if.c revision 1.412 1 /* $NetBSD: if.c,v 1.412 2017/12/11 03:25:45 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.412 2017/12/11 03:25:45 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152
153 #include "carp.h"
154 #if NCARP > 0
155 #include <netinet/ip_carp.h>
156 #endif
157
158 #include <compat/sys/sockio.h>
159 #include <compat/sys/socket.h>
160
161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
163
164 /*
165 * Global list of interfaces.
166 */
167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
168 struct ifnet_head ifnet_list;
169
170 struct pslist_head ifnet_pslist;
171 static ifnet_t ** ifindex2ifnet = NULL;
172 static u_int if_index = 1;
173 static size_t if_indexlim = 0;
174 static uint64_t index_gen;
175 /* Mutex to protect the above objects. */
176 kmutex_t ifnet_mtx __cacheline_aligned;
177 static struct psref_class *ifnet_psref_class __read_mostly;
178 static pserialize_t ifnet_psz;
179
180 static kmutex_t if_clone_mtx;
181
182 struct ifnet *lo0ifp;
183 int ifqmaxlen = IFQ_MAXLEN;
184
185 struct psref_class *ifa_psref_class __read_mostly;
186
187 static int if_delroute_matcher(struct rtentry *, void *);
188
189 static bool if_is_unit(const char *);
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil __read_mostly;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212 static void if_up_locked(struct ifnet *);
213 static void _if_down(struct ifnet *);
214 static void if_down_deactivated(struct ifnet *);
215
216 struct if_percpuq {
217 struct ifnet *ipq_ifp;
218 void *ipq_si;
219 struct percpu *ipq_ifqs; /* struct ifqueue */
220 };
221
222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
223
224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
227 struct if_percpuq *);
228
229 struct if_deferred_start {
230 struct ifnet *ids_ifp;
231 void (*ids_if_start)(struct ifnet *);
232 void *ids_si;
233 };
234
235 static void if_deferred_start_softint(void *);
236 static void if_deferred_start_common(struct ifnet *);
237 static void if_deferred_start_destroy(struct ifnet *);
238
239 #if defined(INET) || defined(INET6)
240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
241 #endif
242
243 static void if_sysctl_setup(struct sysctllog **);
244
245 /*
246 * Pointer to stub or real compat_cvtcmd() depending on presence of
247 * the compat module
248 */
249 u_long stub_compat_cvtcmd(u_long);
250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
251
252 /* Similarly, pointer to compat_ifioctl() if it is present */
253
254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
255 struct lwp *) = NULL;
256
257 /* The stub version of compat_cvtcmd() */
258 u_long stub_compat_cvtcmd(u_long cmd)
259 {
260
261 return cmd;
262 }
263
264 static int
265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
266 void *arg0, void *arg1, void *arg2, void *arg3)
267 {
268 int result;
269 enum kauth_network_req req;
270
271 result = KAUTH_RESULT_DEFER;
272 req = (enum kauth_network_req)arg1;
273
274 if (action != KAUTH_NETWORK_INTERFACE)
275 return result;
276
277 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
278 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
279 result = KAUTH_RESULT_ALLOW;
280
281 return result;
282 }
283
284 /*
285 * Network interface utility routines.
286 *
287 * Routines with ifa_ifwith* names take sockaddr *'s as
288 * parameters.
289 */
290 void
291 ifinit(void)
292 {
293
294 if_sysctl_setup(NULL);
295
296 #if (defined(INET) || defined(INET6))
297 encapinit();
298 #endif
299
300 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
301 if_listener_cb, NULL);
302
303 /* interfaces are available, inform socket code */
304 ifioctl = doifioctl;
305 }
306
307 /*
308 * XXX Initialization before configure().
309 * XXX hack to get pfil_add_hook working in autoconf.
310 */
311 void
312 ifinit1(void)
313 {
314 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
315
316 TAILQ_INIT(&ifnet_list);
317 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
318 ifnet_psz = pserialize_create();
319 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
320 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
321 PSLIST_INIT(&ifnet_pslist);
322
323 if_indexlim = 8;
324
325 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
326 KASSERT(if_pfil != NULL);
327
328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
329 etherinit();
330 #endif
331 }
332
333 ifnet_t *
334 if_alloc(u_char type)
335 {
336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
337 }
338
339 void
340 if_free(ifnet_t *ifp)
341 {
342 kmem_free(ifp, sizeof(ifnet_t));
343 }
344
345 void
346 if_initname(struct ifnet *ifp, const char *name, int unit)
347 {
348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
349 "%s%d", name, unit);
350 }
351
352 /*
353 * Null routines used while an interface is going away. These routines
354 * just return an error.
355 */
356
357 int
358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
359 const struct sockaddr *so, const struct rtentry *rt)
360 {
361
362 return ENXIO;
363 }
364
365 void
366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
367 {
368
369 /* Nothing. */
370 }
371
372 void
373 if_nullstart(struct ifnet *ifp)
374 {
375
376 /* Nothing. */
377 }
378
379 int
380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
381 {
382
383 m_freem(m);
384 return ENXIO;
385 }
386
387 int
388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
389 {
390
391 return ENXIO;
392 }
393
394 int
395 if_nullinit(struct ifnet *ifp)
396 {
397
398 return ENXIO;
399 }
400
401 void
402 if_nullstop(struct ifnet *ifp, int disable)
403 {
404
405 /* Nothing. */
406 }
407
408 void
409 if_nullslowtimo(struct ifnet *ifp)
410 {
411
412 /* Nothing. */
413 }
414
415 void
416 if_nulldrain(struct ifnet *ifp)
417 {
418
419 /* Nothing. */
420 }
421
422 void
423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
424 {
425 struct ifaddr *ifa;
426 struct sockaddr_dl *sdl;
427
428 ifp->if_addrlen = addrlen;
429 if_alloc_sadl(ifp);
430 ifa = ifp->if_dl;
431 sdl = satosdl(ifa->ifa_addr);
432
433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
434 if (factory) {
435 ifp->if_hwdl = ifp->if_dl;
436 ifaref(ifp->if_hwdl);
437 }
438 /* TBD routing socket */
439 }
440
441 struct ifaddr *
442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
443 {
444 unsigned socksize, ifasize;
445 int addrlen, namelen;
446 struct sockaddr_dl *mask, *sdl;
447 struct ifaddr *ifa;
448
449 namelen = strlen(ifp->if_xname);
450 addrlen = ifp->if_addrlen;
451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
452 ifasize = sizeof(*ifa) + 2 * socksize;
453 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
454
455 sdl = (struct sockaddr_dl *)(ifa + 1);
456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
457
458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
459 ifp->if_xname, namelen, NULL, addrlen);
460 mask->sdl_family = AF_LINK;
461 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
462 memset(&mask->sdl_data[0], 0xff, namelen);
463 ifa->ifa_rtrequest = link_rtrequest;
464 ifa->ifa_addr = (struct sockaddr *)sdl;
465 ifa->ifa_netmask = (struct sockaddr *)mask;
466 ifa_psref_init(ifa);
467
468 *sdlp = sdl;
469
470 return ifa;
471 }
472
473 static void
474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
475 {
476 const struct sockaddr_dl *sdl;
477
478 ifp->if_dl = ifa;
479 ifaref(ifa);
480 sdl = satosdl(ifa->ifa_addr);
481 ifp->if_sadl = sdl;
482 }
483
484 /*
485 * Allocate the link level name for the specified interface. This
486 * is an attachment helper. It must be called after ifp->if_addrlen
487 * is initialized, which may not be the case when if_attach() is
488 * called.
489 */
490 void
491 if_alloc_sadl(struct ifnet *ifp)
492 {
493 struct ifaddr *ifa;
494 const struct sockaddr_dl *sdl;
495
496 /*
497 * If the interface already has a link name, release it
498 * now. This is useful for interfaces that can change
499 * link types, and thus switch link names often.
500 */
501 if (ifp->if_sadl != NULL)
502 if_free_sadl(ifp);
503
504 ifa = if_dl_create(ifp, &sdl);
505
506 ifa_insert(ifp, ifa);
507 if_sadl_setrefs(ifp, ifa);
508 }
509
510 static void
511 if_deactivate_sadl(struct ifnet *ifp)
512 {
513 struct ifaddr *ifa;
514
515 KASSERT(ifp->if_dl != NULL);
516
517 ifa = ifp->if_dl;
518
519 ifp->if_sadl = NULL;
520
521 ifp->if_dl = NULL;
522 ifafree(ifa);
523 }
524
525 static void
526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
527 {
528 struct ifaddr *old;
529
530 KASSERT(ifp->if_dl != NULL);
531
532 old = ifp->if_dl;
533
534 ifaref(ifa);
535 /* XXX Update if_dl and if_sadl atomically */
536 ifp->if_dl = ifa;
537 ifp->if_sadl = satosdl(ifa->ifa_addr);
538
539 ifafree(old);
540 }
541
542 void
543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
544 const struct sockaddr_dl *sdl)
545 {
546 int s, ss;
547 struct ifaddr *ifa;
548 int bound = curlwp_bind();
549
550 KASSERT(ifa_held(ifa0));
551
552 s = splsoftnet();
553
554 if_replace_sadl(ifp, ifa0);
555
556 ss = pserialize_read_enter();
557 IFADDR_READER_FOREACH(ifa, ifp) {
558 struct psref psref;
559 ifa_acquire(ifa, &psref);
560 pserialize_read_exit(ss);
561
562 rtinit(ifa, RTM_LLINFO_UPD, 0);
563
564 ss = pserialize_read_enter();
565 ifa_release(ifa, &psref);
566 }
567 pserialize_read_exit(ss);
568
569 splx(s);
570 curlwp_bindx(bound);
571 }
572
573 /*
574 * Free the link level name for the specified interface. This is
575 * a detach helper. This is called from if_detach().
576 */
577 static void
578 if_free_sadl(struct ifnet *ifp)
579 {
580 struct ifaddr *ifa;
581 int s;
582
583 ifa = ifp->if_dl;
584 if (ifa == NULL) {
585 KASSERT(ifp->if_sadl == NULL);
586 return;
587 }
588
589 KASSERT(ifp->if_sadl != NULL);
590
591 s = splsoftnet();
592 rtinit(ifa, RTM_DELETE, 0);
593 ifa_remove(ifp, ifa);
594 if_deactivate_sadl(ifp);
595 if (ifp->if_hwdl == ifa) {
596 ifafree(ifa);
597 ifp->if_hwdl = NULL;
598 }
599 splx(s);
600 }
601
602 static void
603 if_getindex(ifnet_t *ifp)
604 {
605 bool hitlimit = false;
606
607 ifp->if_index_gen = index_gen++;
608
609 ifp->if_index = if_index;
610 if (ifindex2ifnet == NULL) {
611 if_index++;
612 goto skip;
613 }
614 while (if_byindex(ifp->if_index)) {
615 /*
616 * If we hit USHRT_MAX, we skip back to 0 since
617 * there are a number of places where the value
618 * of if_index or if_index itself is compared
619 * to or stored in an unsigned short. By
620 * jumping back, we won't botch those assignments
621 * or comparisons.
622 */
623 if (++if_index == 0) {
624 if_index = 1;
625 } else if (if_index == USHRT_MAX) {
626 /*
627 * However, if we have to jump back to
628 * zero *twice* without finding an empty
629 * slot in ifindex2ifnet[], then there
630 * there are too many (>65535) interfaces.
631 */
632 if (hitlimit) {
633 panic("too many interfaces");
634 }
635 hitlimit = true;
636 if_index = 1;
637 }
638 ifp->if_index = if_index;
639 }
640 skip:
641 /*
642 * ifindex2ifnet is indexed by if_index. Since if_index will
643 * grow dynamically, it should grow too.
644 */
645 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
646 size_t m, n, oldlim;
647 void *q;
648
649 oldlim = if_indexlim;
650 while (ifp->if_index >= if_indexlim)
651 if_indexlim <<= 1;
652
653 /* grow ifindex2ifnet */
654 m = oldlim * sizeof(struct ifnet *);
655 n = if_indexlim * sizeof(struct ifnet *);
656 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
657 if (ifindex2ifnet != NULL) {
658 memcpy(q, ifindex2ifnet, m);
659 free(ifindex2ifnet, M_IFADDR);
660 }
661 ifindex2ifnet = (struct ifnet **)q;
662 }
663 ifindex2ifnet[ifp->if_index] = ifp;
664 }
665
666 /*
667 * Initialize an interface and assign an index for it.
668 *
669 * It must be called prior to a device specific attach routine
670 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
671 * and be followed by if_register:
672 *
673 * if_initialize(ifp);
674 * ether_ifattach(ifp, enaddr);
675 * if_register(ifp);
676 */
677 int
678 if_initialize(ifnet_t *ifp)
679 {
680 int rv = 0;
681
682 KASSERT(if_indexlim > 0);
683 TAILQ_INIT(&ifp->if_addrlist);
684
685 /*
686 * Link level name is allocated later by a separate call to
687 * if_alloc_sadl().
