Home | History | Annotate | Line # | Download | only in net
if.c revision 1.392
      1 /*	$NetBSD: if.c,v 1.392 2017/04/06 09:20:07 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.392 2017/04/06 09:20:07 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 
     99 #include "opt_atalk.h"
    100 #include "opt_natm.h"
    101 #include "opt_wlan.h"
    102 #include "opt_net_mpsafe.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/proc.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/domain.h>
    113 #include <sys/protosw.h>
    114 #include <sys/kernel.h>
    115 #include <sys/ioctl.h>
    116 #include <sys/sysctl.h>
    117 #include <sys/syslog.h>
    118 #include <sys/kauth.h>
    119 #include <sys/kmem.h>
    120 #include <sys/xcall.h>
    121 #include <sys/cpu.h>
    122 #include <sys/intr.h>
    123 
    124 #include <net/if.h>
    125 #include <net/if_dl.h>
    126 #include <net/if_ether.h>
    127 #include <net/if_media.h>
    128 #include <net80211/ieee80211.h>
    129 #include <net80211/ieee80211_ioctl.h>
    130 #include <net/if_types.h>
    131 #include <net/route.h>
    132 #include <net/netisr.h>
    133 #include <sys/module.h>
    134 #ifdef NETATALK
    135 #include <netatalk/at_extern.h>
    136 #include <netatalk/at.h>
    137 #endif
    138 #include <net/pfil.h>
    139 #include <netinet/in.h>
    140 #include <netinet/in_var.h>
    141 #include <netinet/ip_encap.h>
    142 #include <net/bpf.h>
    143 
    144 #ifdef INET6
    145 #include <netinet6/in6_var.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include "ether.h"
    150 #include "fddi.h"
    151 #include "token.h"
    152 
    153 #include "carp.h"
    154 #if NCARP > 0
    155 #include <netinet/ip_carp.h>
    156 #endif
    157 
    158 #include <compat/sys/sockio.h>
    159 #include <compat/sys/socket.h>
    160 
    161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    163 
    164 /*
    165  * Global list of interfaces.
    166  */
    167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    168 struct ifnet_head		ifnet_list;
    169 
    170 struct pslist_head		ifnet_pslist;
    171 static ifnet_t **		ifindex2ifnet = NULL;
    172 static u_int			if_index = 1;
    173 static size_t			if_indexlim = 0;
    174 static uint64_t			index_gen;
    175 /* Mutex to protect the above objects. */
    176 kmutex_t			ifnet_mtx __cacheline_aligned;
    177 static struct psref_class	*ifnet_psref_class __read_mostly;
    178 static pserialize_t		ifnet_psz;
    179 
    180 static kmutex_t			if_clone_mtx;
    181 
    182 struct ifnet *lo0ifp;
    183 int	ifqmaxlen = IFQ_MAXLEN;
    184 
    185 struct psref_class		*ifa_psref_class __read_mostly;
    186 
    187 static int	if_delroute_matcher(struct rtentry *, void *);
    188 
    189 static bool if_is_unit(const char *);
    190 static struct if_clone *if_clone_lookup(const char *, int *);
    191 
    192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    193 static int if_cloners_count;
    194 
    195 /* Packet filtering hook for interfaces. */
    196 pfil_head_t *			if_pfil __read_mostly;
    197 
    198 static kauth_listener_t if_listener;
    199 
    200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    203     struct ifaltq *);
    204 static void if_slowtimo(void *);
    205 static void if_free_sadl(struct ifnet *);
    206 static void if_attachdomain1(struct ifnet *);
    207 static int ifconf(u_long, void *);
    208 static int if_transmit(struct ifnet *, struct mbuf *);
    209 static int if_clone_create(const char *);
    210 static int if_clone_destroy(const char *);
    211 static void if_link_state_change_si(void *);
    212 
    213 struct if_percpuq {
    214 	struct ifnet	*ipq_ifp;
    215 	void		*ipq_si;
    216 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    217 };
    218 
    219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    220 
    221 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    223 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    224     struct if_percpuq *);
    225 
    226 struct if_deferred_start {
    227 	struct ifnet	*ids_ifp;
    228 	void		(*ids_if_start)(struct ifnet *);
    229 	void		*ids_si;
    230 };
    231 
    232 static void if_deferred_start_softint(void *);
    233 static void if_deferred_start_common(struct ifnet *);
    234 static void if_deferred_start_destroy(struct ifnet *);
    235 
    236 #if defined(INET) || defined(INET6)
    237 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    238 #endif
    239 
    240 static void if_sysctl_setup(struct sysctllog **);
    241 
    242 /*
    243  * Pointer to stub or real compat_cvtcmd() depending on presence of
    244  * the compat module
    245  */
    246 u_long stub_compat_cvtcmd(u_long);
    247 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
    248 
    249 /* Similarly, pointer to compat_ifioctl() if it is present */
    250 
    251 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
    252 	struct lwp *) = NULL;
    253 
    254 /* The stub version of compat_cvtcmd() */
    255 u_long stub_compat_cvtcmd(u_long cmd)
    256 {
    257 
    258 	return cmd;
    259 }
    260 
    261 static int
    262 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    263     void *arg0, void *arg1, void *arg2, void *arg3)
    264 {
    265 	int result;
    266 	enum kauth_network_req req;
    267 
    268 	result = KAUTH_RESULT_DEFER;
    269 	req = (enum kauth_network_req)arg1;
    270 
    271 	if (action != KAUTH_NETWORK_INTERFACE)
    272 		return result;
    273 
    274 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    275 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    276 		result = KAUTH_RESULT_ALLOW;
    277 
    278 	return result;
    279 }
    280 
    281 /*
    282  * Network interface utility routines.
    283  *
    284  * Routines with ifa_ifwith* names take sockaddr *'s as
    285  * parameters.
    286  */
    287 void
    288 ifinit(void)
    289 {
    290 
    291 	if_sysctl_setup(NULL);
    292 
    293 #if (defined(INET) || defined(INET6))
    294 	encapinit();
    295 #endif
    296 
    297 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    298 	    if_listener_cb, NULL);
    299 
    300 	/* interfaces are available, inform socket code */
    301 	ifioctl = doifioctl;
    302 }
    303 
    304 /*
    305  * XXX Initialization before configure().
    306  * XXX hack to get pfil_add_hook working in autoconf.
    307  */
    308 void
    309 ifinit1(void)
    310 {
    311 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    312 
    313 	TAILQ_INIT(&ifnet_list);
    314 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    315 	ifnet_psz = pserialize_create();
    316 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    317 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    318 	PSLIST_INIT(&ifnet_pslist);
    319 
    320 	if_indexlim = 8;
    321 
    322 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    323 	KASSERT(if_pfil != NULL);
    324 
    325 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    326 	etherinit();
    327 #endif
    328 }
    329 
    330 ifnet_t *
    331 if_alloc(u_char type)
    332 {
    333 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    334 }
    335 
    336 void
    337 if_free(ifnet_t *ifp)
    338 {
    339 	kmem_free(ifp, sizeof(ifnet_t));
    340 }
    341 
    342 void
    343 if_initname(struct ifnet *ifp, const char *name, int unit)
    344 {
    345 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    346 	    "%s%d", name, unit);
    347 }
    348 
    349 /*
    350  * Null routines used while an interface is going away.  These routines
    351  * just return an error.
    352  */
    353 
    354 int
    355 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    356     const struct sockaddr *so, const struct rtentry *rt)
    357 {
    358 
    359 	return ENXIO;
    360 }
    361 
    362 void
    363 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    364 {
    365 
    366 	/* Nothing. */
    367 }
    368 
    369 void
    370 if_nullstart(struct ifnet *ifp)
    371 {
    372 
    373 	/* Nothing. */
    374 }
    375 
    376 int
    377 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    378 {
    379 
    380 	m_freem(m);
    381 	return ENXIO;
    382 }
    383 
    384 int
    385 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    386 {
    387 
    388 	return ENXIO;
    389 }
    390 
    391 int
    392 if_nullinit(struct ifnet *ifp)
    393 {
    394 
    395 	return ENXIO;
    396 }
    397 
    398 void
    399 if_nullstop(struct ifnet *ifp, int disable)
    400 {
    401 
    402 	/* Nothing. */
    403 }
    404 
    405 void
    406 if_nullslowtimo(struct ifnet *ifp)
    407 {
    408 
    409 	/* Nothing. */
    410 }
    411 
    412 void
    413 if_nulldrain(struct ifnet *ifp)
    414 {
    415 
    416 	/* Nothing. */
    417 }
    418 
    419 void
    420 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    421 {
    422 	struct ifaddr *ifa;
    423 	struct sockaddr_dl *sdl;
    424 
    425 	ifp->if_addrlen = addrlen;
    426 	if_alloc_sadl(ifp);
    427 	ifa = ifp->if_dl;
    428 	sdl = satosdl(ifa->ifa_addr);
    429 
    430 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    431 	if (factory) {
    432 		ifp->if_hwdl = ifp->if_dl;
    433 		ifaref(ifp->if_hwdl);
    434 	}
    435 	/* TBD routing socket */
    436 }
    437 
    438 struct ifaddr *
    439 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    440 {
    441 	unsigned socksize, ifasize;
    442 	int addrlen, namelen;
    443 	struct sockaddr_dl *mask, *sdl;
    444 	struct ifaddr *ifa;
    445 
    446 	namelen = strlen(ifp->if_xname);
    447 	addrlen = ifp->if_addrlen;
    448 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    449 	ifasize = sizeof(*ifa) + 2 * socksize;
    450 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    451 
    452 	sdl = (struct sockaddr_dl *)(ifa + 1);
    453 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    454 
    455 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    456 	    ifp->if_xname, namelen, NULL, addrlen);
    457 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    458 	memset(&mask->sdl_data[0], 0xff, namelen);
    459 	ifa->ifa_rtrequest = link_rtrequest;
    460 	ifa->ifa_addr = (struct sockaddr *)sdl;
    461 	ifa->ifa_netmask = (struct sockaddr *)mask;
    462 	ifa_psref_init(ifa);
    463 
    464 	*sdlp = sdl;
    465 
    466 	return ifa;
    467 }
    468 
    469 static void
    470 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    471 {
    472 	const struct sockaddr_dl *sdl;
    473 
    474 	ifp->if_dl = ifa;
    475 	ifaref(ifa);
    476 	sdl = satosdl(ifa->ifa_addr);
    477 	ifp->if_sadl = sdl;
    478 }
    479 
    480 /*
    481  * Allocate the link level name for the specified interface.  This
    482  * is an attachment helper.  It must be called after ifp->if_addrlen
    483  * is initialized, which may not be the case when if_attach() is
    484  * called.
    485  */
    486 void
    487 if_alloc_sadl(struct ifnet *ifp)
    488 {
    489 	struct ifaddr *ifa;
    490 	const struct sockaddr_dl *sdl;
    491 
    492 	/*
    493 	 * If the interface already has a link name, release it
    494 	 * now.  This is useful for interfaces that can change
    495 	 * link types, and thus switch link names often.
    496 	 */
    497 	if (ifp->if_sadl != NULL)
    498 		if_free_sadl(ifp);
    499 
    500 	ifa = if_dl_create(ifp, &sdl);
    501 
    502 	ifa_insert(ifp, ifa);
    503 	if_sadl_setrefs(ifp, ifa);
    504 }
    505 
    506 static void
    507 if_deactivate_sadl(struct ifnet *ifp)
    508 {
    509 	struct ifaddr *ifa;
    510 
    511 	KASSERT(ifp->if_dl != NULL);
    512 
    513 	ifa = ifp->if_dl;
    514 
    515 	ifp->if_sadl = NULL;
    516 
    517 	ifp->if_dl = NULL;
    518 	ifafree(ifa);
    519 }
    520 
    521 static void
    522 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    523 {
    524 	struct ifaddr *old;
    525 
    526 	KASSERT(ifp->if_dl != NULL);
    527 
    528 	old = ifp->if_dl;
    529 
    530 	ifaref(ifa);
    531 	/* XXX Update if_dl and if_sadl atomically */
    532 	ifp->if_dl = ifa;
    533 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    534 
    535 	ifafree(old);
    536 }
    537 
    538 void
    539 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    540     const struct sockaddr_dl *sdl)
    541 {
    542 	int s, ss;
    543 	struct ifaddr *ifa;
    544 	int bound = curlwp_bind();
    545 
    546 	KASSERT(ifa_held(ifa0));
    547 
    548 	s = splsoftnet();
    549 
    550 	if_replace_sadl(ifp, ifa0);
    551 
    552 	ss = pserialize_read_enter();
    553 	IFADDR_READER_FOREACH(ifa, ifp) {
    554 		struct psref psref;
    555 		ifa_acquire(ifa, &psref);
    556 		pserialize_read_exit(ss);
    557 
    558 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    559 
    560 		ss = pserialize_read_enter();
    561 		ifa_release(ifa, &psref);
    562 	}
    563 	pserialize_read_exit(ss);
    564 
    565 	splx(s);
    566 	curlwp_bindx(bound);
    567 }
    568 
    569 /*
    570  * Free the link level name for the specified interface.  This is
    571  * a detach helper.  This is called from if_detach().
