if.c revision 1.360 1 /* $NetBSD: if.c,v 1.360 2016/10/28 05:52:05 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.360 2016/10/28 05:52:05 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #ifndef IPSEC
142 #include <netinet/ip_encap.h>
143 #endif
144
145 #ifdef INET6
146 #include <netinet6/in6_var.h>
147 #include <netinet6/nd6.h>
148 #endif
149
150 #include "ether.h"
151 #include "fddi.h"
152 #include "token.h"
153
154 #include "carp.h"
155 #if NCARP > 0
156 #include <netinet/ip_carp.h>
157 #endif
158
159 #include <compat/sys/sockio.h>
160 #include <compat/sys/socket.h>
161
162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
164
165 /*
166 * Global list of interfaces.
167 */
168 /* DEPRECATED. Remove it once kvm(3) users disappeared */
169 struct ifnet_head ifnet_list;
170
171 struct pslist_head ifnet_pslist;
172 static ifnet_t ** ifindex2ifnet = NULL;
173 static u_int if_index = 1;
174 static size_t if_indexlim = 0;
175 static uint64_t index_gen;
176 /* Mutex to protect the above objects. */
177 kmutex_t ifnet_mtx __cacheline_aligned;
178 struct psref_class *ifnet_psref_class __read_mostly;
179 static pserialize_t ifnet_psz;
180
181 static kmutex_t if_clone_mtx;
182
183 struct ifnet *lo0ifp;
184 int ifqmaxlen = IFQ_MAXLEN;
185
186 struct psref_class *ifa_psref_class __read_mostly;
187
188 static int if_rt_walktree(struct rtentry *, void *);
189
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212
213 struct if_percpuq {
214 struct ifnet *ipq_ifp;
215 void *ipq_si;
216 struct percpu *ipq_ifqs; /* struct ifqueue */
217 };
218
219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
220
221 static void if_percpuq_drops(void *, void *, struct cpu_info *);
222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
223 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
224 struct if_percpuq *);
225
226 #if defined(INET) || defined(INET6)
227 static void sysctl_net_pktq_setup(struct sysctllog **, int);
228 #endif
229
230 static int
231 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
232 void *arg0, void *arg1, void *arg2, void *arg3)
233 {
234 int result;
235 enum kauth_network_req req;
236
237 result = KAUTH_RESULT_DEFER;
238 req = (enum kauth_network_req)arg1;
239
240 if (action != KAUTH_NETWORK_INTERFACE)
241 return result;
242
243 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
244 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
245 result = KAUTH_RESULT_ALLOW;
246
247 return result;
248 }
249
250 /*
251 * Network interface utility routines.
252 *
253 * Routines with ifa_ifwith* names take sockaddr *'s as
254 * parameters.
255 */
256 void
257 ifinit(void)
258 {
259 #if defined(INET)
260 sysctl_net_pktq_setup(NULL, PF_INET);
261 #endif
262 #ifdef INET6
263 if (in6_present)
264 sysctl_net_pktq_setup(NULL, PF_INET6);
265 #endif
266
267 #if (defined(INET) || defined(INET6)) && !defined(IPSEC)
268 encapinit();
269 #endif
270
271 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
272 if_listener_cb, NULL);
273
274 /* interfaces are available, inform socket code */
275 ifioctl = doifioctl;
276 }
277
278 /*
279 * XXX Initialization before configure().
280 * XXX hack to get pfil_add_hook working in autoconf.
281 */
282 void
283 ifinit1(void)
284 {
285 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
286
287 TAILQ_INIT(&ifnet_list);
288 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
289 ifnet_psz = pserialize_create();
290 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
291 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
292 PSLIST_INIT(&ifnet_pslist);
293
294 if_indexlim = 8;
295
296 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
297 KASSERT(if_pfil != NULL);
298
299 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
300 etherinit();
301 #endif
302 }
303
304 ifnet_t *
305 if_alloc(u_char type)
306 {
307 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
308 }
309
310 void
311 if_free(ifnet_t *ifp)
312 {
313 kmem_free(ifp, sizeof(ifnet_t));
314 }
315
316 void
317 if_initname(struct ifnet *ifp, const char *name, int unit)
318 {
319 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
320 "%s%d", name, unit);
321 }
322
323 /*
324 * Null routines used while an interface is going away. These routines
325 * just return an error.
326 */
327
328 int
329 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
330 const struct sockaddr *so, const struct rtentry *rt)
331 {
332
333 return ENXIO;
334 }
335
336 void
337 if_nullinput(struct ifnet *ifp, struct mbuf *m)
338 {
339
340 /* Nothing. */
341 }
342
343 void
344 if_nullstart(struct ifnet *ifp)
345 {
346
347 /* Nothing. */
348 }
349
350 int
351 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
352 {
353
354 return ENXIO;
355 }
356
357 int
358 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
359 {
360
361 return ENXIO;
362 }
363
364 int
365 if_nullinit(struct ifnet *ifp)
366 {
367
368 return ENXIO;
369 }
370
371 void
372 if_nullstop(struct ifnet *ifp, int disable)
373 {
374
375 /* Nothing. */
376 }
377
378 void
379 if_nullslowtimo(struct ifnet *ifp)
380 {
381
382 /* Nothing. */
383 }
384
385 void
386 if_nulldrain(struct ifnet *ifp)
387 {
388
389 /* Nothing. */
390 }
391
392 void
393 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
394 {
395 struct ifaddr *ifa;
396 struct sockaddr_dl *sdl;
397
398 ifp->if_addrlen = addrlen;
399 if_alloc_sadl(ifp);
400 ifa = ifp->if_dl;
401 sdl = satosdl(ifa->ifa_addr);
402
403 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
404 if (factory) {
405 ifp->if_hwdl = ifp->if_dl;
406 ifaref(ifp->if_hwdl);
407 }
408 /* TBD routing socket */
409 }
410
411 struct ifaddr *
412 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
413 {
414 unsigned socksize, ifasize;
415 int addrlen, namelen;
416 struct sockaddr_dl *mask, *sdl;
417 struct ifaddr *ifa;
418
419 namelen = strlen(ifp->if_xname);
420 addrlen = ifp->if_addrlen;
421 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
422 ifasize = sizeof(*ifa) + 2 * socksize;
423 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
424
425 sdl = (struct sockaddr_dl *)(ifa + 1);
426 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
427
428 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
429 ifp->if_xname, namelen, NULL, addrlen);
430 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
431 memset(&mask->sdl_data[0], 0xff, namelen);
432 ifa->ifa_rtrequest = link_rtrequest;
433 ifa->ifa_addr = (struct sockaddr *)sdl;
434 ifa->ifa_netmask = (struct sockaddr *)mask;
435 ifa_psref_init(ifa);
436
437 *sdlp = sdl;
438
439 return ifa;
440 }
441
442 static void
443 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
444 {
445 const struct sockaddr_dl *sdl;
446
447 ifp->if_dl = ifa;
448 ifaref(ifa);
449 sdl = satosdl(ifa->ifa_addr);
450 ifp->if_sadl = sdl;
451 }
452
453 /*
454 * Allocate the link level name for the specified interface. This
455 * is an attachment helper. It must be called after ifp->if_addrlen
456 * is initialized, which may not be the case when if_attach() is
457 * called.
458 */
459 void
460 if_alloc_sadl(struct ifnet *ifp)
461 {
462 struct ifaddr *ifa;
463 const struct sockaddr_dl *sdl;
464
465 /*
466 * If the interface already has a link name, release it
467 * now. This is useful for interfaces that can change
468 * link types, and thus switch link names often.
469 */
470 if (ifp->if_sadl != NULL)
471 if_free_sadl(ifp);
472
473 ifa = if_dl_create(ifp, &sdl);
474
475 ifa_insert(ifp, ifa);
476 if_sadl_setrefs(ifp, ifa);
477 }
478
479 static void
480 if_deactivate_sadl(struct ifnet *ifp)
481 {
482 struct ifaddr *ifa;
483
484 KASSERT(ifp->if_dl != NULL);
485
486 ifa = ifp->if_dl;
487
488 ifp->if_sadl = NULL;
489
490 ifp->if_dl = NULL;
491 ifafree(ifa);
492 }
493
494 void
495 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
496 const struct sockaddr_dl *sdl)
497 {
498 int s, ss;
499 struct ifaddr *ifa;
500 int bound = curlwp_bind();
501
502 s = splnet();
503
504 if_deactivate_sadl(ifp);
505
506 if_sadl_setrefs(ifp, ifa0);
507
508 ss = pserialize_read_enter();
509 IFADDR_READER_FOREACH(ifa, ifp) {
510 struct psref psref;
511 ifa_acquire(ifa, &psref);
512 pserialize_read_exit(ss);
513
514 rtinit(ifa, RTM_LLINFO_UPD, 0);
515
516 ss = pserialize_read_enter();
517 ifa_release(ifa, &psref);
518 }
519 pserialize_read_exit(ss);
520
521 splx(s);
522 curlwp_bindx(bound);
523 }
524
525 /*
526 * Free the link level name for the specified interface. This is
527 * a detach helper. This is called from if_detach().
528 */
529 static void
530 if_free_sadl(struct ifnet *ifp)
531 {
532 struct ifaddr *ifa;
533 int s;
534
535 ifa = ifp->if_dl;
536 if (ifa == NULL) {
537 KASSERT(ifp->if_sadl == NULL);
538 return;
539 }
540
541 KASSERT(ifp->if_sadl != NULL);
542
543 s = splnet();
544 rtinit(ifa, RTM_DELETE, 0);
545 ifa_remove(ifp, ifa);
546 if_deactivate_sadl(ifp);
547 if (ifp->if_hwdl == ifa) {
548 ifafree(ifa);
549 ifp->if_hwdl = NULL;
550 }
551 splx(s);
552 }
553
554 static void
555 if_getindex(ifnet_t *ifp)
556 {
557 bool hitlimit = false;
558
559 ifp->if_index_gen = index_gen++;
560
561 ifp->if_index = if_index;
562 if (ifindex2ifnet == NULL) {
563 if_index++;
564 goto skip;
565 }
566 while (if_byindex(ifp->if_index)) {
567 /*
568 * If we hit USHRT_MAX, we skip back to 0 since
569 * there are a number of places where the value
570 * of if_index or if_index itself is compared
571 * to or stored in an unsigned short. By
572 * jumping back, we won't botch those assignments
573 * or comparisons.
574 */
575 if (++if_index == 0) {
576 if_index = 1;
577 } else if (if_index == USHRT_MAX) {
578 /*
579 * However, if we have to jump back to
580 * zero *twice* without finding an empty
581 * slot in ifindex2ifnet[], then there
582 * there are too many (>65535) interfaces.
583 */
584 if (hitlimit) {
585 panic("too many interfaces");
586 }
587 hitlimit = true;
588 if_index = 1;
589 }
590 ifp->if_index = if_index;
591 }
592 skip:
593 /*
594 * ifindex2ifnet is indexed by if_index. Since if_index will
595 * grow dynamically, it should grow too.
596 */
597 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
598 size_t m, n, oldlim;
599 void *q;
600
601 oldlim = if_indexlim;
602 while (ifp->if_index >= if_indexlim)
603 if_indexlim <<= 1;
604
605 /* grow ifindex2ifnet */
606 m = oldlim * sizeof(struct ifnet *);
607 n = if_indexlim * sizeof(struct ifnet *);
608 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
609 if (ifindex2ifnet != NULL) {
610 memcpy(q, ifindex2ifnet, m);
611 free(ifindex2ifnet, M_IFADDR);
612 }
613 ifindex2ifnet = (struct ifnet **)q;
614 }
615 ifindex2ifnet[ifp->if_index] = ifp;
616 }
617
618 /*
619 * Initialize an interface and assign an index for it.
