if.c revision 1.415 1 /* $NetBSD: if.c,v 1.415 2017/12/15 04:03:46 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.415 2017/12/15 04:03:46 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152
153 #include "carp.h"
154 #if NCARP > 0
155 #include <netinet/ip_carp.h>
156 #endif
157
158 #include <compat/sys/sockio.h>
159 #include <compat/sys/socket.h>
160
161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
163
164 /*
165 * Global list of interfaces.
166 */
167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
168 struct ifnet_head ifnet_list;
169
170 struct pslist_head ifnet_pslist;
171 static ifnet_t ** ifindex2ifnet = NULL;
172 static u_int if_index = 1;
173 static size_t if_indexlim = 0;
174 static uint64_t index_gen;
175 /* Mutex to protect the above objects. */
176 kmutex_t ifnet_mtx __cacheline_aligned;
177 static struct psref_class *ifnet_psref_class __read_mostly;
178 static pserialize_t ifnet_psz;
179
180 static kmutex_t if_clone_mtx;
181
182 struct ifnet *lo0ifp;
183 int ifqmaxlen = IFQ_MAXLEN;
184
185 struct psref_class *ifa_psref_class __read_mostly;
186
187 static int if_delroute_matcher(struct rtentry *, void *);
188
189 static bool if_is_unit(const char *);
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil __read_mostly;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212 static void if_up_locked(struct ifnet *);
213 static void _if_down(struct ifnet *);
214 static void if_down_deactivated(struct ifnet *);
215
216 struct if_percpuq {
217 struct ifnet *ipq_ifp;
218 void *ipq_si;
219 struct percpu *ipq_ifqs; /* struct ifqueue */
220 };
221
222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
223
224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
227 struct if_percpuq *);
228
229 struct if_deferred_start {
230 struct ifnet *ids_ifp;
231 void (*ids_if_start)(struct ifnet *);
232 void *ids_si;
233 };
234
235 static void if_deferred_start_softint(void *);
236 static void if_deferred_start_common(struct ifnet *);
237 static void if_deferred_start_destroy(struct ifnet *);
238
239 #if defined(INET) || defined(INET6)
240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
241 #endif
242
243 static void if_sysctl_setup(struct sysctllog **);
244
245 /*
246 * Pointer to stub or real compat_cvtcmd() depending on presence of
247 * the compat module
248 */
249 u_long stub_compat_cvtcmd(u_long);
250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
251
252 /* Similarly, pointer to compat_ifioctl() if it is present */
253
254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
255 struct lwp *) = NULL;
256
257 /* The stub version of compat_cvtcmd() */
258 u_long stub_compat_cvtcmd(u_long cmd)
259 {
260
261 return cmd;
262 }
263
264 static int
265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
266 void *arg0, void *arg1, void *arg2, void *arg3)
267 {
268 int result;
269 enum kauth_network_req req;
270
271 result = KAUTH_RESULT_DEFER;
272 req = (enum kauth_network_req)arg1;
273
274 if (action != KAUTH_NETWORK_INTERFACE)
275 return result;
276
277 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
278 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
279 result = KAUTH_RESULT_ALLOW;
280
281 return result;
282 }
283
284 /*
285 * Network interface utility routines.
286 *
287 * Routines with ifa_ifwith* names take sockaddr *'s as
288 * parameters.
289 */
290 void
291 ifinit(void)
292 {
293
294 if_sysctl_setup(NULL);
295
296 #if (defined(INET) || defined(INET6))
297 encapinit();
298 #endif
299
300 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
301 if_listener_cb, NULL);
302
303 /* interfaces are available, inform socket code */
304 ifioctl = doifioctl;
305 }
306
307 /*
308 * XXX Initialization before configure().
309 * XXX hack to get pfil_add_hook working in autoconf.
310 */
311 void
312 ifinit1(void)
313 {
314 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
315
316 TAILQ_INIT(&ifnet_list);
317 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
318 ifnet_psz = pserialize_create();
319 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
320 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
321 PSLIST_INIT(&ifnet_pslist);
322
323 if_indexlim = 8;
324
325 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
326 KASSERT(if_pfil != NULL);
327
328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
329 etherinit();
330 #endif
331 }
332
333 ifnet_t *
334 if_alloc(u_char type)
335 {
336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
337 }
338
339 void
340 if_free(ifnet_t *ifp)
341 {
342 kmem_free(ifp, sizeof(ifnet_t));
343 }
344
345 void
346 if_initname(struct ifnet *ifp, const char *name, int unit)
347 {
348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
349 "%s%d", name, unit);
350 }
351
352 /*
353 * Null routines used while an interface is going away. These routines
354 * just return an error.
355 */
356
357 int
358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
359 const struct sockaddr *so, const struct rtentry *rt)
360 {
361
362 return ENXIO;
363 }
364
365 void
366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
367 {
368
369 /* Nothing. */
370 }
371
372 void
373 if_nullstart(struct ifnet *ifp)
374 {
375
376 /* Nothing. */
377 }
378
379 int
380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
381 {
382
383 m_freem(m);
384 return ENXIO;
385 }
386
387 int
388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
389 {
390
391 return ENXIO;
392 }
393
394 int
395 if_nullinit(struct ifnet *ifp)
396 {
397
398 return ENXIO;
399 }
400
401 void
402 if_nullstop(struct ifnet *ifp, int disable)
403 {
404
405 /* Nothing. */
406 }
407
408 void
409 if_nullslowtimo(struct ifnet *ifp)
410 {
411
412 /* Nothing. */
413 }
414
415 void
416 if_nulldrain(struct ifnet *ifp)
417 {
418
419 /* Nothing. */
420 }
421
422 void
423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
424 {
425 struct ifaddr *ifa;
426 struct sockaddr_dl *sdl;
427
428 ifp->if_addrlen = addrlen;
429 if_alloc_sadl(ifp);
430 ifa = ifp->if_dl;
431 sdl = satosdl(ifa->ifa_addr);
432
433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
434 if (factory) {
435 ifp->if_hwdl = ifp->if_dl;
436 ifaref(ifp->if_hwdl);
437 }
438 /* TBD routing socket */
439 }
440
441 struct ifaddr *
442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
443 {
444 unsigned socksize, ifasize;
445 int addrlen, namelen;
446 struct sockaddr_dl *mask, *sdl;
447 struct ifaddr *ifa;
448
449 namelen = strlen(ifp->if_xname);
450 addrlen = ifp->if_addrlen;
451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
452 ifasize = sizeof(*ifa) + 2 * socksize;
453 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
454
455 sdl = (struct sockaddr_dl *)(ifa + 1);
456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
457
458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
459 ifp->if_xname, namelen, NULL, addrlen);
460 mask->sdl_family = AF_LINK;
461 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
462 memset(&mask->sdl_data[0], 0xff, namelen);
463 ifa->ifa_rtrequest = link_rtrequest;
464 ifa->ifa_addr = (struct sockaddr *)sdl;
465 ifa->ifa_netmask = (struct sockaddr *)mask;
466 ifa_psref_init(ifa);
467
468 *sdlp = sdl;
469
470 return ifa;
471 }
472
473 static void
474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
475 {
476 const struct sockaddr_dl *sdl;
477
478 ifp->if_dl = ifa;
479 ifaref(ifa);
480 sdl = satosdl(ifa->ifa_addr);
481 ifp->if_sadl = sdl;
482 }
483
484 /*
485 * Allocate the link level name for the specified interface. This
486 * is an attachment helper. It must be called after ifp->if_addrlen
487 * is initialized, which may not be the case when if_attach() is
488 * called.
489 */
490 void
491 if_alloc_sadl(struct ifnet *ifp)
492 {
493 struct ifaddr *ifa;
494 const struct sockaddr_dl *sdl;
495
496 /*
497 * If the interface already has a link name, release it
498 * now. This is useful for interfaces that can change
499 * link types, and thus switch link names often.
500 */
501 if (ifp->if_sadl != NULL)
502 if_free_sadl(ifp);
503
504 ifa = if_dl_create(ifp, &sdl);
505
506 ifa_insert(ifp, ifa);
507 if_sadl_setrefs(ifp, ifa);
508 }
509
510 static void
511 if_deactivate_sadl(struct ifnet *ifp)
512 {
513 struct ifaddr *ifa;
514
515 KASSERT(ifp->if_dl != NULL);
516
517 ifa = ifp->if_dl;
518
519 ifp->if_sadl = NULL;
520
521 ifp->if_dl = NULL;
522 ifafree(ifa);
523 }
524
525 static void
526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
527 {
528 struct ifaddr *old;
529
530 KASSERT(ifp->if_dl != NULL);
531
532 old = ifp->if_dl;
533
534 ifaref(ifa);
535 /* XXX Update if_dl and if_sadl atomically */
536 ifp->if_dl = ifa;
537 ifp->if_sadl = satosdl(ifa->ifa_addr);
538
539 ifafree(old);
540 }
541
542 void
543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
544 const struct sockaddr_dl *sdl)
545 {
546 int s, ss;
547 struct ifaddr *ifa;
548 int bound = curlwp_bind();
549
550 KASSERT(ifa_held(ifa0));
551
552 s = splsoftnet();
553
554 if_replace_sadl(ifp, ifa0);
555
556 ss = pserialize_read_enter();
557 IFADDR_READER_FOREACH(ifa, ifp) {
558 struct psref psref;
559 ifa_acquire(ifa, &psref);
560 pserialize_read_exit(ss);
561
562 rtinit(ifa, RTM_LLINFO_UPD, 0);
563
564 ss = pserialize_read_enter();
565 ifa_release(ifa, &psref);
566 }
567 pserialize_read_exit(ss);
568
569 splx(s);
570 curlwp_bindx(bound);
571 }
572
573 /*
574 * Free the link level name for the specified interface. This is
575 * a detach helper. This is called from if_detach().
576 */
577 static void
578 if_free_sadl(struct ifnet *ifp)
579 {
580 struct ifaddr *ifa;
581 int s;
582
583 ifa = ifp->if_dl;
584 if (ifa == NULL) {
585 KASSERT(ifp->if_sadl == NULL);
586 return;
587 }
588
589 KASSERT(ifp->if_sadl != NULL);
590
591 s = splsoftnet();
592 rtinit(ifa, RTM_DELETE, 0);
593 ifa_remove(ifp, ifa);
594 if_deactivate_sadl(ifp);
595 if (ifp->if_hwdl == ifa) {
596 ifafree(ifa);
597 ifp->if_hwdl = NULL;
598 }
599 splx(s);
600 }
601
602 static void
603 if_getindex(ifnet_t *ifp)
604 {
605 bool hitlimit = false;
606
607 ifp->if_index_gen = index_gen++;
608
609 ifp->if_index = if_index;
610 if (ifindex2ifnet == NULL) {
611 if_index++;
612 goto skip;
613 }
614 while (if_byindex(ifp->if_index)) {
615 /*
616 * If we hit USHRT_MAX, we skip back to 0 since
617 * there are a number of places where the value
618 * of if_index or if_index itself is compared
619 * to or stored in an unsigned short. By
620 * jumping back, we won't botch those assignments
621 * or comparisons.
622 */
623 if (++if_index == 0) {
624 if_index = 1;
625 } else if (if_index == USHRT_MAX) {
626 /*
627 * However, if we have to jump back to
628 * zero *twice* without finding an empty
629 * slot in ifindex2ifnet[], then there
630 * there are too many (>65535) interfaces.
631 */
632 if (hitlimit) {
633 panic("too many interfaces");
634 }
635 hitlimit = true;
636 if_index = 1;
637 }
638 ifp->if_index = if_index;
639 }
640 skip:
641 /*
642 * ifindex2ifnet is indexed by if_index. Since if_index will
643 * grow dynamically, it should grow too.
644 */
645 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
646 size_t m, n, oldlim;
647 void *q;
648
649 oldlim = if_indexlim;
650 while (ifp->if_index >= if_indexlim)
651 if_indexlim <<= 1;
652
653 /* grow ifindex2ifnet */
654 m = oldlim * sizeof(struct ifnet *);
655 n = if_indexlim * sizeof(struct ifnet *);
656 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
657 if (ifindex2ifnet != NULL) {
658 memcpy(q, ifindex2ifnet, m);
659 free(ifindex2ifnet, M_IFADDR);
660 }
661 ifindex2ifnet = (struct ifnet **)q;
662 }
663 ifindex2ifnet[ifp->if_index] = ifp;
664 }
665
666 /*
667 * Initialize an interface and assign an index for it.
668 *
669 * It must be called prior to a device specific attach routine
670 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
671 * and be followed by if_register:
672 *
673 * if_initialize(ifp);
674 * ether_ifattach(ifp, enaddr);
675 * if_register(ifp);
676 */
677 int
678 if_initialize(ifnet_t *ifp)
679 {
680 int rv = 0;
681
682 KASSERT(if_indexlim > 0);
683 TAILQ_INIT(&ifp->if_addrlist);
684
685 /*
686 * Link level name is allocated later by a separate call to
687 * if_alloc_sadl().
