if.c revision 1.352 1 /* $NetBSD: if.c,v 1.352 2016/07/04 04:35:09 knakahara Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.352 2016/07/04 04:35:09 knakahara Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #ifndef IPSEC
142 #include <netinet/ip_encap.h>
143 #endif
144
145 #ifdef INET6
146 #include <netinet6/in6_var.h>
147 #include <netinet6/nd6.h>
148 #endif
149
150 #include "ether.h"
151 #include "fddi.h"
152 #include "token.h"
153
154 #include "carp.h"
155 #if NCARP > 0
156 #include <netinet/ip_carp.h>
157 #endif
158
159 #include <compat/sys/sockio.h>
160 #include <compat/sys/socket.h>
161
162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
164
165 /*
166 * Global list of interfaces.
167 */
168 /* DEPRECATED. Remove it once kvm(3) users disappeared */
169 struct ifnet_head ifnet_list;
170
171 struct pslist_head ifnet_pslist;
172 static ifnet_t ** ifindex2ifnet = NULL;
173 static u_int if_index = 1;
174 static size_t if_indexlim = 0;
175 static uint64_t index_gen;
176 /* Mutex to protect the above objects. */
177 kmutex_t ifnet_mtx __cacheline_aligned;
178 struct psref_class *ifnet_psref_class __read_mostly;
179 static pserialize_t ifnet_psz;
180
181 static kmutex_t if_clone_mtx;
182
183 struct ifnet *lo0ifp;
184 int ifqmaxlen = IFQ_MAXLEN;
185
186 static int if_rt_walktree(struct rtentry *, void *);
187
188 static struct if_clone *if_clone_lookup(const char *, int *);
189
190 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
191 static int if_cloners_count;
192
193 /* Packet filtering hook for interfaces. */
194 pfil_head_t * if_pfil;
195
196 static kauth_listener_t if_listener;
197
198 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
199 static void if_detach_queues(struct ifnet *, struct ifqueue *);
200 static void sysctl_sndq_setup(struct sysctllog **, const char *,
201 struct ifaltq *);
202 static void if_slowtimo(void *);
203 static void if_free_sadl(struct ifnet *);
204 static void if_attachdomain1(struct ifnet *);
205 static int ifconf(u_long, void *);
206 static int if_transmit(struct ifnet *, struct mbuf *);
207 static int if_clone_create(const char *);
208 static int if_clone_destroy(const char *);
209 static void if_link_state_change_si(void *);
210
211 struct if_percpuq {
212 struct ifnet *ipq_ifp;
213 void *ipq_si;
214 struct percpu *ipq_ifqs; /* struct ifqueue */
215 };
216
217 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
218
219 static void if_percpuq_drops(void *, void *, struct cpu_info *);
220 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
221 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
222 struct if_percpuq *);
223
224 #if defined(INET) || defined(INET6)
225 static void sysctl_net_pktq_setup(struct sysctllog **, int);
226 #endif
227
228 static int
229 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
230 void *arg0, void *arg1, void *arg2, void *arg3)
231 {
232 int result;
233 enum kauth_network_req req;
234
235 result = KAUTH_RESULT_DEFER;
236 req = (enum kauth_network_req)arg1;
237
238 if (action != KAUTH_NETWORK_INTERFACE)
239 return result;
240
241 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
242 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
243 result = KAUTH_RESULT_ALLOW;
244
245 return result;
246 }
247
248 /*
249 * Network interface utility routines.
250 *
251 * Routines with ifa_ifwith* names take sockaddr *'s as
252 * parameters.
253 */
254 void
255 ifinit(void)
256 {
257 #if defined(INET)
258 sysctl_net_pktq_setup(NULL, PF_INET);
259 #endif
260 #ifdef INET6
261 if (in6_present)
262 sysctl_net_pktq_setup(NULL, PF_INET6);
263 #endif
264
265 #ifndef IPSEC
266 encapinit();
267 #endif
268
269 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
270 if_listener_cb, NULL);
271
272 /* interfaces are available, inform socket code */
273 ifioctl = doifioctl;
274 }
275
276 /*
277 * XXX Initialization before configure().
278 * XXX hack to get pfil_add_hook working in autoconf.
279 */
280 void
281 ifinit1(void)
282 {
283 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
284 TAILQ_INIT(&ifnet_list);
285 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
286 ifnet_psz = pserialize_create();
287 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
288 PSLIST_INIT(&ifnet_pslist);
289 if_indexlim = 8;
290
291 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
292 KASSERT(if_pfil != NULL);
293
294 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
295 etherinit();
296 #endif
297 }
298
299 ifnet_t *
300 if_alloc(u_char type)
301 {
302 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
303 }
304
305 void
306 if_free(ifnet_t *ifp)
307 {
308 kmem_free(ifp, sizeof(ifnet_t));
309 }
310
311 void
312 if_initname(struct ifnet *ifp, const char *name, int unit)
313 {
314 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
315 "%s%d", name, unit);
316 }
317
318 /*
319 * Null routines used while an interface is going away. These routines
320 * just return an error.
321 */
322
323 int
324 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
325 const struct sockaddr *so, const struct rtentry *rt)
326 {
327
328 return ENXIO;
329 }
330
331 void
332 if_nullinput(struct ifnet *ifp, struct mbuf *m)
333 {
334
335 /* Nothing. */
336 }
337
338 void
339 if_nullstart(struct ifnet *ifp)
340 {
341
342 /* Nothing. */
343 }
344
345 int
346 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
347 {
348
349 return ENXIO;
350 }
351
352 int
353 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
354 {
355
356 return ENXIO;
357 }
358
359 int
360 if_nullinit(struct ifnet *ifp)
361 {
362
363 return ENXIO;
364 }
365
366 void
367 if_nullstop(struct ifnet *ifp, int disable)
368 {
369
370 /* Nothing. */
371 }
372
373 void
374 if_nullslowtimo(struct ifnet *ifp)
375 {
376
377 /* Nothing. */
378 }
379
380 void
381 if_nulldrain(struct ifnet *ifp)
382 {
383
384 /* Nothing. */
385 }
386
387 void
388 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
389 {
390 struct ifaddr *ifa;
391 struct sockaddr_dl *sdl;
392
393 ifp->if_addrlen = addrlen;
394 if_alloc_sadl(ifp);
395 ifa = ifp->if_dl;
396 sdl = satosdl(ifa->ifa_addr);
397
398 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
399 if (factory) {
400 ifp->if_hwdl = ifp->if_dl;
401 ifaref(ifp->if_hwdl);
402 }
403 /* TBD routing socket */
404 }
405
406 struct ifaddr *
407 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
408 {
409 unsigned socksize, ifasize;
410 int addrlen, namelen;
411 struct sockaddr_dl *mask, *sdl;
412 struct ifaddr *ifa;
413
414 namelen = strlen(ifp->if_xname);
415 addrlen = ifp->if_addrlen;
416 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
417 ifasize = sizeof(*ifa) + 2 * socksize;
418 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
419
420 sdl = (struct sockaddr_dl *)(ifa + 1);
421 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
422
423 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
424 ifp->if_xname, namelen, NULL, addrlen);
425 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
426 memset(&mask->sdl_data[0], 0xff, namelen);
427 ifa->ifa_rtrequest = link_rtrequest;
428 ifa->ifa_addr = (struct sockaddr *)sdl;
429 ifa->ifa_netmask = (struct sockaddr *)mask;
430
431 *sdlp = sdl;
432
433 return ifa;
434 }
435
436 static void
437 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
438 {
439 const struct sockaddr_dl *sdl;
440
441 ifp->if_dl = ifa;
442 ifaref(ifa);
443 sdl = satosdl(ifa->ifa_addr);
444 ifp->if_sadl = sdl;
445 }
446
447 /*
448 * Allocate the link level name for the specified interface. This
449 * is an attachment helper. It must be called after ifp->if_addrlen
450 * is initialized, which may not be the case when if_attach() is
451 * called.
452 */
453 void
454 if_alloc_sadl(struct ifnet *ifp)
455 {
456 struct ifaddr *ifa;
457 const struct sockaddr_dl *sdl;
458
459 /*
460 * If the interface already has a link name, release it
461 * now. This is useful for interfaces that can change
462 * link types, and thus switch link names often.
463 */
464 if (ifp->if_sadl != NULL)
465 if_free_sadl(ifp);
466
467 ifa = if_dl_create(ifp, &sdl);
468
469 ifa_insert(ifp, ifa);
470 if_sadl_setrefs(ifp, ifa);
471 }
472
473 static void
474 if_deactivate_sadl(struct ifnet *ifp)
475 {
476 struct ifaddr *ifa;
477
478 KASSERT(ifp->if_dl != NULL);
479
480 ifa = ifp->if_dl;
481
482 ifp->if_sadl = NULL;
483
484 ifp->if_dl = NULL;
485 ifafree(ifa);
486 }
487
488 void
489 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
490 const struct sockaddr_dl *sdl)
491 {
492 int s;
493
494 s = splnet();
495
496 if_deactivate_sadl(ifp);
497
498 if_sadl_setrefs(ifp, ifa);
499 IFADDR_FOREACH(ifa, ifp)
500 rtinit(ifa, RTM_LLINFO_UPD, 0);
501 splx(s);
502 }
503
504 /*
505 * Free the link level name for the specified interface. This is
506 * a detach helper. This is called from if_detach().
507 */
508 static void
509 if_free_sadl(struct ifnet *ifp)
510 {
511 struct ifaddr *ifa;
512 int s;
513
514 ifa = ifp->if_dl;
515 if (ifa == NULL) {
516 KASSERT(ifp->if_sadl == NULL);
517 return;
518 }
519
520 KASSERT(ifp->if_sadl != NULL);
521
522 s = splnet();
523 rtinit(ifa, RTM_DELETE, 0);
524 ifa_remove(ifp, ifa);
525 if_deactivate_sadl(ifp);
526 if (ifp->if_hwdl == ifa) {
527 ifafree(ifa);
528 ifp->if_hwdl = NULL;
529 }
530 splx(s);
531 }
532
533 static void
534 if_getindex(ifnet_t *ifp)
535 {
536 bool hitlimit = false;
537
538 ifp->if_index_gen = index_gen++;
539
540 ifp->if_index = if_index;
541 if (ifindex2ifnet == NULL) {
542 if_index++;
543 goto skip;
544 }
545 while (if_byindex(ifp->if_index)) {
546 /*
547 * If we hit USHRT_MAX, we skip back to 0 since
548 * there are a number of places where the value
549 * of if_index or if_index itself is compared
550 * to or stored in an unsigned short. By
551 * jumping back, we won't botch those assignments
552 * or comparisons.
553 */
554 if (++if_index == 0) {
555 if_index = 1;
556 } else if (if_index == USHRT_MAX) {
557 /*
558 * However, if we have to jump back to
559 * zero *twice* without finding an empty
560 * slot in ifindex2ifnet[], then there
561 * there are too many (>65535) interfaces.
562 */
563 if (hitlimit) {
564 panic("too many interfaces");
565 }
566 hitlimit = true;
567 if_index = 1;
568 }
569 ifp->if_index = if_index;
570 }
571 skip:
572 /*
573 * ifindex2ifnet is indexed by if_index. Since if_index will
574 * grow dynamically, it should grow too.