620 *
621 * It must be called prior to a device specific attach routine
622 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
623 * and be followed by if_register:
624 *
625 * if_initialize(ifp);
626 * ether_ifattach(ifp, enaddr);
627 * if_register(ifp);
628 */
629 void
630 if_initialize(ifnet_t *ifp)
631 {
632 KASSERT(if_indexlim > 0);
633 TAILQ_INIT(&ifp->if_addrlist);
634
635 /*
636 * Link level name is allocated later by a separate call to
637 * if_alloc_sadl().
638 */
639
640 if (ifp->if_snd.ifq_maxlen == 0)
641 ifp->if_snd.ifq_maxlen = ifqmaxlen;
642
643 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
644
645 ifp->if_link_state = LINK_STATE_UNKNOWN;
646 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
647
648 ifp->if_capenable = 0;
649 ifp->if_csum_flags_tx = 0;
650 ifp->if_csum_flags_rx = 0;
651
652 #ifdef ALTQ
653 ifp->if_snd.altq_type = 0;
654 ifp->if_snd.altq_disc = NULL;
655 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
656 ifp->if_snd.altq_tbr = NULL;
657 ifp->if_snd.altq_ifp = ifp;
658 #endif
659
660 IFQ_LOCK_INIT(&ifp->if_snd);
661
662 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
663 (void)pfil_run_hooks(if_pfil,
664 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
665
666 IF_AFDATA_LOCK_INIT(ifp);
667
668 if (if_is_link_state_changeable(ifp)) {
669 ifp->if_link_si = softint_establish(SOFTINT_NET,
670 if_link_state_change_si, ifp);
671 if (ifp->if_link_si == NULL)
672 panic("%s: softint_establish() failed", __func__);
673 }
674
675 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
676 PSLIST_INIT(&ifp->if_addr_pslist);
677 psref_target_init(&ifp->if_psref, ifnet_psref_class);
678 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
679
680 IFNET_LOCK();
681 if_getindex(ifp);
682 IFNET_UNLOCK();
683 }
684
685 /*
686 * Register an interface to the list of "active" interfaces.
687 */
688 void
689 if_register(ifnet_t *ifp)
690 {
691 /*
692 * If the driver has not supplied its own if_ioctl, then
693 * supply the default.
694 */
695 if (ifp->if_ioctl == NULL)
696 ifp->if_ioctl = ifioctl_common;
697
698 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
699
700 if (!STAILQ_EMPTY(&domains))
701 if_attachdomain1(ifp);
702
703 /* Announce the interface. */
704 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
705
706 if (ifp->if_slowtimo != NULL) {
707 ifp->if_slowtimo_ch =
708 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
709 callout_init(ifp->if_slowtimo_ch, 0);
710 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
711 if_slowtimo(ifp);
712 }
713
714 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
715 ifp->if_transmit = if_transmit;
716
717 IFNET_LOCK();
718 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
719 IFNET_WRITER_INSERT_TAIL(ifp);
720 IFNET_UNLOCK();
721 }
722
723 /*
724 * The if_percpuq framework
725 *
726 * It allows network device drivers to execute the network stack
727 * in softint (so called softint-based if_input). It utilizes
728 * softint and percpu ifqueue. It doesn't distribute any packets
729 * between CPUs, unlike pktqueue(9).
730 *
731 * Currently we support two options for device drivers to apply the framework:
732 * - Use it implicitly with less changes
733 * - If you use if_attach in driver's _attach function and if_input in
734 * driver's Rx interrupt handler, a packet is queued and a softint handles
735 * the packet implicitly
736 * - Use it explicitly in each driver (recommended)
737 * - You can use if_percpuq_* directly in your driver
738 * - In this case, you need to allocate struct if_percpuq in driver's softc
739 * - See wm(4) as a reference implementation
740 */
741
742 static void
743 if_percpuq_softint(void *arg)
744 {
745 struct if_percpuq *ipq = arg;
746 struct ifnet *ifp = ipq->ipq_ifp;
747 struct mbuf *m;
748
749 while ((m = if_percpuq_dequeue(ipq)) != NULL)
750 ifp->_if_input(ifp, m);
751 }
752
753 static void
754 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
755 {
756 struct ifqueue *const ifq = p;
757
758 memset(ifq, 0, sizeof(*ifq));
759 ifq->ifq_maxlen = IFQ_MAXLEN;
760 }
761
762 struct if_percpuq *
763 if_percpuq_create(struct ifnet *ifp)
764 {
765 struct if_percpuq *ipq;
766
767 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
768 if (ipq == NULL)
769 panic("kmem_zalloc failed");
770
771 ipq->ipq_ifp = ifp;
772 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
773 if_percpuq_softint, ipq);
774 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
775 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
776
777 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
778
779 return ipq;
780 }
781
782 static struct mbuf *
783 if_percpuq_dequeue(struct if_percpuq *ipq)
784 {
785 struct mbuf *m;
786 struct ifqueue *ifq;
787 int s;
788
789 s = splnet();
790 ifq = percpu_getref(ipq->ipq_ifqs);
791 IF_DEQUEUE(ifq, m);
792 percpu_putref(ipq->ipq_ifqs);
793 splx(s);
794
795 return m;
796 }
797
798 static void
799 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
800 {
801 struct ifqueue *const ifq = p;
802
803 IF_PURGE(ifq);
804 }
805
806 void
807 if_percpuq_destroy(struct if_percpuq *ipq)
808 {
809
810 /* if_detach may already destroy it */
811 if (ipq == NULL)
812 return;
813
814 softint_disestablish(ipq->ipq_si);
815 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
816 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
817 }
818
819 void
820 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
821 {
822 struct ifqueue *ifq;
823 int s;
824
825 KASSERT(ipq != NULL);
826
827 s = splnet();
828 ifq = percpu_getref(ipq->ipq_ifqs);
829 if (IF_QFULL(ifq)) {
830 IF_DROP(ifq);
831 percpu_putref(ipq->ipq_ifqs);
832 m_freem(m);
833 goto out;
834 }
835 IF_ENQUEUE(ifq, m);
836 percpu_putref(ipq->ipq_ifqs);
837
838 softint_schedule(ipq->ipq_si);
839 out:
840 splx(s);
841 }
842
843 static void
844 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
845 {
846 struct ifqueue *const ifq = p;
847 int *sum = arg;
848
849 *sum += ifq->ifq_drops;
850 }
851
852 static int
853 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
854 {
855 struct sysctlnode node;
856 struct if_percpuq *ipq;
857 int sum = 0;
858 int error;
859
860 node = *rnode;
861 ipq = node.sysctl_data;
862
863 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
864
865 node.sysctl_data = ∑
866 error = sysctl_lookup(SYSCTLFN_CALL(&node));
867 if (error != 0 || newp == NULL)
868 return error;
869
870 return 0;
871 }
872
873 static void
874 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
875 struct if_percpuq *ipq)
876 {
877 const struct sysctlnode *cnode, *rnode;
878
879 if (sysctl_createv(clog, 0, NULL, &rnode,
880 CTLFLAG_PERMANENT,
881 CTLTYPE_NODE, "interfaces",
882 SYSCTL_DESCR("Per-interface controls"),
883 NULL, 0, NULL, 0,
884 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
885 goto bad;
886
887 if (sysctl_createv(clog, 0, &rnode, &rnode,
888 CTLFLAG_PERMANENT,
889 CTLTYPE_NODE, ifname,
890 SYSCTL_DESCR("Interface controls"),
891 NULL, 0, NULL, 0,
892 CTL_CREATE, CTL_EOL) != 0)
893 goto bad;
894
895 if (sysctl_createv(clog, 0, &rnode, &rnode,
896 CTLFLAG_PERMANENT,
897 CTLTYPE_NODE, "rcvq",
898 SYSCTL_DESCR("Interface input queue controls"),
899 NULL, 0, NULL, 0,
900 CTL_CREATE, CTL_EOL) != 0)
901 goto bad;
902
903 #ifdef NOTYET
904 /* XXX Should show each per-CPU queue length? */
905 if (sysctl_createv(clog, 0, &rnode, &rnode,
906 CTLFLAG_PERMANENT,
907 CTLTYPE_INT, "len",
908 SYSCTL_DESCR("Current input queue length"),
909 sysctl_percpuq_len, 0, NULL, 0,
910 CTL_CREATE, CTL_EOL) != 0)
911 goto bad;
912
913 if (sysctl_createv(clog, 0, &rnode, &cnode,
914 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
915 CTLTYPE_INT, "maxlen",
916 SYSCTL_DESCR("Maximum allowed input queue length"),
917 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
918 CTL_CREATE, CTL_EOL) != 0)
919 goto bad;
920 #endif
921
922 if (sysctl_createv(clog, 0, &rnode, &cnode,
923 CTLFLAG_PERMANENT,
924 CTLTYPE_INT, "drops",
925 SYSCTL_DESCR("Total packets dropped due to full input queue"),
926 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
927 CTL_CREATE, CTL_EOL) != 0)
928 goto bad;
929
930 return;
931 bad:
932 printf("%s: could not attach sysctl nodes\n", ifname);
933 return;
934 }
935
936
937 /*
938 * The common interface input routine that is called by device drivers,
939 * which should be used only when the driver's rx handler already runs
940 * in softint.
941 */
942 void
943 if_input(struct ifnet *ifp, struct mbuf *m)
944 {
945
946 KASSERT(ifp->if_percpuq == NULL);
947 KASSERT(!cpu_intr_p());
948
949 ifp->_if_input(ifp, m);
950 }
951
952 /*
953 * DEPRECATED. Use if_initialize and if_register instead.
954 * See the above comment of if_initialize.
955 *
956 * Note that it implicitly enables if_percpuq to make drivers easy to
957 * migrate softint-based if_input without much changes. If you don't
958 * want to enable it, use if_initialize instead.
959 */
960 void
961 if_attach(ifnet_t *ifp)
962 {
963
964 if_initialize(ifp);
965 ifp->if_percpuq = if_percpuq_create(ifp);
966 if_register(ifp);
967 }
968
969 void
970 if_attachdomain(void)
971 {
972 struct ifnet *ifp;
973 int s;
974 int bound = curlwp_bind();
975
976 s = pserialize_read_enter();
977 IFNET_READER_FOREACH(ifp) {
978 struct psref psref;
979 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
980 pserialize_read_exit(s);
981 if_attachdomain1(ifp);
982 s = pserialize_read_enter();
983 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
984 }
985 pserialize_read_exit(s);
986 curlwp_bindx(bound);
987 }
988
989 static void
990 if_attachdomain1(struct ifnet *ifp)
991 {
992 struct domain *dp;
993 int s;
994
995 s = splnet();
996
997 /* address family dependent data region */
998 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
999 DOMAIN_FOREACH(dp) {
1000 if (dp->dom_ifattach != NULL)
1001 ifp->if_afdata[dp->dom_family] =
1002 (*dp->dom_ifattach)(ifp);
1003 }
1004
1005 splx(s);
1006 }
1007
1008 /*
1009 * Deactivate an interface. This points all of the procedure
1010 * handles at error stubs. May be called from interrupt context.
