if.c revision 1.369 1 /* $NetBSD: if.c,v 1.369 2016/12/26 23:21:49 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.369 2016/12/26 23:21:49 christos Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #ifndef IPSEC
142 #include <netinet/ip_encap.h>
143 #endif
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152 #include "fddi.h"
153 #include "token.h"
154
155 #include "carp.h"
156 #if NCARP > 0
157 #include <netinet/ip_carp.h>
158 #endif
159
160 #include <compat/sys/sockio.h>
161 #include <compat/sys/socket.h>
162
163 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
164 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
165
166 /*
167 * Global list of interfaces.
168 */
169 /* DEPRECATED. Remove it once kvm(3) users disappeared */
170 struct ifnet_head ifnet_list;
171
172 struct pslist_head ifnet_pslist;
173 static ifnet_t ** ifindex2ifnet = NULL;
174 static u_int if_index = 1;
175 static size_t if_indexlim = 0;
176 static uint64_t index_gen;
177 /* Mutex to protect the above objects. */
178 kmutex_t ifnet_mtx __cacheline_aligned;
179 struct psref_class *ifnet_psref_class __read_mostly;
180 static pserialize_t ifnet_psz;
181
182 static kmutex_t if_clone_mtx;
183
184 struct ifnet *lo0ifp;
185 int ifqmaxlen = IFQ_MAXLEN;
186
187 struct psref_class *ifa_psref_class __read_mostly;
188
189 static int if_delroute_matcher(struct rtentry *, void *);
190
191 static struct if_clone *if_clone_lookup(const char *, int *);
192
193 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
194 static int if_cloners_count;
195
196 /* Packet filtering hook for interfaces. */
197 pfil_head_t * if_pfil __read_mostly;
198
199 static kauth_listener_t if_listener;
200
201 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
202 static void if_detach_queues(struct ifnet *, struct ifqueue *);
203 static void sysctl_sndq_setup(struct sysctllog **, const char *,
204 struct ifaltq *);
205 static void if_slowtimo(void *);
206 static void if_free_sadl(struct ifnet *);
207 static void if_attachdomain1(struct ifnet *);
208 static int ifconf(u_long, void *);
209 static int if_transmit(struct ifnet *, struct mbuf *);
210 static int if_clone_create(const char *);
211 static int if_clone_destroy(const char *);
212 static void if_link_state_change_si(void *);
213
214 struct if_percpuq {
215 struct ifnet *ipq_ifp;
216 void *ipq_si;
217 struct percpu *ipq_ifqs; /* struct ifqueue */
218 };
219
220 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
221
222 static void if_percpuq_drops(void *, void *, struct cpu_info *);
223 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
224 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
225 struct if_percpuq *);
226
227 struct if_deferred_start {
228 struct ifnet *ids_ifp;
229 void (*ids_if_start)(struct ifnet *);
230 void *ids_si;
231 };
232
233 static void if_deferred_start_softint(void *);
234 static void if_deferred_start_common(struct ifnet *);
235 static void if_deferred_start_destroy(struct ifnet *);
236
237 #if defined(INET) || defined(INET6)
238 static void sysctl_net_pktq_setup(struct sysctllog **, int);
239 #endif
240
241 /*
242 * Pointer to stub or real compat_cvtcmd() depending on presence of
243 * the compat module
244 */
245 u_long stub_compat_cvtcmd(u_long);
246 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
247
248 /* Similarly, pointer to compat_ifioctl() if it is present */
249
250 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
251 struct lwp *) = NULL;
252
253 /* The stub version of compat_cvtcmd() */
254 u_long stub_compat_cvtcmd(u_long cmd)
255 {
256
257 return cmd;
258 }
259
260 static int
261 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
262 void *arg0, void *arg1, void *arg2, void *arg3)
263 {
264 int result;
265 enum kauth_network_req req;
266
267 result = KAUTH_RESULT_DEFER;
268 req = (enum kauth_network_req)arg1;
269
270 if (action != KAUTH_NETWORK_INTERFACE)
271 return result;
272
273 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
274 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
275 result = KAUTH_RESULT_ALLOW;
276
277 return result;
278 }
279
280 /*
281 * Network interface utility routines.
282 *
283 * Routines with ifa_ifwith* names take sockaddr *'s as
284 * parameters.
285 */
286 void
287 ifinit(void)
288 {
289 #if defined(INET)
290 sysctl_net_pktq_setup(NULL, PF_INET);
291 #endif
292 #ifdef INET6
293 if (in6_present)
294 sysctl_net_pktq_setup(NULL, PF_INET6);
295 #endif
296
297 #if (defined(INET) || defined(INET6)) && !defined(IPSEC)
298 encapinit();
299 #endif
300
301 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
302 if_listener_cb, NULL);
303
304 /* interfaces are available, inform socket code */
305 ifioctl = doifioctl;
306 }
307
308 /*
309 * XXX Initialization before configure().
310 * XXX hack to get pfil_add_hook working in autoconf.
311 */
312 void
313 ifinit1(void)
314 {
315 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
316
317 TAILQ_INIT(&ifnet_list);
318 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
319 ifnet_psz = pserialize_create();
320 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
321 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
322 PSLIST_INIT(&ifnet_pslist);
323
324 if_indexlim = 8;
325
326 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
327 KASSERT(if_pfil != NULL);
328
329 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
330 etherinit();
331 #endif
332 }
333
334 ifnet_t *
335 if_alloc(u_char type)
336 {
337 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
338 }
339
340 void
341 if_free(ifnet_t *ifp)
342 {
343 kmem_free(ifp, sizeof(ifnet_t));
344 }
345
346 void
347 if_initname(struct ifnet *ifp, const char *name, int unit)
348 {
349 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
350 "%s%d", name, unit);
351 }
352
353 /*
354 * Null routines used while an interface is going away. These routines
355 * just return an error.
356 */
357
358 int
359 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
360 const struct sockaddr *so, const struct rtentry *rt)
361 {
362
363 return ENXIO;
364 }
365
366 void
367 if_nullinput(struct ifnet *ifp, struct mbuf *m)
368 {
369
370 /* Nothing. */
371 }
372
373 void
374 if_nullstart(struct ifnet *ifp)
375 {
376
377 /* Nothing. */
378 }
379
380 int
381 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
382 {
383
384 return ENXIO;
385 }
386
387 int
388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
389 {
390
391 return ENXIO;
392 }
393
394 int
395 if_nullinit(struct ifnet *ifp)
396 {
397
398 return ENXIO;
399 }
400
401 void
402 if_nullstop(struct ifnet *ifp, int disable)
403 {
404
405 /* Nothing. */
406 }
407
408 void
409 if_nullslowtimo(struct ifnet *ifp)
410 {
411
412 /* Nothing. */
413 }
414
415 void
416 if_nulldrain(struct ifnet *ifp)
417 {
418
419 /* Nothing. */
420 }
421
422 void
423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
424 {
425 struct ifaddr *ifa;
426 struct sockaddr_dl *sdl;
427
428 ifp->if_addrlen = addrlen;
429 if_alloc_sadl(ifp);
430 ifa = ifp->if_dl;
431 sdl = satosdl(ifa->ifa_addr);
432
433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
434 if (factory) {
435 ifp->if_hwdl = ifp->if_dl;
436 ifaref(ifp->if_hwdl);
437 }
438 /* TBD routing socket */
439 }
440
441 struct ifaddr *
442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
443 {
444 unsigned socksize, ifasize;
445 int addrlen, namelen;
446 struct sockaddr_dl *mask, *sdl;
447 struct ifaddr *ifa;
448
449 namelen = strlen(ifp->if_xname);
450 addrlen = ifp->if_addrlen;
451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
452 ifasize = sizeof(*ifa) + 2 * socksize;
453 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
454
455 sdl = (struct sockaddr_dl *)(ifa + 1);
456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
457
458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
459 ifp->if_xname, namelen, NULL, addrlen);
460 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
461 memset(&mask->sdl_data[0], 0xff, namelen);
462 ifa->ifa_rtrequest = link_rtrequest;
463 ifa->ifa_addr = (struct sockaddr *)sdl;
464 ifa->ifa_netmask = (struct sockaddr *)mask;
465 ifa_psref_init(ifa);
466
467 *sdlp = sdl;
468
469 return ifa;
470 }
471
472 static void
473 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
474 {
475 const struct sockaddr_dl *sdl;
476
477 ifp->if_dl = ifa;
478 ifaref(ifa);
479 sdl = satosdl(ifa->ifa_addr);
480 ifp->if_sadl = sdl;
481 }
482
483 /*
484 * Allocate the link level name for the specified interface. This
485 * is an attachment helper. It must be called after ifp->if_addrlen
486 * is initialized, which may not be the case when if_attach() is
487 * called.
488 */
489 void
490 if_alloc_sadl(struct ifnet *ifp)
491 {
492 struct ifaddr *ifa;
493 const struct sockaddr_dl *sdl;
494
495 /*
496 * If the interface already has a link name, release it
497 * now. This is useful for interfaces that can change
498 * link types, and thus switch link names often.
499 */
500 if (ifp->if_sadl != NULL)
501 if_free_sadl(ifp);
502
503 ifa = if_dl_create(ifp, &sdl);
504
505 ifa_insert(ifp, ifa);
506 if_sadl_setrefs(ifp, ifa);
507 }
508
509 static void
510 if_deactivate_sadl(struct ifnet *ifp)
511 {
512 struct ifaddr *ifa;
513
514 KASSERT(ifp->if_dl != NULL);
515
516 ifa = ifp->if_dl;
517
518 ifp->if_sadl = NULL;
519
520 ifp->if_dl = NULL;
521 ifafree(ifa);
522 }
523
524 void
525 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
526 const struct sockaddr_dl *sdl)
527 {
528 int s, ss;
529 struct ifaddr *ifa;
530 int bound = curlwp_bind();
531
532 s = splnet();
533
534 if_deactivate_sadl(ifp);
535
536 if_sadl_setrefs(ifp, ifa0);
537
538 ss = pserialize_read_enter();
539 IFADDR_READER_FOREACH(ifa, ifp) {
540 struct psref psref;
541 ifa_acquire(ifa, &psref);
542 pserialize_read_exit(ss);
543
544 rtinit(ifa, RTM_LLINFO_UPD, 0);
545
546 ss = pserialize_read_enter();
547 ifa_release(ifa, &psref);
548 }
549 pserialize_read_exit(ss);
550
551 splx(s);
552 curlwp_bindx(bound);
553 }
554
555 /*
556 * Free the link level name for the specified interface. This is
557 * a detach helper. This is called from if_detach().
558 */
559 static void
560 if_free_sadl(struct ifnet *ifp)
561 {
562 struct ifaddr *ifa;
563 int s;
564
565 ifa = ifp->if_dl;
566 if (ifa == NULL) {
567 KASSERT(ifp->if_sadl == NULL);
568 return;
569 }
570
571 KASSERT(ifp->if_sadl != NULL);
572
573 s = splnet();
574 rtinit(ifa, RTM_DELETE, 0);
575 ifa_remove(ifp, ifa);
576 if_deactivate_sadl(ifp);
577 if (ifp->if_hwdl == ifa) {
578 ifafree(ifa);
579 ifp->if_hwdl = NULL;
580 }
581 splx(s);
582 }
583
584 static void
585 if_getindex(ifnet_t *ifp)
586 {
587 bool hitlimit = false;
588
589 ifp->if_index_gen = index_gen++;
590
591 ifp->if_index = if_index;
592 if (ifindex2ifnet == NULL) {
593 if_index++;
594 goto skip;
595 }
596 while (if_byindex(ifp->if_index)) {
597 /*
598 * If we hit USHRT_MAX, we skip back to 0 since
599 * there are a number of places where the value
600 * of if_index or if_index itself is compared
601 * to or stored in an unsigned short. By
602 * jumping back, we won't botch those assignments
603 * or comparisons.
604 */
605 if (++if_index == 0) {
606 if_index = 1;
607 } else if (if_index == USHRT_MAX) {
608 /*
609 * However, if we have to jump back to
610 * zero *twice* without finding an empty
611 * slot in ifindex2ifnet[], then there
612 * there are too many (>65535) interfaces.
613 */
614 if (hitlimit) {
615 panic("too many interfaces");
616 }
617 hitlimit = true;
618 if_index = 1;
619 }
620 ifp->if_index = if_index;
621 }
622 skip:
623 /*
624 * ifindex2ifnet is indexed by if_index. Since if_index will
625 * grow dynamically, it should grow too.