575 */
576 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
577 size_t m, n, oldlim;
578 void *q;
579
580 oldlim = if_indexlim;
581 while (ifp->if_index >= if_indexlim)
582 if_indexlim <<= 1;
583
584 /* grow ifindex2ifnet */
585 m = oldlim * sizeof(struct ifnet *);
586 n = if_indexlim * sizeof(struct ifnet *);
587 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
588 if (ifindex2ifnet != NULL) {
589 memcpy(q, ifindex2ifnet, m);
590 free(ifindex2ifnet, M_IFADDR);
591 }
592 ifindex2ifnet = (struct ifnet **)q;
593 }
594 ifindex2ifnet[ifp->if_index] = ifp;
595 }
596
597 /*
598 * Initialize an interface and assign an index for it.
599 *
600 * It must be called prior to a device specific attach routine
601 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
602 * and be followed by if_register:
603 *
604 * if_initialize(ifp);
605 * ether_ifattach(ifp, enaddr);
606 * if_register(ifp);
607 */
608 void
609 if_initialize(ifnet_t *ifp)
610 {
611 KASSERT(if_indexlim > 0);
612 TAILQ_INIT(&ifp->if_addrlist);
613
614 /*
615 * Link level name is allocated later by a separate call to
616 * if_alloc_sadl().
617 */
618
619 if (ifp->if_snd.ifq_maxlen == 0)
620 ifp->if_snd.ifq_maxlen = ifqmaxlen;
621
622 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
623
624 ifp->if_link_state = LINK_STATE_UNKNOWN;
625 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
626
627 ifp->if_capenable = 0;
628 ifp->if_csum_flags_tx = 0;
629 ifp->if_csum_flags_rx = 0;
630
631 #ifdef ALTQ
632 ifp->if_snd.altq_type = 0;
633 ifp->if_snd.altq_disc = NULL;
634 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
635 ifp->if_snd.altq_tbr = NULL;
636 ifp->if_snd.altq_ifp = ifp;
637 #endif
638
639 #ifdef NET_MPSAFE
640 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
641 #else
642 ifp->if_snd.ifq_lock = NULL;
643 #endif
644
645 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
646 (void)pfil_run_hooks(if_pfil,
647 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
648
649 IF_AFDATA_LOCK_INIT(ifp);
650
651 if (if_is_link_state_changeable(ifp)) {
652 ifp->if_link_si = softint_establish(SOFTINT_NET,
653 if_link_state_change_si, ifp);
654 if (ifp->if_link_si == NULL)
655 panic("%s: softint_establish() failed", __func__);
656 }
657
658 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
659 psref_target_init(&ifp->if_psref, ifnet_psref_class);
660 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
661
662 IFNET_LOCK();
663 if_getindex(ifp);
664 IFNET_UNLOCK();
665 }
666
667 /*
668 * Register an interface to the list of "active" interfaces.
669 */
670 void
671 if_register(ifnet_t *ifp)
672 {
673 /*
674 * If the driver has not supplied its own if_ioctl, then
675 * supply the default.
676 */
677 if (ifp->if_ioctl == NULL)
678 ifp->if_ioctl = ifioctl_common;
679
680 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
681
682 if (!STAILQ_EMPTY(&domains))
683 if_attachdomain1(ifp);
684
685 /* Announce the interface. */
686 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
687
688 if (ifp->if_slowtimo != NULL) {
689 ifp->if_slowtimo_ch =
690 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
691 callout_init(ifp->if_slowtimo_ch, 0);
692 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
693 if_slowtimo(ifp);
694 }
695
696 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
697 ifp->if_transmit = if_transmit;
698
699 IFNET_LOCK();
700 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
701 IFNET_WRITER_INSERT_TAIL(ifp);
702 IFNET_UNLOCK();
703 }
704
705 /*
706 * The if_percpuq framework
707 *
708 * It allows network device drivers to execute the network stack
709 * in softint (so called softint-based if_input). It utilizes
710 * softint and percpu ifqueue. It doesn't distribute any packets
711 * between CPUs, unlike pktqueue(9).
712 *
713 * Currently we support two options for device drivers to apply the framework:
714 * - Use it implicitly with less changes
715 * - If you use if_attach in driver's _attach function and if_input in
716 * driver's Rx interrupt handler, a packet is queued and a softint handles
717 * the packet implicitly
718 * - Use it explicitly in each driver (recommended)
719 * - You can use if_percpuq_* directly in your driver
720 * - In this case, you need to allocate struct if_percpuq in driver's softc
721 * - See wm(4) as a reference implementation
722 */
723
724 static void
725 if_percpuq_softint(void *arg)
726 {
727 struct if_percpuq *ipq = arg;
728 struct ifnet *ifp = ipq->ipq_ifp;
729 struct mbuf *m;
730
731 while ((m = if_percpuq_dequeue(ipq)) != NULL)
732 ifp->_if_input(ifp, m);
733 }
734
735 static void
736 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
737 {
738 struct ifqueue *const ifq = p;
739
740 memset(ifq, 0, sizeof(*ifq));
741 ifq->ifq_maxlen = IFQ_MAXLEN;
742 }
743
744 struct if_percpuq *
745 if_percpuq_create(struct ifnet *ifp)
746 {
747 struct if_percpuq *ipq;
748
749 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
750 if (ipq == NULL)
751 panic("kmem_zalloc failed");
752
753 ipq->ipq_ifp = ifp;
754 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
755 if_percpuq_softint, ipq);
756 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
757 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
758
759 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
760
761 return ipq;
762 }
763
764 static struct mbuf *
765 if_percpuq_dequeue(struct if_percpuq *ipq)
766 {
767 struct mbuf *m;
768 struct ifqueue *ifq;
769 int s;
770
771 s = splnet();
772 ifq = percpu_getref(ipq->ipq_ifqs);
773 IF_DEQUEUE(ifq, m);
774 percpu_putref(ipq->ipq_ifqs);
775 splx(s);
776
777 return m;
778 }
779
780 static void
781 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
782 {
783 struct ifqueue *const ifq = p;
784
785 IF_PURGE(ifq);
786 }
787
788 void
789 if_percpuq_destroy(struct if_percpuq *ipq)
790 {
791
792 /* if_detach may already destroy it */
793 if (ipq == NULL)
794 return;
795
796 softint_disestablish(ipq->ipq_si);
797 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
798 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
799 }
800
801 void
802 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
803 {
804 struct ifqueue *ifq;
805 int s;
806
807 KASSERT(ipq != NULL);
808
809 s = splnet();
810 ifq = percpu_getref(ipq->ipq_ifqs);
811 if (IF_QFULL(ifq)) {
812 IF_DROP(ifq);
813 percpu_putref(ipq->ipq_ifqs);
814 m_freem(m);
815 goto out;
816 }
817 IF_ENQUEUE(ifq, m);
818 percpu_putref(ipq->ipq_ifqs);
819
820 softint_schedule(ipq->ipq_si);
821 out:
822 splx(s);
823 }
824
825 static void
826 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
827 {
828 struct ifqueue *const ifq = p;
829 int *sum = arg;
830
831 *sum += ifq->ifq_drops;
832 }
833
834 static int
835 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
836 {
837 struct sysctlnode node;
838 struct if_percpuq *ipq;
839 int sum = 0;
840 int error;
841
842 node = *rnode;
843 ipq = node.sysctl_data;
844
845 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
846
847 node.sysctl_data = ∑
848 error = sysctl_lookup(SYSCTLFN_CALL(&node));
849 if (error != 0 || newp == NULL)
850 return error;
851
852 return 0;
853 }
854
855 static void
856 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
857 struct if_percpuq *ipq)
858 {
859 const struct sysctlnode *cnode, *rnode;
860
861 if (sysctl_createv(clog, 0, NULL, &rnode,
862 CTLFLAG_PERMANENT,
863 CTLTYPE_NODE, "interfaces",
864 SYSCTL_DESCR("Per-interface controls"),
865 NULL, 0, NULL, 0,
866 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
867 goto bad;
868
869 if (sysctl_createv(clog, 0, &rnode, &rnode,
870 CTLFLAG_PERMANENT,
871 CTLTYPE_NODE, ifname,
872 SYSCTL_DESCR("Interface controls"),
873 NULL, 0, NULL, 0,
874 CTL_CREATE, CTL_EOL) != 0)
875 goto bad;
876
877 if (sysctl_createv(clog, 0, &rnode, &rnode,
878 CTLFLAG_PERMANENT,
879 CTLTYPE_NODE, "rcvq",
880 SYSCTL_DESCR("Interface input queue controls"),
881 NULL, 0, NULL, 0,
882 CTL_CREATE, CTL_EOL) != 0)
883 goto bad;
884
885 #ifdef NOTYET
886 /* XXX Should show each per-CPU queue length? */
887 if (sysctl_createv(clog, 0, &rnode, &rnode,
888 CTLFLAG_PERMANENT,
889 CTLTYPE_INT, "len",
890 SYSCTL_DESCR("Current input queue length"),
891 sysctl_percpuq_len, 0, NULL, 0,
892 CTL_CREATE, CTL_EOL) != 0)
893 goto bad;
894
895 if (sysctl_createv(clog, 0, &rnode, &cnode,
896 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
897 CTLTYPE_INT, "maxlen",
898 SYSCTL_DESCR("Maximum allowed input queue length"),
899 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
900 CTL_CREATE, CTL_EOL) != 0)
901 goto bad;
902 #endif
903
904 if (sysctl_createv(clog, 0, &rnode, &cnode,
905 CTLFLAG_PERMANENT,
906 CTLTYPE_INT, "drops",
907 SYSCTL_DESCR("Total packets dropped due to full input queue"),
908 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
909 CTL_CREATE, CTL_EOL) != 0)
910 goto bad;
911
912 return;
913 bad:
914 printf("%s: could not attach sysctl nodes\n", ifname);
915 return;
916 }
917
918
919 /*
920 * The common interface input routine that is called by device drivers,
921 * which should be used only when the driver's rx handler already runs
922 * in softint.
923 */
924 void
925 if_input(struct ifnet *ifp, struct mbuf *m)
926 {
927
928 KASSERT(ifp->if_percpuq == NULL);
929 KASSERT(!cpu_intr_p());
930
931 ifp->_if_input(ifp, m);
932 }
933
934 /*
935 * DEPRECATED. Use if_initialize and if_register instead.
936 * See the above comment of if_initialize.
937 *
938 * Note that it implicitly enables if_percpuq to make drivers easy to
939 * migrate softint-based if_input without much changes. If you don't
940 * want to enable it, use if_initialize instead.
941 */
942 void
943 if_attach(ifnet_t *ifp)
944 {
945
946 if_initialize(ifp);
947 ifp->if_percpuq = if_percpuq_create(ifp);
948 if_register(ifp);
949 }
950
951 void
952 if_attachdomain(void)
953 {
954 struct ifnet *ifp;
955 int s;
956 int bound = curlwp_bind();
957
958 s = pserialize_read_enter();
959 IFNET_READER_FOREACH(ifp) {
960 struct psref psref;
961 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
962 pserialize_read_exit(s);
963 if_attachdomain1(ifp);
964 s = pserialize_read_enter();
965 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
966 }
967 pserialize_read_exit(s);
968 curlwp_bindx(bound);
969 }
970
971 static void
972 if_attachdomain1(struct ifnet *ifp)
973 {
974 struct domain *dp;
975 int s;
976
977 s = splnet();
978
979 /* address family dependent data region */
980 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
981 DOMAIN_FOREACH(dp) {
982 if (dp->dom_ifattach != NULL)
983 ifp->if_afdata[dp->dom_family] =
984 (*dp->dom_ifattach)(ifp);
985 }
986
987 splx(s);
988 }
989
990 /*
991 * Deactivate an interface. This points all of the procedure
992 * handles at error stubs. May be called from interrupt context.
