Home | History | Annotate | Line # | Download | only in net
if.c revision 1.348
      1 /*	$NetBSD: if.c,v 1.348 2016/06/28 02:36:54 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.348 2016/06/28 02:36:54 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 
     98 #include "opt_atalk.h"
     99 #include "opt_natm.h"
    100 #include "opt_wlan.h"
    101 #include "opt_net_mpsafe.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 
    123 #include <net/if.h>
    124 #include <net/if_dl.h>
    125 #include <net/if_ether.h>
    126 #include <net/if_media.h>
    127 #include <net80211/ieee80211.h>
    128 #include <net80211/ieee80211_ioctl.h>
    129 #include <net/if_types.h>
    130 #include <net/route.h>
    131 #include <net/netisr.h>
    132 #include <sys/module.h>
    133 #ifdef NETATALK
    134 #include <netatalk/at_extern.h>
    135 #include <netatalk/at.h>
    136 #endif
    137 #include <net/pfil.h>
    138 #include <netinet/in.h>
    139 #include <netinet/in_var.h>
    140 
    141 #ifdef INET6
    142 #include <netinet6/in6_var.h>
    143 #include <netinet6/nd6.h>
    144 #endif
    145 
    146 #include "ether.h"
    147 #include "fddi.h"
    148 #include "token.h"
    149 
    150 #include "carp.h"
    151 #if NCARP > 0
    152 #include <netinet/ip_carp.h>
    153 #endif
    154 
    155 #include <compat/sys/sockio.h>
    156 #include <compat/sys/socket.h>
    157 
    158 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    159 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    160 
    161 /*
    162  * Global list of interfaces.
    163  */
    164 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    165 struct ifnet_head		ifnet_list;
    166 
    167 struct pslist_head		ifnet_pslist;
    168 static ifnet_t **		ifindex2ifnet = NULL;
    169 static u_int			if_index = 1;
    170 static size_t			if_indexlim = 0;
    171 static uint64_t			index_gen;
    172 /* Mutex to protect the above objects. */
    173 kmutex_t			ifnet_mtx __cacheline_aligned;
    174 struct psref_class		*ifnet_psref_class __read_mostly;
    175 static pserialize_t		ifnet_psz;
    176 
    177 static kmutex_t			if_clone_mtx;
    178 
    179 struct ifnet *lo0ifp;
    180 int	ifqmaxlen = IFQ_MAXLEN;
    181 
    182 static int	if_rt_walktree(struct rtentry *, void *);
    183 
    184 static struct if_clone *if_clone_lookup(const char *, int *);
    185 
    186 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    187 static int if_cloners_count;
    188 
    189 /* Packet filtering hook for interfaces. */
    190 pfil_head_t *	if_pfil;
    191 
    192 static kauth_listener_t if_listener;
    193 
    194 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    197     struct ifaltq *);
    198 static void if_slowtimo(void *);
    199 static void if_free_sadl(struct ifnet *);
    200 static void if_attachdomain1(struct ifnet *);
    201 static int ifconf(u_long, void *);
    202 static int if_transmit(struct ifnet *, struct mbuf *);
    203 static int if_clone_create(const char *);
    204 static int if_clone_destroy(const char *);
    205 static void if_link_state_change_si(void *);
    206 
    207 struct if_percpuq {
    208 	struct ifnet	*ipq_ifp;
    209 	void		*ipq_si;
    210 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    211 };
    212 
    213 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    214 
    215 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    216 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    217 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    218     struct if_percpuq *);
    219 
    220 #if defined(INET) || defined(INET6)
    221 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    222 #endif
    223 
    224 static int
    225 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    226     void *arg0, void *arg1, void *arg2, void *arg3)
    227 {
    228 	int result;
    229 	enum kauth_network_req req;
    230 
    231 	result = KAUTH_RESULT_DEFER;
    232 	req = (enum kauth_network_req)arg1;
    233 
    234 	if (action != KAUTH_NETWORK_INTERFACE)
    235 		return result;
    236 
    237 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    238 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    239 		result = KAUTH_RESULT_ALLOW;
    240 
    241 	return result;
    242 }
    243 
    244 /*
    245  * Network interface utility routines.
    246  *
    247  * Routines with ifa_ifwith* names take sockaddr *'s as
    248  * parameters.
    249  */
    250 void
    251 ifinit(void)
    252 {
    253 #if defined(INET)
    254 	sysctl_net_pktq_setup(NULL, PF_INET);
    255 #endif
    256 #ifdef INET6
    257 	if (in6_present)
    258 		sysctl_net_pktq_setup(NULL, PF_INET6);
    259 #endif
    260 
    261 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    262 	    if_listener_cb, NULL);
    263 
    264 	/* interfaces are available, inform socket code */
    265 	ifioctl = doifioctl;
    266 }
    267 
    268 /*
    269  * XXX Initialization before configure().
    270  * XXX hack to get pfil_add_hook working in autoconf.
    271  */
    272 void
    273 ifinit1(void)
    274 {
    275 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    276 	TAILQ_INIT(&ifnet_list);
    277 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    278 	ifnet_psz = pserialize_create();
    279 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    280 	PSLIST_INIT(&ifnet_pslist);
    281 	if_indexlim = 8;
    282 
    283 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    284 	KASSERT(if_pfil != NULL);
    285 
    286 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    287 	etherinit();
    288 #endif
    289 }
    290 
    291 ifnet_t *
    292 if_alloc(u_char type)
    293 {
    294 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    295 }
    296 
    297 void
    298 if_free(ifnet_t *ifp)
    299 {
    300 	kmem_free(ifp, sizeof(ifnet_t));
    301 }
    302 
    303 void
    304 if_initname(struct ifnet *ifp, const char *name, int unit)
    305 {
    306 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    307 	    "%s%d", name, unit);
    308 }
    309 
    310 /*
    311  * Null routines used while an interface is going away.  These routines
    312  * just return an error.
    313  */
    314 
    315 int
    316 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    317     const struct sockaddr *so, const struct rtentry *rt)
    318 {
    319 
    320 	return ENXIO;
    321 }
    322 
    323 void
    324 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    325 {
    326 
    327 	/* Nothing. */
    328 }
    329 
    330 void
    331 if_nullstart(struct ifnet *ifp)
    332 {
    333 
    334 	/* Nothing. */
    335 }
    336 
    337 int
    338 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    339 {
    340 
    341 	return ENXIO;
    342 }
    343 
    344 int
    345 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    346 {
    347 
    348 	return ENXIO;
    349 }
    350 
    351 int
    352 if_nullinit(struct ifnet *ifp)
    353 {
    354 
    355 	return ENXIO;
    356 }
    357 
    358 void
    359 if_nullstop(struct ifnet *ifp, int disable)
    360 {
    361 
    362 	/* Nothing. */
    363 }
    364 
    365 void
    366 if_nullslowtimo(struct ifnet *ifp)
    367 {
    368 
    369 	/* Nothing. */
    370 }
    371 
    372 void
    373 if_nulldrain(struct ifnet *ifp)
    374 {
    375 
    376 	/* Nothing. */
    377 }
    378 
    379 void
    380 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    381 {
    382 	struct ifaddr *ifa;
    383 	struct sockaddr_dl *sdl;
    384 
    385 	ifp->if_addrlen = addrlen;
    386 	if_alloc_sadl(ifp);
    387 	ifa = ifp->if_dl;
    388 	sdl = satosdl(ifa->ifa_addr);
    389 
    390 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    391 	if (factory) {
    392 		ifp->if_hwdl = ifp->if_dl;
    393 		ifaref(ifp->if_hwdl);
    394 	}
    395 	/* TBD routing socket */
    396 }
    397 
    398 struct ifaddr *
    399 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    400 {
    401 	unsigned socksize, ifasize;
    402 	int addrlen, namelen;
    403 	struct sockaddr_dl *mask, *sdl;
    404 	struct ifaddr *ifa;
    405 
    406 	namelen = strlen(ifp->if_xname);
    407 	addrlen = ifp->if_addrlen;
    408 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    409 	ifasize = sizeof(*ifa) + 2 * socksize;
    410 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    411 
    412 	sdl = (struct sockaddr_dl *)(ifa + 1);
    413 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    414 
    415 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    416 	    ifp->if_xname, namelen, NULL, addrlen);
    417 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    418 	memset(&mask->sdl_data[0], 0xff, namelen);
    419 	ifa->ifa_rtrequest = link_rtrequest;
    420 	ifa->ifa_addr = (struct sockaddr *)sdl;
    421 	ifa->ifa_netmask = (struct sockaddr *)mask;
    422 
    423 	*sdlp = sdl;
    424 
    425 	return ifa;
    426 }
    427 
    428 static void
    429 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    430 {
    431 	const struct sockaddr_dl *sdl;
    432 
    433 	ifp->if_dl = ifa;
    434 	ifaref(ifa);
    435 	sdl = satosdl(ifa->ifa_addr);
    436 	ifp->if_sadl = sdl;
    437 }
    438 
    439 /*
    440  * Allocate the link level name for the specified interface.  This
    441  * is an attachment helper.  It must be called after ifp->if_addrlen
    442  * is initialized, which may not be the case when if_attach() is
    443  * called.
    444  */
    445 void
    446 if_alloc_sadl(struct ifnet *ifp)
    447 {
    448 	struct ifaddr *ifa;
    449 	const struct sockaddr_dl *sdl;
    450 
    451 	/*
    452 	 * If the interface already has a link name, release it
    453 	 * now.  This is useful for interfaces that can change
    454 	 * link types, and thus switch link names often.
    455 	 */
    456 	if (ifp->if_sadl != NULL)
    457 		if_free_sadl(ifp);
    458 
    459 	ifa = if_dl_create(ifp, &sdl);
    460 
    461 	ifa_insert(ifp, ifa);
    462 	if_sadl_setrefs(ifp, ifa);
    463 }
    464 
    465 static void
    466 if_deactivate_sadl(struct ifnet *ifp)
    467 {
    468 	struct ifaddr *ifa;
    469 
    470 	KASSERT(ifp->if_dl != NULL);
    471 
    472 	ifa = ifp->if_dl;
    473 
    474 	ifp->if_sadl = NULL;
    475 
    476 	ifp->if_dl = NULL;
    477 	ifafree(ifa);
    478 }
    479 
    480 void
    481 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
    482     const struct sockaddr_dl *sdl)
    483 {
    484 	int s;
    485 
    486 	s = splnet();
    487 
    488 	if_deactivate_sadl(ifp);
    489 
    490 	if_sadl_setrefs(ifp, ifa);
    491 	IFADDR_FOREACH(ifa, ifp)
    492 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    493 	splx(s);
    494 }
    495 
    496 /*
    497  * Free the link level name for the specified interface.  This is
    498  * a detach helper.  This is called from if_detach().
    499  */
    500 static void
    501 if_free_sadl(struct ifnet *ifp)
    502 {
    503 	struct ifaddr *ifa;
    504 	int s;
    505 
    506 	ifa = ifp->if_dl;
    507 	if (ifa == NULL) {
    508 		KASSERT(ifp->if_sadl == NULL);
    509 		return;
    510 	}
    511 
    512 	KASSERT(ifp->if_sadl != NULL);
    513 
    514 	s = splnet();
    515 	rtinit(ifa, RTM_DELETE, 0);
    516 	ifa_remove(ifp, ifa);
    517 	if_deactivate_sadl(ifp);
    518 	if (ifp->if_hwdl == ifa) {
    519 		ifafree(ifa);
    520 		ifp->if_hwdl = NULL;
    521 	}
    522 	splx(s);
    523 }
    524 
    525 static void
    526 if_getindex(ifnet_t *ifp)
    527 {
    528 	bool hitlimit = false;
    529 
    530 	ifp->if_index_gen = index_gen++;
    531 
    532 	ifp->if_index = if_index;
    533 	if (ifindex2ifnet == NULL) {
    534 		if_index++;
    535 		goto skip;
    536 	}
    537 	while (if_byindex(ifp->if_index)) {
    538 		/*
    539 		 * If we hit USHRT_MAX, we skip back to 0 since
    540 		 * there are a number of places where the value
    541 		 * of if_index or if_index itself is compared
    542 		 * to or stored in an unsigned short.  By
    543 		 * jumping back, we won't botch those assignments
    544 		 * or comparisons.