626 */
627 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
628 size_t m, n, oldlim;
629 void *q;
630
631 oldlim = if_indexlim;
632 while (ifp->if_index >= if_indexlim)
633 if_indexlim <<= 1;
634
635 /* grow ifindex2ifnet */
636 m = oldlim * sizeof(struct ifnet *);
637 n = if_indexlim * sizeof(struct ifnet *);
638 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
639 if (ifindex2ifnet != NULL) {
640 memcpy(q, ifindex2ifnet, m);
641 free(ifindex2ifnet, M_IFADDR);
642 }
643 ifindex2ifnet = (struct ifnet **)q;
644 }
645 ifindex2ifnet[ifp->if_index] = ifp;
646 }
647
648 /*
649 * Initialize an interface and assign an index for it.
650 *
651 * It must be called prior to a device specific attach routine
652 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
653 * and be followed by if_register:
654 *
655 * if_initialize(ifp);
656 * ether_ifattach(ifp, enaddr);
657 * if_register(ifp);
658 */
659 void
660 if_initialize(ifnet_t *ifp)
661 {
662 KASSERT(if_indexlim > 0);
663 TAILQ_INIT(&ifp->if_addrlist);
664
665 /*
666 * Link level name is allocated later by a separate call to
667 * if_alloc_sadl().
668 */
669
670 if (ifp->if_snd.ifq_maxlen == 0)
671 ifp->if_snd.ifq_maxlen = ifqmaxlen;
672
673 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
674
675 ifp->if_link_state = LINK_STATE_UNKNOWN;
676 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
677
678 ifp->if_capenable = 0;
679 ifp->if_csum_flags_tx = 0;
680 ifp->if_csum_flags_rx = 0;
681
682 #ifdef ALTQ
683 ifp->if_snd.altq_type = 0;
684 ifp->if_snd.altq_disc = NULL;
685 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
686 ifp->if_snd.altq_tbr = NULL;
687 ifp->if_snd.altq_ifp = ifp;
688 #endif
689
690 IFQ_LOCK_INIT(&ifp->if_snd);
691
692 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
693 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
694
695 IF_AFDATA_LOCK_INIT(ifp);
696
697 if (if_is_link_state_changeable(ifp)) {
698 ifp->if_link_si = softint_establish(SOFTINT_NET,
699 if_link_state_change_si, ifp);
700 if (ifp->if_link_si == NULL)
701 panic("%s: softint_establish() failed", __func__);
702 }
703
704 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
705 PSLIST_INIT(&ifp->if_addr_pslist);
706 psref_target_init(&ifp->if_psref, ifnet_psref_class);
707 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
708
709 IFNET_LOCK();
710 if_getindex(ifp);
711 IFNET_UNLOCK();
712 }
713
714 /*
715 * Register an interface to the list of "active" interfaces.
716 */
717 void
718 if_register(ifnet_t *ifp)
719 {
720 /*
721 * If the driver has not supplied its own if_ioctl, then
722 * supply the default.
723 */
724 if (ifp->if_ioctl == NULL)
725 ifp->if_ioctl = ifioctl_common;
726
727 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
728
729 if (!STAILQ_EMPTY(&domains))
730 if_attachdomain1(ifp);
731
732 /* Announce the interface. */
733 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
734
735 if (ifp->if_slowtimo != NULL) {
736 ifp->if_slowtimo_ch =
737 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
738 callout_init(ifp->if_slowtimo_ch, 0);
739 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
740 if_slowtimo(ifp);
741 }
742
743 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
744 ifp->if_transmit = if_transmit;
745
746 IFNET_LOCK();
747 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
748 IFNET_WRITER_INSERT_TAIL(ifp);
749 IFNET_UNLOCK();
750 }
751
752 /*
753 * The if_percpuq framework
754 *
755 * It allows network device drivers to execute the network stack
756 * in softint (so called softint-based if_input). It utilizes
757 * softint and percpu ifqueue. It doesn't distribute any packets
758 * between CPUs, unlike pktqueue(9).
759 *
760 * Currently we support two options for device drivers to apply the framework:
761 * - Use it implicitly with less changes
762 * - If you use if_attach in driver's _attach function and if_input in
763 * driver's Rx interrupt handler, a packet is queued and a softint handles
764 * the packet implicitly
765 * - Use it explicitly in each driver (recommended)
766 * - You can use if_percpuq_* directly in your driver
767 * - In this case, you need to allocate struct if_percpuq in driver's softc
768 * - See wm(4) as a reference implementation
769 */
770
771 static void
772 if_percpuq_softint(void *arg)
773 {
774 struct if_percpuq *ipq = arg;
775 struct ifnet *ifp = ipq->ipq_ifp;
776 struct mbuf *m;
777
778 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
779 ifp->if_ipackets++;
780 #ifndef NET_MPSAFE
781 KERNEL_LOCK(1, NULL);
782 #endif
783 bpf_mtap(ifp, m);
784 #ifndef NET_MPSAFE
785 KERNEL_UNLOCK_ONE(NULL);
786 #endif
787
788 ifp->_if_input(ifp, m);
789 }
790 }
791
792 static void
793 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
794 {
795 struct ifqueue *const ifq = p;
796
797 memset(ifq, 0, sizeof(*ifq));
798 ifq->ifq_maxlen = IFQ_MAXLEN;
799 }
800
801 struct if_percpuq *
802 if_percpuq_create(struct ifnet *ifp)
803 {
804 struct if_percpuq *ipq;
805
806 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
807 if (ipq == NULL)
808 panic("kmem_zalloc failed");
809
810 ipq->ipq_ifp = ifp;
811 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
812 if_percpuq_softint, ipq);
813 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
814 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
815
816 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
817
818 return ipq;
819 }
820
821 static struct mbuf *
822 if_percpuq_dequeue(struct if_percpuq *ipq)
823 {
824 struct mbuf *m;
825 struct ifqueue *ifq;
826 int s;
827
828 s = splnet();
829 ifq = percpu_getref(ipq->ipq_ifqs);
830 IF_DEQUEUE(ifq, m);
831 percpu_putref(ipq->ipq_ifqs);
832 splx(s);
833
834 return m;
835 }
836
837 static void
838 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
839 {
840 struct ifqueue *const ifq = p;
841
842 IF_PURGE(ifq);
843 }
844
845 void
846 if_percpuq_destroy(struct if_percpuq *ipq)
847 {
848
849 /* if_detach may already destroy it */
850 if (ipq == NULL)
851 return;
852
853 softint_disestablish(ipq->ipq_si);
854 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
855 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
856 kmem_free(ipq, sizeof(*ipq));
857 }
858
859 void
860 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
861 {
862 struct ifqueue *ifq;
863 int s;
864
865 KASSERT(ipq != NULL);
866
867 s = splnet();
868 ifq = percpu_getref(ipq->ipq_ifqs);
869 if (IF_QFULL(ifq)) {
870 IF_DROP(ifq);
871 percpu_putref(ipq->ipq_ifqs);
872 m_freem(m);
873 goto out;
874 }
875 IF_ENQUEUE(ifq, m);
876 percpu_putref(ipq->ipq_ifqs);
877
878 softint_schedule(ipq->ipq_si);
879 out:
880 splx(s);
881 }
882
883 static void
884 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
885 {
886 struct ifqueue *const ifq = p;
887 int *sum = arg;
888
889 *sum += ifq->ifq_drops;
890 }
891
892 static int
893 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
894 {
895 struct sysctlnode node;
896 struct if_percpuq *ipq;
897 int sum = 0;
898 int error;
899
900 node = *rnode;
901 ipq = node.sysctl_data;
902
903 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
904
905 node.sysctl_data = ∑
906 error = sysctl_lookup(SYSCTLFN_CALL(&node));
907 if (error != 0 || newp == NULL)
908 return error;
909
910 return 0;
911 }
912
913 static void
914 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
915 struct if_percpuq *ipq)
916 {
917 const struct sysctlnode *cnode, *rnode;
918
919 if (sysctl_createv(clog, 0, NULL, &rnode,
920 CTLFLAG_PERMANENT,
921 CTLTYPE_NODE, "interfaces",
922 SYSCTL_DESCR("Per-interface controls"),
923 NULL, 0, NULL, 0,
924 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
925 goto bad;
926
927 if (sysctl_createv(clog, 0, &rnode, &rnode,
928 CTLFLAG_PERMANENT,
929 CTLTYPE_NODE, ifname,
930 SYSCTL_DESCR("Interface controls"),
931 NULL, 0, NULL, 0,
932 CTL_CREATE, CTL_EOL) != 0)
933 goto bad;
934
935 if (sysctl_createv(clog, 0, &rnode, &rnode,
936 CTLFLAG_PERMANENT,
937 CTLTYPE_NODE, "rcvq",
938 SYSCTL_DESCR("Interface input queue controls"),
939 NULL, 0, NULL, 0,
940 CTL_CREATE, CTL_EOL) != 0)
941 goto bad;
942
943 #ifdef NOTYET
944 /* XXX Should show each per-CPU queue length? */
945 if (sysctl_createv(clog, 0, &rnode, &rnode,
946 CTLFLAG_PERMANENT,
947 CTLTYPE_INT, "len",
948 SYSCTL_DESCR("Current input queue length"),
949 sysctl_percpuq_len, 0, NULL, 0,
950 CTL_CREATE, CTL_EOL) != 0)
951 goto bad;
952
953 if (sysctl_createv(clog, 0, &rnode, &cnode,
954 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
955 CTLTYPE_INT, "maxlen",
956 SYSCTL_DESCR("Maximum allowed input queue length"),
957 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
958 CTL_CREATE, CTL_EOL) != 0)
959 goto bad;
960 #endif
961
962 if (sysctl_createv(clog, 0, &rnode, &cnode,
963 CTLFLAG_PERMANENT,
964 CTLTYPE_INT, "drops",
965 SYSCTL_DESCR("Total packets dropped due to full input queue"),
966 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
967 CTL_CREATE, CTL_EOL) != 0)
968 goto bad;
969
970 return;
971 bad:
972 printf("%s: could not attach sysctl nodes\n", ifname);
973 return;
974 }
975
976 /*
977 * The deferred if_start framework
978 *
979 * The common APIs to defer if_start to softint when if_start is requested
980 * from a device driver running in hardware interrupt context.
981 */
982 /*
983 * Call ifp->if_start (or equivalent) in a dedicated softint for
984 * deferred if_start.
985 */
986 static void
987 if_deferred_start_softint(void *arg)
988 {
989 struct if_deferred_start *ids = arg;
990 struct ifnet *ifp = ids->ids_ifp;
991
992 ids->ids_if_start(ifp);
993 }
994
995 /*
996 * The default callback function for deferred if_start.
997 */
998 static void
999 if_deferred_start_common(struct ifnet *ifp)
1000 {
1001
1002 if_start_lock(ifp);
1003 }
1004
1005 static inline bool
1006 if_snd_is_used(struct ifnet *ifp)
1007 {
1008
1009 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1010 ALTQ_IS_ENABLED(&ifp->if_snd);
1011 }
1012
1013 /*
1014 * Schedule deferred if_start.
1015 */
1016 void
1017 if_schedule_deferred_start(struct ifnet *ifp)
1018 {
1019
1020 KASSERT(ifp->if_deferred_start != NULL);
1021
1022 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1023 return;
1024
1025 softint_schedule(ifp->if_deferred_start->ids_si);
1026 }
1027
1028 /*
1029 * Create an instance of deferred if_start. A driver should call the function
1030 * only if the driver needs deferred if_start. Drivers can setup their own
1031 * deferred if_start function via 2nd argument.
1032 */
1033 void
1034 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1035 {
1036 struct if_deferred_start *ids;
1037
1038 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1039 if (ids == NULL)
1040 panic("kmem_zalloc failed");
1041
1042 ids->ids_ifp = ifp;
1043 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
1044 if_deferred_start_softint, ids);
1045 if (func != NULL)
1046 ids->ids_if_start = func;
1047 else
1048 ids->ids_if_start = if_deferred_start_common;
1049
1050 ifp->if_deferred_start = ids;
1051 }
1052
1053 static void
1054 if_deferred_start_destroy(struct ifnet *ifp)
1055 {
1056
1057 if (ifp->if_deferred_start == NULL)
1058 return;
1059
1060 softint_disestablish(ifp->if_deferred_start->ids_si);
1061 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1062 ifp->if_deferred_start = NULL;
1063 }
1064
1065 /*
1066 * The common interface input routine that is called by device drivers,
1067 * which should be used only when the driver's rx handler already runs
1068 * in softint.
