Home | History | Annotate | Line # | Download | only in net
if.c revision 1.415
      1 /*	$NetBSD: if.c,v 1.415 2017/12/15 04:03:46 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.415 2017/12/15 04:03:46 ozaki-r Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 
     99 #include "opt_atalk.h"
    100 #include "opt_natm.h"
    101 #include "opt_wlan.h"
    102 #include "opt_net_mpsafe.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/proc.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/domain.h>
    113 #include <sys/protosw.h>
    114 #include <sys/kernel.h>
    115 #include <sys/ioctl.h>
    116 #include <sys/sysctl.h>
    117 #include <sys/syslog.h>
    118 #include <sys/kauth.h>
    119 #include <sys/kmem.h>
    120 #include <sys/xcall.h>
    121 #include <sys/cpu.h>
    122 #include <sys/intr.h>
    123 
    124 #include <net/if.h>
    125 #include <net/if_dl.h>
    126 #include <net/if_ether.h>
    127 #include <net/if_media.h>
    128 #include <net80211/ieee80211.h>
    129 #include <net80211/ieee80211_ioctl.h>
    130 #include <net/if_types.h>
    131 #include <net/route.h>
    132 #include <net/netisr.h>
    133 #include <sys/module.h>
    134 #ifdef NETATALK
    135 #include <netatalk/at_extern.h>
    136 #include <netatalk/at.h>
    137 #endif
    138 #include <net/pfil.h>
    139 #include <netinet/in.h>
    140 #include <netinet/in_var.h>
    141 #include <netinet/ip_encap.h>
    142 #include <net/bpf.h>
    143 
    144 #ifdef INET6
    145 #include <netinet6/in6_var.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include "ether.h"
    150 #include "fddi.h"
    151 #include "token.h"
    152 
    153 #include "carp.h"
    154 #if NCARP > 0
    155 #include <netinet/ip_carp.h>
    156 #endif
    157 
    158 #include <compat/sys/sockio.h>
    159 #include <compat/sys/socket.h>
    160 
    161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    163 
    164 /*
    165  * Global list of interfaces.
    166  */
    167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    168 struct ifnet_head		ifnet_list;
    169 
    170 struct pslist_head		ifnet_pslist;
    171 static ifnet_t **		ifindex2ifnet = NULL;
    172 static u_int			if_index = 1;
    173 static size_t			if_indexlim = 0;
    174 static uint64_t			index_gen;
    175 /* Mutex to protect the above objects. */
    176 kmutex_t			ifnet_mtx __cacheline_aligned;
    177 static struct psref_class	*ifnet_psref_class __read_mostly;
    178 static pserialize_t		ifnet_psz;
    179 
    180 static kmutex_t			if_clone_mtx;
    181 
    182 struct ifnet *lo0ifp;
    183 int	ifqmaxlen = IFQ_MAXLEN;
    184 
    185 struct psref_class		*ifa_psref_class __read_mostly;
    186 
    187 static int	if_delroute_matcher(struct rtentry *, void *);
    188 
    189 static bool if_is_unit(const char *);
    190 static struct if_clone *if_clone_lookup(const char *, int *);
    191 
    192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    193 static int if_cloners_count;
    194 
    195 /* Packet filtering hook for interfaces. */
    196 pfil_head_t *			if_pfil __read_mostly;
    197 
    198 static kauth_listener_t if_listener;
    199 
    200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    203     struct ifaltq *);
    204 static void if_slowtimo(void *);
    205 static void if_free_sadl(struct ifnet *);
    206 static void if_attachdomain1(struct ifnet *);
    207 static int ifconf(u_long, void *);
    208 static int if_transmit(struct ifnet *, struct mbuf *);
    209 static int if_clone_create(const char *);
    210 static int if_clone_destroy(const char *);
    211 static void if_link_state_change_si(void *);
    212 static void if_up_locked(struct ifnet *);
    213 static void _if_down(struct ifnet *);
    214 static void if_down_deactivated(struct ifnet *);
    215 
    216 struct if_percpuq {
    217 	struct ifnet	*ipq_ifp;
    218 	void		*ipq_si;
    219 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    220 };
    221 
    222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    223 
    224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    227     struct if_percpuq *);
    228 
    229 struct if_deferred_start {
    230 	struct ifnet	*ids_ifp;
    231 	void		(*ids_if_start)(struct ifnet *);
    232 	void		*ids_si;
    233 };
    234 
    235 static void if_deferred_start_softint(void *);
    236 static void if_deferred_start_common(struct ifnet *);
    237 static void if_deferred_start_destroy(struct ifnet *);
    238 
    239 #if defined(INET) || defined(INET6)
    240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    241 #endif
    242 
    243 static void if_sysctl_setup(struct sysctllog **);
    244 
    245 /*
    246  * Pointer to stub or real compat_cvtcmd() depending on presence of
    247  * the compat module
    248  */
    249 u_long stub_compat_cvtcmd(u_long);
    250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
    251 
    252 /* Similarly, pointer to compat_ifioctl() if it is present */
    253 
    254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
    255 	struct lwp *) = NULL;
    256 
    257 /* The stub version of compat_cvtcmd() */
    258 u_long stub_compat_cvtcmd(u_long cmd)
    259 {
    260 
    261 	return cmd;
    262 }
    263 
    264 static int
    265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    266     void *arg0, void *arg1, void *arg2, void *arg3)
    267 {
    268 	int result;
    269 	enum kauth_network_req req;
    270 
    271 	result = KAUTH_RESULT_DEFER;
    272 	req = (enum kauth_network_req)arg1;
    273 
    274 	if (action != KAUTH_NETWORK_INTERFACE)
    275 		return result;
    276 
    277 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    278 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    279 		result = KAUTH_RESULT_ALLOW;
    280 
    281 	return result;
    282 }
    283 
    284 /*
    285  * Network interface utility routines.
    286  *
    287  * Routines with ifa_ifwith* names take sockaddr *'s as
    288  * parameters.
    289  */
    290 void
    291 ifinit(void)
    292 {
    293 
    294 	if_sysctl_setup(NULL);
    295 
    296 #if (defined(INET) || defined(INET6))
    297 	encapinit();
    298 #endif
    299 
    300 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    301 	    if_listener_cb, NULL);
    302 
    303 	/* interfaces are available, inform socket code */
    304 	ifioctl = doifioctl;
    305 }
    306 
    307 /*
    308  * XXX Initialization before configure().
    309  * XXX hack to get pfil_add_hook working in autoconf.
    310  */
    311 void
    312 ifinit1(void)
    313 {
    314 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    315 
    316 	TAILQ_INIT(&ifnet_list);
    317 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    318 	ifnet_psz = pserialize_create();
    319 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    320 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    321 	PSLIST_INIT(&ifnet_pslist);
    322 
    323 	if_indexlim = 8;
    324 
    325 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    326 	KASSERT(if_pfil != NULL);
    327 
    328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
    329 	etherinit();
    330 #endif
    331 }
    332 
    333 ifnet_t *
    334 if_alloc(u_char type)
    335 {
    336 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    337 }
    338 
    339 void
    340 if_free(ifnet_t *ifp)
    341 {
    342 	kmem_free(ifp, sizeof(ifnet_t));
    343 }
    344 
    345 void
    346 if_initname(struct ifnet *ifp, const char *name, int unit)
    347 {
    348 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    349 	    "%s%d", name, unit);
    350 }
    351 
    352 /*
    353  * Null routines used while an interface is going away.  These routines
    354  * just return an error.
    355  */
    356 
    357 int
    358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    359     const struct sockaddr *so, const struct rtentry *rt)
    360 {
    361 
    362 	return ENXIO;
    363 }
    364 
    365 void
    366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    367 {
    368 
    369 	/* Nothing. */
    370 }
    371 
    372 void
    373 if_nullstart(struct ifnet *ifp)
    374 {
    375 
    376 	/* Nothing. */
    377 }
    378 
    379 int
    380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    381 {
    382 
    383 	m_freem(m);
    384 	return ENXIO;
    385 }
    386 
    387 int
    388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    389 {
    390 
    391 	return ENXIO;
    392 }
    393 
    394 int
    395 if_nullinit(struct ifnet *ifp)
    396 {
    397 
    398 	return ENXIO;
    399 }
    400 
    401 void
    402 if_nullstop(struct ifnet *ifp, int disable)
    403 {
    404 
    405 	/* Nothing. */
    406 }
    407 
    408 void
    409 if_nullslowtimo(struct ifnet *ifp)
    410 {
    411 
    412 	/* Nothing. */
    413 }
    414 
    415 void
    416 if_nulldrain(struct ifnet *ifp)
    417 {
    418 
    419 	/* Nothing. */
    420 }
    421 
    422 void
    423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    424 {
    425 	struct ifaddr *ifa;
    426 	struct sockaddr_dl *sdl;
    427 
    428 	ifp->if_addrlen = addrlen;
    429 	if_alloc_sadl(ifp);
    430 	ifa = ifp->if_dl;
    431 	sdl = satosdl(ifa->ifa_addr);
    432 
    433 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    434 	if (factory) {
    435 		ifp->if_hwdl = ifp->if_dl;
    436 		ifaref(ifp->if_hwdl);
    437 	}
    438 	/* TBD routing socket */
    439 }
    440 
    441 struct ifaddr *
    442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    443 {
    444 	unsigned socksize, ifasize;
    445 	int addrlen, namelen;
    446 	struct sockaddr_dl *mask, *sdl;
    447 	struct ifaddr *ifa;
    448 
    449 	namelen = strlen(ifp->if_xname);
    450 	addrlen = ifp->if_addrlen;
    451 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    452 	ifasize = sizeof(*ifa) + 2 * socksize;
    453 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
    454 
    455 	sdl = (struct sockaddr_dl *)(ifa + 1);
    456 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    457 
    458 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    459 	    ifp->if_xname, namelen, NULL, addrlen);
    460 	mask->sdl_family = AF_LINK;
    461 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    462 	memset(&mask->sdl_data[0], 0xff, namelen);
    463 	ifa->ifa_rtrequest = link_rtrequest;
    464 	ifa->ifa_addr = (struct sockaddr *)sdl;
    465 	ifa->ifa_netmask = (struct sockaddr *)mask;
    466 	ifa_psref_init(ifa);
    467 
    468 	*sdlp = sdl;
    469 
    470 	return ifa;
    471 }
    472 
    473 static void
    474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    475 {
    476 	const struct sockaddr_dl *sdl;
    477 
    478 	ifp->if_dl = ifa;
    479 	ifaref(ifa);
    480 	sdl = satosdl(ifa->ifa_addr);
    481 	ifp->if_sadl = sdl;
    482 }
    483 
    484 /*
    485  * Allocate the link level name for the specified interface.  This
    486  * is an attachment helper.  It must be called after ifp->if_addrlen
    487  * is initialized, which may not be the case when if_attach() is
    488  * called.
    489  */
    490 void
    491 if_alloc_sadl(struct ifnet *ifp)
    492 {
    493 	struct ifaddr *ifa;
    494 	const struct sockaddr_dl *sdl;
    495 
    496 	/*
    497 	 * If the interface already has a link name, release it
    498 	 * now.  This is useful for interfaces that can change
    499 	 * link types, and thus switch link names often.
