dom_ifdetach)(ifp, p);
1163 }
1164 }
1165
1166 /*
1167 * One would expect multicast memberships (INET and
1168 * INET6) on UDP sockets to be purged by the PURGEIF
1169 * calls above, but if all addresses were removed from
1170 * the interface prior to destruction, the calls will
1171 * not be made (e.g. ppp, for which pppd(8) generally
1172 * removes addresses before destroying the interface).
1173 * Because there is no invariant that multicast
1174 * memberships only exist for interfaces with IPv4
1175 * addresses, we must call PURGEIF regardless of
1176 * addresses. (Protocols which might store ifnet
1177 * pointers are marked with PR_PURGEIF.)
1178 */
1179 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1180 so.so_proto = pr;
1181 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1182 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1183 }
1184 }
1185
1186 (void)pfil_run_hooks(if_pfil,
1187 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1188 (void)pfil_head_destroy(ifp->if_pfil);
1189
1190 /* Announce that the interface is gone. */
1191 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1192
1193 IF_AFDATA_LOCK_DESTROY(ifp);
1194
1195 softint_disestablish(ifp->if_link_si);
1196 ifp->if_link_si = NULL;
1197
1198 /*
1199 * remove packets that came from ifp, from software interrupt queues.
1200 */
1201 DOMAIN_FOREACH(dp) {
1202 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1203 struct ifqueue *iq = dp->dom_ifqueues[i];
1204 if (iq == NULL)
1205 break;
1206 dp->dom_ifqueues[i] = NULL;
1207 if_detach_queues(ifp, iq);
1208 }
1209 }
1210
1211 /*
1212 * IP queues have to be processed separately: net-queue barrier
1213 * ensures that the packets are dequeued while a cross-call will
1214 * ensure that the interrupts have completed. FIXME: not quite..
1215 */
1216 #ifdef INET
1217 pktq_barrier(ip_pktq);
1218 #endif
1219 #ifdef INET6
1220 if (in6_present)
1221 pktq_barrier(ip6_pktq);
1222 #endif
1223 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1224 xc_wait(xc);
1225
1226 /* Wait for all readers to drain before freeing. */
1227 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1228 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1229
1230 if (ifp->if_percpuq != NULL) {
1231 if_percpuq_destroy(ifp->if_percpuq);
1232 ifp->if_percpuq = NULL;
1233 }
1234
1235 splx(s);
1236 }
1237
1238 static void
1239 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1240 {
1241 struct mbuf *m, *prev, *next;
1242
1243 prev = NULL;
1244 for (m = q->ifq_head; m != NULL; m = next) {
1245 KASSERT((m->m_flags & M_PKTHDR) != 0);
1246
1247 next = m->m_nextpkt;
1248 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1249 prev = m;
1250 continue;
1251 }
1252
1253 if (prev != NULL)
1254 prev->m_nextpkt = m->m_nextpkt;
1255 else
1256 q->ifq_head = m->m_nextpkt;
1257 if (q->ifq_tail == m)
1258 q->ifq_tail = prev;
1259 q->ifq_len--;
1260
1261 m->m_nextpkt = NULL;
1262 m_freem(m);
1263 IF_DROP(q);
1264 }
1265 }
1266
1267 /*
1268 * Callback for a radix tree walk to delete all references to an
1269 * ifnet.
1270 */
1271 static int
1272 if_rt_walktree(struct rtentry *rt, void *v)
1273 {
1274 struct ifnet *ifp = (struct ifnet *)v;
1275 int error;
1276 struct rtentry *retrt;
1277
1278 if (rt->rt_ifp != ifp)
1279 return 0;
1280
1281 /* Delete the entry. */
1282 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1283 rt_mask(rt), rt->rt_flags, &retrt);
1284 if (error == 0) {
1285 KASSERT(retrt == rt);
1286 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1287 retrt->rt_ifp = NULL;
1288 rtfree(retrt);
1289 } else {
1290 printf("%s: warning: unable to delete rtentry @ %p, "
1291 "error = %d\n", ifp->if_xname, rt, error);
1292 }
1293 return ERESTART;
1294 }
1295
1296 /*
1297 * Create a clone network interface.
1298 */
1299 static int
1300 if_clone_create(const char *name)
1301 {
1302 struct if_clone *ifc;
1303 int unit;
1304 struct ifnet *ifp;
1305 struct psref psref;
1306
1307 ifc = if_clone_lookup(name, &unit);
1308 if (ifc == NULL)
1309 return EINVAL;
1310
1311 ifp = if_get(name, &psref);
1312 if (ifp != NULL) {
1313 if_put(ifp, &psref);
1314 return EEXIST;
1315 }
1316
1317 return (*ifc->ifc_create)(ifc, unit);
1318 }
1319
1320 /*
1321 * Destroy a clone network interface.
1322 */
1323 static int
1324 if_clone_destroy(const char *name)
1325 {
1326 struct if_clone *ifc;
1327 struct ifnet *ifp;
1328 struct psref psref;
1329
1330 ifc = if_clone_lookup(name, NULL);
1331 if (ifc == NULL)
1332 return EINVAL;
1333
1334 if (ifc->ifc_destroy == NULL)
1335 return EOPNOTSUPP;
1336
1337 ifp = if_get(name, &psref);
1338 if (ifp == NULL)
1339 return ENXIO;
1340
1341 /* We have to disable ioctls here */
1342 mutex_enter(ifp->if_ioctl_lock);
1343 ifp->if_ioctl = if_nullioctl;
1344 mutex_exit(ifp->if_ioctl_lock);
1345
1346 /*
1347 * We cannot call ifc_destroy with holding ifp.
1348 * Releasing ifp here is safe thanks to if_clone_mtx.
1349 */
1350 if_put(ifp, &psref);
1351
1352 return (*ifc->ifc_destroy)(ifp);
1353 }
1354
1355 /*
1356 * Look up a network interface cloner.
1357 */
1358 static struct if_clone *
1359 if_clone_lookup(const char *name, int *unitp)
1360 {
1361 struct if_clone *ifc;
1362 const char *cp;
1363 char *dp, ifname[IFNAMSIZ + 3];
1364 int unit;
1365
1366 strcpy(ifname, "if_");
1367 /* separate interface name from unit */
1368 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1369 *cp && (*cp < '0' || *cp > '9');)
1370 *dp++ = *cp++;
1371
1372 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1373 return NULL; /* No name or unit number */
1374 *dp++ = '\0';
1375
1376 again:
1377 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1378 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1379 break;
1380 }
1381
1382 if (ifc == NULL) {
1383 if (*ifname == '\0' ||
1384 module_autoload(ifname, MODULE_CLASS_DRIVER))
1385 return NULL;
1386 *ifname = '\0';
1387 goto again;
1388 }
1389
1390 unit = 0;
1391 while (cp - name < IFNAMSIZ && *cp) {
1392 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1393 /* Bogus unit number. */
1394 return NULL;
1395 }
1396 unit = (unit * 10) + (*cp++ - '0');
1397 }
1398
1399 if (unitp != NULL)
1400 *unitp = unit;
1401 return ifc;
1402 }
1403
1404 /*
1405 * Register a network interface cloner.
1406 */
1407 void
1408 if_clone_attach(struct if_clone *ifc)
1409 {
1410
1411 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1412 if_cloners_count++;
1413 }
1414
1415 /*
1416 * Unregister a network interface cloner.
1417 */
1418 void
1419 if_clone_detach(struct if_clone *ifc)
1420 {
1421
1422 LIST_REMOVE(ifc, ifc_list);
1423 if_cloners_count--;
1424 }
1425
1426 /*
1427 * Provide list of interface cloners to userspace.