993 */
994 void
995 if_deactivate(struct ifnet *ifp)
996 {
997 int s;
998
999 s = splnet();
1000
1001 ifp->if_output = if_nulloutput;
1002 ifp->_if_input = if_nullinput;
1003 ifp->if_start = if_nullstart;
1004 ifp->if_transmit = if_nulltransmit;
1005 ifp->if_ioctl = if_nullioctl;
1006 ifp->if_init = if_nullinit;
1007 ifp->if_stop = if_nullstop;
1008 ifp->if_slowtimo = if_nullslowtimo;
1009 ifp->if_drain = if_nulldrain;
1010
1011 /* No more packets may be enqueued. */
1012 ifp->if_snd.ifq_maxlen = 0;
1013
1014 splx(s);
1015 }
1016
1017 bool
1018 if_is_deactivated(struct ifnet *ifp)
1019 {
1020
1021 return ifp->if_output == if_nulloutput;
1022 }
1023
1024 void
1025 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1026 {
1027 struct ifaddr *ifa, *nifa;
1028
1029 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
1030 if (ifa->ifa_addr->sa_family != family)
1031 continue;
1032 (*purgeaddr)(ifa);
1033 }
1034 }
1035
1036 #ifdef IFAREF_DEBUG
1037 static struct ifaddr **ifa_list;
1038 static int ifa_list_size;
1039
1040 /* Depends on only one if_attach runs at once */
1041 static void
1042 if_build_ifa_list(struct ifnet *ifp)
1043 {
1044 struct ifaddr *ifa;
1045 int i;
1046
1047 KASSERT(ifa_list == NULL);
1048 KASSERT(ifa_list_size == 0);
1049
1050 IFADDR_FOREACH(ifa, ifp)
1051 ifa_list_size++;
1052
1053 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1054 if (ifa_list == NULL)
1055 return;
1056
1057 i = 0;
1058 IFADDR_FOREACH(ifa, ifp) {
1059 ifa_list[i++] = ifa;
1060 ifaref(ifa);
1061 }
1062 }
1063
1064 static void
1065 if_check_and_free_ifa_list(struct ifnet *ifp)
1066 {
1067 int i;
1068 struct ifaddr *ifa;
1069
1070 if (ifa_list == NULL)
1071 return;
1072
1073 for (i = 0; i < ifa_list_size; i++) {
1074 char buf[64];
1075
1076 ifa = ifa_list[i];
1077 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1078 if (ifa->ifa_refcnt > 1) {
1079 log(LOG_WARNING,
1080 "ifa(%s) still referenced (refcnt=%d)\n",
1081 buf, ifa->ifa_refcnt - 1);
1082 } else
1083 log(LOG_DEBUG,
1084 "ifa(%s) not referenced (refcnt=%d)\n",
1085 buf, ifa->ifa_refcnt - 1);
1086 ifafree(ifa);
1087 }
1088
1089 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1090 ifa_list = NULL;
1091 ifa_list_size = 0;
1092 }
1093 #endif
1094
1095 /*
1096 * Detach an interface from the list of "active" interfaces,
1097 * freeing any resources as we go along.
1098 *
1099 * NOTE: This routine must be called with a valid thread context,
1100 * as it may block.
1101 */
1102 void
1103 if_detach(struct ifnet *ifp)
1104 {
1105 struct socket so;
1106 struct ifaddr *ifa;
1107 #ifdef IFAREF_DEBUG
1108 struct ifaddr *last_ifa = NULL;
1109 #endif
1110 struct domain *dp;
1111 const struct protosw *pr;
1112 int s, i, family, purged;
1113 uint64_t xc;
1114
1115 #ifdef IFAREF_DEBUG
1116 if_build_ifa_list(ifp);
1117 #endif
1118 /*
1119 * XXX It's kind of lame that we have to have the
1120 * XXX socket structure...
1121 */
1122 memset(&so, 0, sizeof(so));
1123
1124 s = splnet();
1125
1126 sysctl_teardown(&ifp->if_sysctl_log);
1127 mutex_enter(ifp->if_ioctl_lock);
1128 if_deactivate(ifp);
1129 mutex_exit(ifp->if_ioctl_lock);
1130
1131 IFNET_LOCK();
1132 ifindex2ifnet[ifp->if_index] = NULL;
1133 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1134 IFNET_WRITER_REMOVE(ifp);
1135 pserialize_perform(ifnet_psz);
1136 IFNET_UNLOCK();
1137
1138 mutex_obj_free(ifp->if_ioctl_lock);
1139 ifp->if_ioctl_lock = NULL;
1140
1141 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1142 ifp->if_slowtimo = NULL;
1143 callout_halt(ifp->if_slowtimo_ch, NULL);
1144 callout_destroy(ifp->if_slowtimo_ch);
1145 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1146 }
1147
1148 /*
1149 * Do an if_down() to give protocols a chance to do something.
1150 */
1151 if_down(ifp);
1152
1153 #ifdef ALTQ
1154 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1155 altq_disable(&ifp->if_snd);
1156 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1157 altq_detach(&ifp->if_snd);
1158 #endif
1159
1160 if (ifp->if_snd.ifq_lock)
1161 mutex_obj_free(ifp->if_snd.ifq_lock);
1162
1163 #if NCARP > 0
1164 /* Remove the interface from any carp group it is a part of. */
1165 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1166 carp_ifdetach(ifp);
1167 #endif
1168
1169 /*
1170 * Rip all the addresses off the interface. This should make
1171 * all of the routes go away.
1172 *
1173 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1174 * from the list, including our "cursor", ifa. For safety,
1175 * and to honor the TAILQ abstraction, I just restart the
1176 * loop after each removal. Note that the loop will exit
1177 * when all of the remaining ifaddrs belong to the AF_LINK
1178 * family. I am counting on the historical fact that at
1179 * least one pr_usrreq in each address domain removes at
1180 * least one ifaddr.
1181 */
1182 again:
1183 IFADDR_FOREACH(ifa, ifp) {
1184 family = ifa->ifa_addr->sa_family;
1185 #ifdef IFAREF_DEBUG
1186 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1187 ifa, family, ifa->ifa_refcnt);
1188 if (last_ifa != NULL && ifa == last_ifa)
1189 panic("if_detach: loop detected");
1190 last_ifa = ifa;
1191 #endif
1192 if (family == AF_LINK)
1193 continue;
1194 dp = pffinddomain(family);
1195 #ifdef DIAGNOSTIC
1196 if (dp == NULL)
1197 panic("if_detach: no domain for AF %d",
1198 family);
1199 #endif
1200 /*
1201 * XXX These PURGEIF calls are redundant with the
1202 * purge-all-families calls below, but are left in for
1203 * now both to make a smaller change, and to avoid
1204 * unplanned interactions with clearing of
1205 * ifp->if_addrlist.
1206 */
1207 purged = 0;
1208 for (pr = dp->dom_protosw;
1209 pr < dp->dom_protoswNPROTOSW; pr++) {
1210 so.so_proto = pr;
1211 if (pr->pr_usrreqs) {
1212 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1213 purged = 1;
1214 }
1215 }
1216 if (purged == 0) {
1217 /*
1218 * XXX What's really the best thing to do
1219 * XXX here? --thorpej (at) NetBSD.org
1220 */
1221 printf("if_detach: WARNING: AF %d not purged\n",
1222 family);
1223 ifa_remove(ifp, ifa);
1224 }
1225 goto again;
1226 }
1227
1228 if_free_sadl(ifp);
1229
1230 /* Walk the routing table looking for stragglers. */
1231 for (i = 0; i <= AF_MAX; i++) {
1232 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1233 continue;
1234 }
1235
1236 DOMAIN_FOREACH(dp) {
1237 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1238 {
1239 void *p = ifp->if_afdata[dp->dom_family];
1240 if (p) {
1241 ifp->if_afdata[dp->dom_family] = NULL;
1242 (*dp->dom_ifdetach)(ifp, p);
1243 }
1244 }
1245
1246 /*
1247 * One would expect multicast memberships (INET and
1248 * INET6) on UDP sockets to be purged by the PURGEIF
1249 * calls above, but if all addresses were removed from
1250 * the interface prior to destruction, the calls will
1251 * not be made (e.g. ppp, for which pppd(8) generally
1252 * removes addresses before destroying the interface).
1253 * Because there is no invariant that multicast
1254 * memberships only exist for interfaces with IPv4
1255 * addresses, we must call PURGEIF regardless of
1256 * addresses. (Protocols which might store ifnet
1257 * pointers are marked with PR_PURGEIF.)
1258 */
1259 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1260 so.so_proto = pr;
1261 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1262 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1263 }
1264 }
1265
1266 (void)pfil_run_hooks(if_pfil,
1267 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1268 (void)pfil_head_destroy(ifp->if_pfil);
1269
1270 /* Announce that the interface is gone. */
1271 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1272
1273 IF_AFDATA_LOCK_DESTROY(ifp);
1274
1275 if (if_is_link_state_changeable(ifp)) {
1276 softint_disestablish(ifp->if_link_si);
1277 ifp->if_link_si = NULL;
1278 }
1279
1280 /*
1281 * remove packets that came from ifp, from software interrupt queues.
1282 */
1283 DOMAIN_FOREACH(dp) {
1284 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1285 struct ifqueue *iq = dp->dom_ifqueues[i];
1286 if (iq == NULL)
1287 break;
1288 dp->dom_ifqueues[i] = NULL;
1289 if_detach_queues(ifp, iq);
1290 }
1291 }
1292
1293 /*
1294 * IP queues have to be processed separately: net-queue barrier
1295 * ensures that the packets are dequeued while a cross-call will
1296 * ensure that the interrupts have completed. FIXME: not quite..
1297 */
1298 #ifdef INET
1299 pktq_barrier(ip_pktq);
1300 #endif
1301 #ifdef INET6
1302 if (in6_present)
1303 pktq_barrier(ip6_pktq);
1304 #endif
1305 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1306 xc_wait(xc);
1307
1308 /* Wait for all readers to drain before freeing. */
1309 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1310 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1311
1312 if (ifp->if_percpuq != NULL) {
1313 if_percpuq_destroy(ifp->if_percpuq);
1314 ifp->if_percpuq = NULL;
1315 }
1316
1317 splx(s);
1318
1319 #ifdef IFAREF_DEBUG
1320 if_check_and_free_ifa_list(ifp);
1321 #endif
1322 }
1323
1324 static void
1325 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1326 {
1327 struct mbuf *m, *prev, *next;
1328
1329 prev = NULL;
1330 for (m = q->ifq_head; m != NULL; m = next) {
1331 KASSERT((m->m_flags & M_PKTHDR) != 0);
1332
1333 next = m->m_nextpkt;
1334 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1335 prev = m;
1336 continue;
1337 }
1338
1339 if (prev != NULL)
1340 prev->m_nextpkt = m->m_nextpkt;
1341 else
1342 q->ifq_head = m->m_nextpkt;
1343 if (q->ifq_tail == m)
1344 q->ifq_tail = prev;
1345 q->ifq_len--;
1346
1347 m->m_nextpkt = NULL;
1348 m_freem(m);
1349 IF_DROP(q);
1350 }
1351 }
1352
1353 /*
1354 * Callback for a radix tree walk to delete all references to an
1355 * ifnet.