    500 	 */
    501 	if (ifp->if_sadl != NULL)
    502 		if_free_sadl(ifp);
    503 
    504 	ifa = if_dl_create(ifp, &sdl);
    505 
    506 	ifa_insert(ifp, ifa);
    507 	if_sadl_setrefs(ifp, ifa);
    508 }
    509 
    510 static void
    511 if_deactivate_sadl(struct ifnet *ifp)
    512 {
    513 	struct ifaddr *ifa;
    514 
    515 	KASSERT(ifp->if_dl != NULL);
    516 
    517 	ifa = ifp->if_dl;
    518 
    519 	ifp->if_sadl = NULL;
    520 
    521 	ifp->if_dl = NULL;
    522 	ifafree(ifa);
    523 }
    524 
    525 static void
    526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    527 {
    528 	struct ifaddr *old;
    529 
    530 	KASSERT(ifp->if_dl != NULL);
    531 
    532 	old = ifp->if_dl;
    533 
    534 	ifaref(ifa);
    535 	/* XXX Update if_dl and if_sadl atomically */
    536 	ifp->if_dl = ifa;
    537 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    538 
    539 	ifafree(old);
    540 }
    541 
    542 void
    543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    544     const struct sockaddr_dl *sdl)
    545 {
    546 	int s, ss;
    547 	struct ifaddr *ifa;
    548 	int bound = curlwp_bind();
    549 
    550 	KASSERT(ifa_held(ifa0));
    551 
    552 	s = splsoftnet();
    553 
    554 	if_replace_sadl(ifp, ifa0);
    555 
    556 	ss = pserialize_read_enter();
    557 	IFADDR_READER_FOREACH(ifa, ifp) {
    558 		struct psref psref;
    559 		ifa_acquire(ifa, &psref);
    560 		pserialize_read_exit(ss);
    561 
    562 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    563 
    564 		ss = pserialize_read_enter();
    565 		ifa_release(ifa, &psref);
    566 	}
    567 	pserialize_read_exit(ss);
    568 
    569 	splx(s);
    570 	curlwp_bindx(bound);
    571 }
    572 
    573 /*
    574  * Free the link level name for the specified interface.  This is
    575  * a detach helper.  This is called from if_detach().
    576  */
    577 static void
    578 if_free_sadl(struct ifnet *ifp)
    579 {
    580 	struct ifaddr *ifa;
    581 	int s;
    582 
    583 	ifa = ifp->if_dl;
    584 	if (ifa == NULL) {
    585 		KASSERT(ifp->if_sadl == NULL);
    586 		return;
    587 	}
    588 
    589 	KASSERT(ifp->if_sadl != NULL);
    590 
    591 	s = splsoftnet();
    592 	rtinit(ifa, RTM_DELETE, 0);
    593 	ifa_remove(ifp, ifa);
    594 	if_deactivate_sadl(ifp);
    595 	if (ifp->if_hwdl == ifa) {
    596 		ifafree(ifa);
    597 		ifp->if_hwdl = NULL;
    598 	}
    599 	splx(s);
    600 }
    601 
    602 static void
    603 if_getindex(ifnet_t *ifp)
    604 {
    605 	bool hitlimit = false;
    606 
    607 	ifp->if_index_gen = index_gen++;
    608 
    609 	ifp->if_index = if_index;
    610 	if (ifindex2ifnet == NULL) {
    611 		if_index++;
    612 		goto skip;
    613 	}
    614 	while (if_byindex(ifp->if_index)) {
    615 		/*
    616 		 * If we hit USHRT_MAX, we skip back to 0 since
    617 		 * there are a number of places where the value
    618 		 * of if_index or if_index itself is compared
    619 		 * to or stored in an unsigned short.  By
    620 		 * jumping back, we won't botch those assignments
    621 		 * or comparisons.
    622 		 */
    623 		if (++if_index == 0) {
    624 			if_index = 1;
    625 		} else if (if_index == USHRT_MAX) {
    626 			/*
    627 			 * However, if we have to jump back to
    628 			 * zero *twice* without finding an empty
    629 			 * slot in ifindex2ifnet[], then there
    630 			 * there are too many (>65535) interfaces.
    631 			 */
    632 			if (hitlimit) {
    633 				panic("too many interfaces");
    634 			}
    635 			hitlimit = true;
    636 			if_index = 1;
    637 		}
    638 		ifp->if_index = if_index;
    639 	}
    640 skip:
    641 	/*
    642 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    643 	 * grow dynamically, it should grow too.
    644 	 */
    645 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    646 		size_t m, n, oldlim;
    647 		void *q;
    648 
    649 		oldlim = if_indexlim;
    650 		while (ifp->if_index >= if_indexlim)
    651 			if_indexlim <<= 1;
    652 
    653 		/* grow ifindex2ifnet */
    654 		m = oldlim * sizeof(struct ifnet *);
    655 		n = if_indexlim * sizeof(struct ifnet *);
    656 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
    657 		if (ifindex2ifnet != NULL) {
    658 			memcpy(q, ifindex2ifnet, m);
    659 			free(ifindex2ifnet, M_IFADDR);
    660 		}
    661 		ifindex2ifnet = (struct ifnet **)q;
    662 	}
    663 	ifindex2ifnet[ifp->if_index] = ifp;
    664 }
    665 
    666 /*
    667  * Initialize an interface and assign an index for it.
    668  *
    669  * It must be called prior to a device specific attach routine
    670  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    671  * and be followed by if_register:
    672  *
    673  *     if_initialize(ifp);
    674  *     ether_ifattach(ifp, enaddr);
    675  *     if_register(ifp);
    676  */
    677 int
    678 if_initialize(ifnet_t *ifp)
    679 {
    680 	int rv = 0;
    681 
    682 	KASSERT(if_indexlim > 0);
    683 	TAILQ_INIT(&ifp->if_addrlist);
    684 
    685 	/*
    686 	 * Link level name is allocated later by a separate call to
    687 	 * if_alloc_sadl().
    688 	 */
    689 
    690 	if (ifp->if_snd.ifq_maxlen == 0)
    691 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    692 
    693 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    694 
    695 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    696 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    697 
    698 	ifp->if_capenable = 0;
    699 	ifp->if_csum_flags_tx = 0;
    700 	ifp->if_csum_flags_rx = 0;
    701 
    702 #ifdef ALTQ
    703 	ifp->if_snd.altq_type = 0;
    704 	ifp->if_snd.altq_disc = NULL;
    705 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    706 	ifp->if_snd.altq_tbr  = NULL;
    707 	ifp->if_snd.altq_ifp  = ifp;
    708 #endif
    709 
    710 	IFQ_LOCK_INIT(&ifp->if_snd);
    711 
    712 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    713 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    714 
    715 	IF_AFDATA_LOCK_INIT(ifp);
    716 
    717 	if (if_is_link_state_changeable(ifp)) {
    718 		u_int flags = SOFTINT_NET;
    719 		flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
    720 		    SOFTINT_MPSAFE : 0;
    721 		ifp->if_link_si = softint_establish(flags,
    722 		    if_link_state_change_si, ifp);
    723 		if (ifp->if_link_si == NULL) {
    724 			rv = ENOMEM;
    725 			goto fail;
    726 		}
    727 	}
    728 
    729 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    730 	PSLIST_INIT(&ifp->if_addr_pslist);
    731 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    732 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    733 	LIST_INIT(&ifp->if_multiaddrs);
    734 
    735 	IFNET_GLOBAL_LOCK();
    736 	if_getindex(ifp);
    737 	IFNET_GLOBAL_UNLOCK();
    738 
    739 	return 0;
    740 
    741 fail:
    742 	IF_AFDATA_LOCK_DESTROY(ifp);
    743 
    744 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    745 	(void)pfil_head_destroy(ifp->if_pfil);
    746 
    747 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    748 
    749 	return rv;
    750 }
    751 
    752 /*
    753  * Register an interface to the list of "active" interfaces.
    754  */
    755 void
    756 if_register(ifnet_t *ifp)
    757 {
    758 	/*
    759 	 * If the driver has not supplied its own if_ioctl, then
    760 	 * supply the default.
    761 	 */
    762 	if (ifp->if_ioctl == NULL)
    763 		ifp->if_ioctl = ifioctl_common;
    764 
    765 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    766 
    767 	if (!STAILQ_EMPTY(&domains))
    768 		if_attachdomain1(ifp);
    769 
    770 	/* Announce the interface. */
    771 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    772 
    773 	if (ifp->if_slowtimo != NULL) {
    774 		ifp->if_slowtimo_ch =
    775 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    776 		callout_init(ifp->if_slowtimo_ch, 0);
    777 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    778 		if_slowtimo(ifp);
    779 	}
    780 
    781 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    782 		ifp->if_transmit = if_transmit;
    783 
    784 	IFNET_GLOBAL_LOCK();
    785 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    786 	IFNET_WRITER_INSERT_TAIL(ifp);
    787 	IFNET_GLOBAL_UNLOCK();
    788 }
    789 
    790 /*
    791  * The if_percpuq framework
    792  *
    793  * It allows network device drivers to execute the network stack
    794  * in softint (so called softint-based if_input). It utilizes
    795  * softint and percpu ifqueue. It doesn't distribute any packets
    796  * between CPUs, unlike pktqueue(9).
    797  *
    798  * Currently we support two options for device drivers to apply the framework:
    799  * - Use it implicitly with less changes
    800  *   - If you use if_attach in driver's _attach function and if_input in
    801  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    802  *     the packet implicitly
    803  * - Use it explicitly in each driver (recommended)
    804  *   - You can use if_percpuq_* directly in your driver
    805  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    806  *   - See wm(4) as a reference implementation
    807  */
    808 
    809 static void
    810 if_percpuq_softint(void *arg)
    811 {
    812 	struct if_percpuq *ipq = arg;
    813 	struct ifnet *ifp = ipq->ipq_ifp;
    814 	struct mbuf *m;
    815 
    816 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    817 		ifp->if_ipackets++;
    818 		bpf_mtap(ifp, m);
    819 
    820 		ifp->_if_input(ifp, m);
    821 	}
    822 }
    823 
    824 static void
    825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    826 {
    827 	struct ifqueue *const ifq = p;
    828 
    829 	memset(ifq, 0, sizeof(*ifq));
    830 	ifq->ifq_maxlen = IFQ_MAXLEN;
    831 }
    832 
    833 struct if_percpuq *
    834 if_percpuq_create(struct ifnet *ifp)
    835 {
    836 	struct if_percpuq *ipq;
    837 
    838 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    839 	ipq->ipq_ifp = ifp;
    840 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
    841 	    if_percpuq_softint, ipq);
    842 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    843 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    844 
    845 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    846 
    847 	return ipq;
    848 }
    849 
    850 static struct mbuf *
    851 if_percpuq_dequeue(struct if_percpuq *ipq)
    852 {
    853 	struct mbuf *m;
    854 	struct ifqueue *ifq;
    855 	int s;
    856 
    857 	s = splnet();
    858 	ifq = percpu_getref(ipq->ipq_ifqs);
    859 	IF_DEQUEUE(ifq, m);
    860 	percpu_putref(ipq->ipq_ifqs);
    861 	splx(s);
    862 
    863 	return m;
    864 }
    865 
    866 static void
    867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    868 {
    869 	struct ifqueue *const ifq = p;
    870 
    871 	IF_PURGE(ifq);
    872 }
    873 
    874 void
    875 if_percpuq_destroy(struct if_percpuq *ipq)
    876 {
    877 
    878 	/* if_detach may already destroy it */
    879 	if (ipq == NULL)
    880 		return;
    881 
    882 	softint_disestablish(ipq->ipq_si);
    883 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    884 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    885 	kmem_free(ipq, sizeof(*ipq));
    886 }
    887 
    888 void
    889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    890 {
    891 	struct ifqueue *ifq;
    892 	int s;
    893 
    894 	KASSERT(ipq != NULL);
    895 
    896 	s = splnet();
    897 	ifq = percpu_getref(ipq->ipq_ifqs);
    898 	if (IF_QFULL(ifq)) {
    899 		IF_DROP(ifq);
    900 		percpu_putref(ipq->ipq_ifqs);
    901 		m_freem(m);
    902 		goto out;
    903 	}
    904 	IF_ENQUEUE(ifq, m);
    905 	percpu_putref(ipq->ipq_ifqs);
    906 
    907 	softint_schedule(ipq->ipq_si);
    908 out:
    909 	splx(s);
    910 }
    911 
    912 static void
    913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    914 {
    915 	struct ifqueue *const ifq = p;
    916 	int *sum = arg;
    917 
    918 	*sum += ifq->ifq_drops;
    919 }
    920 
    921 static int
    922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    923 {
    924 	struct sysctlnode node;
    925 	struct if_percpuq *ipq;
    926 	int sum = 0;
    927 	int error;
    928 
    929 	node = *rnode;
    930 	ipq = node.sysctl_data;
    931 
    932 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    933 
    934 	node.sysctl_data = &sum;
    935 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    936 	if (error != 0 || newp == NULL)
    937 		return error;
    938 
    939 	return 0;
    940 }
    941 
    942 static void
    943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    944     struct if_percpuq *ipq)
    945 {
    946 	const struct sysctlnode *cnode, *rnode;
    947 
    948 	if (sysctl_createv(clog, 0, NULL, &rnode,
    949 		       CTLFLAG_PERMANENT,
    950 		       CTLTYPE_NODE, "interfaces",
    951 		       SYSCTL_DESCR("Per-interface controls"),
    952 		       NULL, 0, NULL, 0,
    953 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    954 		goto bad;
    955 
    956 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    957 		       CTLFLAG_PERMANENT,
    958 		       CTLTYPE_NODE, ifname,
    959 		       SYSCTL_DESCR("Interface controls"),
    960 		       NULL, 0, NULL, 0,
    961 		       CTL_CREATE, CTL_EOL) != 0)
    962 		goto bad;
    963 
    964 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    965 		       CTLFLAG_PERMANENT,
    966 		       CTLTYPE_NODE, "rcvq",
    967 		       SYSCTL_DESCR("Interface input queue controls"),
    968 		       NULL, 0, NULL, 0,
    969 		       CTL_CREATE, CTL_EOL) != 0)
    970 		goto bad;
    971 
    972 #ifdef NOTYET
    973 	/* XXX Should show each per-CPU queue length? */
    974 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    975 		       CTLFLAG_PERMANENT,
    976 		       CTLTYPE_INT, "len",
    977 		       SYSCTL_DESCR("Current input queue length"),
    978 		       sysctl_percpuq_len, 0, NULL, 0,
    979 		       CTL_CREATE, CTL_EOL) != 0)
    980 		goto bad;
    981 
    982 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    983 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    984 		       CTLTYPE_INT, "maxlen",
    985 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    986 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    987 		       CTL_CREATE, CTL_EOL) != 0)
    988 		goto bad;
    989 #endif
    990 
    991 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    992 		       CTLFLAG_PERMANENT,
    993 		       CTLTYPE_INT, "drops",
    994 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    995 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    996 		       CTL_CREATE, CTL_EOL) != 0)
    997 		goto bad;
    998 
    999 	return;
   1000 bad:
   1001 	printf("%s: could not attach sysctl nodes\n", ifname);
   1002 	return;
   1003 }
   1004 
   1005 /*
   1006  * The deferred if_start framework
   1007  *
   1008  * The common APIs to defer if_start to softint when if_start is requested
   1009  * from a device driver running in hardware interrupt context.