1428 */
1429 int
1430 if_clone_list(int buf_count, char *buffer, int *total)
1431 {
1432 char outbuf[IFNAMSIZ], *dst;
1433 struct if_clone *ifc;
1434 int count, error = 0;
1435
1436 *total = if_cloners_count;
1437 if ((dst = buffer) == NULL) {
1438 /* Just asking how many there are. */
1439 return 0;
1440 }
1441
1442 if (buf_count < 0)
1443 return EINVAL;
1444
1445 count = (if_cloners_count < buf_count) ?
1446 if_cloners_count : buf_count;
1447
1448 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1449 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1450 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1451 if (outbuf[sizeof(outbuf) - 1] != '\0')
1452 return ENAMETOOLONG;
1453 error = copyout(outbuf, dst, sizeof(outbuf));
1454 if (error != 0)
1455 break;
1456 }
1457
1458 return error;
1459 }
1460
1461 void
1462 ifaref(struct ifaddr *ifa)
1463 {
1464 ifa->ifa_refcnt++;
1465 }
1466
1467 void
1468 ifafree(struct ifaddr *ifa)
1469 {
1470 KASSERT(ifa != NULL);
1471 KASSERT(ifa->ifa_refcnt > 0);
1472
1473 if (--ifa->ifa_refcnt == 0) {
1474 free(ifa, M_IFADDR);
1475 }
1476 }
1477
1478 void
1479 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1480 {
1481 ifa->ifa_ifp = ifp;
1482 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1483 ifaref(ifa);
1484 }
1485
1486 void
1487 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1488 {
1489 KASSERT(ifa->ifa_ifp == ifp);
1490 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1491 ifafree(ifa);
1492 }
1493
1494 static inline int
1495 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1496 {
1497 return sockaddr_cmp(sa1, sa2) == 0;
1498 }
1499
1500 /*
1501 * Locate an interface based on a complete address.
1502 */
1503 /*ARGSUSED*/
1504 struct ifaddr *
1505 ifa_ifwithaddr(const struct sockaddr *addr)
1506 {
1507 struct ifnet *ifp;
1508 struct ifaddr *ifa;
1509 int s;
1510
1511 s = pserialize_read_enter();
1512 IFNET_READER_FOREACH(ifp) {
1513 if (ifp->if_output == if_nulloutput)
1514 continue;
1515 IFADDR_FOREACH(ifa, ifp) {
1516 if (ifa->ifa_addr->sa_family != addr->sa_family)
1517 continue;
1518 if (equal(addr, ifa->ifa_addr))
1519 return ifa;
1520 if ((ifp->if_flags & IFF_BROADCAST) &&
1521 ifa->ifa_broadaddr &&
1522 /* IP6 doesn't have broadcast */
1523 ifa->ifa_broadaddr->sa_len != 0 &&
1524 equal(ifa->ifa_broadaddr, addr))
1525 return ifa;
1526 }
1527 }
1528 pserialize_read_exit(s);
1529 return NULL;
1530 }
1531
1532 /*
1533 * Locate the point to point interface with a given destination address.
1534 */
1535 /*ARGSUSED*/
1536 struct ifaddr *
1537 ifa_ifwithdstaddr(const struct sockaddr *addr)
1538 {
1539 struct ifnet *ifp;
1540 struct ifaddr *ifa;
1541 int s;
1542
1543 s = pserialize_read_enter();
1544 IFNET_READER_FOREACH(ifp) {
1545 if (ifp->if_output == if_nulloutput)
1546 continue;
1547 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1548 continue;
1549 IFADDR_FOREACH(ifa, ifp) {
1550 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1551 ifa->ifa_dstaddr == NULL)
1552 continue;
1553 if (equal(addr, ifa->ifa_dstaddr))
1554 return ifa;
1555 }
1556 }
1557 pserialize_read_exit(s);
1558 return NULL;
1559 }
1560
1561 /*
1562 * Find an interface on a specific network. If many, choice
1563 * is most specific found.
1564 */
1565 struct ifaddr *
1566 ifa_ifwithnet(const struct sockaddr *addr)
1567 {
1568 struct ifnet *ifp;
1569 struct ifaddr *ifa;
1570 const struct sockaddr_dl *sdl;
1571 struct ifaddr *ifa_maybe = 0;
1572 u_int af = addr->sa_family;
1573 const char *addr_data = addr->sa_data, *cplim;
1574 int s;
1575
1576 if (af == AF_LINK) {
1577 sdl = satocsdl(addr);
1578 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1579 ifindex2ifnet[sdl->sdl_index] &&
1580 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) {
1581 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1582 }
1583 }
1584 #ifdef NETATALK
1585 if (af == AF_APPLETALK) {
1586 const struct sockaddr_at *sat, *sat2;
1587 sat = (const struct sockaddr_at *)addr;
1588 s = pserialize_read_enter();
1589 IFNET_READER_FOREACH(ifp) {
1590 if (ifp->if_output == if_nulloutput)
1591 continue;
1592 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1593 if (ifa == NULL)
1594 continue;
1595 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1596 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1597 return ifa; /* exact match */
1598 if (ifa_maybe == NULL) {
1599 /* else keep the if with the right range */
1600 ifa_maybe = ifa;
1601 }
1602 }
1603 pserialize_read_exit(s);
1604 return ifa_maybe;
1605 }
1606 #endif
1607 s = pserialize_read_enter();
1608 IFNET_READER_FOREACH(ifp) {
1609 if (ifp->if_output == if_nulloutput)
1610 continue;
1611 IFADDR_FOREACH(ifa, ifp) {
1612 const char *cp, *cp2, *cp3;
1613
1614 if (ifa->ifa_addr->sa_family != af ||
1615 ifa->ifa_netmask == NULL)
1616 next: continue;
1617 cp = addr_data;
1618 cp2 = ifa->ifa_addr->sa_data;
1619 cp3 = ifa->ifa_netmask->sa_data;
1620 cplim = (const char *)ifa->ifa_netmask +
1621 ifa->ifa_netmask->sa_len;
1622 while (cp3 < cplim) {
1623 if ((*cp++ ^ *cp2++) & *cp3++) {
1624 /* want to continue for() loop */
1625 goto next;
1626 }
1627 }
1628 if (ifa_maybe == NULL ||
1629 rt_refines(ifa->ifa_netmask,
1630 ifa_maybe->ifa_netmask))
1631 ifa_maybe = ifa;
1632 }
1633 }
1634 pserialize_read_exit(s);
1635 return ifa_maybe;
1636 }
1637
1638 /*
1639 * Find the interface of the addresss.
1640 */
1641 struct ifaddr *
1642 ifa_ifwithladdr(const struct sockaddr *addr)
1643 {
1644 struct ifaddr *ia;
1645
1646 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1647 (ia = ifa_ifwithnet(addr)))
1648 return ia;
1649 return NULL;
1650 }
1651
1652 /*
1653 * Find an interface using a specific address family
1654 */
1655 struct ifaddr *
1656 ifa_ifwithaf(int af)
1657 {
1658 struct ifnet *ifp;
1659 struct ifaddr *ifa = NULL;
1660 int s;
1661
1662 s = pserialize_read_enter();
1663 IFNET_READER_FOREACH(ifp) {
1664 if (ifp->if_output == if_nulloutput)
1665 continue;
1666 IFADDR_FOREACH(ifa, ifp) {
1667 if (ifa->ifa_addr->sa_family == af)
1668 goto out;
1669 }
1670 }
1671 out:
1672 pserialize_read_exit(s);
1673 return ifa;
1674 }
1675
1676 /*
1677 * Find an interface address specific to an interface best matching
1678 * a given address.
