Home | History | Annotate | Line # | Download | only in net
if.c revision 1.408
      1 /*	$NetBSD: if.c,v 1.408 2017/12/07 03:16:24 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.408 2017/12/07 03:16:24 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 
     99 #include "opt_atalk.h"
    100 #include "opt_natm.h"
    101 #include "opt_wlan.h"
    102 #include "opt_net_mpsafe.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/proc.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/domain.h>
    113 #include <sys/protosw.h>
    114 #include <sys/kernel.h>
    115 #include <sys/ioctl.h>
    116 #include <sys/sysctl.h>
    117 #include <sys/syslog.h>
    118 #include <sys/kauth.h>
    119 #include <sys/kmem.h>
    120 #include <sys/xcall.h>
    121 #include <sys/cpu.h>
    122 #include <sys/intr.h>
    123 
    124 #include <net/if.h>
    125 #include <net/if_dl.h>
    126 #include <net/if_ether.h>
    127 #include <net/if_media.h>
    128 #include <net80211/ieee80211.h>
    129 #include <net80211/ieee80211_ioctl.h>
    130 #include <net/if_types.h>
    131 #include <net/route.h>
    132 #include <net/netisr.h>
    133 #include <sys/module.h>
    134 #ifdef NETATALK
    135 #include <netatalk/at_extern.h>
    136 #include <netatalk/at.h>
    137 #endif
    138 #include <net/pfil.h>
    139 #include <netinet/in.h>
    140 #include <netinet/in_var.h>
    141 #include <netinet/ip_encap.h>
    142 #include <net/bpf.h>
    143 
    144 #ifdef INET6
    145 #include <netinet6/in6_var.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include "ether.h"
    150 #include "fddi.h"
    151 #include "token.h"
    152 
    153 #include "carp.h"
    154 #if NCARP > 0
    155 #include <netinet/ip_carp.h>
    156 #endif
    157 
    158 #include <compat/sys/sockio.h>
    159 #include <compat/sys/socket.h>
    160 
    161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    163 
    164 /*
    165  * Global list of interfaces.
    166  */
    167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    168 struct ifnet_head		ifnet_list;
    169 
    170 struct pslist_head		ifnet_pslist;
    171 static ifnet_t **		ifindex2ifnet = NULL;
    172 static u_int			if_index = 1;
    173 static size_t			if_indexlim = 0;
    174 static uint64_t			index_gen;
    175 /* Mutex to protect the above objects. */
    176 kmutex_t			ifnet_mtx __cacheline_aligned;
    177 static struct psref_class	*ifnet_psref_class __read_mostly;
    178 static pserialize_t		ifnet_psz;
    179 
    180 static kmutex_t			if_clone_mtx;
    181 
    182 struct ifnet *lo0ifp;
    183 int	ifqmaxlen = IFQ_MAXLEN;
    184 
    185 struct psref_class		*ifa_psref_class __read_mostly;
    186 
    187 static int	if_delroute_matcher(struct rtentry *, void *);
    188 
    189 static bool if_is_unit(const char *);
    190 static struct if_clone *if_clone_lookup(const char *, int *);
    191 
    192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    193 static int if_cloners_count;
    194 
    195 /* Packet filtering hook for interfaces. */
    196 pfil_head_t *			if_pfil __read_mostly;
    197 
    198 static kauth_listener_t if_listener;
    199 
    200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    203     struct ifaltq *);
    204 static void if_slowtimo(void *);
    205 static void if_free_sadl(struct ifnet *);
    206 static void if_attachdomain1(struct ifnet *);
    207 static int ifconf(u_long, void *);
    208 static int if_transmit(struct ifnet *, struct mbuf *);
    209 static int if_clone_create(const char *);
    210 static int if_clone_destroy(const char *);
    211 static void if_link_state_change_si(void *);
    212 static void if_up_locked(struct ifnet *);
    213 static void _if_down(struct ifnet *);
    214 static void if_down_deactivated(struct ifnet *);
    215 
    216 struct if_percpuq {
    217 	struct ifnet	*ipq_ifp;
    218 	void		*ipq_si;
    219 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    220 };
    221 
    222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    223 
    224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    227     struct if_percpuq *);
    228 
    229 struct if_deferred_start {
    230 	struct ifnet	*ids_ifp;
    231 	void		(*ids_if_start)(struct ifnet *);
    232 	void		*ids_si;
    233 };
    234 
    235 static void if_deferred_start_softint(void *);
    236 static void if_deferred_start_common(struct ifnet *);
    237 static void if_deferred_start_destroy(struct ifnet *);
    238 
    239 #if defined(INET) || defined(INET6)
    240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    241 #endif
    242 
    243 static void if_sysctl_setup(struct sysctllog **);
    244 
    245 /*
    246  * Pointer to stub or real compat_cvtcmd() depending on presence of
    247  * the compat module
    248  */
    249 u_long stub_compat_cvtcmd(u_long);
    250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
    251 
    252 /* Similarly, pointer to compat_ifioctl() if it is present */
    253 
    254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
    255 	struct lwp *) = NULL;
    256 
    257 /* The stub version of compat_cvtcmd() */
    258 u_long stub_compat_cvtcmd(u_long cmd)
    259 {
    260 
    261 	return cmd;
    262 }
    263 
    264 static int
    265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    266     void *arg0, void *arg1, void *arg2, void *arg3)
    267 {
    268 	int result;
    269 	enum kauth_network_req req;
    270 
    271 	result = KAUTH_RESULT_DEFER;
    272 	req = (enum kauth_network_req)arg1;
    273 
    274 	if (action != KAUTH_NETWORK_INTERFACE)
    275 		return result;
    276 
    277 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    278 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    279 		result = KAUTH_RESULT_ALLOW;
    280 
    281 	return result;
    282 }
    283 
    284 /*
    285  * Network interface utility routines.
    286  *
    287  * Routines with ifa_ifwith* names take sockaddr *'s as
    288  * parameters.
    289  */
    290 void
    291 ifinit(void)
    292 {
    293 
    294 	if_sysctl_setup(NULL);
    295 
    296 #if (defined(INET) || defined(INET6))
    297 	encapinit();
    298 #endif
    299 
    300 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    301 	    if_listener_cb, NULL);
    302 
    303 	/* interfaces are available, inform socket code */
    304 	ifioctl = doifioctl;
    305 }
    306 
    307 /*
    308  * XXX Initialization before configure().
    309  * XXX hack to get pfil_add_hook working in autoconf.
    310  */
    311 void
    312 ifinit1(void)
    313 {
    314 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    315 
    316 	TAILQ_INIT(&ifnet_list);
    317 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    318 	ifnet_psz = pserialize_create();
    319 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    320 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    321 	PSLIST_INIT(&ifnet_pslist);
    322 
    323 	if_indexlim = 8;
    324 
    325 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    326 	KASSERT(if_pfil != NULL);
    327 
    328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    329 	etherinit();
    330 #endif
    331 }
    332 
    333 ifnet_t *
    334 if_alloc(u_char type)
    335 {
    336 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    337 }
    338 
    339 void
    340 if_free(ifnet_t *ifp)
    341 {
    342 	kmem_free(ifp, sizeof(ifnet_t));
    343 }
    344 
    345 void
    346 if_initname(struct ifnet *ifp, const char *name, int unit)
    347 {
    348 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    349 	    "%s%d", name, unit);
    350 }
    351 
    352 /*
    353  * Null routines used while an interface is going away.  These routines
    354  * just return an error.
    355  */
    356 
    357 int
    358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    359     const struct sockaddr *so, const struct rtentry *rt)
    360 {
    361 
    362 	return ENXIO;
    363 }
    364 
    365 void
    366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    367 {
    368 
    369 	/* Nothing. */
    370 }
    371 
    372 void
    373 if_nullstart(struct ifnet *ifp)
    374 {
    375 
    376 	/* Nothing. */
    377 }
    378 
    379 int
    380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    381 {
    382 
    383 	m_freem(m);
    384 	return ENXIO;
    385 }
    386 
    387 int
    388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    389 {
    390 
    391 	return ENXIO;
    392 }
    393 
    394 int
    395 if_nullinit(struct ifnet *ifp)
    396 {
    397 
    398 	return ENXIO;
    399 }
    400 
    401 void
    402 if_nullstop(struct ifnet *ifp, int disable)
    403 {
    404 
    405 	/* Nothing. */
    406 }
    407 
    408 void
    409 if_nullslowtimo(struct ifnet *ifp)
    410 {
    411 
    412 	/* Nothing. */
    413 }
    414 
    415 void
    416 if_nulldrain(struct ifnet *ifp)
    417 {
    418 
    419 	/* Nothing. */
    420 }
    421 
    422 void
    423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    424 {
    425 	struct ifaddr *ifa;
    426 	struct sockaddr_dl *sdl;
    427 
    428 	ifp->if_addrlen = addrlen;
    429 	if_alloc_sadl(ifp);
    430 	ifa = ifp->if_dl;
    431 	sdl = satosdl(ifa->ifa_addr);
    432 
    433 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    434 	if (factory) {
    435 		ifp->if_hwdl = ifp->if_dl;
    436 		ifaref(ifp->if_hwdl);
    437 	}
    438 	/* TBD routing socket */
    439 }
    440 
    441 struct ifaddr *
    442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    443 {
    444 	unsigned socksize, ifasize;
    445 	int addrlen, namelen;
    446 	struct sockaddr_dl *mask, *sdl;
    447 	struct ifaddr *ifa;
    448 
    449 	namelen = strlen(ifp->if_xname);
    450 	addrlen = ifp->if_addrlen;
    451 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    452 	ifasize = sizeof(*ifa) + 2 * socksize;
    453 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    454 
    455 	sdl = (struct sockaddr_dl *)(ifa + 1);
    456 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    457 
    458 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    459 	    ifp->if_xname, namelen, NULL, addrlen);
    460 	mask->sdl_family = AF_LINK;
    461 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    462 	memset(&mask->sdl_data[0], 0xff, namelen);
    463 	ifa->ifa_rtrequest = link_rtrequest;
    464 	ifa->ifa_addr = (struct sockaddr *)sdl;
    465 	ifa->ifa_netmask = (struct sockaddr *)mask;
    466 	ifa_psref_init(ifa);
    467 
    468 	*sdlp = sdl;
    469 
    470 	return ifa;
    471 }
    472 
    473 static void
    474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    475 {
    476 	const struct sockaddr_dl *sdl;
    477 
    478 	ifp->if_dl = ifa;
    479 	ifaref(ifa);
    480 	sdl = satosdl(ifa->ifa_addr);
    481 	ifp->if_sadl = sdl;
    482 }
    483 
    484 /*
    485  * Allocate the link level name for the specified interface.  This
    486  * is an attachment helper.  It must be called after ifp->if_addrlen
    487  * is initialized, which may not be the case when if_attach() is
    488  * called.
    489  */
    490 void
    491 if_alloc_sadl(struct ifnet *ifp)
    492 {
    493 	struct ifaddr *ifa;
    494 	const struct sockaddr_dl *sdl;
    495 
    496 	/*
    497 	 * If the interface already has a link name, release it
    498 	 * now.  This is useful for interfaces that can change
    499 	 * link types, and thus switch link names often.
    500 	 */
    501 	if (ifp->if_sadl != NULL)
    502 		if_free_sadl(ifp);
    503 
    504 	ifa = if_dl_create(ifp, &sdl);
    505 
    506 	ifa_insert(ifp, ifa);
    507 	if_sadl_setrefs(ifp, ifa);
    508 }
    509 
    510 static void
    511 if_deactivate_sadl(struct ifnet *ifp)
    512 {
    513 	struct ifaddr *ifa;
    514 
    515 	KASSERT(ifp->if_dl != NULL);
    516 
    517 	ifa = ifp->if_dl;
    518 
    519 	ifp->if_sadl = NULL;
    520 
    521 	ifp->if_dl = NULL;
    522 	ifafree(ifa);
    523 }
    524 
    525 static void
    526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    527 {
    528 	struct ifaddr *old;
    529 
    530 	KASSERT(ifp->if_dl != NULL);
    531 
    532 	old = ifp->if_dl;
    533 
    534 	ifaref(ifa);
    535 	/* XXX Update if_dl and if_sadl atomically */
    536 	ifp->if_dl = ifa;
    537 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    538 
    539 	ifafree(old);
    540 }
    541 
    542 void
    543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    544     const struct sockaddr_dl *sdl)
    545 {
    546 	int s, ss;
    547 	struct ifaddr *ifa;
    548 	int bound = curlwp_bind();
    549 
    550 	KASSERT(ifa_held(ifa0));
    551 
    552 	s = splsoftnet();
    553 
    554 	if_replace_sadl(ifp, ifa0);
    555 
    556 	ss = pserialize_read_enter();
    557 	IFADDR_READER_FOREACH(ifa, ifp) {
    558 		struct psref psref;
    559 		ifa_acquire(ifa, &psref);
    560 		pserialize_read_exit(ss);
    561 
    562 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    563 
    564 		ss = pserialize_read_enter();
    565 		ifa_release(ifa, &psref);
    566 	}
    567 	pserialize_read_exit(ss);
    568 
    569 	splx(s);
    570 	curlwp_bindx(bound);
    571 }
    572 
    573 /*
    574  * Free the link level name for the specified interface.  This is
    575  * a detach helper.  This is called from if_detach().
    576  */
    577 static void
    578 if_free_sadl(struct ifnet *ifp)
    579 {
    580 	struct ifaddr *ifa;
    581 	int s;
    582 
    583 	ifa = ifp->if_dl;
    584 	if (ifa == NULL) {
    585 		KASSERT(ifp->if_sadl == NULL);
    586 		return;
    587 	}
    588 
    589 	KASSERT(ifp->if_sadl != NULL);
    590 
    591 	s = splsoftnet();
    592 	rtinit(ifa, RTM_DELETE, 0);
    593 	ifa_remove(ifp, ifa);
    594 	if_deactivate_sadl(ifp);
    595 	if (ifp->if_hwdl == ifa) {
    596 		ifafree(ifa);
    597 		ifp->if_hwdl = NULL;
    598 	}
    599 	splx(s);
    600 }
    601 
    602 static void
    603 if_getindex(ifnet_t *ifp)
    604 {
    605 	bool hitlimit = false;
    606 
    607 	ifp->if_index_gen = index_gen++;
    608 
    609 	ifp->if_index = if_index;
    610 	if (ifindex2ifnet == NULL) {
    611 		if_index++;
    612 		goto skip;
    613 	}
    614 	while (if_byindex(ifp->if_index)) {
    615 		/*
    616 		 * If we hit USHRT_MAX, we skip back to 0 since
    617 		 * there are a number of places where the value
    618 		 * of if_index or if_index itself is compared
    619 		 * to or stored in an unsigned short.  By
    620 		 * jumping back, we won't botch those assignments
    621 		 * or comparisons.