1069 */
1070 void
1071 if_input(struct ifnet *ifp, struct mbuf *m)
1072 {
1073
1074 KASSERT(ifp->if_percpuq == NULL);
1075 KASSERT(!cpu_intr_p());
1076
1077 ifp->if_ipackets++;
1078 #ifndef NET_MPSAFE
1079 KERNEL_LOCK(1, NULL);
1080 #endif
1081 bpf_mtap(ifp, m);
1082 #ifndef NET_MPSAFE
1083 KERNEL_UNLOCK_ONE(NULL);
1084 #endif
1085
1086 ifp->_if_input(ifp, m);
1087 }
1088
1089 /*
1090 * DEPRECATED. Use if_initialize and if_register instead.
1091 * See the above comment of if_initialize.
1092 *
1093 * Note that it implicitly enables if_percpuq to make drivers easy to
1094 * migrate softint-based if_input without much changes. If you don't
1095 * want to enable it, use if_initialize instead.
1096 */
1097 void
1098 if_attach(ifnet_t *ifp)
1099 {
1100
1101 if_initialize(ifp);
1102 ifp->if_percpuq = if_percpuq_create(ifp);
1103 if_register(ifp);
1104 }
1105
1106 void
1107 if_attachdomain(void)
1108 {
1109 struct ifnet *ifp;
1110 int s;
1111 int bound = curlwp_bind();
1112
1113 s = pserialize_read_enter();
1114 IFNET_READER_FOREACH(ifp) {
1115 struct psref psref;
1116 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1117 pserialize_read_exit(s);
1118 if_attachdomain1(ifp);
1119 s = pserialize_read_enter();
1120 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1121 }
1122 pserialize_read_exit(s);
1123 curlwp_bindx(bound);
1124 }
1125
1126 static void
1127 if_attachdomain1(struct ifnet *ifp)
1128 {
1129 struct domain *dp;
1130 int s;
1131
1132 s = splnet();
1133
1134 /* address family dependent data region */
1135 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1136 DOMAIN_FOREACH(dp) {
1137 if (dp->dom_ifattach != NULL)
1138 ifp->if_afdata[dp->dom_family] =
1139 (*dp->dom_ifattach)(ifp);
1140 }
1141
1142 splx(s);
1143 }
1144
1145 /*
1146 * Deactivate an interface. This points all of the procedure
1147 * handles at error stubs. May be called from interrupt context.
1148 */
1149 void
1150 if_deactivate(struct ifnet *ifp)
1151 {
1152 int s;
1153
1154 s = splnet();
1155
1156 ifp->if_output = if_nulloutput;
1157 ifp->_if_input = if_nullinput;
1158 ifp->if_start = if_nullstart;
1159 ifp->if_transmit = if_nulltransmit;
1160 ifp->if_ioctl = if_nullioctl;
1161 ifp->if_init = if_nullinit;
1162 ifp->if_stop = if_nullstop;
1163 ifp->if_slowtimo = if_nullslowtimo;
1164 ifp->if_drain = if_nulldrain;
1165
1166 /* No more packets may be enqueued. */
1167 ifp->if_snd.ifq_maxlen = 0;
1168
1169 splx(s);
1170 }
1171
1172 bool
1173 if_is_deactivated(const struct ifnet *ifp)
1174 {
1175
1176 return ifp->if_output == if_nulloutput;
1177 }
1178
1179 void
1180 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1181 {
1182 struct ifaddr *ifa, *nifa;
1183 int s;
1184
1185 s = pserialize_read_enter();
1186 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1187 nifa = IFADDR_READER_NEXT(ifa);
1188 if (ifa->ifa_addr->sa_family != family)
1189 continue;
1190 pserialize_read_exit(s);
1191
1192 (*purgeaddr)(ifa);
1193
1194 s = pserialize_read_enter();
1195 }
1196 pserialize_read_exit(s);
1197 }
1198
1199 #ifdef IFAREF_DEBUG
1200 static struct ifaddr **ifa_list;
1201 static int ifa_list_size;
1202
1203 /* Depends on only one if_attach runs at once */
1204 static void
1205 if_build_ifa_list(struct ifnet *ifp)
1206 {
1207 struct ifaddr *ifa;
1208 int i;
1209
1210 KASSERT(ifa_list == NULL);
1211 KASSERT(ifa_list_size == 0);
1212
1213 IFADDR_READER_FOREACH(ifa, ifp)
1214 ifa_list_size++;
1215
1216 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1217 if (ifa_list == NULL)
1218 return;
1219
1220 i = 0;
1221 IFADDR_READER_FOREACH(ifa, ifp) {
1222 ifa_list[i++] = ifa;
1223 ifaref(ifa);
1224 }
1225 }
1226
1227 static void
1228 if_check_and_free_ifa_list(struct ifnet *ifp)
1229 {
1230 int i;
1231 struct ifaddr *ifa;
1232
1233 if (ifa_list == NULL)
1234 return;
1235
1236 for (i = 0; i < ifa_list_size; i++) {
1237 char buf[64];
1238
1239 ifa = ifa_list[i];
1240 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1241 if (ifa->ifa_refcnt > 1) {
1242 log(LOG_WARNING,
1243 "ifa(%s) still referenced (refcnt=%d)\n",
1244 buf, ifa->ifa_refcnt - 1);
1245 } else
1246 log(LOG_DEBUG,
1247 "ifa(%s) not referenced (refcnt=%d)\n",
1248 buf, ifa->ifa_refcnt - 1);
1249 ifafree(ifa);
1250 }
1251
1252 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1253 ifa_list = NULL;
1254 ifa_list_size = 0;
1255 }
1256 #endif
1257
1258 /*
1259 * Detach an interface from the list of "active" interfaces,
1260 * freeing any resources as we go along.
1261 *
1262 * NOTE: This routine must be called with a valid thread context,
1263 * as it may block.
1264 */
1265 void
1266 if_detach(struct ifnet *ifp)
1267 {
1268 struct socket so;
1269 struct ifaddr *ifa;
1270 #ifdef IFAREF_DEBUG
1271 struct ifaddr *last_ifa = NULL;
1272 #endif
1273 struct domain *dp;
1274 const struct protosw *pr;
1275 int s, i, family, purged;
1276 uint64_t xc;
1277
1278 #ifdef IFAREF_DEBUG
1279 if_build_ifa_list(ifp);
1280 #endif
1281 /*
1282 * XXX It's kind of lame that we have to have the
1283 * XXX socket structure...
1284 */
1285 memset(&so, 0, sizeof(so));
1286
1287 s = splnet();
1288
1289 sysctl_teardown(&ifp->if_sysctl_log);
1290 mutex_enter(ifp->if_ioctl_lock);
1291 if_deactivate(ifp);
1292 mutex_exit(ifp->if_ioctl_lock);
1293
1294 IFNET_LOCK();
1295 ifindex2ifnet[ifp->if_index] = NULL;
1296 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1297 IFNET_WRITER_REMOVE(ifp);
1298 pserialize_perform(ifnet_psz);
1299 IFNET_UNLOCK();
1300
1301 /* Wait for all readers to drain before freeing. */
1302 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1303 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1304
1305 mutex_obj_free(ifp->if_ioctl_lock);
1306 ifp->if_ioctl_lock = NULL;
1307
1308 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1309 ifp->if_slowtimo = NULL;
1310 callout_halt(ifp->if_slowtimo_ch, NULL);
1311 callout_destroy(ifp->if_slowtimo_ch);
1312 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1313 }
1314 if_deferred_start_destroy(ifp);
1315
1316 /*
1317 * Do an if_down() to give protocols a chance to do something.
1318 */
1319 if_down(ifp);
1320
1321 #ifdef ALTQ
1322 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1323 altq_disable(&ifp->if_snd);
1324 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1325 altq_detach(&ifp->if_snd);
1326 #endif
1327
1328 mutex_obj_free(ifp->if_snd.ifq_lock);
1329
1330 #if NCARP > 0
1331 /* Remove the interface from any carp group it is a part of. */
1332 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1333 carp_ifdetach(ifp);
1334 #endif
1335
1336 /*
1337 * Rip all the addresses off the interface. This should make
1338 * all of the routes go away.
1339 *
1340 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1341 * from the list, including our "cursor", ifa. For safety,
1342 * and to honor the TAILQ abstraction, I just restart the
1343 * loop after each removal. Note that the loop will exit
1344 * when all of the remaining ifaddrs belong to the AF_LINK
1345 * family. I am counting on the historical fact that at
1346 * least one pr_usrreq in each address domain removes at
1347 * least one ifaddr.
1348 */
1349 again:
1350 /*
1351 * At this point, no other one tries to remove ifa in the list,
1352 * so we don't need to take a lock or psref.
1353 */
1354 IFADDR_READER_FOREACH(ifa, ifp) {
1355 family = ifa->ifa_addr->sa_family;
1356 #ifdef IFAREF_DEBUG
1357 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1358 ifa, family, ifa->ifa_refcnt);
1359 if (last_ifa != NULL && ifa == last_ifa)
1360 panic("if_detach: loop detected");
1361 last_ifa = ifa;
1362 #endif
1363 if (family == AF_LINK)
1364 continue;
1365 dp = pffinddomain(family);
1366 #ifdef DIAGNOSTIC
1367 if (dp == NULL)
1368 panic("if_detach: no domain for AF %d",
1369 family);
1370 #endif
1371 /*
1372 * XXX These PURGEIF calls are redundant with the
1373 * purge-all-families calls below, but are left in for
1374 * now both to make a smaller change, and to avoid
1375 * unplanned interactions with clearing of
1376 * ifp->if_addrlist.
1377 */
1378 purged = 0;
1379 for (pr = dp->dom_protosw;
1380 pr < dp->dom_protoswNPROTOSW; pr++) {
1381 so.so_proto = pr;
1382 if (pr->pr_usrreqs) {
1383 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1384 purged = 1;
1385 }
1386 }
1387 if (purged == 0) {
1388 /*
1389 * XXX What's really the best thing to do
1390 * XXX here? --thorpej (at) NetBSD.org
1391 */
1392 printf("if_detach: WARNING: AF %d not purged\n",
1393 family);
1394 ifa_remove(ifp, ifa);
1395 }
1396 goto again;
1397 }
1398
1399 if_free_sadl(ifp);
1400
1401 /* Delete stray routes from the routing table. */
1402 for (i = 0; i <= AF_MAX; i++)
1403 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1404
1405 DOMAIN_FOREACH(dp) {
1406 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1407 {
1408 void *p = ifp->if_afdata[dp->dom_family];
1409 if (p) {
1410 ifp->if_afdata[dp->dom_family] = NULL;
1411 (*dp->dom_ifdetach)(ifp, p);
1412 }
1413 }
1414
1415 /*
1416 * One would expect multicast memberships (INET and
1417 * INET6) on UDP sockets to be purged by the PURGEIF
1418 * calls above, but if all addresses were removed from
1419 * the interface prior to destruction, the calls will
1420 * not be made (e.g. ppp, for which pppd(8) generally
1421 * removes addresses before destroying the interface).
1422 * Because there is no invariant that multicast
1423 * memberships only exist for interfaces with IPv4
1424 * addresses, we must call PURGEIF regardless of
1425 * addresses. (Protocols which might store ifnet
1426 * pointers are marked with PR_PURGEIF.)
1427 */
1428 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1429 so.so_proto = pr;
1430 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1431 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1432 }
1433 }
1434
1435 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1436 (void)pfil_head_destroy(ifp->if_pfil);
1437
1438 /* Announce that the interface is gone. */
1439 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1440
1441 IF_AFDATA_LOCK_DESTROY(ifp);
1442
1443 if (if_is_link_state_changeable(ifp)) {
1444 softint_disestablish(ifp->if_link_si);
1445 ifp->if_link_si = NULL;
1446 }
1447
1448 /*
1449 * remove packets that came from ifp, from software interrupt queues.