1679 */
1680 struct ifaddr *
1681 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1682 {
1683 struct ifaddr *ifa;
1684 const char *cp, *cp2, *cp3;
1685 const char *cplim;
1686 struct ifaddr *ifa_maybe = 0;
1687 u_int af = addr->sa_family;
1688
1689 if (ifp->if_output == if_nulloutput)
1690 return NULL;
1691
1692 if (af >= AF_MAX)
1693 return NULL;
1694
1695 IFADDR_FOREACH(ifa, ifp) {
1696 if (ifa->ifa_addr->sa_family != af)
1697 continue;
1698 ifa_maybe = ifa;
1699 if (ifa->ifa_netmask == NULL) {
1700 if (equal(addr, ifa->ifa_addr) ||
1701 (ifa->ifa_dstaddr &&
1702 equal(addr, ifa->ifa_dstaddr)))
1703 return ifa;
1704 continue;
1705 }
1706 cp = addr->sa_data;
1707 cp2 = ifa->ifa_addr->sa_data;
1708 cp3 = ifa->ifa_netmask->sa_data;
1709 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1710 for (; cp3 < cplim; cp3++) {
1711 if ((*cp++ ^ *cp2++) & *cp3)
1712 break;
1713 }
1714 if (cp3 == cplim)
1715 return ifa;
1716 }
1717 return ifa_maybe;
1718 }
1719
1720 /*
1721 * Default action when installing a route with a Link Level gateway.
1722 * Lookup an appropriate real ifa to point to.
1723 * This should be moved to /sys/net/link.c eventually.
1724 */
1725 void
1726 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1727 {
1728 struct ifaddr *ifa;
1729 const struct sockaddr *dst;
1730 struct ifnet *ifp;
1731
1732 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1733 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1734 return;
1735 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1736 rt_replace_ifa(rt, ifa);
1737 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1738 ifa->ifa_rtrequest(cmd, rt, info);
1739 }
1740 }
1741
1742 /*
1743 * bitmask macros to manage a densely packed link_state change queue.
1744 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1745 * LINK_STATE_UP(2) we need 2 bits for each state change.
1746 * As a state change to store is 0, treat all bits set as an unset item.
1747 */
1748 #define LQ_ITEM_BITS 2
1749 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1750 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1751 #define LINK_STATE_UNSET LQ_ITEM_MASK
1752 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1753 #define LQ_STORE(q, i, v) \
1754 do { \
1755 (q) &= ~LQ_MASK((i)); \
1756 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1757 } while (0 /* CONSTCOND */)
1758 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1759 #define LQ_POP(q, v) \
1760 do { \
1761 (v) = LQ_ITEM((q), 0); \
1762 (q) >>= LQ_ITEM_BITS; \
1763 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1764 } while (0 /* CONSTCOND */)
1765 #define LQ_PUSH(q, v) \
1766 do { \
1767 (q) >>= LQ_ITEM_BITS; \
1768 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1769 } while (0 /* CONSTCOND */)
1770 #define LQ_FIND_UNSET(q, i) \
1771 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1772 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1773 break; \
1774 }
1775 /*
1776 * Handle a change in the interface link state and
1777 * queue notifications.
1778 */
1779 void
1780 if_link_state_change(struct ifnet *ifp, int link_state)
1781 {
1782 int s, idx;
1783
1784 /* Ensure change is to a valid state */
1785 switch (link_state) {
1786 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1787 case LINK_STATE_DOWN: /* FALLTHROUGH */
1788 case LINK_STATE_UP:
1789 break;
1790 default:
1791 #ifdef DEBUG
1792 printf("%s: invalid link state %d\n",
1793 ifp->if_xname, link_state);
1794 #endif
1795 return;
1796 }
1797
1798 s = splnet();
1799
1800 /* Find the last unset event in the queue. */
1801 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1802
1803 /*
1804 * Ensure link_state doesn't match the last event in the queue.
1805 * ifp->if_link_state is not checked and set here because
1806 * that would present an inconsistent picture to the system.
1807 */
1808 if (idx != 0 &&
1809 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1810 goto out;
1811
1812 /* Handle queue overflow. */
1813 if (idx == LQ_MAX(ifp->if_link_queue)) {
1814 uint8_t lost;
1815
1816 /*
1817 * The DOWN state must be protected from being pushed off
1818 * the queue to ensure that userland will always be
1819 * in a sane state.
1820 * Because DOWN is protected, there is no need to protect
1821 * UNKNOWN.
1822 * It should be invalid to change from any other state to
1823 * UNKNOWN anyway ...
1824 */
1825 lost = LQ_ITEM(ifp->if_link_queue, 0);
1826 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1827 if (lost == LINK_STATE_DOWN) {
1828 lost = LQ_ITEM(ifp->if_link_queue, 0);
1829 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1830 }
1831 printf("%s: lost link state change %s\n",
1832 ifp->if_xname,
1833 lost == LINK_STATE_UP ? "UP" :
1834 lost == LINK_STATE_DOWN ? "DOWN" :
1835 "UNKNOWN");
1836 } else
1837 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1838
1839 softint_schedule(ifp->if_link_si);
1840
1841 out:
1842 splx(s);
1843 }
1844
1845 /*
1846 * Handle interface link state change notifications.
1847 * Must be called at splnet().
1848 */
1849 static void
1850 if_link_state_change0(struct ifnet *ifp, int link_state)
1851 {
1852 struct domain *dp;
1853
1854 /* Ensure the change is still valid. */
1855 if (ifp->if_link_state == link_state)
1856 return;
1857
1858 #ifdef DEBUG
1859 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1860 link_state == LINK_STATE_UP ? "UP" :
1861 link_state == LINK_STATE_DOWN ? "DOWN" :
1862 "UNKNOWN",
1863 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1864 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1865 "UNKNOWN");
1866 #endif
1867
1868 /*
1869 * When going from UNKNOWN to UP, we need to mark existing
1870 * addresses as tentative and restart DAD as we may have
1871 * erroneously not found a duplicate.
1872 *
1873 * This needs to happen before rt_ifmsg to avoid a race where
1874 * listeners would have an address and expect it to work right
1875 * away.
1876 */
1877 if (link_state == LINK_STATE_UP &&
1878 ifp->if_link_state == LINK_STATE_UNKNOWN)
1879 {
1880 DOMAIN_FOREACH(dp) {
1881 if (dp->dom_if_link_state_change != NULL)
1882 dp->dom_if_link_state_change(ifp,
1883 LINK_STATE_DOWN);
1884 }
1885 }
1886
1887 ifp->if_link_state = link_state;
1888
1889 /* Notify that the link state has changed. */
1890 rt_ifmsg(ifp);
1891
1892 #if NCARP > 0
1893 if (ifp->if_carp)
1894 carp_carpdev_state(ifp);
1895 #endif
1896
1897 DOMAIN_FOREACH(dp) {
1898 if (dp->dom_if_link_state_change != NULL)
1899 dp->dom_if_link_state_change(ifp, link_state);
1900 }
1901 }
1902
1903 /*
1904 * Process the interface link state change queue.
1905 */
1906 static void
1907 if_link_state_change_si(void *arg)
1908 {
1909 struct ifnet *ifp = arg;
1910 int s;
1911 uint8_t state;
1912
1913 s = splnet();
1914
1915 /* Pop a link state change from the queue and process it. */
1916 LQ_POP(ifp->if_link_queue, state);
1917 if_link_state_change0(ifp, state);
1918
1919 /* If there is a link state change to come, schedule it. */
1920 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
1921 softint_schedule(ifp->if_link_si);
1922
1923 splx(s);
1924 }
1925
1926 /*
1927 * Default action when installing a local route on a point-to-point
1928 * interface.