    622 		 */
    623 		if (++if_index == 0) {
    624 			if_index = 1;
    625 		} else if (if_index == USHRT_MAX) {
    626 			/*
    627 			 * However, if we have to jump back to
    628 			 * zero *twice* without finding an empty
    629 			 * slot in ifindex2ifnet[], then there
    630 			 * there are too many (>65535) interfaces.
    631 			 */
    632 			if (hitlimit) {
    633 				panic("too many interfaces");
    634 			}
    635 			hitlimit = true;
    636 			if_index = 1;
    637 		}
    638 		ifp->if_index = if_index;
    639 	}
    640 skip:
    641 	/*
    642 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    643 	 * grow dynamically, it should grow too.
    644 	 */
    645 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    646 		size_t m, n, oldlim;
    647 		void *q;
    648 
    649 		oldlim = if_indexlim;
    650 		while (ifp->if_index >= if_indexlim)
    651 			if_indexlim <<= 1;
    652 
    653 		/* grow ifindex2ifnet */
    654 		m = oldlim * sizeof(struct ifnet *);
    655 		n = if_indexlim * sizeof(struct ifnet *);
    656 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    657 		if (ifindex2ifnet != NULL) {
    658 			memcpy(q, ifindex2ifnet, m);
    659 			free(ifindex2ifnet, M_IFADDR);
    660 		}
    661 		ifindex2ifnet = (struct ifnet **)q;
    662 	}
    663 	ifindex2ifnet[ifp->if_index] = ifp;
    664 }
    665 
    666 /*
    667  * Initialize an interface and assign an index for it.
    668  *
    669  * It must be called prior to a device specific attach routine
    670  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    671  * and be followed by if_register:
    672  *
    673  *     if_initialize(ifp);
    674  *     ether_ifattach(ifp, enaddr);
    675  *     if_register(ifp);
    676  */
    677 int
    678 if_initialize(ifnet_t *ifp)
    679 {
    680 	int rv = 0;
    681 
    682 	KASSERT(if_indexlim > 0);
    683 	TAILQ_INIT(&ifp->if_addrlist);
    684 
    685 	/*
    686 	 * Link level name is allocated later by a separate call to
    687 	 * if_alloc_sadl().
    688 	 */
    689 
    690 	if (ifp->if_snd.ifq_maxlen == 0)
    691 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    692 
    693 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    694 
    695 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    696 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    697 
    698 	ifp->if_capenable = 0;
    699 	ifp->if_csum_flags_tx = 0;
    700 	ifp->if_csum_flags_rx = 0;
    701 
    702 #ifdef ALTQ
    703 	ifp->if_snd.altq_type = 0;
    704 	ifp->if_snd.altq_disc = NULL;
    705 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    706 	ifp->if_snd.altq_tbr  = NULL;
    707 	ifp->if_snd.altq_ifp  = ifp;
    708 #endif
    709 
    710 	IFQ_LOCK_INIT(&ifp->if_snd);
    711 
    712 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    713 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    714 
    715 	IF_AFDATA_LOCK_INIT(ifp);
    716 
    717 	if (if_is_link_state_changeable(ifp)) {
    718 		u_int flags = SOFTINT_NET;
    719 		flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
    720 		    SOFTINT_MPSAFE : 0;
    721 		ifp->if_link_si = softint_establish(flags,
    722 		    if_link_state_change_si, ifp);
    723 		if (ifp->if_link_si == NULL) {
    724 			rv = ENOMEM;
    725 			goto fail;
    726 		}
    727 	}
    728 
    729 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    730 	PSLIST_INIT(&ifp->if_addr_pslist);
    731 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    732 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    733 	LIST_INIT(&ifp->if_multiaddrs);
    734 
    735 	IFNET_LOCK();
    736 	if_getindex(ifp);
    737 	IFNET_UNLOCK();
    738 
    739 	return 0;
    740 
    741 fail:
    742 	IF_AFDATA_LOCK_DESTROY(ifp);
    743 
    744 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    745 	(void)pfil_head_destroy(ifp->if_pfil);
    746 
    747 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    748 
    749 	return rv;
    750 }
    751 
    752 /*
    753  * Register an interface to the list of "active" interfaces.
    754  */
    755 void
    756 if_register(ifnet_t *ifp)
    757 {
    758 	/*
    759 	 * If the driver has not supplied its own if_ioctl, then
    760 	 * supply the default.
    761 	 */
    762 	if (ifp->if_ioctl == NULL)
    763 		ifp->if_ioctl = ifioctl_common;
    764 
    765 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    766 
    767 	if (!STAILQ_EMPTY(&domains))
    768 		if_attachdomain1(ifp);
    769 
    770 	/* Announce the interface. */
    771 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    772 
    773 	if (ifp->if_slowtimo != NULL) {
    774 		int flags = ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
    775 		    CALLOUT_MPSAFE : 0;
    776 		ifp->if_slowtimo_ch =
    777 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    778 		callout_init(ifp->if_slowtimo_ch, flags);
    779 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    780 		if_slowtimo(ifp);
    781 	}
    782 
    783 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    784 		ifp->if_transmit = if_transmit;
    785 
    786 	IFNET_LOCK();
    787 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    788 	IFNET_WRITER_INSERT_TAIL(ifp);
    789 	IFNET_UNLOCK();
    790 }
    791 
    792 /*
    793  * The if_percpuq framework
    794  *
    795  * It allows network device drivers to execute the network stack
    796  * in softint (so called softint-based if_input). It utilizes
    797  * softint and percpu ifqueue. It doesn't distribute any packets
    798  * between CPUs, unlike pktqueue(9).
    799  *
    800  * Currently we support two options for device drivers to apply the framework:
    801  * - Use it implicitly with less changes
    802  *   - If you use if_attach in driver's _attach function and if_input in
    803  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    804  *     the packet implicitly
    805  * - Use it explicitly in each driver (recommended)
    806  *   - You can use if_percpuq_* directly in your driver
    807  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    808  *   - See wm(4) as a reference implementation
    809  */
    810 
    811 static void
    812 if_percpuq_softint(void *arg)
    813 {
    814 	struct if_percpuq *ipq = arg;
    815 	struct ifnet *ifp = ipq->ipq_ifp;
    816 	struct mbuf *m;
    817 
    818 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    819 		ifp->if_ipackets++;
    820 		bpf_mtap(ifp, m);
    821 
    822 		ifp->_if_input(ifp, m);
    823 	}
    824 }
    825 
    826 static void
    827 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    828 {
    829 	struct ifqueue *const ifq = p;
    830 
    831 	memset(ifq, 0, sizeof(*ifq));
    832 	ifq->ifq_maxlen = IFQ_MAXLEN;
    833 }
    834 
    835 struct if_percpuq *
    836 if_percpuq_create(struct ifnet *ifp)
    837 {
    838 	struct if_percpuq *ipq;
    839 
    840 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    841 	ipq->ipq_ifp = ifp;
    842 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    843 	    if_percpuq_softint, ipq);
    844 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    845 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    846 
    847 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    848 
    849 	return ipq;
    850 }
    851 
    852 static struct mbuf *
    853 if_percpuq_dequeue(struct if_percpuq *ipq)
    854 {
    855 	struct mbuf *m;
    856 	struct ifqueue *ifq;
    857 	int s;
    858 
    859 	s = splnet();
    860 	ifq = percpu_getref(ipq->ipq_ifqs);
    861 	IF_DEQUEUE(ifq, m);
    862 	percpu_putref(ipq->ipq_ifqs);
    863 	splx(s);
    864 
    865 	return m;
    866 }
    867 
    868 static void
    869 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    870 {
    871 	struct ifqueue *const ifq = p;
    872 
    873 	IF_PURGE(ifq);
    874 }
    875 
    876 void
    877 if_percpuq_destroy(struct if_percpuq *ipq)
    878 {
    879 
    880 	/* if_detach may already destroy it */
    881 	if (ipq == NULL)
    882 		return;
    883 
    884 	softint_disestablish(ipq->ipq_si);
    885 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    886 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    887 	kmem_free(ipq, sizeof(*ipq));
    888 }
    889 
    890 void
    891 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    892 {
    893 	struct ifqueue *ifq;
    894 	int s;
    895 
    896 	KASSERT(ipq != NULL);
    897 
    898 	s = splnet();
    899 	ifq = percpu_getref(ipq->ipq_ifqs);
    900 	if (IF_QFULL(ifq)) {
    901 		IF_DROP(ifq);
    902 		percpu_putref(ipq->ipq_ifqs);
    903 		m_freem(m);
    904 		goto out;
    905 	}
    906 	IF_ENQUEUE(ifq, m);
    907 	percpu_putref(ipq->ipq_ifqs);
    908 
    909 	softint_schedule(ipq->ipq_si);
    910 out:
    911 	splx(s);
    912 }
    913 
    914 static void
    915 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    916 {
    917 	struct ifqueue *const ifq = p;
    918 	int *sum = arg;
    919 
    920 	*sum += ifq->ifq_drops;
    921 }
    922 
    923 static int
    924 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    925 {
    926 	struct sysctlnode node;
    927 	struct if_percpuq *ipq;
    928 	int sum = 0;
    929 	int error;
    930 
    931 	node = *rnode;
    932 	ipq = node.sysctl_data;
    933 
    934 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    935 
    936 	node.sysctl_data = &sum;
    937 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    938 	if (error != 0 || newp == NULL)
    939 		return error;
    940 
    941 	return 0;
    942 }
    943 
    944 static void
    945 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    946     struct if_percpuq *ipq)
    947 {
    948 	const struct sysctlnode *cnode, *rnode;
    949 
    950 	if (sysctl_createv(clog, 0, NULL, &rnode,
    951 		       CTLFLAG_PERMANENT,
    952 		       CTLTYPE_NODE, "interfaces",
    953 		       SYSCTL_DESCR("Per-interface controls"),
    954 		       NULL, 0, NULL, 0,
    955 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    956 		goto bad;
    957 
    958 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    959 		       CTLFLAG_PERMANENT,
    960 		       CTLTYPE_NODE, ifname,
    961 		       SYSCTL_DESCR("Interface controls"),
    962 		       NULL, 0, NULL, 0,
    963 		       CTL_CREATE, CTL_EOL) != 0)
    964 		goto bad;
    965 
    966 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    967 		       CTLFLAG_PERMANENT,
    968 		       CTLTYPE_NODE, "rcvq",
    969 		       SYSCTL_DESCR("Interface input queue controls"),
    970 		       NULL, 0, NULL, 0,
    971 		       CTL_CREATE, CTL_EOL) != 0)
    972 		goto bad;
    973 
    974 #ifdef NOTYET
    975 	/* XXX Should show each per-CPU queue length? */
    976 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    977 		       CTLFLAG_PERMANENT,
    978 		       CTLTYPE_INT, "len",
    979 		       SYSCTL_DESCR("Current input queue length"),
    980 		       sysctl_percpuq_len, 0, NULL, 0,
    981 		       CTL_CREATE, CTL_EOL) != 0)
    982 		goto bad;
    983 
    984 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    985 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    986 		       CTLTYPE_INT, "maxlen",
    987 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    988 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    989 		       CTL_CREATE, CTL_EOL) != 0)
    990 		goto bad;
    991 #endif
    992 
    993 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    994 		       CTLFLAG_PERMANENT,
    995 		       CTLTYPE_INT, "drops",
    996 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    997 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    998 		       CTL_CREATE, CTL_EOL) != 0)
    999 		goto bad;
   1000 
   1001 	return;
   1002 bad:
   1003 	printf("%s: could not attach sysctl nodes\n", ifname);
   1004 	return;
   1005 }
   1006 
   1007 /*
   1008  * The deferred if_start framework
   1009  *
   1010  * The common APIs to defer if_start to softint when if_start is requested
   1011  * from a device driver running in hardware interrupt context.
   1012  */
   1013 /*
   1014  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1015  * deferred if_start.
   1016  */
   1017 static void
   1018 if_deferred_start_softint(void *arg)
   1019 {
   1020 	struct if_deferred_start *ids = arg;
   1021 	struct ifnet *ifp = ids->ids_ifp;
   1022 
   1023 	ids->ids_if_start(ifp);
   1024 }
   1025 
   1026 /*
   1027  * The default callback function for deferred if_start.
   1028  */
   1029 static void
   1030 if_deferred_start_common(struct ifnet *ifp)
   1031 {
   1032 	int s;
   1033 
   1034 	s = splnet();
   1035 	if_start_lock(ifp);
   1036 	splx(s);
   1037 }
   1038 
   1039 static inline bool
   1040 if_snd_is_used(struct ifnet *ifp)
   1041 {
   1042 
   1043 	return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
   1044 	    ALTQ_IS_ENABLED(&ifp->if_snd);
   1045 }
   1046 
   1047 /*
   1048  * Schedule deferred if_start.
   1049  */
   1050 void
   1051 if_schedule_deferred_start(struct ifnet *ifp)
   1052 {
   1053 
   1054 	KASSERT(ifp->if_deferred_start != NULL);
   1055 
   1056 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1057 		return;
   1058 
   1059 	softint_schedule(ifp->if_deferred_start->ids_si);
   1060 }
   1061 
   1062 /*
   1063  * Create an instance of deferred if_start. A driver should call the function
   1064  * only if the driver needs deferred if_start. Drivers can setup their own
   1065  * deferred if_start function via 2nd argument.
   1066  */
   1067 void
   1068 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1069 {
   1070 	struct if_deferred_start *ids;
   1071 
   1072 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1073 	ids->ids_ifp = ifp;
   1074 	ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
   1075 	    if_deferred_start_softint, ids);
   1076 	if (func != NULL)
   1077 		ids->ids_if_start = func;
   1078 	else
   1079 		ids->ids_if_start = if_deferred_start_common;
   1080 
   1081 	ifp->if_deferred_start = ids;
   1082 }
   1083 
   1084 static void
   1085 if_deferred_start_destroy(struct ifnet *ifp)
   1086 {
   1087 
   1088 	if (ifp->if_deferred_start == NULL)
   1089 		return;
   1090 
   1091 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1092 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1093 	ifp->if_deferred_start = NULL;
   1094 }
   1095 
   1096 /*
   1097  * The common interface input routine that is called by device drivers,
   1098  * which should be used only when the driver's rx handler already runs
   1099  * in softint.