1450 */
1451 DOMAIN_FOREACH(dp) {
1452 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1453 struct ifqueue *iq = dp->dom_ifqueues[i];
1454 if (iq == NULL)
1455 break;
1456 dp->dom_ifqueues[i] = NULL;
1457 if_detach_queues(ifp, iq);
1458 }
1459 }
1460
1461 /*
1462 * IP queues have to be processed separately: net-queue barrier
1463 * ensures that the packets are dequeued while a cross-call will
1464 * ensure that the interrupts have completed. FIXME: not quite..
1465 */
1466 #ifdef INET
1467 pktq_barrier(ip_pktq);
1468 #endif
1469 #ifdef INET6
1470 if (in6_present)
1471 pktq_barrier(ip6_pktq);
1472 #endif
1473 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1474 xc_wait(xc);
1475
1476 if (ifp->if_percpuq != NULL) {
1477 if_percpuq_destroy(ifp->if_percpuq);
1478 ifp->if_percpuq = NULL;
1479 }
1480
1481 splx(s);
1482
1483 #ifdef IFAREF_DEBUG
1484 if_check_and_free_ifa_list(ifp);
1485 #endif
1486 }
1487
1488 static void
1489 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1490 {
1491 struct mbuf *m, *prev, *next;
1492
1493 prev = NULL;
1494 for (m = q->ifq_head; m != NULL; m = next) {
1495 KASSERT((m->m_flags & M_PKTHDR) != 0);
1496
1497 next = m->m_nextpkt;
1498 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1499 prev = m;
1500 continue;
1501 }
1502
1503 if (prev != NULL)
1504 prev->m_nextpkt = m->m_nextpkt;
1505 else
1506 q->ifq_head = m->m_nextpkt;
1507 if (q->ifq_tail == m)
1508 q->ifq_tail = prev;
1509 q->ifq_len--;
1510
1511 m->m_nextpkt = NULL;
1512 m_freem(m);
1513 IF_DROP(q);
1514 }
1515 }
1516
1517 /*
1518 * Callback for a radix tree walk to delete all references to an
1519 * ifnet.
1520 */
1521 static int
1522 if_delroute_matcher(struct rtentry *rt, void *v)
1523 {
1524 struct ifnet *ifp = (struct ifnet *)v;
1525
1526 if (rt->rt_ifp == ifp)
1527 return 1;
1528 else
1529 return 0;
1530 }
1531
1532 /*
1533 * Create a clone network interface.
1534 */
1535 static int
1536 if_clone_create(const char *name)
1537 {
1538 struct if_clone *ifc;
1539 int unit;
1540 struct ifnet *ifp;
1541 struct psref psref;
1542
1543 ifc = if_clone_lookup(name, &unit);
1544 if (ifc == NULL)
1545 return EINVAL;
1546
1547 ifp = if_get(name, &psref);
1548 if (ifp != NULL) {
1549 if_put(ifp, &psref);
1550 return EEXIST;
1551 }
1552
1553 return (*ifc->ifc_create)(ifc, unit);
1554 }
1555
1556 /*
1557 * Destroy a clone network interface.
1558 */
1559 static int
1560 if_clone_destroy(const char *name)
1561 {
1562 struct if_clone *ifc;
1563 struct ifnet *ifp;
1564 struct psref psref;
1565
1566 ifc = if_clone_lookup(name, NULL);
1567 if (ifc == NULL)
1568 return EINVAL;
1569
1570 if (ifc->ifc_destroy == NULL)
1571 return EOPNOTSUPP;
1572
1573 ifp = if_get(name, &psref);
1574 if (ifp == NULL)
1575 return ENXIO;
1576
1577 /* We have to disable ioctls here */
1578 mutex_enter(ifp->if_ioctl_lock);
1579 ifp->if_ioctl = if_nullioctl;
1580 mutex_exit(ifp->if_ioctl_lock);
1581
1582 /*
1583 * We cannot call ifc_destroy with holding ifp.
1584 * Releasing ifp here is safe thanks to if_clone_mtx.
1585 */
1586 if_put(ifp, &psref);
1587
1588 return (*ifc->ifc_destroy)(ifp);
1589 }
1590
1591 /*
1592 * Look up a network interface cloner.
1593 */
1594 static struct if_clone *
1595 if_clone_lookup(const char *name, int *unitp)
1596 {
1597 struct if_clone *ifc;
1598 const char *cp;
1599 char *dp, ifname[IFNAMSIZ + 3];
1600 int unit;
1601
1602 strcpy(ifname, "if_");
1603 /* separate interface name from unit */
1604 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1605 *cp && (*cp < '0' || *cp > '9');)
1606 *dp++ = *cp++;
1607
1608 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1609 return NULL; /* No name or unit number */
1610 *dp++ = '\0';
1611
1612 again:
1613 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1614 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1615 break;
1616 }
1617
1618 if (ifc == NULL) {
1619 if (*ifname == '\0' ||
1620 module_autoload(ifname, MODULE_CLASS_DRIVER))
1621 return NULL;
1622 *ifname = '\0';
1623 goto again;
1624 }
1625
1626 unit = 0;
1627 while (cp - name < IFNAMSIZ && *cp) {
1628 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1629 /* Bogus unit number. */
1630 return NULL;
1631 }
1632 unit = (unit * 10) + (*cp++ - '0');
1633 }
1634
1635 if (unitp != NULL)
1636 *unitp = unit;
1637 return ifc;
1638 }
1639
1640 /*
1641 * Register a network interface cloner.
1642 */
1643 void
1644 if_clone_attach(struct if_clone *ifc)
1645 {
1646
1647 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1648 if_cloners_count++;
1649 }
1650
1651 /*
1652 * Unregister a network interface cloner.
1653 */
1654 void
1655 if_clone_detach(struct if_clone *ifc)
1656 {
1657
1658 LIST_REMOVE(ifc, ifc_list);
1659 if_cloners_count--;
1660 }
1661
1662 /*
1663 * Provide list of interface cloners to userspace.
1664 */
1665 int
1666 if_clone_list(int buf_count, char *buffer, int *total)
1667 {
1668 char outbuf[IFNAMSIZ], *dst;
1669 struct if_clone *ifc;
1670 int count, error = 0;
1671
1672 *total = if_cloners_count;
1673 if ((dst = buffer) == NULL) {
1674 /* Just asking how many there are. */
1675 return 0;
1676 }
1677
1678 if (buf_count < 0)
1679 return EINVAL;
1680
1681 count = (if_cloners_count < buf_count) ?
1682 if_cloners_count : buf_count;
1683
1684 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1685 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1686 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1687 if (outbuf[sizeof(outbuf) - 1] != '\0')
1688 return ENAMETOOLONG;
1689 error = copyout(outbuf, dst, sizeof(outbuf));
1690 if (error != 0)
1691 break;
1692 }
1693
1694 return error;
1695 }
1696
1697 void
1698 ifa_psref_init(struct ifaddr *ifa)
1699 {
1700
1701 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1702 }
1703
1704 void
1705 ifaref(struct ifaddr *ifa)
1706 {
1707 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1708 ifa->ifa_refcnt++;
1709 }
1710
1711 void
1712 ifafree(struct ifaddr *ifa)
1713 {
1714 KASSERT(ifa != NULL);
1715 KASSERT(ifa->ifa_refcnt > 0);
1716
1717 if (--ifa->ifa_refcnt == 0) {
1718 free(ifa, M_IFADDR);
1719 }
1720 }
1721
1722 bool
1723 ifa_is_destroying(struct ifaddr *ifa)
1724 {
1725
1726 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1727 }
1728
1729 void
1730 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1731 {
1732
1733 ifa->ifa_ifp = ifp;
1734
1735 IFNET_LOCK();
1736 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1737 IFADDR_ENTRY_INIT(ifa);
1738 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1739 IFNET_UNLOCK();
1740
1741 ifaref(ifa);
1742 }
1743
1744 void
1745 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1746 {
1747
1748 KASSERT(ifa->ifa_ifp == ifp);
1749
1750 IFNET_LOCK();
1751 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1752 IFADDR_WRITER_REMOVE(ifa);
1753 #ifdef NET_MPSAFE
1754 pserialize_perform(ifnet_psz);
1755 #endif
1756 IFNET_UNLOCK();
1757
1758 #ifdef NET_MPSAFE
1759 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1760 #endif
1761 IFADDR_ENTRY_DESTROY(ifa);
1762 ifafree(ifa);
1763 }
1764
1765 void
1766 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1767 {
1768
1769 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1770 }
1771
1772 void
1773 ifa_release(struct ifaddr *ifa, struct psref *psref)
1774 {
1775
1776 if (ifa == NULL)
1777 return;
1778
1779 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1780 }
1781
1782 bool
1783 ifa_held(struct ifaddr *ifa)
1784 {
1785
1786 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1787 }
1788
1789 static inline int
1790 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1791 {
1792 return sockaddr_cmp(sa1, sa2) == 0;
1793 }
1794
1795 /*
1796 * Locate an interface based on a complete address.
1797 */
1798 /*ARGSUSED*/
1799 struct ifaddr *
1800 ifa_ifwithaddr(const struct sockaddr *addr)
1801 {
1802 struct ifnet *ifp;
1803 struct ifaddr *ifa;
1804
1805 IFNET_READER_FOREACH(ifp) {
1806 if (if_is_deactivated(ifp))
1807 continue;
1808 IFADDR_READER_FOREACH(ifa, ifp) {
1809 if (ifa->ifa_addr->sa_family != addr->sa_family)
1810 continue;
1811 if (equal(addr, ifa->ifa_addr))
1812 return ifa;
1813 if ((ifp->if_flags & IFF_BROADCAST) &&
1814 ifa->ifa_broadaddr &&
1815 /* IP6 doesn't have broadcast */
1816 ifa->ifa_broadaddr->sa_len != 0 &&
1817 equal(ifa->ifa_broadaddr, addr))
1818 return ifa;
1819 }
1820 }
1821 return NULL;
1822 }
1823
1824 struct ifaddr *
1825 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1826 {
1827 struct ifaddr *ifa;
1828 int s = pserialize_read_enter();
1829
1830 ifa = ifa_ifwithaddr(addr);
1831 if (ifa != NULL)
1832 ifa_acquire(ifa, psref);
1833 pserialize_read_exit(s);
1834
1835 return ifa;
1836 }
1837
1838 /*
1839 * Locate the point to point interface with a given destination address.
1840 */
1841 /*ARGSUSED*/
1842 struct ifaddr *
1843 ifa_ifwithdstaddr(const struct sockaddr *addr)
1844 {
1845 struct ifnet *ifp;
1846 struct ifaddr *ifa;
1847
1848 IFNET_READER_FOREACH(ifp) {
1849 if (if_is_deactivated(ifp))
1850 continue;
1851 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1852 continue;
1853 IFADDR_READER_FOREACH(ifa, ifp) {
1854 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1855 ifa->ifa_dstaddr == NULL)
1856 continue;
1857 if (equal(addr, ifa->ifa_dstaddr))
1858 return ifa;
1859 }
1860 }
1861
1862 return NULL;
1863 }
1864
1865 struct ifaddr *
1866 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1867 {
1868 struct ifaddr *ifa;
1869 int s;
1870
1871 s = pserialize_read_enter();
1872 ifa = ifa_ifwithdstaddr(addr);
1873 if (ifa != NULL)
1874 ifa_acquire(ifa, psref);
1875 pserialize_read_exit(s);
1876
1877 return ifa;
1878 }
1879
1880 /*
1881 * Find an interface on a specific network. If many, choice
1882 * is most specific found.