1929 */
1930 void
1931 p2p_rtrequest(int req, struct rtentry *rt,
1932 __unused const struct rt_addrinfo *info)
1933 {
1934 struct ifnet *ifp = rt->rt_ifp;
1935 struct ifaddr *ifa, *lo0ifa;
1936
1937 switch (req) {
1938 case RTM_ADD:
1939 if ((rt->rt_flags & RTF_LOCAL) == 0)
1940 break;
1941
1942 IFADDR_FOREACH(ifa, ifp) {
1943 if (equal(rt_getkey(rt), ifa->ifa_addr))
1944 break;
1945 }
1946 if (ifa == NULL)
1947 break;
1948
1949 /*
1950 * Ensure lo0 has an address of the same family.
1951 */
1952 IFADDR_FOREACH(lo0ifa, lo0ifp) {
1953 if (lo0ifa->ifa_addr->sa_family ==
1954 ifa->ifa_addr->sa_family)
1955 break;
1956 }
1957 if (lo0ifa == NULL)
1958 break;
1959
1960 rt->rt_ifp = lo0ifp;
1961
1962 /*
1963 * Make sure to set rt->rt_ifa to the interface
1964 * address we are using, otherwise we will have trouble
1965 * with source address selection.
1966 */
1967 if (ifa != rt->rt_ifa)
1968 rt_replace_ifa(rt, ifa);
1969 break;
1970 case RTM_DELETE:
1971 default:
1972 break;
1973 }
1974 }
1975
1976 /*
1977 * Mark an interface down and notify protocols of
1978 * the transition.
1979 * NOTE: must be called at splsoftnet or equivalent.
1980 */
1981 void
1982 if_down(struct ifnet *ifp)
1983 {
1984 struct ifaddr *ifa;
1985 struct domain *dp;
1986
1987 ifp->if_flags &= ~IFF_UP;
1988 nanotime(&ifp->if_lastchange);
1989 IFADDR_FOREACH(ifa, ifp)
1990 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1991 IFQ_PURGE(&ifp->if_snd);
1992 #if NCARP > 0
1993 if (ifp->if_carp)
1994 carp_carpdev_state(ifp);
1995 #endif
1996 rt_ifmsg(ifp);
1997 DOMAIN_FOREACH(dp) {
1998 if (dp->dom_if_down)
1999 dp->dom_if_down(ifp);
2000 }
2001 }
2002
2003 /*
2004 * Mark an interface up and notify protocols of
2005 * the transition.
2006 * NOTE: must be called at splsoftnet or equivalent.
2007 */
2008 void
2009 if_up(struct ifnet *ifp)
2010 {
2011 #ifdef notyet
2012 struct ifaddr *ifa;
2013 #endif
2014 struct domain *dp;
2015
2016 ifp->if_flags |= IFF_UP;
2017 nanotime(&ifp->if_lastchange);
2018 #ifdef notyet
2019 /* this has no effect on IP, and will kill all ISO connections XXX */
2020 IFADDR_FOREACH(ifa, ifp)
2021 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2022 #endif
2023 #if NCARP > 0
2024 if (ifp->if_carp)
2025 carp_carpdev_state(ifp);
2026 #endif
2027 rt_ifmsg(ifp);
2028 DOMAIN_FOREACH(dp) {
2029 if (dp->dom_if_up)
2030 dp->dom_if_up(ifp);
2031 }
2032 }
2033
2034 /*
2035 * Handle interface slowtimo timer routine. Called
2036 * from softclock, we decrement timer (if set) and
2037 * call the appropriate interface routine on expiration.
2038 */
2039 static void
2040 if_slowtimo(void *arg)
2041 {
2042 void (*slowtimo)(struct ifnet *);
2043 struct ifnet *ifp = arg;
2044 int s;
2045
2046 slowtimo = ifp->if_slowtimo;
2047 if (__predict_false(slowtimo == NULL))
2048 return;
2049
2050 s = splnet();
2051 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2052 (*slowtimo)(ifp);
2053
2054 splx(s);
2055
2056 if (__predict_true(ifp->if_slowtimo != NULL))
2057 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2058 }
2059
2060 /*
2061 * Set/clear promiscuous mode on interface ifp based on the truth value
2062 * of pswitch. The calls are reference counted so that only the first
2063 * "on" request actually has an effect, as does the final "off" request.
2064 * Results are undefined if the "off" and "on" requests are not matched.
2065 */
2066 int
2067 ifpromisc(struct ifnet *ifp, int pswitch)
2068 {
2069 int pcount, ret;
2070 short nflags;
2071
2072 pcount = ifp->if_pcount;
2073 if (pswitch) {
2074 /*
2075 * Allow the device to be "placed" into promiscuous
2076 * mode even if it is not configured up. It will
2077 * consult IFF_PROMISC when it is brought up.
2078 */
2079 if (ifp->if_pcount++ != 0)
2080 return 0;
2081 nflags = ifp->if_flags | IFF_PROMISC;
2082 } else {
2083 if (--ifp->if_pcount > 0)
2084 return 0;
2085 nflags = ifp->if_flags & ~IFF_PROMISC;
2086 }
2087 ret = if_flags_set(ifp, nflags);
2088 /* Restore interface state if not successful. */
2089 if (ret != 0) {
2090 ifp->if_pcount = pcount;
2091 }
2092 return ret;
2093 }
2094
2095 /*
2096 * Map interface name to
2097 * interface structure pointer.
2098 */
2099 struct ifnet *
2100 ifunit(const char *name)
2101 {
2102 struct ifnet *ifp;
2103 const char *cp = name;
2104 u_int unit = 0;
2105 u_int i;
2106 int s;
2107
2108 /*
2109 * If the entire name is a number, treat it as an ifindex.
2110 */
2111 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2112 unit = unit * 10 + (*cp - '0');
2113 }
2114
2115 /*
2116 * If the number took all of the name, then it's a valid ifindex.
2117 */
2118 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2119 if (unit >= if_indexlim)
2120 return NULL;
2121 ifp = ifindex2ifnet[unit];
2122 if (ifp == NULL || ifp->if_output == if_nulloutput)
2123 return NULL;
2124 return ifp;
2125 }
2126
2127 ifp = NULL;
2128 s = pserialize_read_enter();
2129 IFNET_READER_FOREACH(ifp) {
2130 if (ifp->if_output == if_nulloutput)
2131 continue;
2132 if (strcmp(ifp->if_xname, name) == 0)
2133 goto out;
2134 }
2135 out:
2136 pserialize_read_exit(s);
2137 return ifp;
2138 }
2139
2140 /*
2141 * Get a reference of an ifnet object by an interface name.
2142 * The returned reference is protected by psref(9). The caller
2143 * must release a returned reference by if_put after use.
2144 */
2145 struct ifnet *
2146 if_get(const char *name, struct psref *psref)
2147 {
2148 struct ifnet *ifp;
2149 const char *cp = name;
2150 u_int unit = 0;
2151 u_int i;
2152 int s;
2153
2154 /*
2155 * If the entire name is a number, treat it as an ifindex.
2156 */
2157 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2158 unit = unit * 10 + (*cp - '0');
2159 }
2160
2161 /*
2162 * If the number took all of the name, then it's a valid ifindex.