688 */
689
690 if (ifp->if_snd.ifq_maxlen == 0)
691 ifp->if_snd.ifq_maxlen = ifqmaxlen;
692
693 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
694
695 ifp->if_link_state = LINK_STATE_UNKNOWN;
696 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
697
698 ifp->if_capenable = 0;
699 ifp->if_csum_flags_tx = 0;
700 ifp->if_csum_flags_rx = 0;
701
702 #ifdef ALTQ
703 ifp->if_snd.altq_type = 0;
704 ifp->if_snd.altq_disc = NULL;
705 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
706 ifp->if_snd.altq_tbr = NULL;
707 ifp->if_snd.altq_ifp = ifp;
708 #endif
709
710 IFQ_LOCK_INIT(&ifp->if_snd);
711
712 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
713 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
714
715 IF_AFDATA_LOCK_INIT(ifp);
716
717 if (if_is_link_state_changeable(ifp)) {
718 u_int flags = SOFTINT_NET;
719 flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
720 SOFTINT_MPSAFE : 0;
721 ifp->if_link_si = softint_establish(flags,
722 if_link_state_change_si, ifp);
723 if (ifp->if_link_si == NULL) {
724 rv = ENOMEM;
725 goto fail;
726 }
727 }
728
729 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
730 PSLIST_INIT(&ifp->if_addr_pslist);
731 psref_target_init(&ifp->if_psref, ifnet_psref_class);
732 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
733 LIST_INIT(&ifp->if_multiaddrs);
734
735 IFNET_GLOBAL_LOCK();
736 if_getindex(ifp);
737 IFNET_GLOBAL_UNLOCK();
738
739 return 0;
740
741 fail:
742 IF_AFDATA_LOCK_DESTROY(ifp);
743
744 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
745 (void)pfil_head_destroy(ifp->if_pfil);
746
747 IFQ_LOCK_DESTROY(&ifp->if_snd);
748
749 return rv;
750 }
751
752 /*
753 * Register an interface to the list of "active" interfaces.
754 */
755 void
756 if_register(ifnet_t *ifp)
757 {
758 /*
759 * If the driver has not supplied its own if_ioctl, then
760 * supply the default.
761 */
762 if (ifp->if_ioctl == NULL)
763 ifp->if_ioctl = ifioctl_common;
764
765 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
766
767 if (!STAILQ_EMPTY(&domains))
768 if_attachdomain1(ifp);
769
770 /* Announce the interface. */
771 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
772
773 if (ifp->if_slowtimo != NULL) {
774 ifp->if_slowtimo_ch =
775 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
776 callout_init(ifp->if_slowtimo_ch, 0);
777 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
778 if_slowtimo(ifp);
779 }
780
781 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
782 ifp->if_transmit = if_transmit;
783
784 IFNET_GLOBAL_LOCK();
785 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
786 IFNET_WRITER_INSERT_TAIL(ifp);
787 IFNET_GLOBAL_UNLOCK();
788 }
789
790 /*
791 * The if_percpuq framework
792 *
793 * It allows network device drivers to execute the network stack
794 * in softint (so called softint-based if_input). It utilizes
795 * softint and percpu ifqueue. It doesn't distribute any packets
796 * between CPUs, unlike pktqueue(9).
797 *
798 * Currently we support two options for device drivers to apply the framework:
799 * - Use it implicitly with less changes
800 * - If you use if_attach in driver's _attach function and if_input in
801 * driver's Rx interrupt handler, a packet is queued and a softint handles
802 * the packet implicitly
803 * - Use it explicitly in each driver (recommended)
804 * - You can use if_percpuq_* directly in your driver
805 * - In this case, you need to allocate struct if_percpuq in driver's softc
806 * - See wm(4) as a reference implementation
807 */
808
809 static void
810 if_percpuq_softint(void *arg)
811 {
812 struct if_percpuq *ipq = arg;
813 struct ifnet *ifp = ipq->ipq_ifp;
814 struct mbuf *m;
815
816 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
817 ifp->if_ipackets++;
818 bpf_mtap(ifp, m);
819
820 ifp->_if_input(ifp, m);
821 }
822 }
823
824 static void
825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
826 {
827 struct ifqueue *const ifq = p;
828
829 memset(ifq, 0, sizeof(*ifq));
830 ifq->ifq_maxlen = IFQ_MAXLEN;
831 }
832
833 struct if_percpuq *
834 if_percpuq_create(struct ifnet *ifp)
835 {
836 struct if_percpuq *ipq;
837
838 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
839 ipq->ipq_ifp = ifp;
840 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
841 if_percpuq_softint, ipq);
842 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
843 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
844
845 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
846
847 return ipq;
848 }
849
850 static struct mbuf *
851 if_percpuq_dequeue(struct if_percpuq *ipq)
852 {
853 struct mbuf *m;
854 struct ifqueue *ifq;
855 int s;
856
857 s = splnet();
858 ifq = percpu_getref(ipq->ipq_ifqs);
859 IF_DEQUEUE(ifq, m);
860 percpu_putref(ipq->ipq_ifqs);
861 splx(s);
862
863 return m;
864 }
865
866 static void
867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
868 {
869 struct ifqueue *const ifq = p;
870
871 IF_PURGE(ifq);
872 }
873
874 void
875 if_percpuq_destroy(struct if_percpuq *ipq)
876 {
877
878 /* if_detach may already destroy it */
879 if (ipq == NULL)
880 return;
881
882 softint_disestablish(ipq->ipq_si);
883 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
884 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
885 kmem_free(ipq, sizeof(*ipq));
886 }
887
888 void
889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
890 {
891 struct ifqueue *ifq;
892 int s;
893
894 KASSERT(ipq != NULL);
895
896 s = splnet();
897 ifq = percpu_getref(ipq->ipq_ifqs);
898 if (IF_QFULL(ifq)) {
899 IF_DROP(ifq);
900 percpu_putref(ipq->ipq_ifqs);
901 m_freem(m);
902 goto out;
903 }
904 IF_ENQUEUE(ifq, m);
905 percpu_putref(ipq->ipq_ifqs);
906
907 softint_schedule(ipq->ipq_si);
908 out:
909 splx(s);
910 }
911
912 static void
913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
914 {
915 struct ifqueue *const ifq = p;
916 int *sum = arg;
917
918 *sum += ifq->ifq_drops;
919 }
920
921 static int
922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
923 {
924 struct sysctlnode node;
925 struct if_percpuq *ipq;
926 int sum = 0;
927 int error;
928
929 node = *rnode;
930 ipq = node.sysctl_data;
931
932 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
933
934 node.sysctl_data = ∑
935 error = sysctl_lookup(SYSCTLFN_CALL(&node));
936 if (error != 0 || newp == NULL)
937 return error;
938
939 return 0;
940 }
941
942 static void
943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
944 struct if_percpuq *ipq)
945 {
946 const struct sysctlnode *cnode, *rnode;
947
948 if (sysctl_createv(clog, 0, NULL, &rnode,
949 CTLFLAG_PERMANENT,
950 CTLTYPE_NODE, "interfaces",
951 SYSCTL_DESCR("Per-interface controls"),
952 NULL, 0, NULL, 0,
953 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
954 goto bad;
955
956 if (sysctl_createv(clog, 0, &rnode, &rnode,
957 CTLFLAG_PERMANENT,
958 CTLTYPE_NODE, ifname,
959 SYSCTL_DESCR("Interface controls"),
960 NULL, 0, NULL, 0,
961 CTL_CREATE, CTL_EOL) != 0)
962 goto bad;
963
964 if (sysctl_createv(clog, 0, &rnode, &rnode,
965 CTLFLAG_PERMANENT,
966 CTLTYPE_NODE, "rcvq",
967 SYSCTL_DESCR("Interface input queue controls"),
968 NULL, 0, NULL, 0,
969 CTL_CREATE, CTL_EOL) != 0)
970 goto bad;
971
972 #ifdef NOTYET
973 /* XXX Should show each per-CPU queue length? */
974 if (sysctl_createv(clog, 0, &rnode, &rnode,
975 CTLFLAG_PERMANENT,
976 CTLTYPE_INT, "len",
977 SYSCTL_DESCR("Current input queue length"),
978 sysctl_percpuq_len, 0, NULL, 0,
979 CTL_CREATE, CTL_EOL) != 0)
980 goto bad;
981
982 if (sysctl_createv(clog, 0, &rnode, &cnode,
983 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
984 CTLTYPE_INT, "maxlen",
985 SYSCTL_DESCR("Maximum allowed input queue length"),
986 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
987 CTL_CREATE, CTL_EOL) != 0)
988 goto bad;
989 #endif
990
991 if (sysctl_createv(clog, 0, &rnode, &cnode,
992 CTLFLAG_PERMANENT,
993 CTLTYPE_INT, "drops",
994 SYSCTL_DESCR("Total packets dropped due to full input queue"),
995 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
996 CTL_CREATE, CTL_EOL) != 0)
997 goto bad;
998
999 return;
1000 bad:
1001 printf("%s: could not attach sysctl nodes\n", ifname);
1002 return;
1003 }
1004
1005 /*
1006 * The deferred if_start framework
1007 *
1008 * The common APIs to defer if_start to softint when if_start is requested
1009 * from a device driver running in hardware interrupt context.
1010 */
1011 /*
1012 * Call ifp->if_start (or equivalent) in a dedicated softint for
1013 * deferred if_start.
1014 */
1015 static void
1016 if_deferred_start_softint(void *arg)
1017 {
1018 struct if_deferred_start *ids = arg;
1019 struct ifnet *ifp = ids->ids_ifp;
1020
1021 ids->ids_if_start(ifp);
1022 }
1023
1024 /*
1025 * The default callback function for deferred if_start.
1026 */
1027 static void
1028 if_deferred_start_common(struct ifnet *ifp)
1029 {
1030 int s;
1031
1032 s = splnet();
1033 if_start_lock(ifp);
1034 splx(s);
1035 }
1036
1037 static inline bool
1038 if_snd_is_used(struct ifnet *ifp)
1039 {
1040
1041 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1042 ALTQ_IS_ENABLED(&ifp->if_snd);
1043 }
1044
1045 /*
1046 * Schedule deferred if_start.
1047 */
1048 void
1049 if_schedule_deferred_start(struct ifnet *ifp)
1050 {
1051
1052 KASSERT(ifp->if_deferred_start != NULL);
1053
1054 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1055 return;
1056
1057 softint_schedule(ifp->if_deferred_start->ids_si);
1058 }
1059
1060 /*
1061 * Create an instance of deferred if_start. A driver should call the function
1062 * only if the driver needs deferred if_start. Drivers can setup their own
1063 * deferred if_start function via 2nd argument.
1064 */
1065 void
1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1067 {
1068 struct if_deferred_start *ids;
1069
1070 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1071 ids->ids_ifp = ifp;
1072 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
1073 if_deferred_start_softint, ids);
1074 if (func != NULL)
1075 ids->ids_if_start = func;
1076 else
1077 ids->ids_if_start = if_deferred_start_common;
1078
1079 ifp->if_deferred_start = ids;
1080 }
1081
1082 static void
1083 if_deferred_start_destroy(struct ifnet *ifp)
1084 {
1085
1086 if (ifp->if_deferred_start == NULL)
1087 return;
1088
1089 softint_disestablish(ifp->if_deferred_start->ids_si);
1090 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1091 ifp->if_deferred_start = NULL;
1092 }
1093
1094 /*
1095 * The common interface input routine that is called by device drivers,
1096 * which should be used only when the driver's rx handler already runs
1097 * in softint.
1098 */
1099 void
1100 if_input(struct ifnet *ifp, struct mbuf *m)
1101 {
1102
1103 KASSERT(ifp->if_percpuq == NULL);
1104 KASSERT(!cpu_intr_p());
1105
1106 ifp->if_ipackets++;
1107 bpf_mtap(ifp, m);
1108
1109 ifp->_if_input(ifp, m);
1110 }
1111
1112 /*
1113 * DEPRECATED. Use if_initialize and if_register instead.
1114 * See the above comment of if_initialize.
1115 *
1116 * Note that it implicitly enables if_percpuq to make drivers easy to
1117 * migrate softint-based if_input without much changes. If you don't
1118 * want to enable it, use if_initialize instead.
1119 */
1120 int
1121 if_attach(ifnet_t *ifp)
1122 {
1123 int rv;
1124
1125 rv = if_initialize(ifp);
1126 if (rv != 0)
1127 return rv;
1128
1129 ifp->if_percpuq = if_percpuq_create(ifp);
1130 if_register(ifp);
1131
1132 return 0;
1133 }
1134
1135 void
1136 if_attachdomain(void)
1137 {
1138 struct ifnet *ifp;
1139 int s;
1140 int bound = curlwp_bind();
1141
1142 s = pserialize_read_enter();
1143 IFNET_READER_FOREACH(ifp) {
1144 struct psref psref;
1145 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1146 pserialize_read_exit(s);
1147 if_attachdomain1(ifp);
1148 s = pserialize_read_enter();
1149 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1150 }
1151 pserialize_read_exit(s);
1152 curlwp_bindx(bound);
1153 }
1154
1155 static void
1156 if_attachdomain1(struct ifnet *ifp)
1157 {
1158 struct domain *dp;
1159 int s;
1160
1161 s = splsoftnet();
1162
1163 /* address family dependent data region */
1164 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1165 DOMAIN_FOREACH(dp) {
1166 if (dp->dom_ifattach != NULL)
1167 ifp->if_afdata[dp->dom_family] =
1168 (*dp->dom_ifattach)(ifp);
1169 }
1170
1171 splx(s);
1172 }
1173
1174 /*
1175 * Deactivate an interface. This points all of the procedure
1176 * handles at error stubs. May be called from interrupt context.