1356 */
1357 static int
1358 if_rt_walktree(struct rtentry *rt, void *v)
1359 {
1360 struct ifnet *ifp = (struct ifnet *)v;
1361 int error;
1362 struct rtentry *retrt;
1363
1364 if (rt->rt_ifp != ifp)
1365 return 0;
1366
1367 /* Delete the entry. */
1368 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1369 rt_mask(rt), rt->rt_flags, &retrt);
1370 if (error == 0) {
1371 KASSERT(retrt == rt);
1372 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1373 retrt->rt_ifp = NULL;
1374 rtfree(retrt);
1375 } else {
1376 printf("%s: warning: unable to delete rtentry @ %p, "
1377 "error = %d\n", ifp->if_xname, rt, error);
1378 }
1379 return ERESTART;
1380 }
1381
1382 /*
1383 * Create a clone network interface.
1384 */
1385 static int
1386 if_clone_create(const char *name)
1387 {
1388 struct if_clone *ifc;
1389 int unit;
1390 struct ifnet *ifp;
1391 struct psref psref;
1392
1393 ifc = if_clone_lookup(name, &unit);
1394 if (ifc == NULL)
1395 return EINVAL;
1396
1397 ifp = if_get(name, &psref);
1398 if (ifp != NULL) {
1399 if_put(ifp, &psref);
1400 return EEXIST;
1401 }
1402
1403 return (*ifc->ifc_create)(ifc, unit);
1404 }
1405
1406 /*
1407 * Destroy a clone network interface.
1408 */
1409 static int
1410 if_clone_destroy(const char *name)
1411 {
1412 struct if_clone *ifc;
1413 struct ifnet *ifp;
1414 struct psref psref;
1415
1416 ifc = if_clone_lookup(name, NULL);
1417 if (ifc == NULL)
1418 return EINVAL;
1419
1420 if (ifc->ifc_destroy == NULL)
1421 return EOPNOTSUPP;
1422
1423 ifp = if_get(name, &psref);
1424 if (ifp == NULL)
1425 return ENXIO;
1426
1427 /* We have to disable ioctls here */
1428 mutex_enter(ifp->if_ioctl_lock);
1429 ifp->if_ioctl = if_nullioctl;
1430 mutex_exit(ifp->if_ioctl_lock);
1431
1432 /*
1433 * We cannot call ifc_destroy with holding ifp.
1434 * Releasing ifp here is safe thanks to if_clone_mtx.
1435 */
1436 if_put(ifp, &psref);
1437
1438 return (*ifc->ifc_destroy)(ifp);
1439 }
1440
1441 /*
1442 * Look up a network interface cloner.
1443 */
1444 static struct if_clone *
1445 if_clone_lookup(const char *name, int *unitp)
1446 {
1447 struct if_clone *ifc;
1448 const char *cp;
1449 char *dp, ifname[IFNAMSIZ + 3];
1450 int unit;
1451
1452 strcpy(ifname, "if_");
1453 /* separate interface name from unit */
1454 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1455 *cp && (*cp < '0' || *cp > '9');)
1456 *dp++ = *cp++;
1457
1458 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1459 return NULL; /* No name or unit number */
1460 *dp++ = '\0';
1461
1462 again:
1463 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1464 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1465 break;
1466 }
1467
1468 if (ifc == NULL) {
1469 if (*ifname == '\0' ||
1470 module_autoload(ifname, MODULE_CLASS_DRIVER))
1471 return NULL;
1472 *ifname = '\0';
1473 goto again;
1474 }
1475
1476 unit = 0;
1477 while (cp - name < IFNAMSIZ && *cp) {
1478 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1479 /* Bogus unit number. */
1480 return NULL;
1481 }
1482 unit = (unit * 10) + (*cp++ - '0');
1483 }
1484
1485 if (unitp != NULL)
1486 *unitp = unit;
1487 return ifc;
1488 }
1489
1490 /*
1491 * Register a network interface cloner.
1492 */
1493 void
1494 if_clone_attach(struct if_clone *ifc)
1495 {
1496
1497 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1498 if_cloners_count++;
1499 }
1500
1501 /*
1502 * Unregister a network interface cloner.
1503 */
1504 void
1505 if_clone_detach(struct if_clone *ifc)
1506 {
1507
1508 LIST_REMOVE(ifc, ifc_list);
1509 if_cloners_count--;
1510 }
1511
1512 /*
1513 * Provide list of interface cloners to userspace.
1514 */
1515 int
1516 if_clone_list(int buf_count, char *buffer, int *total)
1517 {
1518 char outbuf[IFNAMSIZ], *dst;
1519 struct if_clone *ifc;
1520 int count, error = 0;
1521
1522 *total = if_cloners_count;
1523 if ((dst = buffer) == NULL) {
1524 /* Just asking how many there are. */
1525 return 0;
1526 }
1527
1528 if (buf_count < 0)
1529 return EINVAL;
1530
1531 count = (if_cloners_count < buf_count) ?
1532 if_cloners_count : buf_count;
1533
1534 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1535 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1536 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1537 if (outbuf[sizeof(outbuf) - 1] != '\0')
1538 return ENAMETOOLONG;
1539 error = copyout(outbuf, dst, sizeof(outbuf));
1540 if (error != 0)
1541 break;
1542 }
1543
1544 return error;
1545 }
1546
1547 void
1548 ifaref(struct ifaddr *ifa)
1549 {
1550 ifa->ifa_refcnt++;
1551 }
1552
1553 void
1554 ifafree(struct ifaddr *ifa)
1555 {
1556 KASSERT(ifa != NULL);
1557 KASSERT(ifa->ifa_refcnt > 0);
1558
1559 if (--ifa->ifa_refcnt == 0) {
1560 free(ifa, M_IFADDR);
1561 }
1562 }
1563
1564 void
1565 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1566 {
1567 ifa->ifa_ifp = ifp;
1568 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1569 ifaref(ifa);
1570 }
1571
1572 void
1573 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1574 {
1575 KASSERT(ifa->ifa_ifp == ifp);
1576 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1577 ifafree(ifa);
1578 }
1579
1580 static inline int
1581 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1582 {
1583 return sockaddr_cmp(sa1, sa2) == 0;
1584 }
1585
1586 /*
1587 * Locate an interface based on a complete address.
1588 */
1589 /*ARGSUSED*/
1590 struct ifaddr *
1591 ifa_ifwithaddr(const struct sockaddr *addr)
1592 {
1593 struct ifnet *ifp;
1594 struct ifaddr *ifa;
1595 int s;
1596
1597 s = pserialize_read_enter();
1598 IFNET_READER_FOREACH(ifp) {
1599 if (if_is_deactivated(ifp))
1600 continue;
1601 IFADDR_FOREACH(ifa, ifp) {
1602 if (ifa->ifa_addr->sa_family != addr->sa_family)
1603 continue;
1604 if (equal(addr, ifa->ifa_addr))
1605 return ifa;
1606 if ((ifp->if_flags & IFF_BROADCAST) &&
1607 ifa->ifa_broadaddr &&
1608 /* IP6 doesn't have broadcast */
1609 ifa->ifa_broadaddr->sa_len != 0 &&
1610 equal(ifa->ifa_broadaddr, addr))
1611 return ifa;
1612 }
1613 }
1614 pserialize_read_exit(s);
1615 return NULL;
1616 }
1617
1618 /*
1619 * Locate the point to point interface with a given destination address.
1620 */
1621 /*ARGSUSED*/
1622 struct ifaddr *
1623 ifa_ifwithdstaddr(const struct sockaddr *addr)
1624 {
1625 struct ifnet *ifp;
1626 struct ifaddr *ifa;
1627 int s;
1628
1629 s = pserialize_read_enter();
1630 IFNET_READER_FOREACH(ifp) {
1631 if (if_is_deactivated(ifp))
1632 continue;
1633 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1634 continue;
1635 IFADDR_FOREACH(ifa, ifp) {
1636 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1637 ifa->ifa_dstaddr == NULL)
1638 continue;
1639 if (equal(addr, ifa->ifa_dstaddr))
1640 return ifa;
1641 }
1642 }
1643 pserialize_read_exit(s);
1644 return NULL;
1645 }
1646
1647 /*
1648 * Find an interface on a specific network. If many, choice
1649 * is most specific found.
1650 */
1651 struct ifaddr *
1652 ifa_ifwithnet(const struct sockaddr *addr)
1653 {
1654 struct ifnet *ifp;
1655 struct ifaddr *ifa;
1656 const struct sockaddr_dl *sdl;
1657 struct ifaddr *ifa_maybe = 0;
1658 u_int af = addr->sa_family;
1659 const char *addr_data = addr->sa_data, *cplim;
1660 int s;
1661
1662 if (af == AF_LINK) {
1663 sdl = satocsdl(addr);
1664 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1665 ifindex2ifnet[sdl->sdl_index] &&
1666 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1667 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1668 }
1669 }
1670 #ifdef NETATALK
1671 if (af == AF_APPLETALK) {
1672 const struct sockaddr_at *sat, *sat2;
1673 sat = (const struct sockaddr_at *)addr;
1674 s = pserialize_read_enter();
1675 IFNET_READER_FOREACH(ifp) {
1676 if (if_is_deactivated(ifp))
1677 continue;
1678 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1679 if (ifa == NULL)
1680 continue;
1681 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1682 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1683 return ifa; /* exact match */
1684 if (ifa_maybe == NULL) {
1685 /* else keep the if with the right range */
1686 ifa_maybe = ifa;
1687 }
1688 }
1689 pserialize_read_exit(s);
1690 return ifa_maybe;
1691 }
1692 #endif
1693 s = pserialize_read_enter();
1694 IFNET_READER_FOREACH(ifp) {
1695 if (if_is_deactivated(ifp))
1696 continue;
1697 IFADDR_FOREACH(ifa, ifp) {
1698 const char *cp, *cp2, *cp3;
1699
1700 if (ifa->ifa_addr->sa_family != af ||
1701 ifa->ifa_netmask == NULL)
1702 next: continue;
1703 cp = addr_data;
1704 cp2 = ifa->ifa_addr->sa_data;
1705 cp3 = ifa->ifa_netmask->sa_data;
1706 cplim = (const char *)ifa->ifa_netmask +
1707 ifa->ifa_netmask->sa_len;
1708 while (cp3 < cplim) {
1709 if ((*cp++ ^ *cp2++) & *cp3++) {
1710 /* want to continue for() loop */
1711 goto next;
1712 }
1713 }
1714 if (ifa_maybe == NULL ||
1715 rt_refines(ifa->ifa_netmask,
1716 ifa_maybe->ifa_netmask))
1717 ifa_maybe = ifa;
1718 }
1719 }
1720 pserialize_read_exit(s);
1721 return ifa_maybe;
1722 }
1723
1724 /*
1725 * Find the interface of the addresss.
1726 */
1727 struct ifaddr *
1728 ifa_ifwithladdr(const struct sockaddr *addr)
1729 {
1730 struct ifaddr *ia;
1731
1732 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1733 (ia = ifa_ifwithnet(addr)))
1734 return ia;
1735 return NULL;
1736 }
1737
1738 /*
1739 * Find an interface using a specific address family
1740 */
1741 struct ifaddr *
1742 ifa_ifwithaf(int af)
1743 {
1744 struct ifnet *ifp;
1745 struct ifaddr *ifa = NULL;
1746 int s;
1747
1748 s = pserialize_read_enter();
1749 IFNET_READER_FOREACH(ifp) {
1750 if (if_is_deactivated(ifp))
1751 continue;
1752 IFADDR_FOREACH(ifa, ifp) {
1753 if (ifa->ifa_addr->sa_family == af)
1754 goto out;
1755 }
1756 }
1757 out:
1758 pserialize_read_exit(s);
1759 return ifa;
1760 }
1761
1762 /*
1763 * Find an interface address specific to an interface best matching
1764 * a given address.