2163 */
2164 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2165 if (unit >= if_indexlim)
2166 return NULL;
2167 ifp = ifindex2ifnet[unit];
2168 if (ifp == NULL || ifp->if_output == if_nulloutput)
2169 return NULL;
2170 return ifp;
2171 }
2172
2173 ifp = NULL;
2174 s = pserialize_read_enter();
2175 IFNET_READER_FOREACH(ifp) {
2176 if (ifp->if_output == if_nulloutput)
2177 continue;
2178 if (strcmp(ifp->if_xname, name) == 0) {
2179 psref_acquire(psref, &ifp->if_psref,
2180 ifnet_psref_class);
2181 goto out;
2182 }
2183 }
2184 out:
2185 pserialize_read_exit(s);
2186 return ifp;
2187 }
2188
2189 /*
2190 * Release a reference of an ifnet object given by if_get or
2191 * if_get_byindex.
2192 */
2193 void
2194 if_put(const struct ifnet *ifp, struct psref *psref)
2195 {
2196
2197 if (ifp == NULL)
2198 return;
2199
2200 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2201 }
2202
2203 ifnet_t *
2204 if_byindex(u_int idx)
2205 {
2206 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2207 }
2208
2209 /*
2210 * Get a reference of an ifnet object by an interface index.
2211 * The returned reference is protected by psref(9). The caller
2212 * must release a returned reference by if_put after use.
2213 */
2214 ifnet_t *
2215 if_get_byindex(u_int idx, struct psref *psref)
2216 {
2217 ifnet_t *ifp;
2218 int s;
2219
2220 s = pserialize_read_enter();
2221 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2222 if (__predict_true(ifp != NULL))
2223 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2224 pserialize_read_exit(s);
2225
2226 return ifp;
2227 }
2228
2229 /*
2230 * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2231 * for example the ifp is already held or some other object is held which
2232 * guarantes the ifp to not be freed indirectly.
2233 */
2234 void
2235 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2236 {
2237
2238 KASSERT(ifp->if_index != 0);
2239 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2240 }
2241
2242 bool
2243 if_held(struct ifnet *ifp)
2244 {
2245
2246 return psref_held(&ifp->if_psref, ifnet_psref_class);
2247 }
2248
2249
2250 /* common */
2251 int
2252 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2253 {
2254 int s;
2255 struct ifreq *ifr;
2256 struct ifcapreq *ifcr;
2257 struct ifdatareq *ifdr;
2258
2259 switch (cmd) {
2260 case SIOCSIFCAP:
2261 ifcr = data;
2262 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2263 return EINVAL;
2264
2265 if (ifcr->ifcr_capenable == ifp->if_capenable)
2266 return 0;
2267
2268 ifp->if_capenable = ifcr->ifcr_capenable;
2269
2270 /* Pre-compute the checksum flags mask. */
2271 ifp->if_csum_flags_tx = 0;
2272 ifp->if_csum_flags_rx = 0;
2273 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2274 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2275 }
2276 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2277 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2278 }
2279
2280 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2281 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2282 }
2283 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2284 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2285 }
2286
2287 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2288 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2289 }
2290 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2291 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2292 }
2293
2294 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2295 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2296 }
2297 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2298 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2299 }
2300
2301 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2302 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2303 }
2304 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2305 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2306 }
2307 if (ifp->if_flags & IFF_UP)
2308 return ENETRESET;
2309 return 0;
2310 case SIOCSIFFLAGS:
2311 ifr = data;
2312 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2313 s = splnet();
2314 if_down(ifp);
2315 splx(s);
2316 }
2317 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2318 s = splnet();
2319 if_up(ifp);
2320 splx(s);
2321 }
2322 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2323 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2324 break;
2325 case SIOCGIFFLAGS:
2326 ifr = data;
2327 ifr->ifr_flags = ifp->if_flags;
2328 break;
2329
2330 case SIOCGIFMETRIC:
2331 ifr = data;
2332 ifr->ifr_metric = ifp->if_metric;
2333 break;
2334
2335 case SIOCGIFMTU:
2336 ifr = data;
2337 ifr->ifr_mtu = ifp->if_mtu;
2338 break;
2339
2340 case SIOCGIFDLT:
2341 ifr = data;
2342 ifr->ifr_dlt = ifp->if_dlt;
2343 break;
2344
2345 case SIOCGIFCAP:
2346 ifcr = data;
2347 ifcr->ifcr_capabilities = ifp->if_capabilities;
2348 ifcr->ifcr_capenable = ifp->if_capenable;
2349 break;
2350
2351 case SIOCSIFMETRIC:
2352 ifr = data;
2353 ifp->if_metric = ifr->ifr_metric;
2354 break;
2355
2356 case SIOCGIFDATA:
2357 ifdr = data;
2358 ifdr->ifdr_data = ifp->if_data;
2359 break;
2360
2361 case SIOCGIFINDEX:
2362 ifr = data;
2363 ifr->ifr_index = ifp->if_index;
2364 break;
2365
2366 case SIOCZIFDATA:
2367 ifdr = data;
2368 ifdr->ifdr_data = ifp->if_data;
2369 /*
2370 * Assumes that the volatile counters that can be
2371 * zero'ed are at the end of if_data.
2372 */
2373 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2374 offsetof(struct if_data, ifi_ipackets));
2375 /*
2376 * The memset() clears to the bottm of if_data. In the area,
2377 * if_lastchange is included. Please be careful if new entry
2378 * will be added into if_data or rewite this.
2379 *
2380 * And also, update if_lastchnage.
2381 */
2382 getnanotime(&ifp->if_lastchange);
2383 break;
2384 case SIOCSIFMTU:
2385 ifr = data;
2386 if (ifp->if_mtu == ifr->ifr_mtu)
2387 break;
2388 ifp->if_mtu = ifr->ifr_mtu;
2389 /*
2390 * If the link MTU changed, do network layer specific procedure.
2391 */
2392 #ifdef INET6
2393 if (in6_present)
2394 nd6_setmtu(ifp);
2395 #endif
2396 return ENETRESET;
2397 default:
2398 return ENOTTY;
2399 }
2400 return 0;
2401 }
2402
2403 int
2404 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2405 {
2406 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2407 struct ifaddr *ifa;
2408 const struct sockaddr *any, *sa;
2409 union {
2410 struct sockaddr sa;
2411 struct sockaddr_storage ss;
2412 } u, v;
2413
2414 switch (cmd) {
2415 case SIOCSIFADDRPREF:
2416 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2417 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2418 NULL) != 0)
2419 return EPERM;
2420 case SIOCGIFADDRPREF:
2421 break;
2422 default:
2423 return EOPNOTSUPP;
2424 }
2425
2426 /* sanity checks */
2427 if (data == NULL || ifp == NULL) {
2428 panic("invalid argument to %s", __func__);
2429 /*NOTREACHED*/
2430 }
2431
2432 /* address must be specified on ADD and DELETE */
2433 sa = sstocsa(&ifap->ifap_addr);
2434 if (sa->sa_family != sofamily(so))
2435 return EINVAL;
2436 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2437 return EINVAL;
2438
2439 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2440
2441 IFADDR_FOREACH(ifa, ifp) {
2442 if (ifa->ifa_addr->sa_family != sa->sa_family)
2443 continue;
2444 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2445 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2446 break;
2447 }
2448 if (ifa == NULL)
2449 return EADDRNOTAVAIL;
2450
2451 switch (cmd) {
2452 case SIOCSIFADDRPREF:
2453 ifa->ifa_preference = ifap->ifap_preference;
2454 return 0;
2455 case SIOCGIFADDRPREF:
2456 /* fill in the if_laddrreq structure */
2457 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2458 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2459 ifap->ifap_preference = ifa->ifa_preference;
2460 return 0;
2461 default:
2462 return EOPNOTSUPP;
2463 }
2464 }
2465
2466 /*
2467 * Interface ioctls.
