if.c revision 1.398 1 /* $NetBSD: if.c,v 1.398 2017/11/19 16:59:25 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.398 2017/11/19 16:59:25 christos Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152
153 #include "carp.h"
154 #if NCARP > 0
155 #include <netinet/ip_carp.h>
156 #endif
157
158 #include <compat/sys/sockio.h>
159 #include <compat/sys/socket.h>
160
161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
163
164 /*
165 * Global list of interfaces.
166 */
167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
168 struct ifnet_head ifnet_list;
169
170 struct pslist_head ifnet_pslist;
171 static ifnet_t ** ifindex2ifnet = NULL;
172 static u_int if_index = 1;
173 static size_t if_indexlim = 0;
174 static uint64_t index_gen;
175 /* Mutex to protect the above objects. */
176 kmutex_t ifnet_mtx __cacheline_aligned;
177 static struct psref_class *ifnet_psref_class __read_mostly;
178 static pserialize_t ifnet_psz;
179
180 static kmutex_t if_clone_mtx;
181
182 struct ifnet *lo0ifp;
183 int ifqmaxlen = IFQ_MAXLEN;
184
185 struct psref_class *ifa_psref_class __read_mostly;
186
187 static int if_delroute_matcher(struct rtentry *, void *);
188
189 static bool if_is_unit(const char *);
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil __read_mostly;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212
213 struct if_percpuq {
214 struct ifnet *ipq_ifp;
215 void *ipq_si;
216 struct percpu *ipq_ifqs; /* struct ifqueue */
217 };
218
219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
220
221 static void if_percpuq_drops(void *, void *, struct cpu_info *);
222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
223 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
224 struct if_percpuq *);
225
226 struct if_deferred_start {
227 struct ifnet *ids_ifp;
228 void (*ids_if_start)(struct ifnet *);
229 void *ids_si;
230 };
231
232 static void if_deferred_start_softint(void *);
233 static void if_deferred_start_common(struct ifnet *);
234 static void if_deferred_start_destroy(struct ifnet *);
235
236 #if defined(INET) || defined(INET6)
237 static void sysctl_net_pktq_setup(struct sysctllog **, int);
238 #endif
239
240 static void if_sysctl_setup(struct sysctllog **);
241
242 /*
243 * Pointer to stub or real compat_cvtcmd() depending on presence of
244 * the compat module
245 */
246 u_long stub_compat_cvtcmd(u_long);
247 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
248
249 /* Similarly, pointer to compat_ifioctl() if it is present */
250
251 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
252 struct lwp *) = NULL;
253
254 /* The stub version of compat_cvtcmd() */
255 u_long stub_compat_cvtcmd(u_long cmd)
256 {
257
258 return cmd;
259 }
260
261 static int
262 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
263 void *arg0, void *arg1, void *arg2, void *arg3)
264 {
265 int result;
266 enum kauth_network_req req;
267
268 result = KAUTH_RESULT_DEFER;
269 req = (enum kauth_network_req)arg1;
270
271 if (action != KAUTH_NETWORK_INTERFACE)
272 return result;
273
274 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
275 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
276 result = KAUTH_RESULT_ALLOW;
277
278 return result;
279 }
280
281 /*
282 * Network interface utility routines.
283 *
284 * Routines with ifa_ifwith* names take sockaddr *'s as
285 * parameters.
286 */
287 void
288 ifinit(void)
289 {
290
291 if_sysctl_setup(NULL);
292
293 #if (defined(INET) || defined(INET6))
294 encapinit();
295 #endif
296
297 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
298 if_listener_cb, NULL);
299
300 /* interfaces are available, inform socket code */
301 ifioctl = doifioctl;
302 }
303
304 /*
305 * XXX Initialization before configure().
306 * XXX hack to get pfil_add_hook working in autoconf.
307 */
308 void
309 ifinit1(void)
310 {
311 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
312
313 TAILQ_INIT(&ifnet_list);
314 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
315 ifnet_psz = pserialize_create();
316 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
317 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
318 PSLIST_INIT(&ifnet_pslist);
319
320 if_indexlim = 8;
321
322 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
323 KASSERT(if_pfil != NULL);
324
325 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
326 etherinit();
327 #endif
328 }
329
330 ifnet_t *
331 if_alloc(u_char type)
332 {
333 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
334 }
335
336 void
337 if_free(ifnet_t *ifp)
338 {
339 kmem_free(ifp, sizeof(ifnet_t));
340 }
341
342 void
343 if_initname(struct ifnet *ifp, const char *name, int unit)
344 {
345 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
346 "%s%d", name, unit);
347 }
348
349 /*
350 * Null routines used while an interface is going away. These routines
351 * just return an error.
352 */
353
354 int
355 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
356 const struct sockaddr *so, const struct rtentry *rt)
357 {
358
359 return ENXIO;
360 }
361
362 void
363 if_nullinput(struct ifnet *ifp, struct mbuf *m)
364 {
365
366 /* Nothing. */
367 }
368
369 void
370 if_nullstart(struct ifnet *ifp)
371 {
372
373 /* Nothing. */
374 }
375
376 int
377 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
378 {
379
380 m_freem(m);
381 return ENXIO;
382 }
383
384 int
385 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
386 {
387
388 return ENXIO;
389 }
390
391 int
392 if_nullinit(struct ifnet *ifp)
393 {
394
395 return ENXIO;
396 }
397
398 void
399 if_nullstop(struct ifnet *ifp, int disable)
400 {
401
402 /* Nothing. */
403 }
404
405 void
406 if_nullslowtimo(struct ifnet *ifp)
407 {
408
409 /* Nothing. */
410 }
411
412 void
413 if_nulldrain(struct ifnet *ifp)
414 {
415
416 /* Nothing. */
417 }
418
419 void
420 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
421 {
422 struct ifaddr *ifa;
423 struct sockaddr_dl *sdl;
424
425 ifp->if_addrlen = addrlen;
426 if_alloc_sadl(ifp);
427 ifa = ifp->if_dl;
428 sdl = satosdl(ifa->ifa_addr);
429
430 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
431 if (factory) {
432 ifp->if_hwdl = ifp->if_dl;
433 ifaref(ifp->if_hwdl);
434 }
435 /* TBD routing socket */
436 }
437
438 struct ifaddr *
439 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
440 {
441 unsigned socksize, ifasize;
442 int addrlen, namelen;
443 struct sockaddr_dl *mask, *sdl;
444 struct ifaddr *ifa;
445
446 namelen = strlen(ifp->if_xname);
447 addrlen = ifp->if_addrlen;
448 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
449 ifasize = sizeof(*ifa) + 2 * socksize;
450 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
451
452 sdl = (struct sockaddr_dl *)(ifa + 1);
453 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
454
455 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
456 ifp->if_xname, namelen, NULL, addrlen);
457 mask->sdl_family = AF_LINK;
458 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
459 memset(&mask->sdl_data[0], 0xff, namelen);
460 ifa->ifa_rtrequest = link_rtrequest;
461 ifa->ifa_addr = (struct sockaddr *)sdl;
462 ifa->ifa_netmask = (struct sockaddr *)mask;
463 ifa_psref_init(ifa);
464
465 *sdlp = sdl;
466
467 return ifa;
468 }
469
470 static void
471 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
472 {
473 const struct sockaddr_dl *sdl;
474
475 ifp->if_dl = ifa;
476 ifaref(ifa);
477 sdl = satosdl(ifa->ifa_addr);
478 ifp->if_sadl = sdl;
479 }
480
481 /*
482 * Allocate the link level name for the specified interface. This
483 * is an attachment helper. It must be called after ifp->if_addrlen
484 * is initialized, which may not be the case when if_attach() is
485 * called.
486 */
487 void
488 if_alloc_sadl(struct ifnet *ifp)
489 {
490 struct ifaddr *ifa;
491 const struct sockaddr_dl *sdl;
492
493 /*
494 * If the interface already has a link name, release it
495 * now. This is useful for interfaces that can change
496 * link types, and thus switch link names often.
497 */
498 if (ifp->if_sadl != NULL)
499 if_free_sadl(ifp);
500
501 ifa = if_dl_create(ifp, &sdl);
502
503 ifa_insert(ifp, ifa);
504 if_sadl_setrefs(ifp, ifa);
505 }
506
507 static void
508 if_deactivate_sadl(struct ifnet *ifp)
509 {
510 struct ifaddr *ifa;
511
512 KASSERT(ifp->if_dl != NULL);
513
514 ifa = ifp->if_dl;
515
516 ifp->if_sadl = NULL;
517
518 ifp->if_dl = NULL;
519 ifafree(ifa);
520 }
521
522 static void
523 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
524 {
525 struct ifaddr *old;
526
527 KASSERT(ifp->if_dl != NULL);
528
529 old = ifp->if_dl;
530
531 ifaref(ifa);
532 /* XXX Update if_dl and if_sadl atomically */
533 ifp->if_dl = ifa;
534 ifp->if_sadl = satosdl(ifa->ifa_addr);
535
536 ifafree(old);
537 }
538
539 void
540 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
541 const struct sockaddr_dl *sdl)
542 {
543 int s, ss;
544 struct ifaddr *ifa;
545 int bound = curlwp_bind();
546
547 KASSERT(ifa_held(ifa0));
548
549 s = splsoftnet();
550
551 if_replace_sadl(ifp, ifa0);
552
553 ss = pserialize_read_enter();
554 IFADDR_READER_FOREACH(ifa, ifp) {
555 struct psref psref;
556 ifa_acquire(ifa, &psref);
557 pserialize_read_exit(ss);
558
559 rtinit(ifa, RTM_LLINFO_UPD, 0);
560
561 ss = pserialize_read_enter();
562 ifa_release(ifa, &psref);
563 }
564 pserialize_read_exit(ss);
565
566 splx(s);
567 curlwp_bindx(bound);
568 }
569
570 /*
571 * Free the link level name for the specified interface. This is
572 * a detach helper. This is called from if_detach().
573 */
574 static void
575 if_free_sadl(struct ifnet *ifp)
576 {
577 struct ifaddr *ifa;
578 int s;
579
580 ifa = ifp->if_dl;
581 if (ifa == NULL) {
582 KASSERT(ifp->if_sadl == NULL);
583 return;
584 }
585
586 KASSERT(ifp->if_sadl != NULL);
587
588 s = splsoftnet();
589 rtinit(ifa, RTM_DELETE, 0);
590 ifa_remove(ifp, ifa);
591 if_deactivate_sadl(ifp);
592 if (ifp->if_hwdl == ifa) {
593 ifafree(ifa);
594 ifp->if_hwdl = NULL;
595 }
596 splx(s);
597 }
598
599 static void
600 if_getindex(ifnet_t *ifp)
601 {
602 bool hitlimit = false;
603
604 ifp->if_index_gen = index_gen++;
605
606 ifp->if_index = if_index;
607 if (ifindex2ifnet == NULL) {
608 if_index++;
609 goto skip;
610 }
611 while (if_byindex(ifp->if_index)) {
612 /*
613 * If we hit USHRT_MAX, we skip back to 0 since
614 * there are a number of places where the value
615 * of if_index or if_index itself is compared
616 * to or stored in an unsigned short. By
617 * jumping back, we won't botch those assignments
618 * or comparisons.
619 */
620 if (++if_index == 0) {
621 if_index = 1;
622 } else if (if_index == USHRT_MAX) {
623 /*
624 * However, if we have to jump back to
625 * zero *twice* without finding an empty
626 * slot in ifindex2ifnet[], then there
627 * there are too many (>65535) interfaces.
628 */
629 if (hitlimit) {
630 panic("too many interfaces");
631 }
632 hitlimit = true;
633 if_index = 1;
634 }
635 ifp->if_index = if_index;
636 }
637 skip:
638 /*
639 * ifindex2ifnet is indexed by if_index. Since if_index will
640 * grow dynamically, it should grow too.
641 */
642 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
643 size_t m, n, oldlim;
644 void *q;
645
646 oldlim = if_indexlim;
647 while (ifp->if_index >= if_indexlim)
648 if_indexlim <<= 1;
649
650 /* grow ifindex2ifnet */
651 m = oldlim * sizeof(struct ifnet *);
652 n = if_indexlim * sizeof(struct ifnet *);
653 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
654 if (ifindex2ifnet != NULL) {
655 memcpy(q, ifindex2ifnet, m);
656 free(ifindex2ifnet, M_IFADDR);
657 }
658 ifindex2ifnet = (struct ifnet **)q;
659 }
660 ifindex2ifnet[ifp->if_index] = ifp;
661 }
662
663 /*
664 * Initialize an interface and assign an index for it.