1177 */
1178 void
1179 if_deactivate(struct ifnet *ifp)
1180 {
1181 int s;
1182
1183 s = splsoftnet();
1184
1185 ifp->if_output = if_nulloutput;
1186 ifp->_if_input = if_nullinput;
1187 ifp->if_start = if_nullstart;
1188 ifp->if_transmit = if_nulltransmit;
1189 ifp->if_ioctl = if_nullioctl;
1190 ifp->if_init = if_nullinit;
1191 ifp->if_stop = if_nullstop;
1192 ifp->if_slowtimo = if_nullslowtimo;
1193 ifp->if_drain = if_nulldrain;
1194
1195 /* No more packets may be enqueued. */
1196 ifp->if_snd.ifq_maxlen = 0;
1197
1198 splx(s);
1199 }
1200
1201 bool
1202 if_is_deactivated(const struct ifnet *ifp)
1203 {
1204
1205 return ifp->if_output == if_nulloutput;
1206 }
1207
1208 void
1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1210 {
1211 struct ifaddr *ifa, *nifa;
1212 int s;
1213
1214 s = pserialize_read_enter();
1215 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1216 nifa = IFADDR_READER_NEXT(ifa);
1217 if (ifa->ifa_addr->sa_family != family)
1218 continue;
1219 pserialize_read_exit(s);
1220
1221 (*purgeaddr)(ifa);
1222
1223 s = pserialize_read_enter();
1224 }
1225 pserialize_read_exit(s);
1226 }
1227
1228 #ifdef IFAREF_DEBUG
1229 static struct ifaddr **ifa_list;
1230 static int ifa_list_size;
1231
1232 /* Depends on only one if_attach runs at once */
1233 static void
1234 if_build_ifa_list(struct ifnet *ifp)
1235 {
1236 struct ifaddr *ifa;
1237 int i;
1238
1239 KASSERT(ifa_list == NULL);
1240 KASSERT(ifa_list_size == 0);
1241
1242 IFADDR_READER_FOREACH(ifa, ifp)
1243 ifa_list_size++;
1244
1245 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1246 i = 0;
1247 IFADDR_READER_FOREACH(ifa, ifp) {
1248 ifa_list[i++] = ifa;
1249 ifaref(ifa);
1250 }
1251 }
1252
1253 static void
1254 if_check_and_free_ifa_list(struct ifnet *ifp)
1255 {
1256 int i;
1257 struct ifaddr *ifa;
1258
1259 if (ifa_list == NULL)
1260 return;
1261
1262 for (i = 0; i < ifa_list_size; i++) {
1263 char buf[64];
1264
1265 ifa = ifa_list[i];
1266 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1267 if (ifa->ifa_refcnt > 1) {
1268 log(LOG_WARNING,
1269 "ifa(%s) still referenced (refcnt=%d)\n",
1270 buf, ifa->ifa_refcnt - 1);
1271 } else
1272 log(LOG_DEBUG,
1273 "ifa(%s) not referenced (refcnt=%d)\n",
1274 buf, ifa->ifa_refcnt - 1);
1275 ifafree(ifa);
1276 }
1277
1278 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1279 ifa_list = NULL;
1280 ifa_list_size = 0;
1281 }
1282 #endif
1283
1284 /*
1285 * Detach an interface from the list of "active" interfaces,
1286 * freeing any resources as we go along.
1287 *
1288 * NOTE: This routine must be called with a valid thread context,
1289 * as it may block.
1290 */
1291 void
1292 if_detach(struct ifnet *ifp)
1293 {
1294 struct socket so;
1295 struct ifaddr *ifa;
1296 #ifdef IFAREF_DEBUG
1297 struct ifaddr *last_ifa = NULL;
1298 #endif
1299 struct domain *dp;
1300 const struct protosw *pr;
1301 int s, i, family, purged;
1302 uint64_t xc;
1303
1304 #ifdef IFAREF_DEBUG
1305 if_build_ifa_list(ifp);
1306 #endif
1307 /*
1308 * XXX It's kind of lame that we have to have the
1309 * XXX socket structure...
1310 */
1311 memset(&so, 0, sizeof(so));
1312
1313 s = splnet();
1314
1315 sysctl_teardown(&ifp->if_sysctl_log);
1316 IFNET_LOCK(ifp);
1317 if_deactivate(ifp);
1318 IFNET_UNLOCK(ifp);
1319
1320 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1321 ifp->if_slowtimo = NULL;
1322 callout_halt(ifp->if_slowtimo_ch, NULL);
1323 callout_destroy(ifp->if_slowtimo_ch);
1324 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1325 }
1326 if_deferred_start_destroy(ifp);
1327
1328 /*
1329 * Do an if_down() to give protocols a chance to do something.
1330 */
1331 if_down_deactivated(ifp);
1332
1333 #ifdef ALTQ
1334 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1335 altq_disable(&ifp->if_snd);
1336 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1337 altq_detach(&ifp->if_snd);
1338 #endif
1339
1340 mutex_obj_free(ifp->if_snd.ifq_lock);
1341
1342 #if NCARP > 0
1343 /* Remove the interface from any carp group it is a part of. */
1344 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1345 carp_ifdetach(ifp);
1346 #endif
1347
1348 /*
1349 * Rip all the addresses off the interface. This should make
1350 * all of the routes go away.
1351 *
1352 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1353 * from the list, including our "cursor", ifa. For safety,
1354 * and to honor the TAILQ abstraction, I just restart the
1355 * loop after each removal. Note that the loop will exit
1356 * when all of the remaining ifaddrs belong to the AF_LINK
1357 * family. I am counting on the historical fact that at
1358 * least one pr_usrreq in each address domain removes at
1359 * least one ifaddr.
1360 */
1361 again:
1362 /*
1363 * At this point, no other one tries to remove ifa in the list,
1364 * so we don't need to take a lock or psref. Avoid using
1365 * IFADDR_READER_FOREACH to pass over an inspection of contract
1366 * violations of pserialize.
1367 */
1368 IFADDR_WRITER_FOREACH(ifa, ifp) {
1369 family = ifa->ifa_addr->sa_family;
1370 #ifdef IFAREF_DEBUG
1371 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1372 ifa, family, ifa->ifa_refcnt);
1373 if (last_ifa != NULL && ifa == last_ifa)
1374 panic("if_detach: loop detected");
1375 last_ifa = ifa;
1376 #endif
1377 if (family == AF_LINK)
1378 continue;
1379 dp = pffinddomain(family);
1380 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1381 /*
1382 * XXX These PURGEIF calls are redundant with the
1383 * purge-all-families calls below, but are left in for
1384 * now both to make a smaller change, and to avoid
1385 * unplanned interactions with clearing of
1386 * ifp->if_addrlist.
1387 */
1388 purged = 0;
1389 for (pr = dp->dom_protosw;
1390 pr < dp->dom_protoswNPROTOSW; pr++) {
1391 so.so_proto = pr;
1392 if (pr->pr_usrreqs) {
1393 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1394 purged = 1;
1395 }
1396 }
1397 if (purged == 0) {
1398 /*
1399 * XXX What's really the best thing to do
1400 * XXX here? --thorpej (at) NetBSD.org
1401 */
1402 printf("if_detach: WARNING: AF %d not purged\n",
1403 family);
1404 ifa_remove(ifp, ifa);
1405 }
1406 goto again;
1407 }
1408
1409 if_free_sadl(ifp);
1410
1411 /* Delete stray routes from the routing table. */
1412 for (i = 0; i <= AF_MAX; i++)
1413 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1414
1415 DOMAIN_FOREACH(dp) {
1416 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1417 {
1418 void *p = ifp->if_afdata[dp->dom_family];
1419 if (p) {
1420 ifp->if_afdata[dp->dom_family] = NULL;
1421 (*dp->dom_ifdetach)(ifp, p);
1422 }
1423 }
1424
1425 /*
1426 * One would expect multicast memberships (INET and
1427 * INET6) on UDP sockets to be purged by the PURGEIF
1428 * calls above, but if all addresses were removed from
1429 * the interface prior to destruction, the calls will
1430 * not be made (e.g. ppp, for which pppd(8) generally
1431 * removes addresses before destroying the interface).
1432 * Because there is no invariant that multicast
1433 * memberships only exist for interfaces with IPv4
1434 * addresses, we must call PURGEIF regardless of
1435 * addresses. (Protocols which might store ifnet
1436 * pointers are marked with PR_PURGEIF.)
1437 */
1438 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1439 so.so_proto = pr;
1440 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1441 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1442 }
1443 }
1444
1445 /* Wait for all readers to drain before freeing. */
1446 IFNET_GLOBAL_LOCK();
1447 ifindex2ifnet[ifp->if_index] = NULL;
1448 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1449 IFNET_WRITER_REMOVE(ifp);
1450 pserialize_perform(ifnet_psz);
1451 IFNET_GLOBAL_UNLOCK();
1452
1453 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1454 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1455
1456 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1457 (void)pfil_head_destroy(ifp->if_pfil);
1458
1459 /* Announce that the interface is gone. */
1460 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1461
1462 IF_AFDATA_LOCK_DESTROY(ifp);
1463
1464 if (if_is_link_state_changeable(ifp)) {
1465 softint_disestablish(ifp->if_link_si);
1466 ifp->if_link_si = NULL;
1467 }
1468
1469 /*
1470 * remove packets that came from ifp, from software interrupt queues.
1471 */
1472 DOMAIN_FOREACH(dp) {
1473 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1474 struct ifqueue *iq = dp->dom_ifqueues[i];
1475 if (iq == NULL)
1476 break;
1477 dp->dom_ifqueues[i] = NULL;
1478 if_detach_queues(ifp, iq);
1479 }
1480 }
1481
1482 /*
1483 * IP queues have to be processed separately: net-queue barrier
1484 * ensures that the packets are dequeued while a cross-call will
1485 * ensure that the interrupts have completed. FIXME: not quite..
1486 */
1487 #ifdef INET
1488 pktq_barrier(ip_pktq);
1489 #endif
1490 #ifdef INET6
1491 if (in6_present)
1492 pktq_barrier(ip6_pktq);
1493 #endif
1494 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1495 xc_wait(xc);
1496
1497 if (ifp->if_percpuq != NULL) {
1498 if_percpuq_destroy(ifp->if_percpuq);
1499 ifp->if_percpuq = NULL;
1500 }
1501
1502 mutex_obj_free(ifp->if_ioctl_lock);
1503 ifp->if_ioctl_lock = NULL;
1504
1505 splx(s);
1506
1507 #ifdef IFAREF_DEBUG
1508 if_check_and_free_ifa_list(ifp);
1509 #endif
1510 }
1511
1512 static void
1513 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1514 {
1515 struct mbuf *m, *prev, *next;
1516
1517 prev = NULL;
1518 for (m = q->ifq_head; m != NULL; m = next) {
1519 KASSERT((m->m_flags & M_PKTHDR) != 0);
1520
1521 next = m->m_nextpkt;
1522 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1523 prev = m;
1524 continue;
1525 }
1526
1527 if (prev != NULL)
1528 prev->m_nextpkt = m->m_nextpkt;
1529 else
1530 q->ifq_head = m->m_nextpkt;
1531 if (q->ifq_tail == m)
1532 q->ifq_tail = prev;
1533 q->ifq_len--;
1534
1535 m->m_nextpkt = NULL;
1536 m_freem(m);
1537 IF_DROP(q);
1538 }
1539 }
1540
1541 /*
1542 * Callback for a radix tree walk to delete all references to an
1543 * ifnet.
1544 */
1545 static int
1546 if_delroute_matcher(struct rtentry *rt, void *v)
1547 {
1548 struct ifnet *ifp = (struct ifnet *)v;
1549
1550 if (rt->rt_ifp == ifp)
1551 return 1;
1552 else
1553 return 0;
1554 }
1555
1556 /*
1557 * Create a clone network interface.
1558 */
1559 static int
1560 if_clone_create(const char *name)
1561 {
1562 struct if_clone *ifc;
1563 int unit;
1564 struct ifnet *ifp;
1565 struct psref psref;
1566
1567 KASSERT(mutex_owned(&if_clone_mtx));
1568
1569 ifc = if_clone_lookup(name, &unit);
1570 if (ifc == NULL)
1571 return EINVAL;
1572
1573 ifp = if_get(name, &psref);
1574 if (ifp != NULL) {
1575 if_put(ifp, &psref);
1576 return EEXIST;
1577 }
1578
1579 return (*ifc->ifc_create)(ifc, unit);
1580 }
1581
1582 /*
1583 * Destroy a clone network interface.