2468 */
2469 static int
2470 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2471 {
2472 struct ifnet *ifp;
2473 struct ifreq *ifr;
2474 int error = 0;
2475 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2476 u_long ocmd = cmd;
2477 #endif
2478 short oif_flags;
2479 #ifdef COMPAT_OIFREQ
2480 struct ifreq ifrb;
2481 struct oifreq *oifr = NULL;
2482 #endif
2483 int r;
2484 struct psref psref;
2485 int bound;
2486
2487 switch (cmd) {
2488 #ifdef COMPAT_OIFREQ
2489 case OSIOCGIFCONF:
2490 case OOSIOCGIFCONF:
2491 return compat_ifconf(cmd, data);
2492 #endif
2493 #ifdef COMPAT_OIFDATA
2494 case OSIOCGIFDATA:
2495 case OSIOCZIFDATA:
2496 return compat_ifdatareq(l, cmd, data);
2497 #endif
2498 case SIOCGIFCONF:
2499 return ifconf(cmd, data);
2500 case SIOCINITIFADDR:
2501 return EPERM;
2502 }
2503
2504 #ifdef COMPAT_OIFREQ
2505 cmd = compat_cvtcmd(cmd);
2506 if (cmd != ocmd) {
2507 oifr = data;
2508 data = ifr = &ifrb;
2509 ifreqo2n(oifr, ifr);
2510 } else
2511 #endif
2512 ifr = data;
2513
2514 switch (cmd) {
2515 case SIOCIFCREATE:
2516 case SIOCIFDESTROY:
2517 bound = curlwp_bind();
2518 if (l != NULL) {
2519 ifp = if_get(ifr->ifr_name, &psref);
2520 error = kauth_authorize_network(l->l_cred,
2521 KAUTH_NETWORK_INTERFACE,
2522 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2523 (void *)cmd, NULL);
2524 if (ifp != NULL)
2525 if_put(ifp, &psref);
2526 if (error != 0) {
2527 curlwp_bindx(bound);
2528 return error;
2529 }
2530 }
2531 mutex_enter(&if_clone_mtx);
2532 r = (cmd == SIOCIFCREATE) ?
2533 if_clone_create(ifr->ifr_name) :
2534 if_clone_destroy(ifr->ifr_name);
2535 mutex_exit(&if_clone_mtx);
2536 curlwp_bindx(bound);
2537 return r;
2538
2539 case SIOCIFGCLONERS:
2540 {
2541 struct if_clonereq *req = (struct if_clonereq *)data;
2542 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2543 &req->ifcr_total);
2544 }
2545 }
2546
2547 bound = curlwp_bind();
2548 ifp = if_get(ifr->ifr_name, &psref);
2549 if (ifp == NULL) {
2550 curlwp_bindx(bound);
2551 return ENXIO;
2552 }
2553
2554 switch (cmd) {
2555 case SIOCALIFADDR:
2556 case SIOCDLIFADDR:
2557 case SIOCSIFADDRPREF:
2558 case SIOCSIFFLAGS:
2559 case SIOCSIFCAP:
2560 case SIOCSIFMETRIC:
2561 case SIOCZIFDATA:
2562 case SIOCSIFMTU:
2563 case SIOCSIFPHYADDR:
2564 case SIOCDIFPHYADDR:
2565 #ifdef INET6
2566 case SIOCSIFPHYADDR_IN6:
2567 #endif
2568 case SIOCSLIFPHYADDR:
2569 case SIOCADDMULTI:
2570 case SIOCDELMULTI:
2571 case SIOCSIFMEDIA:
2572 case SIOCSDRVSPEC:
2573 case SIOCG80211:
2574 case SIOCS80211:
2575 case SIOCS80211NWID:
2576 case SIOCS80211NWKEY:
2577 case SIOCS80211POWER:
2578 case SIOCS80211BSSID:
2579 case SIOCS80211CHANNEL:
2580 case SIOCSLINKSTR:
2581 if (l != NULL) {
2582 error = kauth_authorize_network(l->l_cred,
2583 KAUTH_NETWORK_INTERFACE,
2584 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2585 (void *)cmd, NULL);
2586 if (error != 0)
2587 goto out;
2588 }
2589 }
2590
2591 oif_flags = ifp->if_flags;
2592
2593 mutex_enter(ifp->if_ioctl_lock);
2594
2595 error = (*ifp->if_ioctl)(ifp, cmd, data);
2596 if (error != ENOTTY)
2597 ;
2598 else if (so->so_proto == NULL)
2599 error = EOPNOTSUPP;
2600 else {
2601 #ifdef COMPAT_OSOCK
2602 error = compat_ifioctl(so, ocmd, cmd, data, l);
2603 #else
2604 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2605 cmd, data, ifp);
2606 #endif
2607 }
2608
2609 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2610 if ((ifp->if_flags & IFF_UP) != 0) {
2611 int s = splnet();
2612 if_up(ifp);
2613 splx(s);
2614 }
2615 }
2616 #ifdef COMPAT_OIFREQ
2617 if (cmd != ocmd)
2618 ifreqn2o(oifr, ifr);
2619 #endif
2620
2621 mutex_exit(ifp->if_ioctl_lock);
2622 out:
2623 if_put(ifp, &psref);
2624 curlwp_bindx(bound);
2625 return error;
2626 }
2627
2628 /*
2629 * Return interface configuration
2630 * of system. List may be used
2631 * in later ioctl's (above) to get
2632 * other information.
2633 *
2634 * Each record is a struct ifreq. Before the addition of
2635 * sockaddr_storage, the API rule was that sockaddr flavors that did
2636 * not fit would extend beyond the struct ifreq, with the next struct
2637 * ifreq starting sa_len beyond the struct sockaddr. Because the
2638 * union in struct ifreq includes struct sockaddr_storage, every kind
2639 * of sockaddr must fit. Thus, there are no longer any overlength
2640 * records.
2641 *
2642 * Records are added to the user buffer if they fit, and ifc_len is
2643 * adjusted to the length that was written. Thus, the user is only
2644 * assured of getting the complete list if ifc_len on return is at
2645 * least sizeof(struct ifreq) less than it was on entry.
2646 *
2647 * If the user buffer pointer is NULL, this routine copies no data and
2648 * returns the amount of space that would be needed.
2649 *
2650 * Invariants:
2651 * ifrp points to the next part of the user's buffer to be used. If
2652 * ifrp != NULL, space holds the number of bytes remaining that we may
2653 * write at ifrp. Otherwise, space holds the number of bytes that
2654 * would have been written had there been adequate space.