   1100  */
   1101 void
   1102 if_input(struct ifnet *ifp, struct mbuf *m)
   1103 {
   1104 
   1105 	KASSERT(ifp->if_percpuq == NULL);
   1106 	KASSERT(!cpu_intr_p());
   1107 
   1108 	ifp->if_ipackets++;
   1109 	bpf_mtap(ifp, m);
   1110 
   1111 	ifp->_if_input(ifp, m);
   1112 }
   1113 
   1114 /*
   1115  * DEPRECATED. Use if_initialize and if_register instead.
   1116  * See the above comment of if_initialize.
   1117  *
   1118  * Note that it implicitly enables if_percpuq to make drivers easy to
   1119  * migrate softint-based if_input without much changes. If you don't
   1120  * want to enable it, use if_initialize instead.
   1121  */
   1122 int
   1123 if_attach(ifnet_t *ifp)
   1124 {
   1125 	int rv;
   1126 
   1127 	rv = if_initialize(ifp);
   1128 	if (rv != 0)
   1129 		return rv;
   1130 
   1131 	ifp->if_percpuq = if_percpuq_create(ifp);
   1132 	if_register(ifp);
   1133 
   1134 	return 0;
   1135 }
   1136 
   1137 void
   1138 if_attachdomain(void)
   1139 {
   1140 	struct ifnet *ifp;
   1141 	int s;
   1142 	int bound = curlwp_bind();
   1143 
   1144 	s = pserialize_read_enter();
   1145 	IFNET_READER_FOREACH(ifp) {
   1146 		struct psref psref;
   1147 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1148 		pserialize_read_exit(s);
   1149 		if_attachdomain1(ifp);
   1150 		s = pserialize_read_enter();
   1151 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1152 	}
   1153 	pserialize_read_exit(s);
   1154 	curlwp_bindx(bound);
   1155 }
   1156 
   1157 static void
   1158 if_attachdomain1(struct ifnet *ifp)
   1159 {
   1160 	struct domain *dp;
   1161 	int s;
   1162 
   1163 	s = splsoftnet();
   1164 
   1165 	/* address family dependent data region */
   1166 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1167 	DOMAIN_FOREACH(dp) {
   1168 		if (dp->dom_ifattach != NULL)
   1169 			ifp->if_afdata[dp->dom_family] =
   1170 			    (*dp->dom_ifattach)(ifp);
   1171 	}
   1172 
   1173 	splx(s);
   1174 }
   1175 
   1176 /*
   1177  * Deactivate an interface.  This points all of the procedure
   1178  * handles at error stubs.  May be called from interrupt context.
   1179  */
   1180 void
   1181 if_deactivate(struct ifnet *ifp)
   1182 {
   1183 	int s;
   1184 
   1185 	s = splsoftnet();
   1186 
   1187 	ifp->if_output	 = if_nulloutput;
   1188 	ifp->_if_input	 = if_nullinput;
   1189 	ifp->if_start	 = if_nullstart;
   1190 	ifp->if_transmit = if_nulltransmit;
   1191 	ifp->if_ioctl	 = if_nullioctl;
   1192 	ifp->if_init	 = if_nullinit;
   1193 	ifp->if_stop	 = if_nullstop;
   1194 	ifp->if_slowtimo = if_nullslowtimo;
   1195 	ifp->if_drain	 = if_nulldrain;
   1196 
   1197 	/* No more packets may be enqueued. */
   1198 	ifp->if_snd.ifq_maxlen = 0;
   1199 
   1200 	splx(s);
   1201 }
   1202 
   1203 bool
   1204 if_is_deactivated(const struct ifnet *ifp)
   1205 {
   1206 
   1207 	return ifp->if_output == if_nulloutput;
   1208 }
   1209 
   1210 void
   1211 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1212 {
   1213 	struct ifaddr *ifa, *nifa;
   1214 	int s;
   1215 
   1216 	s = pserialize_read_enter();
   1217 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1218 		nifa = IFADDR_READER_NEXT(ifa);
   1219 		if (ifa->ifa_addr->sa_family != family)
   1220 			continue;
   1221 		pserialize_read_exit(s);
   1222 
   1223 		(*purgeaddr)(ifa);
   1224 
   1225 		s = pserialize_read_enter();
   1226 	}
   1227 	pserialize_read_exit(s);
   1228 }
   1229 
   1230 #ifdef IFAREF_DEBUG
   1231 static struct ifaddr **ifa_list;
   1232 static int ifa_list_size;
   1233 
   1234 /* Depends on only one if_attach runs at once */
   1235 static void
   1236 if_build_ifa_list(struct ifnet *ifp)
   1237 {
   1238 	struct ifaddr *ifa;
   1239 	int i;
   1240 
   1241 	KASSERT(ifa_list == NULL);
   1242 	KASSERT(ifa_list_size == 0);
   1243 
   1244 	IFADDR_READER_FOREACH(ifa, ifp)
   1245 		ifa_list_size++;
   1246 
   1247 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1248 	i = 0;
   1249 	IFADDR_READER_FOREACH(ifa, ifp) {
   1250 		ifa_list[i++] = ifa;
   1251 		ifaref(ifa);
   1252 	}
   1253 }
   1254 
   1255 static void
   1256 if_check_and_free_ifa_list(struct ifnet *ifp)
   1257 {
   1258 	int i;
   1259 	struct ifaddr *ifa;
   1260 
   1261 	if (ifa_list == NULL)
   1262 		return;
   1263 
   1264 	for (i = 0; i < ifa_list_size; i++) {
   1265 		char buf[64];
   1266 
   1267 		ifa = ifa_list[i];
   1268 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1269 		if (ifa->ifa_refcnt > 1) {
   1270 			log(LOG_WARNING,
   1271 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1272 			    buf, ifa->ifa_refcnt - 1);
   1273 		} else
   1274 			log(LOG_DEBUG,
   1275 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1276 			    buf, ifa->ifa_refcnt - 1);
   1277 		ifafree(ifa);
   1278 	}
   1279 
   1280 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1281 	ifa_list = NULL;
   1282 	ifa_list_size = 0;
   1283 }
   1284 #endif
   1285 
   1286 /*
   1287  * Detach an interface from the list of "active" interfaces,
   1288  * freeing any resources as we go along.
   1289  *
   1290  * NOTE: This routine must be called with a valid thread context,
   1291  * as it may block.
   1292  */
   1293 void
   1294 if_detach(struct ifnet *ifp)
   1295 {
   1296 	struct socket so;
   1297 	struct ifaddr *ifa;
   1298 #ifdef IFAREF_DEBUG
   1299 	struct ifaddr *last_ifa = NULL;
   1300 #endif
   1301 	struct domain *dp;
   1302 	const struct protosw *pr;
   1303 	int s, i, family, purged;
   1304 	uint64_t xc;
   1305 
   1306 #ifdef IFAREF_DEBUG
   1307 	if_build_ifa_list(ifp);
   1308 #endif
   1309 	/*
   1310 	 * XXX It's kind of lame that we have to have the
   1311 	 * XXX socket structure...
   1312 	 */
   1313 	memset(&so, 0, sizeof(so));
   1314 
   1315 	s = splnet();
   1316 
   1317 	sysctl_teardown(&ifp->if_sysctl_log);
   1318 	mutex_enter(ifp->if_ioctl_lock);
   1319 	if_deactivate(ifp);
   1320 	mutex_exit(ifp->if_ioctl_lock);
   1321 
   1322 	IFNET_LOCK();
   1323 	ifindex2ifnet[ifp->if_index] = NULL;
   1324 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1325 	IFNET_WRITER_REMOVE(ifp);
   1326 	pserialize_perform(ifnet_psz);
   1327 	IFNET_UNLOCK();
   1328 
   1329 	/* Wait for all readers to drain before freeing.  */
   1330 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1331 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1332 
   1333 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1334 		ifp->if_slowtimo = NULL;
   1335 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1336 		callout_destroy(ifp->if_slowtimo_ch);
   1337 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1338 	}
   1339 	if_deferred_start_destroy(ifp);
   1340 
   1341 	/*
   1342 	 * Do an if_down() to give protocols a chance to do something.
   1343 	 */
   1344 	if_down_deactivated(ifp);
   1345 
   1346 #ifdef ALTQ
   1347 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1348 		altq_disable(&ifp->if_snd);
   1349 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1350 		altq_detach(&ifp->if_snd);
   1351 #endif
   1352 
   1353 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1354 
   1355 #if NCARP > 0
   1356 	/* Remove the interface from any carp group it is a part of.  */
   1357 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1358 		carp_ifdetach(ifp);
   1359 #endif
   1360 
   1361 	/* carp_ifdetach still uses the lock */
   1362 	mutex_obj_free(ifp->if_ioctl_lock);
   1363 	ifp->if_ioctl_lock = NULL;
   1364 
   1365 	/*
   1366 	 * Rip all the addresses off the interface.  This should make
   1367 	 * all of the routes go away.
   1368 	 *
   1369 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1370 	 * from the list, including our "cursor", ifa.  For safety,
   1371 	 * and to honor the TAILQ abstraction, I just restart the
   1372 	 * loop after each removal.  Note that the loop will exit
   1373 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1374 	 * family.  I am counting on the historical fact that at
   1375 	 * least one pr_usrreq in each address domain removes at
   1376 	 * least one ifaddr.
   1377 	 */
   1378 again:
   1379 	/*
   1380 	 * At this point, no other one tries to remove ifa in the list,
   1381 	 * so we don't need to take a lock or psref.  Avoid using
   1382 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1383 	 * violations of pserialize.
   1384 	 */
   1385 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1386 		family = ifa->ifa_addr->sa_family;
   1387 #ifdef IFAREF_DEBUG
   1388 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1389 		    ifa, family, ifa->ifa_refcnt);
   1390 		if (last_ifa != NULL && ifa == last_ifa)
   1391 			panic("if_detach: loop detected");
   1392 		last_ifa = ifa;
   1393 #endif
   1394 		if (family == AF_LINK)
   1395 			continue;
   1396 		dp = pffinddomain(family);
   1397 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1398 		/*
   1399 		 * XXX These PURGEIF calls are redundant with the
   1400 		 * purge-all-families calls below, but are left in for
   1401 		 * now both to make a smaller change, and to avoid
   1402 		 * unplanned interactions with clearing of
   1403 		 * ifp->if_addrlist.
   1404 		 */
   1405 		purged = 0;
   1406 		for (pr = dp->dom_protosw;
   1407 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1408 			so.so_proto = pr;
   1409 			if (pr->pr_usrreqs) {
   1410 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1411 				purged = 1;
   1412 			}
   1413 		}
   1414 		if (purged == 0) {
   1415 			/*
   1416 			 * XXX What's really the best thing to do
   1417 			 * XXX here?  --thorpej (at) NetBSD.org
   1418 			 */
   1419 			printf("if_detach: WARNING: AF %d not purged\n",
   1420 			    family);
   1421 			ifa_remove(ifp, ifa);
   1422 		}
   1423 		goto again;
   1424 	}
   1425 
   1426 	if_free_sadl(ifp);
   1427 
   1428 	/* Delete stray routes from the routing table. */
   1429 	for (i = 0; i <= AF_MAX; i++)
   1430 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1431 
   1432 	DOMAIN_FOREACH(dp) {
   1433 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1434 		{
   1435 			void *p = ifp->if_afdata[dp->dom_family];
   1436 			if (p) {
   1437 				ifp->if_afdata[dp->dom_family] = NULL;
   1438 				(*dp->dom_ifdetach)(ifp, p);
   1439 			}
   1440 		}
   1441 
   1442 		/*
   1443 		 * One would expect multicast memberships (INET and
   1444 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1445 		 * calls above, but if all addresses were removed from
   1446 		 * the interface prior to destruction, the calls will
   1447 		 * not be made (e.g. ppp, for which pppd(8) generally
   1448 		 * removes addresses before destroying the interface).
   1449 		 * Because there is no invariant that multicast
   1450 		 * memberships only exist for interfaces with IPv4
   1451 		 * addresses, we must call PURGEIF regardless of
   1452 		 * addresses.  (Protocols which might store ifnet
   1453 		 * pointers are marked with PR_PURGEIF.)
   1454 		 */
   1455 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1456 			so.so_proto = pr;
   1457 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1458 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1459 		}
   1460 	}
   1461 
   1462 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1463 	(void)pfil_head_destroy(ifp->if_pfil);
   1464 
   1465 	/* Announce that the interface is gone. */
   1466 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1467 
   1468 	IF_AFDATA_LOCK_DESTROY(ifp);
   1469 
   1470 	if (if_is_link_state_changeable(ifp)) {
   1471 		softint_disestablish(ifp->if_link_si);
   1472 		ifp->if_link_si = NULL;
   1473 	}
   1474 
   1475 	/*
   1476 	 * remove packets that came from ifp, from software interrupt queues.
   1477 	 */
   1478 	DOMAIN_FOREACH(dp) {
   1479 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1480 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1481 			if (iq == NULL)
   1482 				break;
   1483 			dp->dom_ifqueues[i] = NULL;
   1484 			if_detach_queues(ifp, iq);
   1485 		}
   1486 	}
   1487 
   1488 	/*
   1489 	 * IP queues have to be processed separately: net-queue barrier
   1490 	 * ensures that the packets are dequeued while a cross-call will
   1491 	 * ensure that the interrupts have completed. FIXME: not quite..
   1492 	 */
   1493 #ifdef INET
   1494 	pktq_barrier(ip_pktq);
   1495 #endif
   1496 #ifdef INET6
   1497 	if (in6_present)
   1498 		pktq_barrier(ip6_pktq);
   1499 #endif
   1500 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1501 	xc_wait(xc);
   1502 
   1503 	if (ifp->if_percpuq != NULL) {
   1504 		if_percpuq_destroy(ifp->if_percpuq);
   1505 		ifp->if_percpuq = NULL;
   1506 	}
   1507 
   1508 	splx(s);
   1509 
   1510 #ifdef IFAREF_DEBUG
   1511 	if_check_and_free_ifa_list(ifp);
   1512 #endif
   1513 }
   1514 
   1515 static void
   1516 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1517 {
   1518 	struct mbuf *m, *prev, *next;
   1519 
   1520 	prev = NULL;
   1521 	for (m = q->ifq_head; m != NULL; m = next) {
   1522 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1523 
   1524 		next = m->m_nextpkt;
   1525 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1526 			prev = m;
   1527 			continue;
   1528 		}
   1529 
   1530 		if (prev != NULL)
   1531 			prev->m_nextpkt = m->m_nextpkt;
   1532 		else
   1533 			q->ifq_head = m->m_nextpkt;
   1534 		if (q->ifq_tail == m)
   1535 			q->ifq_tail = prev;
   1536 		q->ifq_len--;
   1537 
   1538 		m->m_nextpkt = NULL;
   1539 		m_freem(m);
   1540 		IF_DROP(q);
   1541 	}
   1542 }
   1543 
   1544 /*
   1545  * Callback for a radix tree walk to delete all references to an
   1546  * ifnet.