   1010  */
   1011 /*
   1012  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1013  * deferred if_start.
   1014  */
   1015 static void
   1016 if_deferred_start_softint(void *arg)
   1017 {
   1018 	struct if_deferred_start *ids = arg;
   1019 	struct ifnet *ifp = ids->ids_ifp;
   1020 
   1021 	ids->ids_if_start(ifp);
   1022 }
   1023 
   1024 /*
   1025  * The default callback function for deferred if_start.
   1026  */
   1027 static void
   1028 if_deferred_start_common(struct ifnet *ifp)
   1029 {
   1030 	int s;
   1031 
   1032 	s = splnet();
   1033 	if_start_lock(ifp);
   1034 	splx(s);
   1035 }
   1036 
   1037 static inline bool
   1038 if_snd_is_used(struct ifnet *ifp)
   1039 {
   1040 
   1041 	return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
   1042 	    ALTQ_IS_ENABLED(&ifp->if_snd);
   1043 }
   1044 
   1045 /*
   1046  * Schedule deferred if_start.
   1047  */
   1048 void
   1049 if_schedule_deferred_start(struct ifnet *ifp)
   1050 {
   1051 
   1052 	KASSERT(ifp->if_deferred_start != NULL);
   1053 
   1054 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1055 		return;
   1056 
   1057 	softint_schedule(ifp->if_deferred_start->ids_si);
   1058 }
   1059 
   1060 /*
   1061  * Create an instance of deferred if_start. A driver should call the function
   1062  * only if the driver needs deferred if_start. Drivers can setup their own
   1063  * deferred if_start function via 2nd argument.
   1064  */
   1065 void
   1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1067 {
   1068 	struct if_deferred_start *ids;
   1069 
   1070 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1071 	ids->ids_ifp = ifp;
   1072 	ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
   1073 	    if_deferred_start_softint, ids);
   1074 	if (func != NULL)
   1075 		ids->ids_if_start = func;
   1076 	else
   1077 		ids->ids_if_start = if_deferred_start_common;
   1078 
   1079 	ifp->if_deferred_start = ids;
   1080 }
   1081 
   1082 static void
   1083 if_deferred_start_destroy(struct ifnet *ifp)
   1084 {
   1085 
   1086 	if (ifp->if_deferred_start == NULL)
   1087 		return;
   1088 
   1089 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1090 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1091 	ifp->if_deferred_start = NULL;
   1092 }
   1093 
   1094 /*
   1095  * The common interface input routine that is called by device drivers,
   1096  * which should be used only when the driver's rx handler already runs
   1097  * in softint.
   1098  */
   1099 void
   1100 if_input(struct ifnet *ifp, struct mbuf *m)
   1101 {
   1102 
   1103 	KASSERT(ifp->if_percpuq == NULL);
   1104 	KASSERT(!cpu_intr_p());
   1105 
   1106 	ifp->if_ipackets++;
   1107 	bpf_mtap(ifp, m);
   1108 
   1109 	ifp->_if_input(ifp, m);
   1110 }
   1111 
   1112 /*
   1113  * DEPRECATED. Use if_initialize and if_register instead.
   1114  * See the above comment of if_initialize.
   1115  *
   1116  * Note that it implicitly enables if_percpuq to make drivers easy to
   1117  * migrate softint-based if_input without much changes. If you don't
   1118  * want to enable it, use if_initialize instead.
   1119  */
   1120 int
   1121 if_attach(ifnet_t *ifp)
   1122 {
   1123 	int rv;
   1124 
   1125 	rv = if_initialize(ifp);
   1126 	if (rv != 0)
   1127 		return rv;
   1128 
   1129 	ifp->if_percpuq = if_percpuq_create(ifp);
   1130 	if_register(ifp);
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 void
   1136 if_attachdomain(void)
   1137 {
   1138 	struct ifnet *ifp;
   1139 	int s;
   1140 	int bound = curlwp_bind();
   1141 
   1142 	s = pserialize_read_enter();
   1143 	IFNET_READER_FOREACH(ifp) {
   1144 		struct psref psref;
   1145 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1146 		pserialize_read_exit(s);
   1147 		if_attachdomain1(ifp);
   1148 		s = pserialize_read_enter();
   1149 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1150 	}
   1151 	pserialize_read_exit(s);
   1152 	curlwp_bindx(bound);
   1153 }
   1154 
   1155 static void
   1156 if_attachdomain1(struct ifnet *ifp)
   1157 {
   1158 	struct domain *dp;
   1159 	int s;
   1160 
   1161 	s = splsoftnet();
   1162 
   1163 	/* address family dependent data region */
   1164 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1165 	DOMAIN_FOREACH(dp) {
   1166 		if (dp->dom_ifattach != NULL)
   1167 			ifp->if_afdata[dp->dom_family] =
   1168 			    (*dp->dom_ifattach)(ifp);
   1169 	}
   1170 
   1171 	splx(s);
   1172 }
   1173 
   1174 /*
   1175  * Deactivate an interface.  This points all of the procedure
   1176  * handles at error stubs.  May be called from interrupt context.
   1177  */
   1178 void
   1179 if_deactivate(struct ifnet *ifp)
   1180 {
   1181 	int s;
   1182 
   1183 	s = splsoftnet();
   1184 
   1185 	ifp->if_output	 = if_nulloutput;
   1186 	ifp->_if_input	 = if_nullinput;
   1187 	ifp->if_start	 = if_nullstart;
   1188 	ifp->if_transmit = if_nulltransmit;
   1189 	ifp->if_ioctl	 = if_nullioctl;
   1190 	ifp->if_init	 = if_nullinit;
   1191 	ifp->if_stop	 = if_nullstop;
   1192 	ifp->if_slowtimo = if_nullslowtimo;
   1193 	ifp->if_drain	 = if_nulldrain;
   1194 
   1195 	/* No more packets may be enqueued. */
   1196 	ifp->if_snd.ifq_maxlen = 0;
   1197 
   1198 	splx(s);
   1199 }
   1200 
   1201 bool
   1202 if_is_deactivated(const struct ifnet *ifp)
   1203 {
   1204 
   1205 	return ifp->if_output == if_nulloutput;
   1206 }
   1207 
   1208 void
   1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1210 {
   1211 	struct ifaddr *ifa, *nifa;
   1212 	int s;
   1213 
   1214 	s = pserialize_read_enter();
   1215 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1216 		nifa = IFADDR_READER_NEXT(ifa);
   1217 		if (ifa->ifa_addr->sa_family != family)
   1218 			continue;
   1219 		pserialize_read_exit(s);
   1220 
   1221 		(*purgeaddr)(ifa);
   1222 
   1223 		s = pserialize_read_enter();
   1224 	}
   1225 	pserialize_read_exit(s);
   1226 }
   1227 
   1228 #ifdef IFAREF_DEBUG
   1229 static struct ifaddr **ifa_list;
   1230 static int ifa_list_size;
   1231 
   1232 /* Depends on only one if_attach runs at once */
   1233 static void
   1234 if_build_ifa_list(struct ifnet *ifp)
   1235 {
   1236 	struct ifaddr *ifa;
   1237 	int i;
   1238 
   1239 	KASSERT(ifa_list == NULL);
   1240 	KASSERT(ifa_list_size == 0);
   1241 
   1242 	IFADDR_READER_FOREACH(ifa, ifp)
   1243 		ifa_list_size++;
   1244 
   1245 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1246 	i = 0;
   1247 	IFADDR_READER_FOREACH(ifa, ifp) {
   1248 		ifa_list[i++] = ifa;
   1249 		ifaref(ifa);
   1250 	}
   1251 }
   1252 
   1253 static void
   1254 if_check_and_free_ifa_list(struct ifnet *ifp)
   1255 {
   1256 	int i;
   1257 	struct ifaddr *ifa;
   1258 
   1259 	if (ifa_list == NULL)
   1260 		return;
   1261 
   1262 	for (i = 0; i < ifa_list_size; i++) {
   1263 		char buf[64];
   1264 
   1265 		ifa = ifa_list[i];
   1266 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1267 		if (ifa->ifa_refcnt > 1) {
   1268 			log(LOG_WARNING,
   1269 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1270 			    buf, ifa->ifa_refcnt - 1);
   1271 		} else
   1272 			log(LOG_DEBUG,
   1273 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1274 			    buf, ifa->ifa_refcnt - 1);
   1275 		ifafree(ifa);
   1276 	}
   1277 
   1278 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1279 	ifa_list = NULL;
   1280 	ifa_list_size = 0;
   1281 }
   1282 #endif
   1283 
   1284 /*
   1285  * Detach an interface from the list of "active" interfaces,
   1286  * freeing any resources as we go along.
   1287  *
   1288  * NOTE: This routine must be called with a valid thread context,
   1289  * as it may block.
   1290  */
   1291 void
   1292 if_detach(struct ifnet *ifp)
   1293 {
   1294 	struct socket so;
   1295 	struct ifaddr *ifa;
   1296 #ifdef IFAREF_DEBUG
   1297 	struct ifaddr *last_ifa = NULL;
   1298 #endif
   1299 	struct domain *dp;
   1300 	const struct protosw *pr;
   1301 	int s, i, family, purged;
   1302 	uint64_t xc;
   1303 
   1304 #ifdef IFAREF_DEBUG
   1305 	if_build_ifa_list(ifp);
   1306 #endif
   1307 	/*
   1308 	 * XXX It's kind of lame that we have to have the
   1309 	 * XXX socket structure...
