if.c revision 1.361 1 /* $NetBSD: if.c,v 1.361 2016/11/05 23:30:22 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.361 2016/11/05 23:30:22 pgoyette Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #ifndef IPSEC
142 #include <netinet/ip_encap.h>
143 #endif
144
145 #ifdef INET6
146 #include <netinet6/in6_var.h>
147 #include <netinet6/nd6.h>
148 #endif
149
150 #include "ether.h"
151 #include "fddi.h"
152 #include "token.h"
153
154 #include "carp.h"
155 #if NCARP > 0
156 #include <netinet/ip_carp.h>
157 #endif
158
159 #include <compat/sys/sockio.h>
160 #include <compat/sys/socket.h>
161
162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
164
165 /*
166 * Global list of interfaces.
167 */
168 /* DEPRECATED. Remove it once kvm(3) users disappeared */
169 struct ifnet_head ifnet_list;
170
171 struct pslist_head ifnet_pslist;
172 static ifnet_t ** ifindex2ifnet = NULL;
173 static u_int if_index = 1;
174 static size_t if_indexlim = 0;
175 static uint64_t index_gen;
176 /* Mutex to protect the above objects. */
177 kmutex_t ifnet_mtx __cacheline_aligned;
178 struct psref_class *ifnet_psref_class __read_mostly;
179 static pserialize_t ifnet_psz;
180
181 static kmutex_t if_clone_mtx;
182
183 struct ifnet *lo0ifp;
184 int ifqmaxlen = IFQ_MAXLEN;
185
186 struct psref_class *ifa_psref_class __read_mostly;
187
188 static int if_rt_walktree(struct rtentry *, void *);
189
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212
213 struct if_percpuq {
214 struct ifnet *ipq_ifp;
215 void *ipq_si;
216 struct percpu *ipq_ifqs; /* struct ifqueue */
217 };
218
219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
220
221 static void if_percpuq_drops(void *, void *, struct cpu_info *);
222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
223 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
224 struct if_percpuq *);
225
226 #if defined(INET) || defined(INET6)
227 static void sysctl_net_pktq_setup(struct sysctllog **, int);
228 #endif
229
230 /*
231 * Pointer to stub or real compat_cvtcmd() depending on presence of
232 * the compat module
233 */
234 u_long stub_compat_cvtcmd(u_long);
235 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
236
237 /* Similarly, pointer to compat_ifioctl() if it is present */
238
239 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
240 struct lwp *) = NULL;
241
242 /* The stub version of compat_cvtcmd() */
243 u_long stub_compat_cvtcmd(u_long cmd)
244 {
245
246 return cmd;
247 }
248
249 static int
250 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
251 void *arg0, void *arg1, void *arg2, void *arg3)
252 {
253 int result;
254 enum kauth_network_req req;
255
256 result = KAUTH_RESULT_DEFER;
257 req = (enum kauth_network_req)arg1;
258
259 if (action != KAUTH_NETWORK_INTERFACE)
260 return result;
261
262 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
263 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
264 result = KAUTH_RESULT_ALLOW;
265
266 return result;
267 }
268
269 /*
270 * Network interface utility routines.
271 *
272 * Routines with ifa_ifwith* names take sockaddr *'s as
273 * parameters.
274 */
275 void
276 ifinit(void)
277 {
278 #if defined(INET)
279 sysctl_net_pktq_setup(NULL, PF_INET);
280 #endif
281 #ifdef INET6
282 if (in6_present)
283 sysctl_net_pktq_setup(NULL, PF_INET6);
284 #endif
285
286 #if (defined(INET) || defined(INET6)) && !defined(IPSEC)
287 encapinit();
288 #endif
289
290 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
291 if_listener_cb, NULL);
292
293 /* interfaces are available, inform socket code */
294 ifioctl = doifioctl;
295 }
296
297 /*
298 * XXX Initialization before configure().
299 * XXX hack to get pfil_add_hook working in autoconf.
300 */
301 void
302 ifinit1(void)
303 {
304 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
305
306 TAILQ_INIT(&ifnet_list);
307 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
308 ifnet_psz = pserialize_create();
309 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
310 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
311 PSLIST_INIT(&ifnet_pslist);
312
313 if_indexlim = 8;
314
315 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
316 KASSERT(if_pfil != NULL);
317
318 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
319 etherinit();
320 #endif
321 }
322
323 ifnet_t *
324 if_alloc(u_char type)
325 {
326 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
327 }
328
329 void
330 if_free(ifnet_t *ifp)
331 {
332 kmem_free(ifp, sizeof(ifnet_t));
333 }
334
335 void
336 if_initname(struct ifnet *ifp, const char *name, int unit)
337 {
338 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
339 "%s%d", name, unit);
340 }
341
342 /*
343 * Null routines used while an interface is going away. These routines
344 * just return an error.
345 */
346
347 int
348 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
349 const struct sockaddr *so, const struct rtentry *rt)
350 {
351
352 return ENXIO;
353 }
354
355 void
356 if_nullinput(struct ifnet *ifp, struct mbuf *m)
357 {
358
359 /* Nothing. */
360 }
361
362 void
363 if_nullstart(struct ifnet *ifp)
364 {
365
366 /* Nothing. */
367 }
368
369 int
370 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
371 {
372
373 return ENXIO;
374 }
375
376 int
377 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
378 {
379
380 return ENXIO;
381 }
382
383 int
384 if_nullinit(struct ifnet *ifp)
385 {
386
387 return ENXIO;
388 }
389
390 void
391 if_nullstop(struct ifnet *ifp, int disable)
392 {
393
394 /* Nothing. */
395 }
396
397 void
398 if_nullslowtimo(struct ifnet *ifp)
399 {
400
401 /* Nothing. */
402 }
403
404 void
405 if_nulldrain(struct ifnet *ifp)
406 {
407
408 /* Nothing. */
409 }
410
411 void
412 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
413 {
414 struct ifaddr *ifa;
415 struct sockaddr_dl *sdl;
416
417 ifp->if_addrlen = addrlen;
418 if_alloc_sadl(ifp);
419 ifa = ifp->if_dl;
420 sdl = satosdl(ifa->ifa_addr);
421
422 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
423 if (factory) {
424 ifp->if_hwdl = ifp->if_dl;
425 ifaref(ifp->if_hwdl);
426 }
427 /* TBD routing socket */
428 }
429
430 struct ifaddr *
431 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
432 {
433 unsigned socksize, ifasize;
434 int addrlen, namelen;
435 struct sockaddr_dl *mask, *sdl;
436 struct ifaddr *ifa;
437
438 namelen = strlen(ifp->if_xname);
439 addrlen = ifp->if_addrlen;
440 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
441 ifasize = sizeof(*ifa) + 2 * socksize;
442 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
443
444 sdl = (struct sockaddr_dl *)(ifa + 1);
445 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
446
447 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
448 ifp->if_xname, namelen, NULL, addrlen);
449 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
450 memset(&mask->sdl_data[0], 0xff, namelen);
451 ifa->ifa_rtrequest = link_rtrequest;
452 ifa->ifa_addr = (struct sockaddr *)sdl;
453 ifa->ifa_netmask = (struct sockaddr *)mask;
454 ifa_psref_init(ifa);
455
456 *sdlp = sdl;
457
458 return ifa;
459 }
460
461 static void
462 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
463 {
464 const struct sockaddr_dl *sdl;
465
466 ifp->if_dl = ifa;
467 ifaref(ifa);
468 sdl = satosdl(ifa->ifa_addr);
469 ifp->if_sadl = sdl;
470 }
471
472 /*
473 * Allocate the link level name for the specified interface. This
474 * is an attachment helper. It must be called after ifp->if_addrlen
475 * is initialized, which may not be the case when if_attach() is
476 * called.
477 */
478 void
479 if_alloc_sadl(struct ifnet *ifp)
480 {
481 struct ifaddr *ifa;
482 const struct sockaddr_dl *sdl;
483
484 /*
485 * If the interface already has a link name, release it
486 * now. This is useful for interfaces that can change
487 * link types, and thus switch link names often.
488 */
489 if (ifp->if_sadl != NULL)
490 if_free_sadl(ifp);
491
492 ifa = if_dl_create(ifp, &sdl);
493
494 ifa_insert(ifp, ifa);
495 if_sadl_setrefs(ifp, ifa);
496 }
497
498 static void
499 if_deactivate_sadl(struct ifnet *ifp)
500 {
501 struct ifaddr *ifa;
502
503 KASSERT(ifp->if_dl != NULL);
504
505 ifa = ifp->if_dl;
506
507 ifp->if_sadl = NULL;
508
509 ifp->if_dl = NULL;
510 ifafree(ifa);
511 }
512
513 void
514 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
515 const struct sockaddr_dl *sdl)
516 {
517 int s, ss;
518 struct ifaddr *ifa;
519 int bound = curlwp_bind();
520
521 s = splnet();
522
523 if_deactivate_sadl(ifp);
524
525 if_sadl_setrefs(ifp, ifa0);
526
527 ss = pserialize_read_enter();
528 IFADDR_READER_FOREACH(ifa, ifp) {
529 struct psref psref;
530 ifa_acquire(ifa, &psref);
531 pserialize_read_exit(ss);
532
533 rtinit(ifa, RTM_LLINFO_UPD, 0);
534
535 ss = pserialize_read_enter();
536 ifa_release(ifa, &psref);
537 }
538 pserialize_read_exit(ss);
539
540 splx(s);
541 curlwp_bindx(bound);
542 }
543
544 /*
545 * Free the link level name for the specified interface. This is
546 * a detach helper. This is called from if_detach().
547 */
548 static void
549 if_free_sadl(struct ifnet *ifp)
550 {
551 struct ifaddr *ifa;
552 int s;
553
554 ifa = ifp->if_dl;
555 if (ifa == NULL) {
556 KASSERT(ifp->if_sadl == NULL);
557 return;
558 }
559
560 KASSERT(ifp->if_sadl != NULL);
561
562 s = splnet();
563 rtinit(ifa, RTM_DELETE, 0);
564 ifa_remove(ifp, ifa);
565 if_deactivate_sadl(ifp);
566 if (ifp->if_hwdl == ifa) {
567 ifafree(ifa);
568 ifp->if_hwdl = NULL;
569 }
570 splx(s);
571 }
572
573 static void
574 if_getindex(ifnet_t *ifp)
575 {
576 bool hitlimit = false;
577
578 ifp->if_index_gen = index_gen++;
579
580 ifp->if_index = if_index;
581 if (ifindex2ifnet == NULL) {
582 if_index++;
583 goto skip;
584 }
585 while (if_byindex(ifp->if_index)) {
586 /*
587 * If we hit USHRT_MAX, we skip back to 0 since
588 * there are a number of places where the value
589 * of if_index or if_index itself is compared
590 * to or stored in an unsigned short. By
591 * jumping back, we won't botch those assignments
592 * or comparisons.
593 */
594 if (++if_index == 0) {
595 if_index = 1;
596 } else if (if_index == USHRT_MAX) {
597 /*
598 * However, if we have to jump back to
599 * zero *twice* without finding an empty
600 * slot in ifindex2ifnet[], then there
601 * there are too many (>65535) interfaces.
602 */
603 if (hitlimit) {
604 panic("too many interfaces");
605 }
606 hitlimit = true;
607 if_index = 1;
608 }
609 ifp->if_index = if_index;
610 }
611 skip:
612 /*
613 * ifindex2ifnet is indexed by if_index. Since if_index will
614 * grow dynamically, it should grow too.
615 */
616 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
617 size_t m, n, oldlim;
618 void *q;
619
620 oldlim = if_indexlim;
621 while (ifp->if_index >= if_indexlim)
622 if_indexlim <<= 1;
623
624 /* grow ifindex2ifnet */
625 m = oldlim * sizeof(struct ifnet *);
626 n = if_indexlim * sizeof(struct ifnet *);
627 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
628 if (ifindex2ifnet != NULL) {
629 memcpy(q, ifindex2ifnet, m);
630 free(ifindex2ifnet, M_IFADDR);
631 }
632 ifindex2ifnet = (struct ifnet **)q;
633 }
634 ifindex2ifnet[ifp->if_index] = ifp;
635 }
636
637 /*
638 * Initialize an interface and assign an index for it.