    572  */
    573 static void
    574 if_free_sadl(struct ifnet *ifp)
    575 {
    576 	struct ifaddr *ifa;
    577 	int s;
    578 
    579 	ifa = ifp->if_dl;
    580 	if (ifa == NULL) {
    581 		KASSERT(ifp->if_sadl == NULL);
    582 		return;
    583 	}
    584 
    585 	KASSERT(ifp->if_sadl != NULL);
    586 
    587 	s = splsoftnet();
    588 	rtinit(ifa, RTM_DELETE, 0);
    589 	ifa_remove(ifp, ifa);
    590 	if_deactivate_sadl(ifp);
    591 	if (ifp->if_hwdl == ifa) {
    592 		ifafree(ifa);
    593 		ifp->if_hwdl = NULL;
    594 	}
    595 	splx(s);
    596 }
    597 
    598 static void
    599 if_getindex(ifnet_t *ifp)
    600 {
    601 	bool hitlimit = false;
    602 
    603 	ifp->if_index_gen = index_gen++;
    604 
    605 	ifp->if_index = if_index;
    606 	if (ifindex2ifnet == NULL) {
    607 		if_index++;
    608 		goto skip;
    609 	}
    610 	while (if_byindex(ifp->if_index)) {
    611 		/*
    612 		 * If we hit USHRT_MAX, we skip back to 0 since
    613 		 * there are a number of places where the value
    614 		 * of if_index or if_index itself is compared
    615 		 * to or stored in an unsigned short.  By
    616 		 * jumping back, we won't botch those assignments
    617 		 * or comparisons.
    618 		 */
    619 		if (++if_index == 0) {
    620 			if_index = 1;
    621 		} else if (if_index == USHRT_MAX) {
    622 			/*
    623 			 * However, if we have to jump back to
    624 			 * zero *twice* without finding an empty
    625 			 * slot in ifindex2ifnet[], then there
    626 			 * there are too many (>65535) interfaces.
    627 			 */
    628 			if (hitlimit) {
    629 				panic("too many interfaces");
    630 			}
    631 			hitlimit = true;
    632 			if_index = 1;
    633 		}
    634 		ifp->if_index = if_index;
    635 	}
    636 skip:
    637 	/*
    638 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    639 	 * grow dynamically, it should grow too.
    640 	 */
    641 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    642 		size_t m, n, oldlim;
    643 		void *q;
    644 
    645 		oldlim = if_indexlim;
    646 		while (ifp->if_index >= if_indexlim)
    647 			if_indexlim <<= 1;
    648 
    649 		/* grow ifindex2ifnet */
    650 		m = oldlim * sizeof(struct ifnet *);
    651 		n = if_indexlim * sizeof(struct ifnet *);
    652 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    653 		if (ifindex2ifnet != NULL) {
    654 			memcpy(q, ifindex2ifnet, m);
    655 			free(ifindex2ifnet, M_IFADDR);
    656 		}
    657 		ifindex2ifnet = (struct ifnet **)q;
    658 	}
    659 	ifindex2ifnet[ifp->if_index] = ifp;
    660 }
    661 
    662 /*
    663  * Initialize an interface and assign an index for it.
    664  *
    665  * It must be called prior to a device specific attach routine
    666  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    667  * and be followed by if_register:
    668  *
    669  *     if_initialize(ifp);
    670  *     ether_ifattach(ifp, enaddr);
    671  *     if_register(ifp);
    672  */
    673 void
    674 if_initialize(ifnet_t *ifp)
    675 {
    676 	KASSERT(if_indexlim > 0);
    677 	TAILQ_INIT(&ifp->if_addrlist);
    678 
    679 	/*
    680 	 * Link level name is allocated later by a separate call to
    681 	 * if_alloc_sadl().
    682 	 */
    683 
    684 	if (ifp->if_snd.ifq_maxlen == 0)
    685 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    686 
    687 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    688 
    689 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    690 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    691 
    692 	ifp->if_capenable = 0;
    693 	ifp->if_csum_flags_tx = 0;
    694 	ifp->if_csum_flags_rx = 0;
    695 
    696 #ifdef ALTQ
    697 	ifp->if_snd.altq_type = 0;
    698 	ifp->if_snd.altq_disc = NULL;
    699 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    700 	ifp->if_snd.altq_tbr  = NULL;
    701 	ifp->if_snd.altq_ifp  = ifp;
    702 #endif
    703 
    704 	IFQ_LOCK_INIT(&ifp->if_snd);
    705 
    706 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    707 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    708 
    709 	IF_AFDATA_LOCK_INIT(ifp);
    710 
    711 	if (if_is_link_state_changeable(ifp)) {
    712 		ifp->if_link_si = softint_establish(SOFTINT_NET,
    713 		    if_link_state_change_si, ifp);
    714 		if (ifp->if_link_si == NULL)
    715 			panic("%s: softint_establish() failed", __func__);
    716 	}
    717 
    718 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    719 	PSLIST_INIT(&ifp->if_addr_pslist);
    720 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    721 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    722 	LIST_INIT(&ifp->if_multiaddrs);
    723 
    724 	IFNET_LOCK();
    725 	if_getindex(ifp);
    726 	IFNET_UNLOCK();
    727 }
    728 
    729 /*
    730  * Register an interface to the list of "active" interfaces.
    731  */
    732 void
    733 if_register(ifnet_t *ifp)
    734 {
    735 	/*
    736 	 * If the driver has not supplied its own if_ioctl, then
    737 	 * supply the default.
    738 	 */
    739 	if (ifp->if_ioctl == NULL)
    740 		ifp->if_ioctl = ifioctl_common;
    741 
    742 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    743 
    744 	if (!STAILQ_EMPTY(&domains))
    745 		if_attachdomain1(ifp);
    746 
    747 	/* Announce the interface. */
    748 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    749 
    750 	if (ifp->if_slowtimo != NULL) {
    751 		ifp->if_slowtimo_ch =
    752 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    753 		callout_init(ifp->if_slowtimo_ch, 0);
    754 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    755 		if_slowtimo(ifp);
    756 	}
    757 
    758 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    759 		ifp->if_transmit = if_transmit;
    760 
    761 	IFNET_LOCK();
    762 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    763 	IFNET_WRITER_INSERT_TAIL(ifp);
    764 	IFNET_UNLOCK();
    765 }
    766 
    767 /*
    768  * The if_percpuq framework
    769  *
    770  * It allows network device drivers to execute the network stack
    771  * in softint (so called softint-based if_input). It utilizes
    772  * softint and percpu ifqueue. It doesn't distribute any packets
    773  * between CPUs, unlike pktqueue(9).
    774  *
    775  * Currently we support two options for device drivers to apply the framework:
    776  * - Use it implicitly with less changes
    777  *   - If you use if_attach in driver's _attach function and if_input in
    778  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    779  *     the packet implicitly
    780  * - Use it explicitly in each driver (recommended)
    781  *   - You can use if_percpuq_* directly in your driver
    782  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    783  *   - See wm(4) as a reference implementation
    784  */
    785 
    786 static void
    787 if_percpuq_softint(void *arg)
    788 {
    789 	struct if_percpuq *ipq = arg;
    790 	struct ifnet *ifp = ipq->ipq_ifp;
    791 	struct mbuf *m;
    792 
    793 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    794 		ifp->if_ipackets++;
    795 		bpf_mtap(ifp, m);
    796 
    797 		ifp->_if_input(ifp, m);
    798 	}
    799 }
    800 
    801 static void
    802 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    803 {
    804 	struct ifqueue *const ifq = p;
    805 
    806 	memset(ifq, 0, sizeof(*ifq));
    807 	ifq->ifq_maxlen = IFQ_MAXLEN;
    808 }
    809 
    810 struct if_percpuq *
    811 if_percpuq_create(struct ifnet *ifp)
    812 {
    813 	struct if_percpuq *ipq;
    814 
    815 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    816 	if (ipq == NULL)
    817 		panic("kmem_zalloc failed");
    818 
    819 	ipq->ipq_ifp = ifp;
    820 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    821 	    if_percpuq_softint, ipq);
    822 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    823 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    824 
    825 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    826 
    827 	return ipq;
    828 }
    829 
    830 static struct mbuf *
    831 if_percpuq_dequeue(struct if_percpuq *ipq)
    832 {
    833 	struct mbuf *m;
    834 	struct ifqueue *ifq;
    835 	int s;
    836 
    837 	s = splnet();
    838 	ifq = percpu_getref(ipq->ipq_ifqs);
    839 	IF_DEQUEUE(ifq, m);
    840 	percpu_putref(ipq->ipq_ifqs);
    841 	splx(s);
    842 
    843 	return m;
    844 }
    845 
    846 static void
    847 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    848 {
    849 	struct ifqueue *const ifq = p;
    850 
    851 	IF_PURGE(ifq);
    852 }
    853 
    854 void
    855 if_percpuq_destroy(struct if_percpuq *ipq)
    856 {
    857 
    858 	/* if_detach may already destroy it */
    859 	if (ipq == NULL)
    860 		return;
    861 
    862 	softint_disestablish(ipq->ipq_si);
    863 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    864 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    865 	kmem_free(ipq, sizeof(*ipq));
    866 }
    867 
    868 void
    869 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    870 {
    871 	struct ifqueue *ifq;
    872 	int s;
    873 
    874 	KASSERT(ipq != NULL);
    875 
    876 	s = splnet();
    877 	ifq = percpu_getref(ipq->ipq_ifqs);
    878 	if (IF_QFULL(ifq)) {
    879 		IF_DROP(ifq);
    880 		percpu_putref(ipq->ipq_ifqs);
    881 		m_freem(m);
    882 		goto out;
    883 	}
    884 	IF_ENQUEUE(ifq, m);
    885 	percpu_putref(ipq->ipq_ifqs);
    886 
    887 	softint_schedule(ipq->ipq_si);
    888 out:
    889 	splx(s);
    890 }
    891 
    892 static void
    893 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    894 {
    895 	struct ifqueue *const ifq = p;
    896 	int *sum = arg;
    897 
    898 	*sum += ifq->ifq_drops;
    899 }
    900 
    901 static int
    902 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    903 {
    904 	struct sysctlnode node;
    905 	struct if_percpuq *ipq;
    906 	int sum = 0;
    907 	int error;
    908 
    909 	node = *rnode;
    910 	ipq = node.sysctl_data;
    911 
    912 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    913 
    914 	node.sysctl_data = &sum;
    915 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    916 	if (error != 0 || newp == NULL)
    917 		return error;
    918 
    919 	return 0;
    920 }
    921 
    922 static void
    923 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    924     struct if_percpuq *ipq)
    925 {
    926 	const struct sysctlnode *cnode, *rnode;
    927 
    928 	if (sysctl_createv(clog, 0, NULL, &rnode,
    929 		       CTLFLAG_PERMANENT,
    930 		       CTLTYPE_NODE, "interfaces",
    931 		       SYSCTL_DESCR("Per-interface controls"),
    932 		       NULL, 0, NULL, 0,
    933 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    934 		goto bad;
    935 
    936 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    937 		       CTLFLAG_PERMANENT,
    938 		       CTLTYPE_NODE, ifname,
    939 		       SYSCTL_DESCR("Interface controls"),
    940 		       NULL, 0, NULL, 0,
    941 		       CTL_CREATE, CTL_EOL) != 0)
    942 		goto bad;
    943 
    944 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    945 		       CTLFLAG_PERMANENT,
    946 		       CTLTYPE_NODE, "rcvq",
    947 		       SYSCTL_DESCR("Interface input queue controls"),
    948 		       NULL, 0, NULL, 0,
    949 		       CTL_CREATE, CTL_EOL) != 0)
    950 		goto bad;
    951 
    952 #ifdef NOTYET
    953 	/* XXX Should show each per-CPU queue length? */
    954 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    955 		       CTLFLAG_PERMANENT,
    956 		       CTLTYPE_INT, "len",
    957 		       SYSCTL_DESCR("Current input queue length"),
    958 		       sysctl_percpuq_len, 0, NULL, 0,
    959 		       CTL_CREATE, CTL_EOL) != 0)
    960 		goto bad;
    961 
    962 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    963 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    964 		       CTLTYPE_INT, "maxlen",
    965 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    966 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    967 		       CTL_CREATE, CTL_EOL) != 0)
    968 		goto bad;
    969 #endif
    970 
    971 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    972 		       CTLFLAG_PERMANENT,
    973 		       CTLTYPE_INT, "drops",
    974 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    975 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    976 		       CTL_CREATE, CTL_EOL) != 0)
    977 		goto bad;
    978 
    979 	return;
    980 bad:
    981 	printf("%s: could not attach sysctl nodes\n", ifname);
    982 	return;
    983 }
    984 
    985 /*
    986  * The deferred if_start framework
    987  *
    988  * The common APIs to defer if_start to softint when if_start is requested
    989  * from a device driver running in hardware interrupt context.
    990  */
    991 /*
    992  * Call ifp->if_start (or equivalent) in a dedicated softint for
    993  * deferred if_start.
    994  */
    995 static void
    996 if_deferred_start_softint(void *arg)
    997 {
    998 	struct if_deferred_start *ids = arg;
    999 	struct ifnet *ifp = ids->ids_ifp;
   1000 
   1001 	ids->ids_if_start(ifp);
   1002 }
   1003 
   1004 /*
   1005  * The default callback function for deferred if_start.
   1006  */
   1007 static void
   1008 if_deferred_start_common(struct ifnet *ifp)
   1009 {
   1010 	int s;
   1011 
   1012 	s = splnet();
   1013 	if_start_lock(ifp);
   1014 	splx(s);
   1015 }
   1016 
   1017 static inline bool
   1018 if_snd_is_used(struct ifnet *ifp)
   1019 {
   1020 
   1021 	return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
   1022 	    ALTQ_IS_ENABLED(&ifp->if_snd);
   1023 }
   1024 
   1025 /*
   1026  * Schedule deferred if_start.
   1027  */
   1028 void
   1029 if_schedule_deferred_start(struct ifnet *ifp)
   1030 {
   1031 
   1032 	KASSERT(ifp->if_deferred_start != NULL);
   1033 
   1034 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1035 		return;
   1036 
   1037 	softint_schedule(ifp->if_deferred_start->ids_si);
   1038 }
   1039 
   1040 /*
   1041  * Create an instance of deferred if_start. A driver should call the function
   1042  * only if the driver needs deferred if_start. Drivers can setup their own
   1043  * deferred if_start function via 2nd argument.