   1547  */
   1548 static int
   1549 if_delroute_matcher(struct rtentry *rt, void *v)
   1550 {
   1551 	struct ifnet *ifp = (struct ifnet *)v;
   1552 
   1553 	if (rt->rt_ifp == ifp)
   1554 		return 1;
   1555 	else
   1556 		return 0;
   1557 }
   1558 
   1559 /*
   1560  * Create a clone network interface.
   1561  */
   1562 static int
   1563 if_clone_create(const char *name)
   1564 {
   1565 	struct if_clone *ifc;
   1566 	int unit;
   1567 	struct ifnet *ifp;
   1568 	struct psref psref;
   1569 
   1570 	KASSERT(mutex_owned(&if_clone_mtx));
   1571 
   1572 	ifc = if_clone_lookup(name, &unit);
   1573 	if (ifc == NULL)
   1574 		return EINVAL;
   1575 
   1576 	ifp = if_get(name, &psref);
   1577 	if (ifp != NULL) {
   1578 		if_put(ifp, &psref);
   1579 		return EEXIST;
   1580 	}
   1581 
   1582 	return (*ifc->ifc_create)(ifc, unit);
   1583 }
   1584 
   1585 /*
   1586  * Destroy a clone network interface.
   1587  */
   1588 static int
   1589 if_clone_destroy(const char *name)
   1590 {
   1591 	struct if_clone *ifc;
   1592 	struct ifnet *ifp;
   1593 	struct psref psref;
   1594 
   1595 	KASSERT(mutex_owned(&if_clone_mtx));
   1596 
   1597 	ifc = if_clone_lookup(name, NULL);
   1598 	if (ifc == NULL)
   1599 		return EINVAL;
   1600 
   1601 	if (ifc->ifc_destroy == NULL)
   1602 		return EOPNOTSUPP;
   1603 
   1604 	ifp = if_get(name, &psref);
   1605 	if (ifp == NULL)
   1606 		return ENXIO;
   1607 
   1608 	/* We have to disable ioctls here */
   1609 	mutex_enter(ifp->if_ioctl_lock);
   1610 	ifp->if_ioctl = if_nullioctl;
   1611 	mutex_exit(ifp->if_ioctl_lock);
   1612 
   1613 	/*
   1614 	 * We cannot call ifc_destroy with holding ifp.
   1615 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1616 	 */
   1617 	if_put(ifp, &psref);
   1618 
   1619 	return (*ifc->ifc_destroy)(ifp);
   1620 }
   1621 
   1622 static bool
   1623 if_is_unit(const char *name)
   1624 {
   1625 
   1626 	while(*name != '\0') {
   1627 		if (*name < '0' || *name > '9')
   1628 			return false;
   1629 		name++;
   1630 	}
   1631 
   1632 	return true;
   1633 }
   1634 
   1635 /*
   1636  * Look up a network interface cloner.
   1637  */
   1638 static struct if_clone *
   1639 if_clone_lookup(const char *name, int *unitp)
   1640 {
   1641 	struct if_clone *ifc;
   1642 	const char *cp;
   1643 	char *dp, ifname[IFNAMSIZ + 3];
   1644 	int unit;
   1645 
   1646 	KASSERT(mutex_owned(&if_clone_mtx));
   1647 
   1648 	strcpy(ifname, "if_");
   1649 	/* separate interface name from unit */
   1650 	/* TODO: search unit number from backward */
   1651 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1652 	    *cp && !if_is_unit(cp);)
   1653 		*dp++ = *cp++;
   1654 
   1655 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1656 		return NULL;	/* No name or unit number */
   1657 	*dp++ = '\0';
   1658 
   1659 again:
   1660 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1661 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1662 			break;
   1663 	}
   1664 
   1665 	if (ifc == NULL) {
   1666 		int error;
   1667 		if (*ifname == '\0')
   1668 			return NULL;
   1669 		mutex_exit(&if_clone_mtx);
   1670 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1671 		mutex_enter(&if_clone_mtx);
   1672 		if (error)
   1673 			return NULL;
   1674 		*ifname = '\0';
   1675 		goto again;
   1676 	}
   1677 
   1678 	unit = 0;
   1679 	while (cp - name < IFNAMSIZ && *cp) {
   1680 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1681 			/* Bogus unit number. */
   1682 			return NULL;
   1683 		}
   1684 		unit = (unit * 10) + (*cp++ - '0');
   1685 	}
   1686 
   1687 	if (unitp != NULL)
   1688 		*unitp = unit;
   1689 	return ifc;
   1690 }
   1691 
   1692 /*
   1693  * Register a network interface cloner.
   1694  */
   1695 void
   1696 if_clone_attach(struct if_clone *ifc)
   1697 {
   1698 
   1699 	mutex_enter(&if_clone_mtx);
   1700 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1701 	if_cloners_count++;
   1702 	mutex_exit(&if_clone_mtx);
   1703 }
   1704 
   1705 /*
   1706  * Unregister a network interface cloner.
   1707  */
   1708 void
   1709 if_clone_detach(struct if_clone *ifc)
   1710 {
   1711 
   1712 	mutex_enter(&if_clone_mtx);
   1713 	LIST_REMOVE(ifc, ifc_list);
   1714 	if_cloners_count--;
   1715 	mutex_exit(&if_clone_mtx);
   1716 }
   1717 
   1718 /*
   1719  * Provide list of interface cloners to userspace.
   1720  */
   1721 int
   1722 if_clone_list(int buf_count, char *buffer, int *total)
   1723 {
   1724 	char outbuf[IFNAMSIZ], *dst;
   1725 	struct if_clone *ifc;
   1726 	int count, error = 0;
   1727 
   1728 	mutex_enter(&if_clone_mtx);
   1729 	*total = if_cloners_count;
   1730 	if ((dst = buffer) == NULL) {
   1731 		/* Just asking how many there are. */
   1732 		goto out;
   1733 	}
   1734 
   1735 	if (buf_count < 0) {
   1736 		error = EINVAL;
   1737 		goto out;
   1738 	}
   1739 
   1740 	count = (if_cloners_count < buf_count) ?
   1741 	    if_cloners_count : buf_count;
   1742 
   1743 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1744 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1745 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1746 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1747 			error = ENAMETOOLONG;
   1748 			goto out;
   1749 		}
   1750 		error = copyout(outbuf, dst, sizeof(outbuf));
   1751 		if (error != 0)
   1752 			break;
   1753 	}
   1754 
   1755 out:
   1756 	mutex_exit(&if_clone_mtx);
   1757 	return error;
   1758 }
   1759 
   1760 void
   1761 ifa_psref_init(struct ifaddr *ifa)
   1762 {
   1763 
   1764 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1765 }
   1766 
   1767 void
   1768 ifaref(struct ifaddr *ifa)
   1769 {
   1770 	KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
   1771 	ifa->ifa_refcnt++;
   1772 }
   1773 
   1774 void
   1775 ifafree(struct ifaddr *ifa)
   1776 {
   1777 	KASSERT(ifa != NULL);
   1778 	KASSERT(ifa->ifa_refcnt > 0);
   1779 
   1780 	if (--ifa->ifa_refcnt == 0) {
   1781 		free(ifa, M_IFADDR);
   1782 	}
   1783 }
   1784 
   1785 bool
   1786 ifa_is_destroying(struct ifaddr *ifa)
   1787 {
   1788 
   1789 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1790 }
   1791 
   1792 void
   1793 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1794 {
   1795 
   1796 	ifa->ifa_ifp = ifp;
   1797 
   1798 	IFNET_LOCK();
   1799 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1800 	IFADDR_ENTRY_INIT(ifa);
   1801 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1802 	IFNET_UNLOCK();
   1803 
   1804 	ifaref(ifa);
   1805 }
   1806 
   1807 void
   1808 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1809 {
   1810 
   1811 	KASSERT(ifa->ifa_ifp == ifp);
   1812 
   1813 	IFNET_LOCK();
   1814 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1815 	IFADDR_WRITER_REMOVE(ifa);
   1816 #ifdef NET_MPSAFE
   1817 	pserialize_perform(ifnet_psz);
   1818 #endif
   1819 	IFNET_UNLOCK();
   1820 
   1821 #ifdef NET_MPSAFE
   1822 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1823 #endif
   1824 	IFADDR_ENTRY_DESTROY(ifa);
   1825 	ifafree(ifa);
   1826 }
   1827 
   1828 void
   1829 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1830 {
   1831 
   1832 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1833 }
   1834 
   1835 void
   1836 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1837 {
   1838 
   1839 	if (ifa == NULL)
   1840 		return;
   1841 
   1842 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1843 }
   1844 
   1845 bool
   1846 ifa_held(struct ifaddr *ifa)
   1847 {
   1848 
   1849 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1850 }
   1851 
   1852 static inline int
   1853 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1854 {
   1855 	return sockaddr_cmp(sa1, sa2) == 0;
   1856 }
   1857 
   1858 /*
   1859  * Locate an interface based on a complete address.
   1860  */
   1861 /*ARGSUSED*/
   1862 struct ifaddr *
   1863 ifa_ifwithaddr(const struct sockaddr *addr)
   1864 {
   1865 	struct ifnet *ifp;
   1866 	struct ifaddr *ifa;
   1867 
   1868 	IFNET_READER_FOREACH(ifp) {
   1869 		if (if_is_deactivated(ifp))
   1870 			continue;
   1871 		IFADDR_READER_FOREACH(ifa, ifp) {
   1872 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1873 				continue;
   1874 			if (equal(addr, ifa->ifa_addr))
   1875 				return ifa;
   1876 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1877 			    ifa->ifa_broadaddr &&
   1878 			    /* IP6 doesn't have broadcast */
   1879 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1880 			    equal(ifa->ifa_broadaddr, addr))
   1881 				return ifa;
   1882 		}
   1883 	}
   1884 	return NULL;
   1885 }
   1886 
   1887 struct ifaddr *
   1888 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1889 {
   1890 	struct ifaddr *ifa;
   1891 	int s = pserialize_read_enter();
   1892 
   1893 	ifa = ifa_ifwithaddr(addr);
   1894 	if (ifa != NULL)
   1895 		ifa_acquire(ifa, psref);
   1896 	pserialize_read_exit(s);
   1897 
   1898 	return ifa;
   1899 }
   1900 
   1901 /*
   1902  * Locate the point to point interface with a given destination address.
   1903  */
   1904 /*ARGSUSED*/
   1905 struct ifaddr *
   1906 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1907 {
   1908 	struct ifnet *ifp;
   1909 	struct ifaddr *ifa;
   1910 
   1911 	IFNET_READER_FOREACH(ifp) {
   1912 		if (if_is_deactivated(ifp))
   1913 			continue;
   1914 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1915 			continue;
   1916 		IFADDR_READER_FOREACH(ifa, ifp) {
   1917 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1918 			    ifa->ifa_dstaddr == NULL)
   1919 				continue;
   1920 			if (equal(addr, ifa->ifa_dstaddr))
   1921 				return ifa;
   1922 		}
   1923 	}
   1924 
   1925 	return NULL;
   1926 }
   1927 
   1928 struct ifaddr *
   1929 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1930 {
   1931 	struct ifaddr *ifa;
   1932 	int s;
   1933 
   1934 	s = pserialize_read_enter();
   1935 	ifa = ifa_ifwithdstaddr(addr);
   1936 	if (ifa != NULL)
   1937 		ifa_acquire(ifa, psref);
   1938 	pserialize_read_exit(s);
   1939 
   1940 	return ifa;
   1941 }
   1942 
   1943 /*
   1944  * Find an interface on a specific network.  If many, choice
   1945  * is most specific found.
   1946  */
   1947 struct ifaddr *
   1948 ifa_ifwithnet(const struct sockaddr *addr)
   1949 {
   1950 	struct ifnet *ifp;
   1951 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1952 	const struct sockaddr_dl *sdl;
   1953 	u_int af = addr->sa_family;
   1954 	const char *addr_data = addr->sa_data, *cplim;
   1955 
   1956 	if (af == AF_LINK) {
   1957 		sdl = satocsdl(addr);
   1958 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1959 		    ifindex2ifnet[sdl->sdl_index] &&
   1960 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1961 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1962 		}
   1963 	}
   1964 #ifdef NETATALK
   1965 	if (af == AF_APPLETALK) {
   1966 		const struct sockaddr_at *sat, *sat2;
   1967 		sat = (const struct sockaddr_at *)addr;
   1968 		IFNET_READER_FOREACH(ifp) {
   1969 			if (if_is_deactivated(ifp))
   1970 				continue;
   1971 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1972 			if (ifa == NULL)
   1973 				continue;
   1974 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1975 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1976 				return ifa; /* exact match */
   1977 			if (ifa_maybe == NULL) {
   1978 				/* else keep the if with the right range */
   1979 				ifa_maybe = ifa;
   1980 			}
   1981 		}
   1982 		return ifa_maybe;
   1983 	}
   1984 #endif
   1985 	IFNET_READER_FOREACH(ifp) {
   1986 		if (if_is_deactivated(ifp))
   1987 			continue;
   1988 		IFADDR_READER_FOREACH(ifa, ifp) {
   1989 			const char *cp, *cp2, *cp3;
   1990 
   1991 			if (ifa->ifa_addr->sa_family != af ||
   1992 			    ifa->ifa_netmask == NULL)
   1993  next:				continue;
   1994 			cp = addr_data;
   1995 			cp2 = ifa->ifa_addr->sa_data;
   1996 			cp3 = ifa->ifa_netmask->sa_data;
   1997 			cplim = (const char *)ifa->ifa_netmask +
   1998 			    ifa->ifa_netmask->sa_len;
   1999 			while (cp3 < cplim) {
   2000 				if ((*cp++ ^ *cp2++) & *cp3++) {
   2001 					/* want to continue for() loop */
   2002 					goto next;
   2003 				}
   2004 			}
   2005 			if (ifa_maybe == NULL ||
   2006 			    rt_refines(ifa->ifa_netmask,
   2007 			               ifa_maybe->ifa_netmask))
   2008 				ifa_maybe = ifa;
   2009 		}
   2010 	}
   2011 	return ifa_maybe;
   2012 }
   2013 
   2014 struct ifaddr *
   2015 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2016 {
   2017 	struct ifaddr *ifa;
   2018 	int s;
   2019 
   2020 	s = pserialize_read_enter();
   2021 	ifa = ifa_ifwithnet(addr);
   2022 	if (ifa != NULL)
   2023 		ifa_acquire(ifa, psref);
   2024 	pserialize_read_exit(s);
   2025 
   2026 	return ifa;
   2027 }
   2028 
   2029 /*
   2030  * Find the interface of the addresss.