688 */
689
690 if (ifp->if_snd.ifq_maxlen == 0)
691 ifp->if_snd.ifq_maxlen = ifqmaxlen;
692
693 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
694
695 ifp->if_link_state = LINK_STATE_UNKNOWN;
696 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
697
698 ifp->if_capenable = 0;
699 ifp->if_csum_flags_tx = 0;
700 ifp->if_csum_flags_rx = 0;
701
702 #ifdef ALTQ
703 ifp->if_snd.altq_type = 0;
704 ifp->if_snd.altq_disc = NULL;
705 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
706 ifp->if_snd.altq_tbr = NULL;
707 ifp->if_snd.altq_ifp = ifp;
708 #endif
709
710 IFQ_LOCK_INIT(&ifp->if_snd);
711
712 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
713 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
714
715 IF_AFDATA_LOCK_INIT(ifp);
716
717 if (if_is_link_state_changeable(ifp)) {
718 u_int flags = SOFTINT_NET;
719 flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
720 SOFTINT_MPSAFE : 0;
721 ifp->if_link_si = softint_establish(flags,
722 if_link_state_change_si, ifp);
723 if (ifp->if_link_si == NULL) {
724 rv = ENOMEM;
725 goto fail;
726 }
727 }
728
729 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
730 PSLIST_INIT(&ifp->if_addr_pslist);
731 psref_target_init(&ifp->if_psref, ifnet_psref_class);
732 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
733 LIST_INIT(&ifp->if_multiaddrs);
734
735 IFNET_GLOBAL_LOCK();
736 if_getindex(ifp);
737 IFNET_GLOBAL_UNLOCK();
738
739 return 0;
740
741 fail:
742 IF_AFDATA_LOCK_DESTROY(ifp);
743
744 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
745 (void)pfil_head_destroy(ifp->if_pfil);
746
747 IFQ_LOCK_DESTROY(&ifp->if_snd);
748
749 return rv;
750 }
751
752 /*
753 * Register an interface to the list of "active" interfaces.
754 */
755 void
756 if_register(ifnet_t *ifp)
757 {
758 /*
759 * If the driver has not supplied its own if_ioctl, then
760 * supply the default.
761 */
762 if (ifp->if_ioctl == NULL)
763 ifp->if_ioctl = ifioctl_common;
764
765 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
766
767 if (!STAILQ_EMPTY(&domains))
768 if_attachdomain1(ifp);
769
770 /* Announce the interface. */
771 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
772
773 if (ifp->if_slowtimo != NULL) {
774 ifp->if_slowtimo_ch =
775 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
776 callout_init(ifp->if_slowtimo_ch, 0);
777 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
778 if_slowtimo(ifp);
779 }
780
781 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
782 ifp->if_transmit = if_transmit;
783
784 IFNET_GLOBAL_LOCK();
785 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
786 IFNET_WRITER_INSERT_TAIL(ifp);
787 IFNET_GLOBAL_UNLOCK();
788 }
789
790 /*
791 * The if_percpuq framework
792 *
793 * It allows network device drivers to execute the network stack
794 * in softint (so called softint-based if_input). It utilizes
795 * softint and percpu ifqueue. It doesn't distribute any packets
796 * between CPUs, unlike pktqueue(9).
797 *
798 * Currently we support two options for device drivers to apply the framework:
799 * - Use it implicitly with less changes
800 * - If you use if_attach in driver's _attach function and if_input in
801 * driver's Rx interrupt handler, a packet is queued and a softint handles
802 * the packet implicitly
803 * - Use it explicitly in each driver (recommended)
804 * - You can use if_percpuq_* directly in your driver
805 * - In this case, you need to allocate struct if_percpuq in driver's softc
806 * - See wm(4) as a reference implementation
807 */
808
809 static void
810 if_percpuq_softint(void *arg)
811 {
812 struct if_percpuq *ipq = arg;
813 struct ifnet *ifp = ipq->ipq_ifp;
814 struct mbuf *m;
815
816 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
817 ifp->if_ipackets++;
818 bpf_mtap(ifp, m);
819
820 ifp->_if_input(ifp, m);
821 }
822 }
823
824 static void
825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
826 {
827 struct ifqueue *const ifq = p;
828
829 memset(ifq, 0, sizeof(*ifq));
830 ifq->ifq_maxlen = IFQ_MAXLEN;
831 }
832
833 struct if_percpuq *
834 if_percpuq_create(struct ifnet *ifp)
835 {
836 struct if_percpuq *ipq;
837
838 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
839 ipq->ipq_ifp = ifp;
840 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
841 if_percpuq_softint, ipq);
842 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
843 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
844
845 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
846
847 return ipq;
848 }
849
850 static struct mbuf *
851 if_percpuq_dequeue(struct if_percpuq *ipq)
852 {
853 struct mbuf *m;
854 struct ifqueue *ifq;
855 int s;
856
857 s = splnet();
858 ifq = percpu_getref(ipq->ipq_ifqs);
859 IF_DEQUEUE(ifq, m);
860 percpu_putref(ipq->ipq_ifqs);
861 splx(s);
862
863 return m;
864 }
865
866 static void
867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
868 {
869 struct ifqueue *const ifq = p;
870
871 IF_PURGE(ifq);
872 }
873
874 void
875 if_percpuq_destroy(struct if_percpuq *ipq)
876 {
877
878 /* if_detach may already destroy it */
879 if (ipq == NULL)
880 return;
881
882 softint_disestablish(ipq->ipq_si);
883 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
884 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
885 kmem_free(ipq, sizeof(*ipq));
886 }
887
888 void
889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
890 {
891 struct ifqueue *ifq;
892 int s;
893
894 KASSERT(ipq != NULL);
895
896 s = splnet();
897 ifq = percpu_getref(ipq->ipq_ifqs);
898 if (IF_QFULL(ifq)) {
899 IF_DROP(ifq);
900 percpu_putref(ipq->ipq_ifqs);
901 m_freem(m);
902 goto out;
903 }
904 IF_ENQUEUE(ifq, m);
905 percpu_putref(ipq->ipq_ifqs);
906
907 softint_schedule(ipq->ipq_si);
908 out:
909 splx(s);
910 }
911
912 static void
913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
914 {
915 struct ifqueue *const ifq = p;
916 int *sum = arg;
917
918 *sum += ifq->ifq_drops;
919 }
920
921 static int
922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
923 {
924 struct sysctlnode node;
925 struct if_percpuq *ipq;
926 int sum = 0;
927 int error;
928
929 node = *rnode;
930 ipq = node.sysctl_data;
931
932 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
933
934 node.sysctl_data = ∑
935 error = sysctl_lookup(SYSCTLFN_CALL(&node));
936 if (error != 0 || newp == NULL)
937 return error;
938
939 return 0;
940 }
941
942 static void
943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
944 struct if_percpuq *ipq)
945 {
946 const struct sysctlnode *cnode, *rnode;
947
948 if (sysctl_createv(clog, 0, NULL, &rnode,
949 CTLFLAG_PERMANENT,
950 CTLTYPE_NODE, "interfaces",
951 SYSCTL_DESCR("Per-interface controls"),
952 NULL, 0, NULL, 0,
953 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
954 goto bad;
955
956 if (sysctl_createv(clog, 0, &rnode, &rnode,
957 CTLFLAG_PERMANENT,
958 CTLTYPE_NODE, ifname,
959 SYSCTL_DESCR("Interface controls"),
960 NULL, 0, NULL, 0,
961 CTL_CREATE, CTL_EOL) != 0)
962 goto bad;
963
964 if (sysctl_createv(clog, 0, &rnode, &rnode,
965 CTLFLAG_PERMANENT,
966 CTLTYPE_NODE, "rcvq",
967 SYSCTL_DESCR("Interface input queue controls"),
968 NULL, 0, NULL, 0,
969 CTL_CREATE, CTL_EOL) != 0)
970 goto bad;
971
972 #ifdef NOTYET
973 /* XXX Should show each per-CPU queue length? */
974 if (sysctl_createv(clog, 0, &rnode, &rnode,
975 CTLFLAG_PERMANENT,
976 CTLTYPE_INT, "len",
977 SYSCTL_DESCR("Current input queue length"),
978 sysctl_percpuq_len, 0, NULL, 0,
979 CTL_CREATE, CTL_EOL) != 0)
980 goto bad;
981
982 if (sysctl_createv(clog, 0, &rnode, &cnode,
983 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
984 CTLTYPE_INT, "maxlen",
985 SYSCTL_DESCR("Maximum allowed input queue length"),
986 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
987 CTL_CREATE, CTL_EOL) != 0)
988 goto bad;
989 #endif
990
991 if (sysctl_createv(clog, 0, &rnode, &cnode,
992 CTLFLAG_PERMANENT,
993 CTLTYPE_INT, "drops",
994 SYSCTL_DESCR("Total packets dropped due to full input queue"),
995 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
996 CTL_CREATE, CTL_EOL) != 0)
997 goto bad;
998
999 return;
1000 bad:
1001 printf("%s: could not attach sysctl nodes\n", ifname);
1002 return;
1003 }
1004
1005 /*
1006 * The deferred if_start framework
1007 *
1008 * The common APIs to defer if_start to softint when if_start is requested
1009 * from a device driver running in hardware interrupt context.
1010 */
1011 /*
1012 * Call ifp->if_start (or equivalent) in a dedicated softint for
1013 * deferred if_start.
1014 */
1015 static void
1016 if_deferred_start_softint(void *arg)
1017 {
1018 struct if_deferred_start *ids = arg;
1019 struct ifnet *ifp = ids->ids_ifp;
1020
1021 ids->ids_if_start(ifp);
1022 }
1023
1024 /*
1025 * The default callback function for deferred if_start.
1026 */
1027 static void
1028 if_deferred_start_common(struct ifnet *ifp)
1029 {
1030 int s;
1031
1032 s = splnet();
1033 if_start_lock(ifp);
1034 splx(s);
1035 }
1036
1037 static inline bool
1038 if_snd_is_used(struct ifnet *ifp)
1039 {
1040
1041 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1042 ALTQ_IS_ENABLED(&ifp->if_snd);
1043 }
1044
1045 /*
1046 * Schedule deferred if_start.
1047 */
1048 void
1049 if_schedule_deferred_start(struct ifnet *ifp)
1050 {
1051
1052 KASSERT(ifp->if_deferred_start != NULL);
1053
1054 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1055 return;
1056
1057 softint_schedule(ifp->if_deferred_start->ids_si);
1058 }
1059
1060 /*
1061 * Create an instance of deferred if_start. A driver should call the function
1062 * only if the driver needs deferred if_start. Drivers can setup their own
1063 * deferred if_start function via 2nd argument.
1064 */
1065 void
1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1067 {
1068 struct if_deferred_start *ids;
1069
1070 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1071 ids->ids_ifp = ifp;
1072 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
1073 if_deferred_start_softint, ids);
1074 if (func != NULL)
1075 ids->ids_if_start = func;
1076 else
1077 ids->ids_if_start = if_deferred_start_common;
1078
1079 ifp->if_deferred_start = ids;
1080 }
1081
1082 static void
1083 if_deferred_start_destroy(struct ifnet *ifp)
1084 {
1085
1086 if (ifp->if_deferred_start == NULL)
1087 return;
1088
1089 softint_disestablish(ifp->if_deferred_start->ids_si);
1090 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1091 ifp->if_deferred_start = NULL;
1092 }
1093
1094 /*
1095 * The common interface input routine that is called by device drivers,
1096 * which should be used only when the driver's rx handler already runs
1097 * in softint.
1098 */
1099 void
1100 if_input(struct ifnet *ifp, struct mbuf *m)
1101 {
1102
1103 KASSERT(ifp->if_percpuq == NULL);
1104 KASSERT(!cpu_intr_p());
1105
1106 ifp->if_ipackets++;
1107 bpf_mtap(ifp, m);
1108
1109 ifp->_if_input(ifp, m);
1110 }
1111
1112 /*
1113 * DEPRECATED. Use if_initialize and if_register instead.
1114 * See the above comment of if_initialize.
1115 *
1116 * Note that it implicitly enables if_percpuq to make drivers easy to
1117 * migrate softint-based if_input without much changes. If you don't
1118 * want to enable it, use if_initialize instead.
1119 */
1120 int
1121 if_attach(ifnet_t *ifp)
1122 {
1123 int rv;
1124
1125 rv = if_initialize(ifp);
1126 if (rv != 0)
1127 return rv;
1128
1129 ifp->if_percpuq = if_percpuq_create(ifp);
1130 if_register(ifp);
1131
1132 return 0;
1133 }
1134
1135 void
1136 if_attachdomain(void)
1137 {
1138 struct ifnet *ifp;
1139 int s;
1140 int bound = curlwp_bind();
1141
1142 s = pserialize_read_enter();
1143 IFNET_READER_FOREACH(ifp) {
1144 struct psref psref;
1145 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1146 pserialize_read_exit(s);
1147 if_attachdomain1(ifp);
1148 s = pserialize_read_enter();
1149 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1150 }
1151 pserialize_read_exit(s);
1152 curlwp_bindx(bound);
1153 }
1154
1155 static void
1156 if_attachdomain1(struct ifnet *ifp)
1157 {
1158 struct domain *dp;
1159 int s;
1160
1161 s = splsoftnet();
1162
1163 /* address family dependent data region */
1164 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1165 DOMAIN_FOREACH(dp) {
1166 if (dp->dom_ifattach != NULL)
1167 ifp->if_afdata[dp->dom_family] =
1168 (*dp->dom_ifattach)(ifp);
1169 }
1170
1171 splx(s);
1172 }
1173
1174 /*
1175 * Deactivate an interface. This points all of the procedure
1176 * handles at error stubs. May be called from interrupt context.