    545 		 */
    546 		if (++if_index == 0) {
    547 			if_index = 1;
    548 		} else if (if_index == USHRT_MAX) {
    549 			/*
    550 			 * However, if we have to jump back to
    551 			 * zero *twice* without finding an empty
    552 			 * slot in ifindex2ifnet[], then there
    553 			 * there are too many (>65535) interfaces.
    554 			 */
    555 			if (hitlimit) {
    556 				panic("too many interfaces");
    557 			}
    558 			hitlimit = true;
    559 			if_index = 1;
    560 		}
    561 		ifp->if_index = if_index;
    562 	}
    563 skip:
    564 	/*
    565 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    566 	 * grow dynamically, it should grow too.
    567 	 */
    568 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    569 		size_t m, n, oldlim;
    570 		void *q;
    571 
    572 		oldlim = if_indexlim;
    573 		while (ifp->if_index >= if_indexlim)
    574 			if_indexlim <<= 1;
    575 
    576 		/* grow ifindex2ifnet */
    577 		m = oldlim * sizeof(struct ifnet *);
    578 		n = if_indexlim * sizeof(struct ifnet *);
    579 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    580 		if (ifindex2ifnet != NULL) {
    581 			memcpy(q, ifindex2ifnet, m);
    582 			free(ifindex2ifnet, M_IFADDR);
    583 		}
    584 		ifindex2ifnet = (struct ifnet **)q;
    585 	}
    586 	ifindex2ifnet[ifp->if_index] = ifp;
    587 }
    588 
    589 /*
    590  * Initialize an interface and assign an index for it.
    591  *
    592  * It must be called prior to a device specific attach routine
    593  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    594  * and be followed by if_register:
    595  *
    596  *     if_initialize(ifp);
    597  *     ether_ifattach(ifp, enaddr);
    598  *     if_register(ifp);
    599  */
    600 void
    601 if_initialize(ifnet_t *ifp)
    602 {
    603 	KASSERT(if_indexlim > 0);
    604 	TAILQ_INIT(&ifp->if_addrlist);
    605 
    606 	/*
    607 	 * Link level name is allocated later by a separate call to
    608 	 * if_alloc_sadl().
    609 	 */
    610 
    611 	if (ifp->if_snd.ifq_maxlen == 0)
    612 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    613 
    614 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    615 
    616 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    617 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    618 
    619 	ifp->if_capenable = 0;
    620 	ifp->if_csum_flags_tx = 0;
    621 	ifp->if_csum_flags_rx = 0;
    622 
    623 #ifdef ALTQ
    624 	ifp->if_snd.altq_type = 0;
    625 	ifp->if_snd.altq_disc = NULL;
    626 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    627 	ifp->if_snd.altq_tbr  = NULL;
    628 	ifp->if_snd.altq_ifp  = ifp;
    629 #endif
    630 
    631 #ifdef NET_MPSAFE
    632 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
    633 #else
    634 	ifp->if_snd.ifq_lock = NULL;
    635 #endif
    636 
    637 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    638 	(void)pfil_run_hooks(if_pfil,
    639 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
    640 
    641 	IF_AFDATA_LOCK_INIT(ifp);
    642 
    643 	if (if_is_link_state_changeable(ifp)) {
    644 		ifp->if_link_si = softint_establish(SOFTINT_NET,
    645 		    if_link_state_change_si, ifp);
    646 		if (ifp->if_link_si == NULL)
    647 			panic("%s: softint_establish() failed", __func__);
    648 	}
    649 
    650 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    651 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    652 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    653 
    654 	IFNET_LOCK();
    655 	if_getindex(ifp);
    656 	IFNET_UNLOCK();
    657 }
    658 
    659 /*
    660  * Register an interface to the list of "active" interfaces.
    661  */
    662 void
    663 if_register(ifnet_t *ifp)
    664 {
    665 	/*
    666 	 * If the driver has not supplied its own if_ioctl, then
    667 	 * supply the default.
    668 	 */
    669 	if (ifp->if_ioctl == NULL)
    670 		ifp->if_ioctl = ifioctl_common;
    671 
    672 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    673 
    674 	if (!STAILQ_EMPTY(&domains))
    675 		if_attachdomain1(ifp);
    676 
    677 	/* Announce the interface. */
    678 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    679 
    680 	if (ifp->if_slowtimo != NULL) {
    681 		ifp->if_slowtimo_ch =
    682 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    683 		callout_init(ifp->if_slowtimo_ch, 0);
    684 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    685 		if_slowtimo(ifp);
    686 	}
    687 
    688 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    689 		ifp->if_transmit = if_transmit;
    690 
    691 	IFNET_LOCK();
    692 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    693 	IFNET_WRITER_INSERT_TAIL(ifp);
    694 	IFNET_UNLOCK();
    695 }
    696 
    697 /*
    698  * The if_percpuq framework
    699  *
    700  * It allows network device drivers to execute the network stack
    701  * in softint (so called softint-based if_input). It utilizes
    702  * softint and percpu ifqueue. It doesn't distribute any packets
    703  * between CPUs, unlike pktqueue(9).
    704  *
    705  * Currently we support two options for device drivers to apply the framework:
    706  * - Use it implicitly with less changes
    707  *   - If you use if_attach in driver's _attach function and if_input in
    708  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    709  *     the packet implicitly
    710  * - Use it explicitly in each driver (recommended)
    711  *   - You can use if_percpuq_* directly in your driver
    712  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    713  *   - See wm(4) as a reference implementation
    714  */
    715 
    716 static void
    717 if_percpuq_softint(void *arg)
    718 {
    719 	struct if_percpuq *ipq = arg;
    720 	struct ifnet *ifp = ipq->ipq_ifp;
    721 	struct mbuf *m;
    722 
    723 	while ((m = if_percpuq_dequeue(ipq)) != NULL)
    724 		ifp->_if_input(ifp, m);
    725 }
    726 
    727 static void
    728 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    729 {
    730 	struct ifqueue *const ifq = p;
    731 
    732 	memset(ifq, 0, sizeof(*ifq));
    733 	ifq->ifq_maxlen = IFQ_MAXLEN;
    734 }
    735 
    736 struct if_percpuq *
    737 if_percpuq_create(struct ifnet *ifp)
    738 {
    739 	struct if_percpuq *ipq;
    740 
    741 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    742 	if (ipq == NULL)
    743 		panic("kmem_zalloc failed");
    744 
    745 	ipq->ipq_ifp = ifp;
    746 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    747 	    if_percpuq_softint, ipq);
    748 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    749 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    750 
    751 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    752 
    753 	return ipq;
    754 }
    755 
    756 static struct mbuf *
    757 if_percpuq_dequeue(struct if_percpuq *ipq)
    758 {
    759 	struct mbuf *m;
    760 	struct ifqueue *ifq;
    761 	int s;
    762 
    763 	s = splnet();
    764 	ifq = percpu_getref(ipq->ipq_ifqs);
    765 	IF_DEQUEUE(ifq, m);
    766 	percpu_putref(ipq->ipq_ifqs);
    767 	splx(s);
    768 
    769 	return m;
    770 }
    771 
    772 static void
    773 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    774 {
    775 	struct ifqueue *const ifq = p;
    776 
    777 	IF_PURGE(ifq);
    778 }
    779 
    780 void
    781 if_percpuq_destroy(struct if_percpuq *ipq)
    782 {
    783 
    784 	/* if_detach may already destroy it */
    785 	if (ipq == NULL)
    786 		return;
    787 
    788 	softint_disestablish(ipq->ipq_si);
    789 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    790 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    791 }
    792 
    793 void
    794 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    795 {
    796 	struct ifqueue *ifq;
    797 	int s;
    798 
    799 	KASSERT(ipq != NULL);
    800 
    801 	s = splnet();
    802 	ifq = percpu_getref(ipq->ipq_ifqs);
    803 	if (IF_QFULL(ifq)) {
    804 		IF_DROP(ifq);
    805 		percpu_putref(ipq->ipq_ifqs);
    806 		m_freem(m);
    807 		goto out;
    808 	}
    809 	IF_ENQUEUE(ifq, m);
    810 	percpu_putref(ipq->ipq_ifqs);
    811 
    812 	softint_schedule(ipq->ipq_si);
    813 out:
    814 	splx(s);
    815 }
    816 
    817 static void
    818 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    819 {
    820 	struct ifqueue *const ifq = p;
    821 	int *sum = arg;
    822 
    823 	*sum += ifq->ifq_drops;
    824 }
    825 
    826 static int
    827 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    828 {
    829 	struct sysctlnode node;
    830 	struct if_percpuq *ipq;
    831 	int sum = 0;
    832 	int error;
    833 
    834 	node = *rnode;
    835 	ipq = node.sysctl_data;
    836 
    837 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    838 
    839 	node.sysctl_data = &sum;
    840 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    841 	if (error != 0 || newp == NULL)
    842 		return error;
    843 
    844 	return 0;
    845 }
    846 
    847 static void
    848 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    849     struct if_percpuq *ipq)
    850 {
    851 	const struct sysctlnode *cnode, *rnode;
    852 
    853 	if (sysctl_createv(clog, 0, NULL, &rnode,
    854 		       CTLFLAG_PERMANENT,
    855 		       CTLTYPE_NODE, "interfaces",
    856 		       SYSCTL_DESCR("Per-interface controls"),
    857 		       NULL, 0, NULL, 0,
    858 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    859 		goto bad;
    860 
    861 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    862 		       CTLFLAG_PERMANENT,
    863 		       CTLTYPE_NODE, ifname,
    864 		       SYSCTL_DESCR("Interface controls"),
    865 		       NULL, 0, NULL, 0,
    866 		       CTL_CREATE, CTL_EOL) != 0)
    867 		goto bad;
    868 
    869 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    870 		       CTLFLAG_PERMANENT,
    871 		       CTLTYPE_NODE, "rcvq",
    872 		       SYSCTL_DESCR("Interface input queue controls"),
    873 		       NULL, 0, NULL, 0,
    874 		       CTL_CREATE, CTL_EOL) != 0)
    875 		goto bad;
    876 
    877 #ifdef NOTYET
    878 	/* XXX Should show each per-CPU queue length? */
    879 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    880 		       CTLFLAG_PERMANENT,
    881 		       CTLTYPE_INT, "len",
    882 		       SYSCTL_DESCR("Current input queue length"),
    883 		       sysctl_percpuq_len, 0, NULL, 0,
    884 		       CTL_CREATE, CTL_EOL) != 0)
    885 		goto bad;
    886 
    887 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    888 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    889 		       CTLTYPE_INT, "maxlen",
    890 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    891 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    892 		       CTL_CREATE, CTL_EOL) != 0)
    893 		goto bad;
    894 #endif
    895 
    896 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    897 		       CTLFLAG_PERMANENT,
    898 		       CTLTYPE_INT, "drops",
    899 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    900 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    901 		       CTL_CREATE, CTL_EOL) != 0)
    902 		goto bad;
    903 
    904 	return;
    905 bad:
    906 	printf("%s: could not attach sysctl nodes\n", ifname);
    907 	return;
    908 }
    909 
    910 
    911 /*
    912  * The common interface input routine that is called by device drivers,
    913  * which should be used only when the driver's rx handler already runs
    914  * in softint.
    915  */
    916 void
    917 if_input(struct ifnet *ifp, struct mbuf *m)
    918 {
    919 
    920 	KASSERT(ifp->if_percpuq == NULL);
    921 	KASSERT(!cpu_intr_p());
    922 
    923 	ifp->_if_input(ifp, m);
    924 }
    925 
    926 /*
    927  * DEPRECATED. Use if_initialize and if_register instead.
    928  * See the above comment of if_initialize.
    929  *
    930  * Note that it implicitly enables if_percpuq to make drivers easy to
    931  * migrate softint-based if_input without much changes. If you don't
    932  * want to enable it, use if_initialize instead.