   1044  */
   1045 void
   1046 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1047 {
   1048 	struct if_deferred_start *ids;
   1049 
   1050 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1051 	if (ids == NULL)
   1052 		panic("kmem_zalloc failed");
   1053 
   1054 	ids->ids_ifp = ifp;
   1055 	ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
   1056 	    if_deferred_start_softint, ids);
   1057 	if (func != NULL)
   1058 		ids->ids_if_start = func;
   1059 	else
   1060 		ids->ids_if_start = if_deferred_start_common;
   1061 
   1062 	ifp->if_deferred_start = ids;
   1063 }
   1064 
   1065 static void
   1066 if_deferred_start_destroy(struct ifnet *ifp)
   1067 {
   1068 
   1069 	if (ifp->if_deferred_start == NULL)
   1070 		return;
   1071 
   1072 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1073 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1074 	ifp->if_deferred_start = NULL;
   1075 }
   1076 
   1077 /*
   1078  * The common interface input routine that is called by device drivers,
   1079  * which should be used only when the driver's rx handler already runs
   1080  * in softint.
   1081  */
   1082 void
   1083 if_input(struct ifnet *ifp, struct mbuf *m)
   1084 {
   1085 
   1086 	KASSERT(ifp->if_percpuq == NULL);
   1087 	KASSERT(!cpu_intr_p());
   1088 
   1089 	ifp->if_ipackets++;
   1090 	bpf_mtap(ifp, m);
   1091 
   1092 	ifp->_if_input(ifp, m);
   1093 }
   1094 
   1095 /*
   1096  * DEPRECATED. Use if_initialize and if_register instead.
   1097  * See the above comment of if_initialize.
   1098  *
   1099  * Note that it implicitly enables if_percpuq to make drivers easy to
   1100  * migrate softint-based if_input without much changes. If you don't
   1101  * want to enable it, use if_initialize instead.
   1102  */
   1103 void
   1104 if_attach(ifnet_t *ifp)
   1105 {
   1106 
   1107 	if_initialize(ifp);
   1108 	ifp->if_percpuq = if_percpuq_create(ifp);
   1109 	if_register(ifp);
   1110 }
   1111 
   1112 void
   1113 if_attachdomain(void)
   1114 {
   1115 	struct ifnet *ifp;
   1116 	int s;
   1117 	int bound = curlwp_bind();
   1118 
   1119 	s = pserialize_read_enter();
   1120 	IFNET_READER_FOREACH(ifp) {
   1121 		struct psref psref;
   1122 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1123 		pserialize_read_exit(s);
   1124 		if_attachdomain1(ifp);
   1125 		s = pserialize_read_enter();
   1126 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1127 	}
   1128 	pserialize_read_exit(s);
   1129 	curlwp_bindx(bound);
   1130 }
   1131 
   1132 static void
   1133 if_attachdomain1(struct ifnet *ifp)
   1134 {
   1135 	struct domain *dp;
   1136 	int s;
   1137 
   1138 	s = splsoftnet();
   1139 
   1140 	/* address family dependent data region */
   1141 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1142 	DOMAIN_FOREACH(dp) {
   1143 		if (dp->dom_ifattach != NULL)
   1144 			ifp->if_afdata[dp->dom_family] =
   1145 			    (*dp->dom_ifattach)(ifp);
   1146 	}
   1147 
   1148 	splx(s);
   1149 }
   1150 
   1151 /*
   1152  * Deactivate an interface.  This points all of the procedure
   1153  * handles at error stubs.  May be called from interrupt context.
   1154  */
   1155 void
   1156 if_deactivate(struct ifnet *ifp)
   1157 {
   1158 	int s;
   1159 
   1160 	s = splsoftnet();
   1161 
   1162 	ifp->if_output	 = if_nulloutput;
   1163 	ifp->_if_input	 = if_nullinput;
   1164 	ifp->if_start	 = if_nullstart;
   1165 	ifp->if_transmit = if_nulltransmit;
   1166 	ifp->if_ioctl	 = if_nullioctl;
   1167 	ifp->if_init	 = if_nullinit;
   1168 	ifp->if_stop	 = if_nullstop;
   1169 	ifp->if_slowtimo = if_nullslowtimo;
   1170 	ifp->if_drain	 = if_nulldrain;
   1171 
   1172 	/* No more packets may be enqueued. */
   1173 	ifp->if_snd.ifq_maxlen = 0;
   1174 
   1175 	splx(s);
   1176 }
   1177 
   1178 bool
   1179 if_is_deactivated(const struct ifnet *ifp)
   1180 {
   1181 
   1182 	return ifp->if_output == if_nulloutput;
   1183 }
   1184 
   1185 void
   1186 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1187 {
   1188 	struct ifaddr *ifa, *nifa;
   1189 	int s;
   1190 
   1191 	s = pserialize_read_enter();
   1192 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1193 		nifa = IFADDR_READER_NEXT(ifa);
   1194 		if (ifa->ifa_addr->sa_family != family)
   1195 			continue;
   1196 		pserialize_read_exit(s);
   1197 
   1198 		(*purgeaddr)(ifa);
   1199 
   1200 		s = pserialize_read_enter();
   1201 	}
   1202 	pserialize_read_exit(s);
   1203 }
   1204 
   1205 #ifdef IFAREF_DEBUG
   1206 static struct ifaddr **ifa_list;
   1207 static int ifa_list_size;
   1208 
   1209 /* Depends on only one if_attach runs at once */
   1210 static void
   1211 if_build_ifa_list(struct ifnet *ifp)
   1212 {
   1213 	struct ifaddr *ifa;
   1214 	int i;
   1215 
   1216 	KASSERT(ifa_list == NULL);
   1217 	KASSERT(ifa_list_size == 0);
   1218 
   1219 	IFADDR_READER_FOREACH(ifa, ifp)
   1220 		ifa_list_size++;
   1221 
   1222 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1223 	if (ifa_list == NULL)
   1224 		return;
   1225 
   1226 	i = 0;
   1227 	IFADDR_READER_FOREACH(ifa, ifp) {
   1228 		ifa_list[i++] = ifa;
   1229 		ifaref(ifa);
   1230 	}
   1231 }
   1232 
   1233 static void
   1234 if_check_and_free_ifa_list(struct ifnet *ifp)
   1235 {
   1236 	int i;
   1237 	struct ifaddr *ifa;
   1238 
   1239 	if (ifa_list == NULL)
   1240 		return;
   1241 
   1242 	for (i = 0; i < ifa_list_size; i++) {
   1243 		char buf[64];
   1244 
   1245 		ifa = ifa_list[i];
   1246 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1247 		if (ifa->ifa_refcnt > 1) {
   1248 			log(LOG_WARNING,
   1249 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1250 			    buf, ifa->ifa_refcnt - 1);
   1251 		} else
   1252 			log(LOG_DEBUG,
   1253 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1254 			    buf, ifa->ifa_refcnt - 1);
   1255 		ifafree(ifa);
   1256 	}
   1257 
   1258 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1259 	ifa_list = NULL;
   1260 	ifa_list_size = 0;
   1261 }
   1262 #endif
   1263 
   1264 /*
   1265  * Detach an interface from the list of "active" interfaces,
   1266  * freeing any resources as we go along.
   1267  *
   1268  * NOTE: This routine must be called with a valid thread context,
   1269  * as it may block.
   1270  */
   1271 void
   1272 if_detach(struct ifnet *ifp)
   1273 {
   1274 	struct socket so;
   1275 	struct ifaddr *ifa;
   1276 #ifdef IFAREF_DEBUG
   1277 	struct ifaddr *last_ifa = NULL;
   1278 #endif
   1279 	struct domain *dp;
   1280 	const struct protosw *pr;
   1281 	int s, i, family, purged;
   1282 	uint64_t xc;
   1283 
   1284 #ifdef IFAREF_DEBUG
   1285 	if_build_ifa_list(ifp);
   1286 #endif
   1287 	/*
   1288 	 * XXX It's kind of lame that we have to have the
   1289 	 * XXX socket structure...
   1290 	 */
   1291 	memset(&so, 0, sizeof(so));
   1292 
   1293 	s = splnet();
   1294 
   1295 	sysctl_teardown(&ifp->if_sysctl_log);
   1296 	mutex_enter(ifp->if_ioctl_lock);
   1297 	if_deactivate(ifp);
   1298 	mutex_exit(ifp->if_ioctl_lock);
   1299 
   1300 	IFNET_LOCK();
   1301 	ifindex2ifnet[ifp->if_index] = NULL;
   1302 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1303 	IFNET_WRITER_REMOVE(ifp);
   1304 	pserialize_perform(ifnet_psz);
   1305 	IFNET_UNLOCK();
   1306 
   1307 	/* Wait for all readers to drain before freeing.  */
   1308 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1309 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1310 
   1311 	mutex_obj_free(ifp->if_ioctl_lock);
   1312 	ifp->if_ioctl_lock = NULL;
   1313 
   1314 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1315 		ifp->if_slowtimo = NULL;
   1316 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1317 		callout_destroy(ifp->if_slowtimo_ch);
   1318 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1319 	}
   1320 	if_deferred_start_destroy(ifp);
   1321 
   1322 	/*
   1323 	 * Do an if_down() to give protocols a chance to do something.
   1324 	 */
   1325 	if_down(ifp);
   1326 
   1327 #ifdef ALTQ
   1328 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1329 		altq_disable(&ifp->if_snd);
   1330 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1331 		altq_detach(&ifp->if_snd);
   1332 #endif
   1333 
   1334 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1335 
   1336 #if NCARP > 0
   1337 	/* Remove the interface from any carp group it is a part of.  */
   1338 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1339 		carp_ifdetach(ifp);
   1340 #endif
   1341 
   1342 	/*
   1343 	 * Rip all the addresses off the interface.  This should make
   1344 	 * all of the routes go away.
   1345 	 *
   1346 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1347 	 * from the list, including our "cursor", ifa.  For safety,
   1348 	 * and to honor the TAILQ abstraction, I just restart the
   1349 	 * loop after each removal.  Note that the loop will exit
   1350 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1351 	 * family.  I am counting on the historical fact that at
   1352 	 * least one pr_usrreq in each address domain removes at
   1353 	 * least one ifaddr.
   1354 	 */
   1355 again:
   1356 	/*
   1357 	 * At this point, no other one tries to remove ifa in the list,
   1358 	 * so we don't need to take a lock or psref.
   1359 	 */
   1360 	IFADDR_READER_FOREACH(ifa, ifp) {
   1361 		family = ifa->ifa_addr->sa_family;
   1362 #ifdef IFAREF_DEBUG
   1363 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1364 		    ifa, family, ifa->ifa_refcnt);
   1365 		if (last_ifa != NULL && ifa == last_ifa)
   1366 			panic("if_detach: loop detected");
   1367 		last_ifa = ifa;
   1368 #endif
   1369 		if (family == AF_LINK)
   1370 			continue;
   1371 		dp = pffinddomain(family);
   1372 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1373 		/*
   1374 		 * XXX These PURGEIF calls are redundant with the
   1375 		 * purge-all-families calls below, but are left in for
   1376 		 * now both to make a smaller change, and to avoid
   1377 		 * unplanned interactions with clearing of
   1378 		 * ifp->if_addrlist.
   1379 		 */
   1380 		purged = 0;
   1381 		for (pr = dp->dom_protosw;
   1382 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1383 			so.so_proto = pr;
   1384 			if (pr->pr_usrreqs) {
   1385 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1386 				purged = 1;
   1387 			}
   1388 		}
   1389 		if (purged == 0) {
   1390 			/*
   1391 			 * XXX What's really the best thing to do
   1392 			 * XXX here?  --thorpej (at) NetBSD.org
   1393 			 */
   1394 			printf("if_detach: WARNING: AF %d not purged\n",
   1395 			    family);
   1396 			ifa_remove(ifp, ifa);
   1397 		}
   1398 		goto again;
   1399 	}
   1400 
   1401 	if_free_sadl(ifp);
   1402 
   1403 	/* Delete stray routes from the routing table. */
   1404 	for (i = 0; i <= AF_MAX; i++)
   1405 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1406 
   1407 	DOMAIN_FOREACH(dp) {
   1408 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1409 		{
   1410 			void *p = ifp->if_afdata[dp->dom_family];
   1411 			if (p) {
   1412 				ifp->if_afdata[dp->dom_family] = NULL;
   1413 				(*dp->dom_ifdetach)(ifp, p);
   1414 			}
   1415 		}
   1416 
   1417 		/*
   1418 		 * One would expect multicast memberships (INET and
   1419 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1420 		 * calls above, but if all addresses were removed from
   1421 		 * the interface prior to destruction, the calls will
   1422 		 * not be made (e.g. ppp, for which pppd(8) generally
   1423 		 * removes addresses before destroying the interface).
   1424 		 * Because there is no invariant that multicast
   1425 		 * memberships only exist for interfaces with IPv4
   1426 		 * addresses, we must call PURGEIF regardless of
   1427 		 * addresses.  (Protocols which might store ifnet
   1428 		 * pointers are marked with PR_PURGEIF.)
   1429 		 */
   1430 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1431 			so.so_proto = pr;
   1432 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1433 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1434 		}
   1435 	}
   1436 
   1437 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1438 	(void)pfil_head_destroy(ifp->if_pfil);
   1439 
   1440 	/* Announce that the interface is gone. */
   1441 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1442 
   1443 	IF_AFDATA_LOCK_DESTROY(ifp);
   1444 
   1445 	if (if_is_link_state_changeable(ifp)) {
   1446 		softint_disestablish(ifp->if_link_si);
   1447 		ifp->if_link_si = NULL;
   1448 	}
   1449 
   1450 	/*
   1451 	 * remove packets that came from ifp, from software interrupt queues.