665 *
666 * It must be called prior to a device specific attach routine
667 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
668 * and be followed by if_register:
669 *
670 * if_initialize(ifp);
671 * ether_ifattach(ifp, enaddr);
672 * if_register(ifp);
673 */
674 int
675 if_initialize(ifnet_t *ifp)
676 {
677 int rv = 0;
678
679 KASSERT(if_indexlim > 0);
680 TAILQ_INIT(&ifp->if_addrlist);
681
682 /*
683 * Link level name is allocated later by a separate call to
684 * if_alloc_sadl().
685 */
686
687 if (ifp->if_snd.ifq_maxlen == 0)
688 ifp->if_snd.ifq_maxlen = ifqmaxlen;
689
690 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
691
692 ifp->if_link_state = LINK_STATE_UNKNOWN;
693 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
694
695 ifp->if_capenable = 0;
696 ifp->if_csum_flags_tx = 0;
697 ifp->if_csum_flags_rx = 0;
698
699 #ifdef ALTQ
700 ifp->if_snd.altq_type = 0;
701 ifp->if_snd.altq_disc = NULL;
702 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
703 ifp->if_snd.altq_tbr = NULL;
704 ifp->if_snd.altq_ifp = ifp;
705 #endif
706
707 IFQ_LOCK_INIT(&ifp->if_snd);
708
709 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
710 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
711
712 IF_AFDATA_LOCK_INIT(ifp);
713
714 if (if_is_link_state_changeable(ifp)) {
715 ifp->if_link_si = softint_establish(SOFTINT_NET,
716 if_link_state_change_si, ifp);
717 if (ifp->if_link_si == NULL) {
718 rv = ENOMEM;
719 goto fail;
720 }
721 }
722
723 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
724 PSLIST_INIT(&ifp->if_addr_pslist);
725 psref_target_init(&ifp->if_psref, ifnet_psref_class);
726 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
727 LIST_INIT(&ifp->if_multiaddrs);
728
729 IFNET_LOCK();
730 if_getindex(ifp);
731 IFNET_UNLOCK();
732
733 return 0;
734
735 fail:
736 IF_AFDATA_LOCK_DESTROY(ifp);
737
738 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
739 (void)pfil_head_destroy(ifp->if_pfil);
740
741 IFQ_LOCK_DESTROY(&ifp->if_snd);
742
743 return rv;
744 }
745
746 /*
747 * Register an interface to the list of "active" interfaces.
748 */
749 void
750 if_register(ifnet_t *ifp)
751 {
752 /*
753 * If the driver has not supplied its own if_ioctl, then
754 * supply the default.
755 */
756 if (ifp->if_ioctl == NULL)
757 ifp->if_ioctl = ifioctl_common;
758
759 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
760
761 if (!STAILQ_EMPTY(&domains))
762 if_attachdomain1(ifp);
763
764 /* Announce the interface. */
765 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
766
767 if (ifp->if_slowtimo != NULL) {
768 ifp->if_slowtimo_ch =
769 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
770 callout_init(ifp->if_slowtimo_ch, 0);
771 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
772 if_slowtimo(ifp);
773 }
774
775 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
776 ifp->if_transmit = if_transmit;
777
778 IFNET_LOCK();
779 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
780 IFNET_WRITER_INSERT_TAIL(ifp);
781 IFNET_UNLOCK();
782 }
783
784 /*
785 * The if_percpuq framework
786 *
787 * It allows network device drivers to execute the network stack
788 * in softint (so called softint-based if_input). It utilizes
789 * softint and percpu ifqueue. It doesn't distribute any packets
790 * between CPUs, unlike pktqueue(9).
791 *
792 * Currently we support two options for device drivers to apply the framework:
793 * - Use it implicitly with less changes
794 * - If you use if_attach in driver's _attach function and if_input in
795 * driver's Rx interrupt handler, a packet is queued and a softint handles
796 * the packet implicitly
797 * - Use it explicitly in each driver (recommended)
798 * - You can use if_percpuq_* directly in your driver
799 * - In this case, you need to allocate struct if_percpuq in driver's softc
800 * - See wm(4) as a reference implementation
801 */
802
803 static void
804 if_percpuq_softint(void *arg)
805 {
806 struct if_percpuq *ipq = arg;
807 struct ifnet *ifp = ipq->ipq_ifp;
808 struct mbuf *m;
809
810 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
811 ifp->if_ipackets++;
812 bpf_mtap(ifp, m);
813
814 ifp->_if_input(ifp, m);
815 }
816 }
817
818 static void
819 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
820 {
821 struct ifqueue *const ifq = p;
822
823 memset(ifq, 0, sizeof(*ifq));
824 ifq->ifq_maxlen = IFQ_MAXLEN;
825 }
826
827 struct if_percpuq *
828 if_percpuq_create(struct ifnet *ifp)
829 {
830 struct if_percpuq *ipq;
831
832 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
833 ipq->ipq_ifp = ifp;
834 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
835 if_percpuq_softint, ipq);
836 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
837 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
838
839 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
840
841 return ipq;
842 }
843
844 static struct mbuf *
845 if_percpuq_dequeue(struct if_percpuq *ipq)
846 {
847 struct mbuf *m;
848 struct ifqueue *ifq;
849 int s;
850
851 s = splnet();
852 ifq = percpu_getref(ipq->ipq_ifqs);
853 IF_DEQUEUE(ifq, m);
854 percpu_putref(ipq->ipq_ifqs);
855 splx(s);
856
857 return m;
858 }
859
860 static void
861 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
862 {
863 struct ifqueue *const ifq = p;
864
865 IF_PURGE(ifq);
866 }
867
868 void
869 if_percpuq_destroy(struct if_percpuq *ipq)
870 {
871
872 /* if_detach may already destroy it */
873 if (ipq == NULL)
874 return;
875
876 softint_disestablish(ipq->ipq_si);
877 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
878 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
879 kmem_free(ipq, sizeof(*ipq));
880 }
881
882 void
883 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
884 {
885 struct ifqueue *ifq;
886 int s;
887
888 KASSERT(ipq != NULL);
889
890 s = splnet();
891 ifq = percpu_getref(ipq->ipq_ifqs);
892 if (IF_QFULL(ifq)) {
893 IF_DROP(ifq);
894 percpu_putref(ipq->ipq_ifqs);
895 m_freem(m);
896 goto out;
897 }
898 IF_ENQUEUE(ifq, m);
899 percpu_putref(ipq->ipq_ifqs);
900
901 softint_schedule(ipq->ipq_si);
902 out:
903 splx(s);
904 }
905
906 static void
907 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
908 {
909 struct ifqueue *const ifq = p;
910 int *sum = arg;
911
912 *sum += ifq->ifq_drops;
913 }
914
915 static int
916 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
917 {
918 struct sysctlnode node;
919 struct if_percpuq *ipq;
920 int sum = 0;
921 int error;
922
923 node = *rnode;
924 ipq = node.sysctl_data;
925
926 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
927
928 node.sysctl_data = ∑
929 error = sysctl_lookup(SYSCTLFN_CALL(&node));
930 if (error != 0 || newp == NULL)
931 return error;
932
933 return 0;
934 }
935
936 static void
937 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
938 struct if_percpuq *ipq)
939 {
940 const struct sysctlnode *cnode, *rnode;
941
942 if (sysctl_createv(clog, 0, NULL, &rnode,
943 CTLFLAG_PERMANENT,
944 CTLTYPE_NODE, "interfaces",
945 SYSCTL_DESCR("Per-interface controls"),
946 NULL, 0, NULL, 0,
947 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
948 goto bad;
949
950 if (sysctl_createv(clog, 0, &rnode, &rnode,
951 CTLFLAG_PERMANENT,
952 CTLTYPE_NODE, ifname,
953 SYSCTL_DESCR("Interface controls"),
954 NULL, 0, NULL, 0,
955 CTL_CREATE, CTL_EOL) != 0)
956 goto bad;
957
958 if (sysctl_createv(clog, 0, &rnode, &rnode,
959 CTLFLAG_PERMANENT,
960 CTLTYPE_NODE, "rcvq",
961 SYSCTL_DESCR("Interface input queue controls"),
962 NULL, 0, NULL, 0,
963 CTL_CREATE, CTL_EOL) != 0)
964 goto bad;
965
966 #ifdef NOTYET
967 /* XXX Should show each per-CPU queue length? */
968 if (sysctl_createv(clog, 0, &rnode, &rnode,
969 CTLFLAG_PERMANENT,
970 CTLTYPE_INT, "len",
971 SYSCTL_DESCR("Current input queue length"),
972 sysctl_percpuq_len, 0, NULL, 0,
973 CTL_CREATE, CTL_EOL) != 0)
974 goto bad;
975
976 if (sysctl_createv(clog, 0, &rnode, &cnode,
977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
978 CTLTYPE_INT, "maxlen",
979 SYSCTL_DESCR("Maximum allowed input queue length"),
980 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
981 CTL_CREATE, CTL_EOL) != 0)
982 goto bad;
983 #endif
984
985 if (sysctl_createv(clog, 0, &rnode, &cnode,
986 CTLFLAG_PERMANENT,
987 CTLTYPE_INT, "drops",
988 SYSCTL_DESCR("Total packets dropped due to full input queue"),
989 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
990 CTL_CREATE, CTL_EOL) != 0)
991 goto bad;
992
993 return;
994 bad:
995 printf("%s: could not attach sysctl nodes\n", ifname);
996 return;
997 }
998
999 /*
1000 * The deferred if_start framework
1001 *
1002 * The common APIs to defer if_start to softint when if_start is requested
1003 * from a device driver running in hardware interrupt context.
1004 */
1005 /*
1006 * Call ifp->if_start (or equivalent) in a dedicated softint for
1007 * deferred if_start.
1008 */
1009 static void
1010 if_deferred_start_softint(void *arg)
1011 {
1012 struct if_deferred_start *ids = arg;
1013 struct ifnet *ifp = ids->ids_ifp;
1014
1015 ids->ids_if_start(ifp);
1016 }
1017
1018 /*
1019 * The default callback function for deferred if_start.
1020 */
1021 static void
1022 if_deferred_start_common(struct ifnet *ifp)
1023 {
1024 int s;
1025
1026 s = splnet();
1027 if_start_lock(ifp);
1028 splx(s);
1029 }
1030
1031 static inline bool
1032 if_snd_is_used(struct ifnet *ifp)
1033 {
1034
1035 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1036 ALTQ_IS_ENABLED(&ifp->if_snd);
1037 }
1038
1039 /*
1040 * Schedule deferred if_start.
1041 */
1042 void
1043 if_schedule_deferred_start(struct ifnet *ifp)
1044 {
1045
1046 KASSERT(ifp->if_deferred_start != NULL);
1047
1048 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1049 return;
1050
1051 softint_schedule(ifp->if_deferred_start->ids_si);
1052 }
1053
1054 /*
1055 * Create an instance of deferred if_start. A driver should call the function
1056 * only if the driver needs deferred if_start. Drivers can setup their own
1057 * deferred if_start function via 2nd argument.
1058 */
1059 void
1060 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1061 {
1062 struct if_deferred_start *ids;
1063
1064 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1065 ids->ids_ifp = ifp;
1066 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
1067 if_deferred_start_softint, ids);
1068 if (func != NULL)
1069 ids->ids_if_start = func;
1070 else
1071 ids->ids_if_start = if_deferred_start_common;
1072
1073 ifp->if_deferred_start = ids;
1074 }
1075
1076 static void
1077 if_deferred_start_destroy(struct ifnet *ifp)
1078 {
1079
1080 if (ifp->if_deferred_start == NULL)
1081 return;
1082
1083 softint_disestablish(ifp->if_deferred_start->ids_si);
1084 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1085 ifp->if_deferred_start = NULL;
1086 }
1087
1088 /*
1089 * The common interface input routine that is called by device drivers,
1090 * which should be used only when the driver's rx handler already runs
1091 * in softint.
1092 */
1093 void
1094 if_input(struct ifnet *ifp, struct mbuf *m)
1095 {
1096
1097 KASSERT(ifp->if_percpuq == NULL);
1098 KASSERT(!cpu_intr_p());
1099
1100 ifp->if_ipackets++;
1101 bpf_mtap(ifp, m);
1102
1103 ifp->_if_input(ifp, m);
1104 }
1105
1106 /*
1107 * DEPRECATED. Use if_initialize and if_register instead.
