Home | History | Annotate | Line # | Download | only in net
if.c revision 1.412
      1 /*	$NetBSD: if.c,v 1.412 2017/12/11 03:25:45 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.412 2017/12/11 03:25:45 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 
     99 #include "opt_atalk.h"
    100 #include "opt_natm.h"
    101 #include "opt_wlan.h"
    102 #include "opt_net_mpsafe.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/proc.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/domain.h>
    113 #include <sys/protosw.h>
    114 #include <sys/kernel.h>
    115 #include <sys/ioctl.h>
    116 #include <sys/sysctl.h>
    117 #include <sys/syslog.h>
    118 #include <sys/kauth.h>
    119 #include <sys/kmem.h>
    120 #include <sys/xcall.h>
    121 #include <sys/cpu.h>
    122 #include <sys/intr.h>
    123 
    124 #include <net/if.h>
    125 #include <net/if_dl.h>
    126 #include <net/if_ether.h>
    127 #include <net/if_media.h>
    128 #include <net80211/ieee80211.h>
    129 #include <net80211/ieee80211_ioctl.h>
    130 #include <net/if_types.h>
    131 #include <net/route.h>
    132 #include <net/netisr.h>
    133 #include <sys/module.h>
    134 #ifdef NETATALK
    135 #include <netatalk/at_extern.h>
    136 #include <netatalk/at.h>
    137 #endif
    138 #include <net/pfil.h>
    139 #include <netinet/in.h>
    140 #include <netinet/in_var.h>
    141 #include <netinet/ip_encap.h>
    142 #include <net/bpf.h>
    143 
    144 #ifdef INET6
    145 #include <netinet6/in6_var.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include "ether.h"
    150 #include "fddi.h"
    151 #include "token.h"
    152 
    153 #include "carp.h"
    154 #if NCARP > 0
    155 #include <netinet/ip_carp.h>
    156 #endif
    157 
    158 #include <compat/sys/sockio.h>
    159 #include <compat/sys/socket.h>
    160 
    161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    163 
    164 /*
    165  * Global list of interfaces.
    166  */
    167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    168 struct ifnet_head		ifnet_list;
    169 
    170 struct pslist_head		ifnet_pslist;
    171 static ifnet_t **		ifindex2ifnet = NULL;
    172 static u_int			if_index = 1;
    173 static size_t			if_indexlim = 0;
    174 static uint64_t			index_gen;
    175 /* Mutex to protect the above objects. */
    176 kmutex_t			ifnet_mtx __cacheline_aligned;
    177 static struct psref_class	*ifnet_psref_class __read_mostly;
    178 static pserialize_t		ifnet_psz;
    179 
    180 static kmutex_t			if_clone_mtx;
    181 
    182 struct ifnet *lo0ifp;
    183 int	ifqmaxlen = IFQ_MAXLEN;
    184 
    185 struct psref_class		*ifa_psref_class __read_mostly;
    186 
    187 static int	if_delroute_matcher(struct rtentry *, void *);
    188 
    189 static bool if_is_unit(const char *);
    190 static struct if_clone *if_clone_lookup(const char *, int *);
    191 
    192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    193 static int if_cloners_count;
    194 
    195 /* Packet filtering hook for interfaces. */
    196 pfil_head_t *			if_pfil __read_mostly;
    197 
    198 static kauth_listener_t if_listener;
    199 
    200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    203     struct ifaltq *);
    204 static void if_slowtimo(void *);
    205 static void if_free_sadl(struct ifnet *);
    206 static void if_attachdomain1(struct ifnet *);
    207 static int ifconf(u_long, void *);
    208 static int if_transmit(struct ifnet *, struct mbuf *);
    209 static int if_clone_create(const char *);
    210 static int if_clone_destroy(const char *);
    211 static void if_link_state_change_si(void *);
    212 static void if_up_locked(struct ifnet *);
    213 static void _if_down(struct ifnet *);
    214 static void if_down_deactivated(struct ifnet *);
    215 
    216 struct if_percpuq {
    217 	struct ifnet	*ipq_ifp;
    218 	void		*ipq_si;
    219 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    220 };
    221 
    222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    223 
    224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    227     struct if_percpuq *);
    228 
    229 struct if_deferred_start {
    230 	struct ifnet	*ids_ifp;
    231 	void		(*ids_if_start)(struct ifnet *);
    232 	void		*ids_si;
    233 };
    234 
    235 static void if_deferred_start_softint(void *);
    236 static void if_deferred_start_common(struct ifnet *);
    237 static void if_deferred_start_destroy(struct ifnet *);
    238 
    239 #if defined(INET) || defined(INET6)
    240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    241 #endif
    242 
    243 static void if_sysctl_setup(struct sysctllog **);
    244 
    245 /*
    246  * Pointer to stub or real compat_cvtcmd() depending on presence of
    247  * the compat module
    248  */
    249 u_long stub_compat_cvtcmd(u_long);
    250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
    251 
    252 /* Similarly, pointer to compat_ifioctl() if it is present */
    253 
    254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
    255 	struct lwp *) = NULL;
    256 
    257 /* The stub version of compat_cvtcmd() */
    258 u_long stub_compat_cvtcmd(u_long cmd)
    259 {
    260 
    261 	return cmd;
    262 }
    263 
    264 static int
    265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    266     void *arg0, void *arg1, void *arg2, void *arg3)
    267 {
    268 	int result;
    269 	enum kauth_network_req req;
    270 
    271 	result = KAUTH_RESULT_DEFER;
    272 	req = (enum kauth_network_req)arg1;
    273 
    274 	if (action != KAUTH_NETWORK_INTERFACE)
    275 		return result;
    276 
    277 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    278 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    279 		result = KAUTH_RESULT_ALLOW;
    280 
    281 	return result;
    282 }
    283 
    284 /*
    285  * Network interface utility routines.
    286  *
    287  * Routines with ifa_ifwith* names take sockaddr *'s as
    288  * parameters.
    289  */
    290 void
    291 ifinit(void)
    292 {
    293 
    294 	if_sysctl_setup(NULL);
    295 
    296 #if (defined(INET) || defined(INET6))
    297 	encapinit();
    298 #endif
    299 
    300 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    301 	    if_listener_cb, NULL);
    302 
    303 	/* interfaces are available, inform socket code */
    304 	ifioctl = doifioctl;
    305 }
    306 
    307 /*
    308  * XXX Initialization before configure().
    309  * XXX hack to get pfil_add_hook working in autoconf.
    310  */
    311 void
    312 ifinit1(void)
    313 {
    314 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    315 
    316 	TAILQ_INIT(&ifnet_list);
    317 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    318 	ifnet_psz = pserialize_create();
    319 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    320 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    321 	PSLIST_INIT(&ifnet_pslist);
    322 
    323 	if_indexlim = 8;
    324 
    325 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    326 	KASSERT(if_pfil != NULL);
    327 
    328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    329 	etherinit();
    330 #endif
    331 }
    332 
    333 ifnet_t *
    334 if_alloc(u_char type)
    335 {
    336 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    337 }
    338 
    339 void
    340 if_free(ifnet_t *ifp)
    341 {
    342 	kmem_free(ifp, sizeof(ifnet_t));
    343 }
    344 
    345 void
    346 if_initname(struct ifnet *ifp, const char *name, int unit)
    347 {
    348 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    349 	    "%s%d", name, unit);
    350 }
    351 
    352 /*
    353  * Null routines used while an interface is going away.  These routines
    354  * just return an error.
    355  */
    356 
    357 int
    358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    359     const struct sockaddr *so, const struct rtentry *rt)
    360 {
    361 
    362 	return ENXIO;
    363 }
    364 
    365 void
    366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    367 {
    368 
    369 	/* Nothing. */
    370 }
    371 
    372 void
    373 if_nullstart(struct ifnet *ifp)
    374 {
    375 
    376 	/* Nothing. */
    377 }
    378 
    379 int
    380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    381 {
    382 
    383 	m_freem(m);
    384 	return ENXIO;
    385 }
    386 
    387 int
    388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    389 {
    390 
    391 	return ENXIO;
    392 }
    393 
    394 int
    395 if_nullinit(struct ifnet *ifp)
    396 {
    397 
    398 	return ENXIO;
    399 }
    400 
    401 void
    402 if_nullstop(struct ifnet *ifp, int disable)
    403 {
    404 
    405 	/* Nothing. */
    406 }
    407 
    408 void
    409 if_nullslowtimo(struct ifnet *ifp)
    410 {
    411 
    412 	/* Nothing. */
    413 }
    414 
    415 void
    416 if_nulldrain(struct ifnet *ifp)
    417 {
    418 
    419 	/* Nothing. */
    420 }
    421 
    422 void
    423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    424 {
    425 	struct ifaddr *ifa;
    426 	struct sockaddr_dl *sdl;
    427 
    428 	ifp->if_addrlen = addrlen;
    429 	if_alloc_sadl(ifp);
    430 	ifa = ifp->if_dl;
    431 	sdl = satosdl(ifa->ifa_addr);
    432 
    433 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    434 	if (factory) {
    435 		ifp->if_hwdl = ifp->if_dl;
    436 		ifaref(ifp->if_hwdl);
    437 	}
    438 	/* TBD routing socket */
    439 }
    440 
    441 struct ifaddr *
    442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    443 {
    444 	unsigned socksize, ifasize;
    445 	int addrlen, namelen;
    446 	struct sockaddr_dl *mask, *sdl;
    447 	struct ifaddr *ifa;
    448 
    449 	namelen = strlen(ifp->if_xname);
    450 	addrlen = ifp->if_addrlen;
    451 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    452 	ifasize = sizeof(*ifa) + 2 * socksize;
    453 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    454 
    455 	sdl = (struct sockaddr_dl *)(ifa + 1);
    456 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    457 
    458 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    459 	    ifp->if_xname, namelen, NULL, addrlen);
    460 	mask->sdl_family = AF_LINK;
    461 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    462 	memset(&mask->sdl_data[0], 0xff, namelen);
    463 	ifa->ifa_rtrequest = link_rtrequest;
    464 	ifa->ifa_addr = (struct sockaddr *)sdl;
    465 	ifa->ifa_netmask = (struct sockaddr *)mask;
    466 	ifa_psref_init(ifa);
    467 
    468 	*sdlp = sdl;
    469 
    470 	return ifa;
    471 }
    472 
    473 static void
    474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    475 {
    476 	const struct sockaddr_dl *sdl;
    477 
    478 	ifp->if_dl = ifa;
    479 	ifaref(ifa);
    480 	sdl = satosdl(ifa->ifa_addr);
    481 	ifp->if_sadl = sdl;
    482 }
    483 
    484 /*
    485  * Allocate the link level name for the specified interface.  This
    486  * is an attachment helper.  It must be called after ifp->if_addrlen
    487  * is initialized, which may not be the case when if_attach() is
    488  * called.
    489  */
    490 void
    491 if_alloc_sadl(struct ifnet *ifp)
    492 {
    493 	struct ifaddr *ifa;
    494 	const struct sockaddr_dl *sdl;
    495 
    496 	/*
    497 	 * If the interface already has a link name, release it
    498 	 * now.  This is useful for interfaces that can change
    499 	 * link types, and thus switch link names often.
    500 	 */
    501 	if (ifp->if_sadl != NULL)
    502 		if_free_sadl(ifp);
    503 
    504 	ifa = if_dl_create(ifp, &sdl);
    505 
    506 	ifa_insert(ifp, ifa);
    507 	if_sadl_setrefs(ifp, ifa);
    508 }
    509 
    510 static void
    511 if_deactivate_sadl(struct ifnet *ifp)
    512 {
    513 	struct ifaddr *ifa;
    514 
    515 	KASSERT(ifp->if_dl != NULL);
    516 
    517 	ifa = ifp->if_dl;
    518 
    519 	ifp->if_sadl = NULL;
    520 
    521 	ifp->if_dl = NULL;
    522 	ifafree(ifa);
    523 }
    524 
    525 static void
    526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    527 {
    528 	struct ifaddr *old;
    529 
    530 	KASSERT(ifp->if_dl != NULL);
    531 
    532 	old = ifp->if_dl;
    533 
    534 	ifaref(ifa);
    535 	/* XXX Update if_dl and if_sadl atomically */
    536 	ifp->if_dl = ifa;
    537 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    538 
    539 	ifafree(old);
    540 }
    541 
    542 void
    543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    544     const struct sockaddr_dl *sdl)
    545 {
    546 	int s, ss;
    547 	struct ifaddr *ifa;
    548 	int bound = curlwp_bind();
    549 
    550 	KASSERT(ifa_held(ifa0));
    551 
    552 	s = splsoftnet();
    553 
    554 	if_replace_sadl(ifp, ifa0);
    555 
    556 	ss = pserialize_read_enter();
    557 	IFADDR_READER_FOREACH(ifa, ifp) {
    558 		struct psref psref;
    559 		ifa_acquire(ifa, &psref);
    560 		pserialize_read_exit(ss);
    561 
    562 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    563 
    564 		ss = pserialize_read_enter();
    565 		ifa_release(ifa, &psref);
    566 	}
    567 	pserialize_read_exit(ss);
    568 
    569 	splx(s);
    570 	curlwp_bindx(bound);
    571 }
    572 
    573 /*
    574  * Free the link level name for the specified interface.  This is
    575  * a detach helper.  This is called from if_detach().
    576  */
    577 static void
    578 if_free_sadl(struct ifnet *ifp)
    579 {
    580 	struct ifaddr *ifa;
    581 	int s;
    582 
    583 	ifa = ifp->if_dl;
    584 	if (ifa == NULL) {
    585 		KASSERT(ifp->if_sadl == NULL);
    586 		return;
    587 	}
    588 
    589 	KASSERT(ifp->if_sadl != NULL);
    590 
    591 	s = splsoftnet();
    592 	rtinit(ifa, RTM_DELETE, 0);
    593 	ifa_remove(ifp, ifa);
    594 	if_deactivate_sadl(ifp);
    595 	if (ifp->if_hwdl == ifa) {
    596 		ifafree(ifa);
    597 		ifp->if_hwdl = NULL;
    598 	}
    599 	splx(s);
    600 }
    601 
    602 static void
    603 if_getindex(ifnet_t *ifp)
    604 {
    605 	bool hitlimit = false;
    606 
    607 	ifp->if_index_gen = index_gen++;
    608 
    609 	ifp->if_index = if_index;
    610 	if (ifindex2ifnet == NULL) {
    611 		if_index++;
    612 		goto skip;
    613 	}
    614 	while (if_byindex(ifp->if_index)) {
    615 		/*
    616 		 * If we hit USHRT_MAX, we skip back to 0 since
    617 		 * there are a number of places where the value
    618 		 * of if_index or if_index itself is compared
    619 		 * to or stored in an unsigned short.  By
    620 		 * jumping back, we won't botch those assignments
    621 		 * or comparisons.