   1310 	 */
   1311 	memset(&so, 0, sizeof(so));
   1312 
   1313 	s = splnet();
   1314 
   1315 	sysctl_teardown(&ifp->if_sysctl_log);
   1316 	IFNET_LOCK(ifp);
   1317 	if_deactivate(ifp);
   1318 	IFNET_UNLOCK(ifp);
   1319 
   1320 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1321 		ifp->if_slowtimo = NULL;
   1322 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1323 		callout_destroy(ifp->if_slowtimo_ch);
   1324 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1325 	}
   1326 	if_deferred_start_destroy(ifp);
   1327 
   1328 	/*
   1329 	 * Do an if_down() to give protocols a chance to do something.
   1330 	 */
   1331 	if_down_deactivated(ifp);
   1332 
   1333 #ifdef ALTQ
   1334 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1335 		altq_disable(&ifp->if_snd);
   1336 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1337 		altq_detach(&ifp->if_snd);
   1338 #endif
   1339 
   1340 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1341 
   1342 #if NCARP > 0
   1343 	/* Remove the interface from any carp group it is a part of.  */
   1344 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1345 		carp_ifdetach(ifp);
   1346 #endif
   1347 
   1348 	/*
   1349 	 * Rip all the addresses off the interface.  This should make
   1350 	 * all of the routes go away.
   1351 	 *
   1352 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1353 	 * from the list, including our "cursor", ifa.  For safety,
   1354 	 * and to honor the TAILQ abstraction, I just restart the
   1355 	 * loop after each removal.  Note that the loop will exit
   1356 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1357 	 * family.  I am counting on the historical fact that at
   1358 	 * least one pr_usrreq in each address domain removes at
   1359 	 * least one ifaddr.
   1360 	 */
   1361 again:
   1362 	/*
   1363 	 * At this point, no other one tries to remove ifa in the list,
   1364 	 * so we don't need to take a lock or psref.  Avoid using
   1365 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1366 	 * violations of pserialize.
   1367 	 */
   1368 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1369 		family = ifa->ifa_addr->sa_family;
   1370 #ifdef IFAREF_DEBUG
   1371 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1372 		    ifa, family, ifa->ifa_refcnt);
   1373 		if (last_ifa != NULL && ifa == last_ifa)
   1374 			panic("if_detach: loop detected");
   1375 		last_ifa = ifa;
   1376 #endif
   1377 		if (family == AF_LINK)
   1378 			continue;
   1379 		dp = pffinddomain(family);
   1380 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1381 		/*
   1382 		 * XXX These PURGEIF calls are redundant with the
   1383 		 * purge-all-families calls below, but are left in for
   1384 		 * now both to make a smaller change, and to avoid
   1385 		 * unplanned interactions with clearing of
   1386 		 * ifp->if_addrlist.
   1387 		 */
   1388 		purged = 0;
   1389 		for (pr = dp->dom_protosw;
   1390 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1391 			so.so_proto = pr;
   1392 			if (pr->pr_usrreqs) {
   1393 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1394 				purged = 1;
   1395 			}
   1396 		}
   1397 		if (purged == 0) {
   1398 			/*
   1399 			 * XXX What's really the best thing to do
   1400 			 * XXX here?  --thorpej (at) NetBSD.org
   1401 			 */
   1402 			printf("if_detach: WARNING: AF %d not purged\n",
   1403 			    family);
   1404 			ifa_remove(ifp, ifa);
   1405 		}
   1406 		goto again;
   1407 	}
   1408 
   1409 	if_free_sadl(ifp);
   1410 
   1411 	/* Delete stray routes from the routing table. */
   1412 	for (i = 0; i <= AF_MAX; i++)
   1413 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1414 
   1415 	DOMAIN_FOREACH(dp) {
   1416 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1417 		{
   1418 			void *p = ifp->if_afdata[dp->dom_family];
   1419 			if (p) {
   1420 				ifp->if_afdata[dp->dom_family] = NULL;
   1421 				(*dp->dom_ifdetach)(ifp, p);
   1422 			}
   1423 		}
   1424 
   1425 		/*
   1426 		 * One would expect multicast memberships (INET and
   1427 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1428 		 * calls above, but if all addresses were removed from
   1429 		 * the interface prior to destruction, the calls will
   1430 		 * not be made (e.g. ppp, for which pppd(8) generally
   1431 		 * removes addresses before destroying the interface).
   1432 		 * Because there is no invariant that multicast
   1433 		 * memberships only exist for interfaces with IPv4
   1434 		 * addresses, we must call PURGEIF regardless of
   1435 		 * addresses.  (Protocols which might store ifnet
   1436 		 * pointers are marked with PR_PURGEIF.)
   1437 		 */
   1438 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1439 			so.so_proto = pr;
   1440 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1441 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1442 		}
   1443 	}
   1444 
   1445 	/* Wait for all readers to drain before freeing.  */
   1446 	IFNET_GLOBAL_LOCK();
   1447 	ifindex2ifnet[ifp->if_index] = NULL;
   1448 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1449 	IFNET_WRITER_REMOVE(ifp);
   1450 	pserialize_perform(ifnet_psz);
   1451 	IFNET_GLOBAL_UNLOCK();
   1452 
   1453 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1454 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1455 
   1456 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1457 	(void)pfil_head_destroy(ifp->if_pfil);
   1458 
   1459 	/* Announce that the interface is gone. */
   1460 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1461 
   1462 	IF_AFDATA_LOCK_DESTROY(ifp);
   1463 
   1464 	if (if_is_link_state_changeable(ifp)) {
   1465 		softint_disestablish(ifp->if_link_si);
   1466 		ifp->if_link_si = NULL;
   1467 	}
   1468 
   1469 	/*
   1470 	 * remove packets that came from ifp, from software interrupt queues.
   1471 	 */
   1472 	DOMAIN_FOREACH(dp) {
   1473 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1474 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1475 			if (iq == NULL)
   1476 				break;
   1477 			dp->dom_ifqueues[i] = NULL;
   1478 			if_detach_queues(ifp, iq);
   1479 		}
   1480 	}
   1481 
   1482 	/*
   1483 	 * IP queues have to be processed separately: net-queue barrier
   1484 	 * ensures that the packets are dequeued while a cross-call will
   1485 	 * ensure that the interrupts have completed. FIXME: not quite..
   1486 	 */
   1487 #ifdef INET
   1488 	pktq_barrier(ip_pktq);
   1489 #endif
   1490 #ifdef INET6
   1491 	if (in6_present)
   1492 		pktq_barrier(ip6_pktq);
   1493 #endif
   1494 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
   1495 	xc_wait(xc);
   1496 
   1497 	if (ifp->if_percpuq != NULL) {
   1498 		if_percpuq_destroy(ifp->if_percpuq);
   1499 		ifp->if_percpuq = NULL;
   1500 	}
   1501 
   1502 	mutex_obj_free(ifp->if_ioctl_lock);
   1503 	ifp->if_ioctl_lock = NULL;
   1504 
   1505 	splx(s);
   1506 
   1507 #ifdef IFAREF_DEBUG
   1508 	if_check_and_free_ifa_list(ifp);
   1509 #endif
   1510 }
   1511 
   1512 static void
   1513 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1514 {
   1515 	struct mbuf *m, *prev, *next;
   1516 
   1517 	prev = NULL;
   1518 	for (m = q->ifq_head; m != NULL; m = next) {
   1519 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1520 
   1521 		next = m->m_nextpkt;
   1522 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1523 			prev = m;
   1524 			continue;
   1525 		}
   1526 
   1527 		if (prev != NULL)
   1528 			prev->m_nextpkt = m->m_nextpkt;
   1529 		else
   1530 			q->ifq_head = m->m_nextpkt;
   1531 		if (q->ifq_tail == m)
   1532 			q->ifq_tail = prev;
   1533 		q->ifq_len--;
   1534 
   1535 		m->m_nextpkt = NULL;
   1536 		m_freem(m);
   1537 		IF_DROP(q);
   1538 	}
   1539 }
   1540 
   1541 /*
   1542  * Callback for a radix tree walk to delete all references to an
   1543  * ifnet.
   1544  */
   1545 static int
   1546 if_delroute_matcher(struct rtentry *rt, void *v)
   1547 {
   1548 	struct ifnet *ifp = (struct ifnet *)v;
   1549 
   1550 	if (rt->rt_ifp == ifp)
   1551 		return 1;
   1552 	else
   1553 		return 0;
   1554 }
   1555 
   1556 /*
   1557  * Create a clone network interface.
   1558  */
   1559 static int
   1560 if_clone_create(const char *name)
   1561 {
   1562 	struct if_clone *ifc;
   1563 	int unit;
   1564 	struct ifnet *ifp;
   1565 	struct psref psref;
   1566 
   1567 	KASSERT(mutex_owned(&if_clone_mtx));
   1568 
   1569 	ifc = if_clone_lookup(name, &unit);
   1570 	if (ifc == NULL)
   1571 		return EINVAL;
   1572 
   1573 	ifp = if_get(name, &psref);
   1574 	if (ifp != NULL) {
   1575 		if_put(ifp, &psref);
   1576 		return EEXIST;
   1577 	}
   1578 
   1579 	return (*ifc->ifc_create)(ifc, unit);
   1580 }
   1581 
   1582 /*
   1583  * Destroy a clone network interface.
   1584  */
   1585 static int
   1586 if_clone_destroy(const char *name)
   1587 {
   1588 	struct if_clone *ifc;
   1589 	struct ifnet *ifp;
   1590 	struct psref psref;
   1591 
   1592 	KASSERT(mutex_owned(&if_clone_mtx));
   1593 
   1594 	ifc = if_clone_lookup(name, NULL);
   1595 	if (ifc == NULL)
   1596 		return EINVAL;
   1597 
   1598 	if (ifc->ifc_destroy == NULL)
   1599 		return EOPNOTSUPP;
   1600 
   1601 	ifp = if_get(name, &psref);
   1602 	if (ifp == NULL)
   1603 		return ENXIO;
   1604 
   1605 	/* We have to disable ioctls here */
   1606 	IFNET_LOCK(ifp);
   1607 	ifp->if_ioctl = if_nullioctl;
   1608 	IFNET_UNLOCK(ifp);
   1609 
   1610 	/*
   1611 	 * We cannot call ifc_destroy with holding ifp.
   1612 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1613 	 */
   1614 	if_put(ifp, &psref);
   1615 
   1616 	return (*ifc->ifc_destroy)(ifp);
   1617 }
   1618 
   1619 static bool
   1620 if_is_unit(const char *name)
   1621 {
   1622 
   1623 	while(*name != '\0') {
   1624 		if (*name < '0' || *name > '9')
   1625 			return false;
   1626 		name++;
   1627 	}
   1628 
   1629 	return true;
   1630 }
   1631 
   1632 /*
   1633  * Look up a network interface cloner.
   1634  */
   1635 static struct if_clone *
   1636 if_clone_lookup(const char *name, int *unitp)
   1637 {
   1638 	struct if_clone *ifc;
   1639 	const char *cp;
   1640 	char *dp, ifname[IFNAMSIZ + 3];
   1641 	int unit;
   1642 
   1643 	KASSERT(mutex_owned(&if_clone_mtx));
   1644 
   1645 	strcpy(ifname, "if_");
   1646 	/* separate interface name from unit */
   1647 	/* TODO: search unit number from backward */
   1648 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1649 	    *cp && !if_is_unit(cp);)
   1650 		*dp++ = *cp++;
   1651 
   1652 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1653 		return NULL;	/* No name or unit number */
   1654 	*dp++ = '\0';
   1655 
   1656 again:
   1657 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1658 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1659 			break;
   1660 	}
   1661 
   1662 	if (ifc == NULL) {
   1663 		int error;
   1664 		if (*ifname == '\0')
   1665 			return NULL;
   1666 		mutex_exit(&if_clone_mtx);
   1667 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1668 		mutex_enter(&if_clone_mtx);
   1669 		if (error)
   1670 			return NULL;
   1671 		*ifname = '\0';
   1672 		goto again;
   1673 	}
   1674 
   1675 	unit = 0;
   1676 	while (cp - name < IFNAMSIZ && *cp) {
   1677 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1678 			/* Bogus unit number. */
   1679 			return NULL;
   1680 		}
   1681 		unit = (unit * 10) + (*cp++ - '0');
   1682 	}
   1683 
   1684 	if (unitp != NULL)
   1685 		*unitp = unit;
   1686 	return ifc;
   1687 }
   1688 
   1689 /*
   1690  * Register a network interface cloner.