    933  */
    934 void
    935 if_attach(ifnet_t *ifp)
    936 {
    937 
    938 	if_initialize(ifp);
    939 	ifp->if_percpuq = if_percpuq_create(ifp);
    940 	if_register(ifp);
    941 }
    942 
    943 void
    944 if_attachdomain(void)
    945 {
    946 	struct ifnet *ifp;
    947 	int s;
    948 	int bound = curlwp_bind();
    949 
    950 	s = pserialize_read_enter();
    951 	IFNET_READER_FOREACH(ifp) {
    952 		struct psref psref;
    953 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
    954 		pserialize_read_exit(s);
    955 		if_attachdomain1(ifp);
    956 		s = pserialize_read_enter();
    957 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
    958 	}
    959 	pserialize_read_exit(s);
    960 	curlwp_bindx(bound);
    961 }
    962 
    963 static void
    964 if_attachdomain1(struct ifnet *ifp)
    965 {
    966 	struct domain *dp;
    967 	int s;
    968 
    969 	s = splnet();
    970 
    971 	/* address family dependent data region */
    972 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
    973 	DOMAIN_FOREACH(dp) {
    974 		if (dp->dom_ifattach != NULL)
    975 			ifp->if_afdata[dp->dom_family] =
    976 			    (*dp->dom_ifattach)(ifp);
    977 	}
    978 
    979 	splx(s);
    980 }
    981 
    982 /*
    983  * Deactivate an interface.  This points all of the procedure
    984  * handles at error stubs.  May be called from interrupt context.
    985  */
    986 void
    987 if_deactivate(struct ifnet *ifp)
    988 {
    989 	int s;
    990 
    991 	s = splnet();
    992 
    993 	ifp->if_output	 = if_nulloutput;
    994 	ifp->_if_input	 = if_nullinput;
    995 	ifp->if_start	 = if_nullstart;
    996 	ifp->if_transmit = if_nulltransmit;
    997 	ifp->if_ioctl	 = if_nullioctl;
    998 	ifp->if_init	 = if_nullinit;
    999 	ifp->if_stop	 = if_nullstop;
   1000 	ifp->if_slowtimo = if_nullslowtimo;
   1001 	ifp->if_drain	 = if_nulldrain;
   1002 
   1003 	/* No more packets may be enqueued. */
   1004 	ifp->if_snd.ifq_maxlen = 0;
   1005 
   1006 	splx(s);
   1007 }
   1008 
   1009 bool
   1010 if_is_deactivated(struct ifnet *ifp)
   1011 {
   1012 
   1013 	return ifp->if_output == if_nulloutput;
   1014 }
   1015 
   1016 void
   1017 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1018 {
   1019 	struct ifaddr *ifa, *nifa;
   1020 
   1021 	IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
   1022 		if (ifa->ifa_addr->sa_family != family)
   1023 			continue;
   1024 		(*purgeaddr)(ifa);
   1025 	}
   1026 }
   1027 
   1028 /*
   1029  * Detach an interface from the list of "active" interfaces,
   1030  * freeing any resources as we go along.
   1031  *
   1032  * NOTE: This routine must be called with a valid thread context,
   1033  * as it may block.
   1034  */
   1035 void
   1036 if_detach(struct ifnet *ifp)
   1037 {
   1038 	struct socket so;
   1039 	struct ifaddr *ifa;
   1040 #ifdef IFAREF_DEBUG
   1041 	struct ifaddr *last_ifa = NULL;
   1042 #endif
   1043 	struct domain *dp;
   1044 	const struct protosw *pr;
   1045 	int s, i, family, purged;
   1046 	uint64_t xc;
   1047 
   1048 	/*
   1049 	 * XXX It's kind of lame that we have to have the
   1050 	 * XXX socket structure...
   1051 	 */
   1052 	memset(&so, 0, sizeof(so));
   1053 
   1054 	s = splnet();
   1055 
   1056 	sysctl_teardown(&ifp->if_sysctl_log);
   1057 	mutex_enter(ifp->if_ioctl_lock);
   1058 	ifp->if_ioctl = if_nullioctl;
   1059 	mutex_exit(ifp->if_ioctl_lock);
   1060 
   1061 	IFNET_LOCK();
   1062 	ifindex2ifnet[ifp->if_index] = NULL;
   1063 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1064 	IFNET_WRITER_REMOVE(ifp);
   1065 	pserialize_perform(ifnet_psz);
   1066 	IFNET_UNLOCK();
   1067 
   1068 	mutex_obj_free(ifp->if_ioctl_lock);
   1069 	ifp->if_ioctl_lock = NULL;
   1070 
   1071 	if (ifp->if_slowtimo != NULL) {
   1072 		ifp->if_slowtimo = NULL;
   1073 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1074 		callout_destroy(ifp->if_slowtimo_ch);
   1075 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1076 	}
   1077 
   1078 	/*
   1079 	 * Do an if_down() to give protocols a chance to do something.
   1080 	 */
   1081 	if_down(ifp);
   1082 
   1083 #ifdef ALTQ
   1084 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1085 		altq_disable(&ifp->if_snd);
   1086 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1087 		altq_detach(&ifp->if_snd);
   1088 #endif
   1089 
   1090 	if (ifp->if_snd.ifq_lock)
   1091 		mutex_obj_free(ifp->if_snd.ifq_lock);
   1092 
   1093 #if NCARP > 0
   1094 	/* Remove the interface from any carp group it is a part of.  */
   1095 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1096 		carp_ifdetach(ifp);
   1097 #endif
   1098 
   1099 	/*
   1100 	 * Rip all the addresses off the interface.  This should make
   1101 	 * all of the routes go away.
   1102 	 *
   1103 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1104 	 * from the list, including our "cursor", ifa.  For safety,
   1105 	 * and to honor the TAILQ abstraction, I just restart the
   1106 	 * loop after each removal.  Note that the loop will exit
   1107 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1108 	 * family.  I am counting on the historical fact that at
   1109 	 * least one pr_usrreq in each address domain removes at
   1110 	 * least one ifaddr.
   1111 	 */
   1112 again:
   1113 	IFADDR_FOREACH(ifa, ifp) {
   1114 		family = ifa->ifa_addr->sa_family;
   1115 #ifdef IFAREF_DEBUG
   1116 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1117 		    ifa, family, ifa->ifa_refcnt);
   1118 		if (last_ifa != NULL && ifa == last_ifa)
   1119 			panic("if_detach: loop detected");
   1120 		last_ifa = ifa;
   1121 #endif
   1122 		if (family == AF_LINK)
   1123 			continue;
   1124 		dp = pffinddomain(family);
   1125 #ifdef DIAGNOSTIC
   1126 		if (dp == NULL)
   1127 			panic("if_detach: no domain for AF %d",
   1128 			    family);
   1129 #endif
   1130 		/*
   1131 		 * XXX These PURGEIF calls are redundant with the
   1132 		 * purge-all-families calls below, but are left in for
   1133 		 * now both to make a smaller change, and to avoid
   1134 		 * unplanned interactions with clearing of
   1135 		 * ifp->if_addrlist.
   1136 		 */
   1137 		purged = 0;
   1138 		for (pr = dp->dom_protosw;
   1139 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1140 			so.so_proto = pr;
   1141 			if (pr->pr_usrreqs) {
   1142 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1143 				purged = 1;
   1144 			}
   1145 		}
   1146 		if (purged == 0) {
   1147 			/*
   1148 			 * XXX What's really the best thing to do
   1149 			 * XXX here?  --thorpej (at) NetBSD.org
   1150 			 */
   1151 			printf("if_detach: WARNING: AF %d not purged\n",
   1152 			    family);
   1153 			ifa_remove(ifp, ifa);
   1154 		}
   1155 		goto again;
   1156 	}
   1157 
   1158 	if_free_sadl(ifp);
   1159 
   1160 	/* Walk the routing table looking for stragglers. */
   1161 	for (i = 0; i <= AF_MAX; i++) {
   1162 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
   1163 			continue;
   1164 	}
   1165 
   1166 	DOMAIN_FOREACH(dp) {
   1167 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1168 		{
   1169 			void *p = ifp->if_afdata[dp->dom_family];
   1170 			if (p) {
   1171 				ifp->if_afdata[dp->dom_family] = NULL;
   1172 				(*dp->dom_ifdetach)(ifp, p);
   1173 			}
   1174 		}
   1175 
   1176 		/*
   1177 		 * One would expect multicast memberships (INET and
   1178 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1179 		 * calls above, but if all addresses were removed from
   1180 		 * the interface prior to destruction, the calls will
   1181 		 * not be made (e.g. ppp, for which pppd(8) generally
   1182 		 * removes addresses before destroying the interface).
   1183 		 * Because there is no invariant that multicast
   1184 		 * memberships only exist for interfaces with IPv4
   1185 		 * addresses, we must call PURGEIF regardless of
   1186 		 * addresses.  (Protocols which might store ifnet
   1187 		 * pointers are marked with PR_PURGEIF.)
   1188 		 */
   1189 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1190 			so.so_proto = pr;
   1191 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1192 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1193 		}
   1194 	}
   1195 
   1196 	(void)pfil_run_hooks(if_pfil,
   1197 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
   1198 	(void)pfil_head_destroy(ifp->if_pfil);
   1199 
   1200 	/* Announce that the interface is gone. */
   1201 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1202 
   1203 	IF_AFDATA_LOCK_DESTROY(ifp);
   1204 
   1205 	if (if_is_link_state_changeable(ifp)) {
   1206 		softint_disestablish(ifp->if_link_si);
   1207 		ifp->if_link_si = NULL;
   1208 	}
   1209 
   1210 	/*
   1211 	 * remove packets that came from ifp, from software interrupt queues.
   1212 	 */
   1213 	DOMAIN_FOREACH(dp) {
   1214 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1215 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1216 			if (iq == NULL)
   1217 				break;
   1218 			dp->dom_ifqueues[i] = NULL;
   1219 			if_detach_queues(ifp, iq);
   1220 		}
   1221 	}
   1222 
   1223 	/*
   1224 	 * IP queues have to be processed separately: net-queue barrier
   1225 	 * ensures that the packets are dequeued while a cross-call will
   1226 	 * ensure that the interrupts have completed. FIXME: not quite..
   1227 	 */
   1228 #ifdef INET
   1229 	pktq_barrier(ip_pktq);
   1230 #endif
   1231 #ifdef INET6
   1232 	if (in6_present)
   1233 		pktq_barrier(ip6_pktq);
   1234 #endif
   1235 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1236 	xc_wait(xc);
   1237 
   1238 	/* Wait for all readers to drain before freeing.  */
   1239 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1240 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1241 
   1242 	if (ifp->if_percpuq != NULL) {
   1243 		if_percpuq_destroy(ifp->if_percpuq);
   1244 		ifp->if_percpuq = NULL;
   1245 	}
   1246 
   1247 	splx(s);
   1248 }
   1249 
   1250 static void
   1251 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1252 {
   1253 	struct mbuf *m, *prev, *next;
   1254 
   1255 	prev = NULL;
   1256 	for (m = q->ifq_head; m != NULL; m = next) {
   1257 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1258 
   1259 		next = m->m_nextpkt;
   1260 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1261 			prev = m;
   1262 			continue;
   1263 		}
   1264 
   1265 		if (prev != NULL)
   1266 			prev->m_nextpkt = m->m_nextpkt;
   1267 		else
   1268 			q->ifq_head = m->m_nextpkt;
   1269 		if (q->ifq_tail == m)
   1270 			q->ifq_tail = prev;
   1271 		q->ifq_len--;
   1272 
   1273 		m->m_nextpkt = NULL;
   1274 		m_freem(m);
   1275 		IF_DROP(q);
   1276 	}
   1277 }
   1278 
   1279 /*
   1280  * Callback for a radix tree walk to delete all references to an
   1281  * ifnet.
   1282  */
   1283 static int
   1284 if_rt_walktree(struct rtentry *rt, void *v)
   1285 {
   1286 	struct ifnet *ifp = (struct ifnet *)v;
   1287 	int error;
   1288 	struct rtentry *retrt;
   1289 
   1290 	if (rt->rt_ifp != ifp)
   1291 		return 0;
   1292 
   1293 	/* Delete the entry. */
   1294 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
   1295 	    rt_mask(rt), rt->rt_flags, &retrt);
   1296 	if (error == 0) {
   1297 		KASSERT(retrt == rt);
   1298 		KASSERT((retrt->rt_flags & RTF_UP) == 0);
   1299 		retrt->rt_ifp = NULL;
   1300 		rtfree(retrt);
   1301 	} else {
   1302 		printf("%s: warning: unable to delete rtentry @ %p, "
   1303 		    "error = %d\n", ifp->if_xname, rt, error);
   1304 	}
   1305 	return ERESTART;
   1306 }
   1307 
   1308 /*
   1309  * Create a clone network interface.