   1452 	 */
   1453 	DOMAIN_FOREACH(dp) {
   1454 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1455 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1456 			if (iq == NULL)
   1457 				break;
   1458 			dp->dom_ifqueues[i] = NULL;
   1459 			if_detach_queues(ifp, iq);
   1460 		}
   1461 	}
   1462 
   1463 	/*
   1464 	 * IP queues have to be processed separately: net-queue barrier
   1465 	 * ensures that the packets are dequeued while a cross-call will
   1466 	 * ensure that the interrupts have completed. FIXME: not quite..
   1467 	 */
   1468 #ifdef INET
   1469 	pktq_barrier(ip_pktq);
   1470 #endif
   1471 #ifdef INET6
   1472 	if (in6_present)
   1473 		pktq_barrier(ip6_pktq);
   1474 #endif
   1475 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1476 	xc_wait(xc);
   1477 
   1478 	if (ifp->if_percpuq != NULL) {
   1479 		if_percpuq_destroy(ifp->if_percpuq);
   1480 		ifp->if_percpuq = NULL;
   1481 	}
   1482 
   1483 	splx(s);
   1484 
   1485 #ifdef IFAREF_DEBUG
   1486 	if_check_and_free_ifa_list(ifp);
   1487 #endif
   1488 }
   1489 
   1490 static void
   1491 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1492 {
   1493 	struct mbuf *m, *prev, *next;
   1494 
   1495 	prev = NULL;
   1496 	for (m = q->ifq_head; m != NULL; m = next) {
   1497 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1498 
   1499 		next = m->m_nextpkt;
   1500 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1501 			prev = m;
   1502 			continue;
   1503 		}
   1504 
   1505 		if (prev != NULL)
   1506 			prev->m_nextpkt = m->m_nextpkt;
   1507 		else
   1508 			q->ifq_head = m->m_nextpkt;
   1509 		if (q->ifq_tail == m)
   1510 			q->ifq_tail = prev;
   1511 		q->ifq_len--;
   1512 
   1513 		m->m_nextpkt = NULL;
   1514 		m_freem(m);
   1515 		IF_DROP(q);
   1516 	}
   1517 }
   1518 
   1519 /*
   1520  * Callback for a radix tree walk to delete all references to an
   1521  * ifnet.
   1522  */
   1523 static int
   1524 if_delroute_matcher(struct rtentry *rt, void *v)
   1525 {
   1526 	struct ifnet *ifp = (struct ifnet *)v;
   1527 
   1528 	if (rt->rt_ifp == ifp)
   1529 		return 1;
   1530 	else
   1531 		return 0;
   1532 }
   1533 
   1534 /*
   1535  * Create a clone network interface.
   1536  */
   1537 static int
   1538 if_clone_create(const char *name)
   1539 {
   1540 	struct if_clone *ifc;
   1541 	int unit;
   1542 	struct ifnet *ifp;
   1543 	struct psref psref;
   1544 
   1545 	KASSERT(mutex_owned(&if_clone_mtx));
   1546 
   1547 	ifc = if_clone_lookup(name, &unit);
   1548 	if (ifc == NULL)
   1549 		return EINVAL;
   1550 
   1551 	ifp = if_get(name, &psref);
   1552 	if (ifp != NULL) {
   1553 		if_put(ifp, &psref);
   1554 		return EEXIST;
   1555 	}
   1556 
   1557 	return (*ifc->ifc_create)(ifc, unit);
   1558 }
   1559 
   1560 /*
   1561  * Destroy a clone network interface.
   1562  */
   1563 static int
   1564 if_clone_destroy(const char *name)
   1565 {
   1566 	struct if_clone *ifc;
   1567 	struct ifnet *ifp;
   1568 	struct psref psref;
   1569 
   1570 	KASSERT(mutex_owned(&if_clone_mtx));
   1571 
   1572 	ifc = if_clone_lookup(name, NULL);
   1573 	if (ifc == NULL)
   1574 		return EINVAL;
   1575 
   1576 	if (ifc->ifc_destroy == NULL)
   1577 		return EOPNOTSUPP;
   1578 
   1579 	ifp = if_get(name, &psref);
   1580 	if (ifp == NULL)
   1581 		return ENXIO;
   1582 
   1583 	/* We have to disable ioctls here */
   1584 	mutex_enter(ifp->if_ioctl_lock);
   1585 	ifp->if_ioctl = if_nullioctl;
   1586 	mutex_exit(ifp->if_ioctl_lock);
   1587 
   1588 	/*
   1589 	 * We cannot call ifc_destroy with holding ifp.
   1590 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1591 	 */
   1592 	if_put(ifp, &psref);
   1593 
   1594 	return (*ifc->ifc_destroy)(ifp);
   1595 }
   1596 
   1597 static bool
   1598 if_is_unit(const char *name)
   1599 {
   1600 
   1601 	while(*name != '\0') {
   1602 		if (*name < '0' || *name > '9')
   1603 			return false;
   1604 		name++;
   1605 	}
   1606 
   1607 	return true;
   1608 }
   1609 
   1610 /*
   1611  * Look up a network interface cloner.
   1612  */
   1613 static struct if_clone *
   1614 if_clone_lookup(const char *name, int *unitp)
   1615 {
   1616 	struct if_clone *ifc;
   1617 	const char *cp;
   1618 	char *dp, ifname[IFNAMSIZ + 3];
   1619 	int unit;
   1620 
   1621 	KASSERT(mutex_owned(&if_clone_mtx));
   1622 
   1623 	strcpy(ifname, "if_");
   1624 	/* separate interface name from unit */
   1625 	/* TODO: search unit number from backward */
   1626 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1627 	    *cp && !if_is_unit(cp);)
   1628 		*dp++ = *cp++;
   1629 
   1630 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1631 		return NULL;	/* No name or unit number */
   1632 	*dp++ = '\0';
   1633 
   1634 again:
   1635 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1636 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1637 			break;
   1638 	}
   1639 
   1640 	if (ifc == NULL) {
   1641 		int error;
   1642 		if (*ifname == '\0')
   1643 			return NULL;
   1644 		mutex_exit(&if_clone_mtx);
   1645 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1646 		mutex_enter(&if_clone_mtx);
   1647 		if (error)
   1648 			return NULL;
   1649 		*ifname = '\0';
   1650 		goto again;
   1651 	}
   1652 
   1653 	unit = 0;
   1654 	while (cp - name < IFNAMSIZ && *cp) {
   1655 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1656 			/* Bogus unit number. */
   1657 			return NULL;
   1658 		}
   1659 		unit = (unit * 10) + (*cp++ - '0');
   1660 	}
   1661 
   1662 	if (unitp != NULL)
   1663 		*unitp = unit;
   1664 	return ifc;
   1665 }
   1666 
   1667 /*
   1668  * Register a network interface cloner.
   1669  */
   1670 void
   1671 if_clone_attach(struct if_clone *ifc)
   1672 {
   1673 
   1674 	mutex_enter(&if_clone_mtx);
   1675 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1676 	if_cloners_count++;
   1677 	mutex_exit(&if_clone_mtx);
   1678 }
   1679 
   1680 /*
   1681  * Unregister a network interface cloner.
   1682  */
   1683 void
   1684 if_clone_detach(struct if_clone *ifc)
   1685 {
   1686 
   1687 	mutex_enter(&if_clone_mtx);
   1688 	LIST_REMOVE(ifc, ifc_list);
   1689 	if_cloners_count--;
   1690 	mutex_exit(&if_clone_mtx);
   1691 }
   1692 
   1693 /*
   1694  * Provide list of interface cloners to userspace.
   1695  */
   1696 int
   1697 if_clone_list(int buf_count, char *buffer, int *total)
   1698 {
   1699 	char outbuf[IFNAMSIZ], *dst;
   1700 	struct if_clone *ifc;
   1701 	int count, error = 0;
   1702 
   1703 	mutex_enter(&if_clone_mtx);
   1704 	*total = if_cloners_count;
   1705 	if ((dst = buffer) == NULL) {
   1706 		/* Just asking how many there are. */
   1707 		goto out;
   1708 	}
   1709 
   1710 	if (buf_count < 0) {
   1711 		error = EINVAL;
   1712 		goto out;
   1713 	}
   1714 
   1715 	count = (if_cloners_count < buf_count) ?
   1716 	    if_cloners_count : buf_count;
   1717 
   1718 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1719 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1720 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1721 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1722 			error = ENAMETOOLONG;
   1723 			goto out;
   1724 		}
   1725 		error = copyout(outbuf, dst, sizeof(outbuf));
   1726 		if (error != 0)
   1727 			break;
   1728 	}
   1729 
   1730 out:
   1731 	mutex_exit(&if_clone_mtx);
   1732 	return error;
   1733 }
   1734 
   1735 void
   1736 ifa_psref_init(struct ifaddr *ifa)
   1737 {
   1738 
   1739 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1740 }
   1741 
   1742 void
   1743 ifaref(struct ifaddr *ifa)
   1744 {
   1745 	KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
   1746 	ifa->ifa_refcnt++;
   1747 }
   1748 
   1749 void
   1750 ifafree(struct ifaddr *ifa)
   1751 {
   1752 	KASSERT(ifa != NULL);
   1753 	KASSERT(ifa->ifa_refcnt > 0);
   1754 
   1755 	if (--ifa->ifa_refcnt == 0) {
   1756 		free(ifa, M_IFADDR);
   1757 	}
   1758 }
   1759 
   1760 bool
   1761 ifa_is_destroying(struct ifaddr *ifa)
   1762 {
   1763 
   1764 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1765 }
   1766 
   1767 void
   1768 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1769 {
   1770 
   1771 	ifa->ifa_ifp = ifp;
   1772 
   1773 	IFNET_LOCK();
   1774 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1775 	IFADDR_ENTRY_INIT(ifa);
   1776 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1777 	IFNET_UNLOCK();
   1778 
   1779 	ifaref(ifa);
   1780 }
   1781 
   1782 void
   1783 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1784 {
   1785 
   1786 	KASSERT(ifa->ifa_ifp == ifp);
   1787 
   1788 	IFNET_LOCK();
   1789 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1790 	IFADDR_WRITER_REMOVE(ifa);
   1791 #ifdef NET_MPSAFE
   1792 	pserialize_perform(ifnet_psz);
   1793 #endif
   1794 	IFNET_UNLOCK();
   1795 
   1796 #ifdef NET_MPSAFE
   1797 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1798 #endif
   1799 	IFADDR_ENTRY_DESTROY(ifa);
   1800 	ifafree(ifa);
   1801 }
   1802 
   1803 void
   1804 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1805 {
   1806 
   1807 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1808 }
   1809 
   1810 void
   1811 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1812 {
   1813 
   1814 	if (ifa == NULL)
   1815 		return;
   1816 
   1817 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1818 }
   1819 
   1820 bool
   1821 ifa_held(struct ifaddr *ifa)
   1822 {
   1823 
   1824 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1825 }
   1826 
   1827 static inline int
   1828 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1829 {
   1830 	return sockaddr_cmp(sa1, sa2) == 0;
   1831 }
   1832 
   1833 /*
   1834  * Locate an interface based on a complete address.
   1835  */
   1836 /*ARGSUSED*/
   1837 struct ifaddr *
   1838 ifa_ifwithaddr(const struct sockaddr *addr)
   1839 {
   1840 	struct ifnet *ifp;
   1841 	struct ifaddr *ifa;
   1842 
   1843 	IFNET_READER_FOREACH(ifp) {
   1844 		if (if_is_deactivated(ifp))
   1845 			continue;
   1846 		IFADDR_READER_FOREACH(ifa, ifp) {
   1847 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1848 				continue;
   1849 			if (equal(addr, ifa->ifa_addr))
   1850 				return ifa;
   1851 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1852 			    ifa->ifa_broadaddr &&
   1853 			    /* IP6 doesn't have broadcast */
   1854 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1855 			    equal(ifa->ifa_broadaddr, addr))
   1856 				return ifa;
   1857 		}
   1858 	}
   1859 	return NULL;
   1860 }
   1861 
   1862 struct ifaddr *
   1863 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1864 {
   1865 	struct ifaddr *ifa;
   1866 	int s = pserialize_read_enter();
   1867 
   1868 	ifa = ifa_ifwithaddr(addr);
   1869 	if (ifa != NULL)
   1870 		ifa_acquire(ifa, psref);
   1871 	pserialize_read_exit(s);
   1872 
   1873 	return ifa;
   1874 }
   1875 
   1876 /*
   1877  * Locate the point to point interface with a given destination address.
   1878  */
   1879 /*ARGSUSED*/
   1880 struct ifaddr *
   1881 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1882 {
   1883 	struct ifnet *ifp;
   1884 	struct ifaddr *ifa;
   1885 
   1886 	IFNET_READER_FOREACH(ifp) {
   1887 		if (if_is_deactivated(ifp))
   1888 			continue;
   1889 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1890 			continue;
   1891 		IFADDR_READER_FOREACH(ifa, ifp) {
   1892 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1893 			    ifa->ifa_dstaddr == NULL)
   1894 				continue;
   1895 			if (equal(addr, ifa->ifa_dstaddr))
   1896 				return ifa;
   1897 		}
   1898 	}
   1899 
   1900 	return NULL;
   1901 }
   1902 
   1903 struct ifaddr *
   1904 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1905 {
   1906 	struct ifaddr *ifa;
   1907 	int s;
   1908 
   1909 	s = pserialize_read_enter();
   1910 	ifa = ifa_ifwithdstaddr(addr);
   1911 	if (ifa != NULL)
   1912 		ifa_acquire(ifa, psref);
   1913 	pserialize_read_exit(s);
   1914 
   1915 	return ifa;
   1916 }
   1917 
   1918 /*
   1919  * Find an interface on a specific network.  If many, choice
   1920  * is most specific found.