2655 */
2656 /*ARGSUSED*/
2657 static int
2658 ifconf(u_long cmd, void *data)
2659 {
2660 struct ifconf *ifc = (struct ifconf *)data;
2661 struct ifnet *ifp;
2662 struct ifaddr *ifa;
2663 struct ifreq ifr, *ifrp = NULL;
2664 int space = 0, error = 0;
2665 const int sz = (int)sizeof(struct ifreq);
2666 const bool docopy = ifc->ifc_req != NULL;
2667 int s;
2668 int bound;
2669 struct psref psref;
2670
2671 if (docopy) {
2672 space = ifc->ifc_len;
2673 ifrp = ifc->ifc_req;
2674 }
2675
2676 bound = curlwp_bind();
2677 s = pserialize_read_enter();
2678 IFNET_READER_FOREACH(ifp) {
2679 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2680 pserialize_read_exit(s);
2681
2682 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2683 sizeof(ifr.ifr_name));
2684 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2685 error = ENAMETOOLONG;
2686 goto release_exit;
2687 }
2688 if (IFADDR_EMPTY(ifp)) {
2689 /* Interface with no addresses - send zero sockaddr. */
2690 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2691 if (!docopy) {
2692 space += sz;
2693 continue;
2694 }
2695 if (space >= sz) {
2696 error = copyout(&ifr, ifrp, sz);
2697 if (error != 0)
2698 goto release_exit;
2699 ifrp++;
2700 space -= sz;
2701 }
2702 }
2703
2704 IFADDR_FOREACH(ifa, ifp) {
2705 struct sockaddr *sa = ifa->ifa_addr;
2706 /* all sockaddrs must fit in sockaddr_storage */
2707 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2708
2709 if (!docopy) {
2710 space += sz;
2711 continue;
2712 }
2713 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2714 if (space >= sz) {
2715 error = copyout(&ifr, ifrp, sz);
2716 if (error != 0)
2717 goto release_exit;
2718 ifrp++; space -= sz;
2719 }
2720 }
2721
2722 s = pserialize_read_enter();
2723 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2724 }
2725 pserialize_read_exit(s);
2726 curlwp_bindx(bound);
2727
2728 if (docopy) {
2729 KASSERT(0 <= space && space <= ifc->ifc_len);
2730 ifc->ifc_len -= space;
2731 } else {
2732 KASSERT(space >= 0);
2733 ifc->ifc_len = space;
2734 }
2735 return (0);
2736
2737 release_exit:
2738 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2739 curlwp_bindx(bound);
2740 return error;
2741 }
2742
2743 int
2744 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2745 {
2746 uint8_t len;
2747 #ifdef COMPAT_OIFREQ
2748 struct ifreq ifrb;
2749 struct oifreq *oifr = NULL;
2750 u_long ocmd = cmd;
2751 cmd = compat_cvtcmd(cmd);
2752 if (cmd != ocmd) {
2753 oifr = (struct oifreq *)(void *)ifr;
2754 ifr = &ifrb;
2755 ifreqo2n(oifr, ifr);
2756 len = sizeof(oifr->ifr_addr);
2757 } else
2758 #endif
2759 len = sizeof(ifr->ifr_ifru.ifru_space);
2760
2761 if (len < sa->sa_len)
2762 return EFBIG;
2763
2764 memset(&ifr->ifr_addr, 0, len);
2765 sockaddr_copy(&ifr->ifr_addr, len, sa);
2766
2767 #ifdef COMPAT_OIFREQ
2768 if (cmd != ocmd)
2769 ifreqn2o(oifr, ifr);
2770 #endif
2771 return 0;
2772 }
2773
2774 /*
2775 * wrapper function for the drivers which doesn't have if_transmit().
2776 */
2777 static int
2778 if_transmit(struct ifnet *ifp, struct mbuf *m)
2779 {
2780 int s, error;
2781
2782 s = splnet();
2783
2784 /*
2785 * If NET_MPSAFE is not defined , IFQ_LOCK() is nop.
2786 * use KERNEL_LOCK instead of ifq_lock.
2787 */
2788 #ifndef NET_MPSAFE
2789 KERNEL_LOCK(1, NULL);
2790 #endif
2791 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2792 #ifndef NET_MPSAFE
2793 KERNEL_UNLOCK_ONE(NULL);
2794 #endif
2795 if (error != 0) {
2796 /* mbuf is already freed */
2797 goto out;
2798 }
2799
2800 ifp->if_obytes += m->m_pkthdr.len;;
2801 if (m->m_flags & M_MCAST)
2802 ifp->if_omcasts++;
2803
2804 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2805 if_start_lock(ifp);
2806 out:
2807 splx(s);
2808
2809 return error;
2810 }
2811
2812 int
2813 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
2814 {
2815 int error;
2816
2817 #ifdef ALTQ
2818 KERNEL_LOCK(1, NULL);
2819 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
2820 error = if_transmit(ifp, m);
2821 KERNEL_UNLOCK_ONE(NULL);
2822 } else {
2823 KERNEL_UNLOCK_ONE(NULL);
2824 error = (*ifp->if_transmit)(ifp, m);
2825 }
2826 #else /* !ALTQ */
2827 error = (*ifp->if_transmit)(ifp, m);
2828 #endif /* !ALTQ */
2829
2830 return error;
2831 }
2832
2833 /*
2834 * Queue message on interface, and start output if interface
2835 * not yet active.
2836 */
2837 int
2838 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2839 {
2840
2841 return if_transmit_lock(ifp, m);
2842 }
2843
2844 /*
2845 * Queue message on interface, possibly using a second fast queue
2846 */
2847 int
2848 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2849 {
2850 int error = 0;
2851
2852 if (ifq != NULL
2853 #ifdef ALTQ
2854 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2855 #endif
2856 ) {
2857 if (IF_QFULL(ifq)) {
2858 IF_DROP(&ifp->if_snd);
2859 m_freem(m);
2860 if (error == 0)
2861 error = ENOBUFS;
2862 } else
2863 IF_ENQUEUE(ifq, m);
2864 } else
2865 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2866 if (error != 0) {
2867 ++ifp->if_oerrors;
2868 return error;
2869 }
2870 return 0;
2871 }
2872
2873 int
2874 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2875 {
2876 int rc;
2877
2878 if (ifp->if_initaddr != NULL)
2879 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2880 else if (src ||
2881 /* FIXME: may not hold if_ioctl_lock */
2882 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2883 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2884
2885 return rc;
2886 }
2887
2888 int
2889 if_do_dad(struct ifnet *ifp)
2890 {
2891 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2892 return 0;
2893
2894 switch (ifp->if_type) {
2895 case IFT_FAITH:
2896 /*
2897 * These interfaces do not have the IFF_LOOPBACK flag,
2898 * but loop packets back. We do not have to do DAD on such
2899 * interfaces. We should even omit it, because loop-backed
2900 * responses would confuse the DAD procedure.
2901 */
2902 return 0;
2903 default:
2904 /*
2905 * Our DAD routine requires the interface up and running.
2906 * However, some interfaces can be up before the RUNNING
2907 * status. Additionaly, users may try to assign addresses
2908 * before the interface becomes up (or running).
2909 * We simply skip DAD in such a case as a work around.
2910 * XXX: we should rather mark "tentative" on such addresses,
2911 * and do DAD after the interface becomes ready.
2912 */
2913 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2914 (IFF_UP|IFF_RUNNING))
2915 return 0;
2916
2917 return 1;
2918 }
2919 }
2920
2921 int
2922 if_flags_set(ifnet_t *ifp, const short flags)
2923 {
2924 int rc;
2925
2926 if (ifp->if_setflags != NULL)
2927 rc = (*ifp->if_setflags)(ifp, flags);
2928 else {
2929 short cantflags, chgdflags;
2930 struct ifreq ifr;
2931
2932 chgdflags = ifp->if_flags ^ flags;
2933 cantflags = chgdflags & IFF_CANTCHANGE;
2934
2935 if (cantflags != 0)
2936 ifp->if_flags ^= cantflags;
2937
2938 /* Traditionally, we do not call if_ioctl after
2939 * setting/clearing only IFF_PROMISC if the interface
2940 * isn't IFF_UP. Uphold that tradition.