1883 */
1884 struct ifaddr *
1885 ifa_ifwithnet(const struct sockaddr *addr)
1886 {
1887 struct ifnet *ifp;
1888 struct ifaddr *ifa, *ifa_maybe = NULL;
1889 const struct sockaddr_dl *sdl;
1890 u_int af = addr->sa_family;
1891 const char *addr_data = addr->sa_data, *cplim;
1892
1893 if (af == AF_LINK) {
1894 sdl = satocsdl(addr);
1895 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1896 ifindex2ifnet[sdl->sdl_index] &&
1897 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1898 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1899 }
1900 }
1901 #ifdef NETATALK
1902 if (af == AF_APPLETALK) {
1903 const struct sockaddr_at *sat, *sat2;
1904 sat = (const struct sockaddr_at *)addr;
1905 IFNET_READER_FOREACH(ifp) {
1906 if (if_is_deactivated(ifp))
1907 continue;
1908 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1909 if (ifa == NULL)
1910 continue;
1911 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1912 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1913 return ifa; /* exact match */
1914 if (ifa_maybe == NULL) {
1915 /* else keep the if with the right range */
1916 ifa_maybe = ifa;
1917 }
1918 }
1919 return ifa_maybe;
1920 }
1921 #endif
1922 IFNET_READER_FOREACH(ifp) {
1923 if (if_is_deactivated(ifp))
1924 continue;
1925 IFADDR_READER_FOREACH(ifa, ifp) {
1926 const char *cp, *cp2, *cp3;
1927
1928 if (ifa->ifa_addr->sa_family != af ||
1929 ifa->ifa_netmask == NULL)
1930 next: continue;
1931 cp = addr_data;
1932 cp2 = ifa->ifa_addr->sa_data;
1933 cp3 = ifa->ifa_netmask->sa_data;
1934 cplim = (const char *)ifa->ifa_netmask +
1935 ifa->ifa_netmask->sa_len;
1936 while (cp3 < cplim) {
1937 if ((*cp++ ^ *cp2++) & *cp3++) {
1938 /* want to continue for() loop */
1939 goto next;
1940 }
1941 }
1942 if (ifa_maybe == NULL ||
1943 rt_refines(ifa->ifa_netmask,
1944 ifa_maybe->ifa_netmask))
1945 ifa_maybe = ifa;
1946 }
1947 }
1948 return ifa_maybe;
1949 }
1950
1951 struct ifaddr *
1952 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
1953 {
1954 struct ifaddr *ifa;
1955 int s;
1956
1957 s = pserialize_read_enter();
1958 ifa = ifa_ifwithnet(addr);
1959 if (ifa != NULL)
1960 ifa_acquire(ifa, psref);
1961 pserialize_read_exit(s);
1962
1963 return ifa;
1964 }
1965
1966 /*
1967 * Find the interface of the addresss.
1968 */
1969 struct ifaddr *
1970 ifa_ifwithladdr(const struct sockaddr *addr)
1971 {
1972 struct ifaddr *ia;
1973
1974 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1975 (ia = ifa_ifwithnet(addr)))
1976 return ia;
1977 return NULL;
1978 }
1979
1980 struct ifaddr *
1981 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
1982 {
1983 struct ifaddr *ifa;
1984 int s;
1985
1986 s = pserialize_read_enter();
1987 ifa = ifa_ifwithladdr(addr);
1988 if (ifa != NULL)
1989 ifa_acquire(ifa, psref);
1990 pserialize_read_exit(s);
1991
1992 return ifa;
1993 }
1994
1995 /*
1996 * Find an interface using a specific address family
1997 */
1998 struct ifaddr *
1999 ifa_ifwithaf(int af)
2000 {
2001 struct ifnet *ifp;
2002 struct ifaddr *ifa = NULL;
2003 int s;
2004
2005 s = pserialize_read_enter();
2006 IFNET_READER_FOREACH(ifp) {
2007 if (if_is_deactivated(ifp))
2008 continue;
2009 IFADDR_READER_FOREACH(ifa, ifp) {
2010 if (ifa->ifa_addr->sa_family == af)
2011 goto out;
2012 }
2013 }
2014 out:
2015 pserialize_read_exit(s);
2016 return ifa;
2017 }
2018
2019 /*
2020 * Find an interface address specific to an interface best matching
2021 * a given address.
2022 */
2023 struct ifaddr *
2024 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2025 {
2026 struct ifaddr *ifa;
2027 const char *cp, *cp2, *cp3;
2028 const char *cplim;
2029 struct ifaddr *ifa_maybe = 0;
2030 u_int af = addr->sa_family;
2031
2032 if (if_is_deactivated(ifp))
2033 return NULL;
2034
2035 if (af >= AF_MAX)
2036 return NULL;
2037
2038 IFADDR_READER_FOREACH(ifa, ifp) {
2039 if (ifa->ifa_addr->sa_family != af)
2040 continue;
2041 ifa_maybe = ifa;
2042 if (ifa->ifa_netmask == NULL) {
2043 if (equal(addr, ifa->ifa_addr) ||
2044 (ifa->ifa_dstaddr &&
2045 equal(addr, ifa->ifa_dstaddr)))
2046 return ifa;
2047 continue;
2048 }
2049 cp = addr->sa_data;
2050 cp2 = ifa->ifa_addr->sa_data;
2051 cp3 = ifa->ifa_netmask->sa_data;
2052 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2053 for (; cp3 < cplim; cp3++) {
2054 if ((*cp++ ^ *cp2++) & *cp3)
2055 break;
2056 }
2057 if (cp3 == cplim)
2058 return ifa;
2059 }
2060 return ifa_maybe;
2061 }
2062
2063 struct ifaddr *
2064 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2065 struct psref *psref)
2066 {
2067 struct ifaddr *ifa;
2068 int s;
2069
2070 s = pserialize_read_enter();
2071 ifa = ifaof_ifpforaddr(addr, ifp);
2072 if (ifa != NULL)
2073 ifa_acquire(ifa, psref);
2074 pserialize_read_exit(s);
2075
2076 return ifa;
2077 }
2078
2079 /*
2080 * Default action when installing a route with a Link Level gateway.
2081 * Lookup an appropriate real ifa to point to.
2082 * This should be moved to /sys/net/link.c eventually.
2083 */
2084 void
2085 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2086 {
2087 struct ifaddr *ifa;
2088 const struct sockaddr *dst;
2089 struct ifnet *ifp;
2090 struct psref psref;
2091
2092 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2093 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2094 return;
2095 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2096 rt_replace_ifa(rt, ifa);
2097 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2098 ifa->ifa_rtrequest(cmd, rt, info);
2099 ifa_release(ifa, &psref);
2100 }
2101 }
2102
2103 /*
2104 * bitmask macros to manage a densely packed link_state change queue.
2105 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2106 * LINK_STATE_UP(2) we need 2 bits for each state change.
2107 * As a state change to store is 0, treat all bits set as an unset item.
2108 */
2109 #define LQ_ITEM_BITS 2
2110 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2111 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2112 #define LINK_STATE_UNSET LQ_ITEM_MASK
2113 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2114 #define LQ_STORE(q, i, v) \
2115 do { \
2116 (q) &= ~LQ_MASK((i)); \
2117 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2118 } while (0 /* CONSTCOND */)
2119 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2120 #define LQ_POP(q, v) \
2121 do { \
2122 (v) = LQ_ITEM((q), 0); \
2123 (q) >>= LQ_ITEM_BITS; \
2124 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2125 } while (0 /* CONSTCOND */)
2126 #define LQ_PUSH(q, v) \
2127 do { \
2128 (q) >>= LQ_ITEM_BITS; \
2129 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2130 } while (0 /* CONSTCOND */)
2131 #define LQ_FIND_UNSET(q, i) \
2132 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2133 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2134 break; \
2135 }
2136 /*
2137 * Handle a change in the interface link state and
2138 * queue notifications.
2139 */
2140 void
2141 if_link_state_change(struct ifnet *ifp, int link_state)
2142 {
2143 int s, idx;
2144
2145 KASSERTMSG(if_is_link_state_changeable(ifp),
2146 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2147 ifp->if_xname, ifp->if_extflags);
2148
2149 /* Ensure change is to a valid state */
2150 switch (link_state) {
2151 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2152 case LINK_STATE_DOWN: /* FALLTHROUGH */
2153 case LINK_STATE_UP:
2154 break;
2155 default:
2156 #ifdef DEBUG
2157 printf("%s: invalid link state %d\n",
2158 ifp->if_xname, link_state);
2159 #endif
2160 return;
2161 }
2162
2163 s = splnet();
2164
2165 /* Find the last unset event in the queue. */
2166 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2167
2168 /*
2169 * Ensure link_state doesn't match the last event in the queue.
2170 * ifp->if_link_state is not checked and set here because
2171 * that would present an inconsistent picture to the system.
2172 */
2173 if (idx != 0 &&
2174 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2175 goto out;
2176
2177 /* Handle queue overflow. */
2178 if (idx == LQ_MAX(ifp->if_link_queue)) {
2179 uint8_t lost;
2180
2181 /*
2182 * The DOWN state must be protected from being pushed off
2183 * the queue to ensure that userland will always be
2184 * in a sane state.
2185 * Because DOWN is protected, there is no need to protect
2186 * UNKNOWN.
2187 * It should be invalid to change from any other state to
2188 * UNKNOWN anyway ...
2189 */
2190 lost = LQ_ITEM(ifp->if_link_queue, 0);
2191 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2192 if (lost == LINK_STATE_DOWN) {
2193 lost = LQ_ITEM(ifp->if_link_queue, 0);
2194 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2195 }
2196 printf("%s: lost link state change %s\n",
2197 ifp->if_xname,
2198 lost == LINK_STATE_UP ? "UP" :
2199 lost == LINK_STATE_DOWN ? "DOWN" :
2200 "UNKNOWN");
2201 } else
2202 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2203
2204 softint_schedule(ifp->if_link_si);
2205
2206 out:
2207 splx(s);
2208 }
2209
2210 /*
2211 * Handle interface link state change notifications.
2212 * Must be called at splnet().
2213 */
2214 static void
2215 if_link_state_change0(struct ifnet *ifp, int link_state)
2216 {
2217 struct domain *dp;
2218
2219 /* Ensure the change is still valid. */
2220 if (ifp->if_link_state == link_state)
2221 return;
2222
2223 #ifdef DEBUG
2224 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2225 link_state == LINK_STATE_UP ? "UP" :
2226 link_state == LINK_STATE_DOWN ? "DOWN" :
2227 "UNKNOWN",
2228 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2229 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2230 "UNKNOWN");
2231 #endif
2232
2233 /*
2234 * When going from UNKNOWN to UP, we need to mark existing
2235 * addresses as tentative and restart DAD as we may have
2236 * erroneously not found a duplicate.
2237 *
2238 * This needs to happen before rt_ifmsg to avoid a race where
2239 * listeners would have an address and expect it to work right
2240 * away.
2241 */
2242 if (link_state == LINK_STATE_UP &&
2243 ifp->if_link_state == LINK_STATE_UNKNOWN)
2244 {
2245 DOMAIN_FOREACH(dp) {
2246 if (dp->dom_if_link_state_change != NULL)
2247 dp->dom_if_link_state_change(ifp,
2248 LINK_STATE_DOWN);
2249 }
2250 }
2251
2252 ifp->if_link_state = link_state;
2253
2254 /* Notify that the link state has changed. */
2255 rt_ifmsg(ifp);
2256
2257 #if NCARP > 0
2258 if (ifp->if_carp)
2259 carp_carpdev_state(ifp);
2260 #endif
2261
2262 DOMAIN_FOREACH(dp) {
2263 if (dp->dom_if_link_state_change != NULL)
2264 dp->dom_if_link_state_change(ifp, link_state);
2265 }
2266 }
2267
2268 /*
2269 * Process the interface link state change queue.
2270 */
2271 static void
2272 if_link_state_change_si(void *arg)
2273 {
2274 struct ifnet *ifp = arg;
2275 int s;
2276 uint8_t state;
2277
2278 s = splnet();
2279
2280 /* Pop a link state change from the queue and process it. */
2281 LQ_POP(ifp->if_link_queue, state);
2282 if_link_state_change0(ifp, state);
2283
2284 /* If there is a link state change to come, schedule it. */
2285 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2286 softint_schedule(ifp->if_link_si);
2287
2288 splx(s);
2289 }
2290
2291 /*
2292 * Default action when installing a local route on a point-to-point
2293 * interface.
2294 */
2295 void
2296 p2p_rtrequest(int req, struct rtentry *rt,
2297 __unused const struct rt_addrinfo *info)
2298 {
2299 struct ifnet *ifp = rt->rt_ifp;
2300 struct ifaddr *ifa, *lo0ifa;
2301 int s = pserialize_read_enter();
2302
2303 switch (req) {
2304 case RTM_ADD:
2305 if ((rt->rt_flags & RTF_LOCAL) == 0)
2306 break;
2307
2308 rt->rt_ifp = lo0ifp;
2309
2310 IFADDR_READER_FOREACH(ifa, ifp) {
2311 if (equal(rt_getkey(rt), ifa->ifa_addr))
2312 break;
2313 }
2314 if (ifa == NULL)
2315 break;
2316
2317 /*
2318 * Ensure lo0 has an address of the same family.