   1691  */
   1692 void
   1693 if_clone_attach(struct if_clone *ifc)
   1694 {
   1695 
   1696 	mutex_enter(&if_clone_mtx);
   1697 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1698 	if_cloners_count++;
   1699 	mutex_exit(&if_clone_mtx);
   1700 }
   1701 
   1702 /*
   1703  * Unregister a network interface cloner.
   1704  */
   1705 void
   1706 if_clone_detach(struct if_clone *ifc)
   1707 {
   1708 
   1709 	mutex_enter(&if_clone_mtx);
   1710 	LIST_REMOVE(ifc, ifc_list);
   1711 	if_cloners_count--;
   1712 	mutex_exit(&if_clone_mtx);
   1713 }
   1714 
   1715 /*
   1716  * Provide list of interface cloners to userspace.
   1717  */
   1718 int
   1719 if_clone_list(int buf_count, char *buffer, int *total)
   1720 {
   1721 	char outbuf[IFNAMSIZ], *dst;
   1722 	struct if_clone *ifc;
   1723 	int count, error = 0;
   1724 
   1725 	mutex_enter(&if_clone_mtx);
   1726 	*total = if_cloners_count;
   1727 	if ((dst = buffer) == NULL) {
   1728 		/* Just asking how many there are. */
   1729 		goto out;
   1730 	}
   1731 
   1732 	if (buf_count < 0) {
   1733 		error = EINVAL;
   1734 		goto out;
   1735 	}
   1736 
   1737 	count = (if_cloners_count < buf_count) ?
   1738 	    if_cloners_count : buf_count;
   1739 
   1740 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1741 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1742 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1743 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1744 			error = ENAMETOOLONG;
   1745 			goto out;
   1746 		}
   1747 		error = copyout(outbuf, dst, sizeof(outbuf));
   1748 		if (error != 0)
   1749 			break;
   1750 	}
   1751 
   1752 out:
   1753 	mutex_exit(&if_clone_mtx);
   1754 	return error;
   1755 }
   1756 
   1757 void
   1758 ifa_psref_init(struct ifaddr *ifa)
   1759 {
   1760 
   1761 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1762 }
   1763 
   1764 void
   1765 ifaref(struct ifaddr *ifa)
   1766 {
   1767 	KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
   1768 	ifa->ifa_refcnt++;
   1769 }
   1770 
   1771 void
   1772 ifafree(struct ifaddr *ifa)
   1773 {
   1774 	KASSERT(ifa != NULL);
   1775 	KASSERT(ifa->ifa_refcnt > 0);
   1776 
   1777 	if (--ifa->ifa_refcnt == 0) {
   1778 		free(ifa, M_IFADDR);
   1779 	}
   1780 }
   1781 
   1782 bool
   1783 ifa_is_destroying(struct ifaddr *ifa)
   1784 {
   1785 
   1786 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1787 }
   1788 
   1789 void
   1790 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1791 {
   1792 
   1793 	ifa->ifa_ifp = ifp;
   1794 
   1795 	IFNET_GLOBAL_LOCK();
   1796 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1797 	IFADDR_ENTRY_INIT(ifa);
   1798 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1799 	IFNET_GLOBAL_UNLOCK();
   1800 
   1801 	ifaref(ifa);
   1802 }
   1803 
   1804 void
   1805 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1806 {
   1807 
   1808 	KASSERT(ifa->ifa_ifp == ifp);
   1809 
   1810 	IFNET_GLOBAL_LOCK();
   1811 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1812 	IFADDR_WRITER_REMOVE(ifa);
   1813 #ifdef NET_MPSAFE
   1814 	pserialize_perform(ifnet_psz);
   1815 #endif
   1816 	IFNET_GLOBAL_UNLOCK();
   1817 
   1818 #ifdef NET_MPSAFE
   1819 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1820 #endif
   1821 	IFADDR_ENTRY_DESTROY(ifa);
   1822 	ifafree(ifa);
   1823 }
   1824 
   1825 void
   1826 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1827 {
   1828 
   1829 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1830 }
   1831 
   1832 void
   1833 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1834 {
   1835 
   1836 	if (ifa == NULL)
   1837 		return;
   1838 
   1839 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1840 }
   1841 
   1842 bool
   1843 ifa_held(struct ifaddr *ifa)
   1844 {
   1845 
   1846 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1847 }
   1848 
   1849 static inline int
   1850 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1851 {
   1852 	return sockaddr_cmp(sa1, sa2) == 0;
   1853 }
   1854 
   1855 /*
   1856  * Locate an interface based on a complete address.
   1857  */
   1858 /*ARGSUSED*/
   1859 struct ifaddr *
   1860 ifa_ifwithaddr(const struct sockaddr *addr)
   1861 {
   1862 	struct ifnet *ifp;
   1863 	struct ifaddr *ifa;
   1864 
   1865 	IFNET_READER_FOREACH(ifp) {
   1866 		if (if_is_deactivated(ifp))
   1867 			continue;
   1868 		IFADDR_READER_FOREACH(ifa, ifp) {
   1869 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1870 				continue;
   1871 			if (equal(addr, ifa->ifa_addr))
   1872 				return ifa;
   1873 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1874 			    ifa->ifa_broadaddr &&
   1875 			    /* IP6 doesn't have broadcast */
   1876 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1877 			    equal(ifa->ifa_broadaddr, addr))
   1878 				return ifa;
   1879 		}
   1880 	}
   1881 	return NULL;
   1882 }
   1883 
   1884 struct ifaddr *
   1885 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1886 {
   1887 	struct ifaddr *ifa;
   1888 	int s = pserialize_read_enter();
   1889 
   1890 	ifa = ifa_ifwithaddr(addr);
   1891 	if (ifa != NULL)
   1892 		ifa_acquire(ifa, psref);
   1893 	pserialize_read_exit(s);
   1894 
   1895 	return ifa;
   1896 }
   1897 
   1898 /*
   1899  * Locate the point to point interface with a given destination address.
   1900  */
   1901 /*ARGSUSED*/
   1902 struct ifaddr *
   1903 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1904 {
   1905 	struct ifnet *ifp;
   1906 	struct ifaddr *ifa;
   1907 
   1908 	IFNET_READER_FOREACH(ifp) {
   1909 		if (if_is_deactivated(ifp))
   1910 			continue;
   1911 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1912 			continue;
   1913 		IFADDR_READER_FOREACH(ifa, ifp) {
   1914 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1915 			    ifa->ifa_dstaddr == NULL)
   1916 				continue;
   1917 			if (equal(addr, ifa->ifa_dstaddr))
   1918 				return ifa;
   1919 		}
   1920 	}
   1921 
   1922 	return NULL;
   1923 }
   1924 
   1925 struct ifaddr *
   1926 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1927 {
   1928 	struct ifaddr *ifa;
   1929 	int s;
   1930 
   1931 	s = pserialize_read_enter();
   1932 	ifa = ifa_ifwithdstaddr(addr);
   1933 	if (ifa != NULL)
   1934 		ifa_acquire(ifa, psref);
   1935 	pserialize_read_exit(s);
   1936 
   1937 	return ifa;
   1938 }
   1939 
   1940 /*
   1941  * Find an interface on a specific network.  If many, choice
   1942  * is most specific found.
   1943  */
   1944 struct ifaddr *
   1945 ifa_ifwithnet(const struct sockaddr *addr)
   1946 {
   1947 	struct ifnet *ifp;
   1948 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1949 	const struct sockaddr_dl *sdl;
   1950 	u_int af = addr->sa_family;
   1951 	const char *addr_data = addr->sa_data, *cplim;
   1952 
   1953 	if (af == AF_LINK) {
   1954 		sdl = satocsdl(addr);
   1955 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1956 		    ifindex2ifnet[sdl->sdl_index] &&
   1957 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1958 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   1959 		}
   1960 	}
   1961 #ifdef NETATALK
   1962 	if (af == AF_APPLETALK) {
   1963 		const struct sockaddr_at *sat, *sat2;
   1964 		sat = (const struct sockaddr_at *)addr;
   1965 		IFNET_READER_FOREACH(ifp) {
   1966 			if (if_is_deactivated(ifp))
   1967 				continue;
   1968 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   1969 			if (ifa == NULL)
   1970 				continue;
   1971 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   1972 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   1973 				return ifa; /* exact match */
   1974 			if (ifa_maybe == NULL) {
   1975 				/* else keep the if with the right range */
   1976 				ifa_maybe = ifa;
   1977 			}
   1978 		}
   1979 		return ifa_maybe;
   1980 	}
   1981 #endif
   1982 	IFNET_READER_FOREACH(ifp) {
   1983 		if (if_is_deactivated(ifp))
   1984 			continue;
   1985 		IFADDR_READER_FOREACH(ifa, ifp) {
   1986 			const char *cp, *cp2, *cp3;
   1987 
   1988 			if (ifa->ifa_addr->sa_family != af ||
   1989 			    ifa->ifa_netmask == NULL)
   1990  next:				continue;
   1991 			cp = addr_data;
   1992 			cp2 = ifa->ifa_addr->sa_data;
   1993 			cp3 = ifa->ifa_netmask->sa_data;
   1994 			cplim = (const char *)ifa->ifa_netmask +
   1995 			    ifa->ifa_netmask->sa_len;
   1996 			while (cp3 < cplim) {
   1997 				if ((*cp++ ^ *cp2++) & *cp3++) {
   1998 					/* want to continue for() loop */
   1999 					goto next;
   2000 				}
   2001 			}
   2002 			if (ifa_maybe == NULL ||
   2003 			    rt_refines(ifa->ifa_netmask,
   2004 			               ifa_maybe->ifa_netmask))
   2005 				ifa_maybe = ifa;
   2006 		}
   2007 	}
   2008 	return ifa_maybe;
   2009 }
   2010 
   2011 struct ifaddr *
   2012 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2013 {
   2014 	struct ifaddr *ifa;
   2015 	int s;
   2016 
   2017 	s = pserialize_read_enter();
   2018 	ifa = ifa_ifwithnet(addr);
   2019 	if (ifa != NULL)
   2020 		ifa_acquire(ifa, psref);
   2021 	pserialize_read_exit(s);
   2022 
   2023 	return ifa;
   2024 }
   2025 
   2026 /*
   2027  * Find the interface of the addresss.
   2028  */
   2029 struct ifaddr *
   2030 ifa_ifwithladdr(const struct sockaddr *addr)
   2031 {
   2032 	struct ifaddr *ia;
   2033 
   2034 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2035 	    (ia = ifa_ifwithnet(addr)))
   2036 		return ia;
   2037 	return NULL;
   2038 }
   2039 
   2040 struct ifaddr *
   2041 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2042 {
   2043 	struct ifaddr *ifa;
   2044 	int s;
   2045 
   2046 	s = pserialize_read_enter();
   2047 	ifa = ifa_ifwithladdr(addr);
   2048 	if (ifa != NULL)
   2049 		ifa_acquire(ifa, psref);
   2050 	pserialize_read_exit(s);
   2051 
   2052 	return ifa;
   2053 }
   2054 
   2055 /*
   2056  * Find an interface using a specific address family
   2057  */
   2058 struct ifaddr *
   2059 ifa_ifwithaf(int af)
   2060 {
   2061 	struct ifnet *ifp;
   2062 	struct ifaddr *ifa = NULL;
   2063 	int s;
   2064 
   2065 	s = pserialize_read_enter();
   2066 	IFNET_READER_FOREACH(ifp) {
   2067 		if (if_is_deactivated(ifp))
   2068 			continue;
   2069 		IFADDR_READER_FOREACH(ifa, ifp) {
   2070 			if (ifa->ifa_addr->sa_family == af)
   2071 				goto out;
   2072 		}
   2073 	}
   2074 out:
   2075 	pserialize_read_exit(s);
   2076 	return ifa;
   2077 }
   2078 
   2079 /*
   2080  * Find an interface address specific to an interface best matching
   2081  * a given address.