   1921  */
   1922 struct ifaddr *
   1923 ifa_ifwithnet(const struct sockaddr *addr)
   1924 {
   1925 	struct ifnet *ifp;
   1926 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1927 	const struct sockaddr_dl *sdl;
   1928 	u_int af = addr->sa_family;
   1929 	const char *addr_data = addr->sa_data, *cplim;
   1930 
   1931 	if (af == AF_LINK) {
   1932 		sdl = satocsdl(addr);
   1933 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1934 		    ifindex2ifnet[sdl->sdl_index] &&
   1935 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1936 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1937 		}
   1938 	}
   1939 #ifdef NETATALK
   1940 	if (af == AF_APPLETALK) {
   1941 		const struct sockaddr_at *sat, *sat2;
   1942 		sat = (const struct sockaddr_at *)addr;
   1943 		IFNET_READER_FOREACH(ifp) {
   1944 			if (if_is_deactivated(ifp))
   1945 				continue;
   1946 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1947 			if (ifa == NULL)
   1948 				continue;
   1949 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1950 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1951 				return ifa; /* exact match */
   1952 			if (ifa_maybe == NULL) {
   1953 				/* else keep the if with the right range */
   1954 				ifa_maybe = ifa;
   1955 			}
   1956 		}
   1957 		return ifa_maybe;
   1958 	}
   1959 #endif
   1960 	IFNET_READER_FOREACH(ifp) {
   1961 		if (if_is_deactivated(ifp))
   1962 			continue;
   1963 		IFADDR_READER_FOREACH(ifa, ifp) {
   1964 			const char *cp, *cp2, *cp3;
   1965 
   1966 			if (ifa->ifa_addr->sa_family != af ||
   1967 			    ifa->ifa_netmask == NULL)
   1968  next:				continue;
   1969 			cp = addr_data;
   1970 			cp2 = ifa->ifa_addr->sa_data;
   1971 			cp3 = ifa->ifa_netmask->sa_data;
   1972 			cplim = (const char *)ifa->ifa_netmask +
   1973 			    ifa->ifa_netmask->sa_len;
   1974 			while (cp3 < cplim) {
   1975 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1976 					/* want to continue for() loop */
   1977 					goto next;
   1978 				}
   1979 			}
   1980 			if (ifa_maybe == NULL ||
   1981 			    rt_refines(ifa->ifa_netmask,
   1982 			               ifa_maybe->ifa_netmask))
   1983 				ifa_maybe = ifa;
   1984 		}
   1985 	}
   1986 	return ifa_maybe;
   1987 }
   1988 
   1989 struct ifaddr *
   1990 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   1991 {
   1992 	struct ifaddr *ifa;
   1993 	int s;
   1994 
   1995 	s = pserialize_read_enter();
   1996 	ifa = ifa_ifwithnet(addr);
   1997 	if (ifa != NULL)
   1998 		ifa_acquire(ifa, psref);
   1999 	pserialize_read_exit(s);
   2000 
   2001 	return ifa;
   2002 }
   2003 
   2004 /*
   2005  * Find the interface of the addresss.
   2006  */
   2007 struct ifaddr *
   2008 ifa_ifwithladdr(const struct sockaddr *addr)
   2009 {
   2010 	struct ifaddr *ia;
   2011 
   2012 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2013 	    (ia = ifa_ifwithnet(addr)))
   2014 		return ia;
   2015 	return NULL;
   2016 }
   2017 
   2018 struct ifaddr *
   2019 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2020 {
   2021 	struct ifaddr *ifa;
   2022 	int s;
   2023 
   2024 	s = pserialize_read_enter();
   2025 	ifa = ifa_ifwithladdr(addr);
   2026 	if (ifa != NULL)
   2027 		ifa_acquire(ifa, psref);
   2028 	pserialize_read_exit(s);
   2029 
   2030 	return ifa;
   2031 }
   2032 
   2033 /*
   2034  * Find an interface using a specific address family
   2035  */
   2036 struct ifaddr *
   2037 ifa_ifwithaf(int af)
   2038 {
   2039 	struct ifnet *ifp;
   2040 	struct ifaddr *ifa = NULL;
   2041 	int s;
   2042 
   2043 	s = pserialize_read_enter();
   2044 	IFNET_READER_FOREACH(ifp) {
   2045 		if (if_is_deactivated(ifp))
   2046 			continue;
   2047 		IFADDR_READER_FOREACH(ifa, ifp) {
   2048 			if (ifa->ifa_addr->sa_family == af)
   2049 				goto out;
   2050 		}
   2051 	}
   2052 out:
   2053 	pserialize_read_exit(s);
   2054 	return ifa;
   2055 }
   2056 
   2057 /*
   2058  * Find an interface address specific to an interface best matching
   2059  * a given address.
   2060  */
   2061 struct ifaddr *
   2062 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2063 {
   2064 	struct ifaddr *ifa;
   2065 	const char *cp, *cp2, *cp3;
   2066 	const char *cplim;
   2067 	struct ifaddr *ifa_maybe = 0;
   2068 	u_int af = addr->sa_family;
   2069 
   2070 	if (if_is_deactivated(ifp))
   2071 		return NULL;
   2072 
   2073 	if (af >= AF_MAX)
   2074 		return NULL;
   2075 
   2076 	IFADDR_READER_FOREACH(ifa, ifp) {
   2077 		if (ifa->ifa_addr->sa_family != af)
   2078 			continue;
   2079 		ifa_maybe = ifa;
   2080 		if (ifa->ifa_netmask == NULL) {
   2081 			if (equal(addr, ifa->ifa_addr) ||
   2082 			    (ifa->ifa_dstaddr &&
   2083 			     equal(addr, ifa->ifa_dstaddr)))
   2084 				return ifa;
   2085 			continue;
   2086 		}
   2087 		cp = addr->sa_data;
   2088 		cp2 = ifa->ifa_addr->sa_data;
   2089 		cp3 = ifa->ifa_netmask->sa_data;
   2090 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2091 		for (; cp3 < cplim; cp3++) {
   2092 			if ((*cp++ ^ *cp2++) & *cp3)
   2093 				break;
   2094 		}
   2095 		if (cp3 == cplim)
   2096 			return ifa;
   2097 	}
   2098 	return ifa_maybe;
   2099 }
   2100 
   2101 struct ifaddr *
   2102 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2103     struct psref *psref)
   2104 {
   2105 	struct ifaddr *ifa;
   2106 	int s;
   2107 
   2108 	s = pserialize_read_enter();
   2109 	ifa = ifaof_ifpforaddr(addr, ifp);
   2110 	if (ifa != NULL)
   2111 		ifa_acquire(ifa, psref);
   2112 	pserialize_read_exit(s);
   2113 
   2114 	return ifa;
   2115 }
   2116 
   2117 /*
   2118  * Default action when installing a route with a Link Level gateway.
   2119  * Lookup an appropriate real ifa to point to.
   2120  * This should be moved to /sys/net/link.c eventually.
   2121  */
   2122 void
   2123 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2124 {
   2125 	struct ifaddr *ifa;
   2126 	const struct sockaddr *dst;
   2127 	struct ifnet *ifp;
   2128 	struct psref psref;
   2129 
   2130 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   2131 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   2132 		return;
   2133 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2134 		rt_replace_ifa(rt, ifa);
   2135 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2136 			ifa->ifa_rtrequest(cmd, rt, info);
   2137 		ifa_release(ifa, &psref);
   2138 	}
   2139 }
   2140 
   2141 /*
   2142  * bitmask macros to manage a densely packed link_state change queue.
   2143  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2144  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2145  * As a state change to store is 0, treat all bits set as an unset item.
   2146  */
   2147 #define LQ_ITEM_BITS		2
   2148 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2149 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2150 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2151 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2152 #define LQ_STORE(q, i, v)						      \
   2153 	do {								      \
   2154 		(q) &= ~LQ_MASK((i));					      \
   2155 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2156 	} while (0 /* CONSTCOND */)
   2157 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2158 #define LQ_POP(q, v)							      \
   2159 	do {								      \
   2160 		(v) = LQ_ITEM((q), 0);					      \
   2161 		(q) >>= LQ_ITEM_BITS;					      \
   2162 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2163 	} while (0 /* CONSTCOND */)
   2164 #define LQ_PUSH(q, v)							      \
   2165 	do {								      \
   2166 		(q) >>= LQ_ITEM_BITS;					      \
   2167 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2168 	} while (0 /* CONSTCOND */)
   2169 #define LQ_FIND_UNSET(q, i)						      \
   2170 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2171 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2172 			break;						      \
   2173 	}
   2174 /*
   2175  * Handle a change in the interface link state and
   2176  * queue notifications.
   2177  */
   2178 void
   2179 if_link_state_change(struct ifnet *ifp, int link_state)
   2180 {
   2181 	int s, idx;
   2182 
   2183 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2184 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2185 	    ifp->if_xname, ifp->if_extflags);
   2186 
   2187 	/* Ensure change is to a valid state */
   2188 	switch (link_state) {
   2189 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2190 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2191 	case LINK_STATE_UP:
   2192 		break;
   2193 	default:
   2194 #ifdef DEBUG
   2195 		printf("%s: invalid link state %d\n",
   2196 		    ifp->if_xname, link_state);
   2197 #endif
   2198 		return;
   2199 	}
   2200 
   2201 	s = splnet();
   2202 
   2203 	/* Find the last unset event in the queue. */
   2204 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2205 
   2206 	/*
   2207 	 * Ensure link_state doesn't match the last event in the queue.
   2208 	 * ifp->if_link_state is not checked and set here because
   2209 	 * that would present an inconsistent picture to the system.
   2210 	 */
   2211 	if (idx != 0 &&
   2212 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2213 		goto out;
   2214 
   2215 	/* Handle queue overflow. */
   2216 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2217 		uint8_t lost;
   2218 
   2219 		/*
   2220 		 * The DOWN state must be protected from being pushed off
   2221 		 * the queue to ensure that userland will always be
   2222 		 * in a sane state.
   2223 		 * Because DOWN is protected, there is no need to protect
   2224 		 * UNKNOWN.
   2225 		 * It should be invalid to change from any other state to
   2226 		 * UNKNOWN anyway ...
   2227 		 */
   2228 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2229 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2230 		if (lost == LINK_STATE_DOWN) {
   2231 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2232 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2233 		}
   2234 		printf("%s: lost link state change %s\n",
   2235 		    ifp->if_xname,
   2236 		    lost == LINK_STATE_UP ? "UP" :
   2237 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2238 		    "UNKNOWN");
   2239 	} else
   2240 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2241 
   2242 	softint_schedule(ifp->if_link_si);
   2243 
   2244 out:
   2245 	splx(s);
   2246 }
   2247 
   2248 /*
   2249  * Handle interface link state change notifications.
   2250  * Must be called at splnet().
   2251  */
   2252 static void
   2253 if_link_state_change0(struct ifnet *ifp, int link_state)
   2254 {
   2255 	struct domain *dp;
   2256 
   2257 	/* Ensure the change is still valid. */
   2258 	if (ifp->if_link_state == link_state)
   2259 		return;
   2260 
   2261 #ifdef DEBUG
   2262 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2263 		link_state == LINK_STATE_UP ? "UP" :
   2264 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2265 		"UNKNOWN",
   2266 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2267 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2268 		"UNKNOWN");
   2269 #endif
   2270 
   2271 	/*
   2272 	 * When going from UNKNOWN to UP, we need to mark existing
   2273 	 * addresses as tentative and restart DAD as we may have
   2274 	 * erroneously not found a duplicate.
   2275 	 *
   2276 	 * This needs to happen before rt_ifmsg to avoid a race where
   2277 	 * listeners would have an address and expect it to work right
   2278 	 * away.
   2279 	 */
   2280 	if (link_state == LINK_STATE_UP &&
   2281 	    ifp->if_link_state == LINK_STATE_UNKNOWN)
   2282 	{
   2283 		DOMAIN_FOREACH(dp) {
   2284 			if (dp->dom_if_link_state_change != NULL)
   2285 				dp->dom_if_link_state_change(ifp,
   2286 				    LINK_STATE_DOWN);
   2287 		}
   2288 	}
   2289 
   2290 	ifp->if_link_state = link_state;
   2291 
   2292 	/* Notify that the link state has changed. */
   2293 	rt_ifmsg(ifp);
   2294 
   2295 #if NCARP > 0
   2296 	if (ifp->if_carp)
   2297 		carp_carpdev_state(ifp);
   2298 #endif
   2299 
   2300 	DOMAIN_FOREACH(dp) {
   2301 		if (dp->dom_if_link_state_change != NULL)
   2302 			dp->dom_if_link_state_change(ifp, link_state);
   2303 	}
   2304 }
   2305 
   2306 /*
   2307  * Process the interface link state change queue.
   2308  */
   2309 static void
   2310 if_link_state_change_si(void *arg)
   2311 {
   2312 	struct ifnet *ifp = arg;
   2313 	int s;
   2314 	uint8_t state;
   2315 
   2316 #ifndef NET_MPSAFE
   2317 	mutex_enter(softnet_lock);
   2318 	KERNEL_LOCK(1, NULL);
   2319 #endif
   2320 	s = splnet();
   2321 
   2322 	/* Pop a link state change from the queue and process it. */
   2323 	LQ_POP(ifp->if_link_queue, state);
   2324 	if_link_state_change0(ifp, state);
   2325 
   2326 	/* If there is a link state change to come, schedule it. */
   2327 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
   2328 		softint_schedule(ifp->if_link_si);
   2329 
   2330 	splx(s);
   2331 #ifndef NET_MPSAFE
   2332 	KERNEL_UNLOCK_ONE(NULL);
   2333 	mutex_exit(softnet_lock);
   2334 #endif
   2335 }
   2336 
   2337 /*
   2338  * Default action when installing a local route on a point-to-point
   2339  * interface.