    622 		 */
    623 		if (++if_index == 0) {
    624 			if_index = 1;
    625 		} else if (if_index == USHRT_MAX) {
    626 			/*
    627 			 * However, if we have to jump back to
    628 			 * zero *twice* without finding an empty
    629 			 * slot in ifindex2ifnet[], then there
    630 			 * there are too many (>65535) interfaces.
    631 			 */
    632 			if (hitlimit) {
    633 				panic("too many interfaces");
    634 			}
    635 			hitlimit = true;
    636 			if_index = 1;
    637 		}
    638 		ifp->if_index = if_index;
    639 	}
    640 skip:
    641 	/*
    642 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    643 	 * grow dynamically, it should grow too.
    644 	 */
    645 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    646 		size_t m, n, oldlim;
    647 		void *q;
    648 
    649 		oldlim = if_indexlim;
    650 		while (ifp->if_index >= if_indexlim)
    651 			if_indexlim <<= 1;
    652 
    653 		/* grow ifindex2ifnet */
    654 		m = oldlim * sizeof(struct ifnet *);
    655 		n = if_indexlim * sizeof(struct ifnet *);
    656 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    657 		if (ifindex2ifnet != NULL) {
    658 			memcpy(q, ifindex2ifnet, m);
    659 			free(ifindex2ifnet, M_IFADDR);
    660 		}
    661 		ifindex2ifnet = (struct ifnet **)q;
    662 	}
    663 	ifindex2ifnet[ifp->if_index] = ifp;
    664 }
    665 
    666 /*
    667  * Initialize an interface and assign an index for it.
    668  *
    669  * It must be called prior to a device specific attach routine
    670  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    671  * and be followed by if_register:
    672  *
    673  *     if_initialize(ifp);
    674  *     ether_ifattach(ifp, enaddr);
    675  *     if_register(ifp);
    676  */
    677 int
    678 if_initialize(ifnet_t *ifp)
    679 {
    680 	int rv = 0;
    681 
    682 	KASSERT(if_indexlim > 0);
    683 	TAILQ_INIT(&ifp->if_addrlist);
    684 
    685 	/*
    686 	 * Link level name is allocated later by a separate call to
    687 	 * if_alloc_sadl().
    688 	 */
    689 
    690 	if (ifp->if_snd.ifq_maxlen == 0)
    691 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    692 
    693 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    694 
    695 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    696 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    697 
    698 	ifp->if_capenable = 0;
    699 	ifp->if_csum_flags_tx = 0;
    700 	ifp->if_csum_flags_rx = 0;
    701 
    702 #ifdef ALTQ
    703 	ifp->if_snd.altq_type = 0;
    704 	ifp->if_snd.altq_disc = NULL;
    705 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    706 	ifp->if_snd.altq_tbr  = NULL;
    707 	ifp->if_snd.altq_ifp  = ifp;
    708 #endif
    709 
    710 	IFQ_LOCK_INIT(&ifp->if_snd);
    711 
    712 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    713 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    714 
    715 	IF_AFDATA_LOCK_INIT(ifp);
    716 
    717 	if (if_is_link_state_changeable(ifp)) {
    718 		u_int flags = SOFTINT_NET;
    719 		flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
    720 		    SOFTINT_MPSAFE : 0;
    721 		ifp->if_link_si = softint_establish(flags,
    722 		    if_link_state_change_si, ifp);
    723 		if (ifp->if_link_si == NULL) {
    724 			rv = ENOMEM;
    725 			goto fail;
    726 		}
    727 	}
    728 
    729 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    730 	PSLIST_INIT(&ifp->if_addr_pslist);
    731 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    732 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    733 	LIST_INIT(&ifp->if_multiaddrs);
    734 
    735 	IFNET_GLOBAL_LOCK();
    736 	if_getindex(ifp);
    737 	IFNET_GLOBAL_UNLOCK();
    738 
    739 	return 0;
    740 
    741 fail:
    742 	IF_AFDATA_LOCK_DESTROY(ifp);
    743 
    744 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    745 	(void)pfil_head_destroy(ifp->if_pfil);
    746 
    747 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    748 
    749 	return rv;
    750 }
    751 
    752 /*
    753  * Register an interface to the list of "active" interfaces.
    754  */
    755 void
    756 if_register(ifnet_t *ifp)
    757 {
    758 	/*
    759 	 * If the driver has not supplied its own if_ioctl, then
    760 	 * supply the default.
    761 	 */
    762 	if (ifp->if_ioctl == NULL)
    763 		ifp->if_ioctl = ifioctl_common;
    764 
    765 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    766 
    767 	if (!STAILQ_EMPTY(&domains))
    768 		if_attachdomain1(ifp);
    769 
    770 	/* Announce the interface. */
    771 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    772 
    773 	if (ifp->if_slowtimo != NULL) {
    774 		ifp->if_slowtimo_ch =
    775 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    776 		callout_init(ifp->if_slowtimo_ch, 0);
    777 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    778 		if_slowtimo(ifp);
    779 	}
    780 
    781 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    782 		ifp->if_transmit = if_transmit;
    783 
    784 	IFNET_GLOBAL_LOCK();
    785 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    786 	IFNET_WRITER_INSERT_TAIL(ifp);
    787 	IFNET_GLOBAL_UNLOCK();
    788 }
    789 
    790 /*
    791  * The if_percpuq framework
    792  *
    793  * It allows network device drivers to execute the network stack
    794  * in softint (so called softint-based if_input). It utilizes
    795  * softint and percpu ifqueue. It doesn't distribute any packets
    796  * between CPUs, unlike pktqueue(9).
    797  *
    798  * Currently we support two options for device drivers to apply the framework:
    799  * - Use it implicitly with less changes
    800  *   - If you use if_attach in driver's _attach function and if_input in
    801  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    802  *     the packet implicitly
    803  * - Use it explicitly in each driver (recommended)
    804  *   - You can use if_percpuq_* directly in your driver
    805  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    806  *   - See wm(4) as a reference implementation
    807  */
    808 
    809 static void
    810 if_percpuq_softint(void *arg)
    811 {
    812 	struct if_percpuq *ipq = arg;
    813 	struct ifnet *ifp = ipq->ipq_ifp;
    814 	struct mbuf *m;
    815 
    816 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    817 		ifp->if_ipackets++;
    818 		bpf_mtap(ifp, m);
    819 
    820 		ifp->_if_input(ifp, m);
    821 	}
    822 }
    823 
    824 static void
    825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    826 {
    827 	struct ifqueue *const ifq = p;
    828 
    829 	memset(ifq, 0, sizeof(*ifq));
    830 	ifq->ifq_maxlen = IFQ_MAXLEN;
    831 }
    832 
    833 struct if_percpuq *
    834 if_percpuq_create(struct ifnet *ifp)
    835 {
    836 	struct if_percpuq *ipq;
    837 
    838 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    839 	ipq->ipq_ifp = ifp;
    840 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    841 	    if_percpuq_softint, ipq);
    842 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    843 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    844 
    845 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    846 
    847 	return ipq;
    848 }
    849 
    850 static struct mbuf *
    851 if_percpuq_dequeue(struct if_percpuq *ipq)
    852 {
    853 	struct mbuf *m;
    854 	struct ifqueue *ifq;
    855 	int s;
    856 
    857 	s = splnet();
    858 	ifq = percpu_getref(ipq->ipq_ifqs);
    859 	IF_DEQUEUE(ifq, m);
    860 	percpu_putref(ipq->ipq_ifqs);
    861 	splx(s);
    862 
    863 	return m;
    864 }
    865 
    866 static void
    867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    868 {
    869 	struct ifqueue *const ifq = p;
    870 
    871 	IF_PURGE(ifq);
    872 }
    873 
    874 void
    875 if_percpuq_destroy(struct if_percpuq *ipq)
    876 {
    877 
    878 	/* if_detach may already destroy it */
    879 	if (ipq == NULL)
    880 		return;
    881 
    882 	softint_disestablish(ipq->ipq_si);
    883 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    884 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    885 	kmem_free(ipq, sizeof(*ipq));
    886 }
    887 
    888 void
    889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    890 {
    891 	struct ifqueue *ifq;
    892 	int s;
    893 
    894 	KASSERT(ipq != NULL);
    895 
    896 	s = splnet();
    897 	ifq = percpu_getref(ipq->ipq_ifqs);
    898 	if (IF_QFULL(ifq)) {
    899 		IF_DROP(ifq);
    900 		percpu_putref(ipq->ipq_ifqs);
    901 		m_freem(m);
    902 		goto out;
    903 	}
    904 	IF_ENQUEUE(ifq, m);
    905 	percpu_putref(ipq->ipq_ifqs);
    906 
    907 	softint_schedule(ipq->ipq_si);
    908 out:
    909 	splx(s);
    910 }
    911 
    912 static void
    913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    914 {
    915 	struct ifqueue *const ifq = p;
    916 	int *sum = arg;
    917 
    918 	*sum += ifq->ifq_drops;
    919 }
    920 
    921 static int
    922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    923 {
    924 	struct sysctlnode node;
    925 	struct if_percpuq *ipq;
    926 	int sum = 0;
    927 	int error;
    928 
    929 	node = *rnode;
    930 	ipq = node.sysctl_data;
    931 
    932 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    933 
    934 	node.sysctl_data = &sum;
    935 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    936 	if (error != 0 || newp == NULL)
    937 		return error;
    938 
    939 	return 0;
    940 }
    941 
    942 static void
    943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    944     struct if_percpuq *ipq)
    945 {
    946 	const struct sysctlnode *cnode, *rnode;
    947 
    948 	if (sysctl_createv(clog, 0, NULL, &rnode,
    949 		       CTLFLAG_PERMANENT,
    950 		       CTLTYPE_NODE, "interfaces",
    951 		       SYSCTL_DESCR("Per-interface controls"),
    952 		       NULL, 0, NULL, 0,
    953 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    954 		goto bad;
    955 
    956 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    957 		       CTLFLAG_PERMANENT,
    958 		       CTLTYPE_NODE, ifname,
    959 		       SYSCTL_DESCR("Interface controls"),
    960 		       NULL, 0, NULL, 0,
    961 		       CTL_CREATE, CTL_EOL) != 0)
    962 		goto bad;
    963 
    964 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    965 		       CTLFLAG_PERMANENT,
    966 		       CTLTYPE_NODE, "rcvq",
    967 		       SYSCTL_DESCR("Interface input queue controls"),
    968 		       NULL, 0, NULL, 0,
    969 		       CTL_CREATE, CTL_EOL) != 0)
    970 		goto bad;
    971 
    972 #ifdef NOTYET
    973 	/* XXX Should show each per-CPU queue length? */
    974 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    975 		       CTLFLAG_PERMANENT,
    976 		       CTLTYPE_INT, "len",
    977 		       SYSCTL_DESCR("Current input queue length"),
    978 		       sysctl_percpuq_len, 0, NULL, 0,
    979 		       CTL_CREATE, CTL_EOL) != 0)
    980 		goto bad;
    981 
    982 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    983 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    984 		       CTLTYPE_INT, "maxlen",
    985 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    986 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    987 		       CTL_CREATE, CTL_EOL) != 0)
    988 		goto bad;
    989 #endif
    990 
    991 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    992 		       CTLFLAG_PERMANENT,
    993 		       CTLTYPE_INT, "drops",
    994 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    995 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    996 		       CTL_CREATE, CTL_EOL) != 0)
    997 		goto bad;
    998 
    999 	return;
   1000 bad:
   1001 	printf("%s: could not attach sysctl nodes\n", ifname);
   1002 	return;
   1003 }
   1004 
   1005 /*
   1006  * The deferred if_start framework
   1007  *
   1008  * The common APIs to defer if_start to softint when if_start is requested
   1009  * from a device driver running in hardware interrupt context.
   1010  */
   1011 /*
   1012  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1013  * deferred if_start.
   1014  */
   1015 static void
   1016 if_deferred_start_softint(void *arg)
   1017 {
   1018 	struct if_deferred_start *ids = arg;
   1019 	struct ifnet *ifp = ids->ids_ifp;
   1020 
   1021 	ids->ids_if_start(ifp);
   1022 }
   1023 
   1024 /*
   1025  * The default callback function for deferred if_start.
   1026  */
   1027 static void
   1028 if_deferred_start_common(struct ifnet *ifp)
   1029 {
   1030 	int s;
   1031 
   1032 	s = splnet();
   1033 	if_start_lock(ifp);
   1034 	splx(s);
   1035 }
   1036 
   1037 static inline bool
   1038 if_snd_is_used(struct ifnet *ifp)
   1039 {
   1040 
   1041 	return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
   1042 	    ALTQ_IS_ENABLED(&ifp->if_snd);
   1043 }
   1044 
   1045 /*
   1046  * Schedule deferred if_start.
   1047  */
   1048 void
   1049 if_schedule_deferred_start(struct ifnet *ifp)
   1050 {
   1051 
   1052 	KASSERT(ifp->if_deferred_start != NULL);
   1053 
   1054 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1055 		return;
   1056 
   1057 	softint_schedule(ifp->if_deferred_start->ids_si);
   1058 }
   1059 
   1060 /*
   1061  * Create an instance of deferred if_start. A driver should call the function
   1062  * only if the driver needs deferred if_start. Drivers can setup their own
   1063  * deferred if_start function via 2nd argument.
   1064  */
   1065 void
   1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1067 {
   1068 	struct if_deferred_start *ids;
   1069 
   1070 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1071 	ids->ids_ifp = ifp;
   1072 	ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
   1073 	    if_deferred_start_softint, ids);
   1074 	if (func != NULL)
   1075 		ids->ids_if_start = func;
   1076 	else
   1077 		ids->ids_if_start = if_deferred_start_common;
   1078 
   1079 	ifp->if_deferred_start = ids;
   1080 }
   1081 
   1082 static void
   1083 if_deferred_start_destroy(struct ifnet *ifp)
   1084 {
   1085 
   1086 	if (ifp->if_deferred_start == NULL)
   1087 		return;
   1088 
   1089 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1090 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1091 	ifp->if_deferred_start = NULL;
   1092 }
   1093 
   1094 /*
   1095  * The common interface input routine that is called by device drivers,
   1096  * which should be used only when the driver's rx handler already runs
   1097  * in softint.