639 *
640 * It must be called prior to a device specific attach routine
641 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
642 * and be followed by if_register:
643 *
644 * if_initialize(ifp);
645 * ether_ifattach(ifp, enaddr);
646 * if_register(ifp);
647 */
648 void
649 if_initialize(ifnet_t *ifp)
650 {
651 KASSERT(if_indexlim > 0);
652 TAILQ_INIT(&ifp->if_addrlist);
653
654 /*
655 * Link level name is allocated later by a separate call to
656 * if_alloc_sadl().
657 */
658
659 if (ifp->if_snd.ifq_maxlen == 0)
660 ifp->if_snd.ifq_maxlen = ifqmaxlen;
661
662 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
663
664 ifp->if_link_state = LINK_STATE_UNKNOWN;
665 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
666
667 ifp->if_capenable = 0;
668 ifp->if_csum_flags_tx = 0;
669 ifp->if_csum_flags_rx = 0;
670
671 #ifdef ALTQ
672 ifp->if_snd.altq_type = 0;
673 ifp->if_snd.altq_disc = NULL;
674 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
675 ifp->if_snd.altq_tbr = NULL;
676 ifp->if_snd.altq_ifp = ifp;
677 #endif
678
679 IFQ_LOCK_INIT(&ifp->if_snd);
680
681 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
682 (void)pfil_run_hooks(if_pfil,
683 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
684
685 IF_AFDATA_LOCK_INIT(ifp);
686
687 if (if_is_link_state_changeable(ifp)) {
688 ifp->if_link_si = softint_establish(SOFTINT_NET,
689 if_link_state_change_si, ifp);
690 if (ifp->if_link_si == NULL)
691 panic("%s: softint_establish() failed", __func__);
692 }
693
694 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
695 PSLIST_INIT(&ifp->if_addr_pslist);
696 psref_target_init(&ifp->if_psref, ifnet_psref_class);
697 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
698
699 IFNET_LOCK();
700 if_getindex(ifp);
701 IFNET_UNLOCK();
702 }
703
704 /*
705 * Register an interface to the list of "active" interfaces.
706 */
707 void
708 if_register(ifnet_t *ifp)
709 {
710 /*
711 * If the driver has not supplied its own if_ioctl, then
712 * supply the default.
713 */
714 if (ifp->if_ioctl == NULL)
715 ifp->if_ioctl = ifioctl_common;
716
717 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
718
719 if (!STAILQ_EMPTY(&domains))
720 if_attachdomain1(ifp);
721
722 /* Announce the interface. */
723 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
724
725 if (ifp->if_slowtimo != NULL) {
726 ifp->if_slowtimo_ch =
727 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
728 callout_init(ifp->if_slowtimo_ch, 0);
729 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
730 if_slowtimo(ifp);
731 }
732
733 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
734 ifp->if_transmit = if_transmit;
735
736 IFNET_LOCK();
737 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
738 IFNET_WRITER_INSERT_TAIL(ifp);
739 IFNET_UNLOCK();
740 }
741
742 /*
743 * The if_percpuq framework
744 *
745 * It allows network device drivers to execute the network stack
746 * in softint (so called softint-based if_input). It utilizes
747 * softint and percpu ifqueue. It doesn't distribute any packets
748 * between CPUs, unlike pktqueue(9).
749 *
750 * Currently we support two options for device drivers to apply the framework:
751 * - Use it implicitly with less changes
752 * - If you use if_attach in driver's _attach function and if_input in
753 * driver's Rx interrupt handler, a packet is queued and a softint handles
754 * the packet implicitly
755 * - Use it explicitly in each driver (recommended)
756 * - You can use if_percpuq_* directly in your driver
757 * - In this case, you need to allocate struct if_percpuq in driver's softc
758 * - See wm(4) as a reference implementation
759 */
760
761 static void
762 if_percpuq_softint(void *arg)
763 {
764 struct if_percpuq *ipq = arg;
765 struct ifnet *ifp = ipq->ipq_ifp;
766 struct mbuf *m;
767
768 while ((m = if_percpuq_dequeue(ipq)) != NULL)
769 ifp->_if_input(ifp, m);
770 }
771
772 static void
773 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
774 {
775 struct ifqueue *const ifq = p;
776
777 memset(ifq, 0, sizeof(*ifq));
778 ifq->ifq_maxlen = IFQ_MAXLEN;
779 }
780
781 struct if_percpuq *
782 if_percpuq_create(struct ifnet *ifp)
783 {
784 struct if_percpuq *ipq;
785
786 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
787 if (ipq == NULL)
788 panic("kmem_zalloc failed");
789
790 ipq->ipq_ifp = ifp;
791 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
792 if_percpuq_softint, ipq);
793 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
794 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
795
796 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
797
798 return ipq;
799 }
800
801 static struct mbuf *
802 if_percpuq_dequeue(struct if_percpuq *ipq)
803 {
804 struct mbuf *m;
805 struct ifqueue *ifq;
806 int s;
807
808 s = splnet();
809 ifq = percpu_getref(ipq->ipq_ifqs);
810 IF_DEQUEUE(ifq, m);
811 percpu_putref(ipq->ipq_ifqs);
812 splx(s);
813
814 return m;
815 }
816
817 static void
818 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
819 {
820 struct ifqueue *const ifq = p;
821
822 IF_PURGE(ifq);
823 }
824
825 void
826 if_percpuq_destroy(struct if_percpuq *ipq)
827 {
828
829 /* if_detach may already destroy it */
830 if (ipq == NULL)
831 return;
832
833 softint_disestablish(ipq->ipq_si);
834 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
835 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
836 }
837
838 void
839 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
840 {
841 struct ifqueue *ifq;
842 int s;
843
844 KASSERT(ipq != NULL);
845
846 s = splnet();
847 ifq = percpu_getref(ipq->ipq_ifqs);
848 if (IF_QFULL(ifq)) {
849 IF_DROP(ifq);
850 percpu_putref(ipq->ipq_ifqs);
851 m_freem(m);
852 goto out;
853 }
854 IF_ENQUEUE(ifq, m);
855 percpu_putref(ipq->ipq_ifqs);
856
857 softint_schedule(ipq->ipq_si);
858 out:
859 splx(s);
860 }
861
862 static void
863 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
864 {
865 struct ifqueue *const ifq = p;
866 int *sum = arg;
867
868 *sum += ifq->ifq_drops;
869 }
870
871 static int
872 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
873 {
874 struct sysctlnode node;
875 struct if_percpuq *ipq;
876 int sum = 0;
877 int error;
878
879 node = *rnode;
880 ipq = node.sysctl_data;
881
882 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
883
884 node.sysctl_data = ∑
885 error = sysctl_lookup(SYSCTLFN_CALL(&node));
886 if (error != 0 || newp == NULL)
887 return error;
888
889 return 0;
890 }
891
892 static void
893 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
894 struct if_percpuq *ipq)
895 {
896 const struct sysctlnode *cnode, *rnode;
897
898 if (sysctl_createv(clog, 0, NULL, &rnode,
899 CTLFLAG_PERMANENT,
900 CTLTYPE_NODE, "interfaces",
901 SYSCTL_DESCR("Per-interface controls"),
902 NULL, 0, NULL, 0,
903 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
904 goto bad;
905
906 if (sysctl_createv(clog, 0, &rnode, &rnode,
907 CTLFLAG_PERMANENT,
908 CTLTYPE_NODE, ifname,
909 SYSCTL_DESCR("Interface controls"),
910 NULL, 0, NULL, 0,
911 CTL_CREATE, CTL_EOL) != 0)
912 goto bad;
913
914 if (sysctl_createv(clog, 0, &rnode, &rnode,
915 CTLFLAG_PERMANENT,
916 CTLTYPE_NODE, "rcvq",
917 SYSCTL_DESCR("Interface input queue controls"),
918 NULL, 0, NULL, 0,
919 CTL_CREATE, CTL_EOL) != 0)
920 goto bad;
921
922 #ifdef NOTYET
923 /* XXX Should show each per-CPU queue length? */
924 if (sysctl_createv(clog, 0, &rnode, &rnode,
925 CTLFLAG_PERMANENT,
926 CTLTYPE_INT, "len",
927 SYSCTL_DESCR("Current input queue length"),
928 sysctl_percpuq_len, 0, NULL, 0,
929 CTL_CREATE, CTL_EOL) != 0)
930 goto bad;
931
932 if (sysctl_createv(clog, 0, &rnode, &cnode,
933 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
934 CTLTYPE_INT, "maxlen",
935 SYSCTL_DESCR("Maximum allowed input queue length"),
936 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
937 CTL_CREATE, CTL_EOL) != 0)
938 goto bad;
939 #endif
940
941 if (sysctl_createv(clog, 0, &rnode, &cnode,
942 CTLFLAG_PERMANENT,
943 CTLTYPE_INT, "drops",
944 SYSCTL_DESCR("Total packets dropped due to full input queue"),
945 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
946 CTL_CREATE, CTL_EOL) != 0)
947 goto bad;
948
949 return;
950 bad:
951 printf("%s: could not attach sysctl nodes\n", ifname);
952 return;
953 }
954
955
956 /*
957 * The common interface input routine that is called by device drivers,
958 * which should be used only when the driver's rx handler already runs
959 * in softint.
960 */
961 void
962 if_input(struct ifnet *ifp, struct mbuf *m)
963 {
964
965 KASSERT(ifp->if_percpuq == NULL);
966 KASSERT(!cpu_intr_p());
967
968 ifp->_if_input(ifp, m);
969 }
970
971 /*
972 * DEPRECATED. Use if_initialize and if_register instead.
973 * See the above comment of if_initialize.
974 *
975 * Note that it implicitly enables if_percpuq to make drivers easy to
976 * migrate softint-based if_input without much changes. If you don't
977 * want to enable it, use if_initialize instead.
978 */
979 void
980 if_attach(ifnet_t *ifp)
981 {
982
983 if_initialize(ifp);
984 ifp->if_percpuq = if_percpuq_create(ifp);
985 if_register(ifp);
986 }
987
988 void
989 if_attachdomain(void)
990 {
991 struct ifnet *ifp;
992 int s;
993 int bound = curlwp_bind();
994
995 s = pserialize_read_enter();
996 IFNET_READER_FOREACH(ifp) {
997 struct psref psref;
998 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
999 pserialize_read_exit(s);
1000 if_attachdomain1(ifp);
1001 s = pserialize_read_enter();
1002 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1003 }
1004 pserialize_read_exit(s);
1005 curlwp_bindx(bound);
1006 }
1007
1008 static void
1009 if_attachdomain1(struct ifnet *ifp)
1010 {
1011 struct domain *dp;
1012 int s;
1013
1014 s = splnet();
1015
1016 /* address family dependent data region */
1017 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1018 DOMAIN_FOREACH(dp) {
1019 if (dp->dom_ifattach != NULL)
1020 ifp->if_afdata[dp->dom_family] =
1021 (*dp->dom_ifattach)(ifp);
1022 }
1023
1024 splx(s);
1025 }
1026
1027 /*
1028 * Deactivate an interface. This points all of the procedure
1029 * handles at error stubs. May be called from interrupt context.