1177 */
1178 void
1179 if_deactivate(struct ifnet *ifp)
1180 {
1181 int s;
1182
1183 s = splsoftnet();
1184
1185 ifp->if_output = if_nulloutput;
1186 ifp->_if_input = if_nullinput;
1187 ifp->if_start = if_nullstart;
1188 ifp->if_transmit = if_nulltransmit;
1189 ifp->if_ioctl = if_nullioctl;
1190 ifp->if_init = if_nullinit;
1191 ifp->if_stop = if_nullstop;
1192 ifp->if_slowtimo = if_nullslowtimo;
1193 ifp->if_drain = if_nulldrain;
1194
1195 /* No more packets may be enqueued. */
1196 ifp->if_snd.ifq_maxlen = 0;
1197
1198 splx(s);
1199 }
1200
1201 bool
1202 if_is_deactivated(const struct ifnet *ifp)
1203 {
1204
1205 return ifp->if_output == if_nulloutput;
1206 }
1207
1208 void
1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1210 {
1211 struct ifaddr *ifa, *nifa;
1212 int s;
1213
1214 s = pserialize_read_enter();
1215 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1216 nifa = IFADDR_READER_NEXT(ifa);
1217 if (ifa->ifa_addr->sa_family != family)
1218 continue;
1219 pserialize_read_exit(s);
1220
1221 (*purgeaddr)(ifa);
1222
1223 s = pserialize_read_enter();
1224 }
1225 pserialize_read_exit(s);
1226 }
1227
1228 #ifdef IFAREF_DEBUG
1229 static struct ifaddr **ifa_list;
1230 static int ifa_list_size;
1231
1232 /* Depends on only one if_attach runs at once */
1233 static void
1234 if_build_ifa_list(struct ifnet *ifp)
1235 {
1236 struct ifaddr *ifa;
1237 int i;
1238
1239 KASSERT(ifa_list == NULL);
1240 KASSERT(ifa_list_size == 0);
1241
1242 IFADDR_READER_FOREACH(ifa, ifp)
1243 ifa_list_size++;
1244
1245 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1246 i = 0;
1247 IFADDR_READER_FOREACH(ifa, ifp) {
1248 ifa_list[i++] = ifa;
1249 ifaref(ifa);
1250 }
1251 }
1252
1253 static void
1254 if_check_and_free_ifa_list(struct ifnet *ifp)
1255 {
1256 int i;
1257 struct ifaddr *ifa;
1258
1259 if (ifa_list == NULL)
1260 return;
1261
1262 for (i = 0; i < ifa_list_size; i++) {
1263 char buf[64];
1264
1265 ifa = ifa_list[i];
1266 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1267 if (ifa->ifa_refcnt > 1) {
1268 log(LOG_WARNING,
1269 "ifa(%s) still referenced (refcnt=%d)\n",
1270 buf, ifa->ifa_refcnt - 1);
1271 } else
1272 log(LOG_DEBUG,
1273 "ifa(%s) not referenced (refcnt=%d)\n",
1274 buf, ifa->ifa_refcnt - 1);
1275 ifafree(ifa);
1276 }
1277
1278 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1279 ifa_list = NULL;
1280 ifa_list_size = 0;
1281 }
1282 #endif
1283
1284 /*
1285 * Detach an interface from the list of "active" interfaces,
1286 * freeing any resources as we go along.
1287 *
1288 * NOTE: This routine must be called with a valid thread context,
1289 * as it may block.
1290 */
1291 void
1292 if_detach(struct ifnet *ifp)
1293 {
1294 struct socket so;
1295 struct ifaddr *ifa;
1296 #ifdef IFAREF_DEBUG
1297 struct ifaddr *last_ifa = NULL;
1298 #endif
1299 struct domain *dp;
1300 const struct protosw *pr;
1301 int s, i, family, purged;
1302 uint64_t xc;
1303
1304 #ifdef IFAREF_DEBUG
1305 if_build_ifa_list(ifp);
1306 #endif
1307 /*
1308 * XXX It's kind of lame that we have to have the
1309 * XXX socket structure...
1310 */
1311 memset(&so, 0, sizeof(so));
1312
1313 s = splnet();
1314
1315 sysctl_teardown(&ifp->if_sysctl_log);
1316 mutex_enter(ifp->if_ioctl_lock);
1317 if_deactivate(ifp);
1318 mutex_exit(ifp->if_ioctl_lock);
1319
1320 IFNET_GLOBAL_LOCK();
1321 ifindex2ifnet[ifp->if_index] = NULL;
1322 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1323 IFNET_WRITER_REMOVE(ifp);
1324 pserialize_perform(ifnet_psz);
1325 IFNET_GLOBAL_UNLOCK();
1326
1327 /* Wait for all readers to drain before freeing. */
1328 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1329 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1330
1331 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1332 ifp->if_slowtimo = NULL;
1333 callout_halt(ifp->if_slowtimo_ch, NULL);
1334 callout_destroy(ifp->if_slowtimo_ch);
1335 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1336 }
1337 if_deferred_start_destroy(ifp);
1338
1339 /*
1340 * Do an if_down() to give protocols a chance to do something.
1341 */
1342 if_down_deactivated(ifp);
1343
1344 #ifdef ALTQ
1345 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1346 altq_disable(&ifp->if_snd);
1347 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1348 altq_detach(&ifp->if_snd);
1349 #endif
1350
1351 mutex_obj_free(ifp->if_snd.ifq_lock);
1352
1353 #if NCARP > 0
1354 /* Remove the interface from any carp group it is a part of. */
1355 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1356 carp_ifdetach(ifp);
1357 #endif
1358
1359 /* carp_ifdetach still uses the lock */
1360 mutex_obj_free(ifp->if_ioctl_lock);
1361 ifp->if_ioctl_lock = NULL;
1362
1363 /*
1364 * Rip all the addresses off the interface. This should make
1365 * all of the routes go away.
1366 *
1367 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1368 * from the list, including our "cursor", ifa. For safety,
1369 * and to honor the TAILQ abstraction, I just restart the
1370 * loop after each removal. Note that the loop will exit
1371 * when all of the remaining ifaddrs belong to the AF_LINK
1372 * family. I am counting on the historical fact that at
1373 * least one pr_usrreq in each address domain removes at
1374 * least one ifaddr.
1375 */
1376 again:
1377 /*
1378 * At this point, no other one tries to remove ifa in the list,
1379 * so we don't need to take a lock or psref. Avoid using
1380 * IFADDR_READER_FOREACH to pass over an inspection of contract
1381 * violations of pserialize.
1382 */
1383 IFADDR_WRITER_FOREACH(ifa, ifp) {
1384 family = ifa->ifa_addr->sa_family;
1385 #ifdef IFAREF_DEBUG
1386 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1387 ifa, family, ifa->ifa_refcnt);
1388 if (last_ifa != NULL && ifa == last_ifa)
1389 panic("if_detach: loop detected");
1390 last_ifa = ifa;
1391 #endif
1392 if (family == AF_LINK)
1393 continue;
1394 dp = pffinddomain(family);
1395 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1396 /*
1397 * XXX These PURGEIF calls are redundant with the
1398 * purge-all-families calls below, but are left in for
1399 * now both to make a smaller change, and to avoid
1400 * unplanned interactions with clearing of
1401 * ifp->if_addrlist.
1402 */
1403 purged = 0;
1404 for (pr = dp->dom_protosw;
1405 pr < dp->dom_protoswNPROTOSW; pr++) {
1406 so.so_proto = pr;
1407 if (pr->pr_usrreqs) {
1408 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1409 purged = 1;
1410 }
1411 }
1412 if (purged == 0) {
1413 /*
1414 * XXX What's really the best thing to do
1415 * XXX here? --thorpej (at) NetBSD.org
1416 */
1417 printf("if_detach: WARNING: AF %d not purged\n",
1418 family);
1419 ifa_remove(ifp, ifa);
1420 }
1421 goto again;
1422 }
1423
1424 if_free_sadl(ifp);
1425
1426 /* Delete stray routes from the routing table. */
1427 for (i = 0; i <= AF_MAX; i++)
1428 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1429
1430 DOMAIN_FOREACH(dp) {
1431 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1432 {
1433 void *p = ifp->if_afdata[dp->dom_family];
1434 if (p) {
1435 ifp->if_afdata[dp->dom_family] = NULL;
1436 (*dp->dom_ifdetach)(ifp, p);
1437 }
1438 }
1439
1440 /*
1441 * One would expect multicast memberships (INET and
1442 * INET6) on UDP sockets to be purged by the PURGEIF
1443 * calls above, but if all addresses were removed from
1444 * the interface prior to destruction, the calls will
1445 * not be made (e.g. ppp, for which pppd(8) generally
1446 * removes addresses before destroying the interface).
1447 * Because there is no invariant that multicast
1448 * memberships only exist for interfaces with IPv4
1449 * addresses, we must call PURGEIF regardless of
1450 * addresses. (Protocols which might store ifnet
1451 * pointers are marked with PR_PURGEIF.)
1452 */
1453 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1454 so.so_proto = pr;
1455 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1456 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1457 }
1458 }
1459
1460 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1461 (void)pfil_head_destroy(ifp->if_pfil);
1462
1463 /* Announce that the interface is gone. */
1464 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1465
1466 IF_AFDATA_LOCK_DESTROY(ifp);
1467
1468 if (if_is_link_state_changeable(ifp)) {
1469 softint_disestablish(ifp->if_link_si);
1470 ifp->if_link_si = NULL;
1471 }
1472
1473 /*
1474 * remove packets that came from ifp, from software interrupt queues.
1475 */
1476 DOMAIN_FOREACH(dp) {
1477 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1478 struct ifqueue *iq = dp->dom_ifqueues[i];
1479 if (iq == NULL)
1480 break;
1481 dp->dom_ifqueues[i] = NULL;
1482 if_detach_queues(ifp, iq);
1483 }
1484 }
1485
1486 /*
1487 * IP queues have to be processed separately: net-queue barrier
1488 * ensures that the packets are dequeued while a cross-call will
1489 * ensure that the interrupts have completed. FIXME: not quite..
1490 */
1491 #ifdef INET
1492 pktq_barrier(ip_pktq);
1493 #endif
1494 #ifdef INET6
1495 if (in6_present)
1496 pktq_barrier(ip6_pktq);
1497 #endif
1498 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1499 xc_wait(xc);
1500
1501 if (ifp->if_percpuq != NULL) {
1502 if_percpuq_destroy(ifp->if_percpuq);
1503 ifp->if_percpuq = NULL;
1504 }
1505
1506 splx(s);
1507
1508 #ifdef IFAREF_DEBUG
1509 if_check_and_free_ifa_list(ifp);
1510 #endif
1511 }
1512
1513 static void
1514 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1515 {
1516 struct mbuf *m, *prev, *next;
1517
1518 prev = NULL;
1519 for (m = q->ifq_head; m != NULL; m = next) {
1520 KASSERT((m->m_flags & M_PKTHDR) != 0);
1521
1522 next = m->m_nextpkt;
1523 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1524 prev = m;
1525 continue;
1526 }
1527
1528 if (prev != NULL)
1529 prev->m_nextpkt = m->m_nextpkt;
1530 else
1531 q->ifq_head = m->m_nextpkt;
1532 if (q->ifq_tail == m)
1533 q->ifq_tail = prev;
1534 q->ifq_len--;
1535
1536 m->m_nextpkt = NULL;
1537 m_freem(m);
1538 IF_DROP(q);
1539 }
1540 }
1541
1542 /*
1543 * Callback for a radix tree walk to delete all references to an
1544 * ifnet.
1545 */
1546 static int
1547 if_delroute_matcher(struct rtentry *rt, void *v)
1548 {
1549 struct ifnet *ifp = (struct ifnet *)v;
1550
1551 if (rt->rt_ifp == ifp)
1552 return 1;
1553 else
1554 return 0;
1555 }
1556
1557 /*
1558 * Create a clone network interface.