1011 */
1012 void
1013 if_deactivate(struct ifnet *ifp)
1014 {
1015 int s;
1016
1017 s = splnet();
1018
1019 ifp->if_output = if_nulloutput;
1020 ifp->_if_input = if_nullinput;
1021 ifp->if_start = if_nullstart;
1022 ifp->if_transmit = if_nulltransmit;
1023 ifp->if_ioctl = if_nullioctl;
1024 ifp->if_init = if_nullinit;
1025 ifp->if_stop = if_nullstop;
1026 ifp->if_slowtimo = if_nullslowtimo;
1027 ifp->if_drain = if_nulldrain;
1028
1029 /* No more packets may be enqueued. */
1030 ifp->if_snd.ifq_maxlen = 0;
1031
1032 splx(s);
1033 }
1034
1035 bool
1036 if_is_deactivated(struct ifnet *ifp)
1037 {
1038
1039 return ifp->if_output == if_nulloutput;
1040 }
1041
1042 void
1043 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1044 {
1045 struct ifaddr *ifa, *nifa;
1046 int s;
1047
1048 s = pserialize_read_enter();
1049 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1050 nifa = IFADDR_READER_NEXT(ifa);
1051 if (ifa->ifa_addr->sa_family != family)
1052 continue;
1053 pserialize_read_exit(s);
1054
1055 (*purgeaddr)(ifa);
1056
1057 s = pserialize_read_enter();
1058 }
1059 pserialize_read_exit(s);
1060 }
1061
1062 #ifdef IFAREF_DEBUG
1063 static struct ifaddr **ifa_list;
1064 static int ifa_list_size;
1065
1066 /* Depends on only one if_attach runs at once */
1067 static void
1068 if_build_ifa_list(struct ifnet *ifp)
1069 {
1070 struct ifaddr *ifa;
1071 int i;
1072
1073 KASSERT(ifa_list == NULL);
1074 KASSERT(ifa_list_size == 0);
1075
1076 IFADDR_READER_FOREACH(ifa, ifp)
1077 ifa_list_size++;
1078
1079 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1080 if (ifa_list == NULL)
1081 return;
1082
1083 i = 0;
1084 IFADDR_READER_FOREACH(ifa, ifp) {
1085 ifa_list[i++] = ifa;
1086 ifaref(ifa);
1087 }
1088 }
1089
1090 static void
1091 if_check_and_free_ifa_list(struct ifnet *ifp)
1092 {
1093 int i;
1094 struct ifaddr *ifa;
1095
1096 if (ifa_list == NULL)
1097 return;
1098
1099 for (i = 0; i < ifa_list_size; i++) {
1100 char buf[64];
1101
1102 ifa = ifa_list[i];
1103 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1104 if (ifa->ifa_refcnt > 1) {
1105 log(LOG_WARNING,
1106 "ifa(%s) still referenced (refcnt=%d)\n",
1107 buf, ifa->ifa_refcnt - 1);
1108 } else
1109 log(LOG_DEBUG,
1110 "ifa(%s) not referenced (refcnt=%d)\n",
1111 buf, ifa->ifa_refcnt - 1);
1112 ifafree(ifa);
1113 }
1114
1115 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1116 ifa_list = NULL;
1117 ifa_list_size = 0;
1118 }
1119 #endif
1120
1121 /*
1122 * Detach an interface from the list of "active" interfaces,
1123 * freeing any resources as we go along.
1124 *
1125 * NOTE: This routine must be called with a valid thread context,
1126 * as it may block.
1127 */
1128 void
1129 if_detach(struct ifnet *ifp)
1130 {
1131 struct socket so;
1132 struct ifaddr *ifa;
1133 #ifdef IFAREF_DEBUG
1134 struct ifaddr *last_ifa = NULL;
1135 #endif
1136 struct domain *dp;
1137 const struct protosw *pr;
1138 int s, i, family, purged;
1139 uint64_t xc;
1140
1141 #ifdef IFAREF_DEBUG
1142 if_build_ifa_list(ifp);
1143 #endif
1144 /*
1145 * XXX It's kind of lame that we have to have the
1146 * XXX socket structure...
1147 */
1148 memset(&so, 0, sizeof(so));
1149
1150 s = splnet();
1151
1152 sysctl_teardown(&ifp->if_sysctl_log);
1153 mutex_enter(ifp->if_ioctl_lock);
1154 if_deactivate(ifp);
1155 mutex_exit(ifp->if_ioctl_lock);
1156
1157 IFNET_LOCK();
1158 ifindex2ifnet[ifp->if_index] = NULL;
1159 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1160 IFNET_WRITER_REMOVE(ifp);
1161 pserialize_perform(ifnet_psz);
1162 IFNET_UNLOCK();
1163
1164 /* Wait for all readers to drain before freeing. */
1165 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1166 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1167
1168 mutex_obj_free(ifp->if_ioctl_lock);
1169 ifp->if_ioctl_lock = NULL;
1170
1171 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1172 ifp->if_slowtimo = NULL;
1173 callout_halt(ifp->if_slowtimo_ch, NULL);
1174 callout_destroy(ifp->if_slowtimo_ch);
1175 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1176 }
1177
1178 /*
1179 * Do an if_down() to give protocols a chance to do something.
1180 */
1181 if_down(ifp);
1182
1183 #ifdef ALTQ
1184 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1185 altq_disable(&ifp->if_snd);
1186 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1187 altq_detach(&ifp->if_snd);
1188 #endif
1189
1190 mutex_obj_free(ifp->if_snd.ifq_lock);
1191
1192 #if NCARP > 0
1193 /* Remove the interface from any carp group it is a part of. */
1194 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1195 carp_ifdetach(ifp);
1196 #endif
1197
1198 /*
1199 * Rip all the addresses off the interface. This should make
1200 * all of the routes go away.
1201 *
1202 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1203 * from the list, including our "cursor", ifa. For safety,
1204 * and to honor the TAILQ abstraction, I just restart the
1205 * loop after each removal. Note that the loop will exit
1206 * when all of the remaining ifaddrs belong to the AF_LINK
1207 * family. I am counting on the historical fact that at
1208 * least one pr_usrreq in each address domain removes at
1209 * least one ifaddr.
1210 */
1211 again:
1212 /*
1213 * At this point, no other one tries to remove ifa in the list,
1214 * so we don't need to take a lock or psref.
1215 */
1216 IFADDR_READER_FOREACH(ifa, ifp) {
1217 family = ifa->ifa_addr->sa_family;
1218 #ifdef IFAREF_DEBUG
1219 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1220 ifa, family, ifa->ifa_refcnt);
1221 if (last_ifa != NULL && ifa == last_ifa)
1222 panic("if_detach: loop detected");
1223 last_ifa = ifa;
1224 #endif
1225 if (family == AF_LINK)
1226 continue;
1227 dp = pffinddomain(family);
1228 #ifdef DIAGNOSTIC
1229 if (dp == NULL)
1230 panic("if_detach: no domain for AF %d",
1231 family);
1232 #endif
1233 /*
1234 * XXX These PURGEIF calls are redundant with the
1235 * purge-all-families calls below, but are left in for
1236 * now both to make a smaller change, and to avoid
1237 * unplanned interactions with clearing of
1238 * ifp->if_addrlist.
1239 */
1240 purged = 0;
1241 for (pr = dp->dom_protosw;
1242 pr < dp->dom_protoswNPROTOSW; pr++) {
1243 so.so_proto = pr;
1244 if (pr->pr_usrreqs) {
1245 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1246 purged = 1;
1247 }
1248 }
1249 if (purged == 0) {
1250 /*
1251 * XXX What's really the best thing to do
1252 * XXX here? --thorpej (at) NetBSD.org
1253 */
1254 printf("if_detach: WARNING: AF %d not purged\n",
1255 family);
1256 ifa_remove(ifp, ifa);
1257 }
1258 goto again;
1259 }
1260
1261 if_free_sadl(ifp);
1262
1263 /* Walk the routing table looking for stragglers. */
1264 for (i = 0; i <= AF_MAX; i++) {
1265 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1266 continue;
1267 }
1268
1269 DOMAIN_FOREACH(dp) {
1270 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1271 {
1272 void *p = ifp->if_afdata[dp->dom_family];
1273 if (p) {
1274 ifp->if_afdata[dp->dom_family] = NULL;
1275 (*dp->dom_ifdetach)(ifp, p);
1276 }
1277 }
1278
1279 /*
1280 * One would expect multicast memberships (INET and
1281 * INET6) on UDP sockets to be purged by the PURGEIF
1282 * calls above, but if all addresses were removed from
1283 * the interface prior to destruction, the calls will
1284 * not be made (e.g. ppp, for which pppd(8) generally
1285 * removes addresses before destroying the interface).
1286 * Because there is no invariant that multicast
1287 * memberships only exist for interfaces with IPv4
1288 * addresses, we must call PURGEIF regardless of
1289 * addresses. (Protocols which might store ifnet
1290 * pointers are marked with PR_PURGEIF.)
1291 */
1292 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1293 so.so_proto = pr;
1294 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1295 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1296 }
1297 }
1298
1299 (void)pfil_run_hooks(if_pfil,
1300 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1301 (void)pfil_head_destroy(ifp->if_pfil);
1302
1303 /* Announce that the interface is gone. */
1304 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1305
1306 IF_AFDATA_LOCK_DESTROY(ifp);
1307
1308 if (if_is_link_state_changeable(ifp)) {
1309 softint_disestablish(ifp->if_link_si);
1310 ifp->if_link_si = NULL;
1311 }
1312
1313 /*
1314 * remove packets that came from ifp, from software interrupt queues.
1315 */
1316 DOMAIN_FOREACH(dp) {
1317 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1318 struct ifqueue *iq = dp->dom_ifqueues[i];
1319 if (iq == NULL)
1320 break;
1321 dp->dom_ifqueues[i] = NULL;
1322 if_detach_queues(ifp, iq);
1323 }
1324 }
1325
1326 /*
1327 * IP queues have to be processed separately: net-queue barrier
1328 * ensures that the packets are dequeued while a cross-call will
1329 * ensure that the interrupts have completed. FIXME: not quite..
1330 */
1331 #ifdef INET
1332 pktq_barrier(ip_pktq);
1333 #endif
1334 #ifdef INET6
1335 if (in6_present)
1336 pktq_barrier(ip6_pktq);
1337 #endif
1338 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1339 xc_wait(xc);
1340
1341 if (ifp->if_percpuq != NULL) {
1342 if_percpuq_destroy(ifp->if_percpuq);
1343 ifp->if_percpuq = NULL;
1344 }
1345
1346 splx(s);
1347
1348 #ifdef IFAREF_DEBUG
1349 if_check_and_free_ifa_list(ifp);
1350 #endif
1351 }
1352
1353 static void
1354 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1355 {
1356 struct mbuf *m, *prev, *next;
1357
1358 prev = NULL;
1359 for (m = q->ifq_head; m != NULL; m = next) {
1360 KASSERT((m->m_flags & M_PKTHDR) != 0);
1361
1362 next = m->m_nextpkt;
1363 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1364 prev = m;
1365 continue;
1366 }
1367
1368 if (prev != NULL)
1369 prev->m_nextpkt = m->m_nextpkt;
1370 else
1371 q->ifq_head = m->m_nextpkt;
1372 if (q->ifq_tail == m)
1373 q->ifq_tail = prev;
1374 q->ifq_len--;
1375
1376 m->m_nextpkt = NULL;
1377 m_freem(m);
1378 IF_DROP(q);
1379 }
1380 }
1381
1382 /*
1383 * Callback for a radix tree walk to delete all references to an
1384 * ifnet.
1385 */
1386 static int
1387 if_rt_walktree(struct rtentry *rt, void *v)
1388 {
1389 struct ifnet *ifp = (struct ifnet *)v;
1390 int error;
1391 struct rtentry *retrt;
1392
1393 if (rt->rt_ifp != ifp)
1394 return 0;
1395
1396 /* Delete the entry. */
1397 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1398 rt_mask(rt), rt->rt_flags, &retrt);
1399 if (error == 0) {
1400 KASSERT(retrt == rt);
1401 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1402 retrt->rt_ifp = NULL;
1403 rtfree(retrt);
1404 } else {
1405 printf("%s: warning: unable to delete rtentry @ %p, "
1406 "error = %d\n", ifp->if_xname, rt, error);
1407 }
1408 return ERESTART;
1409 }
1410
1411 /*
1412 * Create a clone network interface.
1413 */
1414 static int
1415 if_clone_create(const char *name)
1416 {
1417 struct if_clone *ifc;
1418 int unit;
1419 struct ifnet *ifp;
1420 struct psref psref;
1421
1422 ifc = if_clone_lookup(name, &unit);
1423 if (ifc == NULL)
1424 return EINVAL;
1425
1426 ifp = if_get(name, &psref);
1427 if (ifp != NULL) {
1428 if_put(ifp, &psref);
1429 return EEXIST;
1430 }
1431
1432 return (*ifc->ifc_create)(ifc, unit);
1433 }
1434
1435 /*
1436 * Destroy a clone network interface.