2319 */
2320 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2321 if (lo0ifa->ifa_addr->sa_family ==
2322 ifa->ifa_addr->sa_family)
2323 break;
2324 }
2325 if (lo0ifa == NULL)
2326 break;
2327
2328 /*
2329 * Make sure to set rt->rt_ifa to the interface
2330 * address we are using, otherwise we will have trouble
2331 * with source address selection.
2332 */
2333 if (ifa != rt->rt_ifa)
2334 rt_replace_ifa(rt, ifa);
2335 break;
2336 case RTM_DELETE:
2337 default:
2338 break;
2339 }
2340 pserialize_read_exit(s);
2341 }
2342
2343 /*
2344 * Mark an interface down and notify protocols of
2345 * the transition.
2346 * NOTE: must be called at splsoftnet or equivalent.
2347 */
2348 void
2349 if_down(struct ifnet *ifp)
2350 {
2351 struct ifaddr *ifa;
2352 struct domain *dp;
2353 int s, bound;
2354 struct psref psref;
2355
2356 ifp->if_flags &= ~IFF_UP;
2357 nanotime(&ifp->if_lastchange);
2358
2359 bound = curlwp_bind();
2360 s = pserialize_read_enter();
2361 IFADDR_READER_FOREACH(ifa, ifp) {
2362 ifa_acquire(ifa, &psref);
2363 pserialize_read_exit(s);
2364
2365 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2366
2367 s = pserialize_read_enter();
2368 ifa_release(ifa, &psref);
2369 }
2370 pserialize_read_exit(s);
2371 curlwp_bindx(bound);
2372
2373 IFQ_PURGE(&ifp->if_snd);
2374 #if NCARP > 0
2375 if (ifp->if_carp)
2376 carp_carpdev_state(ifp);
2377 #endif
2378 rt_ifmsg(ifp);
2379 DOMAIN_FOREACH(dp) {
2380 if (dp->dom_if_down)
2381 dp->dom_if_down(ifp);
2382 }
2383 }
2384
2385 /*
2386 * Mark an interface up and notify protocols of
2387 * the transition.
2388 * NOTE: must be called at splsoftnet or equivalent.
2389 */
2390 void
2391 if_up(struct ifnet *ifp)
2392 {
2393 #ifdef notyet
2394 struct ifaddr *ifa;
2395 #endif
2396 struct domain *dp;
2397
2398 ifp->if_flags |= IFF_UP;
2399 nanotime(&ifp->if_lastchange);
2400 #ifdef notyet
2401 /* this has no effect on IP, and will kill all ISO connections XXX */
2402 IFADDR_READER_FOREACH(ifa, ifp)
2403 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2404 #endif
2405 #if NCARP > 0
2406 if (ifp->if_carp)
2407 carp_carpdev_state(ifp);
2408 #endif
2409 rt_ifmsg(ifp);
2410 DOMAIN_FOREACH(dp) {
2411 if (dp->dom_if_up)
2412 dp->dom_if_up(ifp);
2413 }
2414 }
2415
2416 /*
2417 * Handle interface slowtimo timer routine. Called
2418 * from softclock, we decrement timer (if set) and
2419 * call the appropriate interface routine on expiration.
2420 */
2421 static void
2422 if_slowtimo(void *arg)
2423 {
2424 void (*slowtimo)(struct ifnet *);
2425 struct ifnet *ifp = arg;
2426 int s;
2427
2428 slowtimo = ifp->if_slowtimo;
2429 if (__predict_false(slowtimo == NULL))
2430 return;
2431
2432 s = splnet();
2433 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2434 (*slowtimo)(ifp);
2435
2436 splx(s);
2437
2438 if (__predict_true(ifp->if_slowtimo != NULL))
2439 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2440 }
2441
2442 /*
2443 * Set/clear promiscuous mode on interface ifp based on the truth value
2444 * of pswitch. The calls are reference counted so that only the first
2445 * "on" request actually has an effect, as does the final "off" request.
2446 * Results are undefined if the "off" and "on" requests are not matched.
2447 */
2448 int
2449 ifpromisc(struct ifnet *ifp, int pswitch)
2450 {
2451 int pcount, ret;
2452 short nflags;
2453
2454 pcount = ifp->if_pcount;
2455 if (pswitch) {
2456 /*
2457 * Allow the device to be "placed" into promiscuous
2458 * mode even if it is not configured up. It will
2459 * consult IFF_PROMISC when it is brought up.
2460 */
2461 if (ifp->if_pcount++ != 0)
2462 return 0;
2463 nflags = ifp->if_flags | IFF_PROMISC;
2464 } else {
2465 if (--ifp->if_pcount > 0)
2466 return 0;
2467 nflags = ifp->if_flags & ~IFF_PROMISC;
2468 }
2469 ret = if_flags_set(ifp, nflags);
2470 /* Restore interface state if not successful. */
2471 if (ret != 0) {
2472 ifp->if_pcount = pcount;
2473 }
2474 return ret;
2475 }
2476
2477 /*
2478 * Map interface name to
2479 * interface structure pointer.
2480 */
2481 struct ifnet *
2482 ifunit(const char *name)
2483 {
2484 struct ifnet *ifp;
2485 const char *cp = name;
2486 u_int unit = 0;
2487 u_int i;
2488 int s;
2489
2490 /*
2491 * If the entire name is a number, treat it as an ifindex.
2492 */
2493 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2494 unit = unit * 10 + (*cp - '0');
2495 }
2496
2497 /*
2498 * If the number took all of the name, then it's a valid ifindex.
2499 */
2500 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2501 if (unit >= if_indexlim)
2502 return NULL;
2503 ifp = ifindex2ifnet[unit];
2504 if (ifp == NULL || if_is_deactivated(ifp))
2505 return NULL;
2506 return ifp;
2507 }
2508
2509 ifp = NULL;
2510 s = pserialize_read_enter();
2511 IFNET_READER_FOREACH(ifp) {
2512 if (if_is_deactivated(ifp))
2513 continue;
2514 if (strcmp(ifp->if_xname, name) == 0)
2515 goto out;
2516 }
2517 out:
2518 pserialize_read_exit(s);
2519 return ifp;
2520 }
2521
2522 /*
2523 * Get a reference of an ifnet object by an interface name.
2524 * The returned reference is protected by psref(9). The caller
2525 * must release a returned reference by if_put after use.
2526 */
2527 struct ifnet *
2528 if_get(const char *name, struct psref *psref)
2529 {
2530 struct ifnet *ifp;
2531 const char *cp = name;
2532 u_int unit = 0;
2533 u_int i;
2534 int s;
2535
2536 /*
2537 * If the entire name is a number, treat it as an ifindex.
2538 */
2539 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2540 unit = unit * 10 + (*cp - '0');
2541 }
2542
2543 /*
2544 * If the number took all of the name, then it's a valid ifindex.
2545 */
2546 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2547 if (unit >= if_indexlim)
2548 return NULL;
2549 ifp = ifindex2ifnet[unit];
2550 if (ifp == NULL || if_is_deactivated(ifp))
2551 return NULL;
2552 return ifp;
2553 }
2554
2555 ifp = NULL;
2556 s = pserialize_read_enter();
2557 IFNET_READER_FOREACH(ifp) {
2558 if (if_is_deactivated(ifp))
2559 continue;
2560 if (strcmp(ifp->if_xname, name) == 0) {
2561 psref_acquire(psref, &ifp->if_psref,
2562 ifnet_psref_class);
2563 goto out;
2564 }
2565 }
2566 out:
2567 pserialize_read_exit(s);
2568 return ifp;
2569 }
2570
2571 /*
2572 * Release a reference of an ifnet object given by if_get or
2573 * if_get_byindex.
2574 */
2575 void
2576 if_put(const struct ifnet *ifp, struct psref *psref)
2577 {
2578
2579 if (ifp == NULL)
2580 return;
2581
2582 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2583 }
2584
2585 ifnet_t *
2586 if_byindex(u_int idx)
2587 {
2588 ifnet_t *ifp;
2589
2590 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2591 if (ifp != NULL && if_is_deactivated(ifp))
2592 ifp = NULL;
2593 return ifp;
2594 }
2595
2596 /*
2597 * Get a reference of an ifnet object by an interface index.
2598 * The returned reference is protected by psref(9). The caller
2599 * must release a returned reference by if_put after use.
2600 */
2601 ifnet_t *
2602 if_get_byindex(u_int idx, struct psref *psref)
2603 {
2604 ifnet_t *ifp;
2605 int s;
2606
2607 s = pserialize_read_enter();
2608 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2609 if (ifp != NULL && if_is_deactivated(ifp))
2610 ifp = NULL;
2611 if (__predict_true(ifp != NULL))
2612 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2613 pserialize_read_exit(s);
2614
2615 return ifp;
2616 }
2617
2618 /*
2619 * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2620 * for example the ifp is already held or some other object is held which
2621 * guarantes the ifp to not be freed indirectly.
2622 */
2623 void
2624 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2625 {
2626
2627 KASSERT(ifp->if_index != 0);
2628 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2629 }
2630
2631 bool
2632 if_held(struct ifnet *ifp)
2633 {
2634
2635 return psref_held(&ifp->if_psref, ifnet_psref_class);
2636 }
2637
2638
2639 /* common */
2640 int
2641 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2642 {
2643 int s;
2644 struct ifreq *ifr;
2645 struct ifcapreq *ifcr;
2646 struct ifdatareq *ifdr;
2647
2648 switch (cmd) {
2649 case SIOCSIFCAP:
2650 ifcr = data;
2651 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2652 return EINVAL;
2653
2654 if (ifcr->ifcr_capenable == ifp->if_capenable)
2655 return 0;
2656
2657 ifp->if_capenable = ifcr->ifcr_capenable;
2658
2659 /* Pre-compute the checksum flags mask. */
2660 ifp->if_csum_flags_tx = 0;
2661 ifp->if_csum_flags_rx = 0;
2662 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2663 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2664 }
2665 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2666 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2667 }
2668
2669 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2670 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2671 }
2672 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2673 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2674 }
2675
2676 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2677 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2678 }
2679 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2680 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2681 }
2682
2683 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2684 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2685 }
2686 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2687 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2688 }
2689
2690 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2691 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2692 }
2693 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2694 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2695 }
2696 if (ifp->if_flags & IFF_UP)
2697 return ENETRESET;
2698 return 0;
2699 case SIOCSIFFLAGS:
2700 ifr = data;
2701 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2702 s = splnet();
2703 if_down(ifp);
2704 splx(s);
2705 }
2706 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2707 s = splnet();
2708 if_up(ifp);
2709 splx(s);
2710 }
2711 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2712 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2713 break;
2714 case SIOCGIFFLAGS:
2715 ifr = data;
2716 ifr->ifr_flags = ifp->if_flags;
2717 break;
2718
2719 case SIOCGIFMETRIC:
2720 ifr = data;
2721 ifr->ifr_metric = ifp->if_metric;
2722 break;
2723
2724 case SIOCGIFMTU:
2725 ifr = data;
2726 ifr->ifr_mtu = ifp->if_mtu;
2727 break;
2728
2729 case SIOCGIFDLT:
2730 ifr = data;
2731 ifr->ifr_dlt = ifp->if_dlt;
2732 break;
2733
2734 case SIOCGIFCAP:
2735 ifcr = data;
2736 ifcr->ifcr_capabilities = ifp->if_capabilities;
2737 ifcr->ifcr_capenable = ifp->if_capenable;
2738 break;
2739
2740 case SIOCSIFMETRIC:
2741 ifr = data;
2742 ifp->if_metric = ifr->ifr_metric;
2743 break;
2744
2745 case SIOCGIFDATA:
2746 ifdr = data;
2747 ifdr->ifdr_data = ifp->if_data;
2748 break;
2749
2750 case SIOCGIFINDEX:
2751 ifr = data;
2752 ifr->ifr_index = ifp->if_index;
2753 break;
2754
2755 case SIOCZIFDATA:
2756 ifdr = data;
2757 ifdr->ifdr_data = ifp->if_data;
2758 /*
2759 * Assumes that the volatile counters that can be
2760 * zero'ed are at the end of if_data.
2761 */
2762 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2763 offsetof(struct if_data, ifi_ipackets));
2764 /*
2765 * The memset() clears to the bottm of if_data. In the area,
2766 * if_lastchange is included. Please be careful if new entry
2767 * will be added into if_data or rewite this.
2768 *
2769 * And also, update if_lastchnage.