1559 */
1560 static int
1561 if_clone_create(const char *name)
1562 {
1563 struct if_clone *ifc;
1564 int unit;
1565 struct ifnet *ifp;
1566 struct psref psref;
1567
1568 KASSERT(mutex_owned(&if_clone_mtx));
1569
1570 ifc = if_clone_lookup(name, &unit);
1571 if (ifc == NULL)
1572 return EINVAL;
1573
1574 ifp = if_get(name, &psref);
1575 if (ifp != NULL) {
1576 if_put(ifp, &psref);
1577 return EEXIST;
1578 }
1579
1580 return (*ifc->ifc_create)(ifc, unit);
1581 }
1582
1583 /*
1584 * Destroy a clone network interface.
1585 */
1586 static int
1587 if_clone_destroy(const char *name)
1588 {
1589 struct if_clone *ifc;
1590 struct ifnet *ifp;
1591 struct psref psref;
1592
1593 KASSERT(mutex_owned(&if_clone_mtx));
1594
1595 ifc = if_clone_lookup(name, NULL);
1596 if (ifc == NULL)
1597 return EINVAL;
1598
1599 if (ifc->ifc_destroy == NULL)
1600 return EOPNOTSUPP;
1601
1602 ifp = if_get(name, &psref);
1603 if (ifp == NULL)
1604 return ENXIO;
1605
1606 /* We have to disable ioctls here */
1607 mutex_enter(ifp->if_ioctl_lock);
1608 ifp->if_ioctl = if_nullioctl;
1609 mutex_exit(ifp->if_ioctl_lock);
1610
1611 /*
1612 * We cannot call ifc_destroy with holding ifp.
1613 * Releasing ifp here is safe thanks to if_clone_mtx.
1614 */
1615 if_put(ifp, &psref);
1616
1617 return (*ifc->ifc_destroy)(ifp);
1618 }
1619
1620 static bool
1621 if_is_unit(const char *name)
1622 {
1623
1624 while(*name != '\0') {
1625 if (*name < '0' || *name > '9')
1626 return false;
1627 name++;
1628 }
1629
1630 return true;
1631 }
1632
1633 /*
1634 * Look up a network interface cloner.
1635 */
1636 static struct if_clone *
1637 if_clone_lookup(const char *name, int *unitp)
1638 {
1639 struct if_clone *ifc;
1640 const char *cp;
1641 char *dp, ifname[IFNAMSIZ + 3];
1642 int unit;
1643
1644 KASSERT(mutex_owned(&if_clone_mtx));
1645
1646 strcpy(ifname, "if_");
1647 /* separate interface name from unit */
1648 /* TODO: search unit number from backward */
1649 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1650 *cp && !if_is_unit(cp);)
1651 *dp++ = *cp++;
1652
1653 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1654 return NULL; /* No name or unit number */
1655 *dp++ = '\0';
1656
1657 again:
1658 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1659 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1660 break;
1661 }
1662
1663 if (ifc == NULL) {
1664 int error;
1665 if (*ifname == '\0')
1666 return NULL;
1667 mutex_exit(&if_clone_mtx);
1668 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1669 mutex_enter(&if_clone_mtx);
1670 if (error)
1671 return NULL;
1672 *ifname = '\0';
1673 goto again;
1674 }
1675
1676 unit = 0;
1677 while (cp - name < IFNAMSIZ && *cp) {
1678 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1679 /* Bogus unit number. */
1680 return NULL;
1681 }
1682 unit = (unit * 10) + (*cp++ - '0');
1683 }
1684
1685 if (unitp != NULL)
1686 *unitp = unit;
1687 return ifc;
1688 }
1689
1690 /*
1691 * Register a network interface cloner.
1692 */
1693 void
1694 if_clone_attach(struct if_clone *ifc)
1695 {
1696
1697 mutex_enter(&if_clone_mtx);
1698 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1699 if_cloners_count++;
1700 mutex_exit(&if_clone_mtx);
1701 }
1702
1703 /*
1704 * Unregister a network interface cloner.
1705 */
1706 void
1707 if_clone_detach(struct if_clone *ifc)
1708 {
1709
1710 mutex_enter(&if_clone_mtx);
1711 LIST_REMOVE(ifc, ifc_list);
1712 if_cloners_count--;
1713 mutex_exit(&if_clone_mtx);
1714 }
1715
1716 /*
1717 * Provide list of interface cloners to userspace.
1718 */
1719 int
1720 if_clone_list(int buf_count, char *buffer, int *total)
1721 {
1722 char outbuf[IFNAMSIZ], *dst;
1723 struct if_clone *ifc;
1724 int count, error = 0;
1725
1726 mutex_enter(&if_clone_mtx);
1727 *total = if_cloners_count;
1728 if ((dst = buffer) == NULL) {
1729 /* Just asking how many there are. */
1730 goto out;
1731 }
1732
1733 if (buf_count < 0) {
1734 error = EINVAL;
1735 goto out;
1736 }
1737
1738 count = (if_cloners_count < buf_count) ?
1739 if_cloners_count : buf_count;
1740
1741 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1742 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1743 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1744 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1745 error = ENAMETOOLONG;
1746 goto out;
1747 }
1748 error = copyout(outbuf, dst, sizeof(outbuf));
1749 if (error != 0)
1750 break;
1751 }
1752
1753 out:
1754 mutex_exit(&if_clone_mtx);
1755 return error;
1756 }
1757
1758 void
1759 ifa_psref_init(struct ifaddr *ifa)
1760 {
1761
1762 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1763 }
1764
1765 void
1766 ifaref(struct ifaddr *ifa)
1767 {
1768 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1769 ifa->ifa_refcnt++;
1770 }
1771
1772 void
1773 ifafree(struct ifaddr *ifa)
1774 {
1775 KASSERT(ifa != NULL);
1776 KASSERT(ifa->ifa_refcnt > 0);
1777
1778 if (--ifa->ifa_refcnt == 0) {
1779 free(ifa, M_IFADDR);
1780 }
1781 }
1782
1783 bool
1784 ifa_is_destroying(struct ifaddr *ifa)
1785 {
1786
1787 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1788 }
1789
1790 void
1791 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1792 {
1793
1794 ifa->ifa_ifp = ifp;
1795
1796 IFNET_GLOBAL_LOCK();
1797 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1798 IFADDR_ENTRY_INIT(ifa);
1799 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1800 IFNET_GLOBAL_UNLOCK();
1801
1802 ifaref(ifa);
1803 }
1804
1805 void
1806 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1807 {
1808
1809 KASSERT(ifa->ifa_ifp == ifp);
1810
1811 IFNET_GLOBAL_LOCK();
1812 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1813 IFADDR_WRITER_REMOVE(ifa);
1814 #ifdef NET_MPSAFE
1815 pserialize_perform(ifnet_psz);
1816 #endif
1817 IFNET_GLOBAL_UNLOCK();
1818
1819 #ifdef NET_MPSAFE
1820 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1821 #endif
1822 IFADDR_ENTRY_DESTROY(ifa);
1823 ifafree(ifa);
1824 }
1825
1826 void
1827 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1828 {
1829
1830 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1831 }
1832
1833 void
1834 ifa_release(struct ifaddr *ifa, struct psref *psref)
1835 {
1836
1837 if (ifa == NULL)
1838 return;
1839
1840 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1841 }
1842
1843 bool
1844 ifa_held(struct ifaddr *ifa)
1845 {
1846
1847 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1848 }
1849
1850 static inline int
1851 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1852 {
1853 return sockaddr_cmp(sa1, sa2) == 0;
1854 }
1855
1856 /*
1857 * Locate an interface based on a complete address.
1858 */
1859 /*ARGSUSED*/
1860 struct ifaddr *
1861 ifa_ifwithaddr(const struct sockaddr *addr)
1862 {
1863 struct ifnet *ifp;
1864 struct ifaddr *ifa;
1865
1866 IFNET_READER_FOREACH(ifp) {
1867 if (if_is_deactivated(ifp))
1868 continue;
1869 IFADDR_READER_FOREACH(ifa, ifp) {
1870 if (ifa->ifa_addr->sa_family != addr->sa_family)
1871 continue;
1872 if (equal(addr, ifa->ifa_addr))
1873 return ifa;
1874 if ((ifp->if_flags & IFF_BROADCAST) &&
1875 ifa->ifa_broadaddr &&
1876 /* IP6 doesn't have broadcast */
1877 ifa->ifa_broadaddr->sa_len != 0 &&
1878 equal(ifa->ifa_broadaddr, addr))
1879 return ifa;
1880 }
1881 }
1882 return NULL;
1883 }
1884
1885 struct ifaddr *
1886 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1887 {
1888 struct ifaddr *ifa;
1889 int s = pserialize_read_enter();
1890
1891 ifa = ifa_ifwithaddr(addr);
1892 if (ifa != NULL)
1893 ifa_acquire(ifa, psref);
1894 pserialize_read_exit(s);
1895
1896 return ifa;
1897 }
1898
1899 /*
1900 * Locate the point to point interface with a given destination address.
1901 */
1902 /*ARGSUSED*/
1903 struct ifaddr *
1904 ifa_ifwithdstaddr(const struct sockaddr *addr)
1905 {
1906 struct ifnet *ifp;
1907 struct ifaddr *ifa;
1908
1909 IFNET_READER_FOREACH(ifp) {
1910 if (if_is_deactivated(ifp))
1911 continue;
1912 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1913 continue;
1914 IFADDR_READER_FOREACH(ifa, ifp) {
1915 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1916 ifa->ifa_dstaddr == NULL)
1917 continue;
1918 if (equal(addr, ifa->ifa_dstaddr))
1919 return ifa;
1920 }
1921 }
1922
1923 return NULL;
1924 }
1925
1926 struct ifaddr *
1927 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1928 {
1929 struct ifaddr *ifa;
1930 int s;
1931
1932 s = pserialize_read_enter();
1933 ifa = ifa_ifwithdstaddr(addr);
1934 if (ifa != NULL)
1935 ifa_acquire(ifa, psref);
1936 pserialize_read_exit(s);
1937
1938 return ifa;
1939 }
1940
1941 /*
1942 * Find an interface on a specific network. If many, choice
1943 * is most specific found.
1944 */
1945 struct ifaddr *
1946 ifa_ifwithnet(const struct sockaddr *addr)
1947 {
1948 struct ifnet *ifp;
1949 struct ifaddr *ifa, *ifa_maybe = NULL;
1950 const struct sockaddr_dl *sdl;
1951 u_int af = addr->sa_family;
1952 const char *addr_data = addr->sa_data, *cplim;
1953
1954 if (af == AF_LINK) {
1955 sdl = satocsdl(addr);
1956 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1957 ifindex2ifnet[sdl->sdl_index] &&
1958 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1959 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1960 }
1961 }
1962 #ifdef NETATALK
1963 if (af == AF_APPLETALK) {
1964 const struct sockaddr_at *sat, *sat2;
1965 sat = (const struct sockaddr_at *)addr;
1966 IFNET_READER_FOREACH(ifp) {
1967 if (if_is_deactivated(ifp))
1968 continue;
1969 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1970 if (ifa == NULL)
1971 continue;
1972 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1973 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1974 return ifa; /* exact match */
1975 if (ifa_maybe == NULL) {
1976 /* else keep the if with the right range */
1977 ifa_maybe = ifa;
1978 }
1979 }
1980 return ifa_maybe;
1981 }
1982 #endif
1983 IFNET_READER_FOREACH(ifp) {
1984 if (if_is_deactivated(ifp))
1985 continue;
1986 IFADDR_READER_FOREACH(ifa, ifp) {
1987 const char *cp, *cp2, *cp3;
1988
1989 if (ifa->ifa_addr->sa_family != af ||
1990 ifa->ifa_netmask == NULL)
1991 next: continue;
1992 cp = addr_data;
1993 cp2 = ifa->ifa_addr->sa_data;
1994 cp3 = ifa->ifa_netmask->sa_data;
1995 cplim = (const char *)ifa->ifa_netmask +
1996 ifa->ifa_netmask->sa_len;
1997 while (cp3 < cplim) {
1998 if ((*cp++ ^ *cp2++) & *cp3++) {
1999 /* want to continue for() loop */
2000 goto next;
2001 }
2002 }
2003 if (ifa_maybe == NULL ||
2004 rt_refines(ifa->ifa_netmask,
2005 ifa_maybe->ifa_netmask))
2006 ifa_maybe = ifa;
2007 }
2008 }
2009 return ifa_maybe;
2010 }
2011
2012 struct ifaddr *
2013 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2014 {
2015 struct ifaddr *ifa;
2016 int s;
2017
2018 s = pserialize_read_enter();
2019 ifa = ifa_ifwithnet(addr);
2020 if (ifa != NULL)
2021 ifa_acquire(ifa, psref);
2022 pserialize_read_exit(s);
2023
2024 return ifa;
2025 }
2026
2027 /*
2028 * Find the interface of the addresss.