1108 * See the above comment of if_initialize.
1109 *
1110 * Note that it implicitly enables if_percpuq to make drivers easy to
1111 * migrate softint-based if_input without much changes. If you don't
1112 * want to enable it, use if_initialize instead.
1113 */
1114 int
1115 if_attach(ifnet_t *ifp)
1116 {
1117 int rv;
1118
1119 rv = if_initialize(ifp);
1120 if (rv != 0)
1121 return rv;
1122
1123 ifp->if_percpuq = if_percpuq_create(ifp);
1124 if_register(ifp);
1125
1126 return 0;
1127 }
1128
1129 void
1130 if_attachdomain(void)
1131 {
1132 struct ifnet *ifp;
1133 int s;
1134 int bound = curlwp_bind();
1135
1136 s = pserialize_read_enter();
1137 IFNET_READER_FOREACH(ifp) {
1138 struct psref psref;
1139 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1140 pserialize_read_exit(s);
1141 if_attachdomain1(ifp);
1142 s = pserialize_read_enter();
1143 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1144 }
1145 pserialize_read_exit(s);
1146 curlwp_bindx(bound);
1147 }
1148
1149 static void
1150 if_attachdomain1(struct ifnet *ifp)
1151 {
1152 struct domain *dp;
1153 int s;
1154
1155 s = splsoftnet();
1156
1157 /* address family dependent data region */
1158 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1159 DOMAIN_FOREACH(dp) {
1160 if (dp->dom_ifattach != NULL)
1161 ifp->if_afdata[dp->dom_family] =
1162 (*dp->dom_ifattach)(ifp);
1163 }
1164
1165 splx(s);
1166 }
1167
1168 /*
1169 * Deactivate an interface. This points all of the procedure
1170 * handles at error stubs. May be called from interrupt context.
1171 */
1172 void
1173 if_deactivate(struct ifnet *ifp)
1174 {
1175 int s;
1176
1177 s = splsoftnet();
1178
1179 ifp->if_output = if_nulloutput;
1180 ifp->_if_input = if_nullinput;
1181 ifp->if_start = if_nullstart;
1182 ifp->if_transmit = if_nulltransmit;
1183 ifp->if_ioctl = if_nullioctl;
1184 ifp->if_init = if_nullinit;
1185 ifp->if_stop = if_nullstop;
1186 ifp->if_slowtimo = if_nullslowtimo;
1187 ifp->if_drain = if_nulldrain;
1188
1189 /* No more packets may be enqueued. */
1190 ifp->if_snd.ifq_maxlen = 0;
1191
1192 splx(s);
1193 }
1194
1195 bool
1196 if_is_deactivated(const struct ifnet *ifp)
1197 {
1198
1199 return ifp->if_output == if_nulloutput;
1200 }
1201
1202 void
1203 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1204 {
1205 struct ifaddr *ifa, *nifa;
1206 int s;
1207
1208 s = pserialize_read_enter();
1209 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1210 nifa = IFADDR_READER_NEXT(ifa);
1211 if (ifa->ifa_addr->sa_family != family)
1212 continue;
1213 pserialize_read_exit(s);
1214
1215 (*purgeaddr)(ifa);
1216
1217 s = pserialize_read_enter();
1218 }
1219 pserialize_read_exit(s);
1220 }
1221
1222 #ifdef IFAREF_DEBUG
1223 static struct ifaddr **ifa_list;
1224 static int ifa_list_size;
1225
1226 /* Depends on only one if_attach runs at once */
1227 static void
1228 if_build_ifa_list(struct ifnet *ifp)
1229 {
1230 struct ifaddr *ifa;
1231 int i;
1232
1233 KASSERT(ifa_list == NULL);
1234 KASSERT(ifa_list_size == 0);
1235
1236 IFADDR_READER_FOREACH(ifa, ifp)
1237 ifa_list_size++;
1238
1239 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1240 i = 0;
1241 IFADDR_READER_FOREACH(ifa, ifp) {
1242 ifa_list[i++] = ifa;
1243 ifaref(ifa);
1244 }
1245 }
1246
1247 static void
1248 if_check_and_free_ifa_list(struct ifnet *ifp)
1249 {
1250 int i;
1251 struct ifaddr *ifa;
1252
1253 if (ifa_list == NULL)
1254 return;
1255
1256 for (i = 0; i < ifa_list_size; i++) {
1257 char buf[64];
1258
1259 ifa = ifa_list[i];
1260 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1261 if (ifa->ifa_refcnt > 1) {
1262 log(LOG_WARNING,
1263 "ifa(%s) still referenced (refcnt=%d)\n",
1264 buf, ifa->ifa_refcnt - 1);
1265 } else
1266 log(LOG_DEBUG,
1267 "ifa(%s) not referenced (refcnt=%d)\n",
1268 buf, ifa->ifa_refcnt - 1);
1269 ifafree(ifa);
1270 }
1271
1272 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1273 ifa_list = NULL;
1274 ifa_list_size = 0;
1275 }
1276 #endif
1277
1278 /*
1279 * Detach an interface from the list of "active" interfaces,
1280 * freeing any resources as we go along.
1281 *
1282 * NOTE: This routine must be called with a valid thread context,
1283 * as it may block.
1284 */
1285 void
1286 if_detach(struct ifnet *ifp)
1287 {
1288 struct socket so;
1289 struct ifaddr *ifa;
1290 #ifdef IFAREF_DEBUG
1291 struct ifaddr *last_ifa = NULL;
1292 #endif
1293 struct domain *dp;
1294 const struct protosw *pr;
1295 int s, i, family, purged;
1296 uint64_t xc;
1297
1298 #ifdef IFAREF_DEBUG
1299 if_build_ifa_list(ifp);
1300 #endif
1301 /*
1302 * XXX It's kind of lame that we have to have the
1303 * XXX socket structure...
1304 */
1305 memset(&so, 0, sizeof(so));
1306
1307 s = splnet();
1308
1309 sysctl_teardown(&ifp->if_sysctl_log);
1310 mutex_enter(ifp->if_ioctl_lock);
1311 if_deactivate(ifp);
1312 mutex_exit(ifp->if_ioctl_lock);
1313
1314 IFNET_LOCK();
1315 ifindex2ifnet[ifp->if_index] = NULL;
1316 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1317 IFNET_WRITER_REMOVE(ifp);
1318 pserialize_perform(ifnet_psz);
1319 IFNET_UNLOCK();
1320
1321 /* Wait for all readers to drain before freeing. */
1322 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1323 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1324
1325 mutex_obj_free(ifp->if_ioctl_lock);
1326 ifp->if_ioctl_lock = NULL;
1327
1328 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1329 ifp->if_slowtimo = NULL;
1330 callout_halt(ifp->if_slowtimo_ch, NULL);
1331 callout_destroy(ifp->if_slowtimo_ch);
1332 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1333 }
1334 if_deferred_start_destroy(ifp);
1335
1336 /*
1337 * Do an if_down() to give protocols a chance to do something.
1338 */
1339 if_down(ifp);
1340
1341 #ifdef ALTQ
1342 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1343 altq_disable(&ifp->if_snd);
1344 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1345 altq_detach(&ifp->if_snd);
1346 #endif
1347
1348 mutex_obj_free(ifp->if_snd.ifq_lock);
1349
1350 #if NCARP > 0
1351 /* Remove the interface from any carp group it is a part of. */
1352 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1353 carp_ifdetach(ifp);
1354 #endif
1355
1356 /*
1357 * Rip all the addresses off the interface. This should make
1358 * all of the routes go away.
1359 *
1360 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1361 * from the list, including our "cursor", ifa. For safety,
1362 * and to honor the TAILQ abstraction, I just restart the
1363 * loop after each removal. Note that the loop will exit
1364 * when all of the remaining ifaddrs belong to the AF_LINK
1365 * family. I am counting on the historical fact that at
1366 * least one pr_usrreq in each address domain removes at
1367 * least one ifaddr.
1368 */
1369 again:
1370 /*
1371 * At this point, no other one tries to remove ifa in the list,
1372 * so we don't need to take a lock or psref.
1373 */
1374 IFADDR_READER_FOREACH(ifa, ifp) {
1375 family = ifa->ifa_addr->sa_family;
1376 #ifdef IFAREF_DEBUG
1377 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1378 ifa, family, ifa->ifa_refcnt);
1379 if (last_ifa != NULL && ifa == last_ifa)
1380 panic("if_detach: loop detected");
1381 last_ifa = ifa;
1382 #endif
1383 if (family == AF_LINK)
1384 continue;
1385 dp = pffinddomain(family);
1386 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1387 /*
1388 * XXX These PURGEIF calls are redundant with the
1389 * purge-all-families calls below, but are left in for
1390 * now both to make a smaller change, and to avoid
1391 * unplanned interactions with clearing of
1392 * ifp->if_addrlist.
1393 */
1394 purged = 0;
1395 for (pr = dp->dom_protosw;
1396 pr < dp->dom_protoswNPROTOSW; pr++) {
1397 so.so_proto = pr;
1398 if (pr->pr_usrreqs) {
1399 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1400 purged = 1;
1401 }
1402 }
1403 if (purged == 0) {
1404 /*
1405 * XXX What's really the best thing to do
1406 * XXX here? --thorpej (at) NetBSD.org
1407 */
1408 printf("if_detach: WARNING: AF %d not purged\n",
1409 family);
1410 ifa_remove(ifp, ifa);
1411 }
1412 goto again;
1413 }
1414
1415 if_free_sadl(ifp);
1416
1417 /* Delete stray routes from the routing table. */
1418 for (i = 0; i <= AF_MAX; i++)
1419 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1420
1421 DOMAIN_FOREACH(dp) {
1422 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1423 {
1424 void *p = ifp->if_afdata[dp->dom_family];
1425 if (p) {
1426 ifp->if_afdata[dp->dom_family] = NULL;
1427 (*dp->dom_ifdetach)(ifp, p);
1428 }
1429 }
1430
1431 /*
1432 * One would expect multicast memberships (INET and
1433 * INET6) on UDP sockets to be purged by the PURGEIF
1434 * calls above, but if all addresses were removed from
1435 * the interface prior to destruction, the calls will
1436 * not be made (e.g. ppp, for which pppd(8) generally
1437 * removes addresses before destroying the interface).
1438 * Because there is no invariant that multicast
1439 * memberships only exist for interfaces with IPv4
1440 * addresses, we must call PURGEIF regardless of
1441 * addresses. (Protocols which might store ifnet
1442 * pointers are marked with PR_PURGEIF.)
1443 */
1444 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1445 so.so_proto = pr;
1446 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1447 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1448 }
1449 }
1450
1451 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1452 (void)pfil_head_destroy(ifp->if_pfil);
1453
1454 /* Announce that the interface is gone. */
1455 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1456
1457 IF_AFDATA_LOCK_DESTROY(ifp);
1458
1459 if (if_is_link_state_changeable(ifp)) {
1460 softint_disestablish(ifp->if_link_si);
1461 ifp->if_link_si = NULL;
1462 }
1463
1464 /*
1465 * remove packets that came from ifp, from software interrupt queues.
1466 */
1467 DOMAIN_FOREACH(dp) {
1468 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1469 struct ifqueue *iq = dp->dom_ifqueues[i];
1470 if (iq == NULL)
1471 break;
1472 dp->dom_ifqueues[i] = NULL;
1473 if_detach_queues(ifp, iq);
1474 }
1475 }
1476
1477 /*
1478 * IP queues have to be processed separately: net-queue barrier
1479 * ensures that the packets are dequeued while a cross-call will
1480 * ensure that the interrupts have completed. FIXME: not quite..
1481 */
1482 #ifdef INET
1483 pktq_barrier(ip_pktq);
1484 #endif
1485 #ifdef INET6
1486 if (in6_present)
1487 pktq_barrier(ip6_pktq);
1488 #endif
1489 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1490 xc_wait(xc);
1491
1492 if (ifp->if_percpuq != NULL) {
1493 if_percpuq_destroy(ifp->if_percpuq);
1494 ifp->if_percpuq = NULL;
1495 }
1496
1497 splx(s);
1498
1499 #ifdef IFAREF_DEBUG
1500 if_check_and_free_ifa_list(ifp);
1501 #endif
1502 }
1503
1504 static void
1505 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1506 {
1507 struct mbuf *m, *prev, *next;
1508
1509 prev = NULL;
1510 for (m = q->ifq_head; m != NULL; m = next) {
1511 KASSERT((m->m_flags & M_PKTHDR) != 0);
1512
1513 next = m->m_nextpkt;
1514 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1515 prev = m;
1516 continue;
1517 }
1518
1519 if (prev != NULL)
1520 prev->m_nextpkt = m->m_nextpkt;
1521 else
1522 q->ifq_head = m->m_nextpkt;
1523 if (q->ifq_tail == m)
1524 q->ifq_tail = prev;
1525 q->ifq_len--;
1526
1527 m->m_nextpkt = NULL;
1528 m_freem(m);
1529 IF_DROP(q);
1530 }
1531 }
1532
1533 /*
1534 * Callback for a radix tree walk to delete all references to an
1535 * ifnet.