   2082  */
   2083 struct ifaddr *
   2084 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2085 {
   2086 	struct ifaddr *ifa;
   2087 	const char *cp, *cp2, *cp3;
   2088 	const char *cplim;
   2089 	struct ifaddr *ifa_maybe = 0;
   2090 	u_int af = addr->sa_family;
   2091 
   2092 	if (if_is_deactivated(ifp))
   2093 		return NULL;
   2094 
   2095 	if (af >= AF_MAX)
   2096 		return NULL;
   2097 
   2098 	IFADDR_READER_FOREACH(ifa, ifp) {
   2099 		if (ifa->ifa_addr->sa_family != af)
   2100 			continue;
   2101 		ifa_maybe = ifa;
   2102 		if (ifa->ifa_netmask == NULL) {
   2103 			if (equal(addr, ifa->ifa_addr) ||
   2104 			    (ifa->ifa_dstaddr &&
   2105 			     equal(addr, ifa->ifa_dstaddr)))
   2106 				return ifa;
   2107 			continue;
   2108 		}
   2109 		cp = addr->sa_data;
   2110 		cp2 = ifa->ifa_addr->sa_data;
   2111 		cp3 = ifa->ifa_netmask->sa_data;
   2112 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2113 		for (; cp3 < cplim; cp3++) {
   2114 			if ((*cp++ ^ *cp2++) & *cp3)
   2115 				break;
   2116 		}
   2117 		if (cp3 == cplim)
   2118 			return ifa;
   2119 	}
   2120 	return ifa_maybe;
   2121 }
   2122 
   2123 struct ifaddr *
   2124 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2125     struct psref *psref)
   2126 {
   2127 	struct ifaddr *ifa;
   2128 	int s;
   2129 
   2130 	s = pserialize_read_enter();
   2131 	ifa = ifaof_ifpforaddr(addr, ifp);
   2132 	if (ifa != NULL)
   2133 		ifa_acquire(ifa, psref);
   2134 	pserialize_read_exit(s);
   2135 
   2136 	return ifa;
   2137 }
   2138 
   2139 /*
   2140  * Default action when installing a route with a Link Level gateway.
   2141  * Lookup an appropriate real ifa to point to.
   2142  * This should be moved to /sys/net/link.c eventually.
   2143  */
   2144 void
   2145 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2146 {
   2147 	struct ifaddr *ifa;
   2148 	const struct sockaddr *dst;
   2149 	struct ifnet *ifp;
   2150 	struct psref psref;
   2151 
   2152 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
   2153 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
   2154 		return;
   2155 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2156 		rt_replace_ifa(rt, ifa);
   2157 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2158 			ifa->ifa_rtrequest(cmd, rt, info);
   2159 		ifa_release(ifa, &psref);
   2160 	}
   2161 }
   2162 
   2163 /*
   2164  * bitmask macros to manage a densely packed link_state change queue.
   2165  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2166  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2167  * As a state change to store is 0, treat all bits set as an unset item.
   2168  */
   2169 #define LQ_ITEM_BITS		2
   2170 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2171 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2172 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2173 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2174 #define LQ_STORE(q, i, v)						      \
   2175 	do {								      \
   2176 		(q) &= ~LQ_MASK((i));					      \
   2177 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2178 	} while (0 /* CONSTCOND */)
   2179 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2180 #define LQ_POP(q, v)							      \
   2181 	do {								      \
   2182 		(v) = LQ_ITEM((q), 0);					      \
   2183 		(q) >>= LQ_ITEM_BITS;					      \
   2184 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2185 	} while (0 /* CONSTCOND */)
   2186 #define LQ_PUSH(q, v)							      \
   2187 	do {								      \
   2188 		(q) >>= LQ_ITEM_BITS;					      \
   2189 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2190 	} while (0 /* CONSTCOND */)
   2191 #define LQ_FIND_UNSET(q, i)						      \
   2192 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2193 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2194 			break;						      \
   2195 	}
   2196 
   2197 /*
   2198  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2199  * for each ifnet.  It doesn't matter because:
   2200  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
   2201  *   ifq_lock don't happen
   2202  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2203  *   because if_snd, if_link_state_change and if_link_state_change_softint
   2204  *   are all called with KERNEL_LOCK
   2205  */
   2206 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
   2207 	mutex_enter((ifp)->if_snd.ifq_lock)
   2208 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
   2209 	mutex_exit((ifp)->if_snd.ifq_lock)
   2210 
   2211 /*
   2212  * Handle a change in the interface link state and
   2213  * queue notifications.
   2214  */
   2215 void
   2216 if_link_state_change(struct ifnet *ifp, int link_state)
   2217 {
   2218 	int idx;
   2219 
   2220 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2221 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2222 	    ifp->if_xname, ifp->if_extflags);
   2223 
   2224 	/* Ensure change is to a valid state */
   2225 	switch (link_state) {
   2226 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2227 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2228 	case LINK_STATE_UP:
   2229 		break;
   2230 	default:
   2231 #ifdef DEBUG
   2232 		printf("%s: invalid link state %d\n",
   2233 		    ifp->if_xname, link_state);
   2234 #endif
   2235 		return;
   2236 	}
   2237 
   2238 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2239 
   2240 	/* Find the last unset event in the queue. */
   2241 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2242 
   2243 	/*
   2244 	 * Ensure link_state doesn't match the last event in the queue.
   2245 	 * ifp->if_link_state is not checked and set here because
   2246 	 * that would present an inconsistent picture to the system.
   2247 	 */
   2248 	if (idx != 0 &&
   2249 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2250 		goto out;
   2251 
   2252 	/* Handle queue overflow. */
   2253 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2254 		uint8_t lost;
   2255 
   2256 		/*
   2257 		 * The DOWN state must be protected from being pushed off
   2258 		 * the queue to ensure that userland will always be
   2259 		 * in a sane state.
   2260 		 * Because DOWN is protected, there is no need to protect
   2261 		 * UNKNOWN.
   2262 		 * It should be invalid to change from any other state to
   2263 		 * UNKNOWN anyway ...
   2264 		 */
   2265 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2266 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2267 		if (lost == LINK_STATE_DOWN) {
   2268 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2269 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2270 		}
   2271 		printf("%s: lost link state change %s\n",
   2272 		    ifp->if_xname,
   2273 		    lost == LINK_STATE_UP ? "UP" :
   2274 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2275 		    "UNKNOWN");
   2276 	} else
   2277 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2278 
   2279 	softint_schedule(ifp->if_link_si);
   2280 
   2281 out:
   2282 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2283 }
   2284 
   2285 /*
   2286  * Handle interface link state change notifications.
   2287  */
   2288 void
   2289 if_link_state_change_softint(struct ifnet *ifp, int link_state)
   2290 {
   2291 	struct domain *dp;
   2292 	int s = splnet();
   2293 	bool notify;
   2294 
   2295 	KASSERT(!cpu_intr_p());
   2296 
   2297 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2298 
   2299 	/* Ensure the change is still valid. */
   2300 	if (ifp->if_link_state == link_state) {
   2301 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2302 		return;
   2303 	}
   2304 
   2305 #ifdef DEBUG
   2306 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2307 		link_state == LINK_STATE_UP ? "UP" :
   2308 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2309 		"UNKNOWN",
   2310 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2311 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2312 		"UNKNOWN");
   2313 #endif
   2314 
   2315 	/*
   2316 	 * When going from UNKNOWN to UP, we need to mark existing
   2317 	 * addresses as tentative and restart DAD as we may have
   2318 	 * erroneously not found a duplicate.
   2319 	 *
   2320 	 * This needs to happen before rt_ifmsg to avoid a race where
   2321 	 * listeners would have an address and expect it to work right
   2322 	 * away.
   2323 	 */
   2324 	notify = (link_state == LINK_STATE_UP &&
   2325 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2326 	ifp->if_link_state = link_state;
   2327 	/* The following routines may sleep so release the spin mutex */
   2328 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2329 
   2330 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2331 	if (notify) {
   2332 		DOMAIN_FOREACH(dp) {
   2333 			if (dp->dom_if_link_state_change != NULL)
   2334 				dp->dom_if_link_state_change(ifp,
   2335 				    LINK_STATE_DOWN);
   2336 		}
   2337 	}
   2338 
   2339 	/* Notify that the link state has changed. */
   2340 	rt_ifmsg(ifp);
   2341 
   2342 #if NCARP > 0
   2343 	if (ifp->if_carp)
   2344 		carp_carpdev_state(ifp);
   2345 #endif
   2346 
   2347 	DOMAIN_FOREACH(dp) {
   2348 		if (dp->dom_if_link_state_change != NULL)
   2349 			dp->dom_if_link_state_change(ifp, link_state);
   2350 	}
   2351 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2352 	splx(s);
   2353 }
   2354 
   2355 /*
   2356  * Process the interface link state change queue.
   2357  */
   2358 static void
   2359 if_link_state_change_si(void *arg)
   2360 {
   2361 	struct ifnet *ifp = arg;
   2362 	int s;
   2363 	uint8_t state;
   2364 	bool schedule;
   2365 
   2366 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2367 	s = splnet();
   2368 
   2369 	/* Pop a link state change from the queue and process it. */
   2370 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2371 	LQ_POP(ifp->if_link_queue, state);
   2372 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2373 
   2374 	if_link_state_change_softint(ifp, state);
   2375 
   2376 	/* If there is a link state change to come, schedule it. */
   2377 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2378 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
   2379 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2380 	if (schedule)
   2381 		softint_schedule(ifp->if_link_si);
   2382 
   2383 	splx(s);
   2384 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2385 }
   2386 
   2387 /*
   2388  * Default action when installing a local route on a point-to-point
   2389  * interface.
   2390  */
   2391 void
   2392 p2p_rtrequest(int req, struct rtentry *rt,
   2393     __unused const struct rt_addrinfo *info)
   2394 {
   2395 	struct ifnet *ifp = rt->rt_ifp;
   2396 	struct ifaddr *ifa, *lo0ifa;
   2397 	int s = pserialize_read_enter();
   2398 
   2399 	switch (req) {
   2400 	case RTM_ADD:
   2401 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2402 			break;
   2403 
   2404 		rt->rt_ifp = lo0ifp;
   2405 
   2406 		IFADDR_READER_FOREACH(ifa, ifp) {
   2407 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2408 				break;
   2409 		}
   2410 		if (ifa == NULL)
   2411 			break;
   2412 
   2413 		/*
   2414 		 * Ensure lo0 has an address of the same family.
   2415 		 */
   2416 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2417 			if (lo0ifa->ifa_addr->sa_family ==
   2418 			    ifa->ifa_addr->sa_family)
   2419 				break;
   2420 		}
   2421 		if (lo0ifa == NULL)
   2422 			break;
   2423 
   2424 		/*
   2425 		 * Make sure to set rt->rt_ifa to the interface
   2426 		 * address we are using, otherwise we will have trouble
   2427 		 * with source address selection.
   2428 		 */
   2429 		if (ifa != rt->rt_ifa)
   2430 			rt_replace_ifa(rt, ifa);
   2431 		break;
   2432 	case RTM_DELETE:
   2433 	default:
   2434 		break;
   2435 	}
   2436 	pserialize_read_exit(s);
   2437 }
   2438 
   2439 static void
   2440 _if_down(struct ifnet *ifp)
   2441 {
   2442 	struct ifaddr *ifa;
   2443 	struct domain *dp;
   2444 	int s, bound;
   2445 	struct psref psref;
   2446 
   2447 	ifp->if_flags &= ~IFF_UP;
   2448 	nanotime(&ifp->if_lastchange);
   2449 
   2450 	bound = curlwp_bind();
   2451 	s = pserialize_read_enter();
   2452 	IFADDR_READER_FOREACH(ifa, ifp) {
   2453 		ifa_acquire(ifa, &psref);
   2454 		pserialize_read_exit(s);
   2455 
   2456 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2457 
   2458 		s = pserialize_read_enter();
   2459 		ifa_release(ifa, &psref);
   2460 	}
   2461 	pserialize_read_exit(s);
   2462 	curlwp_bindx(bound);
   2463 
   2464 	IFQ_PURGE(&ifp->if_snd);
   2465 #if NCARP > 0
   2466 	if (ifp->if_carp)
   2467 		carp_carpdev_state(ifp);
   2468 #endif
   2469 	rt_ifmsg(ifp);
   2470 	DOMAIN_FOREACH(dp) {
   2471 		if (dp->dom_if_down)
   2472 			dp->dom_if_down(ifp);
   2473 	}
   2474 }
   2475 
   2476 static void
   2477 if_down_deactivated(struct ifnet *ifp)
   2478 {
   2479 
   2480 	KASSERT(if_is_deactivated(ifp));
   2481 	_if_down(ifp);
   2482 }
   2483 
   2484 void
   2485 if_down_locked(struct ifnet *ifp)
   2486 {
   2487 
   2488 	KASSERT(IFNET_LOCKED(ifp));
   2489 	_if_down(ifp);
   2490 }
   2491 
   2492 /*
   2493  * Mark an interface down and notify protocols of
   2494  * the transition.