2029 */
2030 struct ifaddr *
2031 ifa_ifwithladdr(const struct sockaddr *addr)
2032 {
2033 struct ifaddr *ia;
2034
2035 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2036 (ia = ifa_ifwithnet(addr)))
2037 return ia;
2038 return NULL;
2039 }
2040
2041 struct ifaddr *
2042 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2043 {
2044 struct ifaddr *ifa;
2045 int s;
2046
2047 s = pserialize_read_enter();
2048 ifa = ifa_ifwithladdr(addr);
2049 if (ifa != NULL)
2050 ifa_acquire(ifa, psref);
2051 pserialize_read_exit(s);
2052
2053 return ifa;
2054 }
2055
2056 /*
2057 * Find an interface using a specific address family
2058 */
2059 struct ifaddr *
2060 ifa_ifwithaf(int af)
2061 {
2062 struct ifnet *ifp;
2063 struct ifaddr *ifa = NULL;
2064 int s;
2065
2066 s = pserialize_read_enter();
2067 IFNET_READER_FOREACH(ifp) {
2068 if (if_is_deactivated(ifp))
2069 continue;
2070 IFADDR_READER_FOREACH(ifa, ifp) {
2071 if (ifa->ifa_addr->sa_family == af)
2072 goto out;
2073 }
2074 }
2075 out:
2076 pserialize_read_exit(s);
2077 return ifa;
2078 }
2079
2080 /*
2081 * Find an interface address specific to an interface best matching
2082 * a given address.
2083 */
2084 struct ifaddr *
2085 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2086 {
2087 struct ifaddr *ifa;
2088 const char *cp, *cp2, *cp3;
2089 const char *cplim;
2090 struct ifaddr *ifa_maybe = 0;
2091 u_int af = addr->sa_family;
2092
2093 if (if_is_deactivated(ifp))
2094 return NULL;
2095
2096 if (af >= AF_MAX)
2097 return NULL;
2098
2099 IFADDR_READER_FOREACH(ifa, ifp) {
2100 if (ifa->ifa_addr->sa_family != af)
2101 continue;
2102 ifa_maybe = ifa;
2103 if (ifa->ifa_netmask == NULL) {
2104 if (equal(addr, ifa->ifa_addr) ||
2105 (ifa->ifa_dstaddr &&
2106 equal(addr, ifa->ifa_dstaddr)))
2107 return ifa;
2108 continue;
2109 }
2110 cp = addr->sa_data;
2111 cp2 = ifa->ifa_addr->sa_data;
2112 cp3 = ifa->ifa_netmask->sa_data;
2113 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2114 for (; cp3 < cplim; cp3++) {
2115 if ((*cp++ ^ *cp2++) & *cp3)
2116 break;
2117 }
2118 if (cp3 == cplim)
2119 return ifa;
2120 }
2121 return ifa_maybe;
2122 }
2123
2124 struct ifaddr *
2125 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2126 struct psref *psref)
2127 {
2128 struct ifaddr *ifa;
2129 int s;
2130
2131 s = pserialize_read_enter();
2132 ifa = ifaof_ifpforaddr(addr, ifp);
2133 if (ifa != NULL)
2134 ifa_acquire(ifa, psref);
2135 pserialize_read_exit(s);
2136
2137 return ifa;
2138 }
2139
2140 /*
2141 * Default action when installing a route with a Link Level gateway.
2142 * Lookup an appropriate real ifa to point to.
2143 * This should be moved to /sys/net/link.c eventually.
2144 */
2145 void
2146 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2147 {
2148 struct ifaddr *ifa;
2149 const struct sockaddr *dst;
2150 struct ifnet *ifp;
2151 struct psref psref;
2152
2153 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2154 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2155 return;
2156 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2157 rt_replace_ifa(rt, ifa);
2158 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2159 ifa->ifa_rtrequest(cmd, rt, info);
2160 ifa_release(ifa, &psref);
2161 }
2162 }
2163
2164 /*
2165 * bitmask macros to manage a densely packed link_state change queue.
2166 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2167 * LINK_STATE_UP(2) we need 2 bits for each state change.
2168 * As a state change to store is 0, treat all bits set as an unset item.
2169 */
2170 #define LQ_ITEM_BITS 2
2171 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2172 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2173 #define LINK_STATE_UNSET LQ_ITEM_MASK
2174 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2175 #define LQ_STORE(q, i, v) \
2176 do { \
2177 (q) &= ~LQ_MASK((i)); \
2178 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2179 } while (0 /* CONSTCOND */)
2180 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2181 #define LQ_POP(q, v) \
2182 do { \
2183 (v) = LQ_ITEM((q), 0); \
2184 (q) >>= LQ_ITEM_BITS; \
2185 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2186 } while (0 /* CONSTCOND */)
2187 #define LQ_PUSH(q, v) \
2188 do { \
2189 (q) >>= LQ_ITEM_BITS; \
2190 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2191 } while (0 /* CONSTCOND */)
2192 #define LQ_FIND_UNSET(q, i) \
2193 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2194 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2195 break; \
2196 }
2197
2198 /*
2199 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2200 * for each ifnet. It doesn't matter because:
2201 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2202 * ifq_lock don't happen
2203 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2204 * because if_snd, if_link_state_change and if_link_state_change_softint
2205 * are all called with KERNEL_LOCK
2206 */
2207 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2208 mutex_enter((ifp)->if_snd.ifq_lock)
2209 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2210 mutex_exit((ifp)->if_snd.ifq_lock)
2211
2212 /*
2213 * Handle a change in the interface link state and
2214 * queue notifications.
2215 */
2216 void
2217 if_link_state_change(struct ifnet *ifp, int link_state)
2218 {
2219 int idx;
2220
2221 KASSERTMSG(if_is_link_state_changeable(ifp),
2222 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2223 ifp->if_xname, ifp->if_extflags);
2224
2225 /* Ensure change is to a valid state */
2226 switch (link_state) {
2227 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2228 case LINK_STATE_DOWN: /* FALLTHROUGH */
2229 case LINK_STATE_UP:
2230 break;
2231 default:
2232 #ifdef DEBUG
2233 printf("%s: invalid link state %d\n",
2234 ifp->if_xname, link_state);
2235 #endif
2236 return;
2237 }
2238
2239 IF_LINK_STATE_CHANGE_LOCK(ifp);
2240
2241 /* Find the last unset event in the queue. */
2242 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2243
2244 /*
2245 * Ensure link_state doesn't match the last event in the queue.
2246 * ifp->if_link_state is not checked and set here because
2247 * that would present an inconsistent picture to the system.
2248 */
2249 if (idx != 0 &&
2250 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2251 goto out;
2252
2253 /* Handle queue overflow. */
2254 if (idx == LQ_MAX(ifp->if_link_queue)) {
2255 uint8_t lost;
2256
2257 /*
2258 * The DOWN state must be protected from being pushed off
2259 * the queue to ensure that userland will always be
2260 * in a sane state.
2261 * Because DOWN is protected, there is no need to protect
2262 * UNKNOWN.
2263 * It should be invalid to change from any other state to
2264 * UNKNOWN anyway ...
2265 */
2266 lost = LQ_ITEM(ifp->if_link_queue, 0);
2267 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2268 if (lost == LINK_STATE_DOWN) {
2269 lost = LQ_ITEM(ifp->if_link_queue, 0);
2270 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2271 }
2272 printf("%s: lost link state change %s\n",
2273 ifp->if_xname,
2274 lost == LINK_STATE_UP ? "UP" :
2275 lost == LINK_STATE_DOWN ? "DOWN" :
2276 "UNKNOWN");
2277 } else
2278 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2279
2280 softint_schedule(ifp->if_link_si);
2281
2282 out:
2283 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2284 }
2285
2286 /*
2287 * Handle interface link state change notifications.
2288 */
2289 void
2290 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2291 {
2292 struct domain *dp;
2293 int s = splnet();
2294 bool notify;
2295
2296 KASSERT(!cpu_intr_p());
2297
2298 IF_LINK_STATE_CHANGE_LOCK(ifp);
2299
2300 /* Ensure the change is still valid. */
2301 if (ifp->if_link_state == link_state) {
2302 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2303 return;
2304 }
2305
2306 #ifdef DEBUG
2307 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2308 link_state == LINK_STATE_UP ? "UP" :
2309 link_state == LINK_STATE_DOWN ? "DOWN" :
2310 "UNKNOWN",
2311 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2312 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2313 "UNKNOWN");
2314 #endif
2315
2316 /*
2317 * When going from UNKNOWN to UP, we need to mark existing
2318 * addresses as tentative and restart DAD as we may have
2319 * erroneously not found a duplicate.
2320 *
2321 * This needs to happen before rt_ifmsg to avoid a race where
2322 * listeners would have an address and expect it to work right
2323 * away.
2324 */
2325 notify = (link_state == LINK_STATE_UP &&
2326 ifp->if_link_state == LINK_STATE_UNKNOWN);
2327 ifp->if_link_state = link_state;
2328 /* The following routines may sleep so release the spin mutex */
2329 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2330
2331 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2332 if (notify) {
2333 DOMAIN_FOREACH(dp) {
2334 if (dp->dom_if_link_state_change != NULL)
2335 dp->dom_if_link_state_change(ifp,
2336 LINK_STATE_DOWN);
2337 }
2338 }
2339
2340 /* Notify that the link state has changed. */
2341 rt_ifmsg(ifp);
2342
2343 #if NCARP > 0
2344 if (ifp->if_carp)
2345 carp_carpdev_state(ifp);
2346 #endif
2347
2348 DOMAIN_FOREACH(dp) {
2349 if (dp->dom_if_link_state_change != NULL)
2350 dp->dom_if_link_state_change(ifp, link_state);
2351 }
2352 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2353 splx(s);
2354 }
2355
2356 /*
2357 * Process the interface link state change queue.
2358 */
2359 static void
2360 if_link_state_change_si(void *arg)
2361 {
2362 struct ifnet *ifp = arg;
2363 int s;
2364 uint8_t state;
2365 bool schedule;
2366
2367 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2368 s = splnet();
2369
2370 /* Pop a link state change from the queue and process it. */
2371 IF_LINK_STATE_CHANGE_LOCK(ifp);
2372 LQ_POP(ifp->if_link_queue, state);
2373 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2374
2375 if_link_state_change_softint(ifp, state);
2376
2377 /* If there is a link state change to come, schedule it. */
2378 IF_LINK_STATE_CHANGE_LOCK(ifp);
2379 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2380 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2381 if (schedule)
2382 softint_schedule(ifp->if_link_si);
2383
2384 splx(s);
2385 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2386 }
2387
2388 /*
2389 * Default action when installing a local route on a point-to-point
2390 * interface.
2391 */
2392 void
2393 p2p_rtrequest(int req, struct rtentry *rt,
2394 __unused const struct rt_addrinfo *info)
2395 {
2396 struct ifnet *ifp = rt->rt_ifp;
2397 struct ifaddr *ifa, *lo0ifa;
2398 int s = pserialize_read_enter();
2399
2400 switch (req) {
2401 case RTM_ADD:
2402 if ((rt->rt_flags & RTF_LOCAL) == 0)
2403 break;
2404
2405 rt->rt_ifp = lo0ifp;
2406
2407 IFADDR_READER_FOREACH(ifa, ifp) {
2408 if (equal(rt_getkey(rt), ifa->ifa_addr))
2409 break;
2410 }
2411 if (ifa == NULL)
2412 break;
2413
2414 /*
2415 * Ensure lo0 has an address of the same family.
2416 */
2417 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2418 if (lo0ifa->ifa_addr->sa_family ==
2419 ifa->ifa_addr->sa_family)
2420 break;
2421 }
2422 if (lo0ifa == NULL)
2423 break;
2424
2425 /*
2426 * Make sure to set rt->rt_ifa to the interface
2427 * address we are using, otherwise we will have trouble
2428 * with source address selection.
2429 */
2430 if (ifa != rt->rt_ifa)
2431 rt_replace_ifa(rt, ifa);
2432 break;
2433 case RTM_DELETE:
2434 default:
2435 break;
2436 }
2437 pserialize_read_exit(s);
2438 }
2439
2440 static void
2441 _if_down(struct ifnet *ifp)
2442 {
2443 struct ifaddr *ifa;
2444 struct domain *dp;
2445 int s, bound;
2446 struct psref psref;
2447
2448 ifp->if_flags &= ~IFF_UP;
2449 nanotime(&ifp->if_lastchange);
2450
2451 bound = curlwp_bind();
2452 s = pserialize_read_enter();
2453 IFADDR_READER_FOREACH(ifa, ifp) {
2454 ifa_acquire(ifa, &psref);
2455 pserialize_read_exit(s);
2456
2457 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2458
2459 s = pserialize_read_enter();
2460 ifa_release(ifa, &psref);
2461 }
2462 pserialize_read_exit(s);
2463 curlwp_bindx(bound);
2464
2465 IFQ_PURGE(&ifp->if_snd);
2466 #if NCARP > 0
2467 if (ifp->if_carp)
2468 carp_carpdev_state(ifp);
2469 #endif
2470 rt_ifmsg(ifp);
2471 DOMAIN_FOREACH(dp) {
2472 if (dp->dom_if_down)
2473 dp->dom_if_down(ifp);
2474 }
2475 }
2476
2477 static void
2478 if_down_deactivated(struct ifnet *ifp)
2479 {
2480
2481 KASSERT(if_is_deactivated(ifp));
2482 _if_down(ifp);
2483 }
2484
2485 void
2486 if_down_locked(struct ifnet *ifp)
2487 {
2488
2489 KASSERT(mutex_owned(ifp->if_ioctl_lock));
2490 _if_down(ifp);
2491 }
2492
2493 /*
2494 * Mark an interface down and notify protocols of
2495 * the transition.