1765 */
1766 struct ifaddr *
1767 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1768 {
1769 struct ifaddr *ifa;
1770 const char *cp, *cp2, *cp3;
1771 const char *cplim;
1772 struct ifaddr *ifa_maybe = 0;
1773 u_int af = addr->sa_family;
1774
1775 if (if_is_deactivated(ifp))
1776 return NULL;
1777
1778 if (af >= AF_MAX)
1779 return NULL;
1780
1781 IFADDR_FOREACH(ifa, ifp) {
1782 if (ifa->ifa_addr->sa_family != af)
1783 continue;
1784 ifa_maybe = ifa;
1785 if (ifa->ifa_netmask == NULL) {
1786 if (equal(addr, ifa->ifa_addr) ||
1787 (ifa->ifa_dstaddr &&
1788 equal(addr, ifa->ifa_dstaddr)))
1789 return ifa;
1790 continue;
1791 }
1792 cp = addr->sa_data;
1793 cp2 = ifa->ifa_addr->sa_data;
1794 cp3 = ifa->ifa_netmask->sa_data;
1795 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1796 for (; cp3 < cplim; cp3++) {
1797 if ((*cp++ ^ *cp2++) & *cp3)
1798 break;
1799 }
1800 if (cp3 == cplim)
1801 return ifa;
1802 }
1803 return ifa_maybe;
1804 }
1805
1806 /*
1807 * Default action when installing a route with a Link Level gateway.
1808 * Lookup an appropriate real ifa to point to.
1809 * This should be moved to /sys/net/link.c eventually.
1810 */
1811 void
1812 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1813 {
1814 struct ifaddr *ifa;
1815 const struct sockaddr *dst;
1816 struct ifnet *ifp;
1817
1818 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1819 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1820 return;
1821 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1822 rt_replace_ifa(rt, ifa);
1823 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1824 ifa->ifa_rtrequest(cmd, rt, info);
1825 }
1826 }
1827
1828 /*
1829 * bitmask macros to manage a densely packed link_state change queue.
1830 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1831 * LINK_STATE_UP(2) we need 2 bits for each state change.
1832 * As a state change to store is 0, treat all bits set as an unset item.
1833 */
1834 #define LQ_ITEM_BITS 2
1835 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1836 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1837 #define LINK_STATE_UNSET LQ_ITEM_MASK
1838 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1839 #define LQ_STORE(q, i, v) \
1840 do { \
1841 (q) &= ~LQ_MASK((i)); \
1842 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1843 } while (0 /* CONSTCOND */)
1844 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1845 #define LQ_POP(q, v) \
1846 do { \
1847 (v) = LQ_ITEM((q), 0); \
1848 (q) >>= LQ_ITEM_BITS; \
1849 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1850 } while (0 /* CONSTCOND */)
1851 #define LQ_PUSH(q, v) \
1852 do { \
1853 (q) >>= LQ_ITEM_BITS; \
1854 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1855 } while (0 /* CONSTCOND */)
1856 #define LQ_FIND_UNSET(q, i) \
1857 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
1858 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
1859 break; \
1860 }
1861 /*
1862 * Handle a change in the interface link state and
1863 * queue notifications.
1864 */
1865 void
1866 if_link_state_change(struct ifnet *ifp, int link_state)
1867 {
1868 int s, idx;
1869
1870 KASSERTMSG(if_is_link_state_changeable(ifp),
1871 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
1872 ifp->if_xname, ifp->if_extflags);
1873
1874 /* Ensure change is to a valid state */
1875 switch (link_state) {
1876 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
1877 case LINK_STATE_DOWN: /* FALLTHROUGH */
1878 case LINK_STATE_UP:
1879 break;
1880 default:
1881 #ifdef DEBUG
1882 printf("%s: invalid link state %d\n",
1883 ifp->if_xname, link_state);
1884 #endif
1885 return;
1886 }
1887
1888 s = splnet();
1889
1890 /* Find the last unset event in the queue. */
1891 LQ_FIND_UNSET(ifp->if_link_queue, idx);
1892
1893 /*
1894 * Ensure link_state doesn't match the last event in the queue.
1895 * ifp->if_link_state is not checked and set here because
1896 * that would present an inconsistent picture to the system.
1897 */
1898 if (idx != 0 &&
1899 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1900 goto out;
1901
1902 /* Handle queue overflow. */
1903 if (idx == LQ_MAX(ifp->if_link_queue)) {
1904 uint8_t lost;
1905
1906 /*
1907 * The DOWN state must be protected from being pushed off
1908 * the queue to ensure that userland will always be
1909 * in a sane state.
1910 * Because DOWN is protected, there is no need to protect
1911 * UNKNOWN.
1912 * It should be invalid to change from any other state to
1913 * UNKNOWN anyway ...
1914 */
1915 lost = LQ_ITEM(ifp->if_link_queue, 0);
1916 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1917 if (lost == LINK_STATE_DOWN) {
1918 lost = LQ_ITEM(ifp->if_link_queue, 0);
1919 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1920 }
1921 printf("%s: lost link state change %s\n",
1922 ifp->if_xname,
1923 lost == LINK_STATE_UP ? "UP" :
1924 lost == LINK_STATE_DOWN ? "DOWN" :
1925 "UNKNOWN");
1926 } else
1927 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1928
1929 softint_schedule(ifp->if_link_si);
1930
1931 out:
1932 splx(s);
1933 }
1934
1935 /*
1936 * Handle interface link state change notifications.
1937 * Must be called at splnet().
1938 */
1939 static void
1940 if_link_state_change0(struct ifnet *ifp, int link_state)
1941 {
1942 struct domain *dp;
1943
1944 /* Ensure the change is still valid. */
1945 if (ifp->if_link_state == link_state)
1946 return;
1947
1948 #ifdef DEBUG
1949 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1950 link_state == LINK_STATE_UP ? "UP" :
1951 link_state == LINK_STATE_DOWN ? "DOWN" :
1952 "UNKNOWN",
1953 ifp->if_link_state == LINK_STATE_UP ? "UP" :
1954 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1955 "UNKNOWN");
1956 #endif
1957
1958 /*
1959 * When going from UNKNOWN to UP, we need to mark existing
1960 * addresses as tentative and restart DAD as we may have
1961 * erroneously not found a duplicate.
1962 *
1963 * This needs to happen before rt_ifmsg to avoid a race where
1964 * listeners would have an address and expect it to work right
1965 * away.
1966 */
1967 if (link_state == LINK_STATE_UP &&
1968 ifp->if_link_state == LINK_STATE_UNKNOWN)
1969 {
1970 DOMAIN_FOREACH(dp) {
1971 if (dp->dom_if_link_state_change != NULL)
1972 dp->dom_if_link_state_change(ifp,
1973 LINK_STATE_DOWN);
1974 }
1975 }
1976
1977 ifp->if_link_state = link_state;
1978
1979 /* Notify that the link state has changed. */
1980 rt_ifmsg(ifp);
1981
1982 #if NCARP > 0
1983 if (ifp->if_carp)
1984 carp_carpdev_state(ifp);
1985 #endif
1986
1987 DOMAIN_FOREACH(dp) {
1988 if (dp->dom_if_link_state_change != NULL)
1989 dp->dom_if_link_state_change(ifp, link_state);
1990 }
1991 }
1992
1993 /*
1994 * Process the interface link state change queue.
1995 */
1996 static void
1997 if_link_state_change_si(void *arg)
1998 {
1999 struct ifnet *ifp = arg;
2000 int s;
2001 uint8_t state;
2002
2003 s = splnet();
2004
2005 /* Pop a link state change from the queue and process it. */
2006 LQ_POP(ifp->if_link_queue, state);
2007 if_link_state_change0(ifp, state);
2008
2009 /* If there is a link state change to come, schedule it. */
2010 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2011 softint_schedule(ifp->if_link_si);
2012
2013 splx(s);
2014 }
2015
2016 /*
2017 * Default action when installing a local route on a point-to-point
2018 * interface.
2019 */
2020 void
2021 p2p_rtrequest(int req, struct rtentry *rt,
2022 __unused const struct rt_addrinfo *info)
2023 {
2024 struct ifnet *ifp = rt->rt_ifp;
2025 struct ifaddr *ifa, *lo0ifa;
2026
2027 switch (req) {
2028 case RTM_ADD:
2029 if ((rt->rt_flags & RTF_LOCAL) == 0)
2030 break;
2031
2032 rt->rt_ifp = lo0ifp;
2033
2034 IFADDR_FOREACH(ifa, ifp) {
2035 if (equal(rt_getkey(rt), ifa->ifa_addr))
2036 break;
2037 }
2038 if (ifa == NULL)
2039 break;
2040
2041 /*
2042 * Ensure lo0 has an address of the same family.
2043 */
2044 IFADDR_FOREACH(lo0ifa, lo0ifp) {
2045 if (lo0ifa->ifa_addr->sa_family ==
2046 ifa->ifa_addr->sa_family)
2047 break;
2048 }
2049 if (lo0ifa == NULL)
2050 break;
2051
2052 /*
2053 * Make sure to set rt->rt_ifa to the interface
2054 * address we are using, otherwise we will have trouble
2055 * with source address selection.
2056 */
2057 if (ifa != rt->rt_ifa)
2058 rt_replace_ifa(rt, ifa);
2059 break;
2060 case RTM_DELETE:
2061 default:
2062 break;
2063 }
2064 }
2065
2066 /*
2067 * Mark an interface down and notify protocols of
2068 * the transition.
2069 * NOTE: must be called at splsoftnet or equivalent.
2070 */
2071 void
2072 if_down(struct ifnet *ifp)
2073 {
2074 struct ifaddr *ifa;
2075 struct domain *dp;
2076
2077 ifp->if_flags &= ~IFF_UP;
2078 nanotime(&ifp->if_lastchange);
2079 IFADDR_FOREACH(ifa, ifp)
2080 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2081 IFQ_PURGE(&ifp->if_snd);
2082 #if NCARP > 0
2083 if (ifp->if_carp)
2084 carp_carpdev_state(ifp);
2085 #endif
2086 rt_ifmsg(ifp);
2087 DOMAIN_FOREACH(dp) {
2088 if (dp->dom_if_down)
2089 dp->dom_if_down(ifp);
2090 }
2091 }
2092
2093 /*
2094 * Mark an interface up and notify protocols of
2095 * the transition.
2096 * NOTE: must be called at splsoftnet or equivalent.
2097 */
2098 void
2099 if_up(struct ifnet *ifp)
2100 {
2101 #ifdef notyet
2102 struct ifaddr *ifa;
2103 #endif
2104 struct domain *dp;
2105
2106 ifp->if_flags |= IFF_UP;
2107 nanotime(&ifp->if_lastchange);
2108 #ifdef notyet
2109 /* this has no effect on IP, and will kill all ISO connections XXX */
2110 IFADDR_FOREACH(ifa, ifp)
2111 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2112 #endif
2113 #if NCARP > 0
2114 if (ifp->if_carp)
2115 carp_carpdev_state(ifp);
2116 #endif
2117 rt_ifmsg(ifp);
2118 DOMAIN_FOREACH(dp) {
2119 if (dp->dom_if_up)
2120 dp->dom_if_up(ifp);
2121 }
2122 }
2123
2124 /*
2125 * Handle interface slowtimo timer routine. Called
2126 * from softclock, we decrement timer (if set) and
2127 * call the appropriate interface routine on expiration.