1584 */
1585 static int
1586 if_clone_destroy(const char *name)
1587 {
1588 struct if_clone *ifc;
1589 struct ifnet *ifp;
1590 struct psref psref;
1591
1592 KASSERT(mutex_owned(&if_clone_mtx));
1593
1594 ifc = if_clone_lookup(name, NULL);
1595 if (ifc == NULL)
1596 return EINVAL;
1597
1598 if (ifc->ifc_destroy == NULL)
1599 return EOPNOTSUPP;
1600
1601 ifp = if_get(name, &psref);
1602 if (ifp == NULL)
1603 return ENXIO;
1604
1605 /* We have to disable ioctls here */
1606 IFNET_LOCK(ifp);
1607 ifp->if_ioctl = if_nullioctl;
1608 IFNET_UNLOCK(ifp);
1609
1610 /*
1611 * We cannot call ifc_destroy with holding ifp.
1612 * Releasing ifp here is safe thanks to if_clone_mtx.
1613 */
1614 if_put(ifp, &psref);
1615
1616 return (*ifc->ifc_destroy)(ifp);
1617 }
1618
1619 static bool
1620 if_is_unit(const char *name)
1621 {
1622
1623 while(*name != '\0') {
1624 if (*name < '0' || *name > '9')
1625 return false;
1626 name++;
1627 }
1628
1629 return true;
1630 }
1631
1632 /*
1633 * Look up a network interface cloner.
1634 */
1635 static struct if_clone *
1636 if_clone_lookup(const char *name, int *unitp)
1637 {
1638 struct if_clone *ifc;
1639 const char *cp;
1640 char *dp, ifname[IFNAMSIZ + 3];
1641 int unit;
1642
1643 KASSERT(mutex_owned(&if_clone_mtx));
1644
1645 strcpy(ifname, "if_");
1646 /* separate interface name from unit */
1647 /* TODO: search unit number from backward */
1648 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1649 *cp && !if_is_unit(cp);)
1650 *dp++ = *cp++;
1651
1652 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1653 return NULL; /* No name or unit number */
1654 *dp++ = '\0';
1655
1656 again:
1657 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1658 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1659 break;
1660 }
1661
1662 if (ifc == NULL) {
1663 int error;
1664 if (*ifname == '\0')
1665 return NULL;
1666 mutex_exit(&if_clone_mtx);
1667 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1668 mutex_enter(&if_clone_mtx);
1669 if (error)
1670 return NULL;
1671 *ifname = '\0';
1672 goto again;
1673 }
1674
1675 unit = 0;
1676 while (cp - name < IFNAMSIZ && *cp) {
1677 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1678 /* Bogus unit number. */
1679 return NULL;
1680 }
1681 unit = (unit * 10) + (*cp++ - '0');
1682 }
1683
1684 if (unitp != NULL)
1685 *unitp = unit;
1686 return ifc;
1687 }
1688
1689 /*
1690 * Register a network interface cloner.
1691 */
1692 void
1693 if_clone_attach(struct if_clone *ifc)
1694 {
1695
1696 mutex_enter(&if_clone_mtx);
1697 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1698 if_cloners_count++;
1699 mutex_exit(&if_clone_mtx);
1700 }
1701
1702 /*
1703 * Unregister a network interface cloner.
1704 */
1705 void
1706 if_clone_detach(struct if_clone *ifc)
1707 {
1708
1709 mutex_enter(&if_clone_mtx);
1710 LIST_REMOVE(ifc, ifc_list);
1711 if_cloners_count--;
1712 mutex_exit(&if_clone_mtx);
1713 }
1714
1715 /*
1716 * Provide list of interface cloners to userspace.
1717 */
1718 int
1719 if_clone_list(int buf_count, char *buffer, int *total)
1720 {
1721 char outbuf[IFNAMSIZ], *dst;
1722 struct if_clone *ifc;
1723 int count, error = 0;
1724
1725 mutex_enter(&if_clone_mtx);
1726 *total = if_cloners_count;
1727 if ((dst = buffer) == NULL) {
1728 /* Just asking how many there are. */
1729 goto out;
1730 }
1731
1732 if (buf_count < 0) {
1733 error = EINVAL;
1734 goto out;
1735 }
1736
1737 count = (if_cloners_count < buf_count) ?
1738 if_cloners_count : buf_count;
1739
1740 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1741 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1742 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1743 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1744 error = ENAMETOOLONG;
1745 goto out;
1746 }
1747 error = copyout(outbuf, dst, sizeof(outbuf));
1748 if (error != 0)
1749 break;
1750 }
1751
1752 out:
1753 mutex_exit(&if_clone_mtx);
1754 return error;
1755 }
1756
1757 void
1758 ifa_psref_init(struct ifaddr *ifa)
1759 {
1760
1761 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1762 }
1763
1764 void
1765 ifaref(struct ifaddr *ifa)
1766 {
1767 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1768 ifa->ifa_refcnt++;
1769 }
1770
1771 void
1772 ifafree(struct ifaddr *ifa)
1773 {
1774 KASSERT(ifa != NULL);
1775 KASSERT(ifa->ifa_refcnt > 0);
1776
1777 if (--ifa->ifa_refcnt == 0) {
1778 free(ifa, M_IFADDR);
1779 }
1780 }
1781
1782 bool
1783 ifa_is_destroying(struct ifaddr *ifa)
1784 {
1785
1786 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1787 }
1788
1789 void
1790 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1791 {
1792
1793 ifa->ifa_ifp = ifp;
1794
1795 IFNET_GLOBAL_LOCK();
1796 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1797 IFADDR_ENTRY_INIT(ifa);
1798 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1799 IFNET_GLOBAL_UNLOCK();
1800
1801 ifaref(ifa);
1802 }
1803
1804 void
1805 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1806 {
1807
1808 KASSERT(ifa->ifa_ifp == ifp);
1809
1810 IFNET_GLOBAL_LOCK();
1811 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1812 IFADDR_WRITER_REMOVE(ifa);
1813 #ifdef NET_MPSAFE
1814 pserialize_perform(ifnet_psz);
1815 #endif
1816 IFNET_GLOBAL_UNLOCK();
1817
1818 #ifdef NET_MPSAFE
1819 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1820 #endif
1821 IFADDR_ENTRY_DESTROY(ifa);
1822 ifafree(ifa);
1823 }
1824
1825 void
1826 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1827 {
1828
1829 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1830 }
1831
1832 void
1833 ifa_release(struct ifaddr *ifa, struct psref *psref)
1834 {
1835
1836 if (ifa == NULL)
1837 return;
1838
1839 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1840 }
1841
1842 bool
1843 ifa_held(struct ifaddr *ifa)
1844 {
1845
1846 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1847 }
1848
1849 static inline int
1850 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1851 {
1852 return sockaddr_cmp(sa1, sa2) == 0;
1853 }
1854
1855 /*
1856 * Locate an interface based on a complete address.
1857 */
1858 /*ARGSUSED*/
1859 struct ifaddr *
1860 ifa_ifwithaddr(const struct sockaddr *addr)
1861 {
1862 struct ifnet *ifp;
1863 struct ifaddr *ifa;
1864
1865 IFNET_READER_FOREACH(ifp) {
1866 if (if_is_deactivated(ifp))
1867 continue;
1868 IFADDR_READER_FOREACH(ifa, ifp) {
1869 if (ifa->ifa_addr->sa_family != addr->sa_family)
1870 continue;
1871 if (equal(addr, ifa->ifa_addr))
1872 return ifa;
1873 if ((ifp->if_flags & IFF_BROADCAST) &&
1874 ifa->ifa_broadaddr &&
1875 /* IP6 doesn't have broadcast */
1876 ifa->ifa_broadaddr->sa_len != 0 &&
1877 equal(ifa->ifa_broadaddr, addr))
1878 return ifa;
1879 }
1880 }
1881 return NULL;
1882 }
1883
1884 struct ifaddr *
1885 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1886 {
1887 struct ifaddr *ifa;
1888 int s = pserialize_read_enter();
1889
1890 ifa = ifa_ifwithaddr(addr);
1891 if (ifa != NULL)
1892 ifa_acquire(ifa, psref);
1893 pserialize_read_exit(s);
1894
1895 return ifa;
1896 }
1897
1898 /*
1899 * Locate the point to point interface with a given destination address.
1900 */
1901 /*ARGSUSED*/
1902 struct ifaddr *
1903 ifa_ifwithdstaddr(const struct sockaddr *addr)
1904 {
1905 struct ifnet *ifp;
1906 struct ifaddr *ifa;
1907
1908 IFNET_READER_FOREACH(ifp) {
1909 if (if_is_deactivated(ifp))
1910 continue;
1911 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1912 continue;
1913 IFADDR_READER_FOREACH(ifa, ifp) {
1914 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1915 ifa->ifa_dstaddr == NULL)
1916 continue;
1917 if (equal(addr, ifa->ifa_dstaddr))
1918 return ifa;
1919 }
1920 }
1921
1922 return NULL;
1923 }
1924
1925 struct ifaddr *
1926 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1927 {
1928 struct ifaddr *ifa;
1929 int s;
1930
1931 s = pserialize_read_enter();
1932 ifa = ifa_ifwithdstaddr(addr);
1933 if (ifa != NULL)
1934 ifa_acquire(ifa, psref);
1935 pserialize_read_exit(s);
1936
1937 return ifa;
1938 }
1939
1940 /*
1941 * Find an interface on a specific network. If many, choice
1942 * is most specific found.
1943 */
1944 struct ifaddr *
1945 ifa_ifwithnet(const struct sockaddr *addr)
1946 {
1947 struct ifnet *ifp;
1948 struct ifaddr *ifa, *ifa_maybe = NULL;
1949 const struct sockaddr_dl *sdl;
1950 u_int af = addr->sa_family;
1951 const char *addr_data = addr->sa_data, *cplim;
1952
1953 if (af == AF_LINK) {
1954 sdl = satocsdl(addr);
1955 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1956 ifindex2ifnet[sdl->sdl_index] &&
1957 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1958 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1959 }
1960 }
1961 #ifdef NETATALK
1962 if (af == AF_APPLETALK) {
1963 const struct sockaddr_at *sat, *sat2;
1964 sat = (const struct sockaddr_at *)addr;
1965 IFNET_READER_FOREACH(ifp) {
1966 if (if_is_deactivated(ifp))
1967 continue;
1968 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1969 if (ifa == NULL)
1970 continue;
1971 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1972 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1973 return ifa; /* exact match */
1974 if (ifa_maybe == NULL) {
1975 /* else keep the if with the right range */
1976 ifa_maybe = ifa;
1977 }
1978 }
1979 return ifa_maybe;
1980 }
1981 #endif
1982 IFNET_READER_FOREACH(ifp) {
1983 if (if_is_deactivated(ifp))
1984 continue;
1985 IFADDR_READER_FOREACH(ifa, ifp) {
1986 const char *cp, *cp2, *cp3;
1987
1988 if (ifa->ifa_addr->sa_family != af ||
1989 ifa->ifa_netmask == NULL)
1990 next: continue;
1991 cp = addr_data;
1992 cp2 = ifa->ifa_addr->sa_data;
1993 cp3 = ifa->ifa_netmask->sa_data;
1994 cplim = (const char *)ifa->ifa_netmask +
1995 ifa->ifa_netmask->sa_len;
1996 while (cp3 < cplim) {
1997 if ((*cp++ ^ *cp2++) & *cp3++) {
1998 /* want to continue for() loop */
1999 goto next;
2000 }
2001 }
2002 if (ifa_maybe == NULL ||
2003 rt_refines(ifa->ifa_netmask,
2004 ifa_maybe->ifa_netmask))
2005 ifa_maybe = ifa;
2006 }
2007 }
2008 return ifa_maybe;
2009 }
2010
2011 struct ifaddr *
2012 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2013 {
2014 struct ifaddr *ifa;
2015 int s;
2016
2017 s = pserialize_read_enter();
2018 ifa = ifa_ifwithnet(addr);
2019 if (ifa != NULL)
2020 ifa_acquire(ifa, psref);
2021 pserialize_read_exit(s);
2022
2023 return ifa;
2024 }
2025
2026 /*
2027 * Find the interface of the addresss.