2496 * NOTE: must be called at splsoftnet or equivalent.
2497 */
2498 void
2499 if_down(struct ifnet *ifp)
2500 {
2501
2502 mutex_enter(ifp->if_ioctl_lock);
2503 if_down_locked(ifp);
2504 mutex_exit(ifp->if_ioctl_lock);
2505 }
2506
2507 /*
2508 * Must be called with holding if_ioctl_lock.
2509 */
2510 static void
2511 if_up_locked(struct ifnet *ifp)
2512 {
2513 #ifdef notyet
2514 struct ifaddr *ifa;
2515 #endif
2516 struct domain *dp;
2517
2518 KASSERT(mutex_owned(ifp->if_ioctl_lock));
2519
2520 KASSERT(!if_is_deactivated(ifp));
2521 ifp->if_flags |= IFF_UP;
2522 nanotime(&ifp->if_lastchange);
2523 #ifdef notyet
2524 /* this has no effect on IP, and will kill all ISO connections XXX */
2525 IFADDR_READER_FOREACH(ifa, ifp)
2526 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2527 #endif
2528 #if NCARP > 0
2529 if (ifp->if_carp)
2530 carp_carpdev_state(ifp);
2531 #endif
2532 rt_ifmsg(ifp);
2533 DOMAIN_FOREACH(dp) {
2534 if (dp->dom_if_up)
2535 dp->dom_if_up(ifp);
2536 }
2537 }
2538
2539 /*
2540 * Handle interface slowtimo timer routine. Called
2541 * from softclock, we decrement timer (if set) and
2542 * call the appropriate interface routine on expiration.
2543 */
2544 static void
2545 if_slowtimo(void *arg)
2546 {
2547 void (*slowtimo)(struct ifnet *);
2548 struct ifnet *ifp = arg;
2549 int s;
2550
2551 slowtimo = ifp->if_slowtimo;
2552 if (__predict_false(slowtimo == NULL))
2553 return;
2554
2555 s = splnet();
2556 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2557 (*slowtimo)(ifp);
2558
2559 splx(s);
2560
2561 if (__predict_true(ifp->if_slowtimo != NULL))
2562 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2563 }
2564
2565 /*
2566 * Mark an interface up and notify protocols of
2567 * the transition.
2568 * NOTE: must be called at splsoftnet or equivalent.
2569 */
2570 void
2571 if_up(struct ifnet *ifp)
2572 {
2573
2574 mutex_enter(ifp->if_ioctl_lock);
2575 if_up_locked(ifp);
2576 mutex_exit(ifp->if_ioctl_lock);
2577 }
2578
2579 /*
2580 * Set/clear promiscuous mode on interface ifp based on the truth value
2581 * of pswitch. The calls are reference counted so that only the first
2582 * "on" request actually has an effect, as does the final "off" request.
2583 * Results are undefined if the "off" and "on" requests are not matched.
2584 */
2585 int
2586 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2587 {
2588 int pcount, ret = 0;
2589 short nflags;
2590
2591 KASSERT(mutex_owned(ifp->if_ioctl_lock));
2592
2593 pcount = ifp->if_pcount;
2594 if (pswitch) {
2595 /*
2596 * Allow the device to be "placed" into promiscuous
2597 * mode even if it is not configured up. It will
2598 * consult IFF_PROMISC when it is brought up.
2599 */
2600 if (ifp->if_pcount++ != 0)
2601 goto out;
2602 nflags = ifp->if_flags | IFF_PROMISC;
2603 } else {
2604 if (--ifp->if_pcount > 0)
2605 goto out;
2606 nflags = ifp->if_flags & ~IFF_PROMISC;
2607 }
2608 ret = if_flags_set(ifp, nflags);
2609 /* Restore interface state if not successful. */
2610 if (ret != 0) {
2611 ifp->if_pcount = pcount;
2612 }
2613 out:
2614 return ret;
2615 }
2616
2617 int
2618 ifpromisc(struct ifnet *ifp, int pswitch)
2619 {
2620 int e;
2621
2622 mutex_enter(ifp->if_ioctl_lock);
2623 e = ifpromisc_locked(ifp, pswitch);
2624 mutex_exit(ifp->if_ioctl_lock);
2625
2626 return e;
2627 }
2628
2629 /*
2630 * Map interface name to
2631 * interface structure pointer.
2632 */
2633 struct ifnet *
2634 ifunit(const char *name)
2635 {
2636 struct ifnet *ifp;
2637 const char *cp = name;
2638 u_int unit = 0;
2639 u_int i;
2640 int s;
2641
2642 /*
2643 * If the entire name is a number, treat it as an ifindex.
2644 */
2645 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2646 unit = unit * 10 + (*cp - '0');
2647 }
2648
2649 /*
2650 * If the number took all of the name, then it's a valid ifindex.
2651 */
2652 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2653 return if_byindex(unit);
2654
2655 ifp = NULL;
2656 s = pserialize_read_enter();
2657 IFNET_READER_FOREACH(ifp) {
2658 if (if_is_deactivated(ifp))
2659 continue;
2660 if (strcmp(ifp->if_xname, name) == 0)
2661 goto out;
2662 }
2663 out:
2664 pserialize_read_exit(s);
2665 return ifp;
2666 }
2667
2668 /*
2669 * Get a reference of an ifnet object by an interface name.
2670 * The returned reference is protected by psref(9). The caller
2671 * must release a returned reference by if_put after use.
2672 */
2673 struct ifnet *
2674 if_get(const char *name, struct psref *psref)
2675 {
2676 struct ifnet *ifp;
2677 const char *cp = name;
2678 u_int unit = 0;
2679 u_int i;
2680 int s;
2681
2682 /*
2683 * If the entire name is a number, treat it as an ifindex.
2684 */
2685 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2686 unit = unit * 10 + (*cp - '0');
2687 }
2688
2689 /*
2690 * If the number took all of the name, then it's a valid ifindex.
2691 */
2692 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2693 return if_get_byindex(unit, psref);
2694
2695 ifp = NULL;
2696 s = pserialize_read_enter();
2697 IFNET_READER_FOREACH(ifp) {
2698 if (if_is_deactivated(ifp))
2699 continue;
2700 if (strcmp(ifp->if_xname, name) == 0) {
2701 psref_acquire(psref, &ifp->if_psref,
2702 ifnet_psref_class);
2703 goto out;
2704 }
2705 }
2706 out:
2707 pserialize_read_exit(s);
2708 return ifp;
2709 }
2710
2711 /*
2712 * Release a reference of an ifnet object given by if_get, if_get_byindex
2713 * or if_get_bylla.
2714 */
2715 void
2716 if_put(const struct ifnet *ifp, struct psref *psref)
2717 {
2718
2719 if (ifp == NULL)
2720 return;
2721
2722 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2723 }
2724
2725 ifnet_t *
2726 if_byindex(u_int idx)
2727 {
2728 ifnet_t *ifp;
2729
2730 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2731 if (ifp != NULL && if_is_deactivated(ifp))
2732 ifp = NULL;
2733 return ifp;
2734 }
2735
2736 /*
2737 * Get a reference of an ifnet object by an interface index.
2738 * The returned reference is protected by psref(9). The caller
2739 * must release a returned reference by if_put after use.
2740 */
2741 ifnet_t *
2742 if_get_byindex(u_int idx, struct psref *psref)
2743 {
2744 ifnet_t *ifp;
2745 int s;
2746
2747 s = pserialize_read_enter();
2748 ifp = if_byindex(idx);
2749 if (__predict_true(ifp != NULL))
2750 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2751 pserialize_read_exit(s);
2752
2753 return ifp;
2754 }
2755
2756 ifnet_t *
2757 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2758 {
2759 ifnet_t *ifp;
2760 int s;
2761
2762 s = pserialize_read_enter();
2763 IFNET_READER_FOREACH(ifp) {
2764 if (if_is_deactivated(ifp))
2765 continue;
2766 if (ifp->if_addrlen != lla_len)
2767 continue;
2768 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2769 psref_acquire(psref, &ifp->if_psref,
2770 ifnet_psref_class);
2771 break;
2772 }
2773 }
2774 pserialize_read_exit(s);
2775
2776 return ifp;
2777 }
2778
2779 /*
2780 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2781 * for example using pserialize or the ifp is already held or some other
2782 * object is held which guarantes the ifp to not be freed indirectly.
2783 */
2784 void
2785 if_acquire(struct ifnet *ifp, struct psref *psref)
2786 {
2787
2788 KASSERT(ifp->if_index != 0);
2789 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2790 }
2791
2792 bool
2793 if_held(struct ifnet *ifp)
2794 {
2795
2796 return psref_held(&ifp->if_psref, ifnet_psref_class);
2797 }
2798
2799 /*
2800 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2801 * Check the tunnel nesting count.
2802 * Return > 0, if tunnel nesting count is more than limit.
2803 * Return 0, if tunnel nesting count is equal or less than limit.
2804 */
2805 int
2806 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2807 {
2808 struct m_tag *mtag;
2809 int *count;
2810
2811 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
2812 if (mtag != NULL) {
2813 count = (int *)(mtag + 1);
2814 if (++(*count) > limit) {
2815 log(LOG_NOTICE,
2816 "%s: recursively called too many times(%d)\n",
2817 ifp->if_xname, *count);
2818 return EIO;
2819 }
2820 } else {
2821 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2822 M_NOWAIT);
2823 if (mtag != NULL) {
2824 m_tag_prepend(m, mtag);
2825 count = (int *)(mtag + 1);
2826 *count = 0;
2827 } else {
2828 log(LOG_DEBUG,
2829 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2830 ifp->if_xname);
2831 }
2832 }
2833
2834 return 0;
2835 }
2836
2837 /* common */
2838 int
2839 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2840 {
2841 int s;
2842 struct ifreq *ifr;
2843 struct ifcapreq *ifcr;
2844 struct ifdatareq *ifdr;
2845
2846 switch (cmd) {
2847 case SIOCSIFCAP:
2848 ifcr = data;
2849 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2850 return EINVAL;
2851
2852 if (ifcr->ifcr_capenable == ifp->if_capenable)
2853 return 0;
2854
2855 ifp->if_capenable = ifcr->ifcr_capenable;
2856
2857 /* Pre-compute the checksum flags mask. */
2858 ifp->if_csum_flags_tx = 0;
2859 ifp->if_csum_flags_rx = 0;
2860 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2861 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2862 }
2863 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2864 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2865 }
2866
2867 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2868 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2869 }
2870 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2871 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2872 }
2873
2874 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2875 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2876 }
2877 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2878 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2879 }
2880
2881 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2882 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2883 }
2884 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2885 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2886 }
2887
2888 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2889 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2890 }
2891 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2892 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2893 }
2894 if (ifp->if_flags & IFF_UP)
2895 return ENETRESET;
2896 return 0;
2897 case SIOCSIFFLAGS:
2898 ifr = data;
2899 /*
2900 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2901 * and if_down aren't MP-safe yet, so we must hold the lock.
2902 */
2903 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2904 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2905 s = splsoftnet();
2906 if_down_locked(ifp);
2907 splx(s);
2908 }
2909 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2910 s = splsoftnet();
2911 if_up_locked(ifp);
2912 splx(s);
2913 }
2914 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2915 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2916 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2917 break;
2918 case SIOCGIFFLAGS:
2919 ifr = data;
2920 ifr->ifr_flags = ifp->if_flags;
2921 break;
2922
2923 case SIOCGIFMETRIC:
2924 ifr = data;
2925 ifr->ifr_metric = ifp->if_metric;
2926 break;
2927
2928 case SIOCGIFMTU:
2929 ifr = data;
2930 ifr->ifr_mtu = ifp->if_mtu;
2931 break;
2932
2933 case SIOCGIFDLT:
2934 ifr = data;
2935 ifr->ifr_dlt = ifp->if_dlt;
2936 break;
2937
2938 case SIOCGIFCAP:
2939 ifcr = data;
2940 ifcr->ifcr_capabilities = ifp->if_capabilities;
2941 ifcr->ifcr_capenable = ifp->if_capenable;
2942 break;
2943
2944 case SIOCSIFMETRIC:
2945 ifr = data;
2946 ifp->if_metric = ifr->ifr_metric;
2947 break;
2948
2949 case SIOCGIFDATA:
2950 ifdr = data;
2951 ifdr->ifdr_data = ifp->if_data;
2952 break;
2953
2954 case SIOCGIFINDEX:
2955 ifr = data;
2956 ifr->ifr_index = ifp->if_index;
2957 break;
2958
2959 case SIOCZIFDATA:
2960 ifdr = data;
2961 ifdr->ifdr_data = ifp->if_data;
2962 /*
2963 * Assumes that the volatile counters that can be
2964 * zero'ed are at the end of if_data.