   2340  */
   2341 void
   2342 p2p_rtrequest(int req, struct rtentry *rt,
   2343     __unused const struct rt_addrinfo *info)
   2344 {
   2345 	struct ifnet *ifp = rt->rt_ifp;
   2346 	struct ifaddr *ifa, *lo0ifa;
   2347 	int s = pserialize_read_enter();
   2348 
   2349 	switch (req) {
   2350 	case RTM_ADD:
   2351 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2352 			break;
   2353 
   2354 		rt->rt_ifp = lo0ifp;
   2355 
   2356 		IFADDR_READER_FOREACH(ifa, ifp) {
   2357 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2358 				break;
   2359 		}
   2360 		if (ifa == NULL)
   2361 			break;
   2362 
   2363 		/*
   2364 		 * Ensure lo0 has an address of the same family.
   2365 		 */
   2366 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2367 			if (lo0ifa->ifa_addr->sa_family ==
   2368 			    ifa->ifa_addr->sa_family)
   2369 				break;
   2370 		}
   2371 		if (lo0ifa == NULL)
   2372 			break;
   2373 
   2374 		/*
   2375 		 * Make sure to set rt->rt_ifa to the interface
   2376 		 * address we are using, otherwise we will have trouble
   2377 		 * with source address selection.
   2378 		 */
   2379 		if (ifa != rt->rt_ifa)
   2380 			rt_replace_ifa(rt, ifa);
   2381 		break;
   2382 	case RTM_DELETE:
   2383 	default:
   2384 		break;
   2385 	}
   2386 	pserialize_read_exit(s);
   2387 }
   2388 
   2389 /*
   2390  * Mark an interface down and notify protocols of
   2391  * the transition.
   2392  * NOTE: must be called at splsoftnet or equivalent.
   2393  */
   2394 void
   2395 if_down(struct ifnet *ifp)
   2396 {
   2397 	struct ifaddr *ifa;
   2398 	struct domain *dp;
   2399 	int s, bound;
   2400 	struct psref psref;
   2401 
   2402 	ifp->if_flags &= ~IFF_UP;
   2403 	nanotime(&ifp->if_lastchange);
   2404 
   2405 	bound = curlwp_bind();
   2406 	s = pserialize_read_enter();
   2407 	IFADDR_READER_FOREACH(ifa, ifp) {
   2408 		ifa_acquire(ifa, &psref);
   2409 		pserialize_read_exit(s);
   2410 
   2411 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2412 
   2413 		s = pserialize_read_enter();
   2414 		ifa_release(ifa, &psref);
   2415 	}
   2416 	pserialize_read_exit(s);
   2417 	curlwp_bindx(bound);
   2418 
   2419 	IFQ_PURGE(&ifp->if_snd);
   2420 #if NCARP > 0
   2421 	if (ifp->if_carp)
   2422 		carp_carpdev_state(ifp);
   2423 #endif
   2424 	rt_ifmsg(ifp);
   2425 	DOMAIN_FOREACH(dp) {
   2426 		if (dp->dom_if_down)
   2427 			dp->dom_if_down(ifp);
   2428 	}
   2429 }
   2430 
   2431 /*
   2432  * Mark an interface up and notify protocols of
   2433  * the transition.
   2434  * NOTE: must be called at splsoftnet or equivalent.
   2435  */
   2436 void
   2437 if_up(struct ifnet *ifp)
   2438 {
   2439 #ifdef notyet
   2440 	struct ifaddr *ifa;
   2441 #endif
   2442 	struct domain *dp;
   2443 
   2444 	ifp->if_flags |= IFF_UP;
   2445 	nanotime(&ifp->if_lastchange);
   2446 #ifdef notyet
   2447 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2448 	IFADDR_READER_FOREACH(ifa, ifp)
   2449 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2450 #endif
   2451 #if NCARP > 0
   2452 	if (ifp->if_carp)
   2453 		carp_carpdev_state(ifp);
   2454 #endif
   2455 	rt_ifmsg(ifp);
   2456 	DOMAIN_FOREACH(dp) {
   2457 		if (dp->dom_if_up)
   2458 			dp->dom_if_up(ifp);
   2459 	}
   2460 }
   2461 
   2462 /*
   2463  * Handle interface slowtimo timer routine.  Called
   2464  * from softclock, we decrement timer (if set) and
   2465  * call the appropriate interface routine on expiration.
   2466  */
   2467 static void
   2468 if_slowtimo(void *arg)
   2469 {
   2470 	void (*slowtimo)(struct ifnet *);
   2471 	struct ifnet *ifp = arg;
   2472 	int s;
   2473 
   2474 	slowtimo = ifp->if_slowtimo;
   2475 	if (__predict_false(slowtimo == NULL))
   2476 		return;
   2477 
   2478 	s = splnet();
   2479 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2480 		(*slowtimo)(ifp);
   2481 
   2482 	splx(s);
   2483 
   2484 	if (__predict_true(ifp->if_slowtimo != NULL))
   2485 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2486 }
   2487 
   2488 /*
   2489  * Set/clear promiscuous mode on interface ifp based on the truth value
   2490  * of pswitch.  The calls are reference counted so that only the first
   2491  * "on" request actually has an effect, as does the final "off" request.
   2492  * Results are undefined if the "off" and "on" requests are not matched.
   2493  */
   2494 int
   2495 ifpromisc(struct ifnet *ifp, int pswitch)
   2496 {
   2497 	int pcount, ret;
   2498 	short nflags;
   2499 
   2500 	pcount = ifp->if_pcount;
   2501 	if (pswitch) {
   2502 		/*
   2503 		 * Allow the device to be "placed" into promiscuous
   2504 		 * mode even if it is not configured up.  It will
   2505 		 * consult IFF_PROMISC when it is brought up.
   2506 		 */
   2507 		if (ifp->if_pcount++ != 0)
   2508 			return 0;
   2509 		nflags = ifp->if_flags | IFF_PROMISC;
   2510 	} else {
   2511 		if (--ifp->if_pcount > 0)
   2512 			return 0;
   2513 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2514 	}
   2515 	ret = if_flags_set(ifp, nflags);
   2516 	/* Restore interface state if not successful. */
   2517 	if (ret != 0) {
   2518 		ifp->if_pcount = pcount;
   2519 	}
   2520 	return ret;
   2521 }
   2522 
   2523 /*
   2524  * Map interface name to
   2525  * interface structure pointer.
   2526  */
   2527 struct ifnet *
   2528 ifunit(const char *name)
   2529 {
   2530 	struct ifnet *ifp;
   2531 	const char *cp = name;
   2532 	u_int unit = 0;
   2533 	u_int i;
   2534 	int s;
   2535 
   2536 	/*
   2537 	 * If the entire name is a number, treat it as an ifindex.
   2538 	 */
   2539 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2540 		unit = unit * 10 + (*cp - '0');
   2541 	}
   2542 
   2543 	/*
   2544 	 * If the number took all of the name, then it's a valid ifindex.
   2545 	 */
   2546 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2547 		return if_byindex(unit);
   2548 
   2549 	ifp = NULL;
   2550 	s = pserialize_read_enter();
   2551 	IFNET_READER_FOREACH(ifp) {
   2552 		if (if_is_deactivated(ifp))
   2553 			continue;
   2554 	 	if (strcmp(ifp->if_xname, name) == 0)
   2555 			goto out;
   2556 	}
   2557 out:
   2558 	pserialize_read_exit(s);
   2559 	return ifp;
   2560 }
   2561 
   2562 /*
   2563  * Get a reference of an ifnet object by an interface name.
   2564  * The returned reference is protected by psref(9). The caller
   2565  * must release a returned reference by if_put after use.
   2566  */
   2567 struct ifnet *
   2568 if_get(const char *name, struct psref *psref)
   2569 {
   2570 	struct ifnet *ifp;
   2571 	const char *cp = name;
   2572 	u_int unit = 0;
   2573 	u_int i;
   2574 	int s;
   2575 
   2576 	/*
   2577 	 * If the entire name is a number, treat it as an ifindex.
   2578 	 */
   2579 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2580 		unit = unit * 10 + (*cp - '0');
   2581 	}
   2582 
   2583 	/*
   2584 	 * If the number took all of the name, then it's a valid ifindex.
   2585 	 */
   2586 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2587 		return if_get_byindex(unit, psref);
   2588 
   2589 	ifp = NULL;
   2590 	s = pserialize_read_enter();
   2591 	IFNET_READER_FOREACH(ifp) {
   2592 		if (if_is_deactivated(ifp))
   2593 			continue;
   2594 		if (strcmp(ifp->if_xname, name) == 0) {
   2595 			psref_acquire(psref, &ifp->if_psref,
   2596 			    ifnet_psref_class);
   2597 			goto out;
   2598 		}
   2599 	}
   2600 out:
   2601 	pserialize_read_exit(s);
   2602 	return ifp;
   2603 }
   2604 
   2605 /*
   2606  * Release a reference of an ifnet object given by if_get or
   2607  * if_get_byindex.
   2608  */
   2609 void
   2610 if_put(const struct ifnet *ifp, struct psref *psref)
   2611 {
   2612 
   2613 	if (ifp == NULL)
   2614 		return;
   2615 
   2616 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2617 }
   2618 
   2619 ifnet_t *
   2620 if_byindex(u_int idx)
   2621 {
   2622 	ifnet_t *ifp;
   2623 
   2624 	ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2625 	if (ifp != NULL && if_is_deactivated(ifp))
   2626 		ifp = NULL;
   2627 	return ifp;
   2628 }
   2629 
   2630 /*
   2631  * Get a reference of an ifnet object by an interface index.
   2632  * The returned reference is protected by psref(9). The caller
   2633  * must release a returned reference by if_put after use.
   2634  */
   2635 ifnet_t *
   2636 if_get_byindex(u_int idx, struct psref *psref)
   2637 {
   2638 	ifnet_t *ifp;
   2639 	int s;
   2640 
   2641 	s = pserialize_read_enter();
   2642 	ifp = if_byindex(idx);
   2643 	if (__predict_true(ifp != NULL))
   2644 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2645 	pserialize_read_exit(s);
   2646 
   2647 	return ifp;
   2648 }
   2649 
   2650 /*
   2651  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2652  * for example using pserialize or the ifp is already held or some other
   2653  * object is held which guarantes the ifp to not be freed indirectly.
   2654  */
   2655 void
   2656 if_acquire(struct ifnet *ifp, struct psref *psref)
   2657 {
   2658 
   2659 	KASSERT(ifp->if_index != 0);
   2660 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2661 }
   2662 
   2663 bool
   2664 if_held(struct ifnet *ifp)
   2665 {
   2666 
   2667 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2668 }
   2669 
   2670 
   2671 /* common */
   2672 int
   2673 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2674 {
   2675 	int s;
   2676 	struct ifreq *ifr;
   2677 	struct ifcapreq *ifcr;
   2678 	struct ifdatareq *ifdr;
   2679 
   2680 	switch (cmd) {
   2681 	case SIOCSIFCAP:
   2682 		ifcr = data;
   2683 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2684 			return EINVAL;
   2685 
   2686 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2687 			return 0;
   2688 
   2689 		ifp->if_capenable = ifcr->ifcr_capenable;
   2690 
   2691 		/* Pre-compute the checksum flags mask. */
   2692 		ifp->if_csum_flags_tx = 0;
   2693 		ifp->if_csum_flags_rx = 0;
   2694 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2695 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2696 		}
   2697 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2698 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2699 		}
   2700 
   2701 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2702 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2703 		}
   2704 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2705 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2706 		}
   2707 
   2708 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2709 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2710 		}
   2711 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2712 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2713 		}
   2714 
   2715 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2716 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2717 		}
   2718 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2719 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2720 		}
   2721 
   2722 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2723 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2724 		}
   2725 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2726 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2727 		}
   2728 		if (ifp->if_flags & IFF_UP)
   2729 			return ENETRESET;
   2730 		return 0;
   2731 	case SIOCSIFFLAGS:
   2732 		ifr = data;
   2733 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2734 			s = splsoftnet();
   2735 			if_down(ifp);
   2736 			splx(s);
   2737 		}
   2738 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2739 			s = splsoftnet();
   2740 			if_up(ifp);
   2741 			splx(s);
   2742 		}
   2743 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2744 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2745 		break;
   2746 	case SIOCGIFFLAGS:
   2747 		ifr = data;
   2748 		ifr->ifr_flags = ifp->if_flags;
   2749 		break;
   2750 
   2751 	case SIOCGIFMETRIC:
   2752 		ifr = data;
   2753 		ifr->ifr_metric = ifp->if_metric;
   2754 		break;
   2755 
   2756 	case SIOCGIFMTU:
   2757 		ifr = data;
   2758 		ifr->ifr_mtu = ifp->if_mtu;
   2759 		break;
   2760 
   2761 	case SIOCGIFDLT:
   2762 		ifr = data;
   2763 		ifr->ifr_dlt = ifp->if_dlt;
   2764 		break;
   2765 
   2766 	case SIOCGIFCAP:
   2767 		ifcr = data;
   2768 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2769 		ifcr->ifcr_capenable = ifp->if_capenable;
   2770 		break;
   2771 
   2772 	case SIOCSIFMETRIC:
   2773 		ifr = data;
   2774 		ifp->if_metric = ifr->ifr_metric;
   2775 		break;
   2776 
   2777 	case SIOCGIFDATA:
   2778 		ifdr = data;
   2779 		ifdr->ifdr_data = ifp->if_data;
   2780 		break;
   2781 
   2782 	case SIOCGIFINDEX:
   2783 		ifr = data;
   2784 		ifr->ifr_index = ifp->if_index;
   2785 		break;
   2786 
   2787 	case SIOCZIFDATA:
   2788 		ifdr = data;
   2789 		ifdr->ifdr_data = ifp->if_data;
   2790 		/*
   2791 		 * Assumes that the volatile counters that can be
   2792 		 * zero'ed are at the end of if_data.