1437 */
1438 static int
1439 if_clone_destroy(const char *name)
1440 {
1441 struct if_clone *ifc;
1442 struct ifnet *ifp;
1443 struct psref psref;
1444
1445 ifc = if_clone_lookup(name, NULL);
1446 if (ifc == NULL)
1447 return EINVAL;
1448
1449 if (ifc->ifc_destroy == NULL)
1450 return EOPNOTSUPP;
1451
1452 ifp = if_get(name, &psref);
1453 if (ifp == NULL)
1454 return ENXIO;
1455
1456 /* We have to disable ioctls here */
1457 mutex_enter(ifp->if_ioctl_lock);
1458 ifp->if_ioctl = if_nullioctl;
1459 mutex_exit(ifp->if_ioctl_lock);
1460
1461 /*
1462 * We cannot call ifc_destroy with holding ifp.
1463 * Releasing ifp here is safe thanks to if_clone_mtx.
1464 */
1465 if_put(ifp, &psref);
1466
1467 return (*ifc->ifc_destroy)(ifp);
1468 }
1469
1470 /*
1471 * Look up a network interface cloner.
1472 */
1473 static struct if_clone *
1474 if_clone_lookup(const char *name, int *unitp)
1475 {
1476 struct if_clone *ifc;
1477 const char *cp;
1478 char *dp, ifname[IFNAMSIZ + 3];
1479 int unit;
1480
1481 strcpy(ifname, "if_");
1482 /* separate interface name from unit */
1483 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1484 *cp && (*cp < '0' || *cp > '9');)
1485 *dp++ = *cp++;
1486
1487 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1488 return NULL; /* No name or unit number */
1489 *dp++ = '\0';
1490
1491 again:
1492 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1493 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1494 break;
1495 }
1496
1497 if (ifc == NULL) {
1498 if (*ifname == '\0' ||
1499 module_autoload(ifname, MODULE_CLASS_DRIVER))
1500 return NULL;
1501 *ifname = '\0';
1502 goto again;
1503 }
1504
1505 unit = 0;
1506 while (cp - name < IFNAMSIZ && *cp) {
1507 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1508 /* Bogus unit number. */
1509 return NULL;
1510 }
1511 unit = (unit * 10) + (*cp++ - '0');
1512 }
1513
1514 if (unitp != NULL)
1515 *unitp = unit;
1516 return ifc;
1517 }
1518
1519 /*
1520 * Register a network interface cloner.
1521 */
1522 void
1523 if_clone_attach(struct if_clone *ifc)
1524 {
1525
1526 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1527 if_cloners_count++;
1528 }
1529
1530 /*
1531 * Unregister a network interface cloner.
1532 */
1533 void
1534 if_clone_detach(struct if_clone *ifc)
1535 {
1536
1537 LIST_REMOVE(ifc, ifc_list);
1538 if_cloners_count--;
1539 }
1540
1541 /*
1542 * Provide list of interface cloners to userspace.
1543 */
1544 int
1545 if_clone_list(int buf_count, char *buffer, int *total)
1546 {
1547 char outbuf[IFNAMSIZ], *dst;
1548 struct if_clone *ifc;
1549 int count, error = 0;
1550
1551 *total = if_cloners_count;
1552 if ((dst = buffer) == NULL) {
1553 /* Just asking how many there are. */
1554 return 0;
1555 }
1556
1557 if (buf_count < 0)
1558 return EINVAL;
1559
1560 count = (if_cloners_count < buf_count) ?
1561 if_cloners_count : buf_count;
1562
1563 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1564 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1565 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1566 if (outbuf[sizeof(outbuf) - 1] != '\0')
1567 return ENAMETOOLONG;
1568 error = copyout(outbuf, dst, sizeof(outbuf));
1569 if (error != 0)
1570 break;
1571 }
1572
1573 return error;
1574 }
1575
1576 void
1577 ifa_psref_init(struct ifaddr *ifa)
1578 {
1579
1580 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1581 }
1582
1583 void
1584 ifaref(struct ifaddr *ifa)
1585 {
1586 ifa->ifa_refcnt++;
1587 }
1588
1589 void
1590 ifafree(struct ifaddr *ifa)
1591 {
1592 KASSERT(ifa != NULL);
1593 KASSERT(ifa->ifa_refcnt > 0);
1594
1595 if (--ifa->ifa_refcnt == 0) {
1596 free(ifa, M_IFADDR);
1597 }
1598 }
1599
1600 void
1601 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1602 {
1603
1604 ifa->ifa_ifp = ifp;
1605
1606 IFNET_LOCK();
1607 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1608 IFADDR_ENTRY_INIT(ifa);
1609 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1610 IFNET_UNLOCK();
1611
1612 ifaref(ifa);
1613 }
1614
1615 void
1616 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1617 {
1618
1619 KASSERT(ifa->ifa_ifp == ifp);
1620
1621 IFNET_LOCK();
1622 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1623 IFADDR_WRITER_REMOVE(ifa);
1624 #ifdef NET_MPSAFE
1625 pserialize_perform(ifnet_psz);
1626 #endif
1627 IFNET_UNLOCK();
1628
1629 #ifdef NET_MPSAFE
1630 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1631 #endif
1632 IFADDR_ENTRY_DESTROY(ifa);
1633 ifafree(ifa);
1634 }
1635
1636 void
1637 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1638 {
1639
1640 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1641 }
1642
1643 void
1644 ifa_release(struct ifaddr *ifa, struct psref *psref)
1645 {
1646
1647 if (ifa == NULL)
1648 return;
1649
1650 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1651 }
1652
1653 bool
1654 ifa_held(struct ifaddr *ifa)
1655 {
1656
1657 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1658 }
1659
1660 static inline int
1661 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1662 {
1663 return sockaddr_cmp(sa1, sa2) == 0;
1664 }
1665
1666 /*
1667 * Locate an interface based on a complete address.
1668 */
1669 /*ARGSUSED*/
1670 struct ifaddr *
1671 ifa_ifwithaddr(const struct sockaddr *addr)
1672 {
1673 struct ifnet *ifp;
1674 struct ifaddr *ifa;
1675
1676 IFNET_READER_FOREACH(ifp) {
1677 if (if_is_deactivated(ifp))
1678 continue;
1679 IFADDR_READER_FOREACH(ifa, ifp) {
1680 if (ifa->ifa_addr->sa_family != addr->sa_family)
1681 continue;
1682 if (equal(addr, ifa->ifa_addr))
1683 return ifa;
1684 if ((ifp->if_flags & IFF_BROADCAST) &&
1685 ifa->ifa_broadaddr &&
1686 /* IP6 doesn't have broadcast */
1687 ifa->ifa_broadaddr->sa_len != 0 &&
1688 equal(ifa->ifa_broadaddr, addr))
1689 return ifa;
1690 }
1691 }
1692 return NULL;
1693 }
1694
1695 struct ifaddr *
1696 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1697 {
1698 struct ifaddr *ifa;
1699 int s = pserialize_read_enter();
1700
1701 ifa = ifa_ifwithaddr(addr);
1702 if (ifa != NULL)
1703 ifa_acquire(ifa, psref);
1704 pserialize_read_exit(s);
1705
1706 return ifa;
1707 }
1708
1709 /*
1710 * Locate the point to point interface with a given destination address.
1711 */
1712 /*ARGSUSED*/
1713 struct ifaddr *
1714 ifa_ifwithdstaddr(const struct sockaddr *addr)
1715 {
1716 struct ifnet *ifp;
1717 struct ifaddr *ifa;
1718
1719 IFNET_READER_FOREACH(ifp) {
1720 if (if_is_deactivated(ifp))
1721 continue;
1722 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1723 continue;
1724 IFADDR_READER_FOREACH(ifa, ifp) {
1725 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1726 ifa->ifa_dstaddr == NULL)
1727 continue;
1728 if (equal(addr, ifa->ifa_dstaddr))
1729 return ifa;
1730 }
1731 }
1732
1733 return NULL;
1734 }
1735
1736 struct ifaddr *
1737 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1738 {
1739 struct ifaddr *ifa;
1740 int s;
1741
1742 s = pserialize_read_enter();
1743 ifa = ifa_ifwithdstaddr(addr);
1744 if (ifa != NULL)
1745 ifa_acquire(ifa, psref);
1746 pserialize_read_exit(s);
1747
1748 return ifa;
1749 }
1750
1751 /*
1752 * Find an interface on a specific network. If many, choice
1753 * is most specific found.
1754 */
1755 struct ifaddr *
1756 ifa_ifwithnet(const struct sockaddr *addr)
1757 {
1758 struct ifnet *ifp;
1759 struct ifaddr *ifa, *ifa_maybe = NULL;
1760 const struct sockaddr_dl *sdl;
1761 u_int af = addr->sa_family;
1762 const char *addr_data = addr->sa_data, *cplim;
1763
1764 if (af == AF_LINK) {
1765 sdl = satocsdl(addr);
1766 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1767 ifindex2ifnet[sdl->sdl_index] &&
1768 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1769 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1770 }
1771 }
1772 #ifdef NETATALK
1773 if (af == AF_APPLETALK) {
1774 const struct sockaddr_at *sat, *sat2;
1775 sat = (const struct sockaddr_at *)addr;
1776 IFNET_READER_FOREACH(ifp) {
1777 if (if_is_deactivated(ifp))
1778 continue;
1779 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1780 if (ifa == NULL)
1781 continue;
1782 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1783 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1784 return ifa; /* exact match */
1785 if (ifa_maybe == NULL) {
1786 /* else keep the if with the right range */
1787 ifa_maybe = ifa;
1788 }
1789 }
1790 return ifa_maybe;
1791 }
1792 #endif
1793 IFNET_READER_FOREACH(ifp) {
1794 if (if_is_deactivated(ifp))
1795 continue;
1796 IFADDR_READER_FOREACH(ifa, ifp) {
1797 const char *cp, *cp2, *cp3;
1798
1799 if (ifa->ifa_addr->sa_family != af ||
1800 ifa->ifa_netmask == NULL)
1801 next: continue;
1802 cp = addr_data;
1803 cp2 = ifa->ifa_addr->sa_data;
1804 cp3 = ifa->ifa_netmask->sa_data;
1805 cplim = (const char *)ifa->ifa_netmask +
1806 ifa->ifa_netmask->sa_len;
1807 while (cp3 < cplim) {
1808 if ((*cp++ ^ *cp2++) & *cp3++) {
1809 /* want to continue for() loop */
1810 goto next;
1811 }
1812 }
1813 if (ifa_maybe == NULL ||
1814 rt_refines(ifa->ifa_netmask,
1815 ifa_maybe->ifa_netmask))
1816 ifa_maybe = ifa;
1817 }
1818 }
1819 return ifa_maybe;
1820 }
1821
1822 struct ifaddr *
1823 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
1824 {
1825 struct ifaddr *ifa;
1826 int s;
1827
1828 s = pserialize_read_enter();
1829 ifa = ifa_ifwithnet(addr);
1830 if (ifa != NULL)
1831 ifa_acquire(ifa, psref);
1832 pserialize_read_exit(s);
1833
1834 return ifa;
1835 }
1836
1837 /*
1838 * Find the interface of the addresss.