   1098  */
   1099 void
   1100 if_input(struct ifnet *ifp, struct mbuf *m)
   1101 {
   1102 
   1103 	KASSERT(ifp->if_percpuq == NULL);
   1104 	KASSERT(!cpu_intr_p());
   1105 
   1106 	ifp->if_ipackets++;
   1107 	bpf_mtap(ifp, m);
   1108 
   1109 	ifp->_if_input(ifp, m);
   1110 }
   1111 
   1112 /*
   1113  * DEPRECATED. Use if_initialize and if_register instead.
   1114  * See the above comment of if_initialize.
   1115  *
   1116  * Note that it implicitly enables if_percpuq to make drivers easy to
   1117  * migrate softint-based if_input without much changes. If you don't
   1118  * want to enable it, use if_initialize instead.
   1119  */
   1120 int
   1121 if_attach(ifnet_t *ifp)
   1122 {
   1123 	int rv;
   1124 
   1125 	rv = if_initialize(ifp);
   1126 	if (rv != 0)
   1127 		return rv;
   1128 
   1129 	ifp->if_percpuq = if_percpuq_create(ifp);
   1130 	if_register(ifp);
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 void
   1136 if_attachdomain(void)
   1137 {
   1138 	struct ifnet *ifp;
   1139 	int s;
   1140 	int bound = curlwp_bind();
   1141 
   1142 	s = pserialize_read_enter();
   1143 	IFNET_READER_FOREACH(ifp) {
   1144 		struct psref psref;
   1145 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1146 		pserialize_read_exit(s);
   1147 		if_attachdomain1(ifp);
   1148 		s = pserialize_read_enter();
   1149 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1150 	}
   1151 	pserialize_read_exit(s);
   1152 	curlwp_bindx(bound);
   1153 }
   1154 
   1155 static void
   1156 if_attachdomain1(struct ifnet *ifp)
   1157 {
   1158 	struct domain *dp;
   1159 	int s;
   1160 
   1161 	s = splsoftnet();
   1162 
   1163 	/* address family dependent data region */
   1164 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1165 	DOMAIN_FOREACH(dp) {
   1166 		if (dp->dom_ifattach != NULL)
   1167 			ifp->if_afdata[dp->dom_family] =
   1168 			    (*dp->dom_ifattach)(ifp);
   1169 	}
   1170 
   1171 	splx(s);
   1172 }
   1173 
   1174 /*
   1175  * Deactivate an interface.  This points all of the procedure
   1176  * handles at error stubs.  May be called from interrupt context.
   1177  */
   1178 void
   1179 if_deactivate(struct ifnet *ifp)
   1180 {
   1181 	int s;
   1182 
   1183 	s = splsoftnet();
   1184 
   1185 	ifp->if_output	 = if_nulloutput;
   1186 	ifp->_if_input	 = if_nullinput;
   1187 	ifp->if_start	 = if_nullstart;
   1188 	ifp->if_transmit = if_nulltransmit;
   1189 	ifp->if_ioctl	 = if_nullioctl;
   1190 	ifp->if_init	 = if_nullinit;
   1191 	ifp->if_stop	 = if_nullstop;
   1192 	ifp->if_slowtimo = if_nullslowtimo;
   1193 	ifp->if_drain	 = if_nulldrain;
   1194 
   1195 	/* No more packets may be enqueued. */
   1196 	ifp->if_snd.ifq_maxlen = 0;
   1197 
   1198 	splx(s);
   1199 }
   1200 
   1201 bool
   1202 if_is_deactivated(const struct ifnet *ifp)
   1203 {
   1204 
   1205 	return ifp->if_output == if_nulloutput;
   1206 }
   1207 
   1208 void
   1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1210 {
   1211 	struct ifaddr *ifa, *nifa;
   1212 	int s;
   1213 
   1214 	s = pserialize_read_enter();
   1215 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1216 		nifa = IFADDR_READER_NEXT(ifa);
   1217 		if (ifa->ifa_addr->sa_family != family)
   1218 			continue;
   1219 		pserialize_read_exit(s);
   1220 
   1221 		(*purgeaddr)(ifa);
   1222 
   1223 		s = pserialize_read_enter();
   1224 	}
   1225 	pserialize_read_exit(s);
   1226 }
   1227 
   1228 #ifdef IFAREF_DEBUG
   1229 static struct ifaddr **ifa_list;
   1230 static int ifa_list_size;
   1231 
   1232 /* Depends on only one if_attach runs at once */
   1233 static void
   1234 if_build_ifa_list(struct ifnet *ifp)
   1235 {
   1236 	struct ifaddr *ifa;
   1237 	int i;
   1238 
   1239 	KASSERT(ifa_list == NULL);
   1240 	KASSERT(ifa_list_size == 0);
   1241 
   1242 	IFADDR_READER_FOREACH(ifa, ifp)
   1243 		ifa_list_size++;
   1244 
   1245 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1246 	i = 0;
   1247 	IFADDR_READER_FOREACH(ifa, ifp) {
   1248 		ifa_list[i++] = ifa;
   1249 		ifaref(ifa);
   1250 	}
   1251 }
   1252 
   1253 static void
   1254 if_check_and_free_ifa_list(struct ifnet *ifp)
   1255 {
   1256 	int i;
   1257 	struct ifaddr *ifa;
   1258 
   1259 	if (ifa_list == NULL)
   1260 		return;
   1261 
   1262 	for (i = 0; i < ifa_list_size; i++) {
   1263 		char buf[64];
   1264 
   1265 		ifa = ifa_list[i];
   1266 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1267 		if (ifa->ifa_refcnt > 1) {
   1268 			log(LOG_WARNING,
   1269 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1270 			    buf, ifa->ifa_refcnt - 1);
   1271 		} else
   1272 			log(LOG_DEBUG,
   1273 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1274 			    buf, ifa->ifa_refcnt - 1);
   1275 		ifafree(ifa);
   1276 	}
   1277 
   1278 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1279 	ifa_list = NULL;
   1280 	ifa_list_size = 0;
   1281 }
   1282 #endif
   1283 
   1284 /*
   1285  * Detach an interface from the list of "active" interfaces,
   1286  * freeing any resources as we go along.
   1287  *
   1288  * NOTE: This routine must be called with a valid thread context,
   1289  * as it may block.
   1290  */
   1291 void
   1292 if_detach(struct ifnet *ifp)
   1293 {
   1294 	struct socket so;
   1295 	struct ifaddr *ifa;
   1296 #ifdef IFAREF_DEBUG
   1297 	struct ifaddr *last_ifa = NULL;
   1298 #endif
   1299 	struct domain *dp;
   1300 	const struct protosw *pr;
   1301 	int s, i, family, purged;
   1302 	uint64_t xc;
   1303 
   1304 #ifdef IFAREF_DEBUG
   1305 	if_build_ifa_list(ifp);
   1306 #endif
   1307 	/*
   1308 	 * XXX It's kind of lame that we have to have the
   1309 	 * XXX socket structure...
   1310 	 */
   1311 	memset(&so, 0, sizeof(so));
   1312 
   1313 	s = splnet();
   1314 
   1315 	sysctl_teardown(&ifp->if_sysctl_log);
   1316 	mutex_enter(ifp->if_ioctl_lock);
   1317 	if_deactivate(ifp);
   1318 	mutex_exit(ifp->if_ioctl_lock);
   1319 
   1320 	IFNET_GLOBAL_LOCK();
   1321 	ifindex2ifnet[ifp->if_index] = NULL;
   1322 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1323 	IFNET_WRITER_REMOVE(ifp);
   1324 	pserialize_perform(ifnet_psz);
   1325 	IFNET_GLOBAL_UNLOCK();
   1326 
   1327 	/* Wait for all readers to drain before freeing.  */
   1328 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1329 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1330 
   1331 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1332 		ifp->if_slowtimo = NULL;
   1333 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1334 		callout_destroy(ifp->if_slowtimo_ch);
   1335 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1336 	}
   1337 	if_deferred_start_destroy(ifp);
   1338 
   1339 	/*
   1340 	 * Do an if_down() to give protocols a chance to do something.
   1341 	 */
   1342 	if_down_deactivated(ifp);
   1343 
   1344 #ifdef ALTQ
   1345 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1346 		altq_disable(&ifp->if_snd);
   1347 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1348 		altq_detach(&ifp->if_snd);
   1349 #endif
   1350 
   1351 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1352 
   1353 #if NCARP > 0
   1354 	/* Remove the interface from any carp group it is a part of.  */
   1355 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1356 		carp_ifdetach(ifp);
   1357 #endif
   1358 
   1359 	/* carp_ifdetach still uses the lock */
   1360 	mutex_obj_free(ifp->if_ioctl_lock);
   1361 	ifp->if_ioctl_lock = NULL;
   1362 
   1363 	/*
   1364 	 * Rip all the addresses off the interface.  This should make
   1365 	 * all of the routes go away.
   1366 	 *
   1367 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1368 	 * from the list, including our "cursor", ifa.  For safety,
   1369 	 * and to honor the TAILQ abstraction, I just restart the
   1370 	 * loop after each removal.  Note that the loop will exit
   1371 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1372 	 * family.  I am counting on the historical fact that at
   1373 	 * least one pr_usrreq in each address domain removes at
   1374 	 * least one ifaddr.
   1375 	 */
   1376 again:
   1377 	/*
   1378 	 * At this point, no other one tries to remove ifa in the list,
   1379 	 * so we don't need to take a lock or psref.  Avoid using
   1380 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1381 	 * violations of pserialize.
   1382 	 */
   1383 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1384 		family = ifa->ifa_addr->sa_family;
   1385 #ifdef IFAREF_DEBUG
   1386 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1387 		    ifa, family, ifa->ifa_refcnt);
   1388 		if (last_ifa != NULL && ifa == last_ifa)
   1389 			panic("if_detach: loop detected");
   1390 		last_ifa = ifa;
   1391 #endif
   1392 		if (family == AF_LINK)
   1393 			continue;
   1394 		dp = pffinddomain(family);
   1395 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1396 		/*
   1397 		 * XXX These PURGEIF calls are redundant with the
   1398 		 * purge-all-families calls below, but are left in for
   1399 		 * now both to make a smaller change, and to avoid
   1400 		 * unplanned interactions with clearing of
   1401 		 * ifp->if_addrlist.
   1402 		 */
   1403 		purged = 0;
   1404 		for (pr = dp->dom_protosw;
   1405 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1406 			so.so_proto = pr;
   1407 			if (pr->pr_usrreqs) {
   1408 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1409 				purged = 1;
   1410 			}
   1411 		}
   1412 		if (purged == 0) {
   1413 			/*
   1414 			 * XXX What's really the best thing to do
   1415 			 * XXX here?  --thorpej (at) NetBSD.org
   1416 			 */
   1417 			printf("if_detach: WARNING: AF %d not purged\n",
   1418 			    family);
   1419 			ifa_remove(ifp, ifa);
   1420 		}
   1421 		goto again;
   1422 	}
   1423 
   1424 	if_free_sadl(ifp);
   1425 
   1426 	/* Delete stray routes from the routing table. */
   1427 	for (i = 0; i <= AF_MAX; i++)
   1428 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1429 
   1430 	DOMAIN_FOREACH(dp) {
   1431 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1432 		{
   1433 			void *p = ifp->if_afdata[dp->dom_family];
   1434 			if (p) {
   1435 				ifp->if_afdata[dp->dom_family] = NULL;
   1436 				(*dp->dom_ifdetach)(ifp, p);
   1437 			}
   1438 		}
   1439 
   1440 		/*
   1441 		 * One would expect multicast memberships (INET and
   1442 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1443 		 * calls above, but if all addresses were removed from
   1444 		 * the interface prior to destruction, the calls will
   1445 		 * not be made (e.g. ppp, for which pppd(8) generally
   1446 		 * removes addresses before destroying the interface).
   1447 		 * Because there is no invariant that multicast
   1448 		 * memberships only exist for interfaces with IPv4
   1449 		 * addresses, we must call PURGEIF regardless of
   1450 		 * addresses.  (Protocols which might store ifnet
   1451 		 * pointers are marked with PR_PURGEIF.)
   1452 		 */
   1453 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1454 			so.so_proto = pr;
   1455 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1456 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1457 		}
   1458 	}
   1459 
   1460 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1461 	(void)pfil_head_destroy(ifp->if_pfil);
   1462 
   1463 	/* Announce that the interface is gone. */
   1464 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1465 
   1466 	IF_AFDATA_LOCK_DESTROY(ifp);
   1467 
   1468 	if (if_is_link_state_changeable(ifp)) {
   1469 		softint_disestablish(ifp->if_link_si);
   1470 		ifp->if_link_si = NULL;
   1471 	}
   1472 
   1473 	/*
   1474 	 * remove packets that came from ifp, from software interrupt queues.
   1475 	 */
   1476 	DOMAIN_FOREACH(dp) {
   1477 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1478 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1479 			if (iq == NULL)
   1480 				break;
   1481 			dp->dom_ifqueues[i] = NULL;
   1482 			if_detach_queues(ifp, iq);
   1483 		}
   1484 	}
   1485 
   1486 	/*
   1487 	 * IP queues have to be processed separately: net-queue barrier
   1488 	 * ensures that the packets are dequeued while a cross-call will
   1489 	 * ensure that the interrupts have completed. FIXME: not quite..