1536 */
1537 static int
1538 if_delroute_matcher(struct rtentry *rt, void *v)
1539 {
1540 struct ifnet *ifp = (struct ifnet *)v;
1541
1542 if (rt->rt_ifp == ifp)
1543 return 1;
1544 else
1545 return 0;
1546 }
1547
1548 /*
1549 * Create a clone network interface.
1550 */
1551 static int
1552 if_clone_create(const char *name)
1553 {
1554 struct if_clone *ifc;
1555 int unit;
1556 struct ifnet *ifp;
1557 struct psref psref;
1558
1559 KASSERT(mutex_owned(&if_clone_mtx));
1560
1561 ifc = if_clone_lookup(name, &unit);
1562 if (ifc == NULL)
1563 return EINVAL;
1564
1565 ifp = if_get(name, &psref);
1566 if (ifp != NULL) {
1567 if_put(ifp, &psref);
1568 return EEXIST;
1569 }
1570
1571 return (*ifc->ifc_create)(ifc, unit);
1572 }
1573
1574 /*
1575 * Destroy a clone network interface.
1576 */
1577 static int
1578 if_clone_destroy(const char *name)
1579 {
1580 struct if_clone *ifc;
1581 struct ifnet *ifp;
1582 struct psref psref;
1583
1584 KASSERT(mutex_owned(&if_clone_mtx));
1585
1586 ifc = if_clone_lookup(name, NULL);
1587 if (ifc == NULL)
1588 return EINVAL;
1589
1590 if (ifc->ifc_destroy == NULL)
1591 return EOPNOTSUPP;
1592
1593 ifp = if_get(name, &psref);
1594 if (ifp == NULL)
1595 return ENXIO;
1596
1597 /* We have to disable ioctls here */
1598 mutex_enter(ifp->if_ioctl_lock);
1599 ifp->if_ioctl = if_nullioctl;
1600 mutex_exit(ifp->if_ioctl_lock);
1601
1602 /*
1603 * We cannot call ifc_destroy with holding ifp.
1604 * Releasing ifp here is safe thanks to if_clone_mtx.
1605 */
1606 if_put(ifp, &psref);
1607
1608 return (*ifc->ifc_destroy)(ifp);
1609 }
1610
1611 static bool
1612 if_is_unit(const char *name)
1613 {
1614
1615 while(*name != '\0') {
1616 if (*name < '0' || *name > '9')
1617 return false;
1618 name++;
1619 }
1620
1621 return true;
1622 }
1623
1624 /*
1625 * Look up a network interface cloner.
1626 */
1627 static struct if_clone *
1628 if_clone_lookup(const char *name, int *unitp)
1629 {
1630 struct if_clone *ifc;
1631 const char *cp;
1632 char *dp, ifname[IFNAMSIZ + 3];
1633 int unit;
1634
1635 KASSERT(mutex_owned(&if_clone_mtx));
1636
1637 strcpy(ifname, "if_");
1638 /* separate interface name from unit */
1639 /* TODO: search unit number from backward */
1640 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1641 *cp && !if_is_unit(cp);)
1642 *dp++ = *cp++;
1643
1644 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1645 return NULL; /* No name or unit number */
1646 *dp++ = '\0';
1647
1648 again:
1649 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1650 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1651 break;
1652 }
1653
1654 if (ifc == NULL) {
1655 int error;
1656 if (*ifname == '\0')
1657 return NULL;
1658 mutex_exit(&if_clone_mtx);
1659 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1660 mutex_enter(&if_clone_mtx);
1661 if (error)
1662 return NULL;
1663 *ifname = '\0';
1664 goto again;
1665 }
1666
1667 unit = 0;
1668 while (cp - name < IFNAMSIZ && *cp) {
1669 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1670 /* Bogus unit number. */
1671 return NULL;
1672 }
1673 unit = (unit * 10) + (*cp++ - '0');
1674 }
1675
1676 if (unitp != NULL)
1677 *unitp = unit;
1678 return ifc;
1679 }
1680
1681 /*
1682 * Register a network interface cloner.
1683 */
1684 void
1685 if_clone_attach(struct if_clone *ifc)
1686 {
1687
1688 mutex_enter(&if_clone_mtx);
1689 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1690 if_cloners_count++;
1691 mutex_exit(&if_clone_mtx);
1692 }
1693
1694 /*
1695 * Unregister a network interface cloner.
1696 */
1697 void
1698 if_clone_detach(struct if_clone *ifc)
1699 {
1700
1701 mutex_enter(&if_clone_mtx);
1702 LIST_REMOVE(ifc, ifc_list);
1703 if_cloners_count--;
1704 mutex_exit(&if_clone_mtx);
1705 }
1706
1707 /*
1708 * Provide list of interface cloners to userspace.
1709 */
1710 int
1711 if_clone_list(int buf_count, char *buffer, int *total)
1712 {
1713 char outbuf[IFNAMSIZ], *dst;
1714 struct if_clone *ifc;
1715 int count, error = 0;
1716
1717 mutex_enter(&if_clone_mtx);
1718 *total = if_cloners_count;
1719 if ((dst = buffer) == NULL) {
1720 /* Just asking how many there are. */
1721 goto out;
1722 }
1723
1724 if (buf_count < 0) {
1725 error = EINVAL;
1726 goto out;
1727 }
1728
1729 count = (if_cloners_count < buf_count) ?
1730 if_cloners_count : buf_count;
1731
1732 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1733 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1734 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1735 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1736 error = ENAMETOOLONG;
1737 goto out;
1738 }
1739 error = copyout(outbuf, dst, sizeof(outbuf));
1740 if (error != 0)
1741 break;
1742 }
1743
1744 out:
1745 mutex_exit(&if_clone_mtx);
1746 return error;
1747 }
1748
1749 void
1750 ifa_psref_init(struct ifaddr *ifa)
1751 {
1752
1753 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1754 }
1755
1756 void
1757 ifaref(struct ifaddr *ifa)
1758 {
1759 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1760 ifa->ifa_refcnt++;
1761 }
1762
1763 void
1764 ifafree(struct ifaddr *ifa)
1765 {
1766 KASSERT(ifa != NULL);
1767 KASSERT(ifa->ifa_refcnt > 0);
1768
1769 if (--ifa->ifa_refcnt == 0) {
1770 free(ifa, M_IFADDR);
1771 }
1772 }
1773
1774 bool
1775 ifa_is_destroying(struct ifaddr *ifa)
1776 {
1777
1778 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1779 }
1780
1781 void
1782 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1783 {
1784
1785 ifa->ifa_ifp = ifp;
1786
1787 IFNET_LOCK();
1788 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1789 IFADDR_ENTRY_INIT(ifa);
1790 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1791 IFNET_UNLOCK();
1792
1793 ifaref(ifa);
1794 }
1795
1796 void
1797 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1798 {
1799
1800 KASSERT(ifa->ifa_ifp == ifp);
1801
1802 IFNET_LOCK();
1803 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1804 IFADDR_WRITER_REMOVE(ifa);
1805 #ifdef NET_MPSAFE
1806 pserialize_perform(ifnet_psz);
1807 #endif
1808 IFNET_UNLOCK();
1809
1810 #ifdef NET_MPSAFE
1811 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1812 #endif
1813 IFADDR_ENTRY_DESTROY(ifa);
1814 ifafree(ifa);
1815 }
1816
1817 void
1818 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1819 {
1820
1821 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1822 }
1823
1824 void
1825 ifa_release(struct ifaddr *ifa, struct psref *psref)
1826 {
1827
1828 if (ifa == NULL)
1829 return;
1830
1831 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1832 }
1833
1834 bool
1835 ifa_held(struct ifaddr *ifa)
1836 {
1837
1838 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1839 }
1840
1841 static inline int
1842 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1843 {
1844 return sockaddr_cmp(sa1, sa2) == 0;
1845 }
1846
1847 /*
1848 * Locate an interface based on a complete address.
1849 */
1850 /*ARGSUSED*/
1851 struct ifaddr *
1852 ifa_ifwithaddr(const struct sockaddr *addr)
1853 {
1854 struct ifnet *ifp;
1855 struct ifaddr *ifa;
1856
1857 IFNET_READER_FOREACH(ifp) {
1858 if (if_is_deactivated(ifp))
1859 continue;
1860 IFADDR_READER_FOREACH(ifa, ifp) {
1861 if (ifa->ifa_addr->sa_family != addr->sa_family)
1862 continue;
1863 if (equal(addr, ifa->ifa_addr))
1864 return ifa;
1865 if ((ifp->if_flags & IFF_BROADCAST) &&
1866 ifa->ifa_broadaddr &&
1867 /* IP6 doesn't have broadcast */
1868 ifa->ifa_broadaddr->sa_len != 0 &&
1869 equal(ifa->ifa_broadaddr, addr))
1870 return ifa;
1871 }
1872 }
1873 return NULL;
1874 }
1875
1876 struct ifaddr *
1877 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1878 {
1879 struct ifaddr *ifa;
1880 int s = pserialize_read_enter();
1881
1882 ifa = ifa_ifwithaddr(addr);
1883 if (ifa != NULL)
1884 ifa_acquire(ifa, psref);
1885 pserialize_read_exit(s);
1886
1887 return ifa;
1888 }
1889
1890 /*
1891 * Locate the point to point interface with a given destination address.
1892 */
1893 /*ARGSUSED*/
1894 struct ifaddr *
1895 ifa_ifwithdstaddr(const struct sockaddr *addr)
1896 {
1897 struct ifnet *ifp;
1898 struct ifaddr *ifa;
1899
1900 IFNET_READER_FOREACH(ifp) {
1901 if (if_is_deactivated(ifp))
1902 continue;
1903 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1904 continue;
1905 IFADDR_READER_FOREACH(ifa, ifp) {
1906 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1907 ifa->ifa_dstaddr == NULL)
1908 continue;
1909 if (equal(addr, ifa->ifa_dstaddr))
1910 return ifa;
1911 }
1912 }
1913
1914 return NULL;
1915 }
1916
1917 struct ifaddr *
1918 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1919 {
1920 struct ifaddr *ifa;
1921 int s;
1922
1923 s = pserialize_read_enter();
1924 ifa = ifa_ifwithdstaddr(addr);
1925 if (ifa != NULL)
1926 ifa_acquire(ifa, psref);
1927 pserialize_read_exit(s);
1928
1929 return ifa;
1930 }
1931
1932 /*
1933 * Find an interface on a specific network. If many, choice
1934 * is most specific found.
1935 */
1936 struct ifaddr *
1937 ifa_ifwithnet(const struct sockaddr *addr)
1938 {
1939 struct ifnet *ifp;
1940 struct ifaddr *ifa, *ifa_maybe = NULL;
1941 const struct sockaddr_dl *sdl;
1942 u_int af = addr->sa_family;
1943 const char *addr_data = addr->sa_data, *cplim;
1944
1945 if (af == AF_LINK) {
1946 sdl = satocsdl(addr);
1947 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1948 ifindex2ifnet[sdl->sdl_index] &&
1949 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1950 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1951 }
1952 }
1953 #ifdef NETATALK
1954 if (af == AF_APPLETALK) {
1955 const struct sockaddr_at *sat, *sat2;
1956 sat = (const struct sockaddr_at *)addr;
1957 IFNET_READER_FOREACH(ifp) {
1958 if (if_is_deactivated(ifp))
1959 continue;
1960 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1961 if (ifa == NULL)
1962 continue;
1963 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1964 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1965 return ifa; /* exact match */
1966 if (ifa_maybe == NULL) {
1967 /* else keep the if with the right range */
1968 ifa_maybe = ifa;
1969 }
1970 }
1971 return ifa_maybe;
1972 }
1973 #endif
1974 IFNET_READER_FOREACH(ifp) {
1975 if (if_is_deactivated(ifp))
1976 continue;
1977 IFADDR_READER_FOREACH(ifa, ifp) {
1978 const char *cp, *cp2, *cp3;
1979
1980 if (ifa->ifa_addr->sa_family != af ||
1981 ifa->ifa_netmask == NULL)
1982 next: continue;
1983 cp = addr_data;
1984 cp2 = ifa->ifa_addr->sa_data;
1985 cp3 = ifa->ifa_netmask->sa_data;
1986 cplim = (const char *)ifa->ifa_netmask +
1987 ifa->ifa_netmask->sa_len;
1988 while (cp3 < cplim) {
1989 if ((*cp++ ^ *cp2++) & *cp3++) {
1990 /* want to continue for() loop */
1991 goto next;
1992 }
1993 }
1994 if (ifa_maybe == NULL ||
1995 rt_refines(ifa->ifa_netmask,
1996 ifa_maybe->ifa_netmask))
1997 ifa_maybe = ifa;
1998 }
1999 }
2000 return ifa_maybe;
2001 }
2002
2003 struct ifaddr *
2004 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2005 {
2006 struct ifaddr *ifa;
2007 int s;
2008
2009 s = pserialize_read_enter();
2010 ifa = ifa_ifwithnet(addr);
2011 if (ifa != NULL)
2012 ifa_acquire(ifa, psref);
2013 pserialize_read_exit(s);
2014
2015 return ifa;
2016 }
2017
2018 /*
2019 * Find the interface of the addresss.