1030 */
1031 void
1032 if_deactivate(struct ifnet *ifp)
1033 {
1034 int s;
1035
1036 s = splnet();
1037
1038 ifp->if_output = if_nulloutput;
1039 ifp->_if_input = if_nullinput;
1040 ifp->if_start = if_nullstart;
1041 ifp->if_transmit = if_nulltransmit;
1042 ifp->if_ioctl = if_nullioctl;
1043 ifp->if_init = if_nullinit;
1044 ifp->if_stop = if_nullstop;
1045 ifp->if_slowtimo = if_nullslowtimo;
1046 ifp->if_drain = if_nulldrain;
1047
1048 /* No more packets may be enqueued. */
1049 ifp->if_snd.ifq_maxlen = 0;
1050
1051 splx(s);
1052 }
1053
1054 bool
1055 if_is_deactivated(struct ifnet *ifp)
1056 {
1057
1058 return ifp->if_output == if_nulloutput;
1059 }
1060
1061 void
1062 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1063 {
1064 struct ifaddr *ifa, *nifa;
1065 int s;
1066
1067 s = pserialize_read_enter();
1068 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1069 nifa = IFADDR_READER_NEXT(ifa);
1070 if (ifa->ifa_addr->sa_family != family)
1071 continue;
1072 pserialize_read_exit(s);
1073
1074 (*purgeaddr)(ifa);
1075
1076 s = pserialize_read_enter();
1077 }
1078 pserialize_read_exit(s);
1079 }
1080
1081 #ifdef IFAREF_DEBUG
1082 static struct ifaddr **ifa_list;
1083 static int ifa_list_size;
1084
1085 /* Depends on only one if_attach runs at once */
1086 static void
1087 if_build_ifa_list(struct ifnet *ifp)
1088 {
1089 struct ifaddr *ifa;
1090 int i;
1091
1092 KASSERT(ifa_list == NULL);
1093 KASSERT(ifa_list_size == 0);
1094
1095 IFADDR_READER_FOREACH(ifa, ifp)
1096 ifa_list_size++;
1097
1098 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1099 if (ifa_list == NULL)
1100 return;
1101
1102 i = 0;
1103 IFADDR_READER_FOREACH(ifa, ifp) {
1104 ifa_list[i++] = ifa;
1105 ifaref(ifa);
1106 }
1107 }
1108
1109 static void
1110 if_check_and_free_ifa_list(struct ifnet *ifp)
1111 {
1112 int i;
1113 struct ifaddr *ifa;
1114
1115 if (ifa_list == NULL)
1116 return;
1117
1118 for (i = 0; i < ifa_list_size; i++) {
1119 char buf[64];
1120
1121 ifa = ifa_list[i];
1122 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1123 if (ifa->ifa_refcnt > 1) {
1124 log(LOG_WARNING,
1125 "ifa(%s) still referenced (refcnt=%d)\n",
1126 buf, ifa->ifa_refcnt - 1);
1127 } else
1128 log(LOG_DEBUG,
1129 "ifa(%s) not referenced (refcnt=%d)\n",
1130 buf, ifa->ifa_refcnt - 1);
1131 ifafree(ifa);
1132 }
1133
1134 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1135 ifa_list = NULL;
1136 ifa_list_size = 0;
1137 }
1138 #endif
1139
1140 /*
1141 * Detach an interface from the list of "active" interfaces,
1142 * freeing any resources as we go along.
1143 *
1144 * NOTE: This routine must be called with a valid thread context,
1145 * as it may block.
1146 */
1147 void
1148 if_detach(struct ifnet *ifp)
1149 {
1150 struct socket so;
1151 struct ifaddr *ifa;
1152 #ifdef IFAREF_DEBUG
1153 struct ifaddr *last_ifa = NULL;
1154 #endif
1155 struct domain *dp;
1156 const struct protosw *pr;
1157 int s, i, family, purged;
1158 uint64_t xc;
1159
1160 #ifdef IFAREF_DEBUG
1161 if_build_ifa_list(ifp);
1162 #endif
1163 /*
1164 * XXX It's kind of lame that we have to have the
1165 * XXX socket structure...
1166 */
1167 memset(&so, 0, sizeof(so));
1168
1169 s = splnet();
1170
1171 sysctl_teardown(&ifp->if_sysctl_log);
1172 mutex_enter(ifp->if_ioctl_lock);
1173 if_deactivate(ifp);
1174 mutex_exit(ifp->if_ioctl_lock);
1175
1176 IFNET_LOCK();
1177 ifindex2ifnet[ifp->if_index] = NULL;
1178 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1179 IFNET_WRITER_REMOVE(ifp);
1180 pserialize_perform(ifnet_psz);
1181 IFNET_UNLOCK();
1182
1183 /* Wait for all readers to drain before freeing. */
1184 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1185 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1186
1187 mutex_obj_free(ifp->if_ioctl_lock);
1188 ifp->if_ioctl_lock = NULL;
1189
1190 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1191 ifp->if_slowtimo = NULL;
1192 callout_halt(ifp->if_slowtimo_ch, NULL);
1193 callout_destroy(ifp->if_slowtimo_ch);
1194 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1195 }
1196
1197 /*
1198 * Do an if_down() to give protocols a chance to do something.
1199 */
1200 if_down(ifp);
1201
1202 #ifdef ALTQ
1203 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1204 altq_disable(&ifp->if_snd);
1205 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1206 altq_detach(&ifp->if_snd);
1207 #endif
1208
1209 mutex_obj_free(ifp->if_snd.ifq_lock);
1210
1211 #if NCARP > 0
1212 /* Remove the interface from any carp group it is a part of. */
1213 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1214 carp_ifdetach(ifp);
1215 #endif
1216
1217 /*
1218 * Rip all the addresses off the interface. This should make
1219 * all of the routes go away.
1220 *
1221 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1222 * from the list, including our "cursor", ifa. For safety,
1223 * and to honor the TAILQ abstraction, I just restart the
1224 * loop after each removal. Note that the loop will exit
1225 * when all of the remaining ifaddrs belong to the AF_LINK
1226 * family. I am counting on the historical fact that at
1227 * least one pr_usrreq in each address domain removes at
1228 * least one ifaddr.
1229 */
1230 again:
1231 /*
1232 * At this point, no other one tries to remove ifa in the list,
1233 * so we don't need to take a lock or psref.
1234 */
1235 IFADDR_READER_FOREACH(ifa, ifp) {
1236 family = ifa->ifa_addr->sa_family;
1237 #ifdef IFAREF_DEBUG
1238 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1239 ifa, family, ifa->ifa_refcnt);
1240 if (last_ifa != NULL && ifa == last_ifa)
1241 panic("if_detach: loop detected");
1242 last_ifa = ifa;
1243 #endif
1244 if (family == AF_LINK)
1245 continue;
1246 dp = pffinddomain(family);
1247 #ifdef DIAGNOSTIC
1248 if (dp == NULL)
1249 panic("if_detach: no domain for AF %d",
1250 family);
1251 #endif
1252 /*
1253 * XXX These PURGEIF calls are redundant with the
1254 * purge-all-families calls below, but are left in for
1255 * now both to make a smaller change, and to avoid
1256 * unplanned interactions with clearing of
1257 * ifp->if_addrlist.
1258 */
1259 purged = 0;
1260 for (pr = dp->dom_protosw;
1261 pr < dp->dom_protoswNPROTOSW; pr++) {
1262 so.so_proto = pr;
1263 if (pr->pr_usrreqs) {
1264 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1265 purged = 1;
1266 }
1267 }
1268 if (purged == 0) {
1269 /*
1270 * XXX What's really the best thing to do
1271 * XXX here? --thorpej (at) NetBSD.org
1272 */
1273 printf("if_detach: WARNING: AF %d not purged\n",
1274 family);
1275 ifa_remove(ifp, ifa);
1276 }
1277 goto again;
1278 }
1279
1280 if_free_sadl(ifp);
1281
1282 /* Walk the routing table looking for stragglers. */
1283 for (i = 0; i <= AF_MAX; i++) {
1284 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1285 continue;
1286 }
1287
1288 DOMAIN_FOREACH(dp) {
1289 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1290 {
1291 void *p = ifp->if_afdata[dp->dom_family];
1292 if (p) {
1293 ifp->if_afdata[dp->dom_family] = NULL;
1294 (*dp->dom_ifdetach)(ifp, p);
1295 }
1296 }
1297
1298 /*
1299 * One would expect multicast memberships (INET and
1300 * INET6) on UDP sockets to be purged by the PURGEIF
1301 * calls above, but if all addresses were removed from
1302 * the interface prior to destruction, the calls will
1303 * not be made (e.g. ppp, for which pppd(8) generally
1304 * removes addresses before destroying the interface).
1305 * Because there is no invariant that multicast
1306 * memberships only exist for interfaces with IPv4
1307 * addresses, we must call PURGEIF regardless of
1308 * addresses. (Protocols which might store ifnet
1309 * pointers are marked with PR_PURGEIF.)
1310 */
1311 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1312 so.so_proto = pr;
1313 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1314 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1315 }
1316 }
1317
1318 (void)pfil_run_hooks(if_pfil,
1319 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1320 (void)pfil_head_destroy(ifp->if_pfil);
1321
1322 /* Announce that the interface is gone. */
1323 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1324
1325 IF_AFDATA_LOCK_DESTROY(ifp);
1326
1327 if (if_is_link_state_changeable(ifp)) {
1328 softint_disestablish(ifp->if_link_si);
1329 ifp->if_link_si = NULL;
1330 }
1331
1332 /*
1333 * remove packets that came from ifp, from software interrupt queues.
1334 */
1335 DOMAIN_FOREACH(dp) {
1336 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1337 struct ifqueue *iq = dp->dom_ifqueues[i];
1338 if (iq == NULL)
1339 break;
1340 dp->dom_ifqueues[i] = NULL;
1341 if_detach_queues(ifp, iq);
1342 }
1343 }
1344
1345 /*
1346 * IP queues have to be processed separately: net-queue barrier
1347 * ensures that the packets are dequeued while a cross-call will
1348 * ensure that the interrupts have completed. FIXME: not quite..
1349 */
1350 #ifdef INET
1351 pktq_barrier(ip_pktq);
1352 #endif
1353 #ifdef INET6
1354 if (in6_present)
1355 pktq_barrier(ip6_pktq);
1356 #endif
1357 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1358 xc_wait(xc);
1359
1360 if (ifp->if_percpuq != NULL) {
1361 if_percpuq_destroy(ifp->if_percpuq);
1362 ifp->if_percpuq = NULL;
1363 }
1364
1365 splx(s);
1366
1367 #ifdef IFAREF_DEBUG
1368 if_check_and_free_ifa_list(ifp);
1369 #endif
1370 }
1371
1372 static void
1373 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1374 {
1375 struct mbuf *m, *prev, *next;
1376
1377 prev = NULL;
1378 for (m = q->ifq_head; m != NULL; m = next) {
1379 KASSERT((m->m_flags & M_PKTHDR) != 0);
1380
1381 next = m->m_nextpkt;
1382 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1383 prev = m;
1384 continue;
1385 }
1386
1387 if (prev != NULL)
1388 prev->m_nextpkt = m->m_nextpkt;
1389 else
1390 q->ifq_head = m->m_nextpkt;
1391 if (q->ifq_tail == m)
1392 q->ifq_tail = prev;
1393 q->ifq_len--;
1394
1395 m->m_nextpkt = NULL;
1396 m_freem(m);
1397 IF_DROP(q);
1398 }
1399 }
1400
1401 /*
1402 * Callback for a radix tree walk to delete all references to an
1403 * ifnet.
1404 */
1405 static int
1406 if_rt_walktree(struct rtentry *rt, void *v)
1407 {
1408 struct ifnet *ifp = (struct ifnet *)v;
1409 int error;
1410 struct rtentry *retrt;
1411
1412 if (rt->rt_ifp != ifp)
1413 return 0;
1414
1415 /* Delete the entry. */
1416 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1417 rt_mask(rt), rt->rt_flags, &retrt);
1418 if (error == 0) {
1419 KASSERT(retrt == rt);
1420 KASSERT((retrt->rt_flags & RTF_UP) == 0);
1421 retrt->rt_ifp = NULL;
1422 rtfree(retrt);
1423 } else {
1424 printf("%s: warning: unable to delete rtentry @ %p, "
1425 "error = %d\n", ifp->if_xname, rt, error);
1426 }
1427 return ERESTART;
1428 }
1429
1430 /*
1431 * Create a clone network interface.