   1490 	 */
   1491 #ifdef INET
   1492 	pktq_barrier(ip_pktq);
   1493 #endif
   1494 #ifdef INET6
   1495 	if (in6_present)
   1496 		pktq_barrier(ip6_pktq);
   1497 #endif
   1498 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1499 	xc_wait(xc);
   1500 
   1501 	if (ifp->if_percpuq != NULL) {
   1502 		if_percpuq_destroy(ifp->if_percpuq);
   1503 		ifp->if_percpuq = NULL;
   1504 	}
   1505 
   1506 	splx(s);
   1507 
   1508 #ifdef IFAREF_DEBUG
   1509 	if_check_and_free_ifa_list(ifp);
   1510 #endif
   1511 }
   1512 
   1513 static void
   1514 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1515 {
   1516 	struct mbuf *m, *prev, *next;
   1517 
   1518 	prev = NULL;
   1519 	for (m = q->ifq_head; m != NULL; m = next) {
   1520 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1521 
   1522 		next = m->m_nextpkt;
   1523 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1524 			prev = m;
   1525 			continue;
   1526 		}
   1527 
   1528 		if (prev != NULL)
   1529 			prev->m_nextpkt = m->m_nextpkt;
   1530 		else
   1531 			q->ifq_head = m->m_nextpkt;
   1532 		if (q->ifq_tail == m)
   1533 			q->ifq_tail = prev;
   1534 		q->ifq_len--;
   1535 
   1536 		m->m_nextpkt = NULL;
   1537 		m_freem(m);
   1538 		IF_DROP(q);
   1539 	}
   1540 }
   1541 
   1542 /*
   1543  * Callback for a radix tree walk to delete all references to an
   1544  * ifnet.
   1545  */
   1546 static int
   1547 if_delroute_matcher(struct rtentry *rt, void *v)
   1548 {
   1549 	struct ifnet *ifp = (struct ifnet *)v;
   1550 
   1551 	if (rt->rt_ifp == ifp)
   1552 		return 1;
   1553 	else
   1554 		return 0;
   1555 }
   1556 
   1557 /*
   1558  * Create a clone network interface.
   1559  */
   1560 static int
   1561 if_clone_create(const char *name)
   1562 {
   1563 	struct if_clone *ifc;
   1564 	int unit;
   1565 	struct ifnet *ifp;
   1566 	struct psref psref;
   1567 
   1568 	KASSERT(mutex_owned(&if_clone_mtx));
   1569 
   1570 	ifc = if_clone_lookup(name, &unit);
   1571 	if (ifc == NULL)
   1572 		return EINVAL;
   1573 
   1574 	ifp = if_get(name, &psref);
   1575 	if (ifp != NULL) {
   1576 		if_put(ifp, &psref);
   1577 		return EEXIST;
   1578 	}
   1579 
   1580 	return (*ifc->ifc_create)(ifc, unit);
   1581 }
   1582 
   1583 /*
   1584  * Destroy a clone network interface.
   1585  */
   1586 static int
   1587 if_clone_destroy(const char *name)
   1588 {
   1589 	struct if_clone *ifc;
   1590 	struct ifnet *ifp;
   1591 	struct psref psref;
   1592 
   1593 	KASSERT(mutex_owned(&if_clone_mtx));
   1594 
   1595 	ifc = if_clone_lookup(name, NULL);
   1596 	if (ifc == NULL)
   1597 		return EINVAL;
   1598 
   1599 	if (ifc->ifc_destroy == NULL)
   1600 		return EOPNOTSUPP;
   1601 
   1602 	ifp = if_get(name, &psref);
   1603 	if (ifp == NULL)
   1604 		return ENXIO;
   1605 
   1606 	/* We have to disable ioctls here */
   1607 	mutex_enter(ifp->if_ioctl_lock);
   1608 	ifp->if_ioctl = if_nullioctl;
   1609 	mutex_exit(ifp->if_ioctl_lock);
   1610 
   1611 	/*
   1612 	 * We cannot call ifc_destroy with holding ifp.
   1613 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1614 	 */
   1615 	if_put(ifp, &psref);
   1616 
   1617 	return (*ifc->ifc_destroy)(ifp);
   1618 }
   1619 
   1620 static bool
   1621 if_is_unit(const char *name)
   1622 {
   1623 
   1624 	while(*name != '\0') {
   1625 		if (*name < '0' || *name > '9')
   1626 			return false;
   1627 		name++;
   1628 	}
   1629 
   1630 	return true;
   1631 }
   1632 
   1633 /*
   1634  * Look up a network interface cloner.
   1635  */
   1636 static struct if_clone *
   1637 if_clone_lookup(const char *name, int *unitp)
   1638 {
   1639 	struct if_clone *ifc;
   1640 	const char *cp;
   1641 	char *dp, ifname[IFNAMSIZ + 3];
   1642 	int unit;
   1643 
   1644 	KASSERT(mutex_owned(&if_clone_mtx));
   1645 
   1646 	strcpy(ifname, "if_");
   1647 	/* separate interface name from unit */
   1648 	/* TODO: search unit number from backward */
   1649 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1650 	    *cp && !if_is_unit(cp);)
   1651 		*dp++ = *cp++;
   1652 
   1653 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1654 		return NULL;	/* No name or unit number */
   1655 	*dp++ = '\0';
   1656 
   1657 again:
   1658 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1659 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1660 			break;
   1661 	}
   1662 
   1663 	if (ifc == NULL) {
   1664 		int error;
   1665 		if (*ifname == '\0')
   1666 			return NULL;
   1667 		mutex_exit(&if_clone_mtx);
   1668 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1669 		mutex_enter(&if_clone_mtx);
   1670 		if (error)
   1671 			return NULL;
   1672 		*ifname = '\0';
   1673 		goto again;
   1674 	}
   1675 
   1676 	unit = 0;
   1677 	while (cp - name < IFNAMSIZ && *cp) {
   1678 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1679 			/* Bogus unit number. */
   1680 			return NULL;
   1681 		}
   1682 		unit = (unit * 10) + (*cp++ - '0');
   1683 	}
   1684 
   1685 	if (unitp != NULL)
   1686 		*unitp = unit;
   1687 	return ifc;
   1688 }
   1689 
   1690 /*
   1691  * Register a network interface cloner.
   1692  */
   1693 void
   1694 if_clone_attach(struct if_clone *ifc)
   1695 {
   1696 
   1697 	mutex_enter(&if_clone_mtx);
   1698 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1699 	if_cloners_count++;
   1700 	mutex_exit(&if_clone_mtx);
   1701 }
   1702 
   1703 /*
   1704  * Unregister a network interface cloner.
   1705  */
   1706 void
   1707 if_clone_detach(struct if_clone *ifc)
   1708 {
   1709 
   1710 	mutex_enter(&if_clone_mtx);
   1711 	LIST_REMOVE(ifc, ifc_list);
   1712 	if_cloners_count--;
   1713 	mutex_exit(&if_clone_mtx);
   1714 }
   1715 
   1716 /*
   1717  * Provide list of interface cloners to userspace.
   1718  */
   1719 int
   1720 if_clone_list(int buf_count, char *buffer, int *total)
   1721 {
   1722 	char outbuf[IFNAMSIZ], *dst;
   1723 	struct if_clone *ifc;
   1724 	int count, error = 0;
   1725 
   1726 	mutex_enter(&if_clone_mtx);
   1727 	*total = if_cloners_count;
   1728 	if ((dst = buffer) == NULL) {
   1729 		/* Just asking how many there are. */
   1730 		goto out;
   1731 	}
   1732 
   1733 	if (buf_count < 0) {
   1734 		error = EINVAL;
   1735 		goto out;
   1736 	}
   1737 
   1738 	count = (if_cloners_count < buf_count) ?
   1739 	    if_cloners_count : buf_count;
   1740 
   1741 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1742 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1743 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1744 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1745 			error = ENAMETOOLONG;
   1746 			goto out;
   1747 		}
   1748 		error = copyout(outbuf, dst, sizeof(outbuf));
   1749 		if (error != 0)
   1750 			break;
   1751 	}
   1752 
   1753 out:
   1754 	mutex_exit(&if_clone_mtx);
   1755 	return error;
   1756 }
   1757 
   1758 void
   1759 ifa_psref_init(struct ifaddr *ifa)
   1760 {
   1761 
   1762 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1763 }
   1764 
   1765 void
   1766 ifaref(struct ifaddr *ifa)
   1767 {
   1768 	KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
   1769 	ifa->ifa_refcnt++;
   1770 }
   1771 
   1772 void
   1773 ifafree(struct ifaddr *ifa)
   1774 {
   1775 	KASSERT(ifa != NULL);
   1776 	KASSERT(ifa->ifa_refcnt > 0);
   1777 
   1778 	if (--ifa->ifa_refcnt == 0) {
   1779 		free(ifa, M_IFADDR);
   1780 	}
   1781 }
   1782 
   1783 bool
   1784 ifa_is_destroying(struct ifaddr *ifa)
   1785 {
   1786 
   1787 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1788 }
   1789 
   1790 void
   1791 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1792 {
   1793 
   1794 	ifa->ifa_ifp = ifp;
   1795 
   1796 	IFNET_GLOBAL_LOCK();
   1797 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1798 	IFADDR_ENTRY_INIT(ifa);
   1799 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1800 	IFNET_GLOBAL_UNLOCK();
   1801 
   1802 	ifaref(ifa);
   1803 }
   1804 
   1805 void
   1806 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1807 {
   1808 
   1809 	KASSERT(ifa->ifa_ifp == ifp);
   1810 
   1811 	IFNET_GLOBAL_LOCK();
   1812 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1813 	IFADDR_WRITER_REMOVE(ifa);
   1814 #ifdef NET_MPSAFE
   1815 	pserialize_perform(ifnet_psz);
   1816 #endif
   1817 	IFNET_GLOBAL_UNLOCK();
   1818 
   1819 #ifdef NET_MPSAFE
   1820 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1821 #endif
   1822 	IFADDR_ENTRY_DESTROY(ifa);
   1823 	ifafree(ifa);
   1824 }
   1825 
   1826 void
   1827 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1828 {
   1829 
   1830 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1831 }
   1832 
   1833 void
   1834 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1835 {
   1836 
   1837 	if (ifa == NULL)
   1838 		return;
   1839 
   1840 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1841 }
   1842 
   1843 bool
   1844 ifa_held(struct ifaddr *ifa)
   1845 {
   1846 
   1847 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1848 }
   1849 
   1850 static inline int
   1851 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1852 {
   1853 	return sockaddr_cmp(sa1, sa2) == 0;
   1854 }
   1855 
   1856 /*
   1857  * Locate an interface based on a complete address.
   1858  */
   1859 /*ARGSUSED*/
   1860 struct ifaddr *
   1861 ifa_ifwithaddr(const struct sockaddr *addr)
   1862 {
   1863 	struct ifnet *ifp;
   1864 	struct ifaddr *ifa;
   1865 
   1866 	IFNET_READER_FOREACH(ifp) {
   1867 		if (if_is_deactivated(ifp))
   1868 			continue;
   1869 		IFADDR_READER_FOREACH(ifa, ifp) {
   1870 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1871 				continue;
   1872 			if (equal(addr, ifa->ifa_addr))
   1873 				return ifa;
   1874 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1875 			    ifa->ifa_broadaddr &&
   1876 			    /* IP6 doesn't have broadcast */
   1877 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1878 			    equal(ifa->ifa_broadaddr, addr))
   1879 				return ifa;
   1880 		}
   1881 	}
   1882 	return NULL;
   1883 }
   1884 
   1885 struct ifaddr *
   1886 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1887 {
   1888 	struct ifaddr *ifa;
   1889 	int s = pserialize_read_enter();
   1890 
   1891 	ifa = ifa_ifwithaddr(addr);
   1892 	if (ifa != NULL)
   1893 		ifa_acquire(ifa, psref);
   1894 	pserialize_read_exit(s);
   1895 
   1896 	return ifa;
   1897 }
   1898 
   1899 /*
   1900  * Locate the point to point interface with a given destination address.
   1901  */
   1902 /*ARGSUSED*/
   1903 struct ifaddr *
   1904 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1905 {
   1906 	struct ifnet *ifp;
   1907 	struct ifaddr *ifa;
   1908 
   1909 	IFNET_READER_FOREACH(ifp) {
   1910 		if (if_is_deactivated(ifp))
   1911 			continue;
   1912 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1913 			continue;
   1914 		IFADDR_READER_FOREACH(ifa, ifp) {
   1915 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1916 			    ifa->ifa_dstaddr == NULL)
   1917 				continue;
   1918 			if (equal(addr, ifa->ifa_dstaddr))
   1919 				return ifa;
   1920 		}
   1921 	}
   1922 
   1923 	return NULL;
   1924 }
   1925 
   1926 struct ifaddr *
   1927 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1928 {
   1929 	struct ifaddr *ifa;
   1930 	int s;
   1931 
   1932 	s = pserialize_read_enter();
   1933 	ifa = ifa_ifwithdstaddr(addr);
   1934 	if (ifa != NULL)
   1935 		ifa_acquire(ifa, psref);
   1936 	pserialize_read_exit(s);
   1937 
   1938 	return ifa;
   1939 }
   1940 
   1941 /*
   1942  * Find an interface on a specific network.  If many, choice
   1943  * is most specific found.
   1944  */
   1945 struct ifaddr *
   1946 ifa_ifwithnet(const struct sockaddr *addr)
   1947 {
   1948 	struct ifnet *ifp;
   1949 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1950 	const struct sockaddr_dl *sdl;
   1951 	u_int af = addr->sa_family;
   1952 	const char *addr_data = addr->sa_data, *cplim;
   1953 
   1954 	if (af == AF_LINK) {
   1955 		sdl = satocsdl(addr);
   1956 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1957 		    ifindex2ifnet[sdl->sdl_index] &&
   1958 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1959 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1960 		}
   1961 	}
   1962 #ifdef NETATALK
   1963 	if (af == AF_APPLETALK) {
   1964 		const struct sockaddr_at *sat, *sat2;
   1965 		sat = (const struct sockaddr_at *)addr;
   1966 		IFNET_READER_FOREACH(ifp) {
   1967 			if (if_is_deactivated(ifp))
   1968 				continue;
   1969 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1970 			if (ifa == NULL)
   1971 				continue;
   1972 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1973 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1974 				return ifa; /* exact match */
   1975 			if (ifa_maybe == NULL) {
   1976 				/* else keep the if with the right range */
   1977 				ifa_maybe = ifa;
   1978 			}
   1979 		}
   1980 		return ifa_maybe;
   1981 	}
   1982 #endif
   1983 	IFNET_READER_FOREACH(ifp) {
   1984 		if (if_is_deactivated(ifp))
   1985 			continue;
   1986 		IFADDR_READER_FOREACH(ifa, ifp) {
   1987 			const char *cp, *cp2, *cp3;
   1988 
   1989 			if (ifa->ifa_addr->sa_family != af ||
   1990 			    ifa->ifa_netmask == NULL)
   1991  next:				continue;
   1992 			cp = addr_data;
   1993 			cp2 = ifa->ifa_addr->sa_data;
   1994 			cp3 = ifa->ifa_netmask->sa_data;
   1995 			cplim = (const char *)ifa->ifa_netmask +
   1996 			    ifa->ifa_netmask->sa_len;
   1997 			while (cp3 < cplim) {
   1998 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1999 					/* want to continue for() loop */
   2000 					goto next;
   2001 				}
   2002 			}
   2003 			if (ifa_maybe == NULL ||
   2004 			    rt_refines(ifa->ifa_netmask,
   2005 			               ifa_maybe->ifa_netmask))
   2006 				ifa_maybe = ifa;
   2007 		}
   2008 	}
   2009 	return ifa_maybe;
   2010 }
   2011 
   2012 struct ifaddr *
   2013 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2014 {
   2015 	struct ifaddr *ifa;
   2016 	int s;
   2017 
   2018 	s = pserialize_read_enter();
   2019 	ifa = ifa_ifwithnet(addr);
   2020 	if (ifa != NULL)
   2021 		ifa_acquire(ifa, psref);
   2022 	pserialize_read_exit(s);
   2023 
   2024 	return ifa;
   2025 }
   2026 
   2027 /*
   2028  * Find the interface of the addresss.