2128 */
2129 static void
2130 if_slowtimo(void *arg)
2131 {
2132 void (*slowtimo)(struct ifnet *);
2133 struct ifnet *ifp = arg;
2134 int s;
2135
2136 slowtimo = ifp->if_slowtimo;
2137 if (__predict_false(slowtimo == NULL))
2138 return;
2139
2140 s = splnet();
2141 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2142 (*slowtimo)(ifp);
2143
2144 splx(s);
2145
2146 if (__predict_true(ifp->if_slowtimo != NULL))
2147 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2148 }
2149
2150 /*
2151 * Set/clear promiscuous mode on interface ifp based on the truth value
2152 * of pswitch. The calls are reference counted so that only the first
2153 * "on" request actually has an effect, as does the final "off" request.
2154 * Results are undefined if the "off" and "on" requests are not matched.
2155 */
2156 int
2157 ifpromisc(struct ifnet *ifp, int pswitch)
2158 {
2159 int pcount, ret;
2160 short nflags;
2161
2162 pcount = ifp->if_pcount;
2163 if (pswitch) {
2164 /*
2165 * Allow the device to be "placed" into promiscuous
2166 * mode even if it is not configured up. It will
2167 * consult IFF_PROMISC when it is brought up.
2168 */
2169 if (ifp->if_pcount++ != 0)
2170 return 0;
2171 nflags = ifp->if_flags | IFF_PROMISC;
2172 } else {
2173 if (--ifp->if_pcount > 0)
2174 return 0;
2175 nflags = ifp->if_flags & ~IFF_PROMISC;
2176 }
2177 ret = if_flags_set(ifp, nflags);
2178 /* Restore interface state if not successful. */
2179 if (ret != 0) {
2180 ifp->if_pcount = pcount;
2181 }
2182 return ret;
2183 }
2184
2185 /*
2186 * Map interface name to
2187 * interface structure pointer.
2188 */
2189 struct ifnet *
2190 ifunit(const char *name)
2191 {
2192 struct ifnet *ifp;
2193 const char *cp = name;
2194 u_int unit = 0;
2195 u_int i;
2196 int s;
2197
2198 /*
2199 * If the entire name is a number, treat it as an ifindex.
2200 */
2201 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2202 unit = unit * 10 + (*cp - '0');
2203 }
2204
2205 /*
2206 * If the number took all of the name, then it's a valid ifindex.
2207 */
2208 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2209 if (unit >= if_indexlim)
2210 return NULL;
2211 ifp = ifindex2ifnet[unit];
2212 if (ifp == NULL || if_is_deactivated(ifp))
2213 return NULL;
2214 return ifp;
2215 }
2216
2217 ifp = NULL;
2218 s = pserialize_read_enter();
2219 IFNET_READER_FOREACH(ifp) {
2220 if (if_is_deactivated(ifp))
2221 continue;
2222 if (strcmp(ifp->if_xname, name) == 0)
2223 goto out;
2224 }
2225 out:
2226 pserialize_read_exit(s);
2227 return ifp;
2228 }
2229
2230 /*
2231 * Get a reference of an ifnet object by an interface name.
2232 * The returned reference is protected by psref(9). The caller
2233 * must release a returned reference by if_put after use.
2234 */
2235 struct ifnet *
2236 if_get(const char *name, struct psref *psref)
2237 {
2238 struct ifnet *ifp;
2239 const char *cp = name;
2240 u_int unit = 0;
2241 u_int i;
2242 int s;
2243
2244 /*
2245 * If the entire name is a number, treat it as an ifindex.
2246 */
2247 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2248 unit = unit * 10 + (*cp - '0');
2249 }
2250
2251 /*
2252 * If the number took all of the name, then it's a valid ifindex.
2253 */
2254 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2255 if (unit >= if_indexlim)
2256 return NULL;
2257 ifp = ifindex2ifnet[unit];
2258 if (ifp == NULL || if_is_deactivated(ifp))
2259 return NULL;
2260 return ifp;
2261 }
2262
2263 ifp = NULL;
2264 s = pserialize_read_enter();
2265 IFNET_READER_FOREACH(ifp) {
2266 if (if_is_deactivated(ifp))
2267 continue;
2268 if (strcmp(ifp->if_xname, name) == 0) {
2269 psref_acquire(psref, &ifp->if_psref,
2270 ifnet_psref_class);
2271 goto out;
2272 }
2273 }
2274 out:
2275 pserialize_read_exit(s);
2276 return ifp;
2277 }
2278
2279 /*
2280 * Release a reference of an ifnet object given by if_get or
2281 * if_get_byindex.
2282 */
2283 void
2284 if_put(const struct ifnet *ifp, struct psref *psref)
2285 {
2286
2287 if (ifp == NULL)
2288 return;
2289
2290 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2291 }
2292
2293 ifnet_t *
2294 if_byindex(u_int idx)
2295 {
2296 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2297 }
2298
2299 /*
2300 * Get a reference of an ifnet object by an interface index.
2301 * The returned reference is protected by psref(9). The caller
2302 * must release a returned reference by if_put after use.
2303 */
2304 ifnet_t *
2305 if_get_byindex(u_int idx, struct psref *psref)
2306 {
2307 ifnet_t *ifp;
2308 int s;
2309
2310 s = pserialize_read_enter();
2311 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2312 if (__predict_true(ifp != NULL))
2313 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2314 pserialize_read_exit(s);
2315
2316 return ifp;
2317 }
2318
2319 /*
2320 * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2321 * for example the ifp is already held or some other object is held which
2322 * guarantes the ifp to not be freed indirectly.
2323 */
2324 void
2325 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2326 {
2327
2328 KASSERT(ifp->if_index != 0);
2329 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2330 }
2331
2332 bool
2333 if_held(struct ifnet *ifp)
2334 {
2335
2336 return psref_held(&ifp->if_psref, ifnet_psref_class);
2337 }
2338
2339
2340 /* common */
2341 int
2342 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2343 {
2344 int s;
2345 struct ifreq *ifr;
2346 struct ifcapreq *ifcr;
2347 struct ifdatareq *ifdr;
2348
2349 switch (cmd) {
2350 case SIOCSIFCAP:
2351 ifcr = data;
2352 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2353 return EINVAL;
2354
2355 if (ifcr->ifcr_capenable == ifp->if_capenable)
2356 return 0;
2357
2358 ifp->if_capenable = ifcr->ifcr_capenable;
2359
2360 /* Pre-compute the checksum flags mask. */
2361 ifp->if_csum_flags_tx = 0;
2362 ifp->if_csum_flags_rx = 0;
2363 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2364 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2365 }
2366 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2367 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2368 }
2369
2370 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2371 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2372 }
2373 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2374 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2375 }
2376
2377 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2378 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2379 }
2380 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2381 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2382 }
2383
2384 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2385 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2386 }
2387 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2388 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2389 }
2390
2391 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2392 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2393 }
2394 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2395 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2396 }
2397 if (ifp->if_flags & IFF_UP)
2398 return ENETRESET;
2399 return 0;
2400 case SIOCSIFFLAGS:
2401 ifr = data;
2402 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2403 s = splnet();
2404 if_down(ifp);
2405 splx(s);
2406 }
2407 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2408 s = splnet();
2409 if_up(ifp);
2410 splx(s);
2411 }
2412 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2413 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2414 break;
2415 case SIOCGIFFLAGS:
2416 ifr = data;
2417 ifr->ifr_flags = ifp->if_flags;
2418 break;
2419
2420 case SIOCGIFMETRIC:
2421 ifr = data;
2422 ifr->ifr_metric = ifp->if_metric;
2423 break;
2424
2425 case SIOCGIFMTU:
2426 ifr = data;
2427 ifr->ifr_mtu = ifp->if_mtu;
2428 break;
2429
2430 case SIOCGIFDLT:
2431 ifr = data;
2432 ifr->ifr_dlt = ifp->if_dlt;
2433 break;
2434
2435 case SIOCGIFCAP:
2436 ifcr = data;
2437 ifcr->ifcr_capabilities = ifp->if_capabilities;
2438 ifcr->ifcr_capenable = ifp->if_capenable;
2439 break;
2440
2441 case SIOCSIFMETRIC:
2442 ifr = data;
2443 ifp->if_metric = ifr->ifr_metric;
2444 break;
2445
2446 case SIOCGIFDATA:
2447 ifdr = data;
2448 ifdr->ifdr_data = ifp->if_data;
2449 break;
2450
2451 case SIOCGIFINDEX:
2452 ifr = data;
2453 ifr->ifr_index = ifp->if_index;
2454 break;
2455
2456 case SIOCZIFDATA:
2457 ifdr = data;
2458 ifdr->ifdr_data = ifp->if_data;
2459 /*
2460 * Assumes that the volatile counters that can be
2461 * zero'ed are at the end of if_data.
2462 */
2463 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2464 offsetof(struct if_data, ifi_ipackets));
2465 /*
2466 * The memset() clears to the bottm of if_data. In the area,
2467 * if_lastchange is included. Please be careful if new entry
2468 * will be added into if_data or rewite this.
2469 *
2470 * And also, update if_lastchnage.
2471 */
2472 getnanotime(&ifp->if_lastchange);
2473 break;
2474 case SIOCSIFMTU:
2475 ifr = data;
2476 if (ifp->if_mtu == ifr->ifr_mtu)
2477 break;
2478 ifp->if_mtu = ifr->ifr_mtu;
2479 /*
2480 * If the link MTU changed, do network layer specific procedure.
2481 */
2482 #ifdef INET6
2483 if (in6_present)
2484 nd6_setmtu(ifp);
2485 #endif
2486 return ENETRESET;
2487 default:
2488 return ENOTTY;
2489 }
2490 return 0;
2491 }
2492
2493 int
2494 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2495 {
2496 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2497 struct ifaddr *ifa;
2498 const struct sockaddr *any, *sa;
2499 union {
2500 struct sockaddr sa;
2501 struct sockaddr_storage ss;
2502 } u, v;
2503
2504 switch (cmd) {
2505 case SIOCSIFADDRPREF:
2506 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2507 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2508 NULL) != 0)
2509 return EPERM;
2510 case SIOCGIFADDRPREF:
2511 break;
2512 default:
2513 return EOPNOTSUPP;
2514 }
2515
2516 /* sanity checks */
2517 if (data == NULL || ifp == NULL) {
2518 panic("invalid argument to %s", __func__);
2519 /*NOTREACHED*/
2520 }
2521
2522 /* address must be specified on ADD and DELETE */
2523 sa = sstocsa(&ifap->ifap_addr);
2524 if (sa->sa_family != sofamily(so))
2525 return EINVAL;
2526 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2527 return EINVAL;
2528
2529 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2530
2531 IFADDR_FOREACH(ifa, ifp) {
2532 if (ifa->ifa_addr->sa_family != sa->sa_family)
2533 continue;
2534 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2535 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2536 break;
2537 }
2538 if (ifa == NULL)
2539 return EADDRNOTAVAIL;
2540
2541 switch (cmd) {
2542 case SIOCSIFADDRPREF:
2543 ifa->ifa_preference = ifap->ifap_preference;
2544 return 0;
2545 case SIOCGIFADDRPREF:
2546 /* fill in the if_laddrreq structure */
2547 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2548 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2549 ifap->ifap_preference = ifa->ifa_preference;
2550 return 0;
2551 default:
2552 return EOPNOTSUPP;
2553 }
2554 }
2555
2556 /*
2557 * Interface ioctls.