   1310  */
   1311 static int
   1312 if_clone_create(const char *name)
   1313 {
   1314 	struct if_clone *ifc;
   1315 	int unit;
   1316 	struct ifnet *ifp;
   1317 	struct psref psref;
   1318 
   1319 	ifc = if_clone_lookup(name, &unit);
   1320 	if (ifc == NULL)
   1321 		return EINVAL;
   1322 
   1323 	ifp = if_get(name, &psref);
   1324 	if (ifp != NULL) {
   1325 		if_put(ifp, &psref);
   1326 		return EEXIST;
   1327 	}
   1328 
   1329 	return (*ifc->ifc_create)(ifc, unit);
   1330 }
   1331 
   1332 /*
   1333  * Destroy a clone network interface.
   1334  */
   1335 static int
   1336 if_clone_destroy(const char *name)
   1337 {
   1338 	struct if_clone *ifc;
   1339 	struct ifnet *ifp;
   1340 	struct psref psref;
   1341 
   1342 	ifc = if_clone_lookup(name, NULL);
   1343 	if (ifc == NULL)
   1344 		return EINVAL;
   1345 
   1346 	if (ifc->ifc_destroy == NULL)
   1347 		return EOPNOTSUPP;
   1348 
   1349 	ifp = if_get(name, &psref);
   1350 	if (ifp == NULL)
   1351 		return ENXIO;
   1352 
   1353 	/* We have to disable ioctls here */
   1354 	mutex_enter(ifp->if_ioctl_lock);
   1355 	ifp->if_ioctl = if_nullioctl;
   1356 	mutex_exit(ifp->if_ioctl_lock);
   1357 
   1358 	/*
   1359 	 * We cannot call ifc_destroy with holding ifp.
   1360 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1361 	 */
   1362 	if_put(ifp, &psref);
   1363 
   1364 	return (*ifc->ifc_destroy)(ifp);
   1365 }
   1366 
   1367 /*
   1368  * Look up a network interface cloner.
   1369  */
   1370 static struct if_clone *
   1371 if_clone_lookup(const char *name, int *unitp)
   1372 {
   1373 	struct if_clone *ifc;
   1374 	const char *cp;
   1375 	char *dp, ifname[IFNAMSIZ + 3];
   1376 	int unit;
   1377 
   1378 	strcpy(ifname, "if_");
   1379 	/* separate interface name from unit */
   1380 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1381 	    *cp && (*cp < '0' || *cp > '9');)
   1382 		*dp++ = *cp++;
   1383 
   1384 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1385 		return NULL;	/* No name or unit number */
   1386 	*dp++ = '\0';
   1387 
   1388 again:
   1389 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1390 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1391 			break;
   1392 	}
   1393 
   1394 	if (ifc == NULL) {
   1395 		if (*ifname == '\0' ||
   1396 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
   1397 			return NULL;
   1398 		*ifname = '\0';
   1399 		goto again;
   1400 	}
   1401 
   1402 	unit = 0;
   1403 	while (cp - name < IFNAMSIZ && *cp) {
   1404 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1405 			/* Bogus unit number. */
   1406 			return NULL;
   1407 		}
   1408 		unit = (unit * 10) + (*cp++ - '0');
   1409 	}
   1410 
   1411 	if (unitp != NULL)
   1412 		*unitp = unit;
   1413 	return ifc;
   1414 }
   1415 
   1416 /*
   1417  * Register a network interface cloner.
   1418  */
   1419 void
   1420 if_clone_attach(struct if_clone *ifc)
   1421 {
   1422 
   1423 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1424 	if_cloners_count++;
   1425 }
   1426 
   1427 /*
   1428  * Unregister a network interface cloner.
   1429  */
   1430 void
   1431 if_clone_detach(struct if_clone *ifc)
   1432 {
   1433 
   1434 	LIST_REMOVE(ifc, ifc_list);
   1435 	if_cloners_count--;
   1436 }
   1437 
   1438 /*
   1439  * Provide list of interface cloners to userspace.
   1440  */
   1441 int
   1442 if_clone_list(int buf_count, char *buffer, int *total)
   1443 {
   1444 	char outbuf[IFNAMSIZ], *dst;
   1445 	struct if_clone *ifc;
   1446 	int count, error = 0;
   1447 
   1448 	*total = if_cloners_count;
   1449 	if ((dst = buffer) == NULL) {
   1450 		/* Just asking how many there are. */
   1451 		return 0;
   1452 	}
   1453 
   1454 	if (buf_count < 0)
   1455 		return EINVAL;
   1456 
   1457 	count = (if_cloners_count < buf_count) ?
   1458 	    if_cloners_count : buf_count;
   1459 
   1460 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1461 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1462 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1463 		if (outbuf[sizeof(outbuf) - 1] != '\0')
   1464 			return ENAMETOOLONG;
   1465 		error = copyout(outbuf, dst, sizeof(outbuf));
   1466 		if (error != 0)
   1467 			break;
   1468 	}
   1469 
   1470 	return error;
   1471 }
   1472 
   1473 void
   1474 ifaref(struct ifaddr *ifa)
   1475 {
   1476 	ifa->ifa_refcnt++;
   1477 }
   1478 
   1479 void
   1480 ifafree(struct ifaddr *ifa)
   1481 {
   1482 	KASSERT(ifa != NULL);
   1483 	KASSERT(ifa->ifa_refcnt > 0);
   1484 
   1485 	if (--ifa->ifa_refcnt == 0) {
   1486 		free(ifa, M_IFADDR);
   1487 	}
   1488 }
   1489 
   1490 void
   1491 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1492 {
   1493 	ifa->ifa_ifp = ifp;
   1494 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1495 	ifaref(ifa);
   1496 }
   1497 
   1498 void
   1499 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1500 {
   1501 	KASSERT(ifa->ifa_ifp == ifp);
   1502 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1503 	ifafree(ifa);
   1504 }
   1505 
   1506 static inline int
   1507 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1508 {
   1509 	return sockaddr_cmp(sa1, sa2) == 0;
   1510 }
   1511 
   1512 /*
   1513  * Locate an interface based on a complete address.
   1514  */
   1515 /*ARGSUSED*/
   1516 struct ifaddr *
   1517 ifa_ifwithaddr(const struct sockaddr *addr)
   1518 {
   1519 	struct ifnet *ifp;
   1520 	struct ifaddr *ifa;
   1521 	int s;
   1522 
   1523 	s = pserialize_read_enter();
   1524 	IFNET_READER_FOREACH(ifp) {
   1525 		if (if_is_deactivated(ifp))
   1526 			continue;
   1527 		IFADDR_FOREACH(ifa, ifp) {
   1528 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1529 				continue;
   1530 			if (equal(addr, ifa->ifa_addr))
   1531 				return ifa;
   1532 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1533 			    ifa->ifa_broadaddr &&
   1534 			    /* IP6 doesn't have broadcast */
   1535 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1536 			    equal(ifa->ifa_broadaddr, addr))
   1537 				return ifa;
   1538 		}
   1539 	}
   1540 	pserialize_read_exit(s);
   1541 	return NULL;
   1542 }
   1543 
   1544 /*
   1545  * Locate the point to point interface with a given destination address.
   1546  */
   1547 /*ARGSUSED*/
   1548 struct ifaddr *
   1549 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1550 {
   1551 	struct ifnet *ifp;
   1552 	struct ifaddr *ifa;
   1553 	int s;
   1554 
   1555 	s = pserialize_read_enter();
   1556 	IFNET_READER_FOREACH(ifp) {
   1557 		if (if_is_deactivated(ifp))
   1558 			continue;
   1559 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1560 			continue;
   1561 		IFADDR_FOREACH(ifa, ifp) {
   1562 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1563 			    ifa->ifa_dstaddr == NULL)
   1564 				continue;
   1565 			if (equal(addr, ifa->ifa_dstaddr))
   1566 				return ifa;
   1567 		}
   1568 	}
   1569 	pserialize_read_exit(s);
   1570 	return NULL;
   1571 }
   1572 
   1573 /*
   1574  * Find an interface on a specific network.  If many, choice
   1575  * is most specific found.
   1576  */
   1577 struct ifaddr *
   1578 ifa_ifwithnet(const struct sockaddr *addr)
   1579 {
   1580 	struct ifnet *ifp;
   1581 	struct ifaddr *ifa;
   1582 	const struct sockaddr_dl *sdl;
   1583 	struct ifaddr *ifa_maybe = 0;
   1584 	u_int af = addr->sa_family;
   1585 	const char *addr_data = addr->sa_data, *cplim;
   1586 	int s;
   1587 
   1588 	if (af == AF_LINK) {
   1589 		sdl = satocsdl(addr);
   1590 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1591 		    ifindex2ifnet[sdl->sdl_index] &&
   1592 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1593 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1594 		}
   1595 	}
   1596 #ifdef NETATALK
   1597 	if (af == AF_APPLETALK) {
   1598 		const struct sockaddr_at *sat, *sat2;
   1599 		sat = (const struct sockaddr_at *)addr;
   1600 		s = pserialize_read_enter();
   1601 		IFNET_READER_FOREACH(ifp) {
   1602 			if (if_is_deactivated(ifp))
   1603 				continue;
   1604 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1605 			if (ifa == NULL)
   1606 				continue;
   1607 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1608 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1609 				return ifa; /* exact match */
   1610 			if (ifa_maybe == NULL) {
   1611 				/* else keep the if with the right range */
   1612 				ifa_maybe = ifa;
   1613 			}
   1614 		}
   1615 		pserialize_read_exit(s);
   1616 		return ifa_maybe;
   1617 	}
   1618 #endif
   1619 	s = pserialize_read_enter();
   1620 	IFNET_READER_FOREACH(ifp) {
   1621 		if (if_is_deactivated(ifp))
   1622 			continue;
   1623 		IFADDR_FOREACH(ifa, ifp) {
   1624 			const char *cp, *cp2, *cp3;
   1625 
   1626 			if (ifa->ifa_addr->sa_family != af ||
   1627 			    ifa->ifa_netmask == NULL)
   1628  next:				continue;
   1629 			cp = addr_data;
   1630 			cp2 = ifa->ifa_addr->sa_data;
   1631 			cp3 = ifa->ifa_netmask->sa_data;
   1632 			cplim = (const char *)ifa->ifa_netmask +
   1633 			    ifa->ifa_netmask->sa_len;
   1634 			while (cp3 < cplim) {
   1635 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1636 					/* want to continue for() loop */
   1637 					goto next;
   1638 				}
   1639 			}
   1640 			if (ifa_maybe == NULL ||
   1641 			    rt_refines(ifa->ifa_netmask,
   1642 			               ifa_maybe->ifa_netmask))
   1643 				ifa_maybe = ifa;
   1644 		}
   1645 	}
   1646 	pserialize_read_exit(s);
   1647 	return ifa_maybe;
   1648 }
   1649 
   1650 /*
   1651  * Find the interface of the addresss.
   1652  */
   1653 struct ifaddr *
   1654 ifa_ifwithladdr(const struct sockaddr *addr)
   1655 {
   1656 	struct ifaddr *ia;
   1657 
   1658 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   1659 	    (ia = ifa_ifwithnet(addr)))
   1660 		return ia;
   1661 	return NULL;
   1662 }
   1663 
   1664 /*
   1665  * Find an interface using a specific address family
   1666  */
   1667 struct ifaddr *
   1668 ifa_ifwithaf(int af)
   1669 {
   1670 	struct ifnet *ifp;
   1671 	struct ifaddr *ifa = NULL;
   1672 	int s;
   1673 
   1674 	s = pserialize_read_enter();
   1675 	IFNET_READER_FOREACH(ifp) {
   1676 		if (if_is_deactivated(ifp))
   1677 			continue;
   1678 		IFADDR_FOREACH(ifa, ifp) {
   1679 			if (ifa->ifa_addr->sa_family == af)
   1680 				goto out;
   1681 		}
   1682 	}
   1683 out:
   1684 	pserialize_read_exit(s);
   1685 	return ifa;
   1686 }
   1687 
   1688 /*
   1689  * Find an interface address specific to an interface best matching
   1690  * a given address.