   2029  */
   2030 struct ifaddr *
   2031 ifa_ifwithladdr(const struct sockaddr *addr)
   2032 {
   2033 	struct ifaddr *ia;
   2034 
   2035 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2036 	    (ia = ifa_ifwithnet(addr)))
   2037 		return ia;
   2038 	return NULL;
   2039 }
   2040 
   2041 struct ifaddr *
   2042 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2043 {
   2044 	struct ifaddr *ifa;
   2045 	int s;
   2046 
   2047 	s = pserialize_read_enter();
   2048 	ifa = ifa_ifwithladdr(addr);
   2049 	if (ifa != NULL)
   2050 		ifa_acquire(ifa, psref);
   2051 	pserialize_read_exit(s);
   2052 
   2053 	return ifa;
   2054 }
   2055 
   2056 /*
   2057  * Find an interface using a specific address family
   2058  */
   2059 struct ifaddr *
   2060 ifa_ifwithaf(int af)
   2061 {
   2062 	struct ifnet *ifp;
   2063 	struct ifaddr *ifa = NULL;
   2064 	int s;
   2065 
   2066 	s = pserialize_read_enter();
   2067 	IFNET_READER_FOREACH(ifp) {
   2068 		if (if_is_deactivated(ifp))
   2069 			continue;
   2070 		IFADDR_READER_FOREACH(ifa, ifp) {
   2071 			if (ifa->ifa_addr->sa_family == af)
   2072 				goto out;
   2073 		}
   2074 	}
   2075 out:
   2076 	pserialize_read_exit(s);
   2077 	return ifa;
   2078 }
   2079 
   2080 /*
   2081  * Find an interface address specific to an interface best matching
   2082  * a given address.
   2083  */
   2084 struct ifaddr *
   2085 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2086 {
   2087 	struct ifaddr *ifa;
   2088 	const char *cp, *cp2, *cp3;
   2089 	const char *cplim;
   2090 	struct ifaddr *ifa_maybe = 0;
   2091 	u_int af = addr->sa_family;
   2092 
   2093 	if (if_is_deactivated(ifp))
   2094 		return NULL;
   2095 
   2096 	if (af >= AF_MAX)
   2097 		return NULL;
   2098 
   2099 	IFADDR_READER_FOREACH(ifa, ifp) {
   2100 		if (ifa->ifa_addr->sa_family != af)
   2101 			continue;
   2102 		ifa_maybe = ifa;
   2103 		if (ifa->ifa_netmask == NULL) {
   2104 			if (equal(addr, ifa->ifa_addr) ||
   2105 			    (ifa->ifa_dstaddr &&
   2106 			     equal(addr, ifa->ifa_dstaddr)))
   2107 				return ifa;
   2108 			continue;
   2109 		}
   2110 		cp = addr->sa_data;
   2111 		cp2 = ifa->ifa_addr->sa_data;
   2112 		cp3 = ifa->ifa_netmask->sa_data;
   2113 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2114 		for (; cp3 < cplim; cp3++) {
   2115 			if ((*cp++ ^ *cp2++) & *cp3)
   2116 				break;
   2117 		}
   2118 		if (cp3 == cplim)
   2119 			return ifa;
   2120 	}
   2121 	return ifa_maybe;
   2122 }
   2123 
   2124 struct ifaddr *
   2125 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2126     struct psref *psref)
   2127 {
   2128 	struct ifaddr *ifa;
   2129 	int s;
   2130 
   2131 	s = pserialize_read_enter();
   2132 	ifa = ifaof_ifpforaddr(addr, ifp);
   2133 	if (ifa != NULL)
   2134 		ifa_acquire(ifa, psref);
   2135 	pserialize_read_exit(s);
   2136 
   2137 	return ifa;
   2138 }
   2139 
   2140 /*
   2141  * Default action when installing a route with a Link Level gateway.
   2142  * Lookup an appropriate real ifa to point to.
   2143  * This should be moved to /sys/net/link.c eventually.
   2144  */
   2145 void
   2146 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2147 {
   2148 	struct ifaddr *ifa;
   2149 	const struct sockaddr *dst;
   2150 	struct ifnet *ifp;
   2151 	struct psref psref;
   2152 
   2153 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   2154 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   2155 		return;
   2156 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2157 		rt_replace_ifa(rt, ifa);
   2158 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2159 			ifa->ifa_rtrequest(cmd, rt, info);
   2160 		ifa_release(ifa, &psref);
   2161 	}
   2162 }
   2163 
   2164 /*
   2165  * bitmask macros to manage a densely packed link_state change queue.
   2166  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2167  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2168  * As a state change to store is 0, treat all bits set as an unset item.
   2169  */
   2170 #define LQ_ITEM_BITS		2
   2171 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2172 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2173 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2174 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2175 #define LQ_STORE(q, i, v)						      \
   2176 	do {								      \
   2177 		(q) &= ~LQ_MASK((i));					      \
   2178 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2179 	} while (0 /* CONSTCOND */)
   2180 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2181 #define LQ_POP(q, v)							      \
   2182 	do {								      \
   2183 		(v) = LQ_ITEM((q), 0);					      \
   2184 		(q) >>= LQ_ITEM_BITS;					      \
   2185 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2186 	} while (0 /* CONSTCOND */)
   2187 #define LQ_PUSH(q, v)							      \
   2188 	do {								      \
   2189 		(q) >>= LQ_ITEM_BITS;					      \
   2190 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2191 	} while (0 /* CONSTCOND */)
   2192 #define LQ_FIND_UNSET(q, i)						      \
   2193 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2194 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2195 			break;						      \
   2196 	}
   2197 
   2198 /*
   2199  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2200  * for each ifnet.  It doesn't matter because:
   2201  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
   2202  *   ifq_lock don't happen
   2203  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2204  *   because if_snd, if_link_state_change and if_link_state_change_softint
   2205  *   are all called with KERNEL_LOCK
   2206  */
   2207 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
   2208 	mutex_enter((ifp)->if_snd.ifq_lock)
   2209 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
   2210 	mutex_exit((ifp)->if_snd.ifq_lock)
   2211 
   2212 /*
   2213  * Handle a change in the interface link state and
   2214  * queue notifications.
   2215  */
   2216 void
   2217 if_link_state_change(struct ifnet *ifp, int link_state)
   2218 {
   2219 	int idx;
   2220 
   2221 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2222 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2223 	    ifp->if_xname, ifp->if_extflags);
   2224 
   2225 	/* Ensure change is to a valid state */
   2226 	switch (link_state) {
   2227 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2228 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2229 	case LINK_STATE_UP:
   2230 		break;
   2231 	default:
   2232 #ifdef DEBUG
   2233 		printf("%s: invalid link state %d\n",
   2234 		    ifp->if_xname, link_state);
   2235 #endif
   2236 		return;
   2237 	}
   2238 
   2239 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2240 
   2241 	/* Find the last unset event in the queue. */
   2242 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2243 
   2244 	/*
   2245 	 * Ensure link_state doesn't match the last event in the queue.
   2246 	 * ifp->if_link_state is not checked and set here because
   2247 	 * that would present an inconsistent picture to the system.
   2248 	 */
   2249 	if (idx != 0 &&
   2250 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2251 		goto out;
   2252 
   2253 	/* Handle queue overflow. */
   2254 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2255 		uint8_t lost;
   2256 
   2257 		/*
   2258 		 * The DOWN state must be protected from being pushed off
   2259 		 * the queue to ensure that userland will always be
   2260 		 * in a sane state.
   2261 		 * Because DOWN is protected, there is no need to protect
   2262 		 * UNKNOWN.
   2263 		 * It should be invalid to change from any other state to
   2264 		 * UNKNOWN anyway ...
   2265 		 */
   2266 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2267 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2268 		if (lost == LINK_STATE_DOWN) {
   2269 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2270 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2271 		}
   2272 		printf("%s: lost link state change %s\n",
   2273 		    ifp->if_xname,
   2274 		    lost == LINK_STATE_UP ? "UP" :
   2275 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2276 		    "UNKNOWN");
   2277 	} else
   2278 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2279 
   2280 	softint_schedule(ifp->if_link_si);
   2281 
   2282 out:
   2283 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2284 }
   2285 
   2286 /*
   2287  * Handle interface link state change notifications.
   2288  */
   2289 void
   2290 if_link_state_change_softint(struct ifnet *ifp, int link_state)
   2291 {
   2292 	struct domain *dp;
   2293 	int s = splnet();
   2294 	bool notify;
   2295 
   2296 	KASSERT(!cpu_intr_p());
   2297 
   2298 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2299 
   2300 	/* Ensure the change is still valid. */
   2301 	if (ifp->if_link_state == link_state) {
   2302 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2303 		return;
   2304 	}
   2305 
   2306 #ifdef DEBUG
   2307 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2308 		link_state == LINK_STATE_UP ? "UP" :
   2309 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2310 		"UNKNOWN",
   2311 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2312 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2313 		"UNKNOWN");
   2314 #endif
   2315 
   2316 	/*
   2317 	 * When going from UNKNOWN to UP, we need to mark existing
   2318 	 * addresses as tentative and restart DAD as we may have
   2319 	 * erroneously not found a duplicate.
   2320 	 *
   2321 	 * This needs to happen before rt_ifmsg to avoid a race where
   2322 	 * listeners would have an address and expect it to work right
   2323 	 * away.
   2324 	 */
   2325 	notify = (link_state == LINK_STATE_UP &&
   2326 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2327 	ifp->if_link_state = link_state;
   2328 	/* The following routines may sleep so release the spin mutex */
   2329 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2330 
   2331 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2332 	if (notify) {
   2333 		DOMAIN_FOREACH(dp) {
   2334 			if (dp->dom_if_link_state_change != NULL)
   2335 				dp->dom_if_link_state_change(ifp,
   2336 				    LINK_STATE_DOWN);
   2337 		}
   2338 	}
   2339 
   2340 	/* Notify that the link state has changed. */
   2341 	rt_ifmsg(ifp);
   2342 
   2343 #if NCARP > 0
   2344 	if (ifp->if_carp)
   2345 		carp_carpdev_state(ifp);
   2346 #endif
   2347 
   2348 	DOMAIN_FOREACH(dp) {
   2349 		if (dp->dom_if_link_state_change != NULL)
   2350 			dp->dom_if_link_state_change(ifp, link_state);
   2351 	}
   2352 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2353 	splx(s);
   2354 }
   2355 
   2356 /*
   2357  * Process the interface link state change queue.
   2358  */
   2359 static void
   2360 if_link_state_change_si(void *arg)
   2361 {
   2362 	struct ifnet *ifp = arg;
   2363 	int s;
   2364 	uint8_t state;
   2365 	bool schedule;
   2366 
   2367 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2368 	s = splnet();
   2369 
   2370 	/* Pop a link state change from the queue and process it. */
   2371 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2372 	LQ_POP(ifp->if_link_queue, state);
   2373 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2374 
   2375 	if_link_state_change_softint(ifp, state);
   2376 
   2377 	/* If there is a link state change to come, schedule it. */
   2378 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2379 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
   2380 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2381 	if (schedule)
   2382 		softint_schedule(ifp->if_link_si);
   2383 
   2384 	splx(s);
   2385 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2386 }
   2387 
   2388 /*
   2389  * Default action when installing a local route on a point-to-point
   2390  * interface.
   2391  */
   2392 void
   2393 p2p_rtrequest(int req, struct rtentry *rt,
   2394     __unused const struct rt_addrinfo *info)
   2395 {
   2396 	struct ifnet *ifp = rt->rt_ifp;
   2397 	struct ifaddr *ifa, *lo0ifa;
   2398 	int s = pserialize_read_enter();
   2399 
   2400 	switch (req) {
   2401 	case RTM_ADD:
   2402 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2403 			break;
   2404 
   2405 		rt->rt_ifp = lo0ifp;
   2406 
   2407 		IFADDR_READER_FOREACH(ifa, ifp) {
   2408 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2409 				break;
   2410 		}
   2411 		if (ifa == NULL)
   2412 			break;
   2413 
   2414 		/*
   2415 		 * Ensure lo0 has an address of the same family.
   2416 		 */
   2417 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2418 			if (lo0ifa->ifa_addr->sa_family ==
   2419 			    ifa->ifa_addr->sa_family)
   2420 				break;
   2421 		}
   2422 		if (lo0ifa == NULL)
   2423 			break;
   2424 
   2425 		/*
   2426 		 * Make sure to set rt->rt_ifa to the interface
   2427 		 * address we are using, otherwise we will have trouble
   2428 		 * with source address selection.