   2031  */
   2032 struct ifaddr *
   2033 ifa_ifwithladdr(const struct sockaddr *addr)
   2034 {
   2035 	struct ifaddr *ia;
   2036 
   2037 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2038 	    (ia = ifa_ifwithnet(addr)))
   2039 		return ia;
   2040 	return NULL;
   2041 }
   2042 
   2043 struct ifaddr *
   2044 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2045 {
   2046 	struct ifaddr *ifa;
   2047 	int s;
   2048 
   2049 	s = pserialize_read_enter();
   2050 	ifa = ifa_ifwithladdr(addr);
   2051 	if (ifa != NULL)
   2052 		ifa_acquire(ifa, psref);
   2053 	pserialize_read_exit(s);
   2054 
   2055 	return ifa;
   2056 }
   2057 
   2058 /*
   2059  * Find an interface using a specific address family
   2060  */
   2061 struct ifaddr *
   2062 ifa_ifwithaf(int af)
   2063 {
   2064 	struct ifnet *ifp;
   2065 	struct ifaddr *ifa = NULL;
   2066 	int s;
   2067 
   2068 	s = pserialize_read_enter();
   2069 	IFNET_READER_FOREACH(ifp) {
   2070 		if (if_is_deactivated(ifp))
   2071 			continue;
   2072 		IFADDR_READER_FOREACH(ifa, ifp) {
   2073 			if (ifa->ifa_addr->sa_family == af)
   2074 				goto out;
   2075 		}
   2076 	}
   2077 out:
   2078 	pserialize_read_exit(s);
   2079 	return ifa;
   2080 }
   2081 
   2082 /*
   2083  * Find an interface address specific to an interface best matching
   2084  * a given address.
   2085  */
   2086 struct ifaddr *
   2087 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2088 {
   2089 	struct ifaddr *ifa;
   2090 	const char *cp, *cp2, *cp3;
   2091 	const char *cplim;
   2092 	struct ifaddr *ifa_maybe = 0;
   2093 	u_int af = addr->sa_family;
   2094 
   2095 	if (if_is_deactivated(ifp))
   2096 		return NULL;
   2097 
   2098 	if (af >= AF_MAX)
   2099 		return NULL;
   2100 
   2101 	IFADDR_READER_FOREACH(ifa, ifp) {
   2102 		if (ifa->ifa_addr->sa_family != af)
   2103 			continue;
   2104 		ifa_maybe = ifa;
   2105 		if (ifa->ifa_netmask == NULL) {
   2106 			if (equal(addr, ifa->ifa_addr) ||
   2107 			    (ifa->ifa_dstaddr &&
   2108 			     equal(addr, ifa->ifa_dstaddr)))
   2109 				return ifa;
   2110 			continue;
   2111 		}
   2112 		cp = addr->sa_data;
   2113 		cp2 = ifa->ifa_addr->sa_data;
   2114 		cp3 = ifa->ifa_netmask->sa_data;
   2115 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2116 		for (; cp3 < cplim; cp3++) {
   2117 			if ((*cp++ ^ *cp2++) & *cp3)
   2118 				break;
   2119 		}
   2120 		if (cp3 == cplim)
   2121 			return ifa;
   2122 	}
   2123 	return ifa_maybe;
   2124 }
   2125 
   2126 struct ifaddr *
   2127 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2128     struct psref *psref)
   2129 {
   2130 	struct ifaddr *ifa;
   2131 	int s;
   2132 
   2133 	s = pserialize_read_enter();
   2134 	ifa = ifaof_ifpforaddr(addr, ifp);
   2135 	if (ifa != NULL)
   2136 		ifa_acquire(ifa, psref);
   2137 	pserialize_read_exit(s);
   2138 
   2139 	return ifa;
   2140 }
   2141 
   2142 /*
   2143  * Default action when installing a route with a Link Level gateway.
   2144  * Lookup an appropriate real ifa to point to.
   2145  * This should be moved to /sys/net/link.c eventually.
   2146  */
   2147 void
   2148 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2149 {
   2150 	struct ifaddr *ifa;
   2151 	const struct sockaddr *dst;
   2152 	struct ifnet *ifp;
   2153 	struct psref psref;
   2154 
   2155 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   2156 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   2157 		return;
   2158 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2159 		rt_replace_ifa(rt, ifa);
   2160 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2161 			ifa->ifa_rtrequest(cmd, rt, info);
   2162 		ifa_release(ifa, &psref);
   2163 	}
   2164 }
   2165 
   2166 /*
   2167  * bitmask macros to manage a densely packed link_state change queue.
   2168  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2169  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2170  * As a state change to store is 0, treat all bits set as an unset item.
   2171  */
   2172 #define LQ_ITEM_BITS		2
   2173 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2174 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2175 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2176 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2177 #define LQ_STORE(q, i, v)						      \
   2178 	do {								      \
   2179 		(q) &= ~LQ_MASK((i));					      \
   2180 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2181 	} while (0 /* CONSTCOND */)
   2182 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2183 #define LQ_POP(q, v)							      \
   2184 	do {								      \
   2185 		(v) = LQ_ITEM((q), 0);					      \
   2186 		(q) >>= LQ_ITEM_BITS;					      \
   2187 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2188 	} while (0 /* CONSTCOND */)
   2189 #define LQ_PUSH(q, v)							      \
   2190 	do {								      \
   2191 		(q) >>= LQ_ITEM_BITS;					      \
   2192 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2193 	} while (0 /* CONSTCOND */)
   2194 #define LQ_FIND_UNSET(q, i)						      \
   2195 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2196 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2197 			break;						      \
   2198 	}
   2199 
   2200 /*
   2201  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2202  * for each ifnet.  It doesn't matter because:
   2203  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
   2204  *   ifq_lock don't happen
   2205  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2206  *   because if_snd, if_link_state_change and if_link_state_change_softint
   2207  *   are all called with KERNEL_LOCK
   2208  */
   2209 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
   2210 	mutex_enter((ifp)->if_snd.ifq_lock)
   2211 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
   2212 	mutex_exit((ifp)->if_snd.ifq_lock)
   2213 
   2214 /*
   2215  * Handle a change in the interface link state and
   2216  * queue notifications.
   2217  */
   2218 void
   2219 if_link_state_change(struct ifnet *ifp, int link_state)
   2220 {
   2221 	int idx;
   2222 
   2223 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2224 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2225 	    ifp->if_xname, ifp->if_extflags);
   2226 
   2227 	/* Ensure change is to a valid state */
   2228 	switch (link_state) {
   2229 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2230 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2231 	case LINK_STATE_UP:
   2232 		break;
   2233 	default:
   2234 #ifdef DEBUG
   2235 		printf("%s: invalid link state %d\n",
   2236 		    ifp->if_xname, link_state);
   2237 #endif
   2238 		return;
   2239 	}
   2240 
   2241 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2242 
   2243 	/* Find the last unset event in the queue. */
   2244 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2245 
   2246 	/*
   2247 	 * Ensure link_state doesn't match the last event in the queue.
   2248 	 * ifp->if_link_state is not checked and set here because
   2249 	 * that would present an inconsistent picture to the system.
   2250 	 */
   2251 	if (idx != 0 &&
   2252 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2253 		goto out;
   2254 
   2255 	/* Handle queue overflow. */
   2256 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2257 		uint8_t lost;
   2258 
   2259 		/*
   2260 		 * The DOWN state must be protected from being pushed off
   2261 		 * the queue to ensure that userland will always be
   2262 		 * in a sane state.
   2263 		 * Because DOWN is protected, there is no need to protect
   2264 		 * UNKNOWN.
   2265 		 * It should be invalid to change from any other state to
   2266 		 * UNKNOWN anyway ...
   2267 		 */
   2268 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2269 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2270 		if (lost == LINK_STATE_DOWN) {
   2271 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2272 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2273 		}
   2274 		printf("%s: lost link state change %s\n",
   2275 		    ifp->if_xname,
   2276 		    lost == LINK_STATE_UP ? "UP" :
   2277 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2278 		    "UNKNOWN");
   2279 	} else
   2280 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2281 
   2282 	softint_schedule(ifp->if_link_si);
   2283 
   2284 out:
   2285 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2286 }
   2287 
   2288 /*
   2289  * Handle interface link state change notifications.
   2290  */
   2291 void
   2292 if_link_state_change_softint(struct ifnet *ifp, int link_state)
   2293 {
   2294 	struct domain *dp;
   2295 	int s = splnet();
   2296 	bool notify;
   2297 
   2298 	KASSERT(!cpu_intr_p());
   2299 
   2300 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2301 
   2302 	/* Ensure the change is still valid. */
   2303 	if (ifp->if_link_state == link_state) {
   2304 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2305 		return;
   2306 	}
   2307 
   2308 #ifdef DEBUG
   2309 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2310 		link_state == LINK_STATE_UP ? "UP" :
   2311 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2312 		"UNKNOWN",
   2313 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2314 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2315 		"UNKNOWN");
   2316 #endif
   2317 
   2318 	/*
   2319 	 * When going from UNKNOWN to UP, we need to mark existing
   2320 	 * addresses as tentative and restart DAD as we may have
   2321 	 * erroneously not found a duplicate.
   2322 	 *
   2323 	 * This needs to happen before rt_ifmsg to avoid a race where
   2324 	 * listeners would have an address and expect it to work right
   2325 	 * away.
   2326 	 */
   2327 	notify = (link_state == LINK_STATE_UP &&
   2328 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2329 	ifp->if_link_state = link_state;
   2330 	/* The following routines may sleep so release the spin mutex */
   2331 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2332 
   2333 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2334 	if (notify) {
   2335 		DOMAIN_FOREACH(dp) {
   2336 			if (dp->dom_if_link_state_change != NULL)
   2337 				dp->dom_if_link_state_change(ifp,
   2338 				    LINK_STATE_DOWN);
   2339 		}
   2340 	}
   2341 
   2342 	/* Notify that the link state has changed. */
   2343 	rt_ifmsg(ifp);
   2344 
   2345 #if NCARP > 0
   2346 	if (ifp->if_carp)
   2347 		carp_carpdev_state(ifp);
   2348 #endif
   2349 
   2350 	DOMAIN_FOREACH(dp) {
   2351 		if (dp->dom_if_link_state_change != NULL)
   2352 			dp->dom_if_link_state_change(ifp, link_state);
   2353 	}
   2354 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2355 	splx(s);
   2356 }
   2357 
   2358 /*
   2359  * Process the interface link state change queue.
   2360  */
   2361 static void
   2362 if_link_state_change_si(void *arg)
   2363 {
   2364 	struct ifnet *ifp = arg;
   2365 	int s;
   2366 	uint8_t state;
   2367 	bool schedule;
   2368 
   2369 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2370 	s = splnet();
   2371 
   2372 	/* Pop a link state change from the queue and process it. */
   2373 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2374 	LQ_POP(ifp->if_link_queue, state);
   2375 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2376 
   2377 	if_link_state_change_softint(ifp, state);
   2378 
   2379 	/* If there is a link state change to come, schedule it. */
   2380 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2381 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
   2382 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2383 	if (schedule)
   2384 		softint_schedule(ifp->if_link_si);
   2385 
   2386 	splx(s);
   2387 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2388 }
   2389 
   2390 /*
   2391  * Default action when installing a local route on a point-to-point
   2392  * interface.
   2393  */
   2394 void
   2395 p2p_rtrequest(int req, struct rtentry *rt,
   2396     __unused const struct rt_addrinfo *info)
   2397 {
   2398 	struct ifnet *ifp = rt->rt_ifp;
   2399 	struct ifaddr *ifa, *lo0ifa;
   2400 	int s = pserialize_read_enter();
   2401 
   2402 	switch (req) {
   2403 	case RTM_ADD:
   2404 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2405 			break;
   2406 
   2407 		rt->rt_ifp = lo0ifp;
   2408 
   2409 		IFADDR_READER_FOREACH(ifa, ifp) {
   2410 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2411 				break;
   2412 		}
   2413 		if (ifa == NULL)
   2414 			break;
   2415 
   2416 		/*
   2417 		 * Ensure lo0 has an address of the same family.
   2418 		 */
   2419 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2420 			if (lo0ifa->ifa_addr->sa_family ==
   2421 			    ifa->ifa_addr->sa_family)
   2422 				break;
   2423 		}
   2424 		if (lo0ifa == NULL)
   2425 			break;
   2426 
   2427 		/*
   2428 		 * Make sure to set rt->rt_ifa to the interface
   2429 		 * address we are using, otherwise we will have trouble
   2430 		 * with source address selection.
   2431 		 */
   2432 		if (ifa != rt->rt_ifa)
   2433 			rt_replace_ifa(rt, ifa);
   2434 		break;
   2435 	case RTM_DELETE:
   2436 	default:
   2437 		break;
   2438 	}
   2439 	pserialize_read_exit(s);
   2440 }
   2441 
   2442 static void
   2443 _if_down(struct ifnet *ifp)
   2444 {
   2445 	struct ifaddr *ifa;
   2446 	struct domain *dp;
   2447 	int s, bound;
   2448 	struct psref psref;
   2449 
   2450 	ifp->if_flags &= ~IFF_UP;
   2451 	nanotime(&ifp->if_lastchange);
   2452 
   2453 	bound = curlwp_bind();
   2454 	s = pserialize_read_enter();
   2455 	IFADDR_READER_FOREACH(ifa, ifp) {
   2456 		ifa_acquire(ifa, &psref);
   2457 		pserialize_read_exit(s);
   2458 
   2459 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2460 
   2461 		s = pserialize_read_enter();
   2462 		ifa_release(ifa, &psref);
   2463 	}
   2464 	pserialize_read_exit(s);
   2465 	curlwp_bindx(bound);
   2466 
   2467 	IFQ_PURGE(&ifp->if_snd);
   2468 #if NCARP > 0
   2469 	if (ifp->if_carp)
   2470 		carp_carpdev_state(ifp);
   2471 #endif
   2472 	rt_ifmsg(ifp);
   2473 	DOMAIN_FOREACH(dp) {
   2474 		if (dp->dom_if_down)
   2475 			dp->dom_if_down(ifp);
   2476 	}
   2477 }
   2478 
   2479 static void
   2480 if_down_deactivated(struct ifnet *ifp)
   2481 {
   2482 
   2483 	KASSERT(if_is_deactivated(ifp));
   2484 	_if_down(ifp);
   2485 }
   2486 
   2487 void
   2488 if_down_locked(struct ifnet *ifp)
   2489 {
   2490 
   2491 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2492 	_if_down(ifp);
   2493 }
   2494 
   2495 /*
   2496  * Mark an interface down and notify protocols of
   2497  * the transition.