1839 */
1840 struct ifaddr *
1841 ifa_ifwithladdr(const struct sockaddr *addr)
1842 {
1843 struct ifaddr *ia;
1844
1845 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1846 (ia = ifa_ifwithnet(addr)))
1847 return ia;
1848 return NULL;
1849 }
1850
1851 struct ifaddr *
1852 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
1853 {
1854 struct ifaddr *ifa;
1855 int s;
1856
1857 s = pserialize_read_enter();
1858 ifa = ifa_ifwithladdr(addr);
1859 if (ifa != NULL)
1860 ifa_acquire(ifa, psref);
1861 pserialize_read_exit(s);
1862
1863 return ifa;
1864 }
1865
1866 /*
1867 * Find an interface using a specific address family
1868 */
1869 struct ifaddr *
1870 ifa_ifwithaf(int af)
1871 {
1872 struct ifnet *ifp;
1873 struct ifaddr *ifa = NULL;
1874 int s;
1875
1876 s = pserialize_read_enter();
1877 IFNET_READER_FOREACH(ifp) {
1878 if (if_is_deactivated(ifp))
1879 continue;
1880 IFADDR_READER_FOREACH(ifa, ifp) {
1881 if (ifa->ifa_addr->sa_family == af)
1882 goto out;
1883 }
1884 }
1885 out:
1886 pserialize_read_exit(s);
1887 return ifa;
1888 }
1889
1890 /*
1891 * Find an interface address specific to an interface best matching
1892 * a given address.
1893 */
1894 struct ifaddr *
1895 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1896 {
1897 struct ifaddr *ifa;
1898 const char *cp, *cp2, *cp3;
1899 const char *cplim;
1900 struct ifaddr *ifa_maybe = 0;
1901 u_int af = addr->sa_family;
1902
1903 if (if_is_deactivated(ifp))
1904 return NULL;
1905
1906 if (af >= AF_MAX)
1907 return NULL;
1908
1909 IFADDR_READER_FOREACH(ifa, ifp) {
1910 if (ifa->ifa_addr->sa_family != af)
1911 continue;
1912 ifa_maybe = ifa;
1913 if (ifa->ifa_netmask == NULL) {
1914 if (equal(addr, ifa->ifa_addr) ||
1915 (ifa->ifa_dstaddr &&
1916 equal(addr, ifa->ifa_dstaddr)))
1917 return ifa;
1918 continue;
1919 }
1920 cp = addr->sa_data;
1921 cp2 = ifa->ifa_addr->sa_data;
1922 cp3 = ifa->ifa_netmask->sa_data;
1923 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1924 for (; cp3 < cplim; cp3++) {
1925 if ((*cp++ ^ *cp2++) & *cp3)
1926 break;
1927 }
1928 if (cp3 == cplim)
1929 return ifa;
1930 }
1931 return ifa_maybe;
1932 }
1933
1934 struct ifaddr *
1935 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
1936 struct psref *psref)
1937 {
1938 struct ifaddr *ifa;
1939 int s;
1940
1941 s = pserialize_read_enter();
1942 ifa = ifaof_ifpforaddr(addr, ifp);
1943 if (ifa != NULL)
1944 ifa_acquire(ifa, psref);
1945 pserialize_read_exit(s);
1946
1947 return ifa;
1948 }
1949
1950 /*
1951 * Default action when installing a route with a Link Level gateway.
1952 * Lookup an appropriate real ifa to point to.
1953 * This should be moved to /sys/net/link.c eventually.
1954 */
1955 void
1956 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1957 {
1958 struct ifaddr *ifa;
1959 const struct sockaddr *dst;
1960 struct ifnet *ifp;
1961 struct psref psref;
1962
1963 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1964 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1965 return;
1966 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
1967 rt_replace_ifa(rt, ifa);
1968 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1969 ifa->ifa_rtrequest(cmd, rt, info);
1970 ifa_release(ifa, &psref);
1971 }
1972 }
1973
1974 /*
1975 * bitmask macros to manage a densely packed link_state change queue.
1976 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1977 * LINK_STATE_UP(2) we need 2 bits for each state change.
1978 * As a state change to store is 0, treat all bits set as an unset item.
1979 */
1980 #define LQ_ITEM_BITS 2
1981 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
1982 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1983 #define LINK_STATE_UNSET LQ_ITEM_MASK
1984 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1985 #define LQ_STORE(q, i, v) \
1986 do { \
1987 (q) &= ~LQ_MASK((i)); \
1988 (q) |= (v) << (i) * LQ_ITEM_BITS; \
1989 } while (0 /* CONSTCOND */)
1990 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1991 #define LQ_POP(q, v) \
1992 do { \
1993 (v) = LQ_ITEM((q), 0); \
1994 (q) >>= LQ_ITEM_BITS; \
1995 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
1996 } while (0 /* CONSTCOND */)
1997 #define LQ_PUSH(q, v) \
1998 do { \
1999 (q) >>= LQ_ITEM_BITS; \
2000 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2001 } while (0 /* CONSTCOND */)
2002 #define LQ_FIND_UNSET(q, i) \
2003 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2004 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2005 break; \
2006 }
2007 /*
2008 * Handle a change in the interface link state and
2009 * queue notifications.
2010 */
2011 void
2012 if_link_state_change(struct ifnet *ifp, int link_state)
2013 {
2014 int s, idx;
2015
2016 KASSERTMSG(if_is_link_state_changeable(ifp),
2017 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2018 ifp->if_xname, ifp->if_extflags);
2019
2020 /* Ensure change is to a valid state */
2021 switch (link_state) {
2022 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2023 case LINK_STATE_DOWN: /* FALLTHROUGH */
2024 case LINK_STATE_UP:
2025 break;
2026 default:
2027 #ifdef DEBUG
2028 printf("%s: invalid link state %d\n",
2029 ifp->if_xname, link_state);
2030 #endif
2031 return;
2032 }
2033
2034 s = splnet();
2035
2036 /* Find the last unset event in the queue. */
2037 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2038
2039 /*
2040 * Ensure link_state doesn't match the last event in the queue.
2041 * ifp->if_link_state is not checked and set here because
2042 * that would present an inconsistent picture to the system.
2043 */
2044 if (idx != 0 &&
2045 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2046 goto out;
2047
2048 /* Handle queue overflow. */
2049 if (idx == LQ_MAX(ifp->if_link_queue)) {
2050 uint8_t lost;
2051
2052 /*
2053 * The DOWN state must be protected from being pushed off
2054 * the queue to ensure that userland will always be
2055 * in a sane state.
2056 * Because DOWN is protected, there is no need to protect
2057 * UNKNOWN.
2058 * It should be invalid to change from any other state to
2059 * UNKNOWN anyway ...
2060 */
2061 lost = LQ_ITEM(ifp->if_link_queue, 0);
2062 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2063 if (lost == LINK_STATE_DOWN) {
2064 lost = LQ_ITEM(ifp->if_link_queue, 0);
2065 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2066 }
2067 printf("%s: lost link state change %s\n",
2068 ifp->if_xname,
2069 lost == LINK_STATE_UP ? "UP" :
2070 lost == LINK_STATE_DOWN ? "DOWN" :
2071 "UNKNOWN");
2072 } else
2073 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2074
2075 softint_schedule(ifp->if_link_si);
2076
2077 out:
2078 splx(s);
2079 }
2080
2081 /*
2082 * Handle interface link state change notifications.
2083 * Must be called at splnet().
2084 */
2085 static void
2086 if_link_state_change0(struct ifnet *ifp, int link_state)
2087 {
2088 struct domain *dp;
2089
2090 /* Ensure the change is still valid. */
2091 if (ifp->if_link_state == link_state)
2092 return;
2093
2094 #ifdef DEBUG
2095 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2096 link_state == LINK_STATE_UP ? "UP" :
2097 link_state == LINK_STATE_DOWN ? "DOWN" :
2098 "UNKNOWN",
2099 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2100 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2101 "UNKNOWN");
2102 #endif
2103
2104 /*
2105 * When going from UNKNOWN to UP, we need to mark existing
2106 * addresses as tentative and restart DAD as we may have
2107 * erroneously not found a duplicate.
2108 *
2109 * This needs to happen before rt_ifmsg to avoid a race where
2110 * listeners would have an address and expect it to work right
2111 * away.
2112 */
2113 if (link_state == LINK_STATE_UP &&
2114 ifp->if_link_state == LINK_STATE_UNKNOWN)
2115 {
2116 DOMAIN_FOREACH(dp) {
2117 if (dp->dom_if_link_state_change != NULL)
2118 dp->dom_if_link_state_change(ifp,
2119 LINK_STATE_DOWN);
2120 }
2121 }
2122
2123 ifp->if_link_state = link_state;
2124
2125 /* Notify that the link state has changed. */
2126 rt_ifmsg(ifp);
2127
2128 #if NCARP > 0
2129 if (ifp->if_carp)
2130 carp_carpdev_state(ifp);
2131 #endif
2132
2133 DOMAIN_FOREACH(dp) {
2134 if (dp->dom_if_link_state_change != NULL)
2135 dp->dom_if_link_state_change(ifp, link_state);
2136 }
2137 }
2138
2139 /*
2140 * Process the interface link state change queue.
2141 */
2142 static void
2143 if_link_state_change_si(void *arg)
2144 {
2145 struct ifnet *ifp = arg;
2146 int s;
2147 uint8_t state;
2148
2149 s = splnet();
2150
2151 /* Pop a link state change from the queue and process it. */
2152 LQ_POP(ifp->if_link_queue, state);
2153 if_link_state_change0(ifp, state);
2154
2155 /* If there is a link state change to come, schedule it. */
2156 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2157 softint_schedule(ifp->if_link_si);
2158
2159 splx(s);
2160 }
2161
2162 /*
2163 * Default action when installing a local route on a point-to-point
2164 * interface.
2165 */
2166 void
2167 p2p_rtrequest(int req, struct rtentry *rt,
2168 __unused const struct rt_addrinfo *info)
2169 {
2170 struct ifnet *ifp = rt->rt_ifp;
2171 struct ifaddr *ifa, *lo0ifa;
2172 int s = pserialize_read_enter();
2173
2174 switch (req) {
2175 case RTM_ADD:
2176 if ((rt->rt_flags & RTF_LOCAL) == 0)
2177 break;
2178
2179 rt->rt_ifp = lo0ifp;
2180
2181 IFADDR_READER_FOREACH(ifa, ifp) {
2182 if (equal(rt_getkey(rt), ifa->ifa_addr))
2183 break;
2184 }
2185 if (ifa == NULL)
2186 break;
2187
2188 /*
2189 * Ensure lo0 has an address of the same family.
2190 */
2191 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2192 if (lo0ifa->ifa_addr->sa_family ==
2193 ifa->ifa_addr->sa_family)
2194 break;
2195 }
2196 if (lo0ifa == NULL)
2197 break;
2198
2199 /*
2200 * Make sure to set rt->rt_ifa to the interface
2201 * address we are using, otherwise we will have trouble
2202 * with source address selection.
2203 */
2204 if (ifa != rt->rt_ifa)
2205 rt_replace_ifa(rt, ifa);
2206 break;
2207 case RTM_DELETE:
2208 default:
2209 break;
2210 }
2211 pserialize_read_exit(s);
2212 }
2213
2214 /*
2215 * Mark an interface down and notify protocols of
2216 * the transition.
2217 * NOTE: must be called at splsoftnet or equivalent.
2218 */
2219 void
2220 if_down(struct ifnet *ifp)
2221 {
2222 struct ifaddr *ifa;
2223 struct domain *dp;
2224 int s, bound;
2225 struct psref psref;
2226
2227 ifp->if_flags &= ~IFF_UP;
2228 nanotime(&ifp->if_lastchange);
2229
2230 bound = curlwp_bind();
2231 s = pserialize_read_enter();
2232 IFADDR_READER_FOREACH(ifa, ifp) {
2233 ifa_acquire(ifa, &psref);
2234 pserialize_read_exit(s);
2235
2236 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2237
2238 s = pserialize_read_enter();
2239 ifa_release(ifa, &psref);
2240 }
2241 pserialize_read_exit(s);
2242 curlwp_bindx(bound);
2243
2244 IFQ_PURGE(&ifp->if_snd);
2245 #if NCARP > 0
2246 if (ifp->if_carp)
2247 carp_carpdev_state(ifp);
2248 #endif
2249 rt_ifmsg(ifp);
2250 DOMAIN_FOREACH(dp) {
2251 if (dp->dom_if_down)
2252 dp->dom_if_down(ifp);
2253 }
2254 }
2255
2256 /*
2257 * Mark an interface up and notify protocols of
2258 * the transition.