2020 */
2021 struct ifaddr *
2022 ifa_ifwithladdr(const struct sockaddr *addr)
2023 {
2024 struct ifaddr *ia;
2025
2026 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2027 (ia = ifa_ifwithnet(addr)))
2028 return ia;
2029 return NULL;
2030 }
2031
2032 struct ifaddr *
2033 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2034 {
2035 struct ifaddr *ifa;
2036 int s;
2037
2038 s = pserialize_read_enter();
2039 ifa = ifa_ifwithladdr(addr);
2040 if (ifa != NULL)
2041 ifa_acquire(ifa, psref);
2042 pserialize_read_exit(s);
2043
2044 return ifa;
2045 }
2046
2047 /*
2048 * Find an interface using a specific address family
2049 */
2050 struct ifaddr *
2051 ifa_ifwithaf(int af)
2052 {
2053 struct ifnet *ifp;
2054 struct ifaddr *ifa = NULL;
2055 int s;
2056
2057 s = pserialize_read_enter();
2058 IFNET_READER_FOREACH(ifp) {
2059 if (if_is_deactivated(ifp))
2060 continue;
2061 IFADDR_READER_FOREACH(ifa, ifp) {
2062 if (ifa->ifa_addr->sa_family == af)
2063 goto out;
2064 }
2065 }
2066 out:
2067 pserialize_read_exit(s);
2068 return ifa;
2069 }
2070
2071 /*
2072 * Find an interface address specific to an interface best matching
2073 * a given address.
2074 */
2075 struct ifaddr *
2076 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2077 {
2078 struct ifaddr *ifa;
2079 const char *cp, *cp2, *cp3;
2080 const char *cplim;
2081 struct ifaddr *ifa_maybe = 0;
2082 u_int af = addr->sa_family;
2083
2084 if (if_is_deactivated(ifp))
2085 return NULL;
2086
2087 if (af >= AF_MAX)
2088 return NULL;
2089
2090 IFADDR_READER_FOREACH(ifa, ifp) {
2091 if (ifa->ifa_addr->sa_family != af)
2092 continue;
2093 ifa_maybe = ifa;
2094 if (ifa->ifa_netmask == NULL) {
2095 if (equal(addr, ifa->ifa_addr) ||
2096 (ifa->ifa_dstaddr &&
2097 equal(addr, ifa->ifa_dstaddr)))
2098 return ifa;
2099 continue;
2100 }
2101 cp = addr->sa_data;
2102 cp2 = ifa->ifa_addr->sa_data;
2103 cp3 = ifa->ifa_netmask->sa_data;
2104 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2105 for (; cp3 < cplim; cp3++) {
2106 if ((*cp++ ^ *cp2++) & *cp3)
2107 break;
2108 }
2109 if (cp3 == cplim)
2110 return ifa;
2111 }
2112 return ifa_maybe;
2113 }
2114
2115 struct ifaddr *
2116 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2117 struct psref *psref)
2118 {
2119 struct ifaddr *ifa;
2120 int s;
2121
2122 s = pserialize_read_enter();
2123 ifa = ifaof_ifpforaddr(addr, ifp);
2124 if (ifa != NULL)
2125 ifa_acquire(ifa, psref);
2126 pserialize_read_exit(s);
2127
2128 return ifa;
2129 }
2130
2131 /*
2132 * Default action when installing a route with a Link Level gateway.
2133 * Lookup an appropriate real ifa to point to.
2134 * This should be moved to /sys/net/link.c eventually.
2135 */
2136 void
2137 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2138 {
2139 struct ifaddr *ifa;
2140 const struct sockaddr *dst;
2141 struct ifnet *ifp;
2142 struct psref psref;
2143
2144 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2145 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2146 return;
2147 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2148 rt_replace_ifa(rt, ifa);
2149 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2150 ifa->ifa_rtrequest(cmd, rt, info);
2151 ifa_release(ifa, &psref);
2152 }
2153 }
2154
2155 /*
2156 * bitmask macros to manage a densely packed link_state change queue.
2157 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2158 * LINK_STATE_UP(2) we need 2 bits for each state change.
2159 * As a state change to store is 0, treat all bits set as an unset item.
2160 */
2161 #define LQ_ITEM_BITS 2
2162 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2163 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2164 #define LINK_STATE_UNSET LQ_ITEM_MASK
2165 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2166 #define LQ_STORE(q, i, v) \
2167 do { \
2168 (q) &= ~LQ_MASK((i)); \
2169 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2170 } while (0 /* CONSTCOND */)
2171 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2172 #define LQ_POP(q, v) \
2173 do { \
2174 (v) = LQ_ITEM((q), 0); \
2175 (q) >>= LQ_ITEM_BITS; \
2176 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2177 } while (0 /* CONSTCOND */)
2178 #define LQ_PUSH(q, v) \
2179 do { \
2180 (q) >>= LQ_ITEM_BITS; \
2181 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2182 } while (0 /* CONSTCOND */)
2183 #define LQ_FIND_UNSET(q, i) \
2184 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2185 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2186 break; \
2187 }
2188 /*
2189 * Handle a change in the interface link state and
2190 * queue notifications.
2191 */
2192 void
2193 if_link_state_change(struct ifnet *ifp, int link_state)
2194 {
2195 int s, idx;
2196
2197 KASSERTMSG(if_is_link_state_changeable(ifp),
2198 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2199 ifp->if_xname, ifp->if_extflags);
2200
2201 /* Ensure change is to a valid state */
2202 switch (link_state) {
2203 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2204 case LINK_STATE_DOWN: /* FALLTHROUGH */
2205 case LINK_STATE_UP:
2206 break;
2207 default:
2208 #ifdef DEBUG
2209 printf("%s: invalid link state %d\n",
2210 ifp->if_xname, link_state);
2211 #endif
2212 return;
2213 }
2214
2215 s = splnet();
2216
2217 /* Find the last unset event in the queue. */
2218 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2219
2220 /*
2221 * Ensure link_state doesn't match the last event in the queue.
2222 * ifp->if_link_state is not checked and set here because
2223 * that would present an inconsistent picture to the system.
2224 */
2225 if (idx != 0 &&
2226 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2227 goto out;
2228
2229 /* Handle queue overflow. */
2230 if (idx == LQ_MAX(ifp->if_link_queue)) {
2231 uint8_t lost;
2232
2233 /*
2234 * The DOWN state must be protected from being pushed off
2235 * the queue to ensure that userland will always be
2236 * in a sane state.
2237 * Because DOWN is protected, there is no need to protect
2238 * UNKNOWN.
2239 * It should be invalid to change from any other state to
2240 * UNKNOWN anyway ...
2241 */
2242 lost = LQ_ITEM(ifp->if_link_queue, 0);
2243 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2244 if (lost == LINK_STATE_DOWN) {
2245 lost = LQ_ITEM(ifp->if_link_queue, 0);
2246 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2247 }
2248 printf("%s: lost link state change %s\n",
2249 ifp->if_xname,
2250 lost == LINK_STATE_UP ? "UP" :
2251 lost == LINK_STATE_DOWN ? "DOWN" :
2252 "UNKNOWN");
2253 } else
2254 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2255
2256 softint_schedule(ifp->if_link_si);
2257
2258 out:
2259 splx(s);
2260 }
2261
2262 /*
2263 * Handle interface link state change notifications.
2264 */
2265 void
2266 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2267 {
2268 struct domain *dp;
2269 int s = splnet();
2270
2271 KASSERT(!cpu_intr_p());
2272
2273 /* Ensure the change is still valid. */
2274 if (ifp->if_link_state == link_state) {
2275 splx(s);
2276 return;
2277 }
2278
2279 #ifdef DEBUG
2280 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2281 link_state == LINK_STATE_UP ? "UP" :
2282 link_state == LINK_STATE_DOWN ? "DOWN" :
2283 "UNKNOWN",
2284 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2285 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2286 "UNKNOWN");
2287 #endif
2288
2289 /*
2290 * When going from UNKNOWN to UP, we need to mark existing
2291 * addresses as tentative and restart DAD as we may have
2292 * erroneously not found a duplicate.
2293 *
2294 * This needs to happen before rt_ifmsg to avoid a race where
2295 * listeners would have an address and expect it to work right
2296 * away.
2297 */
2298 if (link_state == LINK_STATE_UP &&
2299 ifp->if_link_state == LINK_STATE_UNKNOWN)
2300 {
2301 DOMAIN_FOREACH(dp) {
2302 if (dp->dom_if_link_state_change != NULL)
2303 dp->dom_if_link_state_change(ifp,
2304 LINK_STATE_DOWN);
2305 }
2306 }
2307
2308 ifp->if_link_state = link_state;
2309
2310 /* Notify that the link state has changed. */
2311 rt_ifmsg(ifp);
2312
2313 #if NCARP > 0
2314 if (ifp->if_carp)
2315 carp_carpdev_state(ifp);
2316 #endif
2317
2318 DOMAIN_FOREACH(dp) {
2319 if (dp->dom_if_link_state_change != NULL)
2320 dp->dom_if_link_state_change(ifp, link_state);
2321 }
2322 splx(s);
2323 }
2324
2325 /*
2326 * Process the interface link state change queue.
2327 */
2328 static void
2329 if_link_state_change_si(void *arg)
2330 {
2331 struct ifnet *ifp = arg;
2332 int s;
2333 uint8_t state;
2334
2335 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2336 s = splnet();
2337
2338 /* Pop a link state change from the queue and process it. */
2339 LQ_POP(ifp->if_link_queue, state);
2340 if_link_state_change_softint(ifp, state);
2341
2342 /* If there is a link state change to come, schedule it. */
2343 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2344 softint_schedule(ifp->if_link_si);
2345
2346 splx(s);
2347 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2348 }
2349
2350 /*
2351 * Default action when installing a local route on a point-to-point
2352 * interface.
2353 */
2354 void
2355 p2p_rtrequest(int req, struct rtentry *rt,
2356 __unused const struct rt_addrinfo *info)
2357 {
2358 struct ifnet *ifp = rt->rt_ifp;
2359 struct ifaddr *ifa, *lo0ifa;
2360 int s = pserialize_read_enter();
2361
2362 switch (req) {
2363 case RTM_ADD:
2364 if ((rt->rt_flags & RTF_LOCAL) == 0)
2365 break;
2366
2367 rt->rt_ifp = lo0ifp;
2368
2369 IFADDR_READER_FOREACH(ifa, ifp) {
2370 if (equal(rt_getkey(rt), ifa->ifa_addr))
2371 break;
2372 }
2373 if (ifa == NULL)
2374 break;
2375
2376 /*
2377 * Ensure lo0 has an address of the same family.
2378 */
2379 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2380 if (lo0ifa->ifa_addr->sa_family ==
2381 ifa->ifa_addr->sa_family)
2382 break;
2383 }
2384 if (lo0ifa == NULL)
2385 break;
2386
2387 /*
2388 * Make sure to set rt->rt_ifa to the interface
2389 * address we are using, otherwise we will have trouble
2390 * with source address selection.