   2495  * NOTE: must be called at splsoftnet or equivalent.
   2496  */
   2497 void
   2498 if_down(struct ifnet *ifp)
   2499 {
   2500 
   2501 	IFNET_LOCK(ifp);
   2502 	if_down_locked(ifp);
   2503 	IFNET_UNLOCK(ifp);
   2504 }
   2505 
   2506 /*
   2507  * Must be called with holding if_ioctl_lock.
   2508  */
   2509 static void
   2510 if_up_locked(struct ifnet *ifp)
   2511 {
   2512 #ifdef notyet
   2513 	struct ifaddr *ifa;
   2514 #endif
   2515 	struct domain *dp;
   2516 
   2517 	KASSERT(IFNET_LOCKED(ifp));
   2518 
   2519 	KASSERT(!if_is_deactivated(ifp));
   2520 	ifp->if_flags |= IFF_UP;
   2521 	nanotime(&ifp->if_lastchange);
   2522 #ifdef notyet
   2523 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2524 	IFADDR_READER_FOREACH(ifa, ifp)
   2525 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2526 #endif
   2527 #if NCARP > 0
   2528 	if (ifp->if_carp)
   2529 		carp_carpdev_state(ifp);
   2530 #endif
   2531 	rt_ifmsg(ifp);
   2532 	DOMAIN_FOREACH(dp) {
   2533 		if (dp->dom_if_up)
   2534 			dp->dom_if_up(ifp);
   2535 	}
   2536 }
   2537 
   2538 /*
   2539  * Handle interface slowtimo timer routine.  Called
   2540  * from softclock, we decrement timer (if set) and
   2541  * call the appropriate interface routine on expiration.
   2542  */
   2543 static void
   2544 if_slowtimo(void *arg)
   2545 {
   2546 	void (*slowtimo)(struct ifnet *);
   2547 	struct ifnet *ifp = arg;
   2548 	int s;
   2549 
   2550 	slowtimo = ifp->if_slowtimo;
   2551 	if (__predict_false(slowtimo == NULL))
   2552 		return;
   2553 
   2554 	s = splnet();
   2555 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2556 		(*slowtimo)(ifp);
   2557 
   2558 	splx(s);
   2559 
   2560 	if (__predict_true(ifp->if_slowtimo != NULL))
   2561 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2562 }
   2563 
   2564 /*
   2565  * Mark an interface up and notify protocols of
   2566  * the transition.
   2567  * NOTE: must be called at splsoftnet or equivalent.
   2568  */
   2569 void
   2570 if_up(struct ifnet *ifp)
   2571 {
   2572 
   2573 	IFNET_LOCK(ifp);
   2574 	if_up_locked(ifp);
   2575 	IFNET_UNLOCK(ifp);
   2576 }
   2577 
   2578 /*
   2579  * Set/clear promiscuous mode on interface ifp based on the truth value
   2580  * of pswitch.  The calls are reference counted so that only the first
   2581  * "on" request actually has an effect, as does the final "off" request.
   2582  * Results are undefined if the "off" and "on" requests are not matched.
   2583  */
   2584 int
   2585 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2586 {
   2587 	int pcount, ret = 0;
   2588 	short nflags;
   2589 
   2590 	KASSERT(IFNET_LOCKED(ifp));
   2591 
   2592 	pcount = ifp->if_pcount;
   2593 	if (pswitch) {
   2594 		/*
   2595 		 * Allow the device to be "placed" into promiscuous
   2596 		 * mode even if it is not configured up.  It will
   2597 		 * consult IFF_PROMISC when it is brought up.
   2598 		 */
   2599 		if (ifp->if_pcount++ != 0)
   2600 			goto out;
   2601 		nflags = ifp->if_flags | IFF_PROMISC;
   2602 	} else {
   2603 		if (--ifp->if_pcount > 0)
   2604 			goto out;
   2605 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2606 	}
   2607 	ret = if_flags_set(ifp, nflags);
   2608 	/* Restore interface state if not successful. */
   2609 	if (ret != 0) {
   2610 		ifp->if_pcount = pcount;
   2611 	}
   2612 out:
   2613 	return ret;
   2614 }
   2615 
   2616 int
   2617 ifpromisc(struct ifnet *ifp, int pswitch)
   2618 {
   2619 	int e;
   2620 
   2621 	IFNET_LOCK(ifp);
   2622 	e = ifpromisc_locked(ifp, pswitch);
   2623 	IFNET_UNLOCK(ifp);
   2624 
   2625 	return e;
   2626 }
   2627 
   2628 /*
   2629  * Map interface name to
   2630  * interface structure pointer.
   2631  */
   2632 struct ifnet *
   2633 ifunit(const char *name)
   2634 {
   2635 	struct ifnet *ifp;
   2636 	const char *cp = name;
   2637 	u_int unit = 0;
   2638 	u_int i;
   2639 	int s;
   2640 
   2641 	/*
   2642 	 * If the entire name is a number, treat it as an ifindex.
   2643 	 */
   2644 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2645 		unit = unit * 10 + (*cp - '0');
   2646 	}
   2647 
   2648 	/*
   2649 	 * If the number took all of the name, then it's a valid ifindex.
   2650 	 */
   2651 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2652 		return if_byindex(unit);
   2653 
   2654 	ifp = NULL;
   2655 	s = pserialize_read_enter();
   2656 	IFNET_READER_FOREACH(ifp) {
   2657 		if (if_is_deactivated(ifp))
   2658 			continue;
   2659 	 	if (strcmp(ifp->if_xname, name) == 0)
   2660 			goto out;
   2661 	}
   2662 out:
   2663 	pserialize_read_exit(s);
   2664 	return ifp;
   2665 }
   2666 
   2667 /*
   2668  * Get a reference of an ifnet object by an interface name.
   2669  * The returned reference is protected by psref(9). The caller
   2670  * must release a returned reference by if_put after use.
   2671  */
   2672 struct ifnet *
   2673 if_get(const char *name, struct psref *psref)
   2674 {
   2675 	struct ifnet *ifp;
   2676 	const char *cp = name;
   2677 	u_int unit = 0;
   2678 	u_int i;
   2679 	int s;
   2680 
   2681 	/*
   2682 	 * If the entire name is a number, treat it as an ifindex.
   2683 	 */
   2684 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2685 		unit = unit * 10 + (*cp - '0');
   2686 	}
   2687 
   2688 	/*
   2689 	 * If the number took all of the name, then it's a valid ifindex.
   2690 	 */
   2691 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2692 		return if_get_byindex(unit, psref);
   2693 
   2694 	ifp = NULL;
   2695 	s = pserialize_read_enter();
   2696 	IFNET_READER_FOREACH(ifp) {
   2697 		if (if_is_deactivated(ifp))
   2698 			continue;
   2699 		if (strcmp(ifp->if_xname, name) == 0) {
   2700 			psref_acquire(psref, &ifp->if_psref,
   2701 			    ifnet_psref_class);
   2702 			goto out;
   2703 		}
   2704 	}
   2705 out:
   2706 	pserialize_read_exit(s);
   2707 	return ifp;
   2708 }
   2709 
   2710 /*
   2711  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2712  * or if_get_bylla.
   2713  */
   2714 void
   2715 if_put(const struct ifnet *ifp, struct psref *psref)
   2716 {
   2717 
   2718 	if (ifp == NULL)
   2719 		return;
   2720 
   2721 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2722 }
   2723 
   2724 /*
   2725  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
   2726  * should be used.
   2727  */
   2728 ifnet_t *
   2729 _if_byindex(u_int idx)
   2730 {
   2731 
   2732 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2733 }
   2734 
   2735 /*
   2736  * Return ifp having idx. Return NULL if not found or the found ifp is
   2737  * already deactivated.
   2738  */
   2739 ifnet_t *
   2740 if_byindex(u_int idx)
   2741 {
   2742 	ifnet_t *ifp;
   2743 
   2744 	ifp = _if_byindex(idx);
   2745 	if (ifp != NULL && if_is_deactivated(ifp))
   2746 		ifp = NULL;
   2747 	return ifp;
   2748 }
   2749 
   2750 /*
   2751  * Get a reference of an ifnet object by an interface index.
   2752  * The returned reference is protected by psref(9). The caller
   2753  * must release a returned reference by if_put after use.
   2754  */
   2755 ifnet_t *
   2756 if_get_byindex(u_int idx, struct psref *psref)
   2757 {
   2758 	ifnet_t *ifp;
   2759 	int s;
   2760 
   2761 	s = pserialize_read_enter();
   2762 	ifp = if_byindex(idx);
   2763 	if (__predict_true(ifp != NULL))
   2764 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2765 	pserialize_read_exit(s);
   2766 
   2767 	return ifp;
   2768 }
   2769 
   2770 ifnet_t *
   2771 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2772 {
   2773 	ifnet_t *ifp;
   2774 	int s;
   2775 
   2776 	s = pserialize_read_enter();
   2777 	IFNET_READER_FOREACH(ifp) {
   2778 		if (if_is_deactivated(ifp))
   2779 			continue;
   2780 		if (ifp->if_addrlen != lla_len)
   2781 			continue;
   2782 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2783 			psref_acquire(psref, &ifp->if_psref,
   2784 			    ifnet_psref_class);
   2785 			break;
   2786 		}
   2787 	}
   2788 	pserialize_read_exit(s);
   2789 
   2790 	return ifp;
   2791 }
   2792 
   2793 /*
   2794  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2795  * for example using pserialize or the ifp is already held or some other
   2796  * object is held which guarantes the ifp to not be freed indirectly.
   2797  */
   2798 void
   2799 if_acquire(struct ifnet *ifp, struct psref *psref)
   2800 {
   2801 
   2802 	KASSERT(ifp->if_index != 0);
   2803 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2804 }
   2805 
   2806 bool
   2807 if_held(struct ifnet *ifp)
   2808 {
   2809 
   2810 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2811 }
   2812 
   2813 /*
   2814  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2815  * Check the tunnel nesting count.
   2816  * Return > 0, if tunnel nesting count is more than limit.
   2817  * Return 0, if tunnel nesting count is equal or less than limit.