2028 */
2029 struct ifaddr *
2030 ifa_ifwithladdr(const struct sockaddr *addr)
2031 {
2032 struct ifaddr *ia;
2033
2034 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2035 (ia = ifa_ifwithnet(addr)))
2036 return ia;
2037 return NULL;
2038 }
2039
2040 struct ifaddr *
2041 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2042 {
2043 struct ifaddr *ifa;
2044 int s;
2045
2046 s = pserialize_read_enter();
2047 ifa = ifa_ifwithladdr(addr);
2048 if (ifa != NULL)
2049 ifa_acquire(ifa, psref);
2050 pserialize_read_exit(s);
2051
2052 return ifa;
2053 }
2054
2055 /*
2056 * Find an interface using a specific address family
2057 */
2058 struct ifaddr *
2059 ifa_ifwithaf(int af)
2060 {
2061 struct ifnet *ifp;
2062 struct ifaddr *ifa = NULL;
2063 int s;
2064
2065 s = pserialize_read_enter();
2066 IFNET_READER_FOREACH(ifp) {
2067 if (if_is_deactivated(ifp))
2068 continue;
2069 IFADDR_READER_FOREACH(ifa, ifp) {
2070 if (ifa->ifa_addr->sa_family == af)
2071 goto out;
2072 }
2073 }
2074 out:
2075 pserialize_read_exit(s);
2076 return ifa;
2077 }
2078
2079 /*
2080 * Find an interface address specific to an interface best matching
2081 * a given address.
2082 */
2083 struct ifaddr *
2084 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2085 {
2086 struct ifaddr *ifa;
2087 const char *cp, *cp2, *cp3;
2088 const char *cplim;
2089 struct ifaddr *ifa_maybe = 0;
2090 u_int af = addr->sa_family;
2091
2092 if (if_is_deactivated(ifp))
2093 return NULL;
2094
2095 if (af >= AF_MAX)
2096 return NULL;
2097
2098 IFADDR_READER_FOREACH(ifa, ifp) {
2099 if (ifa->ifa_addr->sa_family != af)
2100 continue;
2101 ifa_maybe = ifa;
2102 if (ifa->ifa_netmask == NULL) {
2103 if (equal(addr, ifa->ifa_addr) ||
2104 (ifa->ifa_dstaddr &&
2105 equal(addr, ifa->ifa_dstaddr)))
2106 return ifa;
2107 continue;
2108 }
2109 cp = addr->sa_data;
2110 cp2 = ifa->ifa_addr->sa_data;
2111 cp3 = ifa->ifa_netmask->sa_data;
2112 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2113 for (; cp3 < cplim; cp3++) {
2114 if ((*cp++ ^ *cp2++) & *cp3)
2115 break;
2116 }
2117 if (cp3 == cplim)
2118 return ifa;
2119 }
2120 return ifa_maybe;
2121 }
2122
2123 struct ifaddr *
2124 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2125 struct psref *psref)
2126 {
2127 struct ifaddr *ifa;
2128 int s;
2129
2130 s = pserialize_read_enter();
2131 ifa = ifaof_ifpforaddr(addr, ifp);
2132 if (ifa != NULL)
2133 ifa_acquire(ifa, psref);
2134 pserialize_read_exit(s);
2135
2136 return ifa;
2137 }
2138
2139 /*
2140 * Default action when installing a route with a Link Level gateway.
2141 * Lookup an appropriate real ifa to point to.
2142 * This should be moved to /sys/net/link.c eventually.
2143 */
2144 void
2145 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2146 {
2147 struct ifaddr *ifa;
2148 const struct sockaddr *dst;
2149 struct ifnet *ifp;
2150 struct psref psref;
2151
2152 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2153 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2154 return;
2155 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2156 rt_replace_ifa(rt, ifa);
2157 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2158 ifa->ifa_rtrequest(cmd, rt, info);
2159 ifa_release(ifa, &psref);
2160 }
2161 }
2162
2163 /*
2164 * bitmask macros to manage a densely packed link_state change queue.
2165 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2166 * LINK_STATE_UP(2) we need 2 bits for each state change.
2167 * As a state change to store is 0, treat all bits set as an unset item.
2168 */
2169 #define LQ_ITEM_BITS 2
2170 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2171 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2172 #define LINK_STATE_UNSET LQ_ITEM_MASK
2173 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2174 #define LQ_STORE(q, i, v) \
2175 do { \
2176 (q) &= ~LQ_MASK((i)); \
2177 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2178 } while (0 /* CONSTCOND */)
2179 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2180 #define LQ_POP(q, v) \
2181 do { \
2182 (v) = LQ_ITEM((q), 0); \
2183 (q) >>= LQ_ITEM_BITS; \
2184 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2185 } while (0 /* CONSTCOND */)
2186 #define LQ_PUSH(q, v) \
2187 do { \
2188 (q) >>= LQ_ITEM_BITS; \
2189 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2190 } while (0 /* CONSTCOND */)
2191 #define LQ_FIND_UNSET(q, i) \
2192 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2193 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2194 break; \
2195 }
2196
2197 /*
2198 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2199 * for each ifnet. It doesn't matter because:
2200 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2201 * ifq_lock don't happen
2202 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2203 * because if_snd, if_link_state_change and if_link_state_change_softint
2204 * are all called with KERNEL_LOCK
2205 */
2206 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2207 mutex_enter((ifp)->if_snd.ifq_lock)
2208 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2209 mutex_exit((ifp)->if_snd.ifq_lock)
2210
2211 /*
2212 * Handle a change in the interface link state and
2213 * queue notifications.
2214 */
2215 void
2216 if_link_state_change(struct ifnet *ifp, int link_state)
2217 {
2218 int idx;
2219
2220 KASSERTMSG(if_is_link_state_changeable(ifp),
2221 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2222 ifp->if_xname, ifp->if_extflags);
2223
2224 /* Ensure change is to a valid state */
2225 switch (link_state) {
2226 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2227 case LINK_STATE_DOWN: /* FALLTHROUGH */
2228 case LINK_STATE_UP:
2229 break;
2230 default:
2231 #ifdef DEBUG
2232 printf("%s: invalid link state %d\n",
2233 ifp->if_xname, link_state);
2234 #endif
2235 return;
2236 }
2237
2238 IF_LINK_STATE_CHANGE_LOCK(ifp);
2239
2240 /* Find the last unset event in the queue. */
2241 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2242
2243 /*
2244 * Ensure link_state doesn't match the last event in the queue.
2245 * ifp->if_link_state is not checked and set here because
2246 * that would present an inconsistent picture to the system.
2247 */
2248 if (idx != 0 &&
2249 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2250 goto out;
2251
2252 /* Handle queue overflow. */
2253 if (idx == LQ_MAX(ifp->if_link_queue)) {
2254 uint8_t lost;
2255
2256 /*
2257 * The DOWN state must be protected from being pushed off
2258 * the queue to ensure that userland will always be
2259 * in a sane state.
2260 * Because DOWN is protected, there is no need to protect
2261 * UNKNOWN.
2262 * It should be invalid to change from any other state to
2263 * UNKNOWN anyway ...
2264 */
2265 lost = LQ_ITEM(ifp->if_link_queue, 0);
2266 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2267 if (lost == LINK_STATE_DOWN) {
2268 lost = LQ_ITEM(ifp->if_link_queue, 0);
2269 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2270 }
2271 printf("%s: lost link state change %s\n",
2272 ifp->if_xname,
2273 lost == LINK_STATE_UP ? "UP" :
2274 lost == LINK_STATE_DOWN ? "DOWN" :
2275 "UNKNOWN");
2276 } else
2277 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2278
2279 softint_schedule(ifp->if_link_si);
2280
2281 out:
2282 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2283 }
2284
2285 /*
2286 * Handle interface link state change notifications.
2287 */
2288 void
2289 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2290 {
2291 struct domain *dp;
2292 int s = splnet();
2293 bool notify;
2294
2295 KASSERT(!cpu_intr_p());
2296
2297 IF_LINK_STATE_CHANGE_LOCK(ifp);
2298
2299 /* Ensure the change is still valid. */
2300 if (ifp->if_link_state == link_state) {
2301 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2302 return;
2303 }
2304
2305 #ifdef DEBUG
2306 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2307 link_state == LINK_STATE_UP ? "UP" :
2308 link_state == LINK_STATE_DOWN ? "DOWN" :
2309 "UNKNOWN",
2310 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2311 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2312 "UNKNOWN");
2313 #endif
2314
2315 /*
2316 * When going from UNKNOWN to UP, we need to mark existing
2317 * addresses as tentative and restart DAD as we may have
2318 * erroneously not found a duplicate.
2319 *
2320 * This needs to happen before rt_ifmsg to avoid a race where
2321 * listeners would have an address and expect it to work right
2322 * away.
2323 */
2324 notify = (link_state == LINK_STATE_UP &&
2325 ifp->if_link_state == LINK_STATE_UNKNOWN);
2326 ifp->if_link_state = link_state;
2327 /* The following routines may sleep so release the spin mutex */
2328 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2329
2330 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2331 if (notify) {
2332 DOMAIN_FOREACH(dp) {
2333 if (dp->dom_if_link_state_change != NULL)
2334 dp->dom_if_link_state_change(ifp,
2335 LINK_STATE_DOWN);
2336 }
2337 }
2338
2339 /* Notify that the link state has changed. */
2340 rt_ifmsg(ifp);
2341
2342 #if NCARP > 0
2343 if (ifp->if_carp)
2344 carp_carpdev_state(ifp);
2345 #endif
2346
2347 DOMAIN_FOREACH(dp) {
2348 if (dp->dom_if_link_state_change != NULL)
2349 dp->dom_if_link_state_change(ifp, link_state);
2350 }
2351 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2352 splx(s);
2353 }
2354
2355 /*
2356 * Process the interface link state change queue.
2357 */
2358 static void
2359 if_link_state_change_si(void *arg)
2360 {
2361 struct ifnet *ifp = arg;
2362 int s;
2363 uint8_t state;
2364 bool schedule;
2365
2366 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2367 s = splnet();
2368
2369 /* Pop a link state change from the queue and process it. */
2370 IF_LINK_STATE_CHANGE_LOCK(ifp);
2371 LQ_POP(ifp->if_link_queue, state);
2372 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2373
2374 if_link_state_change_softint(ifp, state);
2375
2376 /* If there is a link state change to come, schedule it. */
2377 IF_LINK_STATE_CHANGE_LOCK(ifp);
2378 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2379 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2380 if (schedule)
2381 softint_schedule(ifp->if_link_si);
2382
2383 splx(s);
2384 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2385 }
2386
2387 /*
2388 * Default action when installing a local route on a point-to-point
2389 * interface.
2390 */
2391 void
2392 p2p_rtrequest(int req, struct rtentry *rt,
2393 __unused const struct rt_addrinfo *info)
2394 {
2395 struct ifnet *ifp = rt->rt_ifp;
2396 struct ifaddr *ifa, *lo0ifa;
2397 int s = pserialize_read_enter();
2398
2399 switch (req) {
2400 case RTM_ADD:
2401 if ((rt->rt_flags & RTF_LOCAL) == 0)
2402 break;
2403
2404 rt->rt_ifp = lo0ifp;
2405
2406 IFADDR_READER_FOREACH(ifa, ifp) {
2407 if (equal(rt_getkey(rt), ifa->ifa_addr))
2408 break;
2409 }
2410 if (ifa == NULL)
2411 break;
2412
2413 /*
2414 * Ensure lo0 has an address of the same family.
2415 */
2416 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2417 if (lo0ifa->ifa_addr->sa_family ==
2418 ifa->ifa_addr->sa_family)
2419 break;
2420 }
2421 if (lo0ifa == NULL)
2422 break;
2423
2424 /*
2425 * Make sure to set rt->rt_ifa to the interface
2426 * address we are using, otherwise we will have trouble
2427 * with source address selection.
2428 */
2429 if (ifa != rt->rt_ifa)
2430 rt_replace_ifa(rt, ifa);
2431 break;
2432 case RTM_DELETE:
2433 default:
2434 break;
2435 }
2436 pserialize_read_exit(s);
2437 }
2438
2439 static void
2440 _if_down(struct ifnet *ifp)
2441 {
2442 struct ifaddr *ifa;
2443 struct domain *dp;
2444 int s, bound;
2445 struct psref psref;
2446
2447 ifp->if_flags &= ~IFF_UP;
2448 nanotime(&ifp->if_lastchange);
2449
2450 bound = curlwp_bind();
2451 s = pserialize_read_enter();
2452 IFADDR_READER_FOREACH(ifa, ifp) {
2453 ifa_acquire(ifa, &psref);
2454 pserialize_read_exit(s);
2455
2456 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2457
2458 s = pserialize_read_enter();
2459 ifa_release(ifa, &psref);
2460 }
2461 pserialize_read_exit(s);
2462 curlwp_bindx(bound);
2463
2464 IFQ_PURGE(&ifp->if_snd);
2465 #if NCARP > 0
2466 if (ifp->if_carp)
2467 carp_carpdev_state(ifp);
2468 #endif
2469 rt_ifmsg(ifp);
2470 DOMAIN_FOREACH(dp) {
2471 if (dp->dom_if_down)
2472 dp->dom_if_down(ifp);
2473 }
2474 }
2475
2476 static void
2477 if_down_deactivated(struct ifnet *ifp)
2478 {
2479
2480 KASSERT(if_is_deactivated(ifp));
2481 _if_down(ifp);
2482 }
2483
2484 void
2485 if_down_locked(struct ifnet *ifp)
2486 {
2487
2488 KASSERT(IFNET_LOCKED(ifp));
2489 _if_down(ifp);
2490 }
2491
2492 /*
2493 * Mark an interface down and notify protocols of
2494 * the transition.