   1691  */
   1692 struct ifaddr *
   1693 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   1694 {
   1695 	struct ifaddr *ifa;
   1696 	const char *cp, *cp2, *cp3;
   1697 	const char *cplim;
   1698 	struct ifaddr *ifa_maybe = 0;
   1699 	u_int af = addr->sa_family;
   1700 
   1701 	if (if_is_deactivated(ifp))
   1702 		return NULL;
   1703 
   1704 	if (af >= AF_MAX)
   1705 		return NULL;
   1706 
   1707 	IFADDR_FOREACH(ifa, ifp) {
   1708 		if (ifa->ifa_addr->sa_family != af)
   1709 			continue;
   1710 		ifa_maybe = ifa;
   1711 		if (ifa->ifa_netmask == NULL) {
   1712 			if (equal(addr, ifa->ifa_addr) ||
   1713 			    (ifa->ifa_dstaddr &&
   1714 			     equal(addr, ifa->ifa_dstaddr)))
   1715 				return ifa;
   1716 			continue;
   1717 		}
   1718 		cp = addr->sa_data;
   1719 		cp2 = ifa->ifa_addr->sa_data;
   1720 		cp3 = ifa->ifa_netmask->sa_data;
   1721 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   1722 		for (; cp3 < cplim; cp3++) {
   1723 			if ((*cp++ ^ *cp2++) & *cp3)
   1724 				break;
   1725 		}
   1726 		if (cp3 == cplim)
   1727 			return ifa;
   1728 	}
   1729 	return ifa_maybe;
   1730 }
   1731 
   1732 /*
   1733  * Default action when installing a route with a Link Level gateway.
   1734  * Lookup an appropriate real ifa to point to.
   1735  * This should be moved to /sys/net/link.c eventually.
   1736  */
   1737 void
   1738 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   1739 {
   1740 	struct ifaddr *ifa;
   1741 	const struct sockaddr *dst;
   1742 	struct ifnet *ifp;
   1743 
   1744 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   1745 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   1746 		return;
   1747 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
   1748 		rt_replace_ifa(rt, ifa);
   1749 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   1750 			ifa->ifa_rtrequest(cmd, rt, info);
   1751 	}
   1752 }
   1753 
   1754 /*
   1755  * bitmask macros to manage a densely packed link_state change queue.
   1756  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   1757  * LINK_STATE_UP(2) we need 2 bits for each state change.
   1758  * As a state change to store is 0, treat all bits set as an unset item.
   1759  */
   1760 #define LQ_ITEM_BITS		2
   1761 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   1762 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   1763 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   1764 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   1765 #define LQ_STORE(q, i, v)						      \
   1766 	do {								      \
   1767 		(q) &= ~LQ_MASK((i));					      \
   1768 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   1769 	} while (0 /* CONSTCOND */)
   1770 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   1771 #define LQ_POP(q, v)							      \
   1772 	do {								      \
   1773 		(v) = LQ_ITEM((q), 0);					      \
   1774 		(q) >>= LQ_ITEM_BITS;					      \
   1775 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   1776 	} while (0 /* CONSTCOND */)
   1777 #define LQ_PUSH(q, v)							      \
   1778 	do {								      \
   1779 		(q) >>= LQ_ITEM_BITS;					      \
   1780 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   1781 	} while (0 /* CONSTCOND */)
   1782 #define LQ_FIND_UNSET(q, i)						      \
   1783 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   1784 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   1785 			break;						      \
   1786 	}
   1787 /*
   1788  * Handle a change in the interface link state and
   1789  * queue notifications.
   1790  */
   1791 void
   1792 if_link_state_change(struct ifnet *ifp, int link_state)
   1793 {
   1794 	int s, idx;
   1795 
   1796 	KASSERTMSG(if_is_link_state_changeable(ifp),
   1797 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   1798 	    ifp->if_xname, ifp->if_extflags);
   1799 
   1800 	/* Ensure change is to a valid state */
   1801 	switch (link_state) {
   1802 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   1803 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   1804 	case LINK_STATE_UP:
   1805 		break;
   1806 	default:
   1807 #ifdef DEBUG
   1808 		printf("%s: invalid link state %d\n",
   1809 		    ifp->if_xname, link_state);
   1810 #endif
   1811 		return;
   1812 	}
   1813 
   1814 	s = splnet();
   1815 
   1816 	/* Find the last unset event in the queue. */
   1817 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   1818 
   1819 	/*
   1820 	 * Ensure link_state doesn't match the last event in the queue.
   1821 	 * ifp->if_link_state is not checked and set here because
   1822 	 * that would present an inconsistent picture to the system.
   1823 	 */
   1824 	if (idx != 0 &&
   1825 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   1826 		goto out;
   1827 
   1828 	/* Handle queue overflow. */
   1829 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   1830 		uint8_t lost;
   1831 
   1832 		/*
   1833 		 * The DOWN state must be protected from being pushed off
   1834 		 * the queue to ensure that userland will always be
   1835 		 * in a sane state.
   1836 		 * Because DOWN is protected, there is no need to protect
   1837 		 * UNKNOWN.
   1838 		 * It should be invalid to change from any other state to
   1839 		 * UNKNOWN anyway ...
   1840 		 */
   1841 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   1842 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   1843 		if (lost == LINK_STATE_DOWN) {
   1844 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   1845 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   1846 		}
   1847 		printf("%s: lost link state change %s\n",
   1848 		    ifp->if_xname,
   1849 		    lost == LINK_STATE_UP ? "UP" :
   1850 		    lost == LINK_STATE_DOWN ? "DOWN" :
   1851 		    "UNKNOWN");
   1852 	} else
   1853 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   1854 
   1855 	softint_schedule(ifp->if_link_si);
   1856 
   1857 out:
   1858 	splx(s);
   1859 }
   1860 
   1861 /*
   1862  * Handle interface link state change notifications.
   1863  * Must be called at splnet().
   1864  */
   1865 static void
   1866 if_link_state_change0(struct ifnet *ifp, int link_state)
   1867 {
   1868 	struct domain *dp;
   1869 
   1870 	/* Ensure the change is still valid. */
   1871 	if (ifp->if_link_state == link_state)
   1872 		return;
   1873 
   1874 #ifdef DEBUG
   1875 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   1876 		link_state == LINK_STATE_UP ? "UP" :
   1877 		link_state == LINK_STATE_DOWN ? "DOWN" :
   1878 		"UNKNOWN",
   1879 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   1880 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   1881 		"UNKNOWN");
   1882 #endif
   1883 
   1884 	/*
   1885 	 * When going from UNKNOWN to UP, we need to mark existing
   1886 	 * addresses as tentative and restart DAD as we may have
   1887 	 * erroneously not found a duplicate.
   1888 	 *
   1889 	 * This needs to happen before rt_ifmsg to avoid a race where
   1890 	 * listeners would have an address and expect it to work right
   1891 	 * away.
   1892 	 */
   1893 	if (link_state == LINK_STATE_UP &&
   1894 	    ifp->if_link_state == LINK_STATE_UNKNOWN)
   1895 	{
   1896 		DOMAIN_FOREACH(dp) {
   1897 			if (dp->dom_if_link_state_change != NULL)
   1898 				dp->dom_if_link_state_change(ifp,
   1899 				    LINK_STATE_DOWN);
   1900 		}
   1901 	}
   1902 
   1903 	ifp->if_link_state = link_state;
   1904 
   1905 	/* Notify that the link state has changed. */
   1906 	rt_ifmsg(ifp);
   1907 
   1908 #if NCARP > 0
   1909 	if (ifp->if_carp)
   1910 		carp_carpdev_state(ifp);
   1911 #endif
   1912 
   1913 	DOMAIN_FOREACH(dp) {
   1914 		if (dp->dom_if_link_state_change != NULL)
   1915 			dp->dom_if_link_state_change(ifp, link_state);
   1916 	}
   1917 }
   1918 
   1919 /*
   1920  * Process the interface link state change queue.
   1921  */
   1922 static void
   1923 if_link_state_change_si(void *arg)
   1924 {
   1925 	struct ifnet *ifp = arg;
   1926 	int s;
   1927 	uint8_t state;
   1928 
   1929 	s = splnet();
   1930 
   1931 	/* Pop a link state change from the queue and process it. */
   1932 	LQ_POP(ifp->if_link_queue, state);
   1933 	if_link_state_change0(ifp, state);
   1934 
   1935 	/* If there is a link state change to come, schedule it. */
   1936 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
   1937 		softint_schedule(ifp->if_link_si);
   1938 
   1939 	splx(s);
   1940 }
   1941 
   1942 /*
   1943  * Default action when installing a local route on a point-to-point
   1944  * interface.
   1945  */
   1946 void
   1947 p2p_rtrequest(int req, struct rtentry *rt,
   1948     __unused const struct rt_addrinfo *info)
   1949 {
   1950 	struct ifnet *ifp = rt->rt_ifp;
   1951 	struct ifaddr *ifa, *lo0ifa;
   1952 
   1953 	switch (req) {
   1954 	case RTM_ADD:
   1955 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   1956 			break;
   1957 
   1958 		IFADDR_FOREACH(ifa, ifp) {
   1959 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   1960 				break;
   1961 		}
   1962 		if (ifa == NULL)
   1963 			break;
   1964 
   1965 		/*
   1966 		 * Ensure lo0 has an address of the same family.
   1967 		 */
   1968 		IFADDR_FOREACH(lo0ifa, lo0ifp) {
   1969 			if (lo0ifa->ifa_addr->sa_family ==
   1970 			    ifa->ifa_addr->sa_family)
   1971 				break;
   1972 		}
   1973 		if (lo0ifa == NULL)
   1974 			break;
   1975 
   1976 		rt->rt_ifp = lo0ifp;
   1977 
   1978 		/*
   1979 		 * Make sure to set rt->rt_ifa to the interface
   1980 		 * address we are using, otherwise we will have trouble
   1981 		 * with source address selection.
   1982 		 */
   1983 		if (ifa != rt->rt_ifa)
   1984 			rt_replace_ifa(rt, ifa);
   1985 		break;
   1986 	case RTM_DELETE:
   1987 	default:
   1988 		break;
   1989 	}
   1990 }
   1991 
   1992 /*
   1993  * Mark an interface down and notify protocols of
   1994  * the transition.
   1995  * NOTE: must be called at splsoftnet or equivalent.
   1996  */
   1997 void
   1998 if_down(struct ifnet *ifp)
   1999 {
   2000 	struct ifaddr *ifa;
   2001 	struct domain *dp;
   2002 
   2003 	ifp->if_flags &= ~IFF_UP;
   2004 	nanotime(&ifp->if_lastchange);
   2005 	IFADDR_FOREACH(ifa, ifp)
   2006 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2007 	IFQ_PURGE(&ifp->if_snd);
   2008 #if NCARP > 0
   2009 	if (ifp->if_carp)
   2010 		carp_carpdev_state(ifp);
   2011 #endif
   2012 	rt_ifmsg(ifp);
   2013 	DOMAIN_FOREACH(dp) {
   2014 		if (dp->dom_if_down)
   2015 			dp->dom_if_down(ifp);
   2016 	}
   2017 }
   2018 
   2019 /*
   2020  * Mark an interface up and notify protocols of
   2021  * the transition.
   2022  * NOTE: must be called at splsoftnet or equivalent.
   2023  */
   2024 void
   2025 if_up(struct ifnet *ifp)
   2026 {
   2027 #ifdef notyet
   2028 	struct ifaddr *ifa;
   2029 #endif
   2030 	struct domain *dp;
   2031 
   2032 	ifp->if_flags |= IFF_UP;
   2033 	nanotime(&ifp->if_lastchange);
   2034 #ifdef notyet
   2035 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2036 	IFADDR_FOREACH(ifa, ifp)
   2037 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2038 #endif
   2039 #if NCARP > 0
   2040 	if (ifp->if_carp)
   2041 		carp_carpdev_state(ifp);
   2042 #endif
   2043 	rt_ifmsg(ifp);
   2044 	DOMAIN_FOREACH(dp) {
   2045 		if (dp->dom_if_up)
   2046 			dp->dom_if_up(ifp);
   2047 	}
   2048 }
   2049 
   2050 /*
   2051  * Handle interface slowtimo timer routine.  Called
   2052  * from softclock, we decrement timer (if set) and
   2053  * call the appropriate interface routine on expiration.