1432 */
1433 static int
1434 if_clone_create(const char *name)
1435 {
1436 struct if_clone *ifc;
1437 int unit;
1438 struct ifnet *ifp;
1439 struct psref psref;
1440
1441 ifc = if_clone_lookup(name, &unit);
1442 if (ifc == NULL)
1443 return EINVAL;
1444
1445 ifp = if_get(name, &psref);
1446 if (ifp != NULL) {
1447 if_put(ifp, &psref);
1448 return EEXIST;
1449 }
1450
1451 return (*ifc->ifc_create)(ifc, unit);
1452 }
1453
1454 /*
1455 * Destroy a clone network interface.
1456 */
1457 static int
1458 if_clone_destroy(const char *name)
1459 {
1460 struct if_clone *ifc;
1461 struct ifnet *ifp;
1462 struct psref psref;
1463
1464 ifc = if_clone_lookup(name, NULL);
1465 if (ifc == NULL)
1466 return EINVAL;
1467
1468 if (ifc->ifc_destroy == NULL)
1469 return EOPNOTSUPP;
1470
1471 ifp = if_get(name, &psref);
1472 if (ifp == NULL)
1473 return ENXIO;
1474
1475 /* We have to disable ioctls here */
1476 mutex_enter(ifp->if_ioctl_lock);
1477 ifp->if_ioctl = if_nullioctl;
1478 mutex_exit(ifp->if_ioctl_lock);
1479
1480 /*
1481 * We cannot call ifc_destroy with holding ifp.
1482 * Releasing ifp here is safe thanks to if_clone_mtx.
1483 */
1484 if_put(ifp, &psref);
1485
1486 return (*ifc->ifc_destroy)(ifp);
1487 }
1488
1489 /*
1490 * Look up a network interface cloner.
1491 */
1492 static struct if_clone *
1493 if_clone_lookup(const char *name, int *unitp)
1494 {
1495 struct if_clone *ifc;
1496 const char *cp;
1497 char *dp, ifname[IFNAMSIZ + 3];
1498 int unit;
1499
1500 strcpy(ifname, "if_");
1501 /* separate interface name from unit */
1502 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1503 *cp && (*cp < '0' || *cp > '9');)
1504 *dp++ = *cp++;
1505
1506 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1507 return NULL; /* No name or unit number */
1508 *dp++ = '\0';
1509
1510 again:
1511 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1512 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1513 break;
1514 }
1515
1516 if (ifc == NULL) {
1517 if (*ifname == '\0' ||
1518 module_autoload(ifname, MODULE_CLASS_DRIVER))
1519 return NULL;
1520 *ifname = '\0';
1521 goto again;
1522 }
1523
1524 unit = 0;
1525 while (cp - name < IFNAMSIZ && *cp) {
1526 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1527 /* Bogus unit number. */
1528 return NULL;
1529 }
1530 unit = (unit * 10) + (*cp++ - '0');
1531 }
1532
1533 if (unitp != NULL)
1534 *unitp = unit;
1535 return ifc;
1536 }
1537
1538 /*
1539 * Register a network interface cloner.
1540 */
1541 void
1542 if_clone_attach(struct if_clone *ifc)
1543 {
1544
1545 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1546 if_cloners_count++;
1547 }
1548
1549 /*
1550 * Unregister a network interface cloner.
1551 */
1552 void
1553 if_clone_detach(struct if_clone *ifc)
1554 {
1555
1556 LIST_REMOVE(ifc, ifc_list);
1557 if_cloners_count--;
1558 }
1559
1560 /*
1561 * Provide list of interface cloners to userspace.
1562 */
1563 int
1564 if_clone_list(int buf_count, char *buffer, int *total)
1565 {
1566 char outbuf[IFNAMSIZ], *dst;
1567 struct if_clone *ifc;
1568 int count, error = 0;
1569
1570 *total = if_cloners_count;
1571 if ((dst = buffer) == NULL) {
1572 /* Just asking how many there are. */
1573 return 0;
1574 }
1575
1576 if (buf_count < 0)
1577 return EINVAL;
1578
1579 count = (if_cloners_count < buf_count) ?
1580 if_cloners_count : buf_count;
1581
1582 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1583 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1584 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1585 if (outbuf[sizeof(outbuf) - 1] != '\0')
1586 return ENAMETOOLONG;
1587 error = copyout(outbuf, dst, sizeof(outbuf));
1588 if (error != 0)
1589 break;
1590 }
1591
1592 return error;
1593 }
1594
1595 void
1596 ifa_psref_init(struct ifaddr *ifa)
1597 {
1598
1599 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1600 }
1601
1602 void
1603 ifaref(struct ifaddr *ifa)
1604 {
1605 ifa->ifa_refcnt++;
1606 }
1607
1608 void
1609 ifafree(struct ifaddr *ifa)
1610 {
1611 KASSERT(ifa != NULL);
1612 KASSERT(ifa->ifa_refcnt > 0);
1613
1614 if (--ifa->ifa_refcnt == 0) {
1615 free(ifa, M_IFADDR);
1616 }
1617 }
1618
1619 void
1620 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1621 {
1622
1623 ifa->ifa_ifp = ifp;
1624
1625 IFNET_LOCK();
1626 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1627 IFADDR_ENTRY_INIT(ifa);
1628 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1629 IFNET_UNLOCK();
1630
1631 ifaref(ifa);
1632 }
1633
1634 void
1635 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1636 {
1637
1638 KASSERT(ifa->ifa_ifp == ifp);
1639
1640 IFNET_LOCK();
1641 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1642 IFADDR_WRITER_REMOVE(ifa);
1643 #ifdef NET_MPSAFE
1644 pserialize_perform(ifnet_psz);
1645 #endif
1646 IFNET_UNLOCK();
1647
1648 #ifdef NET_MPSAFE
1649 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1650 #endif
1651 IFADDR_ENTRY_DESTROY(ifa);
1652 ifafree(ifa);
1653 }
1654
1655 void
1656 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1657 {
1658
1659 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1660 }
1661
1662 void
1663 ifa_release(struct ifaddr *ifa, struct psref *psref)
1664 {
1665
1666 if (ifa == NULL)
1667 return;
1668
1669 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1670 }
1671
1672 bool
1673 ifa_held(struct ifaddr *ifa)
1674 {
1675
1676 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1677 }
1678
1679 static inline int
1680 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1681 {
1682 return sockaddr_cmp(sa1, sa2) == 0;
1683 }
1684
1685 /*
1686 * Locate an interface based on a complete address.
1687 */
1688 /*ARGSUSED*/
1689 struct ifaddr *
1690 ifa_ifwithaddr(const struct sockaddr *addr)
1691 {
1692 struct ifnet *ifp;
1693 struct ifaddr *ifa;
1694
1695 IFNET_READER_FOREACH(ifp) {
1696 if (if_is_deactivated(ifp))
1697 continue;
1698 IFADDR_READER_FOREACH(ifa, ifp) {
1699 if (ifa->ifa_addr->sa_family != addr->sa_family)
1700 continue;
1701 if (equal(addr, ifa->ifa_addr))
1702 return ifa;
1703 if ((ifp->if_flags & IFF_BROADCAST) &&
1704 ifa->ifa_broadaddr &&
1705 /* IP6 doesn't have broadcast */
1706 ifa->ifa_broadaddr->sa_len != 0 &&
1707 equal(ifa->ifa_broadaddr, addr))
1708 return ifa;
1709 }
1710 }
1711 return NULL;
1712 }
1713
1714 struct ifaddr *
1715 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1716 {
1717 struct ifaddr *ifa;
1718 int s = pserialize_read_enter();
1719
1720 ifa = ifa_ifwithaddr(addr);
1721 if (ifa != NULL)
1722 ifa_acquire(ifa, psref);
1723 pserialize_read_exit(s);
1724
1725 return ifa;
1726 }
1727
1728 /*
1729 * Locate the point to point interface with a given destination address.
1730 */
1731 /*ARGSUSED*/
1732 struct ifaddr *
1733 ifa_ifwithdstaddr(const struct sockaddr *addr)
1734 {
1735 struct ifnet *ifp;
1736 struct ifaddr *ifa;
1737
1738 IFNET_READER_FOREACH(ifp) {
1739 if (if_is_deactivated(ifp))
1740 continue;
1741 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1742 continue;
1743 IFADDR_READER_FOREACH(ifa, ifp) {
1744 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1745 ifa->ifa_dstaddr == NULL)
1746 continue;
1747 if (equal(addr, ifa->ifa_dstaddr))
1748 return ifa;
1749 }
1750 }
1751
1752 return NULL;
1753 }
1754
1755 struct ifaddr *
1756 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1757 {
1758 struct ifaddr *ifa;
1759 int s;
1760
1761 s = pserialize_read_enter();
1762 ifa = ifa_ifwithdstaddr(addr);
1763 if (ifa != NULL)
1764 ifa_acquire(ifa, psref);
1765 pserialize_read_exit(s);
1766
1767 return ifa;
1768 }
1769
1770 /*
1771 * Find an interface on a specific network. If many, choice
1772 * is most specific found.
1773 */
1774 struct ifaddr *
1775 ifa_ifwithnet(const struct sockaddr *addr)
1776 {
1777 struct ifnet *ifp;
1778 struct ifaddr *ifa, *ifa_maybe = NULL;
1779 const struct sockaddr_dl *sdl;
1780 u_int af = addr->sa_family;
1781 const char *addr_data = addr->sa_data, *cplim;
1782
1783 if (af == AF_LINK) {
1784 sdl = satocsdl(addr);
1785 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1786 ifindex2ifnet[sdl->sdl_index] &&
1787 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1788 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1789 }
1790 }
1791 #ifdef NETATALK
1792 if (af == AF_APPLETALK) {
1793 const struct sockaddr_at *sat, *sat2;
1794 sat = (const struct sockaddr_at *)addr;
1795 IFNET_READER_FOREACH(ifp) {
1796 if (if_is_deactivated(ifp))
1797 continue;
1798 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1799 if (ifa == NULL)
1800 continue;
1801 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1802 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1803 return ifa; /* exact match */
1804 if (ifa_maybe == NULL) {
1805 /* else keep the if with the right range */
1806 ifa_maybe = ifa;
1807 }
1808 }
1809 return ifa_maybe;
1810 }
1811 #endif
1812 IFNET_READER_FOREACH(ifp) {
1813 if (if_is_deactivated(ifp))
1814 continue;
1815 IFADDR_READER_FOREACH(ifa, ifp) {
1816 const char *cp, *cp2, *cp3;
1817
1818 if (ifa->ifa_addr->sa_family != af ||
1819 ifa->ifa_netmask == NULL)
1820 next: continue;
1821 cp = addr_data;
1822 cp2 = ifa->ifa_addr->sa_data;
1823 cp3 = ifa->ifa_netmask->sa_data;
1824 cplim = (const char *)ifa->ifa_netmask +
1825 ifa->ifa_netmask->sa_len;
1826 while (cp3 < cplim) {
1827 if ((*cp++ ^ *cp2++) & *cp3++) {
1828 /* want to continue for() loop */
1829 goto next;
1830 }
1831 }
1832 if (ifa_maybe == NULL ||
1833 rt_refines(ifa->ifa_netmask,
1834 ifa_maybe->ifa_netmask))
1835 ifa_maybe = ifa;
1836 }
1837 }
1838 return ifa_maybe;
1839 }
1840
1841 struct ifaddr *
1842 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
1843 {
1844 struct ifaddr *ifa;
1845 int s;
1846
1847 s = pserialize_read_enter();
1848 ifa = ifa_ifwithnet(addr);
1849 if (ifa != NULL)
1850 ifa_acquire(ifa, psref);
1851 pserialize_read_exit(s);
1852
1853 return ifa;
1854 }
1855
1856 /*
1857 * Find the interface of the addresss.