2770 */
2771 getnanotime(&ifp->if_lastchange);
2772 break;
2773 case SIOCSIFMTU:
2774 ifr = data;
2775 if (ifp->if_mtu == ifr->ifr_mtu)
2776 break;
2777 ifp->if_mtu = ifr->ifr_mtu;
2778 /*
2779 * If the link MTU changed, do network layer specific procedure.
2780 */
2781 #ifdef INET6
2782 if (in6_present)
2783 nd6_setmtu(ifp);
2784 #endif
2785 return ENETRESET;
2786 default:
2787 return ENOTTY;
2788 }
2789 return 0;
2790 }
2791
2792 int
2793 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2794 {
2795 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2796 struct ifaddr *ifa;
2797 const struct sockaddr *any, *sa;
2798 union {
2799 struct sockaddr sa;
2800 struct sockaddr_storage ss;
2801 } u, v;
2802 int s, error = 0;
2803
2804 switch (cmd) {
2805 case SIOCSIFADDRPREF:
2806 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2807 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2808 NULL) != 0)
2809 return EPERM;
2810 case SIOCGIFADDRPREF:
2811 break;
2812 default:
2813 return EOPNOTSUPP;
2814 }
2815
2816 /* sanity checks */
2817 if (data == NULL || ifp == NULL) {
2818 panic("invalid argument to %s", __func__);
2819 /*NOTREACHED*/
2820 }
2821
2822 /* address must be specified on ADD and DELETE */
2823 sa = sstocsa(&ifap->ifap_addr);
2824 if (sa->sa_family != sofamily(so))
2825 return EINVAL;
2826 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2827 return EINVAL;
2828
2829 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2830
2831 s = pserialize_read_enter();
2832 IFADDR_READER_FOREACH(ifa, ifp) {
2833 if (ifa->ifa_addr->sa_family != sa->sa_family)
2834 continue;
2835 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2836 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2837 break;
2838 }
2839 if (ifa == NULL) {
2840 error = EADDRNOTAVAIL;
2841 goto out;
2842 }
2843
2844 switch (cmd) {
2845 case SIOCSIFADDRPREF:
2846 ifa->ifa_preference = ifap->ifap_preference;
2847 goto out;
2848 case SIOCGIFADDRPREF:
2849 /* fill in the if_laddrreq structure */
2850 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2851 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2852 ifap->ifap_preference = ifa->ifa_preference;
2853 goto out;
2854 default:
2855 error = EOPNOTSUPP;
2856 }
2857 out:
2858 pserialize_read_exit(s);
2859 return error;
2860 }
2861
2862 /*
2863 * Interface ioctls.
2864 */
2865 static int
2866 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2867 {
2868 struct ifnet *ifp;
2869 struct ifreq *ifr;
2870 int error = 0;
2871 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2872 u_long ocmd = cmd;
2873 #endif
2874 short oif_flags;
2875 #ifdef COMPAT_OIFREQ
2876 struct ifreq ifrb;
2877 struct oifreq *oifr = NULL;
2878 #endif
2879 int r;
2880 struct psref psref;
2881 int bound;
2882
2883 switch (cmd) {
2884 #ifdef COMPAT_OIFREQ
2885 case OSIOCGIFCONF:
2886 case OOSIOCGIFCONF:
2887 return compat_ifconf(cmd, data);
2888 #endif
2889 #ifdef COMPAT_OIFDATA
2890 case OSIOCGIFDATA:
2891 case OSIOCZIFDATA:
2892 return compat_ifdatareq(l, cmd, data);
2893 #endif
2894 case SIOCGIFCONF:
2895 return ifconf(cmd, data);
2896 case SIOCINITIFADDR:
2897 return EPERM;
2898 }
2899
2900 #ifdef COMPAT_OIFREQ
2901 cmd = (*vec_compat_cvtcmd)(cmd);
2902 if (cmd != ocmd) {
2903 oifr = data;
2904 data = ifr = &ifrb;
2905 ifreqo2n(oifr, ifr);
2906 } else
2907 #endif
2908 ifr = data;
2909
2910 switch (cmd) {
2911 case SIOCIFCREATE:
2912 case SIOCIFDESTROY:
2913 bound = curlwp_bind();
2914 if (l != NULL) {
2915 ifp = if_get(ifr->ifr_name, &psref);
2916 error = kauth_authorize_network(l->l_cred,
2917 KAUTH_NETWORK_INTERFACE,
2918 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2919 (void *)cmd, NULL);
2920 if (ifp != NULL)
2921 if_put(ifp, &psref);
2922 if (error != 0) {
2923 curlwp_bindx(bound);
2924 return error;
2925 }
2926 }
2927 mutex_enter(&if_clone_mtx);
2928 r = (cmd == SIOCIFCREATE) ?
2929 if_clone_create(ifr->ifr_name) :
2930 if_clone_destroy(ifr->ifr_name);
2931 mutex_exit(&if_clone_mtx);
2932 curlwp_bindx(bound);
2933 return r;
2934
2935 case SIOCIFGCLONERS:
2936 {
2937 struct if_clonereq *req = (struct if_clonereq *)data;
2938 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2939 &req->ifcr_total);
2940 }
2941 }
2942
2943 bound = curlwp_bind();
2944 ifp = if_get(ifr->ifr_name, &psref);
2945 if (ifp == NULL) {
2946 curlwp_bindx(bound);
2947 return ENXIO;
2948 }
2949
2950 switch (cmd) {
2951 case SIOCALIFADDR:
2952 case SIOCDLIFADDR:
2953 case SIOCSIFADDRPREF:
2954 case SIOCSIFFLAGS:
2955 case SIOCSIFCAP:
2956 case SIOCSIFMETRIC:
2957 case SIOCZIFDATA:
2958 case SIOCSIFMTU:
2959 case SIOCSIFPHYADDR:
2960 case SIOCDIFPHYADDR:
2961 #ifdef INET6
2962 case SIOCSIFPHYADDR_IN6:
2963 #endif
2964 case SIOCSLIFPHYADDR:
2965 case SIOCADDMULTI:
2966 case SIOCDELMULTI:
2967 case SIOCSIFMEDIA:
2968 case SIOCSDRVSPEC:
2969 case SIOCG80211:
2970 case SIOCS80211:
2971 case SIOCS80211NWID:
2972 case SIOCS80211NWKEY:
2973 case SIOCS80211POWER:
2974 case SIOCS80211BSSID:
2975 case SIOCS80211CHANNEL:
2976 case SIOCSLINKSTR:
2977 if (l != NULL) {
2978 error = kauth_authorize_network(l->l_cred,
2979 KAUTH_NETWORK_INTERFACE,
2980 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2981 (void *)cmd, NULL);
2982 if (error != 0)
2983 goto out;
2984 }
2985 }
2986
2987 oif_flags = ifp->if_flags;
2988
2989 mutex_enter(ifp->if_ioctl_lock);
2990
2991 error = (*ifp->if_ioctl)(ifp, cmd, data);
2992 if (error != ENOTTY)
2993 ;
2994 else if (so->so_proto == NULL)
2995 error = EOPNOTSUPP;
2996 else {
2997 #ifdef COMPAT_OSOCK
2998 if (vec_compat_ifioctl != NULL)
2999 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3000 else
3001 #endif
3002 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3003 cmd, data, ifp);
3004 }
3005
3006 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3007 if ((ifp->if_flags & IFF_UP) != 0) {
3008 int s = splnet();
3009 if_up(ifp);
3010 splx(s);
3011 }
3012 }
3013 #ifdef COMPAT_OIFREQ
3014 if (cmd != ocmd)
3015 ifreqn2o(oifr, ifr);
3016 #endif
3017
3018 mutex_exit(ifp->if_ioctl_lock);
3019 out:
3020 if_put(ifp, &psref);
3021 curlwp_bindx(bound);
3022 return error;
3023 }
3024
3025 /*
3026 * Return interface configuration
3027 * of system. List may be used
3028 * in later ioctl's (above) to get
3029 * other information.
3030 *
3031 * Each record is a struct ifreq. Before the addition of
3032 * sockaddr_storage, the API rule was that sockaddr flavors that did
3033 * not fit would extend beyond the struct ifreq, with the next struct
3034 * ifreq starting sa_len beyond the struct sockaddr. Because the
3035 * union in struct ifreq includes struct sockaddr_storage, every kind
3036 * of sockaddr must fit. Thus, there are no longer any overlength
3037 * records.
3038 *
3039 * Records are added to the user buffer if they fit, and ifc_len is
3040 * adjusted to the length that was written. Thus, the user is only
3041 * assured of getting the complete list if ifc_len on return is at
3042 * least sizeof(struct ifreq) less than it was on entry.
3043 *
3044 * If the user buffer pointer is NULL, this routine copies no data and
3045 * returns the amount of space that would be needed.
3046 *
3047 * Invariants:
3048 * ifrp points to the next part of the user's buffer to be used. If
3049 * ifrp != NULL, space holds the number of bytes remaining that we may
3050 * write at ifrp. Otherwise, space holds the number of bytes that
3051 * would have been written had there been adequate space.
3052 */
3053 /*ARGSUSED*/
3054 static int
3055 ifconf(u_long cmd, void *data)
3056 {
3057 struct ifconf *ifc = (struct ifconf *)data;
3058 struct ifnet *ifp;
3059 struct ifaddr *ifa;
3060 struct ifreq ifr, *ifrp = NULL;
3061 int space = 0, error = 0;
3062 const int sz = (int)sizeof(struct ifreq);
3063 const bool docopy = ifc->ifc_req != NULL;
3064 int s;
3065 int bound;
3066 struct psref psref;
3067
3068 if (docopy) {
3069 space = ifc->ifc_len;
3070 ifrp = ifc->ifc_req;
3071 }
3072
3073 bound = curlwp_bind();
3074 s = pserialize_read_enter();
3075 IFNET_READER_FOREACH(ifp) {
3076 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3077 pserialize_read_exit(s);
3078
3079 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3080 sizeof(ifr.ifr_name));
3081 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3082 error = ENAMETOOLONG;
3083 goto release_exit;
3084 }
3085 if (IFADDR_READER_EMPTY(ifp)) {
3086 /* Interface with no addresses - send zero sockaddr. */
3087 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3088 if (!docopy) {
3089 space += sz;
3090 continue;
3091 }
3092 if (space >= sz) {
3093 error = copyout(&ifr, ifrp, sz);
3094 if (error != 0)
3095 goto release_exit;
3096 ifrp++;
3097 space -= sz;
3098 }
3099 }
3100
3101 IFADDR_READER_FOREACH(ifa, ifp) {
3102 struct sockaddr *sa = ifa->ifa_addr;
3103 /* all sockaddrs must fit in sockaddr_storage */
3104 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3105
3106 if (!docopy) {
3107 space += sz;
3108 continue;
3109 }
3110 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3111 if (space >= sz) {
3112 error = copyout(&ifr, ifrp, sz);
3113 if (error != 0)
3114 goto release_exit;
3115 ifrp++; space -= sz;
3116 }
3117 }
3118
3119 s = pserialize_read_enter();
3120 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3121 }
3122 pserialize_read_exit(s);
3123 curlwp_bindx(bound);
3124
3125 if (docopy) {
3126 KASSERT(0 <= space && space <= ifc->ifc_len);
3127 ifc->ifc_len -= space;
3128 } else {
3129 KASSERT(space >= 0);
3130 ifc->ifc_len = space;
3131 }
3132 return (0);
3133
3134 release_exit:
3135 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3136 curlwp_bindx(bound);
3137 return error;
3138 }
3139
3140 int
3141 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3142 {
3143 uint8_t len;
3144 #ifdef COMPAT_OIFREQ
3145 struct ifreq ifrb;
3146 struct oifreq *oifr = NULL;
3147 u_long ocmd = cmd;
3148 cmd = (*vec_compat_cvtcmd)(cmd);
3149 if (cmd != ocmd) {
3150 oifr = (struct oifreq *)(void *)ifr;
3151 ifr = &ifrb;
3152 ifreqo2n(oifr, ifr);
3153 len = sizeof(oifr->ifr_addr);
3154 } else
3155 #endif
3156 len = sizeof(ifr->ifr_ifru.ifru_space);
3157
3158 if (len < sa->sa_len)
3159 return EFBIG;
3160
3161 memset(&ifr->ifr_addr, 0, len);
3162 sockaddr_copy(&ifr->ifr_addr, len, sa);
3163
3164 #ifdef COMPAT_OIFREQ
3165 if (cmd != ocmd)
3166 ifreqn2o(oifr, ifr);
3167 #endif
3168 return 0;
3169 }
3170
3171 /*
3172 * wrapper function for the drivers which doesn't have if_transmit().