2259 * NOTE: must be called at splsoftnet or equivalent.
2260 */
2261 void
2262 if_up(struct ifnet *ifp)
2263 {
2264 #ifdef notyet
2265 struct ifaddr *ifa;
2266 #endif
2267 struct domain *dp;
2268
2269 ifp->if_flags |= IFF_UP;
2270 nanotime(&ifp->if_lastchange);
2271 #ifdef notyet
2272 /* this has no effect on IP, and will kill all ISO connections XXX */
2273 IFADDR_READER_FOREACH(ifa, ifp)
2274 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2275 #endif
2276 #if NCARP > 0
2277 if (ifp->if_carp)
2278 carp_carpdev_state(ifp);
2279 #endif
2280 rt_ifmsg(ifp);
2281 DOMAIN_FOREACH(dp) {
2282 if (dp->dom_if_up)
2283 dp->dom_if_up(ifp);
2284 }
2285 }
2286
2287 /*
2288 * Handle interface slowtimo timer routine. Called
2289 * from softclock, we decrement timer (if set) and
2290 * call the appropriate interface routine on expiration.
2291 */
2292 static void
2293 if_slowtimo(void *arg)
2294 {
2295 void (*slowtimo)(struct ifnet *);
2296 struct ifnet *ifp = arg;
2297 int s;
2298
2299 slowtimo = ifp->if_slowtimo;
2300 if (__predict_false(slowtimo == NULL))
2301 return;
2302
2303 s = splnet();
2304 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2305 (*slowtimo)(ifp);
2306
2307 splx(s);
2308
2309 if (__predict_true(ifp->if_slowtimo != NULL))
2310 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2311 }
2312
2313 /*
2314 * Set/clear promiscuous mode on interface ifp based on the truth value
2315 * of pswitch. The calls are reference counted so that only the first
2316 * "on" request actually has an effect, as does the final "off" request.
2317 * Results are undefined if the "off" and "on" requests are not matched.
2318 */
2319 int
2320 ifpromisc(struct ifnet *ifp, int pswitch)
2321 {
2322 int pcount, ret;
2323 short nflags;
2324
2325 pcount = ifp->if_pcount;
2326 if (pswitch) {
2327 /*
2328 * Allow the device to be "placed" into promiscuous
2329 * mode even if it is not configured up. It will
2330 * consult IFF_PROMISC when it is brought up.
2331 */
2332 if (ifp->if_pcount++ != 0)
2333 return 0;
2334 nflags = ifp->if_flags | IFF_PROMISC;
2335 } else {
2336 if (--ifp->if_pcount > 0)
2337 return 0;
2338 nflags = ifp->if_flags & ~IFF_PROMISC;
2339 }
2340 ret = if_flags_set(ifp, nflags);
2341 /* Restore interface state if not successful. */
2342 if (ret != 0) {
2343 ifp->if_pcount = pcount;
2344 }
2345 return ret;
2346 }
2347
2348 /*
2349 * Map interface name to
2350 * interface structure pointer.
2351 */
2352 struct ifnet *
2353 ifunit(const char *name)
2354 {
2355 struct ifnet *ifp;
2356 const char *cp = name;
2357 u_int unit = 0;
2358 u_int i;
2359 int s;
2360
2361 /*
2362 * If the entire name is a number, treat it as an ifindex.
2363 */
2364 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2365 unit = unit * 10 + (*cp - '0');
2366 }
2367
2368 /*
2369 * If the number took all of the name, then it's a valid ifindex.
2370 */
2371 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2372 if (unit >= if_indexlim)
2373 return NULL;
2374 ifp = ifindex2ifnet[unit];
2375 if (ifp == NULL || if_is_deactivated(ifp))
2376 return NULL;
2377 return ifp;
2378 }
2379
2380 ifp = NULL;
2381 s = pserialize_read_enter();
2382 IFNET_READER_FOREACH(ifp) {
2383 if (if_is_deactivated(ifp))
2384 continue;
2385 if (strcmp(ifp->if_xname, name) == 0)
2386 goto out;
2387 }
2388 out:
2389 pserialize_read_exit(s);
2390 return ifp;
2391 }
2392
2393 /*
2394 * Get a reference of an ifnet object by an interface name.
2395 * The returned reference is protected by psref(9). The caller
2396 * must release a returned reference by if_put after use.
2397 */
2398 struct ifnet *
2399 if_get(const char *name, struct psref *psref)
2400 {
2401 struct ifnet *ifp;
2402 const char *cp = name;
2403 u_int unit = 0;
2404 u_int i;
2405 int s;
2406
2407 /*
2408 * If the entire name is a number, treat it as an ifindex.
2409 */
2410 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2411 unit = unit * 10 + (*cp - '0');
2412 }
2413
2414 /*
2415 * If the number took all of the name, then it's a valid ifindex.
2416 */
2417 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2418 if (unit >= if_indexlim)
2419 return NULL;
2420 ifp = ifindex2ifnet[unit];
2421 if (ifp == NULL || if_is_deactivated(ifp))
2422 return NULL;
2423 return ifp;
2424 }
2425
2426 ifp = NULL;
2427 s = pserialize_read_enter();
2428 IFNET_READER_FOREACH(ifp) {
2429 if (if_is_deactivated(ifp))
2430 continue;
2431 if (strcmp(ifp->if_xname, name) == 0) {
2432 psref_acquire(psref, &ifp->if_psref,
2433 ifnet_psref_class);
2434 goto out;
2435 }
2436 }
2437 out:
2438 pserialize_read_exit(s);
2439 return ifp;
2440 }
2441
2442 /*
2443 * Release a reference of an ifnet object given by if_get or
2444 * if_get_byindex.
2445 */
2446 void
2447 if_put(const struct ifnet *ifp, struct psref *psref)
2448 {
2449
2450 if (ifp == NULL)
2451 return;
2452
2453 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2454 }
2455
2456 ifnet_t *
2457 if_byindex(u_int idx)
2458 {
2459 ifnet_t *ifp;
2460
2461 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2462 if (ifp != NULL && if_is_deactivated(ifp))
2463 ifp = NULL;
2464 return ifp;
2465 }
2466
2467 /*
2468 * Get a reference of an ifnet object by an interface index.
2469 * The returned reference is protected by psref(9). The caller
2470 * must release a returned reference by if_put after use.
2471 */
2472 ifnet_t *
2473 if_get_byindex(u_int idx, struct psref *psref)
2474 {
2475 ifnet_t *ifp;
2476 int s;
2477
2478 s = pserialize_read_enter();
2479 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2480 if (ifp != NULL && if_is_deactivated(ifp))
2481 ifp = NULL;
2482 if (__predict_true(ifp != NULL))
2483 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2484 pserialize_read_exit(s);
2485
2486 return ifp;
2487 }
2488
2489 /*
2490 * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2491 * for example the ifp is already held or some other object is held which
2492 * guarantes the ifp to not be freed indirectly.
2493 */
2494 void
2495 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2496 {
2497
2498 KASSERT(ifp->if_index != 0);
2499 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2500 }
2501
2502 bool
2503 if_held(struct ifnet *ifp)
2504 {
2505
2506 return psref_held(&ifp->if_psref, ifnet_psref_class);
2507 }
2508
2509
2510 /* common */
2511 int
2512 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2513 {
2514 int s;
2515 struct ifreq *ifr;
2516 struct ifcapreq *ifcr;
2517 struct ifdatareq *ifdr;
2518
2519 switch (cmd) {
2520 case SIOCSIFCAP:
2521 ifcr = data;
2522 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2523 return EINVAL;
2524
2525 if (ifcr->ifcr_capenable == ifp->if_capenable)
2526 return 0;
2527
2528 ifp->if_capenable = ifcr->ifcr_capenable;
2529
2530 /* Pre-compute the checksum flags mask. */
2531 ifp->if_csum_flags_tx = 0;
2532 ifp->if_csum_flags_rx = 0;
2533 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2534 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2535 }
2536 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2537 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2538 }
2539
2540 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2541 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2542 }
2543 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2544 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2545 }
2546
2547 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2548 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2549 }
2550 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2551 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2552 }
2553
2554 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2555 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2556 }
2557 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2558 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2559 }
2560
2561 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2562 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2563 }
2564 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2565 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2566 }
2567 if (ifp->if_flags & IFF_UP)
2568 return ENETRESET;
2569 return 0;
2570 case SIOCSIFFLAGS:
2571 ifr = data;
2572 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2573 s = splnet();
2574 if_down(ifp);
2575 splx(s);
2576 }
2577 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2578 s = splnet();
2579 if_up(ifp);
2580 splx(s);
2581 }
2582 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2583 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2584 break;
2585 case SIOCGIFFLAGS:
2586 ifr = data;
2587 ifr->ifr_flags = ifp->if_flags;
2588 break;
2589
2590 case SIOCGIFMETRIC:
2591 ifr = data;
2592 ifr->ifr_metric = ifp->if_metric;
2593 break;
2594
2595 case SIOCGIFMTU:
2596 ifr = data;
2597 ifr->ifr_mtu = ifp->if_mtu;
2598 break;
2599
2600 case SIOCGIFDLT:
2601 ifr = data;
2602 ifr->ifr_dlt = ifp->if_dlt;
2603 break;
2604
2605 case SIOCGIFCAP:
2606 ifcr = data;
2607 ifcr->ifcr_capabilities = ifp->if_capabilities;
2608 ifcr->ifcr_capenable = ifp->if_capenable;
2609 break;
2610
2611 case SIOCSIFMETRIC:
2612 ifr = data;
2613 ifp->if_metric = ifr->ifr_metric;
2614 break;
2615
2616 case SIOCGIFDATA:
2617 ifdr = data;
2618 ifdr->ifdr_data = ifp->if_data;
2619 break;
2620
2621 case SIOCGIFINDEX:
2622 ifr = data;
2623 ifr->ifr_index = ifp->if_index;
2624 break;
2625
2626 case SIOCZIFDATA:
2627 ifdr = data;
2628 ifdr->ifdr_data = ifp->if_data;
2629 /*
2630 * Assumes that the volatile counters that can be
2631 * zero'ed are at the end of if_data.
2632 */
2633 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2634 offsetof(struct if_data, ifi_ipackets));
2635 /*
2636 * The memset() clears to the bottm of if_data. In the area,
2637 * if_lastchange is included. Please be careful if new entry
2638 * will be added into if_data or rewite this.
2639 *
2640 * And also, update if_lastchnage.
2641 */
2642 getnanotime(&ifp->if_lastchange);
2643 break;
2644 case SIOCSIFMTU:
2645 ifr = data;
2646 if (ifp->if_mtu == ifr->ifr_mtu)
2647 break;
2648 ifp->if_mtu = ifr->ifr_mtu;
2649 /*
2650 * If the link MTU changed, do network layer specific procedure.