2941 */
2942 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2943 return 0;
2944
2945 memset(&ifr, 0, sizeof(ifr));
2946
2947 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2948 /* FIXME: may not hold if_ioctl_lock */
2949 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2950
2951 if (rc != 0 && cantflags != 0)
2952 ifp->if_flags ^= cantflags;
2953 }
2954
2955 return rc;
2956 }
2957
2958 int
2959 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2960 {
2961 int rc;
2962 struct ifreq ifr;
2963
2964 if (ifp->if_mcastop != NULL)
2965 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2966 else {
2967 ifreq_setaddr(cmd, &ifr, sa);
2968 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2969 }
2970
2971 return rc;
2972 }
2973
2974 static void
2975 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2976 struct ifaltq *ifq)
2977 {
2978 const struct sysctlnode *cnode, *rnode;
2979
2980 if (sysctl_createv(clog, 0, NULL, &rnode,
2981 CTLFLAG_PERMANENT,
2982 CTLTYPE_NODE, "interfaces",
2983 SYSCTL_DESCR("Per-interface controls"),
2984 NULL, 0, NULL, 0,
2985 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2986 goto bad;
2987
2988 if (sysctl_createv(clog, 0, &rnode, &rnode,
2989 CTLFLAG_PERMANENT,
2990 CTLTYPE_NODE, ifname,
2991 SYSCTL_DESCR("Interface controls"),
2992 NULL, 0, NULL, 0,
2993 CTL_CREATE, CTL_EOL) != 0)
2994 goto bad;
2995
2996 if (sysctl_createv(clog, 0, &rnode, &rnode,
2997 CTLFLAG_PERMANENT,
2998 CTLTYPE_NODE, "sndq",
2999 SYSCTL_DESCR("Interface output queue controls"),
3000 NULL, 0, NULL, 0,
3001 CTL_CREATE, CTL_EOL) != 0)
3002 goto bad;
3003
3004 if (sysctl_createv(clog, 0, &rnode, &cnode,
3005 CTLFLAG_PERMANENT,
3006 CTLTYPE_INT, "len",
3007 SYSCTL_DESCR("Current output queue length"),
3008 NULL, 0, &ifq->ifq_len, 0,
3009 CTL_CREATE, CTL_EOL) != 0)
3010 goto bad;
3011
3012 if (sysctl_createv(clog, 0, &rnode, &cnode,
3013 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3014 CTLTYPE_INT, "maxlen",
3015 SYSCTL_DESCR("Maximum allowed output queue length"),
3016 NULL, 0, &ifq->ifq_maxlen, 0,
3017 CTL_CREATE, CTL_EOL) != 0)
3018 goto bad;
3019
3020 if (sysctl_createv(clog, 0, &rnode, &cnode,
3021 CTLFLAG_PERMANENT,
3022 CTLTYPE_INT, "drops",
3023 SYSCTL_DESCR("Packets dropped due to full output queue"),
3024 NULL, 0, &ifq->ifq_drops, 0,
3025 CTL_CREATE, CTL_EOL) != 0)
3026 goto bad;
3027
3028 return;
3029 bad:
3030 printf("%s: could not attach sysctl nodes\n", ifname);
3031 return;
3032 }
3033
3034 #if defined(INET) || defined(INET6)
3035
3036 #define SYSCTL_NET_PKTQ(q, cn, c) \
3037 static int \
3038 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3039 { \
3040 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3041 }
3042
3043 #if defined(INET)
3044 static int
3045 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3046 {
3047 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3048 }
3049 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3050 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3051 #endif
3052
3053 #if defined(INET6)
3054 static int
3055 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3056 {
3057 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3058 }
3059 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3060 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3061 #endif
3062
3063 static void
3064 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3065 {
3066 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3067 const char *pfname = NULL, *ipname = NULL;
3068 int ipn = 0, qid = 0;
3069
3070 switch (pf) {
3071 #if defined(INET)
3072 case PF_INET:
3073 len_func = sysctl_net_ip_pktq_items;
3074 maxlen_func = sysctl_net_ip_pktq_maxlen;
3075 drops_func = sysctl_net_ip_pktq_drops;
3076 pfname = "inet", ipn = IPPROTO_IP;
3077 ipname = "ip", qid = IPCTL_IFQ;
3078 break;
3079 #endif
3080 #if defined(INET6)
3081 case PF_INET6:
3082 len_func = sysctl_net_ip6_pktq_items;
3083 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3084 drops_func = sysctl_net_ip6_pktq_drops;
3085 pfname = "inet6", ipn = IPPROTO_IPV6;
3086 ipname = "ip6", qid = IPV6CTL_IFQ;
3087 break;
3088 #endif
3089 default:
3090 KASSERT(false);
3091 }
3092
3093 sysctl_createv(clog, 0, NULL, NULL,
3094 CTLFLAG_PERMANENT,
3095 CTLTYPE_NODE, pfname, NULL,
3096 NULL, 0, NULL, 0,
3097 CTL_NET, pf, CTL_EOL);
3098 sysctl_createv(clog, 0, NULL, NULL,
3099 CTLFLAG_PERMANENT,
3100 CTLTYPE_NODE, ipname, NULL,
3101 NULL, 0, NULL, 0,
3102 CTL_NET, pf, ipn, CTL_EOL);
3103 sysctl_createv(clog, 0, NULL, NULL,
3104 CTLFLAG_PERMANENT,
3105 CTLTYPE_NODE, "ifq",
3106 SYSCTL_DESCR("Protocol input queue controls"),
3107 NULL, 0, NULL, 0,
3108 CTL_NET, pf, ipn, qid, CTL_EOL);
3109
3110 sysctl_createv(clog, 0, NULL, NULL,
3111 CTLFLAG_PERMANENT,
3112 CTLTYPE_INT, "len",
3113 SYSCTL_DESCR("Current input queue length"),
3114 len_func, 0, NULL, 0,
3115 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3116 sysctl_createv(clog, 0, NULL, NULL,
3117 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3118 CTLTYPE_INT, "maxlen",
3119 SYSCTL_DESCR("Maximum allowed input queue length"),
3120 maxlen_func, 0, NULL, 0,
3121 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3122 sysctl_createv(clog, 0, NULL, NULL,
3123 CTLFLAG_PERMANENT,
3124 CTLTYPE_INT, "drops",
3125 SYSCTL_DESCR("Packets dropped due to full input queue"),
3126 drops_func, 0, NULL, 0,
3127 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3128 }
3129 #endif /* INET || INET6 */
3130
3131 static int
3132 if_sdl_sysctl(SYSCTLFN_ARGS)
3133 {
3134 struct ifnet *ifp;
3135 const struct sockaddr_dl *sdl;
3136 struct psref psref;
3137 int error = 0;
3138 int bound;
3139
3140 if (namelen != 1)
3141 return EINVAL;
3142
3143 bound = curlwp_bind();
3144 ifp = if_get_byindex(name[0], &psref);
3145 if (ifp == NULL) {
3146 error = ENODEV;
3147 goto out0;
3148 }
3149
3150 sdl = ifp->if_sadl;
3151 if (sdl == NULL) {
3152 *oldlenp = 0;
3153 goto out1;
3154 }
3155
3156 if (oldp == NULL) {
3157 *oldlenp = sdl->sdl_alen;
3158 goto out1;
3159 }
3160
3161 if (*oldlenp >= sdl->sdl_alen)
3162 *oldlenp = sdl->sdl_alen;
3163 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3164 out1:
3165 if_put(ifp, &psref);
3166 out0:
3167 curlwp_bindx(bound);
3168 return error;
3169 }
3170
3171 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3172 {
3173 const struct sysctlnode *rnode = NULL;
3174
3175 sysctl_createv(clog, 0, NULL, &rnode,
3176 CTLFLAG_PERMANENT,
3177 CTLTYPE_NODE, "sdl",
3178 SYSCTL_DESCR("Get active link-layer address"),
3179 if_sdl_sysctl, 0, NULL, 0,
3180 CTL_NET, CTL_CREATE, CTL_EOL);
3181 }
3182