3173 */
3174 static int
3175 if_transmit(struct ifnet *ifp, struct mbuf *m)
3176 {
3177 int s, error;
3178
3179 s = splnet();
3180
3181 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3182 if (error != 0) {
3183 /* mbuf is already freed */
3184 goto out;
3185 }
3186
3187 ifp->if_obytes += m->m_pkthdr.len;;
3188 if (m->m_flags & M_MCAST)
3189 ifp->if_omcasts++;
3190
3191 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3192 if_start_lock(ifp);
3193 out:
3194 splx(s);
3195
3196 return error;
3197 }
3198
3199 int
3200 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3201 {
3202 int error;
3203
3204 #ifdef ALTQ
3205 KERNEL_LOCK(1, NULL);
3206 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3207 error = if_transmit(ifp, m);
3208 KERNEL_UNLOCK_ONE(NULL);
3209 } else {
3210 KERNEL_UNLOCK_ONE(NULL);
3211 error = (*ifp->if_transmit)(ifp, m);
3212 }
3213 #else /* !ALTQ */
3214 error = (*ifp->if_transmit)(ifp, m);
3215 #endif /* !ALTQ */
3216
3217 return error;
3218 }
3219
3220 /*
3221 * Queue message on interface, and start output if interface
3222 * not yet active.
3223 */
3224 int
3225 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3226 {
3227
3228 return if_transmit_lock(ifp, m);
3229 }
3230
3231 /*
3232 * Queue message on interface, possibly using a second fast queue
3233 */
3234 int
3235 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3236 {
3237 int error = 0;
3238
3239 if (ifq != NULL
3240 #ifdef ALTQ
3241 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3242 #endif
3243 ) {
3244 if (IF_QFULL(ifq)) {
3245 IF_DROP(&ifp->if_snd);
3246 m_freem(m);
3247 if (error == 0)
3248 error = ENOBUFS;
3249 } else
3250 IF_ENQUEUE(ifq, m);
3251 } else
3252 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3253 if (error != 0) {
3254 ++ifp->if_oerrors;
3255 return error;
3256 }
3257 return 0;
3258 }
3259
3260 int
3261 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3262 {
3263 int rc;
3264
3265 if (ifp->if_initaddr != NULL)
3266 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3267 else if (src ||
3268 /* FIXME: may not hold if_ioctl_lock */
3269 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3270 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3271
3272 return rc;
3273 }
3274
3275 int
3276 if_do_dad(struct ifnet *ifp)
3277 {
3278 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3279 return 0;
3280
3281 switch (ifp->if_type) {
3282 case IFT_FAITH:
3283 /*
3284 * These interfaces do not have the IFF_LOOPBACK flag,
3285 * but loop packets back. We do not have to do DAD on such
3286 * interfaces. We should even omit it, because loop-backed
3287 * responses would confuse the DAD procedure.
3288 */
3289 return 0;
3290 default:
3291 /*
3292 * Our DAD routine requires the interface up and running.
3293 * However, some interfaces can be up before the RUNNING
3294 * status. Additionaly, users may try to assign addresses
3295 * before the interface becomes up (or running).
3296 * We simply skip DAD in such a case as a work around.
3297 * XXX: we should rather mark "tentative" on such addresses,
3298 * and do DAD after the interface becomes ready.
3299 */
3300 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3301 (IFF_UP|IFF_RUNNING))
3302 return 0;
3303
3304 return 1;
3305 }
3306 }
3307
3308 int
3309 if_flags_set(ifnet_t *ifp, const short flags)
3310 {
3311 int rc;
3312
3313 if (ifp->if_setflags != NULL)
3314 rc = (*ifp->if_setflags)(ifp, flags);
3315 else {
3316 short cantflags, chgdflags;
3317 struct ifreq ifr;
3318
3319 chgdflags = ifp->if_flags ^ flags;
3320 cantflags = chgdflags & IFF_CANTCHANGE;
3321
3322 if (cantflags != 0)
3323 ifp->if_flags ^= cantflags;
3324
3325 /* Traditionally, we do not call if_ioctl after
3326 * setting/clearing only IFF_PROMISC if the interface
3327 * isn't IFF_UP. Uphold that tradition.
3328 */
3329 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3330 return 0;
3331
3332 memset(&ifr, 0, sizeof(ifr));
3333
3334 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3335 /* FIXME: may not hold if_ioctl_lock */
3336 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3337
3338 if (rc != 0 && cantflags != 0)
3339 ifp->if_flags ^= cantflags;
3340 }
3341
3342 return rc;
3343 }
3344
3345 int
3346 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3347 {
3348 int rc;
3349 struct ifreq ifr;
3350
3351 if (ifp->if_mcastop != NULL)
3352 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3353 else {
3354 ifreq_setaddr(cmd, &ifr, sa);
3355 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3356 }
3357
3358 return rc;
3359 }
3360
3361 static void
3362 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3363 struct ifaltq *ifq)
3364 {
3365 const struct sysctlnode *cnode, *rnode;
3366
3367 if (sysctl_createv(clog, 0, NULL, &rnode,
3368 CTLFLAG_PERMANENT,
3369 CTLTYPE_NODE, "interfaces",
3370 SYSCTL_DESCR("Per-interface controls"),
3371 NULL, 0, NULL, 0,
3372 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3373 goto bad;
3374
3375 if (sysctl_createv(clog, 0, &rnode, &rnode,
3376 CTLFLAG_PERMANENT,
3377 CTLTYPE_NODE, ifname,
3378 SYSCTL_DESCR("Interface controls"),
3379 NULL, 0, NULL, 0,
3380 CTL_CREATE, CTL_EOL) != 0)
3381 goto bad;
3382
3383 if (sysctl_createv(clog, 0, &rnode, &rnode,
3384 CTLFLAG_PERMANENT,
3385 CTLTYPE_NODE, "sndq",
3386 SYSCTL_DESCR("Interface output queue controls"),
3387 NULL, 0, NULL, 0,
3388 CTL_CREATE, CTL_EOL) != 0)
3389 goto bad;
3390
3391 if (sysctl_createv(clog, 0, &rnode, &cnode,
3392 CTLFLAG_PERMANENT,
3393 CTLTYPE_INT, "len",
3394 SYSCTL_DESCR("Current output queue length"),
3395 NULL, 0, &ifq->ifq_len, 0,
3396 CTL_CREATE, CTL_EOL) != 0)
3397 goto bad;
3398
3399 if (sysctl_createv(clog, 0, &rnode, &cnode,
3400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3401 CTLTYPE_INT, "maxlen",
3402 SYSCTL_DESCR("Maximum allowed output queue length"),
3403 NULL, 0, &ifq->ifq_maxlen, 0,
3404 CTL_CREATE, CTL_EOL) != 0)
3405 goto bad;
3406
3407 if (sysctl_createv(clog, 0, &rnode, &cnode,
3408 CTLFLAG_PERMANENT,
3409 CTLTYPE_INT, "drops",
3410 SYSCTL_DESCR("Packets dropped due to full output queue"),
3411 NULL, 0, &ifq->ifq_drops, 0,
3412 CTL_CREATE, CTL_EOL) != 0)
3413 goto bad;
3414
3415 return;
3416 bad:
3417 printf("%s: could not attach sysctl nodes\n", ifname);
3418 return;
3419 }
3420
3421 #if defined(INET) || defined(INET6)
3422
3423 #define SYSCTL_NET_PKTQ(q, cn, c) \
3424 static int \
3425 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3426 { \
3427 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3428 }
3429
3430 #if defined(INET)
3431 static int
3432 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3433 {
3434 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3435 }
3436 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3437 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3438 #endif
3439
3440 #if defined(INET6)
3441 static int
3442 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3443 {
3444 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3445 }
3446 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3447 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3448 #endif
3449
3450 static void
3451 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3452 {
3453 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3454 const char *pfname = NULL, *ipname = NULL;
3455 int ipn = 0, qid = 0;
3456
3457 switch (pf) {
3458 #if defined(INET)
3459 case PF_INET:
3460 len_func = sysctl_net_ip_pktq_items;
3461 maxlen_func = sysctl_net_ip_pktq_maxlen;
3462 drops_func = sysctl_net_ip_pktq_drops;
3463 pfname = "inet", ipn = IPPROTO_IP;
3464 ipname = "ip", qid = IPCTL_IFQ;
3465 break;
3466 #endif
3467 #if defined(INET6)
3468 case PF_INET6:
3469 len_func = sysctl_net_ip6_pktq_items;
3470 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3471 drops_func = sysctl_net_ip6_pktq_drops;
3472 pfname = "inet6", ipn = IPPROTO_IPV6;
3473 ipname = "ip6", qid = IPV6CTL_IFQ;
3474 break;
3475 #endif
3476 default:
3477 KASSERT(false);
3478 }
3479
3480 sysctl_createv(clog, 0, NULL, NULL,
3481 CTLFLAG_PERMANENT,
3482 CTLTYPE_NODE, pfname, NULL,
3483 NULL, 0, NULL, 0,
3484 CTL_NET, pf, CTL_EOL);
3485 sysctl_createv(clog, 0, NULL, NULL,
3486 CTLFLAG_PERMANENT,
3487 CTLTYPE_NODE, ipname, NULL,
3488 NULL, 0, NULL, 0,
3489 CTL_NET, pf, ipn, CTL_EOL);
3490 sysctl_createv(clog, 0, NULL, NULL,
3491 CTLFLAG_PERMANENT,
3492 CTLTYPE_NODE, "ifq",
3493 SYSCTL_DESCR("Protocol input queue controls"),
3494 NULL, 0, NULL, 0,
3495 CTL_NET, pf, ipn, qid, CTL_EOL);
3496
3497 sysctl_createv(clog, 0, NULL, NULL,
3498 CTLFLAG_PERMANENT,
3499 CTLTYPE_INT, "len",
3500 SYSCTL_DESCR("Current input queue length"),
3501 len_func, 0, NULL, 0,
3502 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3503 sysctl_createv(clog, 0, NULL, NULL,
3504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3505 CTLTYPE_INT, "maxlen",
3506 SYSCTL_DESCR("Maximum allowed input queue length"),
3507 maxlen_func, 0, NULL, 0,
3508 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3509 sysctl_createv(clog, 0, NULL, NULL,
3510 CTLFLAG_PERMANENT,
3511 CTLTYPE_INT, "drops",
3512 SYSCTL_DESCR("Packets dropped due to full input queue"),
3513 drops_func, 0, NULL, 0,
3514 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3515 }
3516 #endif /* INET || INET6 */
3517
3518 static int
3519 if_sdl_sysctl(SYSCTLFN_ARGS)
3520 {
3521 struct ifnet *ifp;
3522 const struct sockaddr_dl *sdl;
3523 struct psref psref;
3524 int error = 0;
3525 int bound;
3526
3527 if (namelen != 1)
3528 return EINVAL;
3529
3530 bound = curlwp_bind();
3531 ifp = if_get_byindex(name[0], &psref);
3532 if (ifp == NULL) {
3533 error = ENODEV;
3534 goto out0;
3535 }
3536
3537 sdl = ifp->if_sadl;
3538 if (sdl == NULL) {
3539 *oldlenp = 0;
3540 goto out1;
3541 }
3542
3543 if (oldp == NULL) {
3544 *oldlenp = sdl->sdl_alen;
3545 goto out1;
3546 }
3547
3548 if (*oldlenp >= sdl->sdl_alen)
3549 *oldlenp = sdl->sdl_alen;
3550 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3551 out1:
3552 if_put(ifp, &psref);
3553 out0:
3554 curlwp_bindx(bound);
3555 return error;
3556 }
3557
3558 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3559 {
3560 const struct sysctlnode *rnode = NULL;
3561
3562 sysctl_createv(clog, 0, NULL, &rnode,
3563 CTLFLAG_PERMANENT,
3564 CTLTYPE_NODE, "sdl",
3565 SYSCTL_DESCR("Get active link-layer address"),
3566 if_sdl_sysctl, 0, NULL, 0,
3567 CTL_NET, CTL_CREATE, CTL_EOL);
3568 }
3569