2495 * NOTE: must be called at splsoftnet or equivalent.
2496 */
2497 void
2498 if_down(struct ifnet *ifp)
2499 {
2500
2501 IFNET_LOCK(ifp);
2502 if_down_locked(ifp);
2503 IFNET_UNLOCK(ifp);
2504 }
2505
2506 /*
2507 * Must be called with holding if_ioctl_lock.
2508 */
2509 static void
2510 if_up_locked(struct ifnet *ifp)
2511 {
2512 #ifdef notyet
2513 struct ifaddr *ifa;
2514 #endif
2515 struct domain *dp;
2516
2517 KASSERT(IFNET_LOCKED(ifp));
2518
2519 KASSERT(!if_is_deactivated(ifp));
2520 ifp->if_flags |= IFF_UP;
2521 nanotime(&ifp->if_lastchange);
2522 #ifdef notyet
2523 /* this has no effect on IP, and will kill all ISO connections XXX */
2524 IFADDR_READER_FOREACH(ifa, ifp)
2525 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2526 #endif
2527 #if NCARP > 0
2528 if (ifp->if_carp)
2529 carp_carpdev_state(ifp);
2530 #endif
2531 rt_ifmsg(ifp);
2532 DOMAIN_FOREACH(dp) {
2533 if (dp->dom_if_up)
2534 dp->dom_if_up(ifp);
2535 }
2536 }
2537
2538 /*
2539 * Handle interface slowtimo timer routine. Called
2540 * from softclock, we decrement timer (if set) and
2541 * call the appropriate interface routine on expiration.
2542 */
2543 static void
2544 if_slowtimo(void *arg)
2545 {
2546 void (*slowtimo)(struct ifnet *);
2547 struct ifnet *ifp = arg;
2548 int s;
2549
2550 slowtimo = ifp->if_slowtimo;
2551 if (__predict_false(slowtimo == NULL))
2552 return;
2553
2554 s = splnet();
2555 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2556 (*slowtimo)(ifp);
2557
2558 splx(s);
2559
2560 if (__predict_true(ifp->if_slowtimo != NULL))
2561 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2562 }
2563
2564 /*
2565 * Mark an interface up and notify protocols of
2566 * the transition.
2567 * NOTE: must be called at splsoftnet or equivalent.
2568 */
2569 void
2570 if_up(struct ifnet *ifp)
2571 {
2572
2573 IFNET_LOCK(ifp);
2574 if_up_locked(ifp);
2575 IFNET_UNLOCK(ifp);
2576 }
2577
2578 /*
2579 * Set/clear promiscuous mode on interface ifp based on the truth value
2580 * of pswitch. The calls are reference counted so that only the first
2581 * "on" request actually has an effect, as does the final "off" request.
2582 * Results are undefined if the "off" and "on" requests are not matched.
2583 */
2584 int
2585 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2586 {
2587 int pcount, ret = 0;
2588 short nflags;
2589
2590 KASSERT(IFNET_LOCKED(ifp));
2591
2592 pcount = ifp->if_pcount;
2593 if (pswitch) {
2594 /*
2595 * Allow the device to be "placed" into promiscuous
2596 * mode even if it is not configured up. It will
2597 * consult IFF_PROMISC when it is brought up.
2598 */
2599 if (ifp->if_pcount++ != 0)
2600 goto out;
2601 nflags = ifp->if_flags | IFF_PROMISC;
2602 } else {
2603 if (--ifp->if_pcount > 0)
2604 goto out;
2605 nflags = ifp->if_flags & ~IFF_PROMISC;
2606 }
2607 ret = if_flags_set(ifp, nflags);
2608 /* Restore interface state if not successful. */
2609 if (ret != 0) {
2610 ifp->if_pcount = pcount;
2611 }
2612 out:
2613 return ret;
2614 }
2615
2616 int
2617 ifpromisc(struct ifnet *ifp, int pswitch)
2618 {
2619 int e;
2620
2621 IFNET_LOCK(ifp);
2622 e = ifpromisc_locked(ifp, pswitch);
2623 IFNET_UNLOCK(ifp);
2624
2625 return e;
2626 }
2627
2628 /*
2629 * Map interface name to
2630 * interface structure pointer.
2631 */
2632 struct ifnet *
2633 ifunit(const char *name)
2634 {
2635 struct ifnet *ifp;
2636 const char *cp = name;
2637 u_int unit = 0;
2638 u_int i;
2639 int s;
2640
2641 /*
2642 * If the entire name is a number, treat it as an ifindex.
2643 */
2644 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2645 unit = unit * 10 + (*cp - '0');
2646 }
2647
2648 /*
2649 * If the number took all of the name, then it's a valid ifindex.
2650 */
2651 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2652 return if_byindex(unit);
2653
2654 ifp = NULL;
2655 s = pserialize_read_enter();
2656 IFNET_READER_FOREACH(ifp) {
2657 if (if_is_deactivated(ifp))
2658 continue;
2659 if (strcmp(ifp->if_xname, name) == 0)
2660 goto out;
2661 }
2662 out:
2663 pserialize_read_exit(s);
2664 return ifp;
2665 }
2666
2667 /*
2668 * Get a reference of an ifnet object by an interface name.
2669 * The returned reference is protected by psref(9). The caller
2670 * must release a returned reference by if_put after use.
2671 */
2672 struct ifnet *
2673 if_get(const char *name, struct psref *psref)
2674 {
2675 struct ifnet *ifp;
2676 const char *cp = name;
2677 u_int unit = 0;
2678 u_int i;
2679 int s;
2680
2681 /*
2682 * If the entire name is a number, treat it as an ifindex.
2683 */
2684 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2685 unit = unit * 10 + (*cp - '0');
2686 }
2687
2688 /*
2689 * If the number took all of the name, then it's a valid ifindex.
2690 */
2691 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2692 return if_get_byindex(unit, psref);
2693
2694 ifp = NULL;
2695 s = pserialize_read_enter();
2696 IFNET_READER_FOREACH(ifp) {
2697 if (if_is_deactivated(ifp))
2698 continue;
2699 if (strcmp(ifp->if_xname, name) == 0) {
2700 psref_acquire(psref, &ifp->if_psref,
2701 ifnet_psref_class);
2702 goto out;
2703 }
2704 }
2705 out:
2706 pserialize_read_exit(s);
2707 return ifp;
2708 }
2709
2710 /*
2711 * Release a reference of an ifnet object given by if_get, if_get_byindex
2712 * or if_get_bylla.
2713 */
2714 void
2715 if_put(const struct ifnet *ifp, struct psref *psref)
2716 {
2717
2718 if (ifp == NULL)
2719 return;
2720
2721 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2722 }
2723
2724 /*
2725 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2726 * should be used.
2727 */
2728 ifnet_t *
2729 _if_byindex(u_int idx)
2730 {
2731
2732 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2733 }
2734
2735 /*
2736 * Return ifp having idx. Return NULL if not found or the found ifp is
2737 * already deactivated.
2738 */
2739 ifnet_t *
2740 if_byindex(u_int idx)
2741 {
2742 ifnet_t *ifp;
2743
2744 ifp = _if_byindex(idx);
2745 if (ifp != NULL && if_is_deactivated(ifp))
2746 ifp = NULL;
2747 return ifp;
2748 }
2749
2750 /*
2751 * Get a reference of an ifnet object by an interface index.
2752 * The returned reference is protected by psref(9). The caller
2753 * must release a returned reference by if_put after use.
2754 */
2755 ifnet_t *
2756 if_get_byindex(u_int idx, struct psref *psref)
2757 {
2758 ifnet_t *ifp;
2759 int s;
2760
2761 s = pserialize_read_enter();
2762 ifp = if_byindex(idx);
2763 if (__predict_true(ifp != NULL))
2764 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2765 pserialize_read_exit(s);
2766
2767 return ifp;
2768 }
2769
2770 ifnet_t *
2771 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2772 {
2773 ifnet_t *ifp;
2774 int s;
2775
2776 s = pserialize_read_enter();
2777 IFNET_READER_FOREACH(ifp) {
2778 if (if_is_deactivated(ifp))
2779 continue;
2780 if (ifp->if_addrlen != lla_len)
2781 continue;
2782 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2783 psref_acquire(psref, &ifp->if_psref,
2784 ifnet_psref_class);
2785 break;
2786 }
2787 }
2788 pserialize_read_exit(s);
2789
2790 return ifp;
2791 }
2792
2793 /*
2794 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2795 * for example using pserialize or the ifp is already held or some other
2796 * object is held which guarantes the ifp to not be freed indirectly.
2797 */
2798 void
2799 if_acquire(struct ifnet *ifp, struct psref *psref)
2800 {
2801
2802 KASSERT(ifp->if_index != 0);
2803 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2804 }
2805
2806 bool
2807 if_held(struct ifnet *ifp)
2808 {
2809
2810 return psref_held(&ifp->if_psref, ifnet_psref_class);
2811 }
2812
2813 /*
2814 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2815 * Check the tunnel nesting count.
2816 * Return > 0, if tunnel nesting count is more than limit.
2817 * Return 0, if tunnel nesting count is equal or less than limit.
2818 */
2819 int
2820 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2821 {
2822 struct m_tag *mtag;
2823 int *count;
2824
2825 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
2826 if (mtag != NULL) {
2827 count = (int *)(mtag + 1);
2828 if (++(*count) > limit) {
2829 log(LOG_NOTICE,
2830 "%s: recursively called too many times(%d)\n",
2831 ifp->if_xname, *count);
2832 return EIO;
2833 }
2834 } else {
2835 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2836 M_NOWAIT);
2837 if (mtag != NULL) {
2838 m_tag_prepend(m, mtag);
2839 count = (int *)(mtag + 1);
2840 *count = 0;
2841 } else {
2842 log(LOG_DEBUG,
2843 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2844 ifp->if_xname);
2845 }
2846 }
2847
2848 return 0;
2849 }
2850
2851 /* common */
2852 int
2853 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2854 {
2855 int s;
2856 struct ifreq *ifr;
2857 struct ifcapreq *ifcr;
2858 struct ifdatareq *ifdr;
2859
2860 switch (cmd) {
2861 case SIOCSIFCAP:
2862 ifcr = data;
2863 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2864 return EINVAL;
2865
2866 if (ifcr->ifcr_capenable == ifp->if_capenable)
2867 return 0;
2868
2869 ifp->if_capenable = ifcr->ifcr_capenable;
2870
2871 /* Pre-compute the checksum flags mask. */
2872 ifp->if_csum_flags_tx = 0;
2873 ifp->if_csum_flags_rx = 0;
2874 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2875 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2876 }
2877 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2878 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2879 }
2880
2881 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2882 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2883 }
2884 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2885 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2886 }
2887
2888 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2889 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2890 }
2891 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2892 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2893 }
2894
2895 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2896 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2897 }
2898 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2899 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2900 }
2901
2902 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2903 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2904 }
2905 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2906 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2907 }
2908 if (ifp->if_flags & IFF_UP)
2909 return ENETRESET;
2910 return 0;
2911 case SIOCSIFFLAGS:
2912 ifr = data;
2913 /*
2914 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2915 * and if_down aren't MP-safe yet, so we must hold the lock.
2916 */
2917 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2918 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2919 s = splsoftnet();
2920 if_down_locked(ifp);
2921 splx(s);
2922 }
2923 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2924 s = splsoftnet();
2925 if_up_locked(ifp);
2926 splx(s);
2927 }
2928 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2929 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2930 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2931 break;
2932 case SIOCGIFFLAGS:
2933 ifr = data;
2934 ifr->ifr_flags = ifp->if_flags;
2935 break;
2936
2937 case SIOCGIFMETRIC:
2938 ifr = data;
2939 ifr->ifr_metric = ifp->if_metric;
2940 break;
2941
2942 case SIOCGIFMTU:
2943 ifr = data;
2944 ifr->ifr_mtu = ifp->if_mtu;
2945 break;
2946
2947 case SIOCGIFDLT:
2948 ifr = data;
2949 ifr->ifr_dlt = ifp->if_dlt;
2950 break;
2951
2952 case SIOCGIFCAP:
2953 ifcr = data;
2954 ifcr->ifcr_capabilities = ifp->if_capabilities;
2955 ifcr->ifcr_capenable = ifp->if_capenable;
2956 break;
2957
2958 case SIOCSIFMETRIC:
2959 ifr = data;
2960 ifp->if_metric = ifr->ifr_metric;
2961 break;
2962
2963 case SIOCGIFDATA:
2964 ifdr = data;
2965 ifdr->ifdr_data = ifp->if_data;
2966 break;
2967
2968 case SIOCGIFINDEX:
2969 ifr = data;
2970 ifr->ifr_index = ifp->if_index;
2971 break;
2972
2973 case SIOCZIFDATA:
2974 ifdr = data;
2975 ifdr->ifdr_data = ifp->if_data;
2976 /*
2977 * Assumes that the volatile counters that can be
2978 * zero'ed are at the end of if_data.