2965 */
2966 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2967 offsetof(struct if_data, ifi_ipackets));
2968 /*
2969 * The memset() clears to the bottm of if_data. In the area,
2970 * if_lastchange is included. Please be careful if new entry
2971 * will be added into if_data or rewite this.
2972 *
2973 * And also, update if_lastchnage.
2974 */
2975 getnanotime(&ifp->if_lastchange);
2976 break;
2977 case SIOCSIFMTU:
2978 ifr = data;
2979 if (ifp->if_mtu == ifr->ifr_mtu)
2980 break;
2981 ifp->if_mtu = ifr->ifr_mtu;
2982 /*
2983 * If the link MTU changed, do network layer specific procedure.
2984 */
2985 #ifdef INET6
2986 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2987 if (in6_present)
2988 nd6_setmtu(ifp);
2989 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2990 #endif
2991 return ENETRESET;
2992 default:
2993 return ENOTTY;
2994 }
2995 return 0;
2996 }
2997
2998 int
2999 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3000 {
3001 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3002 struct ifaddr *ifa;
3003 const struct sockaddr *any, *sa;
3004 union {
3005 struct sockaddr sa;
3006 struct sockaddr_storage ss;
3007 } u, v;
3008 int s, error = 0;
3009
3010 switch (cmd) {
3011 case SIOCSIFADDRPREF:
3012 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3013 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3014 NULL) != 0)
3015 return EPERM;
3016 case SIOCGIFADDRPREF:
3017 break;
3018 default:
3019 return EOPNOTSUPP;
3020 }
3021
3022 /* sanity checks */
3023 if (data == NULL || ifp == NULL) {
3024 panic("invalid argument to %s", __func__);
3025 /*NOTREACHED*/
3026 }
3027
3028 /* address must be specified on ADD and DELETE */
3029 sa = sstocsa(&ifap->ifap_addr);
3030 if (sa->sa_family != sofamily(so))
3031 return EINVAL;
3032 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3033 return EINVAL;
3034
3035 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3036
3037 s = pserialize_read_enter();
3038 IFADDR_READER_FOREACH(ifa, ifp) {
3039 if (ifa->ifa_addr->sa_family != sa->sa_family)
3040 continue;
3041 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3042 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3043 break;
3044 }
3045 if (ifa == NULL) {
3046 error = EADDRNOTAVAIL;
3047 goto out;
3048 }
3049
3050 switch (cmd) {
3051 case SIOCSIFADDRPREF:
3052 ifa->ifa_preference = ifap->ifap_preference;
3053 goto out;
3054 case SIOCGIFADDRPREF:
3055 /* fill in the if_laddrreq structure */
3056 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3057 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3058 ifap->ifap_preference = ifa->ifa_preference;
3059 goto out;
3060 default:
3061 error = EOPNOTSUPP;
3062 }
3063 out:
3064 pserialize_read_exit(s);
3065 return error;
3066 }
3067
3068 /*
3069 * Interface ioctls.
3070 */
3071 static int
3072 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3073 {
3074 struct ifnet *ifp;
3075 struct ifreq *ifr;
3076 int error = 0;
3077 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
3078 u_long ocmd = cmd;
3079 #endif
3080 short oif_flags;
3081 #ifdef COMPAT_OIFREQ
3082 struct ifreq ifrb;
3083 struct oifreq *oifr = NULL;
3084 #endif
3085 int r;
3086 struct psref psref;
3087 int bound;
3088
3089 switch (cmd) {
3090 #ifdef COMPAT_OIFREQ
3091 case OSIOCGIFCONF:
3092 case OOSIOCGIFCONF:
3093 return compat_ifconf(cmd, data);
3094 #endif
3095 #ifdef COMPAT_OIFDATA
3096 case OSIOCGIFDATA:
3097 case OSIOCZIFDATA:
3098 return compat_ifdatareq(l, cmd, data);
3099 #endif
3100 case SIOCGIFCONF:
3101 return ifconf(cmd, data);
3102 case SIOCINITIFADDR:
3103 return EPERM;
3104 }
3105
3106 #ifdef COMPAT_OIFREQ
3107 cmd = (*vec_compat_cvtcmd)(cmd);
3108 if (cmd != ocmd) {
3109 oifr = data;
3110 data = ifr = &ifrb;
3111 ifreqo2n(oifr, ifr);
3112 } else
3113 #endif
3114 ifr = data;
3115
3116 switch (cmd) {
3117 case SIOCIFCREATE:
3118 case SIOCIFDESTROY:
3119 bound = curlwp_bind();
3120 if (l != NULL) {
3121 ifp = if_get(ifr->ifr_name, &psref);
3122 error = kauth_authorize_network(l->l_cred,
3123 KAUTH_NETWORK_INTERFACE,
3124 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3125 (void *)cmd, NULL);
3126 if (ifp != NULL)
3127 if_put(ifp, &psref);
3128 if (error != 0) {
3129 curlwp_bindx(bound);
3130 return error;
3131 }
3132 }
3133 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3134 mutex_enter(&if_clone_mtx);
3135 r = (cmd == SIOCIFCREATE) ?
3136 if_clone_create(ifr->ifr_name) :
3137 if_clone_destroy(ifr->ifr_name);
3138 mutex_exit(&if_clone_mtx);
3139 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3140 curlwp_bindx(bound);
3141 return r;
3142
3143 case SIOCIFGCLONERS:
3144 {
3145 struct if_clonereq *req = (struct if_clonereq *)data;
3146 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3147 &req->ifcr_total);
3148 }
3149 }
3150
3151 bound = curlwp_bind();
3152 ifp = if_get(ifr->ifr_name, &psref);
3153 if (ifp == NULL) {
3154 curlwp_bindx(bound);
3155 return ENXIO;
3156 }
3157
3158 switch (cmd) {
3159 case SIOCALIFADDR:
3160 case SIOCDLIFADDR:
3161 case SIOCSIFADDRPREF:
3162 case SIOCSIFFLAGS:
3163 case SIOCSIFCAP:
3164 case SIOCSIFMETRIC:
3165 case SIOCZIFDATA:
3166 case SIOCSIFMTU:
3167 case SIOCSIFPHYADDR:
3168 case SIOCDIFPHYADDR:
3169 #ifdef INET6
3170 case SIOCSIFPHYADDR_IN6:
3171 #endif
3172 case SIOCSLIFPHYADDR:
3173 case SIOCADDMULTI:
3174 case SIOCDELMULTI:
3175 case SIOCSIFMEDIA:
3176 case SIOCSDRVSPEC:
3177 case SIOCG80211:
3178 case SIOCS80211:
3179 case SIOCS80211NWID:
3180 case SIOCS80211NWKEY:
3181 case SIOCS80211POWER:
3182 case SIOCS80211BSSID:
3183 case SIOCS80211CHANNEL:
3184 case SIOCSLINKSTR:
3185 if (l != NULL) {
3186 error = kauth_authorize_network(l->l_cred,
3187 KAUTH_NETWORK_INTERFACE,
3188 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3189 (void *)cmd, NULL);
3190 if (error != 0)
3191 goto out;
3192 }
3193 }
3194
3195 oif_flags = ifp->if_flags;
3196
3197 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3198 mutex_enter(ifp->if_ioctl_lock);
3199
3200 error = (*ifp->if_ioctl)(ifp, cmd, data);
3201 if (error != ENOTTY)
3202 ;
3203 else if (so->so_proto == NULL)
3204 error = EOPNOTSUPP;
3205 else {
3206 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3207 #ifdef COMPAT_OSOCK
3208 if (vec_compat_ifioctl != NULL)
3209 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3210 else
3211 #endif
3212 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3213 cmd, data, ifp);
3214 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3215 }
3216
3217 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3218 if ((ifp->if_flags & IFF_UP) != 0) {
3219 int s = splsoftnet();
3220 if_up_locked(ifp);
3221 splx(s);
3222 }
3223 }
3224 #ifdef COMPAT_OIFREQ
3225 if (cmd != ocmd)
3226 ifreqn2o(oifr, ifr);
3227 #endif
3228
3229 mutex_exit(ifp->if_ioctl_lock);
3230 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3231 out:
3232 if_put(ifp, &psref);
3233 curlwp_bindx(bound);
3234 return error;
3235 }
3236
3237 /*
3238 * Return interface configuration
3239 * of system. List may be used
3240 * in later ioctl's (above) to get
3241 * other information.
3242 *
3243 * Each record is a struct ifreq. Before the addition of
3244 * sockaddr_storage, the API rule was that sockaddr flavors that did
3245 * not fit would extend beyond the struct ifreq, with the next struct
3246 * ifreq starting sa_len beyond the struct sockaddr. Because the
3247 * union in struct ifreq includes struct sockaddr_storage, every kind
3248 * of sockaddr must fit. Thus, there are no longer any overlength
3249 * records.
3250 *
3251 * Records are added to the user buffer if they fit, and ifc_len is
3252 * adjusted to the length that was written. Thus, the user is only
3253 * assured of getting the complete list if ifc_len on return is at
3254 * least sizeof(struct ifreq) less than it was on entry.
3255 *
3256 * If the user buffer pointer is NULL, this routine copies no data and
3257 * returns the amount of space that would be needed.
3258 *
3259 * Invariants:
3260 * ifrp points to the next part of the user's buffer to be used. If
3261 * ifrp != NULL, space holds the number of bytes remaining that we may
3262 * write at ifrp. Otherwise, space holds the number of bytes that
3263 * would have been written had there been adequate space.
3264 */
3265 /*ARGSUSED*/
3266 static int
3267 ifconf(u_long cmd, void *data)
3268 {
3269 struct ifconf *ifc = (struct ifconf *)data;
3270 struct ifnet *ifp;
3271 struct ifaddr *ifa;
3272 struct ifreq ifr, *ifrp = NULL;
3273 int space = 0, error = 0;
3274 const int sz = (int)sizeof(struct ifreq);
3275 const bool docopy = ifc->ifc_req != NULL;
3276 int s;
3277 int bound;
3278 struct psref psref;
3279
3280 if (docopy) {
3281 space = ifc->ifc_len;
3282 ifrp = ifc->ifc_req;
3283 }
3284
3285 bound = curlwp_bind();
3286 s = pserialize_read_enter();
3287 IFNET_READER_FOREACH(ifp) {
3288 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3289 pserialize_read_exit(s);
3290
3291 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3292 sizeof(ifr.ifr_name));
3293 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3294 error = ENAMETOOLONG;
3295 goto release_exit;
3296 }
3297 if (IFADDR_READER_EMPTY(ifp)) {
3298 /* Interface with no addresses - send zero sockaddr. */
3299 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3300 if (!docopy) {
3301 space += sz;
3302 goto next;
3303 }
3304 if (space >= sz) {
3305 error = copyout(&ifr, ifrp, sz);
3306 if (error != 0)
3307 goto release_exit;
3308 ifrp++;
3309 space -= sz;
3310 }
3311 }
3312
3313 s = pserialize_read_enter();
3314 IFADDR_READER_FOREACH(ifa, ifp) {
3315 struct sockaddr *sa = ifa->ifa_addr;
3316 /* all sockaddrs must fit in sockaddr_storage */
3317 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3318
3319 if (!docopy) {
3320 space += sz;
3321 continue;
3322 }
3323 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3324 pserialize_read_exit(s);
3325
3326 if (space >= sz) {
3327 error = copyout(&ifr, ifrp, sz);
3328 if (error != 0)
3329 goto release_exit;
3330 ifrp++; space -= sz;
3331 }
3332 s = pserialize_read_enter();
3333 }
3334 pserialize_read_exit(s);
3335
3336 next:
3337 s = pserialize_read_enter();
3338 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3339 }
3340 pserialize_read_exit(s);
3341 curlwp_bindx(bound);
3342
3343 if (docopy) {
3344 KASSERT(0 <= space && space <= ifc->ifc_len);
3345 ifc->ifc_len -= space;
3346 } else {
3347 KASSERT(space >= 0);
3348 ifc->ifc_len = space;
3349 }
3350 return (0);
3351
3352 release_exit:
3353 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3354 curlwp_bindx(bound);
3355 return error;
3356 }
3357
3358 int
3359 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3360 {
3361 uint8_t len;
3362 #ifdef COMPAT_OIFREQ
3363 struct ifreq ifrb;
3364 struct oifreq *oifr = NULL;
3365 u_long ocmd = cmd;
3366 cmd = (*vec_compat_cvtcmd)(cmd);
3367 if (cmd != ocmd) {
3368 oifr = (struct oifreq *)(void *)ifr;
3369 ifr = &ifrb;
3370 ifreqo2n(oifr, ifr);
3371 len = sizeof(oifr->ifr_addr);
3372 } else
3373 #endif
3374 len = sizeof(ifr->ifr_ifru.ifru_space);
3375
3376 if (len < sa->sa_len)
3377 return EFBIG;
3378
3379 memset(&ifr->ifr_addr, 0, len);
3380 sockaddr_copy(&ifr->ifr_addr, len, sa);
3381
3382 #ifdef COMPAT_OIFREQ
3383 if (cmd != ocmd)
3384 ifreqn2o(oifr, ifr);
3385 #endif
3386 return 0;
3387 }
3388
3389 /*
3390 * wrapper function for the drivers which doesn't have if_transmit().