1858 */
1859 struct ifaddr *
1860 ifa_ifwithladdr(const struct sockaddr *addr)
1861 {
1862 struct ifaddr *ia;
1863
1864 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1865 (ia = ifa_ifwithnet(addr)))
1866 return ia;
1867 return NULL;
1868 }
1869
1870 struct ifaddr *
1871 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
1872 {
1873 struct ifaddr *ifa;
1874 int s;
1875
1876 s = pserialize_read_enter();
1877 ifa = ifa_ifwithladdr(addr);
1878 if (ifa != NULL)
1879 ifa_acquire(ifa, psref);
1880 pserialize_read_exit(s);
1881
1882 return ifa;
1883 }
1884
1885 /*
1886 * Find an interface using a specific address family
1887 */
1888 struct ifaddr *
1889 ifa_ifwithaf(int af)
1890 {
1891 struct ifnet *ifp;
1892 struct ifaddr *ifa = NULL;
1893 int s;
1894
1895 s = pserialize_read_enter();
1896 IFNET_READER_FOREACH(ifp) {
1897 if (if_is_deactivated(ifp))
1898 continue;
1899 IFADDR_READER_FOREACH(ifa, ifp) {
1900 if (ifa->ifa_addr->sa_family == af)
1901 goto out;
1902 }
1903 }
1904 out:
1905 pserialize_read_exit(s);
1906 return ifa;
1907 }
1908
1909 /*
1910 * Find an interface address specific to an interface best matching
1911 * a given address.
1912 */
1913 struct ifaddr *
1914 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1915 {
1916 struct ifaddr *ifa;
1917 const char *cp, *cp2, *cp3;
1918 const char *cplim;
1919 struct ifaddr *ifa_maybe = 0;
1920 u_int af = addr->sa_family;
1921
1922 if (if_is_deactivated(ifp))
1923 return NULL;
1924
1925 if (af >= AF_MAX)
1926 return NULL;
1927
1928 IFADDR_READER_FOREACH(ifa, ifp) {
1929 if (ifa->ifa_addr->sa_family != af)
1930 continue;
1931 ifa_maybe = ifa;
1932 if (ifa->ifa_netmask == NULL) {
1933 if (equal(addr, ifa->ifa_addr) ||
1934 (ifa->ifa_dstaddr &&
1935 equal(addr, ifa->ifa_dstaddr)))
1936 return ifa;
1937 continue;
1938 }
1939 cp = addr->sa_data;
1940 cp2 = ifa->ifa_addr->sa_data;
1941 cp3 = ifa->ifa_netmask->sa_data;
1942 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1943 for (; cp3 < cplim; cp3++) {
1944 if ((*cp++ ^ *cp2++) & *cp3)
1945 break;
1946 }
1947 if (cp3 == cplim)
1948 return ifa;
1949 }
1950 return ifa_maybe;
1951 }
1952
1953 struct ifaddr *
1954 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
1955 struct psref *psref)
1956 {
1957 struct ifaddr *ifa;
1958 int s;
1959
1960 s = pserialize_read_enter();
1961 ifa = ifaof_ifpforaddr(addr, ifp);
1962 if (ifa != NULL)
1963 ifa_acquire(ifa, psref);
1964 pserialize_read_exit(s);
1965
1966 return ifa;
1967 }
1968
1969 /*
1970 * Default action when installing a route with a Link Level gateway.
1971 * Lookup an appropriate real ifa to point to.
1972 * This should be moved to /sys/net/link.c eventually.
1973 */
1974 void
1975 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1976 {
1977 struct ifaddr *ifa;
1978 const struct sockaddr *dst;
1979 struct ifnet *ifp;
1980 struct psref psref;
1981
1982 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1983 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1984 return;
1985 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
1986 rt_replace_ifa(rt, ifa);
1987 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1988 ifa->ifa_rtrequest(cmd, rt, info);
1989 ifa_release(ifa, &psref);
1990 }
1991 }
1992
1993 /*
1994 * bitmask macros to manage a densely packed link_state change queue.
1995 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1996 * LINK_STATE_UP(2) we need 2 bits for each state change.
1997 * As a state change to store is 0, treat all bits set as an unset item.
1998 */
1999 #define LQ_ITEM_BITS 2
2000 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2001 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2002 #define LINK_STATE_UNSET LQ_ITEM_MASK
2003 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2004 #define LQ_STORE(q, i, v) \
2005 do { \
2006 (q) &= ~LQ_MASK((i)); \
2007 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2008 } while (0 /* CONSTCOND */)
2009 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2010 #define LQ_POP(q, v) \
2011 do { \
2012 (v) = LQ_ITEM((q), 0); \
2013 (q) >>= LQ_ITEM_BITS; \
2014 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2015 } while (0 /* CONSTCOND */)
2016 #define LQ_PUSH(q, v) \
2017 do { \
2018 (q) >>= LQ_ITEM_BITS; \
2019 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2020 } while (0 /* CONSTCOND */)
2021 #define LQ_FIND_UNSET(q, i) \
2022 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2023 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2024 break; \
2025 }
2026 /*
2027 * Handle a change in the interface link state and
2028 * queue notifications.
2029 */
2030 void
2031 if_link_state_change(struct ifnet *ifp, int link_state)
2032 {
2033 int s, idx;
2034
2035 KASSERTMSG(if_is_link_state_changeable(ifp),
2036 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2037 ifp->if_xname, ifp->if_extflags);
2038
2039 /* Ensure change is to a valid state */
2040 switch (link_state) {
2041 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2042 case LINK_STATE_DOWN: /* FALLTHROUGH */
2043 case LINK_STATE_UP:
2044 break;
2045 default:
2046 #ifdef DEBUG
2047 printf("%s: invalid link state %d\n",
2048 ifp->if_xname, link_state);
2049 #endif
2050 return;
2051 }
2052
2053 s = splnet();
2054
2055 /* Find the last unset event in the queue. */
2056 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2057
2058 /*
2059 * Ensure link_state doesn't match the last event in the queue.
2060 * ifp->if_link_state is not checked and set here because
2061 * that would present an inconsistent picture to the system.
2062 */
2063 if (idx != 0 &&
2064 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2065 goto out;
2066
2067 /* Handle queue overflow. */
2068 if (idx == LQ_MAX(ifp->if_link_queue)) {
2069 uint8_t lost;
2070
2071 /*
2072 * The DOWN state must be protected from being pushed off
2073 * the queue to ensure that userland will always be
2074 * in a sane state.
2075 * Because DOWN is protected, there is no need to protect
2076 * UNKNOWN.
2077 * It should be invalid to change from any other state to
2078 * UNKNOWN anyway ...
2079 */
2080 lost = LQ_ITEM(ifp->if_link_queue, 0);
2081 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2082 if (lost == LINK_STATE_DOWN) {
2083 lost = LQ_ITEM(ifp->if_link_queue, 0);
2084 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2085 }
2086 printf("%s: lost link state change %s\n",
2087 ifp->if_xname,
2088 lost == LINK_STATE_UP ? "UP" :
2089 lost == LINK_STATE_DOWN ? "DOWN" :
2090 "UNKNOWN");
2091 } else
2092 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2093
2094 softint_schedule(ifp->if_link_si);
2095
2096 out:
2097 splx(s);
2098 }
2099
2100 /*
2101 * Handle interface link state change notifications.
2102 * Must be called at splnet().
2103 */
2104 static void
2105 if_link_state_change0(struct ifnet *ifp, int link_state)
2106 {
2107 struct domain *dp;
2108
2109 /* Ensure the change is still valid. */
2110 if (ifp->if_link_state == link_state)
2111 return;
2112
2113 #ifdef DEBUG
2114 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2115 link_state == LINK_STATE_UP ? "UP" :
2116 link_state == LINK_STATE_DOWN ? "DOWN" :
2117 "UNKNOWN",
2118 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2119 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2120 "UNKNOWN");
2121 #endif
2122
2123 /*
2124 * When going from UNKNOWN to UP, we need to mark existing
2125 * addresses as tentative and restart DAD as we may have
2126 * erroneously not found a duplicate.
2127 *
2128 * This needs to happen before rt_ifmsg to avoid a race where
2129 * listeners would have an address and expect it to work right
2130 * away.
2131 */
2132 if (link_state == LINK_STATE_UP &&
2133 ifp->if_link_state == LINK_STATE_UNKNOWN)
2134 {
2135 DOMAIN_FOREACH(dp) {
2136 if (dp->dom_if_link_state_change != NULL)
2137 dp->dom_if_link_state_change(ifp,
2138 LINK_STATE_DOWN);
2139 }
2140 }
2141
2142 ifp->if_link_state = link_state;
2143
2144 /* Notify that the link state has changed. */
2145 rt_ifmsg(ifp);
2146
2147 #if NCARP > 0
2148 if (ifp->if_carp)
2149 carp_carpdev_state(ifp);
2150 #endif
2151
2152 DOMAIN_FOREACH(dp) {
2153 if (dp->dom_if_link_state_change != NULL)
2154 dp->dom_if_link_state_change(ifp, link_state);
2155 }
2156 }
2157
2158 /*
2159 * Process the interface link state change queue.
2160 */
2161 static void
2162 if_link_state_change_si(void *arg)
2163 {
2164 struct ifnet *ifp = arg;
2165 int s;
2166 uint8_t state;
2167
2168 s = splnet();
2169
2170 /* Pop a link state change from the queue and process it. */
2171 LQ_POP(ifp->if_link_queue, state);
2172 if_link_state_change0(ifp, state);
2173
2174 /* If there is a link state change to come, schedule it. */
2175 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2176 softint_schedule(ifp->if_link_si);
2177
2178 splx(s);
2179 }
2180
2181 /*
2182 * Default action when installing a local route on a point-to-point
2183 * interface.
2184 */
2185 void
2186 p2p_rtrequest(int req, struct rtentry *rt,
2187 __unused const struct rt_addrinfo *info)
2188 {
2189 struct ifnet *ifp = rt->rt_ifp;
2190 struct ifaddr *ifa, *lo0ifa;
2191 int s = pserialize_read_enter();
2192
2193 switch (req) {
2194 case RTM_ADD:
2195 if ((rt->rt_flags & RTF_LOCAL) == 0)
2196 break;
2197
2198 rt->rt_ifp = lo0ifp;
2199
2200 IFADDR_READER_FOREACH(ifa, ifp) {
2201 if (equal(rt_getkey(rt), ifa->ifa_addr))
2202 break;
2203 }
2204 if (ifa == NULL)
2205 break;
2206
2207 /*
2208 * Ensure lo0 has an address of the same family.
2209 */
2210 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2211 if (lo0ifa->ifa_addr->sa_family ==
2212 ifa->ifa_addr->sa_family)
2213 break;
2214 }
2215 if (lo0ifa == NULL)
2216 break;
2217
2218 /*
2219 * Make sure to set rt->rt_ifa to the interface
2220 * address we are using, otherwise we will have trouble
2221 * with source address selection.
2222 */
2223 if (ifa != rt->rt_ifa)
2224 rt_replace_ifa(rt, ifa);
2225 break;
2226 case RTM_DELETE:
2227 default:
2228 break;
2229 }
2230 pserialize_read_exit(s);
2231 }
2232
2233 /*
2234 * Mark an interface down and notify protocols of
2235 * the transition.
2236 * NOTE: must be called at splsoftnet or equivalent.
2237 */
2238 void
2239 if_down(struct ifnet *ifp)
2240 {
2241 struct ifaddr *ifa;
2242 struct domain *dp;
2243 int s, bound;
2244 struct psref psref;
2245
2246 ifp->if_flags &= ~IFF_UP;
2247 nanotime(&ifp->if_lastchange);
2248
2249 bound = curlwp_bind();
2250 s = pserialize_read_enter();
2251 IFADDR_READER_FOREACH(ifa, ifp) {
2252 ifa_acquire(ifa, &psref);
2253 pserialize_read_exit(s);
2254
2255 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2256
2257 s = pserialize_read_enter();
2258 ifa_release(ifa, &psref);
2259 }
2260 pserialize_read_exit(s);
2261 curlwp_bindx(bound);
2262
2263 IFQ_PURGE(&ifp->if_snd);
2264 #if NCARP > 0
2265 if (ifp->if_carp)
2266 carp_carpdev_state(ifp);
2267 #endif
2268 rt_ifmsg(ifp);
2269 DOMAIN_FOREACH(dp) {
2270 if (dp->dom_if_down)
2271 dp->dom_if_down(ifp);
2272 }
2273 }
2274
2275 /*
2276 * Mark an interface up and notify protocols of
2277 * the transition.