2979 */
2980 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2981 offsetof(struct if_data, ifi_ipackets));
2982 /*
2983 * The memset() clears to the bottm of if_data. In the area,
2984 * if_lastchange is included. Please be careful if new entry
2985 * will be added into if_data or rewite this.
2986 *
2987 * And also, update if_lastchnage.
2988 */
2989 getnanotime(&ifp->if_lastchange);
2990 break;
2991 case SIOCSIFMTU:
2992 ifr = data;
2993 if (ifp->if_mtu == ifr->ifr_mtu)
2994 break;
2995 ifp->if_mtu = ifr->ifr_mtu;
2996 /*
2997 * If the link MTU changed, do network layer specific procedure.
2998 */
2999 #ifdef INET6
3000 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3001 if (in6_present)
3002 nd6_setmtu(ifp);
3003 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3004 #endif
3005 return ENETRESET;
3006 default:
3007 return ENOTTY;
3008 }
3009 return 0;
3010 }
3011
3012 int
3013 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3014 {
3015 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3016 struct ifaddr *ifa;
3017 const struct sockaddr *any, *sa;
3018 union {
3019 struct sockaddr sa;
3020 struct sockaddr_storage ss;
3021 } u, v;
3022 int s, error = 0;
3023
3024 switch (cmd) {
3025 case SIOCSIFADDRPREF:
3026 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3027 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3028 NULL) != 0)
3029 return EPERM;
3030 case SIOCGIFADDRPREF:
3031 break;
3032 default:
3033 return EOPNOTSUPP;
3034 }
3035
3036 /* sanity checks */
3037 if (data == NULL || ifp == NULL) {
3038 panic("invalid argument to %s", __func__);
3039 /*NOTREACHED*/
3040 }
3041
3042 /* address must be specified on ADD and DELETE */
3043 sa = sstocsa(&ifap->ifap_addr);
3044 if (sa->sa_family != sofamily(so))
3045 return EINVAL;
3046 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3047 return EINVAL;
3048
3049 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3050
3051 s = pserialize_read_enter();
3052 IFADDR_READER_FOREACH(ifa, ifp) {
3053 if (ifa->ifa_addr->sa_family != sa->sa_family)
3054 continue;
3055 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3056 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3057 break;
3058 }
3059 if (ifa == NULL) {
3060 error = EADDRNOTAVAIL;
3061 goto out;
3062 }
3063
3064 switch (cmd) {
3065 case SIOCSIFADDRPREF:
3066 ifa->ifa_preference = ifap->ifap_preference;
3067 goto out;
3068 case SIOCGIFADDRPREF:
3069 /* fill in the if_laddrreq structure */
3070 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3071 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3072 ifap->ifap_preference = ifa->ifa_preference;
3073 goto out;
3074 default:
3075 error = EOPNOTSUPP;
3076 }
3077 out:
3078 pserialize_read_exit(s);
3079 return error;
3080 }
3081
3082 /*
3083 * Interface ioctls.
3084 */
3085 static int
3086 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3087 {
3088 struct ifnet *ifp;
3089 struct ifreq *ifr;
3090 int error = 0;
3091 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
3092 u_long ocmd = cmd;
3093 #endif
3094 short oif_flags;
3095 #ifdef COMPAT_OIFREQ
3096 struct ifreq ifrb;
3097 struct oifreq *oifr = NULL;
3098 #endif
3099 int r;
3100 struct psref psref;
3101 int bound;
3102
3103 switch (cmd) {
3104 #ifdef COMPAT_OIFREQ
3105 case OSIOCGIFCONF:
3106 case OOSIOCGIFCONF:
3107 return compat_ifconf(cmd, data);
3108 #endif
3109 #ifdef COMPAT_OIFDATA
3110 case OSIOCGIFDATA:
3111 case OSIOCZIFDATA:
3112 return compat_ifdatareq(l, cmd, data);
3113 #endif
3114 case SIOCGIFCONF:
3115 return ifconf(cmd, data);
3116 case SIOCINITIFADDR:
3117 return EPERM;
3118 }
3119
3120 #ifdef COMPAT_OIFREQ
3121 cmd = (*vec_compat_cvtcmd)(cmd);
3122 if (cmd != ocmd) {
3123 oifr = data;
3124 data = ifr = &ifrb;
3125 ifreqo2n(oifr, ifr);
3126 } else
3127 #endif
3128 ifr = data;
3129
3130 switch (cmd) {
3131 case SIOCIFCREATE:
3132 case SIOCIFDESTROY:
3133 bound = curlwp_bind();
3134 if (l != NULL) {
3135 ifp = if_get(ifr->ifr_name, &psref);
3136 error = kauth_authorize_network(l->l_cred,
3137 KAUTH_NETWORK_INTERFACE,
3138 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3139 (void *)cmd, NULL);
3140 if (ifp != NULL)
3141 if_put(ifp, &psref);
3142 if (error != 0) {
3143 curlwp_bindx(bound);
3144 return error;
3145 }
3146 }
3147 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3148 mutex_enter(&if_clone_mtx);
3149 r = (cmd == SIOCIFCREATE) ?
3150 if_clone_create(ifr->ifr_name) :
3151 if_clone_destroy(ifr->ifr_name);
3152 mutex_exit(&if_clone_mtx);
3153 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3154 curlwp_bindx(bound);
3155 return r;
3156
3157 case SIOCIFGCLONERS:
3158 {
3159 struct if_clonereq *req = (struct if_clonereq *)data;
3160 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3161 &req->ifcr_total);
3162 }
3163 }
3164
3165 bound = curlwp_bind();
3166 ifp = if_get(ifr->ifr_name, &psref);
3167 if (ifp == NULL) {
3168 curlwp_bindx(bound);
3169 return ENXIO;
3170 }
3171
3172 switch (cmd) {
3173 case SIOCALIFADDR:
3174 case SIOCDLIFADDR:
3175 case SIOCSIFADDRPREF:
3176 case SIOCSIFFLAGS:
3177 case SIOCSIFCAP:
3178 case SIOCSIFMETRIC:
3179 case SIOCZIFDATA:
3180 case SIOCSIFMTU:
3181 case SIOCSIFPHYADDR:
3182 case SIOCDIFPHYADDR:
3183 #ifdef INET6
3184 case SIOCSIFPHYADDR_IN6:
3185 #endif
3186 case SIOCSLIFPHYADDR:
3187 case SIOCADDMULTI:
3188 case SIOCDELMULTI:
3189 case SIOCSIFMEDIA:
3190 case SIOCSDRVSPEC:
3191 case SIOCG80211:
3192 case SIOCS80211:
3193 case SIOCS80211NWID:
3194 case SIOCS80211NWKEY:
3195 case SIOCS80211POWER:
3196 case SIOCS80211BSSID:
3197 case SIOCS80211CHANNEL:
3198 case SIOCSLINKSTR:
3199 if (l != NULL) {
3200 error = kauth_authorize_network(l->l_cred,
3201 KAUTH_NETWORK_INTERFACE,
3202 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3203 (void *)cmd, NULL);
3204 if (error != 0)
3205 goto out;
3206 }
3207 }
3208
3209 oif_flags = ifp->if_flags;
3210
3211 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3212 IFNET_LOCK(ifp);
3213
3214 error = (*ifp->if_ioctl)(ifp, cmd, data);
3215 if (error != ENOTTY)
3216 ;
3217 else if (so->so_proto == NULL)
3218 error = EOPNOTSUPP;
3219 else {
3220 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3221 #ifdef COMPAT_OSOCK
3222 if (vec_compat_ifioctl != NULL)
3223 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3224 else
3225 #endif
3226 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3227 cmd, data, ifp);
3228 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3229 }
3230
3231 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3232 if ((ifp->if_flags & IFF_UP) != 0) {
3233 int s = splsoftnet();
3234 if_up_locked(ifp);
3235 splx(s);
3236 }
3237 }
3238 #ifdef COMPAT_OIFREQ
3239 if (cmd != ocmd)
3240 ifreqn2o(oifr, ifr);
3241 #endif
3242
3243 IFNET_UNLOCK(ifp);
3244 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3245 out:
3246 if_put(ifp, &psref);
3247 curlwp_bindx(bound);
3248 return error;
3249 }
3250
3251 /*
3252 * Return interface configuration
3253 * of system. List may be used
3254 * in later ioctl's (above) to get
3255 * other information.
3256 *
3257 * Each record is a struct ifreq. Before the addition of
3258 * sockaddr_storage, the API rule was that sockaddr flavors that did
3259 * not fit would extend beyond the struct ifreq, with the next struct
3260 * ifreq starting sa_len beyond the struct sockaddr. Because the
3261 * union in struct ifreq includes struct sockaddr_storage, every kind
3262 * of sockaddr must fit. Thus, there are no longer any overlength
3263 * records.
3264 *
3265 * Records are added to the user buffer if they fit, and ifc_len is
3266 * adjusted to the length that was written. Thus, the user is only
3267 * assured of getting the complete list if ifc_len on return is at
3268 * least sizeof(struct ifreq) less than it was on entry.
3269 *
3270 * If the user buffer pointer is NULL, this routine copies no data and
3271 * returns the amount of space that would be needed.
3272 *
3273 * Invariants:
3274 * ifrp points to the next part of the user's buffer to be used. If
3275 * ifrp != NULL, space holds the number of bytes remaining that we may
3276 * write at ifrp. Otherwise, space holds the number of bytes that
3277 * would have been written had there been adequate space.
3278 */
3279 /*ARGSUSED*/
3280 static int
3281 ifconf(u_long cmd, void *data)
3282 {
3283 struct ifconf *ifc = (struct ifconf *)data;
3284 struct ifnet *ifp;
3285 struct ifaddr *ifa;
3286 struct ifreq ifr, *ifrp = NULL;
3287 int space = 0, error = 0;
3288 const int sz = (int)sizeof(struct ifreq);
3289 const bool docopy = ifc->ifc_req != NULL;
3290 int s;
3291 int bound;
3292 struct psref psref;
3293
3294 if (docopy) {
3295 space = ifc->ifc_len;
3296 ifrp = ifc->ifc_req;
3297 }
3298
3299 bound = curlwp_bind();
3300 s = pserialize_read_enter();
3301 IFNET_READER_FOREACH(ifp) {
3302 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3303 pserialize_read_exit(s);
3304
3305 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3306 sizeof(ifr.ifr_name));
3307 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3308 error = ENAMETOOLONG;
3309 goto release_exit;
3310 }
3311 if (IFADDR_READER_EMPTY(ifp)) {
3312 /* Interface with no addresses - send zero sockaddr. */
3313 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3314 if (!docopy) {
3315 space += sz;
3316 goto next;
3317 }
3318 if (space >= sz) {
3319 error = copyout(&ifr, ifrp, sz);
3320 if (error != 0)
3321 goto release_exit;
3322 ifrp++;
3323 space -= sz;
3324 }
3325 }
3326
3327 s = pserialize_read_enter();
3328 IFADDR_READER_FOREACH(ifa, ifp) {
3329 struct sockaddr *sa = ifa->ifa_addr;
3330 /* all sockaddrs must fit in sockaddr_storage */
3331 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3332
3333 if (!docopy) {
3334 space += sz;
3335 continue;
3336 }
3337 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3338 pserialize_read_exit(s);
3339
3340 if (space >= sz) {
3341 error = copyout(&ifr, ifrp, sz);
3342 if (error != 0)
3343 goto release_exit;
3344 ifrp++; space -= sz;
3345 }
3346 s = pserialize_read_enter();
3347 }
3348 pserialize_read_exit(s);
3349
3350 next:
3351 s = pserialize_read_enter();
3352 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3353 }
3354 pserialize_read_exit(s);
3355 curlwp_bindx(bound);
3356
3357 if (docopy) {
3358 KASSERT(0 <= space && space <= ifc->ifc_len);
3359 ifc->ifc_len -= space;
3360 } else {
3361 KASSERT(space >= 0);
3362 ifc->ifc_len = space;
3363 }
3364 return (0);
3365
3366 release_exit:
3367 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3368 curlwp_bindx(bound);
3369 return error;
3370 }
3371
3372 int
3373 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3374 {
3375 uint8_t len;
3376 #ifdef COMPAT_OIFREQ
3377 struct ifreq ifrb;
3378 struct oifreq *oifr = NULL;
3379 u_long ocmd = cmd;
3380 cmd = (*vec_compat_cvtcmd)(cmd);
3381 if (cmd != ocmd) {
3382 oifr = (struct oifreq *)(void *)ifr;
3383 ifr = &ifrb;
3384 ifreqo2n(oifr, ifr);
3385 len = sizeof(oifr->ifr_addr);
3386 } else
3387 #endif
3388 len = sizeof(ifr->ifr_ifru.ifru_space);
3389
3390 if (len < sa->sa_len)
3391 return EFBIG;
3392
3393 memset(&ifr->ifr_addr, 0, len);
3394 sockaddr_copy(&ifr->ifr_addr, len, sa);
3395
3396 #ifdef COMPAT_OIFREQ
3397 if (cmd != ocmd)
3398 ifreqn2o(oifr, ifr);
3399 #endif
3400 return 0;
3401 }
3402
3403 /*
3404 * wrapper function for the drivers which doesn't have if_transmit().