   2054  */
   2055 static void
   2056 if_slowtimo(void *arg)
   2057 {
   2058 	void (*slowtimo)(struct ifnet *);
   2059 	struct ifnet *ifp = arg;
   2060 	int s;
   2061 
   2062 	slowtimo = ifp->if_slowtimo;
   2063 	if (__predict_false(slowtimo == NULL))
   2064 		return;
   2065 
   2066 	s = splnet();
   2067 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2068 		(*slowtimo)(ifp);
   2069 
   2070 	splx(s);
   2071 
   2072 	if (__predict_true(ifp->if_slowtimo != NULL))
   2073 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2074 }
   2075 
   2076 /*
   2077  * Set/clear promiscuous mode on interface ifp based on the truth value
   2078  * of pswitch.  The calls are reference counted so that only the first
   2079  * "on" request actually has an effect, as does the final "off" request.
   2080  * Results are undefined if the "off" and "on" requests are not matched.
   2081  */
   2082 int
   2083 ifpromisc(struct ifnet *ifp, int pswitch)
   2084 {
   2085 	int pcount, ret;
   2086 	short nflags;
   2087 
   2088 	pcount = ifp->if_pcount;
   2089 	if (pswitch) {
   2090 		/*
   2091 		 * Allow the device to be "placed" into promiscuous
   2092 		 * mode even if it is not configured up.  It will
   2093 		 * consult IFF_PROMISC when it is brought up.
   2094 		 */
   2095 		if (ifp->if_pcount++ != 0)
   2096 			return 0;
   2097 		nflags = ifp->if_flags | IFF_PROMISC;
   2098 	} else {
   2099 		if (--ifp->if_pcount > 0)
   2100 			return 0;
   2101 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2102 	}
   2103 	ret = if_flags_set(ifp, nflags);
   2104 	/* Restore interface state if not successful. */
   2105 	if (ret != 0) {
   2106 		ifp->if_pcount = pcount;
   2107 	}
   2108 	return ret;
   2109 }
   2110 
   2111 /*
   2112  * Map interface name to
   2113  * interface structure pointer.
   2114  */
   2115 struct ifnet *
   2116 ifunit(const char *name)
   2117 {
   2118 	struct ifnet *ifp;
   2119 	const char *cp = name;
   2120 	u_int unit = 0;
   2121 	u_int i;
   2122 	int s;
   2123 
   2124 	/*
   2125 	 * If the entire name is a number, treat it as an ifindex.
   2126 	 */
   2127 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2128 		unit = unit * 10 + (*cp - '0');
   2129 	}
   2130 
   2131 	/*
   2132 	 * If the number took all of the name, then it's a valid ifindex.
   2133 	 */
   2134 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
   2135 		if (unit >= if_indexlim)
   2136 			return NULL;
   2137 		ifp = ifindex2ifnet[unit];
   2138 		if (ifp == NULL || if_is_deactivated(ifp))
   2139 			return NULL;
   2140 		return ifp;
   2141 	}
   2142 
   2143 	ifp = NULL;
   2144 	s = pserialize_read_enter();
   2145 	IFNET_READER_FOREACH(ifp) {
   2146 		if (if_is_deactivated(ifp))
   2147 			continue;
   2148 	 	if (strcmp(ifp->if_xname, name) == 0)
   2149 			goto out;
   2150 	}
   2151 out:
   2152 	pserialize_read_exit(s);
   2153 	return ifp;
   2154 }
   2155 
   2156 /*
   2157  * Get a reference of an ifnet object by an interface name.
   2158  * The returned reference is protected by psref(9). The caller
   2159  * must release a returned reference by if_put after use.
   2160  */
   2161 struct ifnet *
   2162 if_get(const char *name, struct psref *psref)
   2163 {
   2164 	struct ifnet *ifp;
   2165 	const char *cp = name;
   2166 	u_int unit = 0;
   2167 	u_int i;
   2168 	int s;
   2169 
   2170 	/*
   2171 	 * If the entire name is a number, treat it as an ifindex.
   2172 	 */
   2173 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2174 		unit = unit * 10 + (*cp - '0');
   2175 	}
   2176 
   2177 	/*
   2178 	 * If the number took all of the name, then it's a valid ifindex.
   2179 	 */
   2180 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
   2181 		if (unit >= if_indexlim)
   2182 			return NULL;
   2183 		ifp = ifindex2ifnet[unit];
   2184 		if (ifp == NULL || if_is_deactivated(ifp))
   2185 			return NULL;
   2186 		return ifp;
   2187 	}
   2188 
   2189 	ifp = NULL;
   2190 	s = pserialize_read_enter();
   2191 	IFNET_READER_FOREACH(ifp) {
   2192 		if (if_is_deactivated(ifp))
   2193 			continue;
   2194 		if (strcmp(ifp->if_xname, name) == 0) {
   2195 			psref_acquire(psref, &ifp->if_psref,
   2196 			    ifnet_psref_class);
   2197 			goto out;
   2198 		}
   2199 	}
   2200 out:
   2201 	pserialize_read_exit(s);
   2202 	return ifp;
   2203 }
   2204 
   2205 /*
   2206  * Release a reference of an ifnet object given by if_get or
   2207  * if_get_byindex.
   2208  */
   2209 void
   2210 if_put(const struct ifnet *ifp, struct psref *psref)
   2211 {
   2212 
   2213 	if (ifp == NULL)
   2214 		return;
   2215 
   2216 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2217 }
   2218 
   2219 ifnet_t *
   2220 if_byindex(u_int idx)
   2221 {
   2222 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
   2223 }
   2224 
   2225 /*
   2226  * Get a reference of an ifnet object by an interface index.
   2227  * The returned reference is protected by psref(9). The caller
   2228  * must release a returned reference by if_put after use.
   2229  */
   2230 ifnet_t *
   2231 if_get_byindex(u_int idx, struct psref *psref)
   2232 {
   2233 	ifnet_t *ifp;
   2234 	int s;
   2235 
   2236 	s = pserialize_read_enter();
   2237 	ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2238 	if (__predict_true(ifp != NULL))
   2239 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2240 	pserialize_read_exit(s);
   2241 
   2242 	return ifp;
   2243 }
   2244 
   2245 /*
   2246  * XXX it's safe only if the passed ifp is guaranteed to not be freed,
   2247  * for example the ifp is already held or some other object is held which
   2248  * guarantes the ifp to not be freed indirectly.
   2249  */
   2250 void
   2251 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
   2252 {
   2253 
   2254 	KASSERT(ifp->if_index != 0);
   2255 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2256 }
   2257 
   2258 bool
   2259 if_held(struct ifnet *ifp)
   2260 {
   2261 
   2262 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2263 }
   2264 
   2265 
   2266 /* common */
   2267 int
   2268 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2269 {
   2270 	int s;
   2271 	struct ifreq *ifr;
   2272 	struct ifcapreq *ifcr;
   2273 	struct ifdatareq *ifdr;
   2274 
   2275 	switch (cmd) {
   2276 	case SIOCSIFCAP:
   2277 		ifcr = data;
   2278 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2279 			return EINVAL;
   2280 
   2281 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2282 			return 0;
   2283 
   2284 		ifp->if_capenable = ifcr->ifcr_capenable;
   2285 
   2286 		/* Pre-compute the checksum flags mask. */
   2287 		ifp->if_csum_flags_tx = 0;
   2288 		ifp->if_csum_flags_rx = 0;
   2289 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2290 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2291 		}
   2292 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2293 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2294 		}
   2295 
   2296 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2297 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2298 		}
   2299 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2300 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2301 		}
   2302 
   2303 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2304 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2305 		}
   2306 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2307 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2308 		}
   2309 
   2310 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2311 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2312 		}
   2313 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2314 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2315 		}
   2316 
   2317 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2318 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2319 		}
   2320 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2321 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2322 		}
   2323 		if (ifp->if_flags & IFF_UP)
   2324 			return ENETRESET;
   2325 		return 0;
   2326 	case SIOCSIFFLAGS:
   2327 		ifr = data;
   2328 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2329 			s = splnet();
   2330 			if_down(ifp);
   2331 			splx(s);
   2332 		}
   2333 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2334 			s = splnet();
   2335 			if_up(ifp);
   2336 			splx(s);
   2337 		}
   2338 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2339 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2340 		break;
   2341 	case SIOCGIFFLAGS:
   2342 		ifr = data;
   2343 		ifr->ifr_flags = ifp->if_flags;
   2344 		break;
   2345 
   2346 	case SIOCGIFMETRIC:
   2347 		ifr = data;
   2348 		ifr->ifr_metric = ifp->if_metric;
   2349 		break;
   2350 
   2351 	case SIOCGIFMTU:
   2352 		ifr = data;
   2353 		ifr->ifr_mtu = ifp->if_mtu;
   2354 		break;
   2355 
   2356 	case SIOCGIFDLT:
   2357 		ifr = data;
   2358 		ifr->ifr_dlt = ifp->if_dlt;
   2359 		break;
   2360 
   2361 	case SIOCGIFCAP:
   2362 		ifcr = data;
   2363 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2364 		ifcr->ifcr_capenable = ifp->if_capenable;
   2365 		break;
   2366 
   2367 	case SIOCSIFMETRIC:
   2368 		ifr = data;
   2369 		ifp->if_metric = ifr->ifr_metric;
   2370 		break;
   2371 
   2372 	case SIOCGIFDATA:
   2373 		ifdr = data;
   2374 		ifdr->ifdr_data = ifp->if_data;
   2375 		break;
   2376 
   2377 	case SIOCGIFINDEX:
   2378 		ifr = data;
   2379 		ifr->ifr_index = ifp->if_index;
   2380 		break;
   2381 
   2382 	case SIOCZIFDATA:
   2383 		ifdr = data;
   2384 		ifdr->ifdr_data = ifp->if_data;
   2385 		/*
   2386 		 * Assumes that the volatile counters that can be
   2387 		 * zero'ed are at the end of if_data.
   2388 		 */
   2389 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   2390 		    offsetof(struct if_data, ifi_ipackets));
   2391 		/*
   2392 		 * The memset() clears to the bottm of if_data. In the area,
   2393 		 * if_lastchange is included. Please be careful if new entry
   2394 		 * will be added into if_data or rewite this.
   2395 		 *
   2396 		 * And also, update if_lastchnage.
   2397 		 */
   2398 		getnanotime(&ifp->if_lastchange);
   2399 		break;
   2400 	case SIOCSIFMTU:
   2401 		ifr = data;
   2402 		if (ifp->if_mtu == ifr->ifr_mtu)
   2403 			break;
   2404 		ifp->if_mtu = ifr->ifr_mtu;
   2405 		/*
   2406 		 * If the link MTU changed, do network layer specific procedure.
   2407 		 */
   2408 #ifdef INET6
   2409 		if (in6_present)
   2410 			nd6_setmtu(ifp);
   2411 #endif
   2412 		return ENETRESET;
   2413 	default:
   2414 		return ENOTTY;
   2415 	}
   2416 	return 0;
   2417 }
   2418 
   2419 int
   2420 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   2421 {
   2422 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   2423 	struct ifaddr *ifa;
   2424 	const struct sockaddr *any, *sa;
   2425 	union {
   2426 		struct sockaddr sa;
   2427 		struct sockaddr_storage ss;
   2428 	} u, v;
   2429 
   2430 	switch (cmd) {
   2431 	case SIOCSIFADDRPREF:
   2432 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   2433 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   2434 		    NULL) != 0)
   2435 			return EPERM;
   2436 	case SIOCGIFADDRPREF:
   2437 		break;
   2438 	default:
   2439 		return EOPNOTSUPP;
   2440 	}
   2441 
   2442 	/* sanity checks */
   2443 	if (data == NULL || ifp == NULL) {
   2444 		panic("invalid argument to %s", __func__);
   2445 		/*NOTREACHED*/
   2446 	}
   2447 
   2448 	/* address must be specified on ADD and DELETE */
   2449 	sa = sstocsa(&ifap->ifap_addr);
   2450 	if (sa->sa_family != sofamily(so))
   2451 		return EINVAL;
   2452 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   2453 		return EINVAL;
   2454 
   2455 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   2456 
   2457 	IFADDR_FOREACH(ifa, ifp) {
   2458 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   2459 			continue;
   2460 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   2461 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   2462 			break;
   2463 	}
   2464 	if (ifa == NULL)
   2465 		return EADDRNOTAVAIL;
   2466 
   2467 	switch (cmd) {
   2468 	case SIOCSIFADDRPREF:
   2469 		ifa->ifa_preference = ifap->ifap_preference;
   2470 		return 0;
   2471 	case SIOCGIFADDRPREF:
   2472 		/* fill in the if_laddrreq structure */
   2473 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   2474 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   2475 		ifap->ifap_preference = ifa->ifa_preference;
   2476 		return 0;
   2477 	default:
   2478 		return EOPNOTSUPP;
   2479 	}
   2480 }
   2481 
   2482 /*
   2483  * Interface ioctls.