2278 * NOTE: must be called at splsoftnet or equivalent.
2279 */
2280 void
2281 if_up(struct ifnet *ifp)
2282 {
2283 #ifdef notyet
2284 struct ifaddr *ifa;
2285 #endif
2286 struct domain *dp;
2287
2288 ifp->if_flags |= IFF_UP;
2289 nanotime(&ifp->if_lastchange);
2290 #ifdef notyet
2291 /* this has no effect on IP, and will kill all ISO connections XXX */
2292 IFADDR_READER_FOREACH(ifa, ifp)
2293 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2294 #endif
2295 #if NCARP > 0
2296 if (ifp->if_carp)
2297 carp_carpdev_state(ifp);
2298 #endif
2299 rt_ifmsg(ifp);
2300 DOMAIN_FOREACH(dp) {
2301 if (dp->dom_if_up)
2302 dp->dom_if_up(ifp);
2303 }
2304 }
2305
2306 /*
2307 * Handle interface slowtimo timer routine. Called
2308 * from softclock, we decrement timer (if set) and
2309 * call the appropriate interface routine on expiration.
2310 */
2311 static void
2312 if_slowtimo(void *arg)
2313 {
2314 void (*slowtimo)(struct ifnet *);
2315 struct ifnet *ifp = arg;
2316 int s;
2317
2318 slowtimo = ifp->if_slowtimo;
2319 if (__predict_false(slowtimo == NULL))
2320 return;
2321
2322 s = splnet();
2323 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2324 (*slowtimo)(ifp);
2325
2326 splx(s);
2327
2328 if (__predict_true(ifp->if_slowtimo != NULL))
2329 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2330 }
2331
2332 /*
2333 * Set/clear promiscuous mode on interface ifp based on the truth value
2334 * of pswitch. The calls are reference counted so that only the first
2335 * "on" request actually has an effect, as does the final "off" request.
2336 * Results are undefined if the "off" and "on" requests are not matched.
2337 */
2338 int
2339 ifpromisc(struct ifnet *ifp, int pswitch)
2340 {
2341 int pcount, ret;
2342 short nflags;
2343
2344 pcount = ifp->if_pcount;
2345 if (pswitch) {
2346 /*
2347 * Allow the device to be "placed" into promiscuous
2348 * mode even if it is not configured up. It will
2349 * consult IFF_PROMISC when it is brought up.
2350 */
2351 if (ifp->if_pcount++ != 0)
2352 return 0;
2353 nflags = ifp->if_flags | IFF_PROMISC;
2354 } else {
2355 if (--ifp->if_pcount > 0)
2356 return 0;
2357 nflags = ifp->if_flags & ~IFF_PROMISC;
2358 }
2359 ret = if_flags_set(ifp, nflags);
2360 /* Restore interface state if not successful. */
2361 if (ret != 0) {
2362 ifp->if_pcount = pcount;
2363 }
2364 return ret;
2365 }
2366
2367 /*
2368 * Map interface name to
2369 * interface structure pointer.
2370 */
2371 struct ifnet *
2372 ifunit(const char *name)
2373 {
2374 struct ifnet *ifp;
2375 const char *cp = name;
2376 u_int unit = 0;
2377 u_int i;
2378 int s;
2379
2380 /*
2381 * If the entire name is a number, treat it as an ifindex.
2382 */
2383 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2384 unit = unit * 10 + (*cp - '0');
2385 }
2386
2387 /*
2388 * If the number took all of the name, then it's a valid ifindex.
2389 */
2390 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2391 if (unit >= if_indexlim)
2392 return NULL;
2393 ifp = ifindex2ifnet[unit];
2394 if (ifp == NULL || if_is_deactivated(ifp))
2395 return NULL;
2396 return ifp;
2397 }
2398
2399 ifp = NULL;
2400 s = pserialize_read_enter();
2401 IFNET_READER_FOREACH(ifp) {
2402 if (if_is_deactivated(ifp))
2403 continue;
2404 if (strcmp(ifp->if_xname, name) == 0)
2405 goto out;
2406 }
2407 out:
2408 pserialize_read_exit(s);
2409 return ifp;
2410 }
2411
2412 /*
2413 * Get a reference of an ifnet object by an interface name.
2414 * The returned reference is protected by psref(9). The caller
2415 * must release a returned reference by if_put after use.
2416 */
2417 struct ifnet *
2418 if_get(const char *name, struct psref *psref)
2419 {
2420 struct ifnet *ifp;
2421 const char *cp = name;
2422 u_int unit = 0;
2423 u_int i;
2424 int s;
2425
2426 /*
2427 * If the entire name is a number, treat it as an ifindex.
2428 */
2429 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2430 unit = unit * 10 + (*cp - '0');
2431 }
2432
2433 /*
2434 * If the number took all of the name, then it's a valid ifindex.
2435 */
2436 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2437 if (unit >= if_indexlim)
2438 return NULL;
2439 ifp = ifindex2ifnet[unit];
2440 if (ifp == NULL || if_is_deactivated(ifp))
2441 return NULL;
2442 return ifp;
2443 }
2444
2445 ifp = NULL;
2446 s = pserialize_read_enter();
2447 IFNET_READER_FOREACH(ifp) {
2448 if (if_is_deactivated(ifp))
2449 continue;
2450 if (strcmp(ifp->if_xname, name) == 0) {
2451 psref_acquire(psref, &ifp->if_psref,
2452 ifnet_psref_class);
2453 goto out;
2454 }
2455 }
2456 out:
2457 pserialize_read_exit(s);
2458 return ifp;
2459 }
2460
2461 /*
2462 * Release a reference of an ifnet object given by if_get or
2463 * if_get_byindex.
2464 */
2465 void
2466 if_put(const struct ifnet *ifp, struct psref *psref)
2467 {
2468
2469 if (ifp == NULL)
2470 return;
2471
2472 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2473 }
2474
2475 ifnet_t *
2476 if_byindex(u_int idx)
2477 {
2478 ifnet_t *ifp;
2479
2480 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2481 if (ifp != NULL && if_is_deactivated(ifp))
2482 ifp = NULL;
2483 return ifp;
2484 }
2485
2486 /*
2487 * Get a reference of an ifnet object by an interface index.
2488 * The returned reference is protected by psref(9). The caller
2489 * must release a returned reference by if_put after use.
2490 */
2491 ifnet_t *
2492 if_get_byindex(u_int idx, struct psref *psref)
2493 {
2494 ifnet_t *ifp;
2495 int s;
2496
2497 s = pserialize_read_enter();
2498 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2499 if (ifp != NULL && if_is_deactivated(ifp))
2500 ifp = NULL;
2501 if (__predict_true(ifp != NULL))
2502 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2503 pserialize_read_exit(s);
2504
2505 return ifp;
2506 }
2507
2508 /*
2509 * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2510 * for example the ifp is already held or some other object is held which
2511 * guarantes the ifp to not be freed indirectly.
2512 */
2513 void
2514 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2515 {
2516
2517 KASSERT(ifp->if_index != 0);
2518 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2519 }
2520
2521 bool
2522 if_held(struct ifnet *ifp)
2523 {
2524
2525 return psref_held(&ifp->if_psref, ifnet_psref_class);
2526 }
2527
2528
2529 /* common */
2530 int
2531 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2532 {
2533 int s;
2534 struct ifreq *ifr;
2535 struct ifcapreq *ifcr;
2536 struct ifdatareq *ifdr;
2537
2538 switch (cmd) {
2539 case SIOCSIFCAP:
2540 ifcr = data;
2541 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2542 return EINVAL;
2543
2544 if (ifcr->ifcr_capenable == ifp->if_capenable)
2545 return 0;
2546
2547 ifp->if_capenable = ifcr->ifcr_capenable;
2548
2549 /* Pre-compute the checksum flags mask. */
2550 ifp->if_csum_flags_tx = 0;
2551 ifp->if_csum_flags_rx = 0;
2552 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2553 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2554 }
2555 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2556 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2557 }
2558
2559 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2560 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2561 }
2562 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2563 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2564 }
2565
2566 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2567 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2568 }
2569 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2570 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2571 }
2572
2573 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2574 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2575 }
2576 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2577 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2578 }
2579
2580 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2581 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2582 }
2583 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2584 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2585 }
2586 if (ifp->if_flags & IFF_UP)
2587 return ENETRESET;
2588 return 0;
2589 case SIOCSIFFLAGS:
2590 ifr = data;
2591 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2592 s = splnet();
2593 if_down(ifp);
2594 splx(s);
2595 }
2596 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2597 s = splnet();
2598 if_up(ifp);
2599 splx(s);
2600 }
2601 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2602 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2603 break;
2604 case SIOCGIFFLAGS:
2605 ifr = data;
2606 ifr->ifr_flags = ifp->if_flags;
2607 break;
2608
2609 case SIOCGIFMETRIC:
2610 ifr = data;
2611 ifr->ifr_metric = ifp->if_metric;
2612 break;
2613
2614 case SIOCGIFMTU:
2615 ifr = data;
2616 ifr->ifr_mtu = ifp->if_mtu;
2617 break;
2618
2619 case SIOCGIFDLT:
2620 ifr = data;
2621 ifr->ifr_dlt = ifp->if_dlt;
2622 break;
2623
2624 case SIOCGIFCAP:
2625 ifcr = data;
2626 ifcr->ifcr_capabilities = ifp->if_capabilities;
2627 ifcr->ifcr_capenable = ifp->if_capenable;
2628 break;
2629
2630 case SIOCSIFMETRIC:
2631 ifr = data;
2632 ifp->if_metric = ifr->ifr_metric;
2633 break;
2634
2635 case SIOCGIFDATA:
2636 ifdr = data;
2637 ifdr->ifdr_data = ifp->if_data;
2638 break;
2639
2640 case SIOCGIFINDEX:
2641 ifr = data;
2642 ifr->ifr_index = ifp->if_index;
2643 break;
2644
2645 case SIOCZIFDATA:
2646 ifdr = data;
2647 ifdr->ifdr_data = ifp->if_data;
2648 /*
2649 * Assumes that the volatile counters that can be
2650 * zero'ed are at the end of if_data.
2651 */
2652 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2653 offsetof(struct if_data, ifi_ipackets));
2654 /*
2655 * The memset() clears to the bottm of if_data. In the area,
2656 * if_lastchange is included. Please be careful if new entry
2657 * will be added into if_data or rewite this.
2658 *
2659 * And also, update if_lastchnage.
2660 */
2661 getnanotime(&ifp->if_lastchange);
2662 break;
2663 case SIOCSIFMTU:
2664 ifr = data;
2665 if (ifp->if_mtu == ifr->ifr_mtu)
2666 break;
2667 ifp->if_mtu = ifr->ifr_mtu;
2668 /*
2669 * If the link MTU changed, do network layer specific procedure.