3405 */
3406 static int
3407 if_transmit(struct ifnet *ifp, struct mbuf *m)
3408 {
3409 int s, error;
3410 size_t pktlen = m->m_pkthdr.len;
3411 bool mcast = (m->m_flags & M_MCAST) != 0;
3412
3413 s = splnet();
3414
3415 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3416 if (error != 0) {
3417 /* mbuf is already freed */
3418 goto out;
3419 }
3420
3421 ifp->if_obytes += pktlen;
3422 if (mcast)
3423 ifp->if_omcasts++;
3424
3425 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3426 if_start_lock(ifp);
3427 out:
3428 splx(s);
3429
3430 return error;
3431 }
3432
3433 int
3434 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3435 {
3436 int error;
3437
3438 #ifdef ALTQ
3439 KERNEL_LOCK(1, NULL);
3440 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3441 error = if_transmit(ifp, m);
3442 KERNEL_UNLOCK_ONE(NULL);
3443 } else {
3444 KERNEL_UNLOCK_ONE(NULL);
3445 error = (*ifp->if_transmit)(ifp, m);
3446 /* mbuf is alredy freed */
3447 }
3448 #else /* !ALTQ */
3449 error = (*ifp->if_transmit)(ifp, m);
3450 /* mbuf is alredy freed */
3451 #endif /* !ALTQ */
3452
3453 return error;
3454 }
3455
3456 /*
3457 * Queue message on interface, and start output if interface
3458 * not yet active.
3459 */
3460 int
3461 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3462 {
3463
3464 return if_transmit_lock(ifp, m);
3465 }
3466
3467 /*
3468 * Queue message on interface, possibly using a second fast queue
3469 */
3470 int
3471 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3472 {
3473 int error = 0;
3474
3475 if (ifq != NULL
3476 #ifdef ALTQ
3477 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3478 #endif
3479 ) {
3480 if (IF_QFULL(ifq)) {
3481 IF_DROP(&ifp->if_snd);
3482 m_freem(m);
3483 if (error == 0)
3484 error = ENOBUFS;
3485 } else
3486 IF_ENQUEUE(ifq, m);
3487 } else
3488 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3489 if (error != 0) {
3490 ++ifp->if_oerrors;
3491 return error;
3492 }
3493 return 0;
3494 }
3495
3496 int
3497 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3498 {
3499 int rc;
3500
3501 KASSERT(IFNET_LOCKED(ifp));
3502 if (ifp->if_initaddr != NULL)
3503 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3504 else if (src ||
3505 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3506 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3507
3508 return rc;
3509 }
3510
3511 int
3512 if_do_dad(struct ifnet *ifp)
3513 {
3514 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3515 return 0;
3516
3517 switch (ifp->if_type) {
3518 case IFT_FAITH:
3519 /*
3520 * These interfaces do not have the IFF_LOOPBACK flag,
3521 * but loop packets back. We do not have to do DAD on such
3522 * interfaces. We should even omit it, because loop-backed
3523 * responses would confuse the DAD procedure.
3524 */
3525 return 0;
3526 default:
3527 /*
3528 * Our DAD routine requires the interface up and running.
3529 * However, some interfaces can be up before the RUNNING
3530 * status. Additionaly, users may try to assign addresses
3531 * before the interface becomes up (or running).
3532 * We simply skip DAD in such a case as a work around.
3533 * XXX: we should rather mark "tentative" on such addresses,
3534 * and do DAD after the interface becomes ready.
3535 */
3536 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3537 (IFF_UP|IFF_RUNNING))
3538 return 0;
3539
3540 return 1;
3541 }
3542 }
3543
3544 int
3545 if_flags_set(ifnet_t *ifp, const short flags)
3546 {
3547 int rc;
3548
3549 KASSERT(IFNET_LOCKED(ifp));
3550
3551 if (ifp->if_setflags != NULL)
3552 rc = (*ifp->if_setflags)(ifp, flags);
3553 else {
3554 short cantflags, chgdflags;
3555 struct ifreq ifr;
3556
3557 chgdflags = ifp->if_flags ^ flags;
3558 cantflags = chgdflags & IFF_CANTCHANGE;
3559
3560 if (cantflags != 0)
3561 ifp->if_flags ^= cantflags;
3562
3563 /* Traditionally, we do not call if_ioctl after
3564 * setting/clearing only IFF_PROMISC if the interface
3565 * isn't IFF_UP. Uphold that tradition.
3566 */
3567 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3568 return 0;
3569
3570 memset(&ifr, 0, sizeof(ifr));
3571
3572 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3573 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3574
3575 if (rc != 0 && cantflags != 0)
3576 ifp->if_flags ^= cantflags;
3577 }
3578
3579 return rc;
3580 }
3581
3582 int
3583 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3584 {
3585 int rc;
3586 struct ifreq ifr;
3587
3588 /* CARP still doesn't deal with the lock yet */
3589 #if !defined(NCARP) || (NCARP == 0)
3590 KASSERT(IFNET_LOCKED(ifp));
3591 #endif
3592 if (ifp->if_mcastop != NULL)
3593 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3594 else {
3595 ifreq_setaddr(cmd, &ifr, sa);
3596 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3597 }
3598
3599 return rc;
3600 }
3601
3602 static void
3603 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3604 struct ifaltq *ifq)
3605 {
3606 const struct sysctlnode *cnode, *rnode;
3607
3608 if (sysctl_createv(clog, 0, NULL, &rnode,
3609 CTLFLAG_PERMANENT,
3610 CTLTYPE_NODE, "interfaces",
3611 SYSCTL_DESCR("Per-interface controls"),
3612 NULL, 0, NULL, 0,
3613 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3614 goto bad;
3615
3616 if (sysctl_createv(clog, 0, &rnode, &rnode,
3617 CTLFLAG_PERMANENT,
3618 CTLTYPE_NODE, ifname,
3619 SYSCTL_DESCR("Interface controls"),
3620 NULL, 0, NULL, 0,
3621 CTL_CREATE, CTL_EOL) != 0)
3622 goto bad;
3623
3624 if (sysctl_createv(clog, 0, &rnode, &rnode,
3625 CTLFLAG_PERMANENT,
3626 CTLTYPE_NODE, "sndq",
3627 SYSCTL_DESCR("Interface output queue controls"),
3628 NULL, 0, NULL, 0,
3629 CTL_CREATE, CTL_EOL) != 0)
3630 goto bad;
3631
3632 if (sysctl_createv(clog, 0, &rnode, &cnode,
3633 CTLFLAG_PERMANENT,
3634 CTLTYPE_INT, "len",
3635 SYSCTL_DESCR("Current output queue length"),
3636 NULL, 0, &ifq->ifq_len, 0,
3637 CTL_CREATE, CTL_EOL) != 0)
3638 goto bad;
3639
3640 if (sysctl_createv(clog, 0, &rnode, &cnode,
3641 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3642 CTLTYPE_INT, "maxlen",
3643 SYSCTL_DESCR("Maximum allowed output queue length"),
3644 NULL, 0, &ifq->ifq_maxlen, 0,
3645 CTL_CREATE, CTL_EOL) != 0)
3646 goto bad;
3647
3648 if (sysctl_createv(clog, 0, &rnode, &cnode,
3649 CTLFLAG_PERMANENT,
3650 CTLTYPE_INT, "drops",
3651 SYSCTL_DESCR("Packets dropped due to full output queue"),
3652 NULL, 0, &ifq->ifq_drops, 0,
3653 CTL_CREATE, CTL_EOL) != 0)
3654 goto bad;
3655
3656 return;
3657 bad:
3658 printf("%s: could not attach sysctl nodes\n", ifname);
3659 return;
3660 }
3661
3662 #if defined(INET) || defined(INET6)
3663
3664 #define SYSCTL_NET_PKTQ(q, cn, c) \
3665 static int \
3666 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3667 { \
3668 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3669 }
3670
3671 #if defined(INET)
3672 static int
3673 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3674 {
3675 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3676 }
3677 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3678 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3679 #endif
3680
3681 #if defined(INET6)
3682 static int
3683 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3684 {
3685 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3686 }
3687 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3688 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3689 #endif
3690
3691 static void
3692 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3693 {
3694 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3695 const char *pfname = NULL, *ipname = NULL;
3696 int ipn = 0, qid = 0;
3697
3698 switch (pf) {
3699 #if defined(INET)
3700 case PF_INET:
3701 len_func = sysctl_net_ip_pktq_items;
3702 maxlen_func = sysctl_net_ip_pktq_maxlen;
3703 drops_func = sysctl_net_ip_pktq_drops;
3704 pfname = "inet", ipn = IPPROTO_IP;
3705 ipname = "ip", qid = IPCTL_IFQ;
3706 break;
3707 #endif
3708 #if defined(INET6)
3709 case PF_INET6:
3710 len_func = sysctl_net_ip6_pktq_items;
3711 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3712 drops_func = sysctl_net_ip6_pktq_drops;
3713 pfname = "inet6", ipn = IPPROTO_IPV6;
3714 ipname = "ip6", qid = IPV6CTL_IFQ;
3715 break;
3716 #endif
3717 default:
3718 KASSERT(false);
3719 }
3720
3721 sysctl_createv(clog, 0, NULL, NULL,
3722 CTLFLAG_PERMANENT,
3723 CTLTYPE_NODE, pfname, NULL,
3724 NULL, 0, NULL, 0,
3725 CTL_NET, pf, CTL_EOL);
3726 sysctl_createv(clog, 0, NULL, NULL,
3727 CTLFLAG_PERMANENT,
3728 CTLTYPE_NODE, ipname, NULL,
3729 NULL, 0, NULL, 0,
3730 CTL_NET, pf, ipn, CTL_EOL);
3731 sysctl_createv(clog, 0, NULL, NULL,
3732 CTLFLAG_PERMANENT,
3733 CTLTYPE_NODE, "ifq",
3734 SYSCTL_DESCR("Protocol input queue controls"),
3735 NULL, 0, NULL, 0,
3736 CTL_NET, pf, ipn, qid, CTL_EOL);
3737
3738 sysctl_createv(clog, 0, NULL, NULL,
3739 CTLFLAG_PERMANENT,
3740 CTLTYPE_INT, "len",
3741 SYSCTL_DESCR("Current input queue length"),
3742 len_func, 0, NULL, 0,
3743 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3744 sysctl_createv(clog, 0, NULL, NULL,
3745 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3746 CTLTYPE_INT, "maxlen",
3747 SYSCTL_DESCR("Maximum allowed input queue length"),
3748 maxlen_func, 0, NULL, 0,
3749 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3750 sysctl_createv(clog, 0, NULL, NULL,
3751 CTLFLAG_PERMANENT,
3752 CTLTYPE_INT, "drops",
3753 SYSCTL_DESCR("Packets dropped due to full input queue"),
3754 drops_func, 0, NULL, 0,
3755 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3756 }
3757 #endif /* INET || INET6 */
3758
3759 static int
3760 if_sdl_sysctl(SYSCTLFN_ARGS)
3761 {
3762 struct ifnet *ifp;
3763 const struct sockaddr_dl *sdl;
3764 struct psref psref;
3765 int error = 0;
3766 int bound;
3767
3768 if (namelen != 1)
3769 return EINVAL;
3770
3771 bound = curlwp_bind();
3772 ifp = if_get_byindex(name[0], &psref);
3773 if (ifp == NULL) {
3774 error = ENODEV;
3775 goto out0;
3776 }
3777
3778 sdl = ifp->if_sadl;
3779 if (sdl == NULL) {
3780 *oldlenp = 0;
3781 goto out1;
3782 }
3783
3784 if (oldp == NULL) {
3785 *oldlenp = sdl->sdl_alen;
3786 goto out1;
3787 }
3788
3789 if (*oldlenp >= sdl->sdl_alen)
3790 *oldlenp = sdl->sdl_alen;
3791 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3792 out1:
3793 if_put(ifp, &psref);
3794 out0:
3795 curlwp_bindx(bound);
3796 return error;
3797 }
3798
3799 static void
3800 if_sysctl_setup(struct sysctllog **clog)
3801 {
3802 const struct sysctlnode *rnode = NULL;
3803
3804 sysctl_createv(clog, 0, NULL, &rnode,
3805 CTLFLAG_PERMANENT,
3806 CTLTYPE_NODE, "sdl",
3807 SYSCTL_DESCR("Get active link-layer address"),
3808 if_sdl_sysctl, 0, NULL, 0,
3809 CTL_NET, CTL_CREATE, CTL_EOL);
3810
3811 #if defined(INET)
3812 sysctl_net_pktq_setup(NULL, PF_INET);
3813 #endif
3814 #ifdef INET6
3815 if (in6_present)
3816 sysctl_net_pktq_setup(NULL, PF_INET6);
3817 #endif
3818 }
3819