2391 */
2392 if (ifa != rt->rt_ifa)
2393 rt_replace_ifa(rt, ifa);
2394 break;
2395 case RTM_DELETE:
2396 default:
2397 break;
2398 }
2399 pserialize_read_exit(s);
2400 }
2401
2402 /*
2403 * Mark an interface down and notify protocols of
2404 * the transition.
2405 * NOTE: must be called at splsoftnet or equivalent.
2406 */
2407 void
2408 if_down(struct ifnet *ifp)
2409 {
2410 struct ifaddr *ifa;
2411 struct domain *dp;
2412 int s, bound;
2413 struct psref psref;
2414
2415 ifp->if_flags &= ~IFF_UP;
2416 nanotime(&ifp->if_lastchange);
2417
2418 bound = curlwp_bind();
2419 s = pserialize_read_enter();
2420 IFADDR_READER_FOREACH(ifa, ifp) {
2421 ifa_acquire(ifa, &psref);
2422 pserialize_read_exit(s);
2423
2424 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2425
2426 s = pserialize_read_enter();
2427 ifa_release(ifa, &psref);
2428 }
2429 pserialize_read_exit(s);
2430 curlwp_bindx(bound);
2431
2432 IFQ_PURGE(&ifp->if_snd);
2433 #if NCARP > 0
2434 if (ifp->if_carp)
2435 carp_carpdev_state(ifp);
2436 #endif
2437 rt_ifmsg(ifp);
2438 DOMAIN_FOREACH(dp) {
2439 if (dp->dom_if_down)
2440 dp->dom_if_down(ifp);
2441 }
2442 }
2443
2444 /*
2445 * Mark an interface up and notify protocols of
2446 * the transition.
2447 * NOTE: must be called at splsoftnet or equivalent.
2448 */
2449 void
2450 if_up(struct ifnet *ifp)
2451 {
2452 #ifdef notyet
2453 struct ifaddr *ifa;
2454 #endif
2455 struct domain *dp;
2456
2457 ifp->if_flags |= IFF_UP;
2458 nanotime(&ifp->if_lastchange);
2459 #ifdef notyet
2460 /* this has no effect on IP, and will kill all ISO connections XXX */
2461 IFADDR_READER_FOREACH(ifa, ifp)
2462 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2463 #endif
2464 #if NCARP > 0
2465 if (ifp->if_carp)
2466 carp_carpdev_state(ifp);
2467 #endif
2468 rt_ifmsg(ifp);
2469 DOMAIN_FOREACH(dp) {
2470 if (dp->dom_if_up)
2471 dp->dom_if_up(ifp);
2472 }
2473 }
2474
2475 /*
2476 * Handle interface slowtimo timer routine. Called
2477 * from softclock, we decrement timer (if set) and
2478 * call the appropriate interface routine on expiration.
2479 */
2480 static void
2481 if_slowtimo(void *arg)
2482 {
2483 void (*slowtimo)(struct ifnet *);
2484 struct ifnet *ifp = arg;
2485 int s;
2486
2487 slowtimo = ifp->if_slowtimo;
2488 if (__predict_false(slowtimo == NULL))
2489 return;
2490
2491 s = splnet();
2492 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2493 (*slowtimo)(ifp);
2494
2495 splx(s);
2496
2497 if (__predict_true(ifp->if_slowtimo != NULL))
2498 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2499 }
2500
2501 /*
2502 * Set/clear promiscuous mode on interface ifp based on the truth value
2503 * of pswitch. The calls are reference counted so that only the first
2504 * "on" request actually has an effect, as does the final "off" request.
2505 * Results are undefined if the "off" and "on" requests are not matched.
2506 */
2507 int
2508 ifpromisc(struct ifnet *ifp, int pswitch)
2509 {
2510 int pcount, ret;
2511 short nflags;
2512
2513 pcount = ifp->if_pcount;
2514 if (pswitch) {
2515 /*
2516 * Allow the device to be "placed" into promiscuous
2517 * mode even if it is not configured up. It will
2518 * consult IFF_PROMISC when it is brought up.
2519 */
2520 if (ifp->if_pcount++ != 0)
2521 return 0;
2522 nflags = ifp->if_flags | IFF_PROMISC;
2523 } else {
2524 if (--ifp->if_pcount > 0)
2525 return 0;
2526 nflags = ifp->if_flags & ~IFF_PROMISC;
2527 }
2528 ret = if_flags_set(ifp, nflags);
2529 /* Restore interface state if not successful. */
2530 if (ret != 0) {
2531 ifp->if_pcount = pcount;
2532 }
2533 return ret;
2534 }
2535
2536 /*
2537 * Map interface name to
2538 * interface structure pointer.
2539 */
2540 struct ifnet *
2541 ifunit(const char *name)
2542 {
2543 struct ifnet *ifp;
2544 const char *cp = name;
2545 u_int unit = 0;
2546 u_int i;
2547 int s;
2548
2549 /*
2550 * If the entire name is a number, treat it as an ifindex.
2551 */
2552 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2553 unit = unit * 10 + (*cp - '0');
2554 }
2555
2556 /*
2557 * If the number took all of the name, then it's a valid ifindex.
2558 */
2559 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2560 return if_byindex(unit);
2561
2562 ifp = NULL;
2563 s = pserialize_read_enter();
2564 IFNET_READER_FOREACH(ifp) {
2565 if (if_is_deactivated(ifp))
2566 continue;
2567 if (strcmp(ifp->if_xname, name) == 0)
2568 goto out;
2569 }
2570 out:
2571 pserialize_read_exit(s);
2572 return ifp;
2573 }
2574
2575 /*
2576 * Get a reference of an ifnet object by an interface name.
2577 * The returned reference is protected by psref(9). The caller
2578 * must release a returned reference by if_put after use.
2579 */
2580 struct ifnet *
2581 if_get(const char *name, struct psref *psref)
2582 {
2583 struct ifnet *ifp;
2584 const char *cp = name;
2585 u_int unit = 0;
2586 u_int i;
2587 int s;
2588
2589 /*
2590 * If the entire name is a number, treat it as an ifindex.
2591 */
2592 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2593 unit = unit * 10 + (*cp - '0');
2594 }
2595
2596 /*
2597 * If the number took all of the name, then it's a valid ifindex.
2598 */
2599 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2600 return if_get_byindex(unit, psref);
2601
2602 ifp = NULL;
2603 s = pserialize_read_enter();
2604 IFNET_READER_FOREACH(ifp) {
2605 if (if_is_deactivated(ifp))
2606 continue;
2607 if (strcmp(ifp->if_xname, name) == 0) {
2608 psref_acquire(psref, &ifp->if_psref,
2609 ifnet_psref_class);
2610 goto out;
2611 }
2612 }
2613 out:
2614 pserialize_read_exit(s);
2615 return ifp;
2616 }
2617
2618 /*
2619 * Release a reference of an ifnet object given by if_get, if_get_byindex
2620 * or if_get_bylla.
2621 */
2622 void
2623 if_put(const struct ifnet *ifp, struct psref *psref)
2624 {
2625
2626 if (ifp == NULL)
2627 return;
2628
2629 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2630 }
2631
2632 ifnet_t *
2633 if_byindex(u_int idx)
2634 {
2635 ifnet_t *ifp;
2636
2637 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2638 if (ifp != NULL && if_is_deactivated(ifp))
2639 ifp = NULL;
2640 return ifp;
2641 }
2642
2643 /*
2644 * Get a reference of an ifnet object by an interface index.
2645 * The returned reference is protected by psref(9). The caller
2646 * must release a returned reference by if_put after use.
2647 */
2648 ifnet_t *
2649 if_get_byindex(u_int idx, struct psref *psref)
2650 {
2651 ifnet_t *ifp;
2652 int s;
2653
2654 s = pserialize_read_enter();
2655 ifp = if_byindex(idx);
2656 if (__predict_true(ifp != NULL))
2657 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2658 pserialize_read_exit(s);
2659
2660 return ifp;
2661 }
2662
2663 ifnet_t *
2664 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2665 {
2666 ifnet_t *ifp;
2667 int s;
2668
2669 s = pserialize_read_enter();
2670 IFNET_READER_FOREACH(ifp) {
2671 if (if_is_deactivated(ifp))
2672 continue;
2673 if (ifp->if_addrlen != lla_len)
2674 continue;
2675 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2676 psref_acquire(psref, &ifp->if_psref,
2677 ifnet_psref_class);
2678 break;
2679 }
2680 }
2681 pserialize_read_exit(s);
2682
2683 return ifp;
2684 }
2685
2686 /*
2687 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2688 * for example using pserialize or the ifp is already held or some other
2689 * object is held which guarantes the ifp to not be freed indirectly.
2690 */
2691 void
2692 if_acquire(struct ifnet *ifp, struct psref *psref)
2693 {
2694
2695 KASSERT(ifp->if_index != 0);
2696 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2697 }
2698
2699 bool
2700 if_held(struct ifnet *ifp)
2701 {
2702
2703 return psref_held(&ifp->if_psref, ifnet_psref_class);
2704 }
2705
2706
2707 /* common */
2708 int
2709 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2710 {
2711 int s;
2712 struct ifreq *ifr;
2713 struct ifcapreq *ifcr;
2714 struct ifdatareq *ifdr;
2715
2716 switch (cmd) {
2717 case SIOCSIFCAP:
2718 ifcr = data;
2719 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2720 return EINVAL;
2721
2722 if (ifcr->ifcr_capenable == ifp->if_capenable)
2723 return 0;
2724
2725 ifp->if_capenable = ifcr->ifcr_capenable;
2726
2727 /* Pre-compute the checksum flags mask. */
2728 ifp->if_csum_flags_tx = 0;
2729 ifp->if_csum_flags_rx = 0;
2730 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2731 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2732 }
2733 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2734 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2735 }
2736
2737 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2738 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2739 }
2740 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2741 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2742 }
2743
2744 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2745 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2746 }
2747 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2748 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2749 }
2750
2751 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2752 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2753 }
2754 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2755 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2756 }
2757
2758 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2759 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2760 }
2761 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2762 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2763 }
2764 if (ifp->if_flags & IFF_UP)
2765 return ENETRESET;
2766 return 0;
2767 case SIOCSIFFLAGS:
2768 ifr = data;
2769 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2770 s = splsoftnet();
2771 if_down(ifp);
2772 splx(s);
2773 }
2774 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2775 s = splsoftnet();
2776 if_up(ifp);
2777 splx(s);
2778 }
2779 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2780 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2781 break;
2782 case SIOCGIFFLAGS:
2783 ifr = data;
2784 ifr->ifr_flags = ifp->if_flags;
2785 break;
2786
2787 case SIOCGIFMETRIC:
2788 ifr = data;
2789 ifr->ifr_metric = ifp->if_metric;
2790 break;
2791
2792 case SIOCGIFMTU:
2793 ifr = data;
2794 ifr->ifr_mtu = ifp->if_mtu;
2795 break;
2796
2797 case SIOCGIFDLT:
2798 ifr = data;
2799 ifr->ifr_dlt = ifp->if_dlt;
2800 break;
2801
2802 case SIOCGIFCAP:
2803 ifcr = data;
2804 ifcr->ifcr_capabilities = ifp->if_capabilities;
2805 ifcr->ifcr_capenable = ifp->if_capenable;
2806 break;
2807
2808 case SIOCSIFMETRIC:
2809 ifr = data;
2810 ifp->if_metric = ifr->ifr_metric;
2811 break;
2812
2813 case SIOCGIFDATA:
2814 ifdr = data;
2815 ifdr->ifdr_data = ifp->if_data;
2816 break;
2817
2818 case SIOCGIFINDEX:
2819 ifr = data;
2820 ifr->ifr_index = ifp->if_index;
2821 break;
2822
2823 case SIOCZIFDATA:
2824 ifdr = data;
2825 ifdr->ifdr_data = ifp->if_data;
2826 /*
2827 * Assumes that the volatile counters that can be
2828 * zero'ed are at the end of if_data.
2829 */
2830 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2831 offsetof(struct if_data, ifi_ipackets));
2832 /*
2833 * The memset() clears to the bottm of if_data. In the area,
2834 * if_lastchange is included. Please be careful if new entry
2835 * will be added into if_data or rewite this.
2836 *
2837 * And also, update if_lastchnage.
2838 */
2839 getnanotime(&ifp->if_lastchange);
2840 break;
2841 case SIOCSIFMTU:
2842 ifr = data;
2843 if (ifp->if_mtu == ifr->ifr_mtu)
2844 break;
2845 ifp->if_mtu = ifr->ifr_mtu;
2846 /*
2847 * If the link MTU changed, do network layer specific procedure.