   2429 		 */
   2430 		if (ifa != rt->rt_ifa)
   2431 			rt_replace_ifa(rt, ifa);
   2432 		break;
   2433 	case RTM_DELETE:
   2434 	default:
   2435 		break;
   2436 	}
   2437 	pserialize_read_exit(s);
   2438 }
   2439 
   2440 static void
   2441 _if_down(struct ifnet *ifp)
   2442 {
   2443 	struct ifaddr *ifa;
   2444 	struct domain *dp;
   2445 	int s, bound;
   2446 	struct psref psref;
   2447 
   2448 	ifp->if_flags &= ~IFF_UP;
   2449 	nanotime(&ifp->if_lastchange);
   2450 
   2451 	bound = curlwp_bind();
   2452 	s = pserialize_read_enter();
   2453 	IFADDR_READER_FOREACH(ifa, ifp) {
   2454 		ifa_acquire(ifa, &psref);
   2455 		pserialize_read_exit(s);
   2456 
   2457 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2458 
   2459 		s = pserialize_read_enter();
   2460 		ifa_release(ifa, &psref);
   2461 	}
   2462 	pserialize_read_exit(s);
   2463 	curlwp_bindx(bound);
   2464 
   2465 	IFQ_PURGE(&ifp->if_snd);
   2466 #if NCARP > 0
   2467 	if (ifp->if_carp)
   2468 		carp_carpdev_state(ifp);
   2469 #endif
   2470 	rt_ifmsg(ifp);
   2471 	DOMAIN_FOREACH(dp) {
   2472 		if (dp->dom_if_down)
   2473 			dp->dom_if_down(ifp);
   2474 	}
   2475 }
   2476 
   2477 static void
   2478 if_down_deactivated(struct ifnet *ifp)
   2479 {
   2480 
   2481 	KASSERT(if_is_deactivated(ifp));
   2482 	_if_down(ifp);
   2483 }
   2484 
   2485 void
   2486 if_down_locked(struct ifnet *ifp)
   2487 {
   2488 
   2489 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2490 	_if_down(ifp);
   2491 }
   2492 
   2493 /*
   2494  * Mark an interface down and notify protocols of
   2495  * the transition.
   2496  * NOTE: must be called at splsoftnet or equivalent.
   2497  */
   2498 void
   2499 if_down(struct ifnet *ifp)
   2500 {
   2501 
   2502 	mutex_enter(ifp->if_ioctl_lock);
   2503 	if_down_locked(ifp);
   2504 	mutex_exit(ifp->if_ioctl_lock);
   2505 }
   2506 
   2507 /*
   2508  * Must be called with holding if_ioctl_lock.
   2509  */
   2510 static void
   2511 if_up_locked(struct ifnet *ifp)
   2512 {
   2513 #ifdef notyet
   2514 	struct ifaddr *ifa;
   2515 #endif
   2516 	struct domain *dp;
   2517 
   2518 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2519 
   2520 	KASSERT(!if_is_deactivated(ifp));
   2521 	ifp->if_flags |= IFF_UP;
   2522 	nanotime(&ifp->if_lastchange);
   2523 #ifdef notyet
   2524 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2525 	IFADDR_READER_FOREACH(ifa, ifp)
   2526 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2527 #endif
   2528 #if NCARP > 0
   2529 	if (ifp->if_carp)
   2530 		carp_carpdev_state(ifp);
   2531 #endif
   2532 	rt_ifmsg(ifp);
   2533 	DOMAIN_FOREACH(dp) {
   2534 		if (dp->dom_if_up)
   2535 			dp->dom_if_up(ifp);
   2536 	}
   2537 }
   2538 
   2539 /*
   2540  * Handle interface slowtimo timer routine.  Called
   2541  * from softclock, we decrement timer (if set) and
   2542  * call the appropriate interface routine on expiration.
   2543  */
   2544 static void
   2545 if_slowtimo(void *arg)
   2546 {
   2547 	void (*slowtimo)(struct ifnet *);
   2548 	struct ifnet *ifp = arg;
   2549 	int s;
   2550 
   2551 	slowtimo = ifp->if_slowtimo;
   2552 	if (__predict_false(slowtimo == NULL))
   2553 		return;
   2554 
   2555 	s = splnet();
   2556 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2557 		(*slowtimo)(ifp);
   2558 
   2559 	splx(s);
   2560 
   2561 	if (__predict_true(ifp->if_slowtimo != NULL))
   2562 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2563 }
   2564 
   2565 /*
   2566  * Mark an interface up and notify protocols of
   2567  * the transition.
   2568  * NOTE: must be called at splsoftnet or equivalent.
   2569  */
   2570 void
   2571 if_up(struct ifnet *ifp)
   2572 {
   2573 
   2574 	mutex_enter(ifp->if_ioctl_lock);
   2575 	if_up_locked(ifp);
   2576 	mutex_exit(ifp->if_ioctl_lock);
   2577 }
   2578 
   2579 /*
   2580  * Set/clear promiscuous mode on interface ifp based on the truth value
   2581  * of pswitch.  The calls are reference counted so that only the first
   2582  * "on" request actually has an effect, as does the final "off" request.
   2583  * Results are undefined if the "off" and "on" requests are not matched.
   2584  */
   2585 int
   2586 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2587 {
   2588 	int pcount, ret = 0;
   2589 	short nflags;
   2590 
   2591 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   2592 
   2593 	pcount = ifp->if_pcount;
   2594 	if (pswitch) {
   2595 		/*
   2596 		 * Allow the device to be "placed" into promiscuous
   2597 		 * mode even if it is not configured up.  It will
   2598 		 * consult IFF_PROMISC when it is brought up.
   2599 		 */
   2600 		if (ifp->if_pcount++ != 0)
   2601 			goto out;
   2602 		nflags = ifp->if_flags | IFF_PROMISC;
   2603 	} else {
   2604 		if (--ifp->if_pcount > 0)
   2605 			goto out;
   2606 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2607 	}
   2608 	ret = if_flags_set(ifp, nflags);
   2609 	/* Restore interface state if not successful. */
   2610 	if (ret != 0) {
   2611 		ifp->if_pcount = pcount;
   2612 	}
   2613 out:
   2614 	return ret;
   2615 }
   2616 
   2617 int
   2618 ifpromisc(struct ifnet *ifp, int pswitch)
   2619 {
   2620 	int e;
   2621 
   2622 	mutex_enter(ifp->if_ioctl_lock);
   2623 	e = ifpromisc_locked(ifp, pswitch);
   2624 	mutex_exit(ifp->if_ioctl_lock);
   2625 
   2626 	return e;
   2627 }
   2628 
   2629 /*
   2630  * Map interface name to
   2631  * interface structure pointer.
   2632  */
   2633 struct ifnet *
   2634 ifunit(const char *name)
   2635 {
   2636 	struct ifnet *ifp;
   2637 	const char *cp = name;
   2638 	u_int unit = 0;
   2639 	u_int i;
   2640 	int s;
   2641 
   2642 	/*
   2643 	 * If the entire name is a number, treat it as an ifindex.
   2644 	 */
   2645 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2646 		unit = unit * 10 + (*cp - '0');
   2647 	}
   2648 
   2649 	/*
   2650 	 * If the number took all of the name, then it's a valid ifindex.
   2651 	 */
   2652 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2653 		return if_byindex(unit);
   2654 
   2655 	ifp = NULL;
   2656 	s = pserialize_read_enter();
   2657 	IFNET_READER_FOREACH(ifp) {
   2658 		if (if_is_deactivated(ifp))
   2659 			continue;
   2660 	 	if (strcmp(ifp->if_xname, name) == 0)
   2661 			goto out;
   2662 	}
   2663 out:
   2664 	pserialize_read_exit(s);
   2665 	return ifp;
   2666 }
   2667 
   2668 /*
   2669  * Get a reference of an ifnet object by an interface name.
   2670  * The returned reference is protected by psref(9). The caller
   2671  * must release a returned reference by if_put after use.
   2672  */
   2673 struct ifnet *
   2674 if_get(const char *name, struct psref *psref)
   2675 {
   2676 	struct ifnet *ifp;
   2677 	const char *cp = name;
   2678 	u_int unit = 0;
   2679 	u_int i;
   2680 	int s;
   2681 
   2682 	/*
   2683 	 * If the entire name is a number, treat it as an ifindex.
   2684 	 */
   2685 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2686 		unit = unit * 10 + (*cp - '0');
   2687 	}
   2688 
   2689 	/*
   2690 	 * If the number took all of the name, then it's a valid ifindex.
   2691 	 */
   2692 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2693 		return if_get_byindex(unit, psref);
   2694 
   2695 	ifp = NULL;
   2696 	s = pserialize_read_enter();
   2697 	IFNET_READER_FOREACH(ifp) {
   2698 		if (if_is_deactivated(ifp))
   2699 			continue;
   2700 		if (strcmp(ifp->if_xname, name) == 0) {
   2701 			psref_acquire(psref, &ifp->if_psref,
   2702 			    ifnet_psref_class);
   2703 			goto out;
   2704 		}
   2705 	}
   2706 out:
   2707 	pserialize_read_exit(s);
   2708 	return ifp;
   2709 }
   2710 
   2711 /*
   2712  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2713  * or if_get_bylla.
   2714  */
   2715 void
   2716 if_put(const struct ifnet *ifp, struct psref *psref)
   2717 {
   2718 
   2719 	if (ifp == NULL)
   2720 		return;
   2721 
   2722 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2723 }
   2724 
   2725 ifnet_t *
   2726 if_byindex(u_int idx)
   2727 {
   2728 	ifnet_t *ifp;
   2729 
   2730 	ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2731 	if (ifp != NULL && if_is_deactivated(ifp))
   2732 		ifp = NULL;
   2733 	return ifp;
   2734 }
   2735 
   2736 /*
   2737  * Get a reference of an ifnet object by an interface index.
   2738  * The returned reference is protected by psref(9). The caller
   2739  * must release a returned reference by if_put after use.
   2740  */
   2741 ifnet_t *
   2742 if_get_byindex(u_int idx, struct psref *psref)
   2743 {
   2744 	ifnet_t *ifp;
   2745 	int s;
   2746 
   2747 	s = pserialize_read_enter();
   2748 	ifp = if_byindex(idx);
   2749 	if (__predict_true(ifp != NULL))
   2750 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2751 	pserialize_read_exit(s);
   2752 
   2753 	return ifp;
   2754 }
   2755 
   2756 ifnet_t *
   2757 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2758 {
   2759 	ifnet_t *ifp;
   2760 	int s;
   2761 
   2762 	s = pserialize_read_enter();
   2763 	IFNET_READER_FOREACH(ifp) {
   2764 		if (if_is_deactivated(ifp))
   2765 			continue;
   2766 		if (ifp->if_addrlen != lla_len)
   2767 			continue;
   2768 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2769 			psref_acquire(psref, &ifp->if_psref,
   2770 			    ifnet_psref_class);
   2771 			break;
   2772 		}
   2773 	}
   2774 	pserialize_read_exit(s);
   2775 
   2776 	return ifp;
   2777 }
   2778 
   2779 /*
   2780  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2781  * for example using pserialize or the ifp is already held or some other
   2782  * object is held which guarantes the ifp to not be freed indirectly.
   2783  */
   2784 void
   2785 if_acquire(struct ifnet *ifp, struct psref *psref)
   2786 {
   2787 
   2788 	KASSERT(ifp->if_index != 0);
   2789 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2790 }
   2791 
   2792 bool
   2793 if_held(struct ifnet *ifp)
   2794 {
   2795 
   2796 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2797 }
   2798 
   2799 /*
   2800  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2801  * Check the tunnel nesting count.
   2802  * Return > 0, if tunnel nesting count is more than limit.
   2803  * Return 0, if tunnel nesting count is equal or less than limit.
   2804  */
   2805 int
   2806 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2807 {
   2808 	struct m_tag *mtag;
   2809 	int *count;
   2810 
   2811 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
   2812 	if (mtag != NULL) {
   2813 		count = (int *)(mtag + 1);
   2814 		if (++(*count) > limit) {
   2815 			log(LOG_NOTICE,
   2816 			    "%s: recursively called too many times(%d)\n",
   2817 			    ifp->if_xname, *count);
   2818 			return EIO;
   2819 		}
   2820 	} else {
   2821 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2822 		    M_NOWAIT);
   2823 		if (mtag != NULL) {
   2824 			m_tag_prepend(m, mtag);
   2825 			count = (int *)(mtag + 1);
   2826 			*count = 0;
   2827 		} else {
   2828 			log(LOG_DEBUG,
   2829 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2830 			    ifp->if_xname);
   2831 		}
   2832 	}
   2833 
   2834 	return 0;
   2835 }
   2836 
   2837 /* common */
   2838 int
   2839 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2840 {
   2841 	int s;
   2842 	struct ifreq *ifr;
   2843 	struct ifcapreq *ifcr;
   2844 	struct ifdatareq *ifdr;
   2845 
   2846 	switch (cmd) {
   2847 	case SIOCSIFCAP:
   2848 		ifcr = data;
   2849 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2850 			return EINVAL;
   2851 
   2852 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2853 			return 0;
   2854 
   2855 		ifp->if_capenable = ifcr->ifcr_capenable;
   2856 
   2857 		/* Pre-compute the checksum flags mask. */
   2858 		ifp->if_csum_flags_tx = 0;
   2859 		ifp->if_csum_flags_rx = 0;
   2860 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2861 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2862 		}
   2863 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2864 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2865 		}
   2866 
   2867 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2868 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2869 		}
   2870 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2871 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2872 		}
   2873 
   2874 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2875 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2876 		}
   2877 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2878 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2879 		}
   2880 
   2881 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2882 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2883 		}
   2884 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2885 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2886 		}
   2887 
   2888 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2889 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2890 		}
   2891 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2892 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2893 		}
   2894 		if (ifp->if_flags & IFF_UP)
   2895 			return ENETRESET;
   2896 		return 0;
   2897 	case SIOCSIFFLAGS:
   2898 		ifr = data;
   2899 		/*
   2900 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   2901 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   2902 		 */
   2903 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   2904 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2905 			s = splsoftnet();
   2906 			if_down_locked(ifp);
   2907 			splx(s);
   2908 		}
   2909 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2910 			s = splsoftnet();
   2911 			if_up_locked(ifp);
   2912 			splx(s);
   2913 		}
   2914 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   2915 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2916 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2917 		break;
   2918 	case SIOCGIFFLAGS:
   2919 		ifr = data;
   2920 		ifr->ifr_flags = ifp->if_flags;
   2921 		break;
   2922 
   2923 	case SIOCGIFMETRIC:
   2924 		ifr = data;
   2925 		ifr->ifr_metric = ifp->if_metric;
   2926 		break;
   2927 
   2928 	case SIOCGIFMTU:
   2929 		ifr = data;
   2930 		ifr->ifr_mtu = ifp->if_mtu;
   2931 		break;
   2932 
   2933 	case SIOCGIFDLT:
   2934 		ifr = data;
   2935 		ifr->ifr_dlt = ifp->if_dlt;
   2936 		break;
   2937 
   2938 	case SIOCGIFCAP:
   2939 		ifcr = data;
   2940 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2941 		ifcr->ifcr_capenable = ifp->if_capenable;
   2942 		break;
   2943 
   2944 	case SIOCSIFMETRIC:
   2945 		ifr = data;
   2946 		ifp->if_metric = ifr->ifr_metric;
   2947 		break;
   2948 
   2949 	case SIOCGIFDATA:
   2950 		ifdr = data;
   2951 		ifdr->ifdr_data = ifp->if_data;
   2952 		break;
   2953 
   2954 	case SIOCGIFINDEX:
   2955 		ifr = data;
   2956 		ifr->ifr_index = ifp->if_index;
   2957 		break;
   2958 
   2959 	case SIOCZIFDATA:
   2960 		ifdr = data;
   2961 		ifdr->ifdr_data = ifp->if_data;
   2962 		/*
   2963 		 * Assumes that the volatile counters that can be
   2964 		 * zero'ed are at the end of if_data.