   2793 		 */
   2794 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   2795 		    offsetof(struct if_data, ifi_ipackets));
   2796 		/*
   2797 		 * The memset() clears to the bottm of if_data. In the area,
   2798 		 * if_lastchange is included. Please be careful if new entry
   2799 		 * will be added into if_data or rewite this.
   2800 		 *
   2801 		 * And also, update if_lastchnage.
   2802 		 */
   2803 		getnanotime(&ifp->if_lastchange);
   2804 		break;
   2805 	case SIOCSIFMTU:
   2806 		ifr = data;
   2807 		if (ifp->if_mtu == ifr->ifr_mtu)
   2808 			break;
   2809 		ifp->if_mtu = ifr->ifr_mtu;
   2810 		/*
   2811 		 * If the link MTU changed, do network layer specific procedure.
   2812 		 */
   2813 #ifdef INET6
   2814 		if (in6_present)
   2815 			nd6_setmtu(ifp);
   2816 #endif
   2817 		return ENETRESET;
   2818 	default:
   2819 		return ENOTTY;
   2820 	}
   2821 	return 0;
   2822 }
   2823 
   2824 int
   2825 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   2826 {
   2827 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   2828 	struct ifaddr *ifa;
   2829 	const struct sockaddr *any, *sa;
   2830 	union {
   2831 		struct sockaddr sa;
   2832 		struct sockaddr_storage ss;
   2833 	} u, v;
   2834 	int s, error = 0;
   2835 
   2836 	switch (cmd) {
   2837 	case SIOCSIFADDRPREF:
   2838 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   2839 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   2840 		    NULL) != 0)
   2841 			return EPERM;
   2842 	case SIOCGIFADDRPREF:
   2843 		break;
   2844 	default:
   2845 		return EOPNOTSUPP;
   2846 	}
   2847 
   2848 	/* sanity checks */
   2849 	if (data == NULL || ifp == NULL) {
   2850 		panic("invalid argument to %s", __func__);
   2851 		/*NOTREACHED*/
   2852 	}
   2853 
   2854 	/* address must be specified on ADD and DELETE */
   2855 	sa = sstocsa(&ifap->ifap_addr);
   2856 	if (sa->sa_family != sofamily(so))
   2857 		return EINVAL;
   2858 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   2859 		return EINVAL;
   2860 
   2861 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   2862 
   2863 	s = pserialize_read_enter();
   2864 	IFADDR_READER_FOREACH(ifa, ifp) {
   2865 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   2866 			continue;
   2867 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   2868 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   2869 			break;
   2870 	}
   2871 	if (ifa == NULL) {
   2872 		error = EADDRNOTAVAIL;
   2873 		goto out;
   2874 	}
   2875 
   2876 	switch (cmd) {
   2877 	case SIOCSIFADDRPREF:
   2878 		ifa->ifa_preference = ifap->ifap_preference;
   2879 		goto out;
   2880 	case SIOCGIFADDRPREF:
   2881 		/* fill in the if_laddrreq structure */
   2882 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   2883 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   2884 		ifap->ifap_preference = ifa->ifa_preference;
   2885 		goto out;
   2886 	default:
   2887 		error = EOPNOTSUPP;
   2888 	}
   2889 out:
   2890 	pserialize_read_exit(s);
   2891 	return error;
   2892 }
   2893 
   2894 /*
   2895  * Interface ioctls.
   2896  */
   2897 static int
   2898 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   2899 {
   2900 	struct ifnet *ifp;
   2901 	struct ifreq *ifr;
   2902 	int error = 0;
   2903 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   2904 	u_long ocmd = cmd;
   2905 #endif
   2906 	short oif_flags;
   2907 #ifdef COMPAT_OIFREQ
   2908 	struct ifreq ifrb;
   2909 	struct oifreq *oifr = NULL;
   2910 #endif
   2911 	int r;
   2912 	struct psref psref;
   2913 	int bound;
   2914 
   2915 	switch (cmd) {
   2916 #ifdef COMPAT_OIFREQ
   2917 	case OSIOCGIFCONF:
   2918 	case OOSIOCGIFCONF:
   2919 		return compat_ifconf(cmd, data);
   2920 #endif
   2921 #ifdef COMPAT_OIFDATA
   2922 	case OSIOCGIFDATA:
   2923 	case OSIOCZIFDATA:
   2924 		return compat_ifdatareq(l, cmd, data);
   2925 #endif
   2926 	case SIOCGIFCONF:
   2927 		return ifconf(cmd, data);
   2928 	case SIOCINITIFADDR:
   2929 		return EPERM;
   2930 	}
   2931 
   2932 #ifdef COMPAT_OIFREQ
   2933 	cmd = (*vec_compat_cvtcmd)(cmd);
   2934 	if (cmd != ocmd) {
   2935 		oifr = data;
   2936 		data = ifr = &ifrb;
   2937 		ifreqo2n(oifr, ifr);
   2938 	} else
   2939 #endif
   2940 		ifr = data;
   2941 
   2942 	switch (cmd) {
   2943 	case SIOCIFCREATE:
   2944 	case SIOCIFDESTROY:
   2945 		bound = curlwp_bind();
   2946 		if (l != NULL) {
   2947 			ifp = if_get(ifr->ifr_name, &psref);
   2948 			error = kauth_authorize_network(l->l_cred,
   2949 			    KAUTH_NETWORK_INTERFACE,
   2950 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   2951 			    (void *)cmd, NULL);
   2952 			if (ifp != NULL)
   2953 				if_put(ifp, &psref);
   2954 			if (error != 0) {
   2955 				curlwp_bindx(bound);
   2956 				return error;
   2957 			}
   2958 		}
   2959 		mutex_enter(&if_clone_mtx);
   2960 		r = (cmd == SIOCIFCREATE) ?
   2961 			if_clone_create(ifr->ifr_name) :
   2962 			if_clone_destroy(ifr->ifr_name);
   2963 		mutex_exit(&if_clone_mtx);
   2964 		curlwp_bindx(bound);
   2965 		return r;
   2966 
   2967 	case SIOCIFGCLONERS:
   2968 		{
   2969 			struct if_clonereq *req = (struct if_clonereq *)data;
   2970 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   2971 			    &req->ifcr_total);
   2972 		}
   2973 	}
   2974 
   2975 	bound = curlwp_bind();
   2976 	ifp = if_get(ifr->ifr_name, &psref);
   2977 	if (ifp == NULL) {
   2978 		curlwp_bindx(bound);
   2979 		return ENXIO;
   2980 	}
   2981 
   2982 	switch (cmd) {
   2983 	case SIOCALIFADDR:
   2984 	case SIOCDLIFADDR:
   2985 	case SIOCSIFADDRPREF:
   2986 	case SIOCSIFFLAGS:
   2987 	case SIOCSIFCAP:
   2988 	case SIOCSIFMETRIC:
   2989 	case SIOCZIFDATA:
   2990 	case SIOCSIFMTU:
   2991 	case SIOCSIFPHYADDR:
   2992 	case SIOCDIFPHYADDR:
   2993 #ifdef INET6
   2994 	case SIOCSIFPHYADDR_IN6:
   2995 #endif
   2996 	case SIOCSLIFPHYADDR:
   2997 	case SIOCADDMULTI:
   2998 	case SIOCDELMULTI:
   2999 	case SIOCSIFMEDIA:
   3000 	case SIOCSDRVSPEC:
   3001 	case SIOCG80211:
   3002 	case SIOCS80211:
   3003 	case SIOCS80211NWID:
   3004 	case SIOCS80211NWKEY:
   3005 	case SIOCS80211POWER:
   3006 	case SIOCS80211BSSID:
   3007 	case SIOCS80211CHANNEL:
   3008 	case SIOCSLINKSTR:
   3009 		if (l != NULL) {
   3010 			error = kauth_authorize_network(l->l_cred,
   3011 			    KAUTH_NETWORK_INTERFACE,
   3012 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3013 			    (void *)cmd, NULL);
   3014 			if (error != 0)
   3015 				goto out;
   3016 		}
   3017 	}
   3018 
   3019 	oif_flags = ifp->if_flags;
   3020 
   3021 	mutex_enter(ifp->if_ioctl_lock);
   3022 
   3023 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3024 	if (error != ENOTTY)
   3025 		;
   3026 	else if (so->so_proto == NULL)
   3027 		error = EOPNOTSUPP;
   3028 	else {
   3029 #ifdef COMPAT_OSOCK
   3030 		if (vec_compat_ifioctl != NULL)
   3031 			error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
   3032 		else
   3033 #endif
   3034 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3035 			    cmd, data, ifp);
   3036 	}
   3037 
   3038 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3039 		if ((ifp->if_flags & IFF_UP) != 0) {
   3040 			int s = splsoftnet();
   3041 			if_up(ifp);
   3042 			splx(s);
   3043 		}
   3044 	}
   3045 #ifdef COMPAT_OIFREQ
   3046 	if (cmd != ocmd)
   3047 		ifreqn2o(oifr, ifr);
   3048 #endif
   3049 
   3050 	mutex_exit(ifp->if_ioctl_lock);
   3051 out:
   3052 	if_put(ifp, &psref);
   3053 	curlwp_bindx(bound);
   3054 	return error;
   3055 }
   3056 
   3057 /*
   3058  * Return interface configuration
   3059  * of system.  List may be used
   3060  * in later ioctl's (above) to get
   3061  * other information.
   3062  *
   3063  * Each record is a struct ifreq.  Before the addition of
   3064  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3065  * not fit would extend beyond the struct ifreq, with the next struct
   3066  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3067  * union in struct ifreq includes struct sockaddr_storage, every kind
   3068  * of sockaddr must fit.  Thus, there are no longer any overlength
   3069  * records.
   3070  *
   3071  * Records are added to the user buffer if they fit, and ifc_len is
   3072  * adjusted to the length that was written.  Thus, the user is only
   3073  * assured of getting the complete list if ifc_len on return is at
   3074  * least sizeof(struct ifreq) less than it was on entry.
   3075  *
   3076  * If the user buffer pointer is NULL, this routine copies no data and
   3077  * returns the amount of space that would be needed.
   3078  *
   3079  * Invariants:
   3080  * ifrp points to the next part of the user's buffer to be used.  If
   3081  * ifrp != NULL, space holds the number of bytes remaining that we may
   3082  * write at ifrp.  Otherwise, space holds the number of bytes that
   3083  * would have been written had there been adequate space.
   3084  */
   3085 /*ARGSUSED*/
   3086 static int
   3087 ifconf(u_long cmd, void *data)
   3088 {
   3089 	struct ifconf *ifc = (struct ifconf *)data;
   3090 	struct ifnet *ifp;
   3091 	struct ifaddr *ifa;
   3092 	struct ifreq ifr, *ifrp = NULL;
   3093 	int space = 0, error = 0;
   3094 	const int sz = (int)sizeof(struct ifreq);
   3095 	const bool docopy = ifc->ifc_req != NULL;
   3096 	int s;
   3097 	int bound;
   3098 	struct psref psref;
   3099 
   3100 	if (docopy) {
   3101 		space = ifc->ifc_len;
   3102 		ifrp = ifc->ifc_req;
   3103 	}
   3104 
   3105 	bound = curlwp_bind();
   3106 	s = pserialize_read_enter();
   3107 	IFNET_READER_FOREACH(ifp) {
   3108 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3109 		pserialize_read_exit(s);
   3110 
   3111 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3112 		    sizeof(ifr.ifr_name));
   3113 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3114 			error = ENAMETOOLONG;
   3115 			goto release_exit;
   3116 		}
   3117 		if (IFADDR_READER_EMPTY(ifp)) {
   3118 			/* Interface with no addresses - send zero sockaddr. */
   3119 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3120 			if (!docopy) {
   3121 				space += sz;
   3122 				continue;
   3123 			}
   3124 			if (space >= sz) {
   3125 				error = copyout(&ifr, ifrp, sz);
   3126 				if (error != 0)
   3127 					goto release_exit;
   3128 				ifrp++;
   3129 				space -= sz;
   3130 			}
   3131 		}
   3132 
   3133 		IFADDR_READER_FOREACH(ifa, ifp) {
   3134 			struct sockaddr *sa = ifa->ifa_addr;
   3135 			/* all sockaddrs must fit in sockaddr_storage */
   3136 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3137 
   3138 			if (!docopy) {
   3139 				space += sz;
   3140 				continue;
   3141 			}
   3142 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3143 			if (space >= sz) {
   3144 				error = copyout(&ifr, ifrp, sz);
   3145 				if (error != 0)
   3146 					goto release_exit;
   3147 				ifrp++; space -= sz;
   3148 			}
   3149 		}
   3150 
   3151 		s = pserialize_read_enter();
   3152 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3153 	}
   3154 	pserialize_read_exit(s);
   3155 	curlwp_bindx(bound);
   3156 
   3157 	if (docopy) {
   3158 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3159 		ifc->ifc_len -= space;
   3160 	} else {
   3161 		KASSERT(space >= 0);
   3162 		ifc->ifc_len = space;
   3163 	}
   3164 	return (0);
   3165 
   3166 release_exit:
   3167 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3168 	curlwp_bindx(bound);
   3169 	return error;
   3170 }
   3171 
   3172 int
   3173 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3174 {
   3175 	uint8_t len;
   3176 #ifdef COMPAT_OIFREQ
   3177 	struct ifreq ifrb;
   3178 	struct oifreq *oifr = NULL;
   3179 	u_long ocmd = cmd;
   3180 	cmd = (*vec_compat_cvtcmd)(cmd);
   3181 	if (cmd != ocmd) {
   3182 		oifr = (struct oifreq *)(void *)ifr;
   3183 		ifr = &ifrb;
   3184 		ifreqo2n(oifr, ifr);
   3185 		len = sizeof(oifr->ifr_addr);
   3186 	} else
   3187 #endif
   3188 		len = sizeof(ifr->ifr_ifru.ifru_space);
   3189 
   3190 	if (len < sa->sa_len)
   3191 		return EFBIG;
   3192 
   3193 	memset(&ifr->ifr_addr, 0, len);
   3194 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3195 
   3196 #ifdef COMPAT_OIFREQ
   3197 	if (cmd != ocmd)
   3198 		ifreqn2o(oifr, ifr);
   3199 #endif
   3200 	return 0;
   3201 }
   3202 
   3203 /*
   3204  * wrapper function for the drivers which doesn't have if_transmit().