2670 */
2671 #ifdef INET6
2672 if (in6_present)
2673 nd6_setmtu(ifp);
2674 #endif
2675 return ENETRESET;
2676 default:
2677 return ENOTTY;
2678 }
2679 return 0;
2680 }
2681
2682 int
2683 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2684 {
2685 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2686 struct ifaddr *ifa;
2687 const struct sockaddr *any, *sa;
2688 union {
2689 struct sockaddr sa;
2690 struct sockaddr_storage ss;
2691 } u, v;
2692 int s, error = 0;
2693
2694 switch (cmd) {
2695 case SIOCSIFADDRPREF:
2696 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2697 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2698 NULL) != 0)
2699 return EPERM;
2700 case SIOCGIFADDRPREF:
2701 break;
2702 default:
2703 return EOPNOTSUPP;
2704 }
2705
2706 /* sanity checks */
2707 if (data == NULL || ifp == NULL) {
2708 panic("invalid argument to %s", __func__);
2709 /*NOTREACHED*/
2710 }
2711
2712 /* address must be specified on ADD and DELETE */
2713 sa = sstocsa(&ifap->ifap_addr);
2714 if (sa->sa_family != sofamily(so))
2715 return EINVAL;
2716 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2717 return EINVAL;
2718
2719 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2720
2721 s = pserialize_read_enter();
2722 IFADDR_READER_FOREACH(ifa, ifp) {
2723 if (ifa->ifa_addr->sa_family != sa->sa_family)
2724 continue;
2725 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2726 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2727 break;
2728 }
2729 if (ifa == NULL) {
2730 error = EADDRNOTAVAIL;
2731 goto out;
2732 }
2733
2734 switch (cmd) {
2735 case SIOCSIFADDRPREF:
2736 ifa->ifa_preference = ifap->ifap_preference;
2737 goto out;
2738 case SIOCGIFADDRPREF:
2739 /* fill in the if_laddrreq structure */
2740 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2741 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2742 ifap->ifap_preference = ifa->ifa_preference;
2743 goto out;
2744 default:
2745 error = EOPNOTSUPP;
2746 }
2747 out:
2748 pserialize_read_exit(s);
2749 return error;
2750 }
2751
2752 /*
2753 * Interface ioctls.
2754 */
2755 static int
2756 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2757 {
2758 struct ifnet *ifp;
2759 struct ifreq *ifr;
2760 int error = 0;
2761 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2762 u_long ocmd = cmd;
2763 #endif
2764 short oif_flags;
2765 #ifdef COMPAT_OIFREQ
2766 struct ifreq ifrb;
2767 struct oifreq *oifr = NULL;
2768 #endif
2769 int r;
2770 struct psref psref;
2771 int bound;
2772
2773 switch (cmd) {
2774 #ifdef COMPAT_OIFREQ
2775 case OSIOCGIFCONF:
2776 case OOSIOCGIFCONF:
2777 return compat_ifconf(cmd, data);
2778 #endif
2779 #ifdef COMPAT_OIFDATA
2780 case OSIOCGIFDATA:
2781 case OSIOCZIFDATA:
2782 return compat_ifdatareq(l, cmd, data);
2783 #endif
2784 case SIOCGIFCONF:
2785 return ifconf(cmd, data);
2786 case SIOCINITIFADDR:
2787 return EPERM;
2788 }
2789
2790 #ifdef COMPAT_OIFREQ
2791 cmd = (*vec_compat_cvtcmd)(cmd);
2792 if (cmd != ocmd) {
2793 oifr = data;
2794 data = ifr = &ifrb;
2795 ifreqo2n(oifr, ifr);
2796 } else
2797 #endif
2798 ifr = data;
2799
2800 switch (cmd) {
2801 case SIOCIFCREATE:
2802 case SIOCIFDESTROY:
2803 bound = curlwp_bind();
2804 if (l != NULL) {
2805 ifp = if_get(ifr->ifr_name, &psref);
2806 error = kauth_authorize_network(l->l_cred,
2807 KAUTH_NETWORK_INTERFACE,
2808 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2809 (void *)cmd, NULL);
2810 if (ifp != NULL)
2811 if_put(ifp, &psref);
2812 if (error != 0) {
2813 curlwp_bindx(bound);
2814 return error;
2815 }
2816 }
2817 mutex_enter(&if_clone_mtx);
2818 r = (cmd == SIOCIFCREATE) ?
2819 if_clone_create(ifr->ifr_name) :
2820 if_clone_destroy(ifr->ifr_name);
2821 mutex_exit(&if_clone_mtx);
2822 curlwp_bindx(bound);
2823 return r;
2824
2825 case SIOCIFGCLONERS:
2826 {
2827 struct if_clonereq *req = (struct if_clonereq *)data;
2828 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2829 &req->ifcr_total);
2830 }
2831 }
2832
2833 bound = curlwp_bind();
2834 ifp = if_get(ifr->ifr_name, &psref);
2835 if (ifp == NULL) {
2836 curlwp_bindx(bound);
2837 return ENXIO;
2838 }
2839
2840 switch (cmd) {
2841 case SIOCALIFADDR:
2842 case SIOCDLIFADDR:
2843 case SIOCSIFADDRPREF:
2844 case SIOCSIFFLAGS:
2845 case SIOCSIFCAP:
2846 case SIOCSIFMETRIC:
2847 case SIOCZIFDATA:
2848 case SIOCSIFMTU:
2849 case SIOCSIFPHYADDR:
2850 case SIOCDIFPHYADDR:
2851 #ifdef INET6
2852 case SIOCSIFPHYADDR_IN6:
2853 #endif
2854 case SIOCSLIFPHYADDR:
2855 case SIOCADDMULTI:
2856 case SIOCDELMULTI:
2857 case SIOCSIFMEDIA:
2858 case SIOCSDRVSPEC:
2859 case SIOCG80211:
2860 case SIOCS80211:
2861 case SIOCS80211NWID:
2862 case SIOCS80211NWKEY:
2863 case SIOCS80211POWER:
2864 case SIOCS80211BSSID:
2865 case SIOCS80211CHANNEL:
2866 case SIOCSLINKSTR:
2867 if (l != NULL) {
2868 error = kauth_authorize_network(l->l_cred,
2869 KAUTH_NETWORK_INTERFACE,
2870 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2871 (void *)cmd, NULL);
2872 if (error != 0)
2873 goto out;
2874 }
2875 }
2876
2877 oif_flags = ifp->if_flags;
2878
2879 mutex_enter(ifp->if_ioctl_lock);
2880
2881 error = (*ifp->if_ioctl)(ifp, cmd, data);
2882 if (error != ENOTTY)
2883 ;
2884 else if (so->so_proto == NULL)
2885 error = EOPNOTSUPP;
2886 else {
2887 #ifdef COMPAT_OSOCK
2888 if (vec_compat_ifioctl != NULL)
2889 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
2890 else
2891 #endif
2892 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2893 cmd, data, ifp);
2894 }
2895
2896 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2897 if ((ifp->if_flags & IFF_UP) != 0) {
2898 int s = splnet();
2899 if_up(ifp);
2900 splx(s);
2901 }
2902 }
2903 #ifdef COMPAT_OIFREQ
2904 if (cmd != ocmd)
2905 ifreqn2o(oifr, ifr);
2906 #endif
2907
2908 mutex_exit(ifp->if_ioctl_lock);
2909 out:
2910 if_put(ifp, &psref);
2911 curlwp_bindx(bound);
2912 return error;
2913 }
2914
2915 /*
2916 * Return interface configuration
2917 * of system. List may be used
2918 * in later ioctl's (above) to get
2919 * other information.
2920 *
2921 * Each record is a struct ifreq. Before the addition of
2922 * sockaddr_storage, the API rule was that sockaddr flavors that did
2923 * not fit would extend beyond the struct ifreq, with the next struct
2924 * ifreq starting sa_len beyond the struct sockaddr. Because the
2925 * union in struct ifreq includes struct sockaddr_storage, every kind
2926 * of sockaddr must fit. Thus, there are no longer any overlength
2927 * records.
2928 *
2929 * Records are added to the user buffer if they fit, and ifc_len is
2930 * adjusted to the length that was written. Thus, the user is only
2931 * assured of getting the complete list if ifc_len on return is at
2932 * least sizeof(struct ifreq) less than it was on entry.
2933 *
2934 * If the user buffer pointer is NULL, this routine copies no data and
2935 * returns the amount of space that would be needed.
2936 *
2937 * Invariants:
2938 * ifrp points to the next part of the user's buffer to be used. If
2939 * ifrp != NULL, space holds the number of bytes remaining that we may
2940 * write at ifrp. Otherwise, space holds the number of bytes that
2941 * would have been written had there been adequate space.
2942 */
2943 /*ARGSUSED*/
2944 static int
2945 ifconf(u_long cmd, void *data)
2946 {
2947 struct ifconf *ifc = (struct ifconf *)data;
2948 struct ifnet *ifp;
2949 struct ifaddr *ifa;
2950 struct ifreq ifr, *ifrp = NULL;
2951 int space = 0, error = 0;
2952 const int sz = (int)sizeof(struct ifreq);
2953 const bool docopy = ifc->ifc_req != NULL;
2954 int s;
2955 int bound;
2956 struct psref psref;
2957
2958 if (docopy) {
2959 space = ifc->ifc_len;
2960 ifrp = ifc->ifc_req;
2961 }
2962
2963 bound = curlwp_bind();
2964 s = pserialize_read_enter();
2965 IFNET_READER_FOREACH(ifp) {
2966 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2967 pserialize_read_exit(s);
2968
2969 (void)strncpy(ifr.ifr_name, ifp->if_xname,
2970 sizeof(ifr.ifr_name));
2971 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2972 error = ENAMETOOLONG;
2973 goto release_exit;
2974 }
2975 if (IFADDR_READER_EMPTY(ifp)) {
2976 /* Interface with no addresses - send zero sockaddr. */
2977 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2978 if (!docopy) {
2979 space += sz;
2980 continue;
2981 }
2982 if (space >= sz) {
2983 error = copyout(&ifr, ifrp, sz);
2984 if (error != 0)
2985 goto release_exit;
2986 ifrp++;
2987 space -= sz;
2988 }
2989 }
2990
2991 IFADDR_READER_FOREACH(ifa, ifp) {
2992 struct sockaddr *sa = ifa->ifa_addr;
2993 /* all sockaddrs must fit in sockaddr_storage */
2994 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2995
2996 if (!docopy) {
2997 space += sz;
2998 continue;
2999 }
3000 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3001 if (space >= sz) {
3002 error = copyout(&ifr, ifrp, sz);
3003 if (error != 0)
3004 goto release_exit;
3005 ifrp++; space -= sz;
3006 }
3007 }
3008
3009 s = pserialize_read_enter();
3010 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3011 }
3012 pserialize_read_exit(s);
3013 curlwp_bindx(bound);
3014
3015 if (docopy) {
3016 KASSERT(0 <= space && space <= ifc->ifc_len);
3017 ifc->ifc_len -= space;
3018 } else {
3019 KASSERT(space >= 0);
3020 ifc->ifc_len = space;
3021 }
3022 return (0);
3023
3024 release_exit:
3025 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3026 curlwp_bindx(bound);
3027 return error;
3028 }
3029
3030 int
3031 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3032 {
3033 uint8_t len;
3034 #ifdef COMPAT_OIFREQ
3035 struct ifreq ifrb;
3036 struct oifreq *oifr = NULL;
3037 u_long ocmd = cmd;
3038 cmd = (*vec_compat_cvtcmd)(cmd);
3039 if (cmd != ocmd) {
3040 oifr = (struct oifreq *)(void *)ifr;
3041 ifr = &ifrb;
3042 ifreqo2n(oifr, ifr);
3043 len = sizeof(oifr->ifr_addr);
3044 } else
3045 #endif
3046 len = sizeof(ifr->ifr_ifru.ifru_space);
3047
3048 if (len < sa->sa_len)
3049 return EFBIG;
3050
3051 memset(&ifr->ifr_addr, 0, len);
3052 sockaddr_copy(&ifr->ifr_addr, len, sa);
3053
3054 #ifdef COMPAT_OIFREQ
3055 if (cmd != ocmd)
3056 ifreqn2o(oifr, ifr);
3057 #endif
3058 return 0;
3059 }
3060
3061 /*
3062 * wrapper function for the drivers which doesn't have if_transmit().