   2498  * NOTE: must be called at splsoftnet or equivalent.
   2499  */
   2500 void
   2501 if_down(struct ifnet *ifp)
   2502 {
   2503 
   2504 	mutex_enter(ifp->if_ioctl_lock);
   2505 	if_down_locked(ifp);
   2506 	mutex_exit(ifp->if_ioctl_lock);
   2507 }
   2508 
   2509 /*
   2510  * Must be called with holding if_ioctl_lock.
   2511  */
   2512 static void
   2513 if_up_locked(struct ifnet *ifp)
   2514 {
   2515 #ifdef notyet
   2516 	struct ifaddr *ifa;
   2517 #endif
   2518 	struct domain *dp;
   2519 
   2520 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2521 
   2522 	KASSERT(!if_is_deactivated(ifp));
   2523 	ifp->if_flags |= IFF_UP;
   2524 	nanotime(&ifp->if_lastchange);
   2525 #ifdef notyet
   2526 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2527 	IFADDR_READER_FOREACH(ifa, ifp)
   2528 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2529 #endif
   2530 #if NCARP > 0
   2531 	if (ifp->if_carp)
   2532 		carp_carpdev_state(ifp);
   2533 #endif
   2534 	rt_ifmsg(ifp);
   2535 	DOMAIN_FOREACH(dp) {
   2536 		if (dp->dom_if_up)
   2537 			dp->dom_if_up(ifp);
   2538 	}
   2539 }
   2540 
   2541 /*
   2542  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2543  * for each ifnet.  It doesn't matter because:
   2544  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contention on
   2545  *   ifq_lock don't happen
   2546  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2547  *   because if_snd and if_watchdog_reset is used with KERNEL_LOCK on packet
   2548  *   transmissions and if_slowtimo is also called with KERNEL_LOCK
   2549  */
   2550 #define IF_WATCHDOG_LOCK(ifp)	mutex_enter((ifp)->if_snd.ifq_lock)
   2551 #define IF_WATCHDOG_UNLOCK(ifp)	mutex_exit((ifp)->if_snd.ifq_lock)
   2552 
   2553 /*
   2554  * Handle interface slowtimo timer routine.  Called
   2555  * from softclock, we decrement timer (if set) and
   2556  * call the appropriate interface routine on expiration.
   2557  */
   2558 static void
   2559 if_slowtimo(void *arg)
   2560 {
   2561 	void (*slowtimo)(struct ifnet *);
   2562 	struct ifnet *ifp = arg;
   2563 	int s;
   2564 	bool fire;
   2565 
   2566 	slowtimo = ifp->if_slowtimo;
   2567 	if (__predict_false(slowtimo == NULL))
   2568 		return;
   2569 
   2570 	s = splnet();
   2571 	IF_WATCHDOG_LOCK(ifp);
   2572 	fire = (ifp->if_timer != 0 && --ifp->if_timer == 0);
   2573 	IF_WATCHDOG_UNLOCK(ifp);
   2574 	if (fire)
   2575 		(*slowtimo)(ifp);
   2576 	splx(s);
   2577 
   2578 	if (__predict_true(ifp->if_slowtimo != NULL))
   2579 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2580 }
   2581 
   2582 void
   2583 if_watchdog_reset(struct ifnet *ifp, short v)
   2584 {
   2585 
   2586 	IF_WATCHDOG_LOCK(ifp);
   2587 	ifp->if_timer = v;
   2588 	IF_WATCHDOG_UNLOCK(ifp);
   2589 }
   2590 
   2591 void
   2592 if_watchdog_stop(struct ifnet *ifp)
   2593 {
   2594 
   2595 	if_watchdog_reset(ifp, 0);
   2596 }
   2597 
   2598 /*
   2599  * Mark an interface up and notify protocols of
   2600  * the transition.
   2601  * NOTE: must be called at splsoftnet or equivalent.
   2602  */
   2603 void
   2604 if_up(struct ifnet *ifp)
   2605 {
   2606 
   2607 	mutex_enter(ifp->if_ioctl_lock);
   2608 	if_up_locked(ifp);
   2609 	mutex_exit(ifp->if_ioctl_lock);
   2610 }
   2611 
   2612 /*
   2613  * Set/clear promiscuous mode on interface ifp based on the truth value
   2614  * of pswitch.  The calls are reference counted so that only the first
   2615  * "on" request actually has an effect, as does the final "off" request.
   2616  * Results are undefined if the "off" and "on" requests are not matched.
   2617  */
   2618 int
   2619 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2620 {
   2621 	int pcount, ret = 0;
   2622 	short nflags;
   2623 
   2624 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2625 
   2626 	pcount = ifp->if_pcount;
   2627 	if (pswitch) {
   2628 		/*
   2629 		 * Allow the device to be "placed" into promiscuous
   2630 		 * mode even if it is not configured up.  It will
   2631 		 * consult IFF_PROMISC when it is brought up.
   2632 		 */
   2633 		if (ifp->if_pcount++ != 0)
   2634 			goto out;
   2635 		nflags = ifp->if_flags | IFF_PROMISC;
   2636 	} else {
   2637 		if (--ifp->if_pcount > 0)
   2638 			goto out;
   2639 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2640 	}
   2641 	ret = if_flags_set(ifp, nflags);
   2642 	/* Restore interface state if not successful. */
   2643 	if (ret != 0) {
   2644 		ifp->if_pcount = pcount;
   2645 	}
   2646 out:
   2647 	return ret;
   2648 }
   2649 
   2650 int
   2651 ifpromisc(struct ifnet *ifp, int pswitch)
   2652 {
   2653 	int e;
   2654 
   2655 	mutex_enter(ifp->if_ioctl_lock);
   2656 	e = ifpromisc_locked(ifp, pswitch);
   2657 	mutex_exit(ifp->if_ioctl_lock);
   2658 
   2659 	return e;
   2660 }
   2661 
   2662 /*
   2663  * Map interface name to
   2664  * interface structure pointer.
   2665  */
   2666 struct ifnet *
   2667 ifunit(const char *name)
   2668 {
   2669 	struct ifnet *ifp;
   2670 	const char *cp = name;
   2671 	u_int unit = 0;
   2672 	u_int i;
   2673 	int s;
   2674 
   2675 	/*
   2676 	 * If the entire name is a number, treat it as an ifindex.
   2677 	 */
   2678 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2679 		unit = unit * 10 + (*cp - '0');
   2680 	}
   2681 
   2682 	/*
   2683 	 * If the number took all of the name, then it's a valid ifindex.
   2684 	 */
   2685 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2686 		return if_byindex(unit);
   2687 
   2688 	ifp = NULL;
   2689 	s = pserialize_read_enter();
   2690 	IFNET_READER_FOREACH(ifp) {
   2691 		if (if_is_deactivated(ifp))
   2692 			continue;
   2693 	 	if (strcmp(ifp->if_xname, name) == 0)
   2694 			goto out;
   2695 	}
   2696 out:
   2697 	pserialize_read_exit(s);
   2698 	return ifp;
   2699 }
   2700 
   2701 /*
   2702  * Get a reference of an ifnet object by an interface name.
   2703  * The returned reference is protected by psref(9). The caller
   2704  * must release a returned reference by if_put after use.
   2705  */
   2706 struct ifnet *
   2707 if_get(const char *name, struct psref *psref)
   2708 {
   2709 	struct ifnet *ifp;
   2710 	const char *cp = name;
   2711 	u_int unit = 0;
   2712 	u_int i;
   2713 	int s;
   2714 
   2715 	/*
   2716 	 * If the entire name is a number, treat it as an ifindex.
   2717 	 */
   2718 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2719 		unit = unit * 10 + (*cp - '0');
   2720 	}
   2721 
   2722 	/*
   2723 	 * If the number took all of the name, then it's a valid ifindex.
   2724 	 */
   2725 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2726 		return if_get_byindex(unit, psref);
   2727 
   2728 	ifp = NULL;
   2729 	s = pserialize_read_enter();
   2730 	IFNET_READER_FOREACH(ifp) {
   2731 		if (if_is_deactivated(ifp))
   2732 			continue;
   2733 		if (strcmp(ifp->if_xname, name) == 0) {
   2734 			psref_acquire(psref, &ifp->if_psref,
   2735 			    ifnet_psref_class);
   2736 			goto out;
   2737 		}
   2738 	}
   2739 out:
   2740 	pserialize_read_exit(s);
   2741 	return ifp;
   2742 }
   2743 
   2744 /*
   2745  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2746  * or if_get_bylla.
   2747  */
   2748 void
   2749 if_put(const struct ifnet *ifp, struct psref *psref)
   2750 {
   2751 
   2752 	if (ifp == NULL)
   2753 		return;
   2754 
   2755 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2756 }
   2757 
   2758 ifnet_t *
   2759 if_byindex(u_int idx)
   2760 {
   2761 	ifnet_t *ifp;
   2762 
   2763 	ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2764 	if (ifp != NULL && if_is_deactivated(ifp))
   2765 		ifp = NULL;
   2766 	return ifp;
   2767 }
   2768 
   2769 /*
   2770  * Get a reference of an ifnet object by an interface index.
   2771  * The returned reference is protected by psref(9). The caller
   2772  * must release a returned reference by if_put after use.
   2773  */
   2774 ifnet_t *
   2775 if_get_byindex(u_int idx, struct psref *psref)
   2776 {
   2777 	ifnet_t *ifp;
   2778 	int s;
   2779 
   2780 	s = pserialize_read_enter();
   2781 	ifp = if_byindex(idx);
   2782 	if (__predict_true(ifp != NULL))
   2783 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2784 	pserialize_read_exit(s);
   2785 
   2786 	return ifp;
   2787 }
   2788 
   2789 ifnet_t *
   2790 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2791 {
   2792 	ifnet_t *ifp;
   2793 	int s;
   2794 
   2795 	s = pserialize_read_enter();
   2796 	IFNET_READER_FOREACH(ifp) {
   2797 		if (if_is_deactivated(ifp))
   2798 			continue;
   2799 		if (ifp->if_addrlen != lla_len)
   2800 			continue;
   2801 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2802 			psref_acquire(psref, &ifp->if_psref,
   2803 			    ifnet_psref_class);
   2804 			break;
   2805 		}
   2806 	}
   2807 	pserialize_read_exit(s);
   2808 
   2809 	return ifp;
   2810 }
   2811 
   2812 /*
   2813  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2814  * for example using pserialize or the ifp is already held or some other
   2815  * object is held which guarantes the ifp to not be freed indirectly.
   2816  */
   2817 void
   2818 if_acquire(struct ifnet *ifp, struct psref *psref)
   2819 {
   2820 
   2821 	KASSERT(ifp->if_index != 0);
   2822 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2823 }
   2824 
   2825 bool
   2826 if_held(struct ifnet *ifp)
   2827 {
   2828 
   2829 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2830 }
   2831 
   2832 /*
   2833  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2834  * Check the tunnel nesting count.
   2835  * Return > 0, if tunnel nesting count is more than limit.
   2836  * Return 0, if tunnel nesting count is equal or less than limit.
   2837  */
   2838 int
   2839 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2840 {
   2841 	struct m_tag *mtag;
   2842 	int *count;
   2843 
   2844 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
   2845 	if (mtag != NULL) {
   2846 		count = (int *)(mtag + 1);
   2847 		if (++(*count) > limit) {
   2848 			log(LOG_NOTICE,
   2849 			    "%s: recursively called too many times(%d)\n",
   2850 			    ifp->if_xname, *count);
   2851 			return EIO;
   2852 		}
   2853 	} else {
   2854 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2855 		    M_NOWAIT);
   2856 		if (mtag != NULL) {
   2857 			m_tag_prepend(m, mtag);
   2858 			count = (int *)(mtag + 1);
   2859 			*count = 0;
   2860 		} else {
   2861 			log(LOG_DEBUG,
   2862 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2863 			    ifp->if_xname);
   2864 		}
   2865 	}
   2866 
   2867 	return 0;
   2868 }
   2869 
   2870 /* common */
   2871 int
   2872 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2873 {
   2874 	int s;
   2875 	struct ifreq *ifr;
   2876 	struct ifcapreq *ifcr;
   2877 	struct ifdatareq *ifdr;
   2878 
   2879 	switch (cmd) {
   2880 	case SIOCSIFCAP:
   2881 		ifcr = data;
   2882 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2883 			return EINVAL;
   2884 
   2885 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2886 			return 0;
   2887 
   2888 		ifp->if_capenable = ifcr->ifcr_capenable;
   2889 
   2890 		/* Pre-compute the checksum flags mask. */
   2891 		ifp->if_csum_flags_tx = 0;
   2892 		ifp->if_csum_flags_rx = 0;
   2893 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2894 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2895 		}
   2896 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2897 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2898 		}
   2899 
   2900 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2901 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2902 		}
   2903 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2904 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2905 		}
   2906 
   2907 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2908 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2909 		}
   2910 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2911 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2912 		}
   2913 
   2914 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2915 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2916 		}
   2917 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2918 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2919 		}
   2920 
   2921 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2922 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2923 		}
   2924 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2925 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2926 		}
   2927 		if (ifp->if_flags & IFF_UP)
   2928 			return ENETRESET;
   2929 		return 0;
   2930 	case SIOCSIFFLAGS:
   2931 		ifr = data;
   2932 		/*
   2933 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   2934 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   2935 		 */
   2936 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   2937 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2938 			s = splsoftnet();
   2939 			if_down_locked(ifp);
   2940 			splx(s);
   2941 		}
   2942 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2943 			s = splsoftnet();
   2944 			if_up_locked(ifp);
   2945 			splx(s);
   2946 		}
   2947 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   2948 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2949 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2950 		break;
   2951 	case SIOCGIFFLAGS:
   2952 		ifr = data;
   2953 		ifr->ifr_flags = ifp->if_flags;
   2954 		break;
   2955 
   2956 	case SIOCGIFMETRIC:
   2957 		ifr = data;
   2958 		ifr->ifr_metric = ifp->if_metric;
   2959 		break;
   2960 
   2961 	case SIOCGIFMTU:
   2962 		ifr = data;
   2963 		ifr->ifr_mtu = ifp->if_mtu;
   2964 		break;
   2965 
   2966 	case SIOCGIFDLT:
   2967 		ifr = data;
   2968 		ifr->ifr_dlt = ifp->if_dlt;
   2969 		break;
   2970 
   2971 	case SIOCGIFCAP:
   2972 		ifcr = data;
   2973 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2974 		ifcr->ifcr_capenable = ifp->if_capenable;
   2975 		break;
   2976 
   2977 	case SIOCSIFMETRIC:
   2978 		ifr = data;
   2979 		ifp->if_metric = ifr->ifr_metric;
   2980 		break;
   2981 
   2982 	case SIOCGIFDATA:
   2983 		ifdr = data;
   2984 		ifdr->ifdr_data = ifp->if_data;
   2985 		break;
   2986 
   2987 	case SIOCGIFINDEX:
   2988 		ifr = data;
   2989 		ifr->ifr_index = ifp->if_index;
   2990 		break;
   2991 
   2992 	case SIOCZIFDATA:
   2993 		ifdr = data;
   2994 		ifdr->ifdr_data = ifp->if_data;
   2995 		/*
   2996 		 * Assumes that the volatile counters that can be
   2997 		 * zero'ed are at the end of if_data.