   3205  */
   3206 static int
   3207 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3208 {
   3209 	int s, error;
   3210 	size_t pktlen = m->m_pkthdr.len;
   3211 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3212 
   3213 	s = splnet();
   3214 
   3215 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3216 	if (error != 0) {
   3217 		/* mbuf is already freed */
   3218 		goto out;
   3219 	}
   3220 
   3221 	ifp->if_obytes += pktlen;
   3222 	if (mcast)
   3223 		ifp->if_omcasts++;
   3224 
   3225 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3226 		if_start_lock(ifp);
   3227 out:
   3228 	splx(s);
   3229 
   3230 	return error;
   3231 }
   3232 
   3233 int
   3234 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3235 {
   3236 	int error;
   3237 
   3238 #ifdef ALTQ
   3239 	KERNEL_LOCK(1, NULL);
   3240 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3241 		error = if_transmit(ifp, m);
   3242 		KERNEL_UNLOCK_ONE(NULL);
   3243 	} else {
   3244 		KERNEL_UNLOCK_ONE(NULL);
   3245 		error = (*ifp->if_transmit)(ifp, m);
   3246 		/* mbuf is alredy freed */
   3247 	}
   3248 #else /* !ALTQ */
   3249 	error = (*ifp->if_transmit)(ifp, m);
   3250 	/* mbuf is alredy freed */
   3251 #endif /* !ALTQ */
   3252 
   3253 	return error;
   3254 }
   3255 
   3256 /*
   3257  * Queue message on interface, and start output if interface
   3258  * not yet active.
   3259  */
   3260 int
   3261 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3262 {
   3263 
   3264 	return if_transmit_lock(ifp, m);
   3265 }
   3266 
   3267 /*
   3268  * Queue message on interface, possibly using a second fast queue
   3269  */
   3270 int
   3271 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3272 {
   3273 	int error = 0;
   3274 
   3275 	if (ifq != NULL
   3276 #ifdef ALTQ
   3277 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3278 #endif
   3279 	    ) {
   3280 		if (IF_QFULL(ifq)) {
   3281 			IF_DROP(&ifp->if_snd);
   3282 			m_freem(m);
   3283 			if (error == 0)
   3284 				error = ENOBUFS;
   3285 		} else
   3286 			IF_ENQUEUE(ifq, m);
   3287 	} else
   3288 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3289 	if (error != 0) {
   3290 		++ifp->if_oerrors;
   3291 		return error;
   3292 	}
   3293 	return 0;
   3294 }
   3295 
   3296 int
   3297 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3298 {
   3299 	int rc;
   3300 
   3301 	if (ifp->if_initaddr != NULL)
   3302 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3303 	else if (src ||
   3304 		/* FIXME: may not hold if_ioctl_lock */
   3305 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3306 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3307 
   3308 	return rc;
   3309 }
   3310 
   3311 int
   3312 if_do_dad(struct ifnet *ifp)
   3313 {
   3314 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3315 		return 0;
   3316 
   3317 	switch (ifp->if_type) {
   3318 	case IFT_FAITH:
   3319 		/*
   3320 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3321 		 * but loop packets back.  We do not have to do DAD on such
   3322 		 * interfaces.  We should even omit it, because loop-backed
   3323 		 * responses would confuse the DAD procedure.
   3324 		 */
   3325 		return 0;
   3326 	default:
   3327 		/*
   3328 		 * Our DAD routine requires the interface up and running.
   3329 		 * However, some interfaces can be up before the RUNNING
   3330 		 * status.  Additionaly, users may try to assign addresses
   3331 		 * before the interface becomes up (or running).
   3332 		 * We simply skip DAD in such a case as a work around.
   3333 		 * XXX: we should rather mark "tentative" on such addresses,
   3334 		 * and do DAD after the interface becomes ready.
   3335 		 */
   3336 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   3337 		    (IFF_UP|IFF_RUNNING))
   3338 			return 0;
   3339 
   3340 		return 1;
   3341 	}
   3342 }
   3343 
   3344 int
   3345 if_flags_set(ifnet_t *ifp, const short flags)
   3346 {
   3347 	int rc;
   3348 
   3349 	if (ifp->if_setflags != NULL)
   3350 		rc = (*ifp->if_setflags)(ifp, flags);
   3351 	else {
   3352 		short cantflags, chgdflags;
   3353 		struct ifreq ifr;
   3354 
   3355 		chgdflags = ifp->if_flags ^ flags;
   3356 		cantflags = chgdflags & IFF_CANTCHANGE;
   3357 
   3358 		if (cantflags != 0)
   3359 			ifp->if_flags ^= cantflags;
   3360 
   3361                 /* Traditionally, we do not call if_ioctl after
   3362                  * setting/clearing only IFF_PROMISC if the interface
   3363                  * isn't IFF_UP.  Uphold that tradition.
   3364 		 */
   3365 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3366 			return 0;
   3367 
   3368 		memset(&ifr, 0, sizeof(ifr));
   3369 
   3370 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3371 		/* FIXME: may not hold if_ioctl_lock */
   3372 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3373 
   3374 		if (rc != 0 && cantflags != 0)
   3375 			ifp->if_flags ^= cantflags;
   3376 	}
   3377 
   3378 	return rc;
   3379 }
   3380 
   3381 int
   3382 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3383 {
   3384 	int rc;
   3385 	struct ifreq ifr;
   3386 
   3387 	if (ifp->if_mcastop != NULL)
   3388 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3389 	else {
   3390 		ifreq_setaddr(cmd, &ifr, sa);
   3391 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3392 	}
   3393 
   3394 	return rc;
   3395 }
   3396 
   3397 static void
   3398 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3399     struct ifaltq *ifq)
   3400 {
   3401 	const struct sysctlnode *cnode, *rnode;
   3402 
   3403 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3404 		       CTLFLAG_PERMANENT,
   3405 		       CTLTYPE_NODE, "interfaces",
   3406 		       SYSCTL_DESCR("Per-interface controls"),
   3407 		       NULL, 0, NULL, 0,
   3408 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3409 		goto bad;
   3410 
   3411 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3412 		       CTLFLAG_PERMANENT,
   3413 		       CTLTYPE_NODE, ifname,
   3414 		       SYSCTL_DESCR("Interface controls"),
   3415 		       NULL, 0, NULL, 0,
   3416 		       CTL_CREATE, CTL_EOL) != 0)
   3417 		goto bad;
   3418 
   3419 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3420 		       CTLFLAG_PERMANENT,
   3421 		       CTLTYPE_NODE, "sndq",
   3422 		       SYSCTL_DESCR("Interface output queue controls"),
   3423 		       NULL, 0, NULL, 0,
   3424 		       CTL_CREATE, CTL_EOL) != 0)
   3425 		goto bad;
   3426 
   3427 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3428 		       CTLFLAG_PERMANENT,
   3429 		       CTLTYPE_INT, "len",
   3430 		       SYSCTL_DESCR("Current output queue length"),
   3431 		       NULL, 0, &ifq->ifq_len, 0,
   3432 		       CTL_CREATE, CTL_EOL) != 0)
   3433 		goto bad;
   3434 
   3435 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3436 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3437 		       CTLTYPE_INT, "maxlen",
   3438 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3439 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3440 		       CTL_CREATE, CTL_EOL) != 0)
   3441 		goto bad;
   3442 
   3443 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3444 		       CTLFLAG_PERMANENT,
   3445 		       CTLTYPE_INT, "drops",
   3446 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3447 		       NULL, 0, &ifq->ifq_drops, 0,
   3448 		       CTL_CREATE, CTL_EOL) != 0)
   3449 		goto bad;
   3450 
   3451 	return;
   3452 bad:
   3453 	printf("%s: could not attach sysctl nodes\n", ifname);
   3454 	return;
   3455 }
   3456 
   3457 #if defined(INET) || defined(INET6)
   3458 
   3459 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3460 	static int							\
   3461 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3462 	{								\
   3463 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3464 	}
   3465 
   3466 #if defined(INET)
   3467 static int
   3468 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3469 {
   3470 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3471 }
   3472 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3473 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3474 #endif
   3475 
   3476 #if defined(INET6)
   3477 static int
   3478 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3479 {
   3480 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3481 }
   3482 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3483 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3484 #endif
   3485 
   3486 static void
   3487 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3488 {
   3489 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3490 	const char *pfname = NULL, *ipname = NULL;
   3491 	int ipn = 0, qid = 0;
   3492 
   3493 	switch (pf) {
   3494 #if defined(INET)
   3495 	case PF_INET:
   3496 		len_func = sysctl_net_ip_pktq_items;
   3497 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3498 		drops_func = sysctl_net_ip_pktq_drops;
   3499 		pfname = "inet", ipn = IPPROTO_IP;
   3500 		ipname = "ip", qid = IPCTL_IFQ;
   3501 		break;
   3502 #endif
   3503 #if defined(INET6)
   3504 	case PF_INET6:
   3505 		len_func = sysctl_net_ip6_pktq_items;
   3506 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3507 		drops_func = sysctl_net_ip6_pktq_drops;
   3508 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3509 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3510 		break;
   3511 #endif
   3512 	default:
   3513 		KASSERT(false);
   3514 	}
   3515 
   3516 	sysctl_createv(clog, 0, NULL, NULL,
   3517 		       CTLFLAG_PERMANENT,
   3518 		       CTLTYPE_NODE, pfname, NULL,
   3519 		       NULL, 0, NULL, 0,
   3520 		       CTL_NET, pf, CTL_EOL);
   3521 	sysctl_createv(clog, 0, NULL, NULL,
   3522 		       CTLFLAG_PERMANENT,
   3523 		       CTLTYPE_NODE, ipname, NULL,
   3524 		       NULL, 0, NULL, 0,
   3525 		       CTL_NET, pf, ipn, CTL_EOL);
   3526 	sysctl_createv(clog, 0, NULL, NULL,
   3527 		       CTLFLAG_PERMANENT,
   3528 		       CTLTYPE_NODE, "ifq",
   3529 		       SYSCTL_DESCR("Protocol input queue controls"),
   3530 		       NULL, 0, NULL, 0,
   3531 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3532 
   3533 	sysctl_createv(clog, 0, NULL, NULL,
   3534 		       CTLFLAG_PERMANENT,
   3535 		       CTLTYPE_INT, "len",
   3536 		       SYSCTL_DESCR("Current input queue length"),
   3537 		       len_func, 0, NULL, 0,
   3538 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3539 	sysctl_createv(clog, 0, NULL, NULL,
   3540 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3541 		       CTLTYPE_INT, "maxlen",
   3542 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3543 		       maxlen_func, 0, NULL, 0,
   3544 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3545 	sysctl_createv(clog, 0, NULL, NULL,
   3546 		       CTLFLAG_PERMANENT,
   3547 		       CTLTYPE_INT, "drops",
   3548 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3549 		       drops_func, 0, NULL, 0,
   3550 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3551 }
   3552 #endif /* INET || INET6 */
   3553 
   3554 static int
   3555 if_sdl_sysctl(SYSCTLFN_ARGS)
   3556 {
   3557 	struct ifnet *ifp;
   3558 	const struct sockaddr_dl *sdl;
   3559 	struct psref psref;
   3560 	int error = 0;
   3561 	int bound;
   3562 
   3563 	if (namelen != 1)
   3564 		return EINVAL;
   3565 
   3566 	bound = curlwp_bind();
   3567 	ifp = if_get_byindex(name[0], &psref);
   3568 	if (ifp == NULL) {
   3569 		error = ENODEV;
   3570 		goto out0;
   3571 	}
   3572 
   3573 	sdl = ifp->if_sadl;
   3574 	if (sdl == NULL) {
   3575 		*oldlenp = 0;
   3576 		goto out1;
   3577 	}
   3578 
   3579 	if (oldp == NULL) {
   3580 		*oldlenp = sdl->sdl_alen;
   3581 		goto out1;
   3582 	}
   3583 
   3584 	if (*oldlenp >= sdl->sdl_alen)
   3585 		*oldlenp = sdl->sdl_alen;
   3586 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3587 out1:
   3588 	if_put(ifp, &psref);
   3589 out0:
   3590 	curlwp_bindx(bound);
   3591 	return error;
   3592 }
   3593 
   3594 static void
   3595 if_sysctl_setup(struct sysctllog **clog)
   3596 {
   3597 	const struct sysctlnode *rnode = NULL;
   3598 
   3599 	sysctl_createv(clog, 0, NULL, &rnode,
   3600 		       CTLFLAG_PERMANENT,
   3601 		       CTLTYPE_NODE, "sdl",
   3602 		       SYSCTL_DESCR("Get active link-layer address"),
   3603 		       if_sdl_sysctl, 0, NULL, 0,
   3604 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3605 
   3606 #if defined(INET)
   3607 	sysctl_net_pktq_setup(NULL, PF_INET);
   3608 #endif
   3609 #ifdef INET6
   3610 	if (in6_present)
   3611 		sysctl_net_pktq_setup(NULL, PF_INET6);
   3612 #endif
   3613 }
   3614