3391 */
3392 static int
3393 if_transmit(struct ifnet *ifp, struct mbuf *m)
3394 {
3395 int s, error;
3396 size_t pktlen = m->m_pkthdr.len;
3397 bool mcast = (m->m_flags & M_MCAST) != 0;
3398
3399 s = splnet();
3400
3401 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3402 if (error != 0) {
3403 /* mbuf is already freed */
3404 goto out;
3405 }
3406
3407 ifp->if_obytes += pktlen;
3408 if (mcast)
3409 ifp->if_omcasts++;
3410
3411 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3412 if_start_lock(ifp);
3413 out:
3414 splx(s);
3415
3416 return error;
3417 }
3418
3419 int
3420 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3421 {
3422 int error;
3423
3424 #ifdef ALTQ
3425 KERNEL_LOCK(1, NULL);
3426 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3427 error = if_transmit(ifp, m);
3428 KERNEL_UNLOCK_ONE(NULL);
3429 } else {
3430 KERNEL_UNLOCK_ONE(NULL);
3431 error = (*ifp->if_transmit)(ifp, m);
3432 /* mbuf is alredy freed */
3433 }
3434 #else /* !ALTQ */
3435 error = (*ifp->if_transmit)(ifp, m);
3436 /* mbuf is alredy freed */
3437 #endif /* !ALTQ */
3438
3439 return error;
3440 }
3441
3442 /*
3443 * Queue message on interface, and start output if interface
3444 * not yet active.
3445 */
3446 int
3447 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3448 {
3449
3450 return if_transmit_lock(ifp, m);
3451 }
3452
3453 /*
3454 * Queue message on interface, possibly using a second fast queue
3455 */
3456 int
3457 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3458 {
3459 int error = 0;
3460
3461 if (ifq != NULL
3462 #ifdef ALTQ
3463 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3464 #endif
3465 ) {
3466 if (IF_QFULL(ifq)) {
3467 IF_DROP(&ifp->if_snd);
3468 m_freem(m);
3469 if (error == 0)
3470 error = ENOBUFS;
3471 } else
3472 IF_ENQUEUE(ifq, m);
3473 } else
3474 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3475 if (error != 0) {
3476 ++ifp->if_oerrors;
3477 return error;
3478 }
3479 return 0;
3480 }
3481
3482 int
3483 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3484 {
3485 int rc;
3486
3487 KASSERT(mutex_owned(ifp->if_ioctl_lock));
3488 if (ifp->if_initaddr != NULL)
3489 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3490 else if (src ||
3491 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3492 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3493
3494 return rc;
3495 }
3496
3497 int
3498 if_do_dad(struct ifnet *ifp)
3499 {
3500 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3501 return 0;
3502
3503 switch (ifp->if_type) {
3504 case IFT_FAITH:
3505 /*
3506 * These interfaces do not have the IFF_LOOPBACK flag,
3507 * but loop packets back. We do not have to do DAD on such
3508 * interfaces. We should even omit it, because loop-backed
3509 * responses would confuse the DAD procedure.
3510 */
3511 return 0;
3512 default:
3513 /*
3514 * Our DAD routine requires the interface up and running.
3515 * However, some interfaces can be up before the RUNNING
3516 * status. Additionaly, users may try to assign addresses
3517 * before the interface becomes up (or running).
3518 * We simply skip DAD in such a case as a work around.
3519 * XXX: we should rather mark "tentative" on such addresses,
3520 * and do DAD after the interface becomes ready.
3521 */
3522 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3523 (IFF_UP|IFF_RUNNING))
3524 return 0;
3525
3526 return 1;
3527 }
3528 }
3529
3530 int
3531 if_flags_set(ifnet_t *ifp, const short flags)
3532 {
3533 int rc;
3534
3535 KASSERT(mutex_owned(ifp->if_ioctl_lock));
3536
3537 if (ifp->if_setflags != NULL)
3538 rc = (*ifp->if_setflags)(ifp, flags);
3539 else {
3540 short cantflags, chgdflags;
3541 struct ifreq ifr;
3542
3543 chgdflags = ifp->if_flags ^ flags;
3544 cantflags = chgdflags & IFF_CANTCHANGE;
3545
3546 if (cantflags != 0)
3547 ifp->if_flags ^= cantflags;
3548
3549 /* Traditionally, we do not call if_ioctl after
3550 * setting/clearing only IFF_PROMISC if the interface
3551 * isn't IFF_UP. Uphold that tradition.
3552 */
3553 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3554 return 0;
3555
3556 memset(&ifr, 0, sizeof(ifr));
3557
3558 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3559 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3560
3561 if (rc != 0 && cantflags != 0)
3562 ifp->if_flags ^= cantflags;
3563 }
3564
3565 return rc;
3566 }
3567
3568 int
3569 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3570 {
3571 int rc;
3572 struct ifreq ifr;
3573
3574 if (ifp->if_mcastop != NULL)
3575 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3576 else {
3577 ifreq_setaddr(cmd, &ifr, sa);
3578 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3579 }
3580
3581 return rc;
3582 }
3583
3584 static void
3585 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3586 struct ifaltq *ifq)
3587 {
3588 const struct sysctlnode *cnode, *rnode;
3589
3590 if (sysctl_createv(clog, 0, NULL, &rnode,
3591 CTLFLAG_PERMANENT,
3592 CTLTYPE_NODE, "interfaces",
3593 SYSCTL_DESCR("Per-interface controls"),
3594 NULL, 0, NULL, 0,
3595 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3596 goto bad;
3597
3598 if (sysctl_createv(clog, 0, &rnode, &rnode,
3599 CTLFLAG_PERMANENT,
3600 CTLTYPE_NODE, ifname,
3601 SYSCTL_DESCR("Interface controls"),
3602 NULL, 0, NULL, 0,
3603 CTL_CREATE, CTL_EOL) != 0)
3604 goto bad;
3605
3606 if (sysctl_createv(clog, 0, &rnode, &rnode,
3607 CTLFLAG_PERMANENT,
3608 CTLTYPE_NODE, "sndq",
3609 SYSCTL_DESCR("Interface output queue controls"),
3610 NULL, 0, NULL, 0,
3611 CTL_CREATE, CTL_EOL) != 0)
3612 goto bad;
3613
3614 if (sysctl_createv(clog, 0, &rnode, &cnode,
3615 CTLFLAG_PERMANENT,
3616 CTLTYPE_INT, "len",
3617 SYSCTL_DESCR("Current output queue length"),
3618 NULL, 0, &ifq->ifq_len, 0,
3619 CTL_CREATE, CTL_EOL) != 0)
3620 goto bad;
3621
3622 if (sysctl_createv(clog, 0, &rnode, &cnode,
3623 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3624 CTLTYPE_INT, "maxlen",
3625 SYSCTL_DESCR("Maximum allowed output queue length"),
3626 NULL, 0, &ifq->ifq_maxlen, 0,
3627 CTL_CREATE, CTL_EOL) != 0)
3628 goto bad;
3629
3630 if (sysctl_createv(clog, 0, &rnode, &cnode,
3631 CTLFLAG_PERMANENT,
3632 CTLTYPE_INT, "drops",
3633 SYSCTL_DESCR("Packets dropped due to full output queue"),
3634 NULL, 0, &ifq->ifq_drops, 0,
3635 CTL_CREATE, CTL_EOL) != 0)
3636 goto bad;
3637
3638 return;
3639 bad:
3640 printf("%s: could not attach sysctl nodes\n", ifname);
3641 return;
3642 }
3643
3644 #if defined(INET) || defined(INET6)
3645
3646 #define SYSCTL_NET_PKTQ(q, cn, c) \
3647 static int \
3648 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3649 { \
3650 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3651 }
3652
3653 #if defined(INET)
3654 static int
3655 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3656 {
3657 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3658 }
3659 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3660 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3661 #endif
3662
3663 #if defined(INET6)
3664 static int
3665 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3666 {
3667 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3668 }
3669 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3670 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3671 #endif
3672
3673 static void
3674 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3675 {
3676 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3677 const char *pfname = NULL, *ipname = NULL;
3678 int ipn = 0, qid = 0;
3679
3680 switch (pf) {
3681 #if defined(INET)
3682 case PF_INET:
3683 len_func = sysctl_net_ip_pktq_items;
3684 maxlen_func = sysctl_net_ip_pktq_maxlen;
3685 drops_func = sysctl_net_ip_pktq_drops;
3686 pfname = "inet", ipn = IPPROTO_IP;
3687 ipname = "ip", qid = IPCTL_IFQ;
3688 break;
3689 #endif
3690 #if defined(INET6)
3691 case PF_INET6:
3692 len_func = sysctl_net_ip6_pktq_items;
3693 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3694 drops_func = sysctl_net_ip6_pktq_drops;
3695 pfname = "inet6", ipn = IPPROTO_IPV6;
3696 ipname = "ip6", qid = IPV6CTL_IFQ;
3697 break;
3698 #endif
3699 default:
3700 KASSERT(false);
3701 }
3702
3703 sysctl_createv(clog, 0, NULL, NULL,
3704 CTLFLAG_PERMANENT,
3705 CTLTYPE_NODE, pfname, NULL,
3706 NULL, 0, NULL, 0,
3707 CTL_NET, pf, CTL_EOL);
3708 sysctl_createv(clog, 0, NULL, NULL,
3709 CTLFLAG_PERMANENT,
3710 CTLTYPE_NODE, ipname, NULL,
3711 NULL, 0, NULL, 0,
3712 CTL_NET, pf, ipn, CTL_EOL);
3713 sysctl_createv(clog, 0, NULL, NULL,
3714 CTLFLAG_PERMANENT,
3715 CTLTYPE_NODE, "ifq",
3716 SYSCTL_DESCR("Protocol input queue controls"),
3717 NULL, 0, NULL, 0,
3718 CTL_NET, pf, ipn, qid, CTL_EOL);
3719
3720 sysctl_createv(clog, 0, NULL, NULL,
3721 CTLFLAG_PERMANENT,
3722 CTLTYPE_INT, "len",
3723 SYSCTL_DESCR("Current input queue length"),
3724 len_func, 0, NULL, 0,
3725 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3726 sysctl_createv(clog, 0, NULL, NULL,
3727 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3728 CTLTYPE_INT, "maxlen",
3729 SYSCTL_DESCR("Maximum allowed input queue length"),
3730 maxlen_func, 0, NULL, 0,
3731 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3732 sysctl_createv(clog, 0, NULL, NULL,
3733 CTLFLAG_PERMANENT,
3734 CTLTYPE_INT, "drops",
3735 SYSCTL_DESCR("Packets dropped due to full input queue"),
3736 drops_func, 0, NULL, 0,
3737 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3738 }
3739 #endif /* INET || INET6 */
3740
3741 static int
3742 if_sdl_sysctl(SYSCTLFN_ARGS)
3743 {
3744 struct ifnet *ifp;
3745 const struct sockaddr_dl *sdl;
3746 struct psref psref;
3747 int error = 0;
3748 int bound;
3749
3750 if (namelen != 1)
3751 return EINVAL;
3752
3753 bound = curlwp_bind();
3754 ifp = if_get_byindex(name[0], &psref);
3755 if (ifp == NULL) {
3756 error = ENODEV;
3757 goto out0;
3758 }
3759
3760 sdl = ifp->if_sadl;
3761 if (sdl == NULL) {
3762 *oldlenp = 0;
3763 goto out1;
3764 }
3765
3766 if (oldp == NULL) {
3767 *oldlenp = sdl->sdl_alen;
3768 goto out1;
3769 }
3770
3771 if (*oldlenp >= sdl->sdl_alen)
3772 *oldlenp = sdl->sdl_alen;
3773 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3774 out1:
3775 if_put(ifp, &psref);
3776 out0:
3777 curlwp_bindx(bound);
3778 return error;
3779 }
3780
3781 static void
3782 if_sysctl_setup(struct sysctllog **clog)
3783 {
3784 const struct sysctlnode *rnode = NULL;
3785
3786 sysctl_createv(clog, 0, NULL, &rnode,
3787 CTLFLAG_PERMANENT,
3788 CTLTYPE_NODE, "sdl",
3789 SYSCTL_DESCR("Get active link-layer address"),
3790 if_sdl_sysctl, 0, NULL, 0,
3791 CTL_NET, CTL_CREATE, CTL_EOL);
3792
3793 #if defined(INET)
3794 sysctl_net_pktq_setup(NULL, PF_INET);
3795 #endif
3796 #ifdef INET6
3797 if (in6_present)
3798 sysctl_net_pktq_setup(NULL, PF_INET6);
3799 #endif
3800 }
3801