2651 */
2652 #ifdef INET6
2653 if (in6_present)
2654 nd6_setmtu(ifp);
2655 #endif
2656 return ENETRESET;
2657 default:
2658 return ENOTTY;
2659 }
2660 return 0;
2661 }
2662
2663 int
2664 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2665 {
2666 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2667 struct ifaddr *ifa;
2668 const struct sockaddr *any, *sa;
2669 union {
2670 struct sockaddr sa;
2671 struct sockaddr_storage ss;
2672 } u, v;
2673 int s, error = 0;
2674
2675 switch (cmd) {
2676 case SIOCSIFADDRPREF:
2677 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2678 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2679 NULL) != 0)
2680 return EPERM;
2681 case SIOCGIFADDRPREF:
2682 break;
2683 default:
2684 return EOPNOTSUPP;
2685 }
2686
2687 /* sanity checks */
2688 if (data == NULL || ifp == NULL) {
2689 panic("invalid argument to %s", __func__);
2690 /*NOTREACHED*/
2691 }
2692
2693 /* address must be specified on ADD and DELETE */
2694 sa = sstocsa(&ifap->ifap_addr);
2695 if (sa->sa_family != sofamily(so))
2696 return EINVAL;
2697 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2698 return EINVAL;
2699
2700 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2701
2702 s = pserialize_read_enter();
2703 IFADDR_READER_FOREACH(ifa, ifp) {
2704 if (ifa->ifa_addr->sa_family != sa->sa_family)
2705 continue;
2706 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2707 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2708 break;
2709 }
2710 if (ifa == NULL) {
2711 error = EADDRNOTAVAIL;
2712 goto out;
2713 }
2714
2715 switch (cmd) {
2716 case SIOCSIFADDRPREF:
2717 ifa->ifa_preference = ifap->ifap_preference;
2718 goto out;
2719 case SIOCGIFADDRPREF:
2720 /* fill in the if_laddrreq structure */
2721 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2722 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2723 ifap->ifap_preference = ifa->ifa_preference;
2724 goto out;
2725 default:
2726 error = EOPNOTSUPP;
2727 }
2728 out:
2729 pserialize_read_exit(s);
2730 return error;
2731 }
2732
2733 /*
2734 * Interface ioctls.
2735 */
2736 static int
2737 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2738 {
2739 struct ifnet *ifp;
2740 struct ifreq *ifr;
2741 int error = 0;
2742 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2743 u_long ocmd = cmd;
2744 #endif
2745 short oif_flags;
2746 #ifdef COMPAT_OIFREQ
2747 struct ifreq ifrb;
2748 struct oifreq *oifr = NULL;
2749 #endif
2750 int r;
2751 struct psref psref;
2752 int bound;
2753
2754 switch (cmd) {
2755 #ifdef COMPAT_OIFREQ
2756 case OSIOCGIFCONF:
2757 case OOSIOCGIFCONF:
2758 return compat_ifconf(cmd, data);
2759 #endif
2760 #ifdef COMPAT_OIFDATA
2761 case OSIOCGIFDATA:
2762 case OSIOCZIFDATA:
2763 return compat_ifdatareq(l, cmd, data);
2764 #endif
2765 case SIOCGIFCONF:
2766 return ifconf(cmd, data);
2767 case SIOCINITIFADDR:
2768 return EPERM;
2769 }
2770
2771 #ifdef COMPAT_OIFREQ
2772 cmd = compat_cvtcmd(cmd);
2773 if (cmd != ocmd) {
2774 oifr = data;
2775 data = ifr = &ifrb;
2776 ifreqo2n(oifr, ifr);
2777 } else
2778 #endif
2779 ifr = data;
2780
2781 switch (cmd) {
2782 case SIOCIFCREATE:
2783 case SIOCIFDESTROY:
2784 bound = curlwp_bind();
2785 if (l != NULL) {
2786 ifp = if_get(ifr->ifr_name, &psref);
2787 error = kauth_authorize_network(l->l_cred,
2788 KAUTH_NETWORK_INTERFACE,
2789 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2790 (void *)cmd, NULL);
2791 if (ifp != NULL)
2792 if_put(ifp, &psref);
2793 if (error != 0) {
2794 curlwp_bindx(bound);
2795 return error;
2796 }
2797 }
2798 mutex_enter(&if_clone_mtx);
2799 r = (cmd == SIOCIFCREATE) ?
2800 if_clone_create(ifr->ifr_name) :
2801 if_clone_destroy(ifr->ifr_name);
2802 mutex_exit(&if_clone_mtx);
2803 curlwp_bindx(bound);
2804 return r;
2805
2806 case SIOCIFGCLONERS:
2807 {
2808 struct if_clonereq *req = (struct if_clonereq *)data;
2809 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2810 &req->ifcr_total);
2811 }
2812 }
2813
2814 bound = curlwp_bind();
2815 ifp = if_get(ifr->ifr_name, &psref);
2816 if (ifp == NULL) {
2817 curlwp_bindx(bound);
2818 return ENXIO;
2819 }
2820
2821 switch (cmd) {
2822 case SIOCALIFADDR:
2823 case SIOCDLIFADDR:
2824 case SIOCSIFADDRPREF:
2825 case SIOCSIFFLAGS:
2826 case SIOCSIFCAP:
2827 case SIOCSIFMETRIC:
2828 case SIOCZIFDATA:
2829 case SIOCSIFMTU:
2830 case SIOCSIFPHYADDR:
2831 case SIOCDIFPHYADDR:
2832 #ifdef INET6
2833 case SIOCSIFPHYADDR_IN6:
2834 #endif
2835 case SIOCSLIFPHYADDR:
2836 case SIOCADDMULTI:
2837 case SIOCDELMULTI:
2838 case SIOCSIFMEDIA:
2839 case SIOCSDRVSPEC:
2840 case SIOCG80211:
2841 case SIOCS80211:
2842 case SIOCS80211NWID:
2843 case SIOCS80211NWKEY:
2844 case SIOCS80211POWER:
2845 case SIOCS80211BSSID:
2846 case SIOCS80211CHANNEL:
2847 case SIOCSLINKSTR:
2848 if (l != NULL) {
2849 error = kauth_authorize_network(l->l_cred,
2850 KAUTH_NETWORK_INTERFACE,
2851 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2852 (void *)cmd, NULL);
2853 if (error != 0)
2854 goto out;
2855 }
2856 }
2857
2858 oif_flags = ifp->if_flags;
2859
2860 mutex_enter(ifp->if_ioctl_lock);
2861
2862 error = (*ifp->if_ioctl)(ifp, cmd, data);
2863 if (error != ENOTTY)
2864 ;
2865 else if (so->so_proto == NULL)
2866 error = EOPNOTSUPP;
2867 else {
2868 #ifdef COMPAT_OSOCK
2869 error = compat_ifioctl(so, ocmd, cmd, data, l);
2870 #else
2871 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2872 cmd, data, ifp);
2873 #endif
2874 }
2875
2876 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2877 if ((ifp->if_flags & IFF_UP) != 0) {
2878 int s = splnet();
2879 if_up(ifp);
2880 splx(s);
2881 }
2882 }
2883 #ifdef COMPAT_OIFREQ
2884 if (cmd != ocmd)
2885 ifreqn2o(oifr, ifr);
2886 #endif
2887
2888 mutex_exit(ifp->if_ioctl_lock);
2889 out:
2890 if_put(ifp, &psref);
2891 curlwp_bindx(bound);
2892 return error;
2893 }
2894
2895 /*
2896 * Return interface configuration
2897 * of system. List may be used
2898 * in later ioctl's (above) to get
2899 * other information.
2900 *
2901 * Each record is a struct ifreq. Before the addition of
2902 * sockaddr_storage, the API rule was that sockaddr flavors that did
2903 * not fit would extend beyond the struct ifreq, with the next struct
2904 * ifreq starting sa_len beyond the struct sockaddr. Because the
2905 * union in struct ifreq includes struct sockaddr_storage, every kind
2906 * of sockaddr must fit. Thus, there are no longer any overlength
2907 * records.
2908 *
2909 * Records are added to the user buffer if they fit, and ifc_len is
2910 * adjusted to the length that was written. Thus, the user is only
2911 * assured of getting the complete list if ifc_len on return is at
2912 * least sizeof(struct ifreq) less than it was on entry.
2913 *
2914 * If the user buffer pointer is NULL, this routine copies no data and
2915 * returns the amount of space that would be needed.
2916 *
2917 * Invariants:
2918 * ifrp points to the next part of the user's buffer to be used. If
2919 * ifrp != NULL, space holds the number of bytes remaining that we may
2920 * write at ifrp. Otherwise, space holds the number of bytes that
2921 * would have been written had there been adequate space.
2922 */
2923 /*ARGSUSED*/
2924 static int
2925 ifconf(u_long cmd, void *data)
2926 {
2927 struct ifconf *ifc = (struct ifconf *)data;
2928 struct ifnet *ifp;
2929 struct ifaddr *ifa;
2930 struct ifreq ifr, *ifrp = NULL;
2931 int space = 0, error = 0;
2932 const int sz = (int)sizeof(struct ifreq);
2933 const bool docopy = ifc->ifc_req != NULL;
2934 int s;
2935 int bound;
2936 struct psref psref;
2937
2938 if (docopy) {
2939 space = ifc->ifc_len;
2940 ifrp = ifc->ifc_req;
2941 }
2942
2943 bound = curlwp_bind();
2944 s = pserialize_read_enter();
2945 IFNET_READER_FOREACH(ifp) {
2946 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2947 pserialize_read_exit(s);
2948
2949 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2950 sizeof(ifr.ifr_name));
2951 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2952 error = ENAMETOOLONG;
2953 goto release_exit;
2954 }
2955 if (IFADDR_READER_EMPTY(ifp)) {
2956 /* Interface with no addresses - send zero sockaddr. */
2957 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2958 if (!docopy) {
2959 space += sz;
2960 continue;
2961 }
2962 if (space >= sz) {
2963 error = copyout(&ifr, ifrp, sz);
2964 if (error != 0)
2965 goto release_exit;
2966 ifrp++;
2967 space -= sz;
2968 }
2969 }
2970
2971 IFADDR_READER_FOREACH(ifa, ifp) {
2972 struct sockaddr *sa = ifa->ifa_addr;
2973 /* all sockaddrs must fit in sockaddr_storage */
2974 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2975
2976 if (!docopy) {
2977 space += sz;
2978 continue;
2979 }
2980 memcpy(&ifr.ifr_space, sa, sa->sa_len);
2981 if (space >= sz) {
2982 error = copyout(&ifr, ifrp, sz);
2983 if (error != 0)
2984 goto release_exit;
2985 ifrp++; space -= sz;
2986 }
2987 }
2988
2989 s = pserialize_read_enter();
2990 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2991 }
2992 pserialize_read_exit(s);
2993 curlwp_bindx(bound);
2994
2995 if (docopy) {
2996 KASSERT(0 <= space && space <= ifc->ifc_len);
2997 ifc->ifc_len -= space;
2998 } else {
2999 KASSERT(space >= 0);
3000 ifc->ifc_len = space;
3001 }
3002 return (0);
3003
3004 release_exit:
3005 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3006 curlwp_bindx(bound);
3007 return error;
3008 }
3009
3010 int
3011 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3012 {
3013 uint8_t len;
3014 #ifdef COMPAT_OIFREQ
3015 struct ifreq ifrb;
3016 struct oifreq *oifr = NULL;
3017 u_long ocmd = cmd;
3018 cmd = compat_cvtcmd(cmd);
3019 if (cmd != ocmd) {
3020 oifr = (struct oifreq *)(void *)ifr;
3021 ifr = &ifrb;
3022 ifreqo2n(oifr, ifr);
3023 len = sizeof(oifr->ifr_addr);
3024 } else
3025 #endif
3026 len = sizeof(ifr->ifr_ifru.ifru_space);
3027
3028 if (len < sa->sa_len)
3029 return EFBIG;
3030
3031 memset(&ifr->ifr_addr, 0, len);
3032 sockaddr_copy(&ifr->ifr_addr, len, sa);
3033
3034 #ifdef COMPAT_OIFREQ
3035 if (cmd != ocmd)
3036 ifreqn2o(oifr, ifr);
3037 #endif
3038 return 0;
3039 }
3040
3041 /*
3042 * wrapper function for the drivers which doesn't have if_transmit().