   2998 		 */
   2999 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   3000 		    offsetof(struct if_data, ifi_ipackets));
   3001 		/*
   3002 		 * The memset() clears to the bottm of if_data. In the area,
   3003 		 * if_lastchange is included. Please be careful if new entry
   3004 		 * will be added into if_data or rewite this.
   3005 		 *
   3006 		 * And also, update if_lastchnage.
   3007 		 */
   3008 		getnanotime(&ifp->if_lastchange);
   3009 		break;
   3010 	case SIOCSIFMTU:
   3011 		ifr = data;
   3012 		if (ifp->if_mtu == ifr->ifr_mtu)
   3013 			break;
   3014 		ifp->if_mtu = ifr->ifr_mtu;
   3015 		/*
   3016 		 * If the link MTU changed, do network layer specific procedure.
   3017 		 */
   3018 #ifdef INET6
   3019 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3020 		if (in6_present)
   3021 			nd6_setmtu(ifp);
   3022 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3023 #endif
   3024 		return ENETRESET;
   3025 	default:
   3026 		return ENOTTY;
   3027 	}
   3028 	return 0;
   3029 }
   3030 
   3031 int
   3032 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3033 {
   3034 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3035 	struct ifaddr *ifa;
   3036 	const struct sockaddr *any, *sa;
   3037 	union {
   3038 		struct sockaddr sa;
   3039 		struct sockaddr_storage ss;
   3040 	} u, v;
   3041 	int s, error = 0;
   3042 
   3043 	switch (cmd) {
   3044 	case SIOCSIFADDRPREF:
   3045 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   3046 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   3047 		    NULL) != 0)
   3048 			return EPERM;
   3049 	case SIOCGIFADDRPREF:
   3050 		break;
   3051 	default:
   3052 		return EOPNOTSUPP;
   3053 	}
   3054 
   3055 	/* sanity checks */
   3056 	if (data == NULL || ifp == NULL) {
   3057 		panic("invalid argument to %s", __func__);
   3058 		/*NOTREACHED*/
   3059 	}
   3060 
   3061 	/* address must be specified on ADD and DELETE */
   3062 	sa = sstocsa(&ifap->ifap_addr);
   3063 	if (sa->sa_family != sofamily(so))
   3064 		return EINVAL;
   3065 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3066 		return EINVAL;
   3067 
   3068 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3069 
   3070 	s = pserialize_read_enter();
   3071 	IFADDR_READER_FOREACH(ifa, ifp) {
   3072 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3073 			continue;
   3074 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3075 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3076 			break;
   3077 	}
   3078 	if (ifa == NULL) {
   3079 		error = EADDRNOTAVAIL;
   3080 		goto out;
   3081 	}
   3082 
   3083 	switch (cmd) {
   3084 	case SIOCSIFADDRPREF:
   3085 		ifa->ifa_preference = ifap->ifap_preference;
   3086 		goto out;
   3087 	case SIOCGIFADDRPREF:
   3088 		/* fill in the if_laddrreq structure */
   3089 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3090 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3091 		ifap->ifap_preference = ifa->ifa_preference;
   3092 		goto out;
   3093 	default:
   3094 		error = EOPNOTSUPP;
   3095 	}
   3096 out:
   3097 	pserialize_read_exit(s);
   3098 	return error;
   3099 }
   3100 
   3101 /*
   3102  * Interface ioctls.
   3103  */
   3104 static int
   3105 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3106 {
   3107 	struct ifnet *ifp;
   3108 	struct ifreq *ifr;
   3109 	int error = 0;
   3110 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   3111 	u_long ocmd = cmd;
   3112 #endif
   3113 	short oif_flags;
   3114 #ifdef COMPAT_OIFREQ
   3115 	struct ifreq ifrb;
   3116 	struct oifreq *oifr = NULL;
   3117 #endif
   3118 	int r;
   3119 	struct psref psref;
   3120 	int bound;
   3121 
   3122 	switch (cmd) {
   3123 #ifdef COMPAT_OIFREQ
   3124 	case OSIOCGIFCONF:
   3125 	case OOSIOCGIFCONF:
   3126 		return compat_ifconf(cmd, data);
   3127 #endif
   3128 #ifdef COMPAT_OIFDATA
   3129 	case OSIOCGIFDATA:
   3130 	case OSIOCZIFDATA:
   3131 		return compat_ifdatareq(l, cmd, data);
   3132 #endif
   3133 	case SIOCGIFCONF:
   3134 		return ifconf(cmd, data);
   3135 	case SIOCINITIFADDR:
   3136 		return EPERM;
   3137 	}
   3138 
   3139 #ifdef COMPAT_OIFREQ
   3140 	cmd = (*vec_compat_cvtcmd)(cmd);
   3141 	if (cmd != ocmd) {
   3142 		oifr = data;
   3143 		data = ifr = &ifrb;
   3144 		ifreqo2n(oifr, ifr);
   3145 	} else
   3146 #endif
   3147 		ifr = data;
   3148 
   3149 	switch (cmd) {
   3150 	case SIOCIFCREATE:
   3151 	case SIOCIFDESTROY:
   3152 		bound = curlwp_bind();
   3153 		if (l != NULL) {
   3154 			ifp = if_get(ifr->ifr_name, &psref);
   3155 			error = kauth_authorize_network(l->l_cred,
   3156 			    KAUTH_NETWORK_INTERFACE,
   3157 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3158 			    (void *)cmd, NULL);
   3159 			if (ifp != NULL)
   3160 				if_put(ifp, &psref);
   3161 			if (error != 0) {
   3162 				curlwp_bindx(bound);
   3163 				return error;
   3164 			}
   3165 		}
   3166 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3167 		mutex_enter(&if_clone_mtx);
   3168 		r = (cmd == SIOCIFCREATE) ?
   3169 			if_clone_create(ifr->ifr_name) :
   3170 			if_clone_destroy(ifr->ifr_name);
   3171 		mutex_exit(&if_clone_mtx);
   3172 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3173 		curlwp_bindx(bound);
   3174 		return r;
   3175 
   3176 	case SIOCIFGCLONERS:
   3177 		{
   3178 			struct if_clonereq *req = (struct if_clonereq *)data;
   3179 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3180 			    &req->ifcr_total);
   3181 		}
   3182 	}
   3183 
   3184 	bound = curlwp_bind();
   3185 	ifp = if_get(ifr->ifr_name, &psref);
   3186 	if (ifp == NULL) {
   3187 		curlwp_bindx(bound);
   3188 		return ENXIO;
   3189 	}
   3190 
   3191 	switch (cmd) {
   3192 	case SIOCALIFADDR:
   3193 	case SIOCDLIFADDR:
   3194 	case SIOCSIFADDRPREF:
   3195 	case SIOCSIFFLAGS:
   3196 	case SIOCSIFCAP:
   3197 	case SIOCSIFMETRIC:
   3198 	case SIOCZIFDATA:
   3199 	case SIOCSIFMTU:
   3200 	case SIOCSIFPHYADDR:
   3201 	case SIOCDIFPHYADDR:
   3202 #ifdef INET6
   3203 	case SIOCSIFPHYADDR_IN6:
   3204 #endif
   3205 	case SIOCSLIFPHYADDR:
   3206 	case SIOCADDMULTI:
   3207 	case SIOCDELMULTI:
   3208 	case SIOCSIFMEDIA:
   3209 	case SIOCSDRVSPEC:
   3210 	case SIOCG80211:
   3211 	case SIOCS80211:
   3212 	case SIOCS80211NWID:
   3213 	case SIOCS80211NWKEY:
   3214 	case SIOCS80211POWER:
   3215 	case SIOCS80211BSSID:
   3216 	case SIOCS80211CHANNEL:
   3217 	case SIOCSLINKSTR:
   3218 		if (l != NULL) {
   3219 			error = kauth_authorize_network(l->l_cred,
   3220 			    KAUTH_NETWORK_INTERFACE,
   3221 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3222 			    (void *)cmd, NULL);
   3223 			if (error != 0)
   3224 				goto out;
   3225 		}
   3226 	}
   3227 
   3228 	oif_flags = ifp->if_flags;
   3229 
   3230 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3231 	mutex_enter(ifp->if_ioctl_lock);
   3232 
   3233 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3234 	if (error != ENOTTY)
   3235 		;
   3236 	else if (so->so_proto == NULL)
   3237 		error = EOPNOTSUPP;
   3238 	else {
   3239 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3240 #ifdef COMPAT_OSOCK
   3241 		if (vec_compat_ifioctl != NULL)
   3242 			error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
   3243 		else
   3244 #endif
   3245 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3246 			    cmd, data, ifp);
   3247 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3248 	}
   3249 
   3250 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3251 		if ((ifp->if_flags & IFF_UP) != 0) {
   3252 			int s = splsoftnet();
   3253 			if_up_locked(ifp);
   3254 			splx(s);
   3255 		}
   3256 	}
   3257 #ifdef COMPAT_OIFREQ
   3258 	if (cmd != ocmd)
   3259 		ifreqn2o(oifr, ifr);
   3260 #endif
   3261 
   3262 	mutex_exit(ifp->if_ioctl_lock);
   3263 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3264 out:
   3265 	if_put(ifp, &psref);
   3266 	curlwp_bindx(bound);
   3267 	return error;
   3268 }
   3269 
   3270 /*
   3271  * Return interface configuration
   3272  * of system.  List may be used
   3273  * in later ioctl's (above) to get
   3274  * other information.
   3275  *
   3276  * Each record is a struct ifreq.  Before the addition of
   3277  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3278  * not fit would extend beyond the struct ifreq, with the next struct
   3279  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3280  * union in struct ifreq includes struct sockaddr_storage, every kind
   3281  * of sockaddr must fit.  Thus, there are no longer any overlength
   3282  * records.
   3283  *
   3284  * Records are added to the user buffer if they fit, and ifc_len is
   3285  * adjusted to the length that was written.  Thus, the user is only
   3286  * assured of getting the complete list if ifc_len on return is at
   3287  * least sizeof(struct ifreq) less than it was on entry.
   3288  *
   3289  * If the user buffer pointer is NULL, this routine copies no data and
   3290  * returns the amount of space that would be needed.
   3291  *
   3292  * Invariants:
   3293  * ifrp points to the next part of the user's buffer to be used.  If
   3294  * ifrp != NULL, space holds the number of bytes remaining that we may
   3295  * write at ifrp.  Otherwise, space holds the number of bytes that
   3296  * would have been written had there been adequate space.
   3297  */
   3298 /*ARGSUSED*/
   3299 static int
   3300 ifconf(u_long cmd, void *data)
   3301 {
   3302 	struct ifconf *ifc = (struct ifconf *)data;
   3303 	struct ifnet *ifp;
   3304 	struct ifaddr *ifa;
   3305 	struct ifreq ifr, *ifrp = NULL;
   3306 	int space = 0, error = 0;
   3307 	const int sz = (int)sizeof(struct ifreq);
   3308 	const bool docopy = ifc->ifc_req != NULL;
   3309 	int s;
   3310 	int bound;
   3311 	struct psref psref;
   3312 
   3313 	if (docopy) {
   3314 		space = ifc->ifc_len;
   3315 		ifrp = ifc->ifc_req;
   3316 	}
   3317 
   3318 	bound = curlwp_bind();
   3319 	s = pserialize_read_enter();
   3320 	IFNET_READER_FOREACH(ifp) {
   3321 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3322 		pserialize_read_exit(s);
   3323 
   3324 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3325 		    sizeof(ifr.ifr_name));
   3326 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3327 			error = ENAMETOOLONG;
   3328 			goto release_exit;
   3329 		}
   3330 		if (IFADDR_READER_EMPTY(ifp)) {
   3331 			/* Interface with no addresses - send zero sockaddr. */
   3332 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3333 			if (!docopy) {
   3334 				space += sz;
   3335 				goto next;
   3336 			}
   3337 			if (space >= sz) {
   3338 				error = copyout(&ifr, ifrp, sz);
   3339 				if (error != 0)
   3340 					goto release_exit;
   3341 				ifrp++;
   3342 				space -= sz;
   3343 			}
   3344 		}
   3345 
   3346 		s = pserialize_read_enter();
   3347 		IFADDR_READER_FOREACH(ifa, ifp) {
   3348 			struct sockaddr *sa = ifa->ifa_addr;
   3349 			/* all sockaddrs must fit in sockaddr_storage */
   3350 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3351 
   3352 			if (!docopy) {
   3353 				space += sz;
   3354 				continue;
   3355 			}
   3356 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3357 			pserialize_read_exit(s);
   3358 
   3359 			if (space >= sz) {
   3360 				error = copyout(&ifr, ifrp, sz);
   3361 				if (error != 0)
   3362 					goto release_exit;
   3363 				ifrp++; space -= sz;
   3364 			}
   3365 			s = pserialize_read_enter();
   3366 		}
   3367 		pserialize_read_exit(s);
   3368 
   3369         next:
   3370 		s = pserialize_read_enter();
   3371 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3372 	}
   3373 	pserialize_read_exit(s);
   3374 	curlwp_bindx(bound);
   3375 
   3376 	if (docopy) {
   3377 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3378 		ifc->ifc_len -= space;
   3379 	} else {
   3380 		KASSERT(space >= 0);
   3381 		ifc->ifc_len = space;
   3382 	}
   3383 	return (0);
   3384 
   3385 release_exit:
   3386 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3387 	curlwp_bindx(bound);
   3388 	return error;
   3389 }
   3390 
   3391 int
   3392 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3393 {
   3394 	uint8_t len;
   3395 #ifdef COMPAT_OIFREQ
   3396 	struct ifreq ifrb;
   3397 	struct oifreq *oifr = NULL;
   3398 	u_long ocmd = cmd;
   3399 	cmd = (*vec_compat_cvtcmd)(cmd);
   3400 	if (cmd != ocmd) {
   3401 		oifr = (struct oifreq *)(void *)ifr;
   3402 		ifr = &ifrb;
   3403 		ifreqo2n(oifr, ifr);
   3404 		len = sizeof(oifr->ifr_addr);
   3405 	} else
   3406 #endif
   3407 		len = sizeof(ifr->ifr_ifru.ifru_space);
   3408 
   3409 	if (len < sa->sa_len)
   3410 		return EFBIG;
   3411 
   3412 	memset(&ifr->ifr_addr, 0, len);
   3413 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3414 
   3415 #ifdef COMPAT_OIFREQ
   3416 	if (cmd != ocmd)
   3417 		ifreqn2o(oifr, ifr);
   3418 #endif
   3419 	return 0;
   3420 }
   3421 
   3422 /*
   3423  * wrapper function for the drivers which doesn't have if_transmit().