3063 */
3064 static int
3065 if_transmit(struct ifnet *ifp, struct mbuf *m)
3066 {
3067 int s, error;
3068
3069 s = splnet();
3070
3071 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3072 if (error != 0) {
3073 /* mbuf is already freed */
3074 goto out;
3075 }
3076
3077 ifp->if_obytes += m->m_pkthdr.len;;
3078 if (m->m_flags & M_MCAST)
3079 ifp->if_omcasts++;
3080
3081 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3082 if_start_lock(ifp);
3083 out:
3084 splx(s);
3085
3086 return error;
3087 }
3088
3089 int
3090 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3091 {
3092 int error;
3093
3094 #ifdef ALTQ
3095 KERNEL_LOCK(1, NULL);
3096 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3097 error = if_transmit(ifp, m);
3098 KERNEL_UNLOCK_ONE(NULL);
3099 } else {
3100 KERNEL_UNLOCK_ONE(NULL);
3101 error = (*ifp->if_transmit)(ifp, m);
3102 }
3103 #else /* !ALTQ */
3104 error = (*ifp->if_transmit)(ifp, m);
3105 #endif /* !ALTQ */
3106
3107 return error;
3108 }
3109
3110 /*
3111 * Queue message on interface, and start output if interface
3112 * not yet active.
3113 */
3114 int
3115 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3116 {
3117
3118 return if_transmit_lock(ifp, m);
3119 }
3120
3121 /*
3122 * Queue message on interface, possibly using a second fast queue
3123 */
3124 int
3125 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3126 {
3127 int error = 0;
3128
3129 if (ifq != NULL
3130 #ifdef ALTQ
3131 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3132 #endif
3133 ) {
3134 if (IF_QFULL(ifq)) {
3135 IF_DROP(&ifp->if_snd);
3136 m_freem(m);
3137 if (error == 0)
3138 error = ENOBUFS;
3139 } else
3140 IF_ENQUEUE(ifq, m);
3141 } else
3142 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3143 if (error != 0) {
3144 ++ifp->if_oerrors;
3145 return error;
3146 }
3147 return 0;
3148 }
3149
3150 int
3151 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3152 {
3153 int rc;
3154
3155 if (ifp->if_initaddr != NULL)
3156 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3157 else if (src ||
3158 /* FIXME: may not hold if_ioctl_lock */
3159 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3160 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3161
3162 return rc;
3163 }
3164
3165 int
3166 if_do_dad(struct ifnet *ifp)
3167 {
3168 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3169 return 0;
3170
3171 switch (ifp->if_type) {
3172 case IFT_FAITH:
3173 /*
3174 * These interfaces do not have the IFF_LOOPBACK flag,
3175 * but loop packets back. We do not have to do DAD on such
3176 * interfaces. We should even omit it, because loop-backed
3177 * responses would confuse the DAD procedure.
3178 */
3179 return 0;
3180 default:
3181 /*
3182 * Our DAD routine requires the interface up and running.
3183 * However, some interfaces can be up before the RUNNING
3184 * status. Additionaly, users may try to assign addresses
3185 * before the interface becomes up (or running).
3186 * We simply skip DAD in such a case as a work around.
3187 * XXX: we should rather mark "tentative" on such addresses,
3188 * and do DAD after the interface becomes ready.
3189 */
3190 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3191 (IFF_UP|IFF_RUNNING))
3192 return 0;
3193
3194 return 1;
3195 }
3196 }
3197
3198 int
3199 if_flags_set(ifnet_t *ifp, const short flags)
3200 {
3201 int rc;
3202
3203 if (ifp->if_setflags != NULL)
3204 rc = (*ifp->if_setflags)(ifp, flags);
3205 else {
3206 short cantflags, chgdflags;
3207 struct ifreq ifr;
3208
3209 chgdflags = ifp->if_flags ^ flags;
3210 cantflags = chgdflags & IFF_CANTCHANGE;
3211
3212 if (cantflags != 0)
3213 ifp->if_flags ^= cantflags;
3214
3215 /* Traditionally, we do not call if_ioctl after
3216 * setting/clearing only IFF_PROMISC if the interface
3217 * isn't IFF_UP. Uphold that tradition.
3218 */
3219 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3220 return 0;
3221
3222 memset(&ifr, 0, sizeof(ifr));
3223
3224 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3225 /* FIXME: may not hold if_ioctl_lock */
3226 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3227
3228 if (rc != 0 && cantflags != 0)
3229 ifp->if_flags ^= cantflags;
3230 }
3231
3232 return rc;
3233 }
3234
3235 int
3236 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3237 {
3238 int rc;
3239 struct ifreq ifr;
3240
3241 if (ifp->if_mcastop != NULL)
3242 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3243 else {
3244 ifreq_setaddr(cmd, &ifr, sa);
3245 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3246 }
3247
3248 return rc;
3249 }
3250
3251 static void
3252 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3253 struct ifaltq *ifq)
3254 {
3255 const struct sysctlnode *cnode, *rnode;
3256
3257 if (sysctl_createv(clog, 0, NULL, &rnode,
3258 CTLFLAG_PERMANENT,
3259 CTLTYPE_NODE, "interfaces",
3260 SYSCTL_DESCR("Per-interface controls"),
3261 NULL, 0, NULL, 0,
3262 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3263 goto bad;
3264
3265 if (sysctl_createv(clog, 0, &rnode, &rnode,
3266 CTLFLAG_PERMANENT,
3267 CTLTYPE_NODE, ifname,
3268 SYSCTL_DESCR("Interface controls"),
3269 NULL, 0, NULL, 0,
3270 CTL_CREATE, CTL_EOL) != 0)
3271 goto bad;
3272
3273 if (sysctl_createv(clog, 0, &rnode, &rnode,
3274 CTLFLAG_PERMANENT,
3275 CTLTYPE_NODE, "sndq",
3276 SYSCTL_DESCR("Interface output queue controls"),
3277 NULL, 0, NULL, 0,
3278 CTL_CREATE, CTL_EOL) != 0)
3279 goto bad;
3280
3281 if (sysctl_createv(clog, 0, &rnode, &cnode,
3282 CTLFLAG_PERMANENT,
3283 CTLTYPE_INT, "len",
3284 SYSCTL_DESCR("Current output queue length"),
3285 NULL, 0, &ifq->ifq_len, 0,
3286 CTL_CREATE, CTL_EOL) != 0)
3287 goto bad;
3288
3289 if (sysctl_createv(clog, 0, &rnode, &cnode,
3290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3291 CTLTYPE_INT, "maxlen",
3292 SYSCTL_DESCR("Maximum allowed output queue length"),
3293 NULL, 0, &ifq->ifq_maxlen, 0,
3294 CTL_CREATE, CTL_EOL) != 0)
3295 goto bad;
3296
3297 if (sysctl_createv(clog, 0, &rnode, &cnode,
3298 CTLFLAG_PERMANENT,
3299 CTLTYPE_INT, "drops",
3300 SYSCTL_DESCR("Packets dropped due to full output queue"),
3301 NULL, 0, &ifq->ifq_drops, 0,
3302 CTL_CREATE, CTL_EOL) != 0)
3303 goto bad;
3304
3305 return;
3306 bad:
3307 printf("%s: could not attach sysctl nodes\n", ifname);
3308 return;
3309 }
3310
3311 #if defined(INET) || defined(INET6)
3312
3313 #define SYSCTL_NET_PKTQ(q, cn, c) \
3314 static int \
3315 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3316 { \
3317 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3318 }
3319
3320 #if defined(INET)
3321 static int
3322 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3323 {
3324 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3325 }
3326 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3327 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3328 #endif
3329
3330 #if defined(INET6)
3331 static int
3332 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3333 {
3334 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3335 }
3336 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3337 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3338 #endif
3339
3340 static void
3341 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3342 {
3343 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3344 const char *pfname = NULL, *ipname = NULL;
3345 int ipn = 0, qid = 0;
3346
3347 switch (pf) {
3348 #if defined(INET)
3349 case PF_INET:
3350 len_func = sysctl_net_ip_pktq_items;
3351 maxlen_func = sysctl_net_ip_pktq_maxlen;
3352 drops_func = sysctl_net_ip_pktq_drops;
3353 pfname = "inet", ipn = IPPROTO_IP;
3354 ipname = "ip", qid = IPCTL_IFQ;
3355 break;
3356 #endif
3357 #if defined(INET6)
3358 case PF_INET6:
3359 len_func = sysctl_net_ip6_pktq_items;
3360 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3361 drops_func = sysctl_net_ip6_pktq_drops;
3362 pfname = "inet6", ipn = IPPROTO_IPV6;
3363 ipname = "ip6", qid = IPV6CTL_IFQ;
3364 break;
3365 #endif
3366 default:
3367 KASSERT(false);
3368 }
3369
3370 sysctl_createv(clog, 0, NULL, NULL,
3371 CTLFLAG_PERMANENT,
3372 CTLTYPE_NODE, pfname, NULL,
3373 NULL, 0, NULL, 0,
3374 CTL_NET, pf, CTL_EOL);
3375 sysctl_createv(clog, 0, NULL, NULL,
3376 CTLFLAG_PERMANENT,
3377 CTLTYPE_NODE, ipname, NULL,
3378 NULL, 0, NULL, 0,
3379 CTL_NET, pf, ipn, CTL_EOL);
3380 sysctl_createv(clog, 0, NULL, NULL,
3381 CTLFLAG_PERMANENT,
3382 CTLTYPE_NODE, "ifq",
3383 SYSCTL_DESCR("Protocol input queue controls"),
3384 NULL, 0, NULL, 0,
3385 CTL_NET, pf, ipn, qid, CTL_EOL);
3386
3387 sysctl_createv(clog, 0, NULL, NULL,
3388 CTLFLAG_PERMANENT,
3389 CTLTYPE_INT, "len",
3390 SYSCTL_DESCR("Current input queue length"),
3391 len_func, 0, NULL, 0,
3392 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3393 sysctl_createv(clog, 0, NULL, NULL,
3394 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3395 CTLTYPE_INT, "maxlen",
3396 SYSCTL_DESCR("Maximum allowed input queue length"),
3397 maxlen_func, 0, NULL, 0,
3398 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3399 sysctl_createv(clog, 0, NULL, NULL,
3400 CTLFLAG_PERMANENT,
3401 CTLTYPE_INT, "drops",
3402 SYSCTL_DESCR("Packets dropped due to full input queue"),
3403 drops_func, 0, NULL, 0,
3404 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3405 }
3406 #endif /* INET || INET6 */
3407
3408 static int
3409 if_sdl_sysctl(SYSCTLFN_ARGS)
3410 {
3411 struct ifnet *ifp;
3412 const struct sockaddr_dl *sdl;
3413 struct psref psref;
3414 int error = 0;
3415 int bound;
3416
3417 if (namelen != 1)
3418 return EINVAL;
3419
3420 bound = curlwp_bind();
3421 ifp = if_get_byindex(name[0], &psref);
3422 if (ifp == NULL) {
3423 error = ENODEV;
3424 goto out0;
3425 }
3426
3427 sdl = ifp->if_sadl;
3428 if (sdl == NULL) {
3429 *oldlenp = 0;
3430 goto out1;
3431 }
3432
3433 if (oldp == NULL) {
3434 *oldlenp = sdl->sdl_alen;
3435 goto out1;
3436 }
3437
3438 if (*oldlenp >= sdl->sdl_alen)
3439 *oldlenp = sdl->sdl_alen;
3440 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3441 out1:
3442 if_put(ifp, &psref);
3443 out0:
3444 curlwp_bindx(bound);
3445 return error;
3446 }
3447
3448 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3449 {
3450 const struct sysctlnode *rnode = NULL;
3451
3452 sysctl_createv(clog, 0, NULL, &rnode,
3453 CTLFLAG_PERMANENT,
3454 CTLTYPE_NODE, "sdl",
3455 SYSCTL_DESCR("Get active link-layer address"),
3456 if_sdl_sysctl, 0, NULL, 0,
3457 CTL_NET, CTL_CREATE, CTL_EOL);
3458 }
3459