2848 */
2849 #ifdef INET6
2850 if (in6_present)
2851 nd6_setmtu(ifp);
2852 #endif
2853 return ENETRESET;
2854 default:
2855 return ENOTTY;
2856 }
2857 return 0;
2858 }
2859
2860 int
2861 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2862 {
2863 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2864 struct ifaddr *ifa;
2865 const struct sockaddr *any, *sa;
2866 union {
2867 struct sockaddr sa;
2868 struct sockaddr_storage ss;
2869 } u, v;
2870 int s, error = 0;
2871
2872 switch (cmd) {
2873 case SIOCSIFADDRPREF:
2874 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2875 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2876 NULL) != 0)
2877 return EPERM;
2878 case SIOCGIFADDRPREF:
2879 break;
2880 default:
2881 return EOPNOTSUPP;
2882 }
2883
2884 /* sanity checks */
2885 if (data == NULL || ifp == NULL) {
2886 panic("invalid argument to %s", __func__);
2887 /*NOTREACHED*/
2888 }
2889
2890 /* address must be specified on ADD and DELETE */
2891 sa = sstocsa(&ifap->ifap_addr);
2892 if (sa->sa_family != sofamily(so))
2893 return EINVAL;
2894 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2895 return EINVAL;
2896
2897 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2898
2899 s = pserialize_read_enter();
2900 IFADDR_READER_FOREACH(ifa, ifp) {
2901 if (ifa->ifa_addr->sa_family != sa->sa_family)
2902 continue;
2903 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2904 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2905 break;
2906 }
2907 if (ifa == NULL) {
2908 error = EADDRNOTAVAIL;
2909 goto out;
2910 }
2911
2912 switch (cmd) {
2913 case SIOCSIFADDRPREF:
2914 ifa->ifa_preference = ifap->ifap_preference;
2915 goto out;
2916 case SIOCGIFADDRPREF:
2917 /* fill in the if_laddrreq structure */
2918 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2919 sizeof(ifap->ifap_addr), ifa->ifa_addr);
2920 ifap->ifap_preference = ifa->ifa_preference;
2921 goto out;
2922 default:
2923 error = EOPNOTSUPP;
2924 }
2925 out:
2926 pserialize_read_exit(s);
2927 return error;
2928 }
2929
2930 /*
2931 * Interface ioctls.
2932 */
2933 static int
2934 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2935 {
2936 struct ifnet *ifp;
2937 struct ifreq *ifr;
2938 int error = 0;
2939 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2940 u_long ocmd = cmd;
2941 #endif
2942 short oif_flags;
2943 #ifdef COMPAT_OIFREQ
2944 struct ifreq ifrb;
2945 struct oifreq *oifr = NULL;
2946 #endif
2947 int r;
2948 struct psref psref;
2949 int bound;
2950
2951 switch (cmd) {
2952 #ifdef COMPAT_OIFREQ
2953 case OSIOCGIFCONF:
2954 case OOSIOCGIFCONF:
2955 return compat_ifconf(cmd, data);
2956 #endif
2957 #ifdef COMPAT_OIFDATA
2958 case OSIOCGIFDATA:
2959 case OSIOCZIFDATA:
2960 return compat_ifdatareq(l, cmd, data);
2961 #endif
2962 case SIOCGIFCONF:
2963 return ifconf(cmd, data);
2964 case SIOCINITIFADDR:
2965 return EPERM;
2966 }
2967
2968 #ifdef COMPAT_OIFREQ
2969 cmd = (*vec_compat_cvtcmd)(cmd);
2970 if (cmd != ocmd) {
2971 oifr = data;
2972 data = ifr = &ifrb;
2973 ifreqo2n(oifr, ifr);
2974 } else
2975 #endif
2976 ifr = data;
2977
2978 switch (cmd) {
2979 case SIOCIFCREATE:
2980 case SIOCIFDESTROY:
2981 bound = curlwp_bind();
2982 if (l != NULL) {
2983 ifp = if_get(ifr->ifr_name, &psref);
2984 error = kauth_authorize_network(l->l_cred,
2985 KAUTH_NETWORK_INTERFACE,
2986 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2987 (void *)cmd, NULL);
2988 if (ifp != NULL)
2989 if_put(ifp, &psref);
2990 if (error != 0) {
2991 curlwp_bindx(bound);
2992 return error;
2993 }
2994 }
2995 mutex_enter(&if_clone_mtx);
2996 r = (cmd == SIOCIFCREATE) ?
2997 if_clone_create(ifr->ifr_name) :
2998 if_clone_destroy(ifr->ifr_name);
2999 mutex_exit(&if_clone_mtx);
3000 curlwp_bindx(bound);
3001 return r;
3002
3003 case SIOCIFGCLONERS:
3004 {
3005 struct if_clonereq *req = (struct if_clonereq *)data;
3006 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3007 &req->ifcr_total);
3008 }
3009 }
3010
3011 bound = curlwp_bind();
3012 ifp = if_get(ifr->ifr_name, &psref);
3013 if (ifp == NULL) {
3014 curlwp_bindx(bound);
3015 return ENXIO;
3016 }
3017
3018 switch (cmd) {
3019 case SIOCALIFADDR:
3020 case SIOCDLIFADDR:
3021 case SIOCSIFADDRPREF:
3022 case SIOCSIFFLAGS:
3023 case SIOCSIFCAP:
3024 case SIOCSIFMETRIC:
3025 case SIOCZIFDATA:
3026 case SIOCSIFMTU:
3027 case SIOCSIFPHYADDR:
3028 case SIOCDIFPHYADDR:
3029 #ifdef INET6
3030 case SIOCSIFPHYADDR_IN6:
3031 #endif
3032 case SIOCSLIFPHYADDR:
3033 case SIOCADDMULTI:
3034 case SIOCDELMULTI:
3035 case SIOCSIFMEDIA:
3036 case SIOCSDRVSPEC:
3037 case SIOCG80211:
3038 case SIOCS80211:
3039 case SIOCS80211NWID:
3040 case SIOCS80211NWKEY:
3041 case SIOCS80211POWER:
3042 case SIOCS80211BSSID:
3043 case SIOCS80211CHANNEL:
3044 case SIOCSLINKSTR:
3045 if (l != NULL) {
3046 error = kauth_authorize_network(l->l_cred,
3047 KAUTH_NETWORK_INTERFACE,
3048 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3049 (void *)cmd, NULL);
3050 if (error != 0)
3051 goto out;
3052 }
3053 }
3054
3055 oif_flags = ifp->if_flags;
3056
3057 mutex_enter(ifp->if_ioctl_lock);
3058
3059 error = (*ifp->if_ioctl)(ifp, cmd, data);
3060 if (error != ENOTTY)
3061 ;
3062 else if (so->so_proto == NULL)
3063 error = EOPNOTSUPP;
3064 else {
3065 #ifdef COMPAT_OSOCK
3066 if (vec_compat_ifioctl != NULL)
3067 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3068 else
3069 #endif
3070 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3071 cmd, data, ifp);
3072 }
3073
3074 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3075 if ((ifp->if_flags & IFF_UP) != 0) {
3076 int s = splsoftnet();
3077 if_up(ifp);
3078 splx(s);
3079 }
3080 }
3081 #ifdef COMPAT_OIFREQ
3082 if (cmd != ocmd)
3083 ifreqn2o(oifr, ifr);
3084 #endif
3085
3086 mutex_exit(ifp->if_ioctl_lock);
3087 out:
3088 if_put(ifp, &psref);
3089 curlwp_bindx(bound);
3090 return error;
3091 }
3092
3093 /*
3094 * Return interface configuration
3095 * of system. List may be used
3096 * in later ioctl's (above) to get
3097 * other information.
3098 *
3099 * Each record is a struct ifreq. Before the addition of
3100 * sockaddr_storage, the API rule was that sockaddr flavors that did
3101 * not fit would extend beyond the struct ifreq, with the next struct
3102 * ifreq starting sa_len beyond the struct sockaddr. Because the
3103 * union in struct ifreq includes struct sockaddr_storage, every kind
3104 * of sockaddr must fit. Thus, there are no longer any overlength
3105 * records.
3106 *
3107 * Records are added to the user buffer if they fit, and ifc_len is
3108 * adjusted to the length that was written. Thus, the user is only
3109 * assured of getting the complete list if ifc_len on return is at
3110 * least sizeof(struct ifreq) less than it was on entry.
3111 *
3112 * If the user buffer pointer is NULL, this routine copies no data and
3113 * returns the amount of space that would be needed.
3114 *
3115 * Invariants:
3116 * ifrp points to the next part of the user's buffer to be used. If
3117 * ifrp != NULL, space holds the number of bytes remaining that we may
3118 * write at ifrp. Otherwise, space holds the number of bytes that
3119 * would have been written had there been adequate space.
3120 */
3121 /*ARGSUSED*/
3122 static int
3123 ifconf(u_long cmd, void *data)
3124 {
3125 struct ifconf *ifc = (struct ifconf *)data;
3126 struct ifnet *ifp;
3127 struct ifaddr *ifa;
3128 struct ifreq ifr, *ifrp = NULL;
3129 int space = 0, error = 0;
3130 const int sz = (int)sizeof(struct ifreq);
3131 const bool docopy = ifc->ifc_req != NULL;
3132 int s;
3133 int bound;
3134 struct psref psref;
3135
3136 if (docopy) {
3137 space = ifc->ifc_len;
3138 ifrp = ifc->ifc_req;
3139 }
3140
3141 bound = curlwp_bind();
3142 s = pserialize_read_enter();
3143 IFNET_READER_FOREACH(ifp) {
3144 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3145 pserialize_read_exit(s);
3146
3147 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3148 sizeof(ifr.ifr_name));
3149 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3150 error = ENAMETOOLONG;
3151 goto release_exit;
3152 }
3153 if (IFADDR_READER_EMPTY(ifp)) {
3154 /* Interface with no addresses - send zero sockaddr. */
3155 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3156 if (!docopy) {
3157 space += sz;
3158 continue;
3159 }
3160 if (space >= sz) {
3161 error = copyout(&ifr, ifrp, sz);
3162 if (error != 0)
3163 goto release_exit;
3164 ifrp++;
3165 space -= sz;
3166 }
3167 }
3168
3169 IFADDR_READER_FOREACH(ifa, ifp) {
3170 struct sockaddr *sa = ifa->ifa_addr;
3171 /* all sockaddrs must fit in sockaddr_storage */
3172 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3173
3174 if (!docopy) {
3175 space += sz;
3176 continue;
3177 }
3178 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3179 if (space >= sz) {
3180 error = copyout(&ifr, ifrp, sz);
3181 if (error != 0)
3182 goto release_exit;
3183 ifrp++; space -= sz;
3184 }
3185 }
3186
3187 s = pserialize_read_enter();
3188 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3189 }
3190 pserialize_read_exit(s);
3191 curlwp_bindx(bound);
3192
3193 if (docopy) {
3194 KASSERT(0 <= space && space <= ifc->ifc_len);
3195 ifc->ifc_len -= space;
3196 } else {
3197 KASSERT(space >= 0);
3198 ifc->ifc_len = space;
3199 }
3200 return (0);
3201
3202 release_exit:
3203 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3204 curlwp_bindx(bound);
3205 return error;
3206 }
3207
3208 int
3209 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3210 {
3211 uint8_t len;
3212 #ifdef COMPAT_OIFREQ
3213 struct ifreq ifrb;
3214 struct oifreq *oifr = NULL;
3215 u_long ocmd = cmd;
3216 cmd = (*vec_compat_cvtcmd)(cmd);
3217 if (cmd != ocmd) {
3218 oifr = (struct oifreq *)(void *)ifr;
3219 ifr = &ifrb;
3220 ifreqo2n(oifr, ifr);
3221 len = sizeof(oifr->ifr_addr);
3222 } else
3223 #endif
3224 len = sizeof(ifr->ifr_ifru.ifru_space);
3225
3226 if (len < sa->sa_len)
3227 return EFBIG;
3228
3229 memset(&ifr->ifr_addr, 0, len);
3230 sockaddr_copy(&ifr->ifr_addr, len, sa);
3231
3232 #ifdef COMPAT_OIFREQ
3233 if (cmd != ocmd)
3234 ifreqn2o(oifr, ifr);
3235 #endif
3236 return 0;
3237 }
3238
3239 /*
3240 * wrapper function for the drivers which doesn't have if_transmit().