   2965 		 */
   2966 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   2967 		    offsetof(struct if_data, ifi_ipackets));
   2968 		/*
   2969 		 * The memset() clears to the bottm of if_data. In the area,
   2970 		 * if_lastchange is included. Please be careful if new entry
   2971 		 * will be added into if_data or rewite this.
   2972 		 *
   2973 		 * And also, update if_lastchnage.
   2974 		 */
   2975 		getnanotime(&ifp->if_lastchange);
   2976 		break;
   2977 	case SIOCSIFMTU:
   2978 		ifr = data;
   2979 		if (ifp->if_mtu == ifr->ifr_mtu)
   2980 			break;
   2981 		ifp->if_mtu = ifr->ifr_mtu;
   2982 		/*
   2983 		 * If the link MTU changed, do network layer specific procedure.
   2984 		 */
   2985 #ifdef INET6
   2986 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2987 		if (in6_present)
   2988 			nd6_setmtu(ifp);
   2989 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2990 #endif
   2991 		return ENETRESET;
   2992 	default:
   2993 		return ENOTTY;
   2994 	}
   2995 	return 0;
   2996 }
   2997 
   2998 int
   2999 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3000 {
   3001 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3002 	struct ifaddr *ifa;
   3003 	const struct sockaddr *any, *sa;
   3004 	union {
   3005 		struct sockaddr sa;
   3006 		struct sockaddr_storage ss;
   3007 	} u, v;
   3008 	int s, error = 0;
   3009 
   3010 	switch (cmd) {
   3011 	case SIOCSIFADDRPREF:
   3012 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   3013 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   3014 		    NULL) != 0)
   3015 			return EPERM;
   3016 	case SIOCGIFADDRPREF:
   3017 		break;
   3018 	default:
   3019 		return EOPNOTSUPP;
   3020 	}
   3021 
   3022 	/* sanity checks */
   3023 	if (data == NULL || ifp == NULL) {
   3024 		panic("invalid argument to %s", __func__);
   3025 		/*NOTREACHED*/
   3026 	}
   3027 
   3028 	/* address must be specified on ADD and DELETE */
   3029 	sa = sstocsa(&ifap->ifap_addr);
   3030 	if (sa->sa_family != sofamily(so))
   3031 		return EINVAL;
   3032 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3033 		return EINVAL;
   3034 
   3035 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3036 
   3037 	s = pserialize_read_enter();
   3038 	IFADDR_READER_FOREACH(ifa, ifp) {
   3039 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3040 			continue;
   3041 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3042 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3043 			break;
   3044 	}
   3045 	if (ifa == NULL) {
   3046 		error = EADDRNOTAVAIL;
   3047 		goto out;
   3048 	}
   3049 
   3050 	switch (cmd) {
   3051 	case SIOCSIFADDRPREF:
   3052 		ifa->ifa_preference = ifap->ifap_preference;
   3053 		goto out;
   3054 	case SIOCGIFADDRPREF:
   3055 		/* fill in the if_laddrreq structure */
   3056 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3057 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3058 		ifap->ifap_preference = ifa->ifa_preference;
   3059 		goto out;
   3060 	default:
   3061 		error = EOPNOTSUPP;
   3062 	}
   3063 out:
   3064 	pserialize_read_exit(s);
   3065 	return error;
   3066 }
   3067 
   3068 /*
   3069  * Interface ioctls.
   3070  */
   3071 static int
   3072 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3073 {
   3074 	struct ifnet *ifp;
   3075 	struct ifreq *ifr;
   3076 	int error = 0;
   3077 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   3078 	u_long ocmd = cmd;
   3079 #endif
   3080 	short oif_flags;
   3081 #ifdef COMPAT_OIFREQ
   3082 	struct ifreq ifrb;
   3083 	struct oifreq *oifr = NULL;
   3084 #endif
   3085 	int r;
   3086 	struct psref psref;
   3087 	int bound;
   3088 
   3089 	switch (cmd) {
   3090 #ifdef COMPAT_OIFREQ
   3091 	case OSIOCGIFCONF:
   3092 	case OOSIOCGIFCONF:
   3093 		return compat_ifconf(cmd, data);
   3094 #endif
   3095 #ifdef COMPAT_OIFDATA
   3096 	case OSIOCGIFDATA:
   3097 	case OSIOCZIFDATA:
   3098 		return compat_ifdatareq(l, cmd, data);
   3099 #endif
   3100 	case SIOCGIFCONF:
   3101 		return ifconf(cmd, data);
   3102 	case SIOCINITIFADDR:
   3103 		return EPERM;
   3104 	}
   3105 
   3106 #ifdef COMPAT_OIFREQ
   3107 	cmd = (*vec_compat_cvtcmd)(cmd);
   3108 	if (cmd != ocmd) {
   3109 		oifr = data;
   3110 		data = ifr = &ifrb;
   3111 		ifreqo2n(oifr, ifr);
   3112 	} else
   3113 #endif
   3114 		ifr = data;
   3115 
   3116 	switch (cmd) {
   3117 	case SIOCIFCREATE:
   3118 	case SIOCIFDESTROY:
   3119 		bound = curlwp_bind();
   3120 		if (l != NULL) {
   3121 			ifp = if_get(ifr->ifr_name, &psref);
   3122 			error = kauth_authorize_network(l->l_cred,
   3123 			    KAUTH_NETWORK_INTERFACE,
   3124 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3125 			    (void *)cmd, NULL);
   3126 			if (ifp != NULL)
   3127 				if_put(ifp, &psref);
   3128 			if (error != 0) {
   3129 				curlwp_bindx(bound);
   3130 				return error;
   3131 			}
   3132 		}
   3133 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3134 		mutex_enter(&if_clone_mtx);
   3135 		r = (cmd == SIOCIFCREATE) ?
   3136 			if_clone_create(ifr->ifr_name) :
   3137 			if_clone_destroy(ifr->ifr_name);
   3138 		mutex_exit(&if_clone_mtx);
   3139 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3140 		curlwp_bindx(bound);
   3141 		return r;
   3142 
   3143 	case SIOCIFGCLONERS:
   3144 		{
   3145 			struct if_clonereq *req = (struct if_clonereq *)data;
   3146 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3147 			    &req->ifcr_total);
   3148 		}
   3149 	}
   3150 
   3151 	bound = curlwp_bind();
   3152 	ifp = if_get(ifr->ifr_name, &psref);
   3153 	if (ifp == NULL) {
   3154 		curlwp_bindx(bound);
   3155 		return ENXIO;
   3156 	}
   3157 
   3158 	switch (cmd) {
   3159 	case SIOCALIFADDR:
   3160 	case SIOCDLIFADDR:
   3161 	case SIOCSIFADDRPREF:
   3162 	case SIOCSIFFLAGS:
   3163 	case SIOCSIFCAP:
   3164 	case SIOCSIFMETRIC:
   3165 	case SIOCZIFDATA:
   3166 	case SIOCSIFMTU:
   3167 	case SIOCSIFPHYADDR:
   3168 	case SIOCDIFPHYADDR:
   3169 #ifdef INET6
   3170 	case SIOCSIFPHYADDR_IN6:
   3171 #endif
   3172 	case SIOCSLIFPHYADDR:
   3173 	case SIOCADDMULTI:
   3174 	case SIOCDELMULTI:
   3175 	case SIOCSIFMEDIA:
   3176 	case SIOCSDRVSPEC:
   3177 	case SIOCG80211:
   3178 	case SIOCS80211:
   3179 	case SIOCS80211NWID:
   3180 	case SIOCS80211NWKEY:
   3181 	case SIOCS80211POWER:
   3182 	case SIOCS80211BSSID:
   3183 	case SIOCS80211CHANNEL:
   3184 	case SIOCSLINKSTR:
   3185 		if (l != NULL) {
   3186 			error = kauth_authorize_network(l->l_cred,
   3187 			    KAUTH_NETWORK_INTERFACE,
   3188 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3189 			    (void *)cmd, NULL);
   3190 			if (error != 0)
   3191 				goto out;
   3192 		}
   3193 	}
   3194 
   3195 	oif_flags = ifp->if_flags;
   3196 
   3197 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3198 	mutex_enter(ifp->if_ioctl_lock);
   3199 
   3200 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3201 	if (error != ENOTTY)
   3202 		;
   3203 	else if (so->so_proto == NULL)
   3204 		error = EOPNOTSUPP;
   3205 	else {
   3206 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3207 #ifdef COMPAT_OSOCK
   3208 		if (vec_compat_ifioctl != NULL)
   3209 			error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
   3210 		else
   3211 #endif
   3212 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3213 			    cmd, data, ifp);
   3214 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3215 	}
   3216 
   3217 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3218 		if ((ifp->if_flags & IFF_UP) != 0) {
   3219 			int s = splsoftnet();
   3220 			if_up_locked(ifp);
   3221 			splx(s);
   3222 		}
   3223 	}
   3224 #ifdef COMPAT_OIFREQ
   3225 	if (cmd != ocmd)
   3226 		ifreqn2o(oifr, ifr);
   3227 #endif
   3228 
   3229 	mutex_exit(ifp->if_ioctl_lock);
   3230 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3231 out:
   3232 	if_put(ifp, &psref);
   3233 	curlwp_bindx(bound);
   3234 	return error;
   3235 }
   3236 
   3237 /*
   3238  * Return interface configuration
   3239  * of system.  List may be used
   3240  * in later ioctl's (above) to get
   3241  * other information.
   3242  *
   3243  * Each record is a struct ifreq.  Before the addition of
   3244  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3245  * not fit would extend beyond the struct ifreq, with the next struct
   3246  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3247  * union in struct ifreq includes struct sockaddr_storage, every kind
   3248  * of sockaddr must fit.  Thus, there are no longer any overlength
   3249  * records.
   3250  *
   3251  * Records are added to the user buffer if they fit, and ifc_len is
   3252  * adjusted to the length that was written.  Thus, the user is only
   3253  * assured of getting the complete list if ifc_len on return is at
   3254  * least sizeof(struct ifreq) less than it was on entry.
   3255  *
   3256  * If the user buffer pointer is NULL, this routine copies no data and
   3257  * returns the amount of space that would be needed.
   3258  *
   3259  * Invariants:
   3260  * ifrp points to the next part of the user's buffer to be used.  If
   3261  * ifrp != NULL, space holds the number of bytes remaining that we may
   3262  * write at ifrp.  Otherwise, space holds the number of bytes that
   3263  * would have been written had there been adequate space.
   3264  */
   3265 /*ARGSUSED*/
   3266 static int
   3267 ifconf(u_long cmd, void *data)
   3268 {
   3269 	struct ifconf *ifc = (struct ifconf *)data;
   3270 	struct ifnet *ifp;
   3271 	struct ifaddr *ifa;
   3272 	struct ifreq ifr, *ifrp = NULL;
   3273 	int space = 0, error = 0;
   3274 	const int sz = (int)sizeof(struct ifreq);
   3275 	const bool docopy = ifc->ifc_req != NULL;
   3276 	int s;
   3277 	int bound;
   3278 	struct psref psref;
   3279 
   3280 	if (docopy) {
   3281 		space = ifc->ifc_len;
   3282 		ifrp = ifc->ifc_req;
   3283 	}
   3284 
   3285 	bound = curlwp_bind();
   3286 	s = pserialize_read_enter();
   3287 	IFNET_READER_FOREACH(ifp) {
   3288 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3289 		pserialize_read_exit(s);
   3290 
   3291 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3292 		    sizeof(ifr.ifr_name));
   3293 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3294 			error = ENAMETOOLONG;
   3295 			goto release_exit;
   3296 		}
   3297 		if (IFADDR_READER_EMPTY(ifp)) {
   3298 			/* Interface with no addresses - send zero sockaddr. */
   3299 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3300 			if (!docopy) {
   3301 				space += sz;
   3302 				goto next;
   3303 			}
   3304 			if (space >= sz) {
   3305 				error = copyout(&ifr, ifrp, sz);
   3306 				if (error != 0)
   3307 					goto release_exit;
   3308 				ifrp++;
   3309 				space -= sz;
   3310 			}
   3311 		}
   3312 
   3313 		s = pserialize_read_enter();
   3314 		IFADDR_READER_FOREACH(ifa, ifp) {
   3315 			struct sockaddr *sa = ifa->ifa_addr;
   3316 			/* all sockaddrs must fit in sockaddr_storage */
   3317 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3318 
   3319 			if (!docopy) {
   3320 				space += sz;
   3321 				continue;
   3322 			}
   3323 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3324 			pserialize_read_exit(s);
   3325 
   3326 			if (space >= sz) {
   3327 				error = copyout(&ifr, ifrp, sz);
   3328 				if (error != 0)
   3329 					goto release_exit;
   3330 				ifrp++; space -= sz;
   3331 			}
   3332 			s = pserialize_read_enter();
   3333 		}
   3334 		pserialize_read_exit(s);
   3335 
   3336         next:
   3337 		s = pserialize_read_enter();
   3338 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3339 	}
   3340 	pserialize_read_exit(s);
   3341 	curlwp_bindx(bound);
   3342 
   3343 	if (docopy) {
   3344 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3345 		ifc->ifc_len -= space;
   3346 	} else {
   3347 		KASSERT(space >= 0);
   3348 		ifc->ifc_len = space;
   3349 	}
   3350 	return (0);
   3351 
   3352 release_exit:
   3353 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3354 	curlwp_bindx(bound);
   3355 	return error;
   3356 }
   3357 
   3358 int
   3359 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3360 {
   3361 	uint8_t len;
   3362 #ifdef COMPAT_OIFREQ
   3363 	struct ifreq ifrb;
   3364 	struct oifreq *oifr = NULL;
   3365 	u_long ocmd = cmd;
   3366 	cmd = (*vec_compat_cvtcmd)(cmd);
   3367 	if (cmd != ocmd) {
   3368 		oifr = (struct oifreq *)(void *)ifr;
   3369 		ifr = &ifrb;
   3370 		ifreqo2n(oifr, ifr);
   3371 		len = sizeof(oifr->ifr_addr);
   3372 	} else
   3373 #endif
   3374 		len = sizeof(ifr->ifr_ifru.ifru_space);
   3375 
   3376 	if (len < sa->sa_len)
   3377 		return EFBIG;
   3378 
   3379 	memset(&ifr->ifr_addr, 0, len);
   3380 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3381 
   3382 #ifdef COMPAT_OIFREQ
   3383 	if (cmd != ocmd)
   3384 		ifreqn2o(oifr, ifr);
   3385 #endif
   3386 	return 0;
   3387 }
   3388 
   3389 /*
   3390  * wrapper function for the drivers which doesn't have if_transmit().