   3424  */
   3425 static int
   3426 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3427 {
   3428 	int s, error;
   3429 	size_t pktlen = m->m_pkthdr.len;
   3430 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3431 
   3432 	s = splnet();
   3433 
   3434 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3435 	if (error != 0) {
   3436 		/* mbuf is already freed */
   3437 		goto out;
   3438 	}
   3439 
   3440 	ifp->if_obytes += pktlen;
   3441 	if (mcast)
   3442 		ifp->if_omcasts++;
   3443 
   3444 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3445 		if_start_lock(ifp);
   3446 out:
   3447 	splx(s);
   3448 
   3449 	return error;
   3450 }
   3451 
   3452 int
   3453 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3454 {
   3455 	int error;
   3456 
   3457 #ifdef ALTQ
   3458 	KERNEL_LOCK(1, NULL);
   3459 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3460 		error = if_transmit(ifp, m);
   3461 		KERNEL_UNLOCK_ONE(NULL);
   3462 	} else {
   3463 		KERNEL_UNLOCK_ONE(NULL);
   3464 		error = (*ifp->if_transmit)(ifp, m);
   3465 		/* mbuf is alredy freed */
   3466 	}
   3467 #else /* !ALTQ */
   3468 	error = (*ifp->if_transmit)(ifp, m);
   3469 	/* mbuf is alredy freed */
   3470 #endif /* !ALTQ */
   3471 
   3472 	return error;
   3473 }
   3474 
   3475 /*
   3476  * Queue message on interface, and start output if interface
   3477  * not yet active.
   3478  */
   3479 int
   3480 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3481 {
   3482 
   3483 	return if_transmit_lock(ifp, m);
   3484 }
   3485 
   3486 /*
   3487  * Queue message on interface, possibly using a second fast queue
   3488  */
   3489 int
   3490 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3491 {
   3492 	int error = 0;
   3493 
   3494 	if (ifq != NULL
   3495 #ifdef ALTQ
   3496 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3497 #endif
   3498 	    ) {
   3499 		if (IF_QFULL(ifq)) {
   3500 			IF_DROP(&ifp->if_snd);
   3501 			m_freem(m);
   3502 			if (error == 0)
   3503 				error = ENOBUFS;
   3504 		} else
   3505 			IF_ENQUEUE(ifq, m);
   3506 	} else
   3507 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3508 	if (error != 0) {
   3509 		++ifp->if_oerrors;
   3510 		return error;
   3511 	}
   3512 	return 0;
   3513 }
   3514 
   3515 int
   3516 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3517 {
   3518 	int rc;
   3519 
   3520 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   3521 	if (ifp->if_initaddr != NULL)
   3522 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3523 	else if (src ||
   3524 		/* FIXME: may not hold if_ioctl_lock */
   3525 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3526 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3527 
   3528 	return rc;
   3529 }
   3530 
   3531 int
   3532 if_do_dad(struct ifnet *ifp)
   3533 {
   3534 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3535 		return 0;
   3536 
   3537 	switch (ifp->if_type) {
   3538 	case IFT_FAITH:
   3539 		/*
   3540 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3541 		 * but loop packets back.  We do not have to do DAD on such
   3542 		 * interfaces.  We should even omit it, because loop-backed
   3543 		 * responses would confuse the DAD procedure.
   3544 		 */
   3545 		return 0;
   3546 	default:
   3547 		/*
   3548 		 * Our DAD routine requires the interface up and running.
   3549 		 * However, some interfaces can be up before the RUNNING
   3550 		 * status.  Additionaly, users may try to assign addresses
   3551 		 * before the interface becomes up (or running).
   3552 		 * We simply skip DAD in such a case as a work around.
   3553 		 * XXX: we should rather mark "tentative" on such addresses,
   3554 		 * and do DAD after the interface becomes ready.
   3555 		 */
   3556 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   3557 		    (IFF_UP|IFF_RUNNING))
   3558 			return 0;
   3559 
   3560 		return 1;
   3561 	}
   3562 }
   3563 
   3564 int
   3565 if_flags_set(ifnet_t *ifp, const short flags)
   3566 {
   3567 	int rc;
   3568 
   3569 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   3570 
   3571 	if (ifp->if_setflags != NULL)
   3572 		rc = (*ifp->if_setflags)(ifp, flags);
   3573 	else {
   3574 		short cantflags, chgdflags;
   3575 		struct ifreq ifr;
   3576 
   3577 		chgdflags = ifp->if_flags ^ flags;
   3578 		cantflags = chgdflags & IFF_CANTCHANGE;
   3579 
   3580 		if (cantflags != 0)
   3581 			ifp->if_flags ^= cantflags;
   3582 
   3583                 /* Traditionally, we do not call if_ioctl after
   3584                  * setting/clearing only IFF_PROMISC if the interface
   3585                  * isn't IFF_UP.  Uphold that tradition.
   3586 		 */
   3587 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3588 			return 0;
   3589 
   3590 		memset(&ifr, 0, sizeof(ifr));
   3591 
   3592 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3593 		/* FIXME: may not hold if_ioctl_lock */
   3594 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3595 
   3596 		if (rc != 0 && cantflags != 0)
   3597 			ifp->if_flags ^= cantflags;
   3598 	}
   3599 
   3600 	return rc;
   3601 }
   3602 
   3603 int
   3604 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3605 {
   3606 	int rc;
   3607 	struct ifreq ifr;
   3608 
   3609 	if (ifp->if_mcastop != NULL)
   3610 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3611 	else {
   3612 		ifreq_setaddr(cmd, &ifr, sa);
   3613 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3614 	}
   3615 
   3616 	return rc;
   3617 }
   3618 
   3619 int
   3620 if_enable_vlan_mtu(struct ifnet *ifp)
   3621 {
   3622 	int error;
   3623 
   3624 	mutex_enter(ifp->if_ioctl_lock);
   3625 	error= ether_enable_vlan_mtu(ifp);
   3626 	mutex_exit(ifp->if_ioctl_lock);
   3627 
   3628 	return error;
   3629 }
   3630 
   3631 int
   3632 if_disable_vlan_mtu(struct ifnet *ifp)
   3633 {
   3634 	int error;
   3635 
   3636 	mutex_enter(ifp->if_ioctl_lock);
   3637 	error= ether_disable_vlan_mtu(ifp);
   3638 	mutex_exit(ifp->if_ioctl_lock);
   3639 
   3640 	return error;
   3641 }
   3642 
   3643 static void
   3644 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3645     struct ifaltq *ifq)
   3646 {
   3647 	const struct sysctlnode *cnode, *rnode;
   3648 
   3649 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3650 		       CTLFLAG_PERMANENT,
   3651 		       CTLTYPE_NODE, "interfaces",
   3652 		       SYSCTL_DESCR("Per-interface controls"),
   3653 		       NULL, 0, NULL, 0,
   3654 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3655 		goto bad;
   3656 
   3657 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3658 		       CTLFLAG_PERMANENT,
   3659 		       CTLTYPE_NODE, ifname,
   3660 		       SYSCTL_DESCR("Interface controls"),
   3661 		       NULL, 0, NULL, 0,
   3662 		       CTL_CREATE, CTL_EOL) != 0)
   3663 		goto bad;
   3664 
   3665 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3666 		       CTLFLAG_PERMANENT,
   3667 		       CTLTYPE_NODE, "sndq",
   3668 		       SYSCTL_DESCR("Interface output queue controls"),
   3669 		       NULL, 0, NULL, 0,
   3670 		       CTL_CREATE, CTL_EOL) != 0)
   3671 		goto bad;
   3672 
   3673 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3674 		       CTLFLAG_PERMANENT,
   3675 		       CTLTYPE_INT, "len",
   3676 		       SYSCTL_DESCR("Current output queue length"),
   3677 		       NULL, 0, &ifq->ifq_len, 0,
   3678 		       CTL_CREATE, CTL_EOL) != 0)
   3679 		goto bad;
   3680 
   3681 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3682 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3683 		       CTLTYPE_INT, "maxlen",
   3684 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3685 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3686 		       CTL_CREATE, CTL_EOL) != 0)
   3687 		goto bad;
   3688 
   3689 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3690 		       CTLFLAG_PERMANENT,
   3691 		       CTLTYPE_INT, "drops",
   3692 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3693 		       NULL, 0, &ifq->ifq_drops, 0,
   3694 		       CTL_CREATE, CTL_EOL) != 0)
   3695 		goto bad;
   3696 
   3697 	return;
   3698 bad:
   3699 	printf("%s: could not attach sysctl nodes\n", ifname);
   3700 	return;
   3701 }
   3702 
   3703 #if defined(INET) || defined(INET6)
   3704 
   3705 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3706 	static int							\
   3707 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3708 	{								\
   3709 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3710 	}
   3711 
   3712 #if defined(INET)
   3713 static int
   3714 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3715 {
   3716 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3717 }
   3718 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3719 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3720 #endif
   3721 
   3722 #if defined(INET6)
   3723 static int
   3724 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3725 {
   3726 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3727 }
   3728 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3729 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3730 #endif
   3731 
   3732 static void
   3733 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3734 {
   3735 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3736 	const char *pfname = NULL, *ipname = NULL;
   3737 	int ipn = 0, qid = 0;
   3738 
   3739 	switch (pf) {
   3740 #if defined(INET)
   3741 	case PF_INET:
   3742 		len_func = sysctl_net_ip_pktq_items;
   3743 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3744 		drops_func = sysctl_net_ip_pktq_drops;
   3745 		pfname = "inet", ipn = IPPROTO_IP;
   3746 		ipname = "ip", qid = IPCTL_IFQ;
   3747 		break;
   3748 #endif
   3749 #if defined(INET6)
   3750 	case PF_INET6:
   3751 		len_func = sysctl_net_ip6_pktq_items;
   3752 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3753 		drops_func = sysctl_net_ip6_pktq_drops;
   3754 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3755 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3756 		break;
   3757 #endif
   3758 	default:
   3759 		KASSERT(false);
   3760 	}
   3761 
   3762 	sysctl_createv(clog, 0, NULL, NULL,
   3763 		       CTLFLAG_PERMANENT,
   3764 		       CTLTYPE_NODE, pfname, NULL,
   3765 		       NULL, 0, NULL, 0,
   3766 		       CTL_NET, pf, CTL_EOL);
   3767 	sysctl_createv(clog, 0, NULL, NULL,
   3768 		       CTLFLAG_PERMANENT,
   3769 		       CTLTYPE_NODE, ipname, NULL,
   3770 		       NULL, 0, NULL, 0,
   3771 		       CTL_NET, pf, ipn, CTL_EOL);
   3772 	sysctl_createv(clog, 0, NULL, NULL,
   3773 		       CTLFLAG_PERMANENT,
   3774 		       CTLTYPE_NODE, "ifq",
   3775 		       SYSCTL_DESCR("Protocol input queue controls"),
   3776 		       NULL, 0, NULL, 0,
   3777 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3778 
   3779 	sysctl_createv(clog, 0, NULL, NULL,
   3780 		       CTLFLAG_PERMANENT,
   3781 		       CTLTYPE_INT, "len",
   3782 		       SYSCTL_DESCR("Current input queue length"),
   3783 		       len_func, 0, NULL, 0,
   3784 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3785 	sysctl_createv(clog, 0, NULL, NULL,
   3786 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3787 		       CTLTYPE_INT, "maxlen",
   3788 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3789 		       maxlen_func, 0, NULL, 0,
   3790 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3791 	sysctl_createv(clog, 0, NULL, NULL,
   3792 		       CTLFLAG_PERMANENT,
   3793 		       CTLTYPE_INT, "drops",
   3794 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3795 		       drops_func, 0, NULL, 0,
   3796 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3797 }
   3798 #endif /* INET || INET6 */
   3799 
   3800 static int
   3801 if_sdl_sysctl(SYSCTLFN_ARGS)
   3802 {
   3803 	struct ifnet *ifp;
   3804 	const struct sockaddr_dl *sdl;
   3805 	struct psref psref;
   3806 	int error = 0;
   3807 	int bound;
   3808 
   3809 	if (namelen != 1)
   3810 		return EINVAL;
   3811 
   3812 	bound = curlwp_bind();
   3813 	ifp = if_get_byindex(name[0], &psref);
   3814 	if (ifp == NULL) {
   3815 		error = ENODEV;
   3816 		goto out0;
   3817 	}
   3818 
   3819 	sdl = ifp->if_sadl;
   3820 	if (sdl == NULL) {
   3821 		*oldlenp = 0;
   3822 		goto out1;
   3823 	}
   3824 
   3825 	if (oldp == NULL) {
   3826 		*oldlenp = sdl->sdl_alen;
   3827 		goto out1;
   3828 	}
   3829 
   3830 	if (*oldlenp >= sdl->sdl_alen)
   3831 		*oldlenp = sdl->sdl_alen;
   3832 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3833 out1:
   3834 	if_put(ifp, &psref);
   3835 out0:
   3836 	curlwp_bindx(bound);
   3837 	return error;
   3838 }
   3839 
   3840 static void
   3841 if_sysctl_setup(struct sysctllog **clog)
   3842 {
   3843 	const struct sysctlnode *rnode = NULL;
   3844 
   3845 	sysctl_createv(clog, 0, NULL, &rnode,
   3846 		       CTLFLAG_PERMANENT,
   3847 		       CTLTYPE_NODE, "sdl",
   3848 		       SYSCTL_DESCR("Get active link-layer address"),
   3849 		       if_sdl_sysctl, 0, NULL, 0,
   3850 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3851 
   3852 #if defined(INET)
   3853 	sysctl_net_pktq_setup(NULL, PF_INET);
   3854 #endif
   3855 #ifdef INET6
   3856 	if (in6_present)
   3857 		sysctl_net_pktq_setup(NULL, PF_INET6);
   3858 #endif
   3859 }
   3860