3043 */
3044 static int
3045 if_transmit(struct ifnet *ifp, struct mbuf *m)
3046 {
3047 int s, error;
3048
3049 s = splnet();
3050
3051 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3052 if (error != 0) {
3053 /* mbuf is already freed */
3054 goto out;
3055 }
3056
3057 ifp->if_obytes += m->m_pkthdr.len;;
3058 if (m->m_flags & M_MCAST)
3059 ifp->if_omcasts++;
3060
3061 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3062 if_start_lock(ifp);
3063 out:
3064 splx(s);
3065
3066 return error;
3067 }
3068
3069 int
3070 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3071 {
3072 int error;
3073
3074 #ifdef ALTQ
3075 KERNEL_LOCK(1, NULL);
3076 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3077 error = if_transmit(ifp, m);
3078 KERNEL_UNLOCK_ONE(NULL);
3079 } else {
3080 KERNEL_UNLOCK_ONE(NULL);
3081 error = (*ifp->if_transmit)(ifp, m);
3082 }
3083 #else /* !ALTQ */
3084 error = (*ifp->if_transmit)(ifp, m);
3085 #endif /* !ALTQ */
3086
3087 return error;
3088 }
3089
3090 /*
3091 * Queue message on interface, and start output if interface
3092 * not yet active.
3093 */
3094 int
3095 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3096 {
3097
3098 return if_transmit_lock(ifp, m);
3099 }
3100
3101 /*
3102 * Queue message on interface, possibly using a second fast queue
3103 */
3104 int
3105 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3106 {
3107 int error = 0;
3108
3109 if (ifq != NULL
3110 #ifdef ALTQ
3111 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3112 #endif
3113 ) {
3114 if (IF_QFULL(ifq)) {
3115 IF_DROP(&ifp->if_snd);
3116 m_freem(m);
3117 if (error == 0)
3118 error = ENOBUFS;
3119 } else
3120 IF_ENQUEUE(ifq, m);
3121 } else
3122 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3123 if (error != 0) {
3124 ++ifp->if_oerrors;
3125 return error;
3126 }
3127 return 0;
3128 }
3129
3130 int
3131 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3132 {
3133 int rc;
3134
3135 if (ifp->if_initaddr != NULL)
3136 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3137 else if (src ||
3138 /* FIXME: may not hold if_ioctl_lock */
3139 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3140 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3141
3142 return rc;
3143 }
3144
3145 int
3146 if_do_dad(struct ifnet *ifp)
3147 {
3148 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3149 return 0;
3150
3151 switch (ifp->if_type) {
3152 case IFT_FAITH:
3153 /*
3154 * These interfaces do not have the IFF_LOOPBACK flag,
3155 * but loop packets back. We do not have to do DAD on such
3156 * interfaces. We should even omit it, because loop-backed
3157 * responses would confuse the DAD procedure.
3158 */
3159 return 0;
3160 default:
3161 /*
3162 * Our DAD routine requires the interface up and running.
3163 * However, some interfaces can be up before the RUNNING
3164 * status. Additionaly, users may try to assign addresses
3165 * before the interface becomes up (or running).
3166 * We simply skip DAD in such a case as a work around.
3167 * XXX: we should rather mark "tentative" on such addresses,
3168 * and do DAD after the interface becomes ready.
3169 */
3170 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3171 (IFF_UP|IFF_RUNNING))
3172 return 0;
3173
3174 return 1;
3175 }
3176 }
3177
3178 int
3179 if_flags_set(ifnet_t *ifp, const short flags)
3180 {
3181 int rc;
3182
3183 if (ifp->if_setflags != NULL)
3184 rc = (*ifp->if_setflags)(ifp, flags);
3185 else {
3186 short cantflags, chgdflags;
3187 struct ifreq ifr;
3188
3189 chgdflags = ifp->if_flags ^ flags;
3190 cantflags = chgdflags & IFF_CANTCHANGE;
3191
3192 if (cantflags != 0)
3193 ifp->if_flags ^= cantflags;
3194
3195 /* Traditionally, we do not call if_ioctl after
3196 * setting/clearing only IFF_PROMISC if the interface
3197 * isn't IFF_UP. Uphold that tradition.
3198 */
3199 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3200 return 0;
3201
3202 memset(&ifr, 0, sizeof(ifr));
3203
3204 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3205 /* FIXME: may not hold if_ioctl_lock */
3206 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3207
3208 if (rc != 0 && cantflags != 0)
3209 ifp->if_flags ^= cantflags;
3210 }
3211
3212 return rc;
3213 }
3214
3215 int
3216 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3217 {
3218 int rc;
3219 struct ifreq ifr;
3220
3221 if (ifp->if_mcastop != NULL)
3222 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3223 else {
3224 ifreq_setaddr(cmd, &ifr, sa);
3225 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3226 }
3227
3228 return rc;
3229 }
3230
3231 static void
3232 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3233 struct ifaltq *ifq)
3234 {
3235 const struct sysctlnode *cnode, *rnode;
3236
3237 if (sysctl_createv(clog, 0, NULL, &rnode,
3238 CTLFLAG_PERMANENT,
3239 CTLTYPE_NODE, "interfaces",
3240 SYSCTL_DESCR("Per-interface controls"),
3241 NULL, 0, NULL, 0,
3242 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3243 goto bad;
3244
3245 if (sysctl_createv(clog, 0, &rnode, &rnode,
3246 CTLFLAG_PERMANENT,
3247 CTLTYPE_NODE, ifname,
3248 SYSCTL_DESCR("Interface controls"),
3249 NULL, 0, NULL, 0,
3250 CTL_CREATE, CTL_EOL) != 0)
3251 goto bad;
3252
3253 if (sysctl_createv(clog, 0, &rnode, &rnode,
3254 CTLFLAG_PERMANENT,
3255 CTLTYPE_NODE, "sndq",
3256 SYSCTL_DESCR("Interface output queue controls"),
3257 NULL, 0, NULL, 0,
3258 CTL_CREATE, CTL_EOL) != 0)
3259 goto bad;
3260
3261 if (sysctl_createv(clog, 0, &rnode, &cnode,
3262 CTLFLAG_PERMANENT,
3263 CTLTYPE_INT, "len",
3264 SYSCTL_DESCR("Current output queue length"),
3265 NULL, 0, &ifq->ifq_len, 0,
3266 CTL_CREATE, CTL_EOL) != 0)
3267 goto bad;
3268
3269 if (sysctl_createv(clog, 0, &rnode, &cnode,
3270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3271 CTLTYPE_INT, "maxlen",
3272 SYSCTL_DESCR("Maximum allowed output queue length"),
3273 NULL, 0, &ifq->ifq_maxlen, 0,
3274 CTL_CREATE, CTL_EOL) != 0)
3275 goto bad;
3276
3277 if (sysctl_createv(clog, 0, &rnode, &cnode,
3278 CTLFLAG_PERMANENT,
3279 CTLTYPE_INT, "drops",
3280 SYSCTL_DESCR("Packets dropped due to full output queue"),
3281 NULL, 0, &ifq->ifq_drops, 0,
3282 CTL_CREATE, CTL_EOL) != 0)
3283 goto bad;
3284
3285 return;
3286 bad:
3287 printf("%s: could not attach sysctl nodes\n", ifname);
3288 return;
3289 }
3290
3291 #if defined(INET) || defined(INET6)
3292
3293 #define SYSCTL_NET_PKTQ(q, cn, c) \
3294 static int \
3295 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3296 { \
3297 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3298 }
3299
3300 #if defined(INET)
3301 static int
3302 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3303 {
3304 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3305 }
3306 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3307 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3308 #endif
3309
3310 #if defined(INET6)
3311 static int
3312 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3313 {
3314 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3315 }
3316 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3317 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3318 #endif
3319
3320 static void
3321 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3322 {
3323 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3324 const char *pfname = NULL, *ipname = NULL;
3325 int ipn = 0, qid = 0;
3326
3327 switch (pf) {
3328 #if defined(INET)
3329 case PF_INET:
3330 len_func = sysctl_net_ip_pktq_items;
3331 maxlen_func = sysctl_net_ip_pktq_maxlen;
3332 drops_func = sysctl_net_ip_pktq_drops;
3333 pfname = "inet", ipn = IPPROTO_IP;
3334 ipname = "ip", qid = IPCTL_IFQ;
3335 break;
3336 #endif
3337 #if defined(INET6)
3338 case PF_INET6:
3339 len_func = sysctl_net_ip6_pktq_items;
3340 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3341 drops_func = sysctl_net_ip6_pktq_drops;
3342 pfname = "inet6", ipn = IPPROTO_IPV6;
3343 ipname = "ip6", qid = IPV6CTL_IFQ;
3344 break;
3345 #endif
3346 default:
3347 KASSERT(false);
3348 }
3349
3350 sysctl_createv(clog, 0, NULL, NULL,
3351 CTLFLAG_PERMANENT,
3352 CTLTYPE_NODE, pfname, NULL,
3353 NULL, 0, NULL, 0,
3354 CTL_NET, pf, CTL_EOL);
3355 sysctl_createv(clog, 0, NULL, NULL,
3356 CTLFLAG_PERMANENT,
3357 CTLTYPE_NODE, ipname, NULL,
3358 NULL, 0, NULL, 0,
3359 CTL_NET, pf, ipn, CTL_EOL);
3360 sysctl_createv(clog, 0, NULL, NULL,
3361 CTLFLAG_PERMANENT,
3362 CTLTYPE_NODE, "ifq",
3363 SYSCTL_DESCR("Protocol input queue controls"),
3364 NULL, 0, NULL, 0,
3365 CTL_NET, pf, ipn, qid, CTL_EOL);
3366
3367 sysctl_createv(clog, 0, NULL, NULL,
3368 CTLFLAG_PERMANENT,
3369 CTLTYPE_INT, "len",
3370 SYSCTL_DESCR("Current input queue length"),
3371 len_func, 0, NULL, 0,
3372 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3373 sysctl_createv(clog, 0, NULL, NULL,
3374 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3375 CTLTYPE_INT, "maxlen",
3376 SYSCTL_DESCR("Maximum allowed input queue length"),
3377 maxlen_func, 0, NULL, 0,
3378 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3379 sysctl_createv(clog, 0, NULL, NULL,
3380 CTLFLAG_PERMANENT,
3381 CTLTYPE_INT, "drops",
3382 SYSCTL_DESCR("Packets dropped due to full input queue"),
3383 drops_func, 0, NULL, 0,
3384 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3385 }
3386 #endif /* INET || INET6 */
3387
3388 static int
3389 if_sdl_sysctl(SYSCTLFN_ARGS)
3390 {
3391 struct ifnet *ifp;
3392 const struct sockaddr_dl *sdl;
3393 struct psref psref;
3394 int error = 0;
3395 int bound;
3396
3397 if (namelen != 1)
3398 return EINVAL;
3399
3400 bound = curlwp_bind();
3401 ifp = if_get_byindex(name[0], &psref);
3402 if (ifp == NULL) {
3403 error = ENODEV;
3404 goto out0;
3405 }
3406
3407 sdl = ifp->if_sadl;
3408 if (sdl == NULL) {
3409 *oldlenp = 0;
3410 goto out1;
3411 }
3412
3413 if (oldp == NULL) {
3414 *oldlenp = sdl->sdl_alen;
3415 goto out1;
3416 }
3417
3418 if (*oldlenp >= sdl->sdl_alen)
3419 *oldlenp = sdl->sdl_alen;
3420 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3421 out1:
3422 if_put(ifp, &psref);
3423 out0:
3424 curlwp_bindx(bound);
3425 return error;
3426 }
3427
3428 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3429 {
3430 const struct sysctlnode *rnode = NULL;
3431
3432 sysctl_createv(clog, 0, NULL, &rnode,
3433 CTLFLAG_PERMANENT,
3434 CTLTYPE_NODE, "sdl",
3435 SYSCTL_DESCR("Get active link-layer address"),
3436 if_sdl_sysctl, 0, NULL, 0,
3437 CTL_NET, CTL_CREATE, CTL_EOL);
3438 }
3439