   3391  */
   3392 static int
   3393 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3394 {
   3395 	int s, error;
   3396 	size_t pktlen = m->m_pkthdr.len;
   3397 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3398 
   3399 	s = splnet();
   3400 
   3401 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3402 	if (error != 0) {
   3403 		/* mbuf is already freed */
   3404 		goto out;
   3405 	}
   3406 
   3407 	ifp->if_obytes += pktlen;
   3408 	if (mcast)
   3409 		ifp->if_omcasts++;
   3410 
   3411 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3412 		if_start_lock(ifp);
   3413 out:
   3414 	splx(s);
   3415 
   3416 	return error;
   3417 }
   3418 
   3419 int
   3420 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3421 {
   3422 	int error;
   3423 
   3424 #ifdef ALTQ
   3425 	KERNEL_LOCK(1, NULL);
   3426 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3427 		error = if_transmit(ifp, m);
   3428 		KERNEL_UNLOCK_ONE(NULL);
   3429 	} else {
   3430 		KERNEL_UNLOCK_ONE(NULL);
   3431 		error = (*ifp->if_transmit)(ifp, m);
   3432 		/* mbuf is alredy freed */
   3433 	}
   3434 #else /* !ALTQ */
   3435 	error = (*ifp->if_transmit)(ifp, m);
   3436 	/* mbuf is alredy freed */
   3437 #endif /* !ALTQ */
   3438 
   3439 	return error;
   3440 }
   3441 
   3442 /*
   3443  * Queue message on interface, and start output if interface
   3444  * not yet active.
   3445  */
   3446 int
   3447 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3448 {
   3449 
   3450 	return if_transmit_lock(ifp, m);
   3451 }
   3452 
   3453 /*
   3454  * Queue message on interface, possibly using a second fast queue
   3455  */
   3456 int
   3457 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3458 {
   3459 	int error = 0;
   3460 
   3461 	if (ifq != NULL
   3462 #ifdef ALTQ
   3463 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3464 #endif
   3465 	    ) {
   3466 		if (IF_QFULL(ifq)) {
   3467 			IF_DROP(&ifp->if_snd);
   3468 			m_freem(m);
   3469 			if (error == 0)
   3470 				error = ENOBUFS;
   3471 		} else
   3472 			IF_ENQUEUE(ifq, m);
   3473 	} else
   3474 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3475 	if (error != 0) {
   3476 		++ifp->if_oerrors;
   3477 		return error;
   3478 	}
   3479 	return 0;
   3480 }
   3481 
   3482 int
   3483 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3484 {
   3485 	int rc;
   3486 
   3487 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   3488 	if (ifp->if_initaddr != NULL)
   3489 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3490 	else if (src ||
   3491 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3492 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3493 
   3494 	return rc;
   3495 }
   3496 
   3497 int
   3498 if_do_dad(struct ifnet *ifp)
   3499 {
   3500 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3501 		return 0;
   3502 
   3503 	switch (ifp->if_type) {
   3504 	case IFT_FAITH:
   3505 		/*
   3506 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3507 		 * but loop packets back.  We do not have to do DAD on such
   3508 		 * interfaces.  We should even omit it, because loop-backed
   3509 		 * responses would confuse the DAD procedure.
   3510 		 */
   3511 		return 0;
   3512 	default:
   3513 		/*
   3514 		 * Our DAD routine requires the interface up and running.
   3515 		 * However, some interfaces can be up before the RUNNING
   3516 		 * status.  Additionaly, users may try to assign addresses
   3517 		 * before the interface becomes up (or running).
   3518 		 * We simply skip DAD in such a case as a work around.
   3519 		 * XXX: we should rather mark "tentative" on such addresses,
   3520 		 * and do DAD after the interface becomes ready.
   3521 		 */
   3522 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   3523 		    (IFF_UP|IFF_RUNNING))
   3524 			return 0;
   3525 
   3526 		return 1;
   3527 	}
   3528 }
   3529 
   3530 int
   3531 if_flags_set(ifnet_t *ifp, const short flags)
   3532 {
   3533 	int rc;
   3534 
   3535 	KASSERT(mutex_owned(ifp->if_ioctl_lock));
   3536 
   3537 	if (ifp->if_setflags != NULL)
   3538 		rc = (*ifp->if_setflags)(ifp, flags);
   3539 	else {
   3540 		short cantflags, chgdflags;
   3541 		struct ifreq ifr;
   3542 
   3543 		chgdflags = ifp->if_flags ^ flags;
   3544 		cantflags = chgdflags & IFF_CANTCHANGE;
   3545 
   3546 		if (cantflags != 0)
   3547 			ifp->if_flags ^= cantflags;
   3548 
   3549                 /* Traditionally, we do not call if_ioctl after
   3550                  * setting/clearing only IFF_PROMISC if the interface
   3551                  * isn't IFF_UP.  Uphold that tradition.
   3552 		 */
   3553 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3554 			return 0;
   3555 
   3556 		memset(&ifr, 0, sizeof(ifr));
   3557 
   3558 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3559 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3560 
   3561 		if (rc != 0 && cantflags != 0)
   3562 			ifp->if_flags ^= cantflags;
   3563 	}
   3564 
   3565 	return rc;
   3566 }
   3567 
   3568 int
   3569 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3570 {
   3571 	int rc;
   3572 	struct ifreq ifr;
   3573 
   3574 	if (ifp->if_mcastop != NULL)
   3575 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3576 	else {
   3577 		ifreq_setaddr(cmd, &ifr, sa);
   3578 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3579 	}
   3580 
   3581 	return rc;
   3582 }
   3583 
   3584 static void
   3585 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3586     struct ifaltq *ifq)
   3587 {
   3588 	const struct sysctlnode *cnode, *rnode;
   3589 
   3590 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3591 		       CTLFLAG_PERMANENT,
   3592 		       CTLTYPE_NODE, "interfaces",
   3593 		       SYSCTL_DESCR("Per-interface controls"),
   3594 		       NULL, 0, NULL, 0,
   3595 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3596 		goto bad;
   3597 
   3598 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3599 		       CTLFLAG_PERMANENT,
   3600 		       CTLTYPE_NODE, ifname,
   3601 		       SYSCTL_DESCR("Interface controls"),
   3602 		       NULL, 0, NULL, 0,
   3603 		       CTL_CREATE, CTL_EOL) != 0)
   3604 		goto bad;
   3605 
   3606 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3607 		       CTLFLAG_PERMANENT,
   3608 		       CTLTYPE_NODE, "sndq",
   3609 		       SYSCTL_DESCR("Interface output queue controls"),
   3610 		       NULL, 0, NULL, 0,
   3611 		       CTL_CREATE, CTL_EOL) != 0)
   3612 		goto bad;
   3613 
   3614 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3615 		       CTLFLAG_PERMANENT,
   3616 		       CTLTYPE_INT, "len",
   3617 		       SYSCTL_DESCR("Current output queue length"),
   3618 		       NULL, 0, &ifq->ifq_len, 0,
   3619 		       CTL_CREATE, CTL_EOL) != 0)
   3620 		goto bad;
   3621 
   3622 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3623 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3624 		       CTLTYPE_INT, "maxlen",
   3625 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3626 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3627 		       CTL_CREATE, CTL_EOL) != 0)
   3628 		goto bad;
   3629 
   3630 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3631 		       CTLFLAG_PERMANENT,
   3632 		       CTLTYPE_INT, "drops",
   3633 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3634 		       NULL, 0, &ifq->ifq_drops, 0,
   3635 		       CTL_CREATE, CTL_EOL) != 0)
   3636 		goto bad;
   3637 
   3638 	return;
   3639 bad:
   3640 	printf("%s: could not attach sysctl nodes\n", ifname);
   3641 	return;
   3642 }
   3643 
   3644 #if defined(INET) || defined(INET6)
   3645 
   3646 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3647 	static int							\
   3648 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3649 	{								\
   3650 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3651 	}
   3652 
   3653 #if defined(INET)
   3654 static int
   3655 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3656 {
   3657 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3658 }
   3659 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3660 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3661 #endif
   3662 
   3663 #if defined(INET6)
   3664 static int
   3665 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3666 {
   3667 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3668 }
   3669 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3670 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3671 #endif
   3672 
   3673 static void
   3674 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3675 {
   3676 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3677 	const char *pfname = NULL, *ipname = NULL;
   3678 	int ipn = 0, qid = 0;
   3679 
   3680 	switch (pf) {
   3681 #if defined(INET)
   3682 	case PF_INET:
   3683 		len_func = sysctl_net_ip_pktq_items;
   3684 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3685 		drops_func = sysctl_net_ip_pktq_drops;
   3686 		pfname = "inet", ipn = IPPROTO_IP;
   3687 		ipname = "ip", qid = IPCTL_IFQ;
   3688 		break;
   3689 #endif
   3690 #if defined(INET6)
   3691 	case PF_INET6:
   3692 		len_func = sysctl_net_ip6_pktq_items;
   3693 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3694 		drops_func = sysctl_net_ip6_pktq_drops;
   3695 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3696 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3697 		break;
   3698 #endif
   3699 	default:
   3700 		KASSERT(false);
   3701 	}
   3702 
   3703 	sysctl_createv(clog, 0, NULL, NULL,
   3704 		       CTLFLAG_PERMANENT,
   3705 		       CTLTYPE_NODE, pfname, NULL,
   3706 		       NULL, 0, NULL, 0,
   3707 		       CTL_NET, pf, CTL_EOL);
   3708 	sysctl_createv(clog, 0, NULL, NULL,
   3709 		       CTLFLAG_PERMANENT,
   3710 		       CTLTYPE_NODE, ipname, NULL,
   3711 		       NULL, 0, NULL, 0,
   3712 		       CTL_NET, pf, ipn, CTL_EOL);
   3713 	sysctl_createv(clog, 0, NULL, NULL,
   3714 		       CTLFLAG_PERMANENT,
   3715 		       CTLTYPE_NODE, "ifq",
   3716 		       SYSCTL_DESCR("Protocol input queue controls"),
   3717 		       NULL, 0, NULL, 0,
   3718 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3719 
   3720 	sysctl_createv(clog, 0, NULL, NULL,
   3721 		       CTLFLAG_PERMANENT,
   3722 		       CTLTYPE_INT, "len",
   3723 		       SYSCTL_DESCR("Current input queue length"),
   3724 		       len_func, 0, NULL, 0,
   3725 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3726 	sysctl_createv(clog, 0, NULL, NULL,
   3727 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3728 		       CTLTYPE_INT, "maxlen",
   3729 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3730 		       maxlen_func, 0, NULL, 0,
   3731 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3732 	sysctl_createv(clog, 0, NULL, NULL,
   3733 		       CTLFLAG_PERMANENT,
   3734 		       CTLTYPE_INT, "drops",
   3735 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3736 		       drops_func, 0, NULL, 0,
   3737 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3738 }
   3739 #endif /* INET || INET6 */
   3740 
   3741 static int
   3742 if_sdl_sysctl(SYSCTLFN_ARGS)
   3743 {
   3744 	struct ifnet *ifp;
   3745 	const struct sockaddr_dl *sdl;
   3746 	struct psref psref;
   3747 	int error = 0;
   3748 	int bound;
   3749 
   3750 	if (namelen != 1)
   3751 		return EINVAL;
   3752 
   3753 	bound = curlwp_bind();
   3754 	ifp = if_get_byindex(name[0], &psref);
   3755 	if (ifp == NULL) {
   3756 		error = ENODEV;
   3757 		goto out0;
   3758 	}
   3759 
   3760 	sdl = ifp->if_sadl;
   3761 	if (sdl == NULL) {
   3762 		*oldlenp = 0;
   3763 		goto out1;
   3764 	}
   3765 
   3766 	if (oldp == NULL) {
   3767 		*oldlenp = sdl->sdl_alen;
   3768 		goto out1;
   3769 	}
   3770 
   3771 	if (*oldlenp >= sdl->sdl_alen)
   3772 		*oldlenp = sdl->sdl_alen;
   3773 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3774 out1:
   3775 	if_put(ifp, &psref);
   3776 out0:
   3777 	curlwp_bindx(bound);
   3778 	return error;
   3779 }
   3780 
   3781 static void
   3782 if_sysctl_setup(struct sysctllog **clog)
   3783 {
   3784 	const struct sysctlnode *rnode = NULL;
   3785 
   3786 	sysctl_createv(clog, 0, NULL, &rnode,
   3787 		       CTLFLAG_PERMANENT,
   3788 		       CTLTYPE_NODE, "sdl",
   3789 		       SYSCTL_DESCR("Get active link-layer address"),
   3790 		       if_sdl_sysctl, 0, NULL, 0,
   3791 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3792 
   3793 #if defined(INET)
   3794 	sysctl_net_pktq_setup(NULL, PF_INET);
   3795 #endif
   3796 #ifdef INET6
   3797 	if (in6_present)
   3798 		sysctl_net_pktq_setup(NULL, PF_INET6);
   3799 #endif
   3800 }
   3801