3241 */
3242 static int
3243 if_transmit(struct ifnet *ifp, struct mbuf *m)
3244 {
3245 int s, error;
3246 size_t pktlen = m->m_pkthdr.len;
3247 bool mcast = (m->m_flags & M_MCAST) != 0;
3248
3249 s = splnet();
3250
3251 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3252 if (error != 0) {
3253 /* mbuf is already freed */
3254 goto out;
3255 }
3256
3257 ifp->if_obytes += pktlen;
3258 if (mcast)
3259 ifp->if_omcasts++;
3260
3261 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3262 if_start_lock(ifp);
3263 out:
3264 splx(s);
3265
3266 return error;
3267 }
3268
3269 int
3270 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3271 {
3272 int error;
3273
3274 #ifdef ALTQ
3275 KERNEL_LOCK(1, NULL);
3276 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3277 error = if_transmit(ifp, m);
3278 KERNEL_UNLOCK_ONE(NULL);
3279 } else {
3280 KERNEL_UNLOCK_ONE(NULL);
3281 error = (*ifp->if_transmit)(ifp, m);
3282 /* mbuf is alredy freed */
3283 }
3284 #else /* !ALTQ */
3285 error = (*ifp->if_transmit)(ifp, m);
3286 /* mbuf is alredy freed */
3287 #endif /* !ALTQ */
3288
3289 return error;
3290 }
3291
3292 /*
3293 * Queue message on interface, and start output if interface
3294 * not yet active.
3295 */
3296 int
3297 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3298 {
3299
3300 return if_transmit_lock(ifp, m);
3301 }
3302
3303 /*
3304 * Queue message on interface, possibly using a second fast queue
3305 */
3306 int
3307 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3308 {
3309 int error = 0;
3310
3311 if (ifq != NULL
3312 #ifdef ALTQ
3313 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3314 #endif
3315 ) {
3316 if (IF_QFULL(ifq)) {
3317 IF_DROP(&ifp->if_snd);
3318 m_freem(m);
3319 if (error == 0)
3320 error = ENOBUFS;
3321 } else
3322 IF_ENQUEUE(ifq, m);
3323 } else
3324 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3325 if (error != 0) {
3326 ++ifp->if_oerrors;
3327 return error;
3328 }
3329 return 0;
3330 }
3331
3332 int
3333 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3334 {
3335 int rc;
3336
3337 if (ifp->if_initaddr != NULL)
3338 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3339 else if (src ||
3340 /* FIXME: may not hold if_ioctl_lock */
3341 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3342 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3343
3344 return rc;
3345 }
3346
3347 int
3348 if_do_dad(struct ifnet *ifp)
3349 {
3350 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3351 return 0;
3352
3353 switch (ifp->if_type) {
3354 case IFT_FAITH:
3355 /*
3356 * These interfaces do not have the IFF_LOOPBACK flag,
3357 * but loop packets back. We do not have to do DAD on such
3358 * interfaces. We should even omit it, because loop-backed
3359 * responses would confuse the DAD procedure.
3360 */
3361 return 0;
3362 default:
3363 /*
3364 * Our DAD routine requires the interface up and running.
3365 * However, some interfaces can be up before the RUNNING
3366 * status. Additionaly, users may try to assign addresses
3367 * before the interface becomes up (or running).
3368 * We simply skip DAD in such a case as a work around.
3369 * XXX: we should rather mark "tentative" on such addresses,
3370 * and do DAD after the interface becomes ready.
3371 */
3372 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3373 (IFF_UP|IFF_RUNNING))
3374 return 0;
3375
3376 return 1;
3377 }
3378 }
3379
3380 int
3381 if_flags_set(ifnet_t *ifp, const short flags)
3382 {
3383 int rc;
3384
3385 if (ifp->if_setflags != NULL)
3386 rc = (*ifp->if_setflags)(ifp, flags);
3387 else {
3388 short cantflags, chgdflags;
3389 struct ifreq ifr;
3390
3391 chgdflags = ifp->if_flags ^ flags;
3392 cantflags = chgdflags & IFF_CANTCHANGE;
3393
3394 if (cantflags != 0)
3395 ifp->if_flags ^= cantflags;
3396
3397 /* Traditionally, we do not call if_ioctl after
3398 * setting/clearing only IFF_PROMISC if the interface
3399 * isn't IFF_UP. Uphold that tradition.
3400 */
3401 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3402 return 0;
3403
3404 memset(&ifr, 0, sizeof(ifr));
3405
3406 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3407 /* FIXME: may not hold if_ioctl_lock */
3408 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3409
3410 if (rc != 0 && cantflags != 0)
3411 ifp->if_flags ^= cantflags;
3412 }
3413
3414 return rc;
3415 }
3416
3417 int
3418 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3419 {
3420 int rc;
3421 struct ifreq ifr;
3422
3423 if (ifp->if_mcastop != NULL)
3424 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3425 else {
3426 ifreq_setaddr(cmd, &ifr, sa);
3427 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3428 }
3429
3430 return rc;
3431 }
3432
3433 static void
3434 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3435 struct ifaltq *ifq)
3436 {
3437 const struct sysctlnode *cnode, *rnode;
3438
3439 if (sysctl_createv(clog, 0, NULL, &rnode,
3440 CTLFLAG_PERMANENT,
3441 CTLTYPE_NODE, "interfaces",
3442 SYSCTL_DESCR("Per-interface controls"),
3443 NULL, 0, NULL, 0,
3444 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3445 goto bad;
3446
3447 if (sysctl_createv(clog, 0, &rnode, &rnode,
3448 CTLFLAG_PERMANENT,
3449 CTLTYPE_NODE, ifname,
3450 SYSCTL_DESCR("Interface controls"),
3451 NULL, 0, NULL, 0,
3452 CTL_CREATE, CTL_EOL) != 0)
3453 goto bad;
3454
3455 if (sysctl_createv(clog, 0, &rnode, &rnode,
3456 CTLFLAG_PERMANENT,
3457 CTLTYPE_NODE, "sndq",
3458 SYSCTL_DESCR("Interface output queue controls"),
3459 NULL, 0, NULL, 0,
3460 CTL_CREATE, CTL_EOL) != 0)
3461 goto bad;
3462
3463 if (sysctl_createv(clog, 0, &rnode, &cnode,
3464 CTLFLAG_PERMANENT,
3465 CTLTYPE_INT, "len",
3466 SYSCTL_DESCR("Current output queue length"),
3467 NULL, 0, &ifq->ifq_len, 0,
3468 CTL_CREATE, CTL_EOL) != 0)
3469 goto bad;
3470
3471 if (sysctl_createv(clog, 0, &rnode, &cnode,
3472 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3473 CTLTYPE_INT, "maxlen",
3474 SYSCTL_DESCR("Maximum allowed output queue length"),
3475 NULL, 0, &ifq->ifq_maxlen, 0,
3476 CTL_CREATE, CTL_EOL) != 0)
3477 goto bad;
3478
3479 if (sysctl_createv(clog, 0, &rnode, &cnode,
3480 CTLFLAG_PERMANENT,
3481 CTLTYPE_INT, "drops",
3482 SYSCTL_DESCR("Packets dropped due to full output queue"),
3483 NULL, 0, &ifq->ifq_drops, 0,
3484 CTL_CREATE, CTL_EOL) != 0)
3485 goto bad;
3486
3487 return;
3488 bad:
3489 printf("%s: could not attach sysctl nodes\n", ifname);
3490 return;
3491 }
3492
3493 #if defined(INET) || defined(INET6)
3494
3495 #define SYSCTL_NET_PKTQ(q, cn, c) \
3496 static int \
3497 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3498 { \
3499 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3500 }
3501
3502 #if defined(INET)
3503 static int
3504 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3505 {
3506 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3507 }
3508 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3509 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3510 #endif
3511
3512 #if defined(INET6)
3513 static int
3514 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3515 {
3516 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3517 }
3518 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3519 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3520 #endif
3521
3522 static void
3523 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3524 {
3525 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3526 const char *pfname = NULL, *ipname = NULL;
3527 int ipn = 0, qid = 0;
3528
3529 switch (pf) {
3530 #if defined(INET)
3531 case PF_INET:
3532 len_func = sysctl_net_ip_pktq_items;
3533 maxlen_func = sysctl_net_ip_pktq_maxlen;
3534 drops_func = sysctl_net_ip_pktq_drops;
3535 pfname = "inet", ipn = IPPROTO_IP;
3536 ipname = "ip", qid = IPCTL_IFQ;
3537 break;
3538 #endif
3539 #if defined(INET6)
3540 case PF_INET6:
3541 len_func = sysctl_net_ip6_pktq_items;
3542 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3543 drops_func = sysctl_net_ip6_pktq_drops;
3544 pfname = "inet6", ipn = IPPROTO_IPV6;
3545 ipname = "ip6", qid = IPV6CTL_IFQ;
3546 break;
3547 #endif
3548 default:
3549 KASSERT(false);
3550 }
3551
3552 sysctl_createv(clog, 0, NULL, NULL,
3553 CTLFLAG_PERMANENT,
3554 CTLTYPE_NODE, pfname, NULL,
3555 NULL, 0, NULL, 0,
3556 CTL_NET, pf, CTL_EOL);
3557 sysctl_createv(clog, 0, NULL, NULL,
3558 CTLFLAG_PERMANENT,
3559 CTLTYPE_NODE, ipname, NULL,
3560 NULL, 0, NULL, 0,
3561 CTL_NET, pf, ipn, CTL_EOL);
3562 sysctl_createv(clog, 0, NULL, NULL,
3563 CTLFLAG_PERMANENT,
3564 CTLTYPE_NODE, "ifq",
3565 SYSCTL_DESCR("Protocol input queue controls"),
3566 NULL, 0, NULL, 0,
3567 CTL_NET, pf, ipn, qid, CTL_EOL);
3568
3569 sysctl_createv(clog, 0, NULL, NULL,
3570 CTLFLAG_PERMANENT,
3571 CTLTYPE_INT, "len",
3572 SYSCTL_DESCR("Current input queue length"),
3573 len_func, 0, NULL, 0,
3574 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3575 sysctl_createv(clog, 0, NULL, NULL,
3576 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3577 CTLTYPE_INT, "maxlen",
3578 SYSCTL_DESCR("Maximum allowed input queue length"),
3579 maxlen_func, 0, NULL, 0,
3580 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3581 sysctl_createv(clog, 0, NULL, NULL,
3582 CTLFLAG_PERMANENT,
3583 CTLTYPE_INT, "drops",
3584 SYSCTL_DESCR("Packets dropped due to full input queue"),
3585 drops_func, 0, NULL, 0,
3586 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3587 }
3588 #endif /* INET || INET6 */
3589
3590 static int
3591 if_sdl_sysctl(SYSCTLFN_ARGS)
3592 {
3593 struct ifnet *ifp;
3594 const struct sockaddr_dl *sdl;
3595 struct psref psref;
3596 int error = 0;
3597 int bound;
3598
3599 if (namelen != 1)
3600 return EINVAL;
3601
3602 bound = curlwp_bind();
3603 ifp = if_get_byindex(name[0], &psref);
3604 if (ifp == NULL) {
3605 error = ENODEV;
3606 goto out0;
3607 }
3608
3609 sdl = ifp->if_sadl;
3610 if (sdl == NULL) {
3611 *oldlenp = 0;
3612 goto out1;
3613 }
3614
3615 if (oldp == NULL) {
3616 *oldlenp = sdl->sdl_alen;
3617 goto out1;
3618 }
3619
3620 if (*oldlenp >= sdl->sdl_alen)
3621 *oldlenp = sdl->sdl_alen;
3622 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3623 out1:
3624 if_put(ifp, &psref);
3625 out0:
3626 curlwp_bindx(bound);
3627 return error;
3628 }
3629
3630 static void
3631 if_sysctl_setup(struct sysctllog **clog)
3632 {
3633 const struct sysctlnode *rnode = NULL;
3634
3635 sysctl_createv(clog, 0, NULL, &rnode,
3636 CTLFLAG_PERMANENT,
3637 CTLTYPE_NODE, "sdl",
3638 SYSCTL_DESCR("Get active link-layer address"),
3639 if_sdl_sysctl, 0, NULL, 0,
3640 CTL_NET, CTL_CREATE, CTL_EOL);
3641
3642 #if defined(INET)
3643 sysctl_net_pktq_setup(NULL, PF_INET);
3644 #endif
3645 #ifdef INET6
3646 if (in6_present)
3647 sysctl_net_pktq_setup(NULL, PF_INET6);
3648 #endif
3649 }
3650