2558 */
2559 static int
2560 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2561 {
2562 struct ifnet *ifp;
2563 struct ifreq *ifr;
2564 int error = 0;
2565 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2566 u_long ocmd = cmd;
2567 #endif
2568 short oif_flags;
2569 #ifdef COMPAT_OIFREQ
2570 struct ifreq ifrb;
2571 struct oifreq *oifr = NULL;
2572 #endif
2573 int r;
2574 struct psref psref;
2575 int bound;
2576
2577 switch (cmd) {
2578 #ifdef COMPAT_OIFREQ
2579 case OSIOCGIFCONF:
2580 case OOSIOCGIFCONF:
2581 return compat_ifconf(cmd, data);
2582 #endif
2583 #ifdef COMPAT_OIFDATA
2584 case OSIOCGIFDATA:
2585 case OSIOCZIFDATA:
2586 return compat_ifdatareq(l, cmd, data);
2587 #endif
2588 case SIOCGIFCONF:
2589 return ifconf(cmd, data);
2590 case SIOCINITIFADDR:
2591 return EPERM;
2592 }
2593
2594 #ifdef COMPAT_OIFREQ
2595 cmd = compat_cvtcmd(cmd);
2596 if (cmd != ocmd) {
2597 oifr = data;
2598 data = ifr = &ifrb;
2599 ifreqo2n(oifr, ifr);
2600 } else
2601 #endif
2602 ifr = data;
2603
2604 switch (cmd) {
2605 case SIOCIFCREATE:
2606 case SIOCIFDESTROY:
2607 bound = curlwp_bind();
2608 if (l != NULL) {
2609 ifp = if_get(ifr->ifr_name, &psref);
2610 error = kauth_authorize_network(l->l_cred,
2611 KAUTH_NETWORK_INTERFACE,
2612 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2613 (void *)cmd, NULL);
2614 if (ifp != NULL)
2615 if_put(ifp, &psref);
2616 if (error != 0) {
2617 curlwp_bindx(bound);
2618 return error;
2619 }
2620 }
2621 mutex_enter(&if_clone_mtx);
2622 r = (cmd == SIOCIFCREATE) ?
2623 if_clone_create(ifr->ifr_name) :
2624 if_clone_destroy(ifr->ifr_name);
2625 mutex_exit(&if_clone_mtx);
2626 curlwp_bindx(bound);
2627 return r;
2628
2629 case SIOCIFGCLONERS:
2630 {
2631 struct if_clonereq *req = (struct if_clonereq *)data;
2632 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2633 &req->ifcr_total);
2634 }
2635 }
2636
2637 bound = curlwp_bind();
2638 ifp = if_get(ifr->ifr_name, &psref);
2639 if (ifp == NULL) {
2640 curlwp_bindx(bound);
2641 return ENXIO;
2642 }
2643
2644 switch (cmd) {
2645 case SIOCALIFADDR:
2646 case SIOCDLIFADDR:
2647 case SIOCSIFADDRPREF:
2648 case SIOCSIFFLAGS:
2649 case SIOCSIFCAP:
2650 case SIOCSIFMETRIC:
2651 case SIOCZIFDATA:
2652 case SIOCSIFMTU:
2653 case SIOCSIFPHYADDR:
2654 case SIOCDIFPHYADDR:
2655 #ifdef INET6
2656 case SIOCSIFPHYADDR_IN6:
2657 #endif
2658 case SIOCSLIFPHYADDR:
2659 case SIOCADDMULTI:
2660 case SIOCDELMULTI:
2661 case SIOCSIFMEDIA:
2662 case SIOCSDRVSPEC:
2663 case SIOCG80211:
2664 case SIOCS80211:
2665 case SIOCS80211NWID:
2666 case SIOCS80211NWKEY:
2667 case SIOCS80211POWER:
2668 case SIOCS80211BSSID:
2669 case SIOCS80211CHANNEL:
2670 case SIOCSLINKSTR:
2671 if (l != NULL) {
2672 error = kauth_authorize_network(l->l_cred,
2673 KAUTH_NETWORK_INTERFACE,
2674 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2675 (void *)cmd, NULL);
2676 if (error != 0)
2677 goto out;
2678 }
2679 }
2680
2681 oif_flags = ifp->if_flags;
2682
2683 mutex_enter(ifp->if_ioctl_lock);
2684
2685 error = (*ifp->if_ioctl)(ifp, cmd, data);
2686 if (error != ENOTTY)
2687 ;
2688 else if (so->so_proto == NULL)
2689 error = EOPNOTSUPP;
2690 else {
2691 #ifdef COMPAT_OSOCK
2692 error = compat_ifioctl(so, ocmd, cmd, data, l);
2693 #else
2694 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2695 cmd, data, ifp);
2696 #endif
2697 }
2698
2699 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2700 if ((ifp->if_flags & IFF_UP) != 0) {
2701 int s = splnet();
2702 if_up(ifp);
2703 splx(s);
2704 }
2705 }
2706 #ifdef COMPAT_OIFREQ
2707 if (cmd != ocmd)
2708 ifreqn2o(oifr, ifr);
2709 #endif
2710
2711 mutex_exit(ifp->if_ioctl_lock);
2712 out:
2713 if_put(ifp, &psref);
2714 curlwp_bindx(bound);
2715 return error;
2716 }
2717
2718 /*
2719 * Return interface configuration
2720 * of system. List may be used
2721 * in later ioctl's (above) to get
2722 * other information.
2723 *
2724 * Each record is a struct ifreq. Before the addition of
2725 * sockaddr_storage, the API rule was that sockaddr flavors that did
2726 * not fit would extend beyond the struct ifreq, with the next struct
2727 * ifreq starting sa_len beyond the struct sockaddr. Because the
2728 * union in struct ifreq includes struct sockaddr_storage, every kind
2729 * of sockaddr must fit. Thus, there are no longer any overlength
2730 * records.
2731 *
2732 * Records are added to the user buffer if they fit, and ifc_len is
2733 * adjusted to the length that was written. Thus, the user is only
2734 * assured of getting the complete list if ifc_len on return is at
2735 * least sizeof(struct ifreq) less than it was on entry.
2736 *
2737 * If the user buffer pointer is NULL, this routine copies no data and
2738 * returns the amount of space that would be needed.
2739 *
2740 * Invariants:
2741 * ifrp points to the next part of the user's buffer to be used. If
2742 * ifrp != NULL, space holds the number of bytes remaining that we may
2743 * write at ifrp. Otherwise, space holds the number of bytes that
2744 * would have been written had there been adequate space.
2745 */
2746 /*ARGSUSED*/
2747 static int
2748 ifconf(u_long cmd, void *data)
2749 {
2750 struct ifconf *ifc = (struct ifconf *)data;
2751 struct ifnet *ifp;
2752 struct ifaddr *ifa;
2753 struct ifreq ifr, *ifrp = NULL;
2754 int space = 0, error = 0;
2755 const int sz = (int)sizeof(struct ifreq);
2756 const bool docopy = ifc->ifc_req != NULL;
2757 int s;
2758 int bound;
2759 struct psref psref;
2760
2761 if (docopy) {
2762 space = ifc->ifc_len;
2763 ifrp = ifc->ifc_req;
2764 }
2765
2766 bound = curlwp_bind();
2767 s = pserialize_read_enter();
2768 IFNET_READER_FOREACH(ifp) {
2769 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2770 pserialize_read_exit(s);
2771
2772 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2773 sizeof(ifr.ifr_name));
2774 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2775 error = ENAMETOOLONG;
2776 goto release_exit;
2777 }
2778 if (IFADDR_EMPTY(ifp)) {
2779 /* Interface with no addresses - send zero sockaddr. */
2780 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2781 if (!docopy) {
2782 space += sz;
2783 continue;
2784 }
2785 if (space >= sz) {
2786 error = copyout(&ifr, ifrp, sz);
2787 if (error != 0)
2788 goto release_exit;
2789 ifrp++;
2790 space -= sz;
2791 }
2792 }
2793
2794 IFADDR_FOREACH(ifa, ifp) {
2795 struct sockaddr *sa = ifa->ifa_addr;
2796 /* all sockaddrs must fit in sockaddr_storage */
2797 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2798
2799 if (!docopy) {
2800 space += sz;
2801 continue;
2802 }
2803 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2804 if (space >= sz) {
2805 error = copyout(&ifr, ifrp, sz);
2806 if (error != 0)
2807 goto release_exit;
2808 ifrp++; space -= sz;
2809 }
2810 }
2811
2812 s = pserialize_read_enter();
2813 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2814 }
2815 pserialize_read_exit(s);
2816 curlwp_bindx(bound);
2817
2818 if (docopy) {
2819 KASSERT(0 <= space && space <= ifc->ifc_len);
2820 ifc->ifc_len -= space;
2821 } else {
2822 KASSERT(space >= 0);
2823 ifc->ifc_len = space;
2824 }
2825 return (0);
2826
2827 release_exit:
2828 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2829 curlwp_bindx(bound);
2830 return error;
2831 }
2832
2833 int
2834 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2835 {
2836 uint8_t len;
2837 #ifdef COMPAT_OIFREQ
2838 struct ifreq ifrb;
2839 struct oifreq *oifr = NULL;
2840 u_long ocmd = cmd;
2841 cmd = compat_cvtcmd(cmd);
2842 if (cmd != ocmd) {
2843 oifr = (struct oifreq *)(void *)ifr;
2844 ifr = &ifrb;
2845 ifreqo2n(oifr, ifr);
2846 len = sizeof(oifr->ifr_addr);
2847 } else
2848 #endif
2849 len = sizeof(ifr->ifr_ifru.ifru_space);
2850
2851 if (len < sa->sa_len)
2852 return EFBIG;
2853
2854 memset(&ifr->ifr_addr, 0, len);
2855 sockaddr_copy(&ifr->ifr_addr, len, sa);
2856
2857 #ifdef COMPAT_OIFREQ
2858 if (cmd != ocmd)
2859 ifreqn2o(oifr, ifr);
2860 #endif
2861 return 0;
2862 }
2863
2864 /*
2865 * wrapper function for the drivers which doesn't have if_transmit().
2866 */
2867 static int
2868 if_transmit(struct ifnet *ifp, struct mbuf *m)
2869 {
2870 int s, error;
2871
2872 s = splnet();
2873
2874 /*
2875 * If NET_MPSAFE is not defined , IFQ_LOCK() is nop.
2876 * use KERNEL_LOCK instead of ifq_lock.
2877 */
2878 #ifndef NET_MPSAFE
2879 KERNEL_LOCK(1, NULL);
2880 #endif
2881 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2882 #ifndef NET_MPSAFE
2883 KERNEL_UNLOCK_ONE(NULL);
2884 #endif
2885 if (error != 0) {
2886 /* mbuf is already freed */
2887 goto out;
2888 }
2889
2890 ifp->if_obytes += m->m_pkthdr.len;;
2891 if (m->m_flags & M_MCAST)
2892 ifp->if_omcasts++;
2893
2894 if ((ifp->if_flags & IFF_OACTIVE) == 0)
2895 if_start_lock(ifp);
2896 out:
2897 splx(s);
2898
2899 return error;
2900 }
2901
2902 int
2903 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
2904 {
2905 int error;
2906
2907 #ifdef ALTQ
2908 KERNEL_LOCK(1, NULL);
2909 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
2910 error = if_transmit(ifp, m);
2911 KERNEL_UNLOCK_ONE(NULL);
2912 } else {
2913 KERNEL_UNLOCK_ONE(NULL);
2914 error = (*ifp->if_transmit)(ifp, m);
2915 }
2916 #else /* !ALTQ */
2917 error = (*ifp->if_transmit)(ifp, m);
2918 #endif /* !ALTQ */
2919
2920 return error;
2921 }
2922
2923 /*
2924 * Queue message on interface, and start output if interface
2925 * not yet active.