   2484  */
   2485 static int
   2486 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   2487 {
   2488 	struct ifnet *ifp;
   2489 	struct ifreq *ifr;
   2490 	int error = 0;
   2491 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   2492 	u_long ocmd = cmd;
   2493 #endif
   2494 	short oif_flags;
   2495 #ifdef COMPAT_OIFREQ
   2496 	struct ifreq ifrb;
   2497 	struct oifreq *oifr = NULL;
   2498 #endif
   2499 	int r;
   2500 	struct psref psref;
   2501 	int bound;
   2502 
   2503 	switch (cmd) {
   2504 #ifdef COMPAT_OIFREQ
   2505 	case OSIOCGIFCONF:
   2506 	case OOSIOCGIFCONF:
   2507 		return compat_ifconf(cmd, data);
   2508 #endif
   2509 #ifdef COMPAT_OIFDATA
   2510 	case OSIOCGIFDATA:
   2511 	case OSIOCZIFDATA:
   2512 		return compat_ifdatareq(l, cmd, data);
   2513 #endif
   2514 	case SIOCGIFCONF:
   2515 		return ifconf(cmd, data);
   2516 	case SIOCINITIFADDR:
   2517 		return EPERM;
   2518 	}
   2519 
   2520 #ifdef COMPAT_OIFREQ
   2521 	cmd = compat_cvtcmd(cmd);
   2522 	if (cmd != ocmd) {
   2523 		oifr = data;
   2524 		data = ifr = &ifrb;
   2525 		ifreqo2n(oifr, ifr);
   2526 	} else
   2527 #endif
   2528 		ifr = data;
   2529 
   2530 	switch (cmd) {
   2531 	case SIOCIFCREATE:
   2532 	case SIOCIFDESTROY:
   2533 		bound = curlwp_bind();
   2534 		if (l != NULL) {
   2535 			ifp = if_get(ifr->ifr_name, &psref);
   2536 			error = kauth_authorize_network(l->l_cred,
   2537 			    KAUTH_NETWORK_INTERFACE,
   2538 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2539 			    (void *)cmd, NULL);
   2540 			if (ifp != NULL)
   2541 				if_put(ifp, &psref);
   2542 			if (error != 0) {
   2543 				curlwp_bindx(bound);
   2544 				return error;
   2545 			}
   2546 		}
   2547 		mutex_enter(&if_clone_mtx);
   2548 		r = (cmd == SIOCIFCREATE) ?
   2549 			if_clone_create(ifr->ifr_name) :
   2550 			if_clone_destroy(ifr->ifr_name);
   2551 		mutex_exit(&if_clone_mtx);
   2552 		curlwp_bindx(bound);
   2553 		return r;
   2554 
   2555 	case SIOCIFGCLONERS:
   2556 		{
   2557 			struct if_clonereq *req = (struct if_clonereq *)data;
   2558 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   2559 			    &req->ifcr_total);
   2560 		}
   2561 	}
   2562 
   2563 	bound = curlwp_bind();
   2564 	ifp = if_get(ifr->ifr_name, &psref);
   2565 	if (ifp == NULL) {
   2566 		curlwp_bindx(bound);
   2567 		return ENXIO;
   2568 	}
   2569 
   2570 	switch (cmd) {
   2571 	case SIOCALIFADDR:
   2572 	case SIOCDLIFADDR:
   2573 	case SIOCSIFADDRPREF:
   2574 	case SIOCSIFFLAGS:
   2575 	case SIOCSIFCAP:
   2576 	case SIOCSIFMETRIC:
   2577 	case SIOCZIFDATA:
   2578 	case SIOCSIFMTU:
   2579 	case SIOCSIFPHYADDR:
   2580 	case SIOCDIFPHYADDR:
   2581 #ifdef INET6
   2582 	case SIOCSIFPHYADDR_IN6:
   2583 #endif
   2584 	case SIOCSLIFPHYADDR:
   2585 	case SIOCADDMULTI:
   2586 	case SIOCDELMULTI:
   2587 	case SIOCSIFMEDIA:
   2588 	case SIOCSDRVSPEC:
   2589 	case SIOCG80211:
   2590 	case SIOCS80211:
   2591 	case SIOCS80211NWID:
   2592 	case SIOCS80211NWKEY:
   2593 	case SIOCS80211POWER:
   2594 	case SIOCS80211BSSID:
   2595 	case SIOCS80211CHANNEL:
   2596 	case SIOCSLINKSTR:
   2597 		if (l != NULL) {
   2598 			error = kauth_authorize_network(l->l_cred,
   2599 			    KAUTH_NETWORK_INTERFACE,
   2600 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2601 			    (void *)cmd, NULL);
   2602 			if (error != 0)
   2603 				goto out;
   2604 		}
   2605 	}
   2606 
   2607 	oif_flags = ifp->if_flags;
   2608 
   2609 	mutex_enter(ifp->if_ioctl_lock);
   2610 
   2611 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   2612 	if (error != ENOTTY)
   2613 		;
   2614 	else if (so->so_proto == NULL)
   2615 		error = EOPNOTSUPP;
   2616 	else {
   2617 #ifdef COMPAT_OSOCK
   2618 		error = compat_ifioctl(so, ocmd, cmd, data, l);
   2619 #else
   2620 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   2621 		    cmd, data, ifp);
   2622 #endif
   2623 	}
   2624 
   2625 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   2626 		if ((ifp->if_flags & IFF_UP) != 0) {
   2627 			int s = splnet();
   2628 			if_up(ifp);
   2629 			splx(s);
   2630 		}
   2631 	}
   2632 #ifdef COMPAT_OIFREQ
   2633 	if (cmd != ocmd)
   2634 		ifreqn2o(oifr, ifr);
   2635 #endif
   2636 
   2637 	mutex_exit(ifp->if_ioctl_lock);
   2638 out:
   2639 	if_put(ifp, &psref);
   2640 	curlwp_bindx(bound);
   2641 	return error;
   2642 }
   2643 
   2644 /*
   2645  * Return interface configuration
   2646  * of system.  List may be used
   2647  * in later ioctl's (above) to get
   2648  * other information.
   2649  *
   2650  * Each record is a struct ifreq.  Before the addition of
   2651  * sockaddr_storage, the API rule was that sockaddr flavors that did
   2652  * not fit would extend beyond the struct ifreq, with the next struct
   2653  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   2654  * union in struct ifreq includes struct sockaddr_storage, every kind
   2655  * of sockaddr must fit.  Thus, there are no longer any overlength
   2656  * records.
   2657  *
   2658  * Records are added to the user buffer if they fit, and ifc_len is
   2659  * adjusted to the length that was written.  Thus, the user is only
   2660  * assured of getting the complete list if ifc_len on return is at
   2661  * least sizeof(struct ifreq) less than it was on entry.
   2662  *
   2663  * If the user buffer pointer is NULL, this routine copies no data and
   2664  * returns the amount of space that would be needed.
   2665  *
   2666  * Invariants:
   2667  * ifrp points to the next part of the user's buffer to be used.  If
   2668  * ifrp != NULL, space holds the number of bytes remaining that we may
   2669  * write at ifrp.  Otherwise, space holds the number of bytes that
   2670  * would have been written had there been adequate space.
   2671  */
   2672 /*ARGSUSED*/
   2673 static int
   2674 ifconf(u_long cmd, void *data)
   2675 {
   2676 	struct ifconf *ifc = (struct ifconf *)data;
   2677 	struct ifnet *ifp;
   2678 	struct ifaddr *ifa;
   2679 	struct ifreq ifr, *ifrp = NULL;
   2680 	int space = 0, error = 0;
   2681 	const int sz = (int)sizeof(struct ifreq);
   2682 	const bool docopy = ifc->ifc_req != NULL;
   2683 	int s;
   2684 	int bound;
   2685 	struct psref psref;
   2686 
   2687 	if (docopy) {
   2688 		space = ifc->ifc_len;
   2689 		ifrp = ifc->ifc_req;
   2690 	}
   2691 
   2692 	bound = curlwp_bind();
   2693 	s = pserialize_read_enter();
   2694 	IFNET_READER_FOREACH(ifp) {
   2695 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   2696 		pserialize_read_exit(s);
   2697 
   2698 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   2699 		    sizeof(ifr.ifr_name));
   2700 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   2701 			error = ENAMETOOLONG;
   2702 			goto release_exit;
   2703 		}
   2704 		if (IFADDR_EMPTY(ifp)) {
   2705 			/* Interface with no addresses - send zero sockaddr. */
   2706 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   2707 			if (!docopy) {
   2708 				space += sz;
   2709 				continue;
   2710 			}
   2711 			if (space >= sz) {
   2712 				error = copyout(&ifr, ifrp, sz);
   2713 				if (error != 0)
   2714 					goto release_exit;
   2715 				ifrp++;
   2716 				space -= sz;
   2717 			}
   2718 		}
   2719 
   2720 		IFADDR_FOREACH(ifa, ifp) {
   2721 			struct sockaddr *sa = ifa->ifa_addr;
   2722 			/* all sockaddrs must fit in sockaddr_storage */
   2723 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   2724 
   2725 			if (!docopy) {
   2726 				space += sz;
   2727 				continue;
   2728 			}
   2729 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   2730 			if (space >= sz) {
   2731 				error = copyout(&ifr, ifrp, sz);
   2732 				if (error != 0)
   2733 					goto release_exit;
   2734 				ifrp++; space -= sz;
   2735 			}
   2736 		}
   2737 
   2738 		s = pserialize_read_enter();
   2739 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   2740 	}
   2741 	pserialize_read_exit(s);
   2742 	curlwp_bindx(bound);
   2743 
   2744 	if (docopy) {
   2745 		KASSERT(0 <= space && space <= ifc->ifc_len);
   2746 		ifc->ifc_len -= space;
   2747 	} else {
   2748 		KASSERT(space >= 0);
   2749 		ifc->ifc_len = space;
   2750 	}
   2751 	return (0);
   2752 
   2753 release_exit:
   2754 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   2755 	curlwp_bindx(bound);
   2756 	return error;
   2757 }
   2758 
   2759 int
   2760 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   2761 {
   2762 	uint8_t len;
   2763 #ifdef COMPAT_OIFREQ
   2764 	struct ifreq ifrb;
   2765 	struct oifreq *oifr = NULL;
   2766 	u_long ocmd = cmd;
   2767 	cmd = compat_cvtcmd(cmd);
   2768 	if (cmd != ocmd) {
   2769 		oifr = (struct oifreq *)(void *)ifr;
   2770 		ifr = &ifrb;
   2771 		ifreqo2n(oifr, ifr);
   2772 		len = sizeof(oifr->ifr_addr);
   2773 	} else
   2774 #endif
   2775 		len = sizeof(ifr->ifr_ifru.ifru_space);
   2776 
   2777 	if (len < sa->sa_len)
   2778 		return EFBIG;
   2779 
   2780 	memset(&ifr->ifr_addr, 0, len);
   2781 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   2782 
   2783 #ifdef COMPAT_OIFREQ
   2784 	if (cmd != ocmd)
   2785 		ifreqn2o(oifr, ifr);
   2786 #endif
   2787 	return 0;
   2788 }
   2789 
   2790 /*
   2791  * wrapper function for the drivers which doesn't have if_transmit().
   2792  */
   2793 static int
   2794 if_transmit(struct ifnet *ifp, struct mbuf *m)
   2795 {
   2796 	int s, error;
   2797 
   2798 	s = splnet();
   2799 
   2800 	/*
   2801 	 * If NET_MPSAFE is not defined , IFQ_LOCK() is nop.
   2802 	 * use KERNEL_LOCK instead of ifq_lock.