2926 */
2927 int
2928 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2929 {
2930
2931 return if_transmit_lock(ifp, m);
2932 }
2933
2934 /*
2935 * Queue message on interface, possibly using a second fast queue
2936 */
2937 int
2938 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2939 {
2940 int error = 0;
2941
2942 if (ifq != NULL
2943 #ifdef ALTQ
2944 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2945 #endif
2946 ) {
2947 if (IF_QFULL(ifq)) {
2948 IF_DROP(&ifp->if_snd);
2949 m_freem(m);
2950 if (error == 0)
2951 error = ENOBUFS;
2952 } else
2953 IF_ENQUEUE(ifq, m);
2954 } else
2955 IFQ_ENQUEUE(&ifp->if_snd, m, error);
2956 if (error != 0) {
2957 ++ifp->if_oerrors;
2958 return error;
2959 }
2960 return 0;
2961 }
2962
2963 int
2964 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2965 {
2966 int rc;
2967
2968 if (ifp->if_initaddr != NULL)
2969 rc = (*ifp->if_initaddr)(ifp, ifa, src);
2970 else if (src ||
2971 /* FIXME: may not hold if_ioctl_lock */
2972 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2973 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2974
2975 return rc;
2976 }
2977
2978 int
2979 if_do_dad(struct ifnet *ifp)
2980 {
2981 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2982 return 0;
2983
2984 switch (ifp->if_type) {
2985 case IFT_FAITH:
2986 /*
2987 * These interfaces do not have the IFF_LOOPBACK flag,
2988 * but loop packets back. We do not have to do DAD on such
2989 * interfaces. We should even omit it, because loop-backed
2990 * responses would confuse the DAD procedure.
2991 */
2992 return 0;
2993 default:
2994 /*
2995 * Our DAD routine requires the interface up and running.
2996 * However, some interfaces can be up before the RUNNING
2997 * status. Additionaly, users may try to assign addresses
2998 * before the interface becomes up (or running).
2999 * We simply skip DAD in such a case as a work around.
3000 * XXX: we should rather mark "tentative" on such addresses,
3001 * and do DAD after the interface becomes ready.
3002 */
3003 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3004 (IFF_UP|IFF_RUNNING))
3005 return 0;
3006
3007 return 1;
3008 }
3009 }
3010
3011 int
3012 if_flags_set(ifnet_t *ifp, const short flags)
3013 {
3014 int rc;
3015
3016 if (ifp->if_setflags != NULL)
3017 rc = (*ifp->if_setflags)(ifp, flags);
3018 else {
3019 short cantflags, chgdflags;
3020 struct ifreq ifr;
3021
3022 chgdflags = ifp->if_flags ^ flags;
3023 cantflags = chgdflags & IFF_CANTCHANGE;
3024
3025 if (cantflags != 0)
3026 ifp->if_flags ^= cantflags;
3027
3028 /* Traditionally, we do not call if_ioctl after
3029 * setting/clearing only IFF_PROMISC if the interface
3030 * isn't IFF_UP. Uphold that tradition.
3031 */
3032 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3033 return 0;
3034
3035 memset(&ifr, 0, sizeof(ifr));
3036
3037 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3038 /* FIXME: may not hold if_ioctl_lock */
3039 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3040
3041 if (rc != 0 && cantflags != 0)
3042 ifp->if_flags ^= cantflags;
3043 }
3044
3045 return rc;
3046 }
3047
3048 int
3049 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3050 {
3051 int rc;
3052 struct ifreq ifr;
3053
3054 if (ifp->if_mcastop != NULL)
3055 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3056 else {
3057 ifreq_setaddr(cmd, &ifr, sa);
3058 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3059 }
3060
3061 return rc;
3062 }
3063
3064 static void
3065 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3066 struct ifaltq *ifq)
3067 {
3068 const struct sysctlnode *cnode, *rnode;
3069
3070 if (sysctl_createv(clog, 0, NULL, &rnode,
3071 CTLFLAG_PERMANENT,
3072 CTLTYPE_NODE, "interfaces",
3073 SYSCTL_DESCR("Per-interface controls"),
3074 NULL, 0, NULL, 0,
3075 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3076 goto bad;
3077
3078 if (sysctl_createv(clog, 0, &rnode, &rnode,
3079 CTLFLAG_PERMANENT,
3080 CTLTYPE_NODE, ifname,
3081 SYSCTL_DESCR("Interface controls"),
3082 NULL, 0, NULL, 0,
3083 CTL_CREATE, CTL_EOL) != 0)
3084 goto bad;
3085
3086 if (sysctl_createv(clog, 0, &rnode, &rnode,
3087 CTLFLAG_PERMANENT,
3088 CTLTYPE_NODE, "sndq",
3089 SYSCTL_DESCR("Interface output queue controls"),
3090 NULL, 0, NULL, 0,
3091 CTL_CREATE, CTL_EOL) != 0)
3092 goto bad;
3093
3094 if (sysctl_createv(clog, 0, &rnode, &cnode,
3095 CTLFLAG_PERMANENT,
3096 CTLTYPE_INT, "len",
3097 SYSCTL_DESCR("Current output queue length"),
3098 NULL, 0, &ifq->ifq_len, 0,
3099 CTL_CREATE, CTL_EOL) != 0)
3100 goto bad;
3101
3102 if (sysctl_createv(clog, 0, &rnode, &cnode,
3103 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3104 CTLTYPE_INT, "maxlen",
3105 SYSCTL_DESCR("Maximum allowed output queue length"),
3106 NULL, 0, &ifq->ifq_maxlen, 0,
3107 CTL_CREATE, CTL_EOL) != 0)
3108 goto bad;
3109
3110 if (sysctl_createv(clog, 0, &rnode, &cnode,
3111 CTLFLAG_PERMANENT,
3112 CTLTYPE_INT, "drops",
3113 SYSCTL_DESCR("Packets dropped due to full output queue"),
3114 NULL, 0, &ifq->ifq_drops, 0,
3115 CTL_CREATE, CTL_EOL) != 0)
3116 goto bad;
3117
3118 return;
3119 bad:
3120 printf("%s: could not attach sysctl nodes\n", ifname);
3121 return;
3122 }
3123
3124 #if defined(INET) || defined(INET6)
3125
3126 #define SYSCTL_NET_PKTQ(q, cn, c) \
3127 static int \
3128 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3129 { \
3130 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3131 }
3132
3133 #if defined(INET)
3134 static int
3135 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3136 {
3137 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3138 }
3139 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3140 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3141 #endif
3142
3143 #if defined(INET6)
3144 static int
3145 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3146 {
3147 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3148 }
3149 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3150 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3151 #endif
3152
3153 static void
3154 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3155 {
3156 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3157 const char *pfname = NULL, *ipname = NULL;
3158 int ipn = 0, qid = 0;
3159
3160 switch (pf) {
3161 #if defined(INET)
3162 case PF_INET:
3163 len_func = sysctl_net_ip_pktq_items;
3164 maxlen_func = sysctl_net_ip_pktq_maxlen;
3165 drops_func = sysctl_net_ip_pktq_drops;
3166 pfname = "inet", ipn = IPPROTO_IP;
3167 ipname = "ip", qid = IPCTL_IFQ;
3168 break;
3169 #endif
3170 #if defined(INET6)
3171 case PF_INET6:
3172 len_func = sysctl_net_ip6_pktq_items;
3173 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3174 drops_func = sysctl_net_ip6_pktq_drops;
3175 pfname = "inet6", ipn = IPPROTO_IPV6;
3176 ipname = "ip6", qid = IPV6CTL_IFQ;
3177 break;
3178 #endif
3179 default:
3180 KASSERT(false);
3181 }
3182
3183 sysctl_createv(clog, 0, NULL, NULL,
3184 CTLFLAG_PERMANENT,
3185 CTLTYPE_NODE, pfname, NULL,
3186 NULL, 0, NULL, 0,
3187 CTL_NET, pf, CTL_EOL);
3188 sysctl_createv(clog, 0, NULL, NULL,
3189 CTLFLAG_PERMANENT,
3190 CTLTYPE_NODE, ipname, NULL,
3191 NULL, 0, NULL, 0,
3192 CTL_NET, pf, ipn, CTL_EOL);
3193 sysctl_createv(clog, 0, NULL, NULL,
3194 CTLFLAG_PERMANENT,
3195 CTLTYPE_NODE, "ifq",
3196 SYSCTL_DESCR("Protocol input queue controls"),
3197 NULL, 0, NULL, 0,
3198 CTL_NET, pf, ipn, qid, CTL_EOL);
3199
3200 sysctl_createv(clog, 0, NULL, NULL,
3201 CTLFLAG_PERMANENT,
3202 CTLTYPE_INT, "len",
3203 SYSCTL_DESCR("Current input queue length"),
3204 len_func, 0, NULL, 0,
3205 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3206 sysctl_createv(clog, 0, NULL, NULL,
3207 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3208 CTLTYPE_INT, "maxlen",
3209 SYSCTL_DESCR("Maximum allowed input queue length"),
3210 maxlen_func, 0, NULL, 0,
3211 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3212 sysctl_createv(clog, 0, NULL, NULL,
3213 CTLFLAG_PERMANENT,
3214 CTLTYPE_INT, "drops",
3215 SYSCTL_DESCR("Packets dropped due to full input queue"),
3216 drops_func, 0, NULL, 0,
3217 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3218 }
3219 #endif /* INET || INET6 */
3220
3221 static int
3222 if_sdl_sysctl(SYSCTLFN_ARGS)
3223 {
3224 struct ifnet *ifp;
3225 const struct sockaddr_dl *sdl;
3226 struct psref psref;
3227 int error = 0;
3228 int bound;
3229
3230 if (namelen != 1)
3231 return EINVAL;
3232
3233 bound = curlwp_bind();
3234 ifp = if_get_byindex(name[0], &psref);
3235 if (ifp == NULL) {
3236 error = ENODEV;
3237 goto out0;
3238 }
3239
3240 sdl = ifp->if_sadl;
3241 if (sdl == NULL) {
3242 *oldlenp = 0;
3243 goto out1;
3244 }
3245
3246 if (oldp == NULL) {
3247 *oldlenp = sdl->sdl_alen;
3248 goto out1;
3249 }
3250
3251 if (*oldlenp >= sdl->sdl_alen)
3252 *oldlenp = sdl->sdl_alen;
3253 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3254 out1:
3255 if_put(ifp, &psref);
3256 out0:
3257 curlwp_bindx(bound);
3258 return error;
3259 }
3260
3261 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3262 {
3263 const struct sysctlnode *rnode = NULL;
3264
3265 sysctl_createv(clog, 0, NULL, &rnode,
3266 CTLFLAG_PERMANENT,
3267 CTLTYPE_NODE, "sdl",
3268 SYSCTL_DESCR("Get active link-layer address"),
3269 if_sdl_sysctl, 0, NULL, 0,
3270 CTL_NET, CTL_CREATE, CTL_EOL);
3271 }
3272