   2803 	 */
   2804 #ifndef NET_MPSAFE
   2805 	KERNEL_LOCK(1, NULL);
   2806 #endif
   2807 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   2808 #ifndef NET_MPSAFE
   2809 	KERNEL_UNLOCK_ONE(NULL);
   2810 #endif
   2811 	if (error != 0) {
   2812 		/* mbuf is already freed */
   2813 		goto out;
   2814 	}
   2815 
   2816 	ifp->if_obytes += m->m_pkthdr.len;;
   2817 	if (m->m_flags & M_MCAST)
   2818 		ifp->if_omcasts++;
   2819 
   2820 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   2821 		if_start_lock(ifp);
   2822 out:
   2823 	splx(s);
   2824 
   2825 	return error;
   2826 }
   2827 
   2828 int
   2829 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   2830 {
   2831 	int error;
   2832 
   2833 #ifdef ALTQ
   2834 	KERNEL_LOCK(1, NULL);
   2835 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   2836 		error = if_transmit(ifp, m);
   2837 		KERNEL_UNLOCK_ONE(NULL);
   2838 	} else {
   2839 		KERNEL_UNLOCK_ONE(NULL);
   2840 		error = (*ifp->if_transmit)(ifp, m);
   2841 	}
   2842 #else /* !ALTQ */
   2843 	error = (*ifp->if_transmit)(ifp, m);
   2844 #endif /* !ALTQ */
   2845 
   2846 	return error;
   2847 }
   2848 
   2849 /*
   2850  * Queue message on interface, and start output if interface
   2851  * not yet active.
   2852  */
   2853 int
   2854 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   2855 {
   2856 
   2857 	return if_transmit_lock(ifp, m);
   2858 }
   2859 
   2860 /*
   2861  * Queue message on interface, possibly using a second fast queue
   2862  */
   2863 int
   2864 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   2865 {
   2866 	int error = 0;
   2867 
   2868 	if (ifq != NULL
   2869 #ifdef ALTQ
   2870 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   2871 #endif
   2872 	    ) {
   2873 		if (IF_QFULL(ifq)) {
   2874 			IF_DROP(&ifp->if_snd);
   2875 			m_freem(m);
   2876 			if (error == 0)
   2877 				error = ENOBUFS;
   2878 		} else
   2879 			IF_ENQUEUE(ifq, m);
   2880 	} else
   2881 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   2882 	if (error != 0) {
   2883 		++ifp->if_oerrors;
   2884 		return error;
   2885 	}
   2886 	return 0;
   2887 }
   2888 
   2889 int
   2890 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   2891 {
   2892 	int rc;
   2893 
   2894 	if (ifp->if_initaddr != NULL)
   2895 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   2896 	else if (src ||
   2897 		/* FIXME: may not hold if_ioctl_lock */
   2898 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   2899 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   2900 
   2901 	return rc;
   2902 }
   2903 
   2904 int
   2905 if_do_dad(struct ifnet *ifp)
   2906 {
   2907 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2908 		return 0;
   2909 
   2910 	switch (ifp->if_type) {
   2911 	case IFT_FAITH:
   2912 		/*
   2913 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2914 		 * but loop packets back.  We do not have to do DAD on such
   2915 		 * interfaces.  We should even omit it, because loop-backed
   2916 		 * responses would confuse the DAD procedure.
   2917 		 */
   2918 		return 0;
   2919 	default:
   2920 		/*
   2921 		 * Our DAD routine requires the interface up and running.
   2922 		 * However, some interfaces can be up before the RUNNING
   2923 		 * status.  Additionaly, users may try to assign addresses
   2924 		 * before the interface becomes up (or running).
   2925 		 * We simply skip DAD in such a case as a work around.
   2926 		 * XXX: we should rather mark "tentative" on such addresses,
   2927 		 * and do DAD after the interface becomes ready.
   2928 		 */
   2929 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2930 		    (IFF_UP|IFF_RUNNING))
   2931 			return 0;
   2932 
   2933 		return 1;
   2934 	}
   2935 }
   2936 
   2937 int
   2938 if_flags_set(ifnet_t *ifp, const short flags)
   2939 {
   2940 	int rc;
   2941 
   2942 	if (ifp->if_setflags != NULL)
   2943 		rc = (*ifp->if_setflags)(ifp, flags);
   2944 	else {
   2945 		short cantflags, chgdflags;
   2946 		struct ifreq ifr;
   2947 
   2948 		chgdflags = ifp->if_flags ^ flags;
   2949 		cantflags = chgdflags & IFF_CANTCHANGE;
   2950 
   2951 		if (cantflags != 0)
   2952 			ifp->if_flags ^= cantflags;
   2953 
   2954                 /* Traditionally, we do not call if_ioctl after
   2955                  * setting/clearing only IFF_PROMISC if the interface
   2956                  * isn't IFF_UP.  Uphold that tradition.
   2957 		 */
   2958 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   2959 			return 0;
   2960 
   2961 		memset(&ifr, 0, sizeof(ifr));
   2962 
   2963 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   2964 		/* FIXME: may not hold if_ioctl_lock */
   2965 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   2966 
   2967 		if (rc != 0 && cantflags != 0)
   2968 			ifp->if_flags ^= cantflags;
   2969 	}
   2970 
   2971 	return rc;
   2972 }
   2973 
   2974 int
   2975 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   2976 {
   2977 	int rc;
   2978 	struct ifreq ifr;
   2979 
   2980 	if (ifp->if_mcastop != NULL)
   2981 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   2982 	else {
   2983 		ifreq_setaddr(cmd, &ifr, sa);
   2984 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   2985 	}
   2986 
   2987 	return rc;
   2988 }
   2989 
   2990 static void
   2991 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   2992     struct ifaltq *ifq)
   2993 {
   2994 	const struct sysctlnode *cnode, *rnode;
   2995 
   2996 	if (sysctl_createv(clog, 0, NULL, &rnode,
   2997 		       CTLFLAG_PERMANENT,
   2998 		       CTLTYPE_NODE, "interfaces",
   2999 		       SYSCTL_DESCR("Per-interface controls"),
   3000 		       NULL, 0, NULL, 0,
   3001 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3002 		goto bad;
   3003 
   3004 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3005 		       CTLFLAG_PERMANENT,
   3006 		       CTLTYPE_NODE, ifname,
   3007 		       SYSCTL_DESCR("Interface controls"),
   3008 		       NULL, 0, NULL, 0,
   3009 		       CTL_CREATE, CTL_EOL) != 0)
   3010 		goto bad;
   3011 
   3012 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3013 		       CTLFLAG_PERMANENT,
   3014 		       CTLTYPE_NODE, "sndq",
   3015 		       SYSCTL_DESCR("Interface output queue controls"),
   3016 		       NULL, 0, NULL, 0,
   3017 		       CTL_CREATE, CTL_EOL) != 0)
   3018 		goto bad;
   3019 
   3020 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3021 		       CTLFLAG_PERMANENT,
   3022 		       CTLTYPE_INT, "len",
   3023 		       SYSCTL_DESCR("Current output queue length"),
   3024 		       NULL, 0, &ifq->ifq_len, 0,
   3025 		       CTL_CREATE, CTL_EOL) != 0)
   3026 		goto bad;
   3027 
   3028 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3029 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3030 		       CTLTYPE_INT, "maxlen",
   3031 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3032 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3033 		       CTL_CREATE, CTL_EOL) != 0)
   3034 		goto bad;
   3035 
   3036 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3037 		       CTLFLAG_PERMANENT,
   3038 		       CTLTYPE_INT, "drops",
   3039 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3040 		       NULL, 0, &ifq->ifq_drops, 0,
   3041 		       CTL_CREATE, CTL_EOL) != 0)
   3042 		goto bad;
   3043 
   3044 	return;
   3045 bad:
   3046 	printf("%s: could not attach sysctl nodes\n", ifname);
   3047 	return;
   3048 }
   3049 
   3050 #if defined(INET) || defined(INET6)
   3051 
   3052 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3053 	static int							\
   3054 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3055 	{								\
   3056 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3057 	}
   3058 
   3059 #if defined(INET)
   3060 static int
   3061 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3062 {
   3063 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3064 }
   3065 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3066 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3067 #endif
   3068 
   3069 #if defined(INET6)
   3070 static int
   3071 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3072 {
   3073 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3074 }
   3075 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3076 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3077 #endif
   3078 
   3079 static void
   3080 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3081 {
   3082 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3083 	const char *pfname = NULL, *ipname = NULL;
   3084 	int ipn = 0, qid = 0;
   3085 
   3086 	switch (pf) {
   3087 #if defined(INET)
   3088 	case PF_INET:
   3089 		len_func = sysctl_net_ip_pktq_items;
   3090 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3091 		drops_func = sysctl_net_ip_pktq_drops;
   3092 		pfname = "inet", ipn = IPPROTO_IP;
   3093 		ipname = "ip", qid = IPCTL_IFQ;
   3094 		break;
   3095 #endif
   3096 #if defined(INET6)
   3097 	case PF_INET6:
   3098 		len_func = sysctl_net_ip6_pktq_items;
   3099 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3100 		drops_func = sysctl_net_ip6_pktq_drops;
   3101 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3102 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3103 		break;
   3104 #endif
   3105 	default:
   3106 		KASSERT(false);
   3107 	}
   3108 
   3109 	sysctl_createv(clog, 0, NULL, NULL,
   3110 		       CTLFLAG_PERMANENT,
   3111 		       CTLTYPE_NODE, pfname, NULL,
   3112 		       NULL, 0, NULL, 0,
   3113 		       CTL_NET, pf, CTL_EOL);
   3114 	sysctl_createv(clog, 0, NULL, NULL,
   3115 		       CTLFLAG_PERMANENT,
   3116 		       CTLTYPE_NODE, ipname, NULL,
   3117 		       NULL, 0, NULL, 0,
   3118 		       CTL_NET, pf, ipn, CTL_EOL);
   3119 	sysctl_createv(clog, 0, NULL, NULL,
   3120 		       CTLFLAG_PERMANENT,
   3121 		       CTLTYPE_NODE, "ifq",
   3122 		       SYSCTL_DESCR("Protocol input queue controls"),
   3123 		       NULL, 0, NULL, 0,
   3124 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3125 
   3126 	sysctl_createv(clog, 0, NULL, NULL,
   3127 		       CTLFLAG_PERMANENT,
   3128 		       CTLTYPE_INT, "len",
   3129 		       SYSCTL_DESCR("Current input queue length"),
   3130 		       len_func, 0, NULL, 0,
   3131 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3132 	sysctl_createv(clog, 0, NULL, NULL,
   3133 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3134 		       CTLTYPE_INT, "maxlen",
   3135 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3136 		       maxlen_func, 0, NULL, 0,
   3137 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3138 	sysctl_createv(clog, 0, NULL, NULL,
   3139 		       CTLFLAG_PERMANENT,
   3140 		       CTLTYPE_INT, "drops",
   3141 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3142 		       drops_func, 0, NULL, 0,
   3143 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3144 }
   3145 #endif /* INET || INET6 */
   3146 
   3147 static int
   3148 if_sdl_sysctl(SYSCTLFN_ARGS)
   3149 {
   3150 	struct ifnet *ifp;
   3151 	const struct sockaddr_dl *sdl;
   3152 	struct psref psref;
   3153 	int error = 0;
   3154 	int bound;
   3155 
   3156 	if (namelen != 1)
   3157 		return EINVAL;
   3158 
   3159 	bound = curlwp_bind();
   3160 	ifp = if_get_byindex(name[0], &psref);
   3161 	if (ifp == NULL) {
   3162 		error = ENODEV;
   3163 		goto out0;
   3164 	}
   3165 
   3166 	sdl = ifp->if_sadl;
   3167 	if (sdl == NULL) {
   3168 		*oldlenp = 0;
   3169 		goto out1;
   3170 	}
   3171 
   3172 	if (oldp == NULL) {
   3173 		*oldlenp = sdl->sdl_alen;
   3174 		goto out1;
   3175 	}
   3176 
   3177 	if (*oldlenp >= sdl->sdl_alen)
   3178 		*oldlenp = sdl->sdl_alen;
   3179 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3180 out1:
   3181 	if_put(ifp, &psref);
   3182 out0:
   3183 	curlwp_bindx(bound);
   3184 	return error;
   3185 }
   3186 
   3187 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
   3188 {
   3189 	const struct sysctlnode *rnode = NULL;
   3190 
   3191 	sysctl_createv(clog, 0, NULL, &rnode,
   3192 		       CTLFLAG_PERMANENT,
   3193 		       CTLTYPE_NODE, "sdl",
   3194 		       SYSCTL_DESCR("Get active link-layer address"),
   3195 		       if_sdl_sysctl, 0, NULL, 0,
   3196 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3197 }
   3198