   2818  */
   2819 int
   2820 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2821 {
   2822 	struct m_tag *mtag;
   2823 	int *count;
   2824 
   2825 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
   2826 	if (mtag != NULL) {
   2827 		count = (int *)(mtag + 1);
   2828 		if (++(*count) > limit) {
   2829 			log(LOG_NOTICE,
   2830 			    "%s: recursively called too many times(%d)\n",
   2831 			    ifp->if_xname, *count);
   2832 			return EIO;
   2833 		}
   2834 	} else {
   2835 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2836 		    M_NOWAIT);
   2837 		if (mtag != NULL) {
   2838 			m_tag_prepend(m, mtag);
   2839 			count = (int *)(mtag + 1);
   2840 			*count = 0;
   2841 		} else {
   2842 			log(LOG_DEBUG,
   2843 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2844 			    ifp->if_xname);
   2845 		}
   2846 	}
   2847 
   2848 	return 0;
   2849 }
   2850 
   2851 /* common */
   2852 int
   2853 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2854 {
   2855 	int s;
   2856 	struct ifreq *ifr;
   2857 	struct ifcapreq *ifcr;
   2858 	struct ifdatareq *ifdr;
   2859 
   2860 	switch (cmd) {
   2861 	case SIOCSIFCAP:
   2862 		ifcr = data;
   2863 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2864 			return EINVAL;
   2865 
   2866 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2867 			return 0;
   2868 
   2869 		ifp->if_capenable = ifcr->ifcr_capenable;
   2870 
   2871 		/* Pre-compute the checksum flags mask. */
   2872 		ifp->if_csum_flags_tx = 0;
   2873 		ifp->if_csum_flags_rx = 0;
   2874 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
   2875 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2876 		}
   2877 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
   2878 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2879 		}
   2880 
   2881 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
   2882 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2883 		}
   2884 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
   2885 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2886 		}
   2887 
   2888 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
   2889 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   2890 		}
   2891 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
   2892 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   2893 		}
   2894 
   2895 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
   2896 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   2897 		}
   2898 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
   2899 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   2900 		}
   2901 
   2902 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
   2903 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   2904 		}
   2905 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
   2906 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   2907 		}
   2908 		if (ifp->if_flags & IFF_UP)
   2909 			return ENETRESET;
   2910 		return 0;
   2911 	case SIOCSIFFLAGS:
   2912 		ifr = data;
   2913 		/*
   2914 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   2915 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   2916 		 */
   2917 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   2918 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   2919 			s = splsoftnet();
   2920 			if_down_locked(ifp);
   2921 			splx(s);
   2922 		}
   2923 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   2924 			s = splsoftnet();
   2925 			if_up_locked(ifp);
   2926 			splx(s);
   2927 		}
   2928 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   2929 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
   2930 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
   2931 		break;
   2932 	case SIOCGIFFLAGS:
   2933 		ifr = data;
   2934 		ifr->ifr_flags = ifp->if_flags;
   2935 		break;
   2936 
   2937 	case SIOCGIFMETRIC:
   2938 		ifr = data;
   2939 		ifr->ifr_metric = ifp->if_metric;
   2940 		break;
   2941 
   2942 	case SIOCGIFMTU:
   2943 		ifr = data;
   2944 		ifr->ifr_mtu = ifp->if_mtu;
   2945 		break;
   2946 
   2947 	case SIOCGIFDLT:
   2948 		ifr = data;
   2949 		ifr->ifr_dlt = ifp->if_dlt;
   2950 		break;
   2951 
   2952 	case SIOCGIFCAP:
   2953 		ifcr = data;
   2954 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   2955 		ifcr->ifcr_capenable = ifp->if_capenable;
   2956 		break;
   2957 
   2958 	case SIOCSIFMETRIC:
   2959 		ifr = data;
   2960 		ifp->if_metric = ifr->ifr_metric;
   2961 		break;
   2962 
   2963 	case SIOCGIFDATA:
   2964 		ifdr = data;
   2965 		ifdr->ifdr_data = ifp->if_data;
   2966 		break;
   2967 
   2968 	case SIOCGIFINDEX:
   2969 		ifr = data;
   2970 		ifr->ifr_index = ifp->if_index;
   2971 		break;
   2972 
   2973 	case SIOCZIFDATA:
   2974 		ifdr = data;
   2975 		ifdr->ifdr_data = ifp->if_data;
   2976 		/*
   2977 		 * Assumes that the volatile counters that can be
   2978 		 * zero'ed are at the end of if_data.
   2979 		 */
   2980 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   2981 		    offsetof(struct if_data, ifi_ipackets));
   2982 		/*
   2983 		 * The memset() clears to the bottm of if_data. In the area,
   2984 		 * if_lastchange is included. Please be careful if new entry
   2985 		 * will be added into if_data or rewite this.
   2986 		 *
   2987 		 * And also, update if_lastchnage.
   2988 		 */
   2989 		getnanotime(&ifp->if_lastchange);
   2990 		break;
   2991 	case SIOCSIFMTU:
   2992 		ifr = data;
   2993 		if (ifp->if_mtu == ifr->ifr_mtu)
   2994 			break;
   2995 		ifp->if_mtu = ifr->ifr_mtu;
   2996 		/*
   2997 		 * If the link MTU changed, do network layer specific procedure.
   2998 		 */
   2999 #ifdef INET6
   3000 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3001 		if (in6_present)
   3002 			nd6_setmtu(ifp);
   3003 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3004 #endif
   3005 		return ENETRESET;
   3006 	default:
   3007 		return ENOTTY;
   3008 	}
   3009 	return 0;
   3010 }
   3011 
   3012 int
   3013 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3014 {
   3015 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3016 	struct ifaddr *ifa;
   3017 	const struct sockaddr *any, *sa;
   3018 	union {
   3019 		struct sockaddr sa;
   3020 		struct sockaddr_storage ss;
   3021 	} u, v;
   3022 	int s, error = 0;
   3023 
   3024 	switch (cmd) {
   3025 	case SIOCSIFADDRPREF:
   3026 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
   3027 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
   3028 		    NULL) != 0)
   3029 			return EPERM;
   3030 	case SIOCGIFADDRPREF:
   3031 		break;
   3032 	default:
   3033 		return EOPNOTSUPP;
   3034 	}
   3035 
   3036 	/* sanity checks */
   3037 	if (data == NULL || ifp == NULL) {
   3038 		panic("invalid argument to %s", __func__);
   3039 		/*NOTREACHED*/
   3040 	}
   3041 
   3042 	/* address must be specified on ADD and DELETE */
   3043 	sa = sstocsa(&ifap->ifap_addr);
   3044 	if (sa->sa_family != sofamily(so))
   3045 		return EINVAL;
   3046 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3047 		return EINVAL;
   3048 
   3049 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3050 
   3051 	s = pserialize_read_enter();
   3052 	IFADDR_READER_FOREACH(ifa, ifp) {
   3053 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3054 			continue;
   3055 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3056 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3057 			break;
   3058 	}
   3059 	if (ifa == NULL) {
   3060 		error = EADDRNOTAVAIL;
   3061 		goto out;
   3062 	}
   3063 
   3064 	switch (cmd) {
   3065 	case SIOCSIFADDRPREF:
   3066 		ifa->ifa_preference = ifap->ifap_preference;
   3067 		goto out;
   3068 	case SIOCGIFADDRPREF:
   3069 		/* fill in the if_laddrreq structure */
   3070 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3071 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3072 		ifap->ifap_preference = ifa->ifa_preference;
   3073 		goto out;
   3074 	default:
   3075 		error = EOPNOTSUPP;
   3076 	}
   3077 out:
   3078 	pserialize_read_exit(s);
   3079 	return error;
   3080 }
   3081 
   3082 /*
   3083  * Interface ioctls.
   3084  */
   3085 static int
   3086 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3087 {
   3088 	struct ifnet *ifp;
   3089 	struct ifreq *ifr;
   3090 	int error = 0;
   3091 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
   3092 	u_long ocmd = cmd;
   3093 #endif
   3094 	short oif_flags;
   3095 #ifdef COMPAT_OIFREQ
   3096 	struct ifreq ifrb;
   3097 	struct oifreq *oifr = NULL;
   3098 #endif
   3099 	int r;
   3100 	struct psref psref;
   3101 	int bound;
   3102 
   3103 	switch (cmd) {
   3104 #ifdef COMPAT_OIFREQ
   3105 	case OSIOCGIFCONF:
   3106 	case OOSIOCGIFCONF:
   3107 		return compat_ifconf(cmd, data);
   3108 #endif
   3109 #ifdef COMPAT_OIFDATA
   3110 	case OSIOCGIFDATA:
   3111 	case OSIOCZIFDATA:
   3112 		return compat_ifdatareq(l, cmd, data);
   3113 #endif
   3114 	case SIOCGIFCONF:
   3115 		return ifconf(cmd, data);
   3116 	case SIOCINITIFADDR:
   3117 		return EPERM;
   3118 	}
   3119 
   3120 #ifdef COMPAT_OIFREQ
   3121 	cmd = (*vec_compat_cvtcmd)(cmd);
   3122 	if (cmd != ocmd) {
   3123 		oifr = data;
   3124 		data = ifr = &ifrb;
   3125 		ifreqo2n(oifr, ifr);
   3126 	} else
   3127 #endif
   3128 		ifr = data;
   3129 
   3130 	switch (cmd) {
   3131 	case SIOCIFCREATE:
   3132 	case SIOCIFDESTROY:
   3133 		bound = curlwp_bind();
   3134 		if (l != NULL) {
   3135 			ifp = if_get(ifr->ifr_name, &psref);
   3136 			error = kauth_authorize_network(l->l_cred,
   3137 			    KAUTH_NETWORK_INTERFACE,
   3138 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3139 			    (void *)cmd, NULL);
   3140 			if (ifp != NULL)
   3141 				if_put(ifp, &psref);
   3142 			if (error != 0) {
   3143 				curlwp_bindx(bound);
   3144 				return error;
   3145 			}
   3146 		}
   3147 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3148 		mutex_enter(&if_clone_mtx);
   3149 		r = (cmd == SIOCIFCREATE) ?
   3150 			if_clone_create(ifr->ifr_name) :
   3151 			if_clone_destroy(ifr->ifr_name);
   3152 		mutex_exit(&if_clone_mtx);
   3153 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3154 		curlwp_bindx(bound);
   3155 		return r;
   3156 
   3157 	case SIOCIFGCLONERS:
   3158 		{
   3159 			struct if_clonereq *req = (struct if_clonereq *)data;
   3160 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3161 			    &req->ifcr_total);
   3162 		}
   3163 	}
   3164 
   3165 	bound = curlwp_bind();
   3166 	ifp = if_get(ifr->ifr_name, &psref);
   3167 	if (ifp == NULL) {
   3168 		curlwp_bindx(bound);
   3169 		return ENXIO;
   3170 	}
   3171 
   3172 	switch (cmd) {
   3173 	case SIOCALIFADDR:
   3174 	case SIOCDLIFADDR:
   3175 	case SIOCSIFADDRPREF:
   3176 	case SIOCSIFFLAGS:
   3177 	case SIOCSIFCAP:
   3178 	case SIOCSIFMETRIC:
   3179 	case SIOCZIFDATA:
   3180 	case SIOCSIFMTU:
   3181 	case SIOCSIFPHYADDR:
   3182 	case SIOCDIFPHYADDR:
   3183 #ifdef INET6
   3184 	case SIOCSIFPHYADDR_IN6:
   3185 #endif
   3186 	case SIOCSLIFPHYADDR:
   3187 	case SIOCADDMULTI:
   3188 	case SIOCDELMULTI:
   3189 	case SIOCSIFMEDIA:
   3190 	case SIOCSDRVSPEC:
   3191 	case SIOCG80211:
   3192 	case SIOCS80211:
   3193 	case SIOCS80211NWID:
   3194 	case SIOCS80211NWKEY:
   3195 	case SIOCS80211POWER:
   3196 	case SIOCS80211BSSID:
   3197 	case SIOCS80211CHANNEL:
   3198 	case SIOCSLINKSTR:
   3199 		if (l != NULL) {
   3200 			error = kauth_authorize_network(l->l_cred,
   3201 			    KAUTH_NETWORK_INTERFACE,
   3202 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3203 			    (void *)cmd, NULL);
   3204 			if (error != 0)
   3205 				goto out;
   3206 		}
   3207 	}
   3208 
   3209 	oif_flags = ifp->if_flags;
   3210 
   3211 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3212 	IFNET_LOCK(ifp);
   3213 
   3214 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3215 	if (error != ENOTTY)
   3216 		;
   3217 	else if (so->so_proto == NULL)
   3218 		error = EOPNOTSUPP;
   3219 	else {
   3220 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3221 #ifdef COMPAT_OSOCK
   3222 		if (vec_compat_ifioctl != NULL)
   3223 			error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
   3224 		else
   3225 #endif
   3226 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3227 			    cmd, data, ifp);
   3228 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3229 	}
   3230 
   3231 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3232 		if ((ifp->if_flags & IFF_UP) != 0) {
   3233 			int s = splsoftnet();
   3234 			if_up_locked(ifp);
   3235 			splx(s);
   3236 		}
   3237 	}
   3238 #ifdef COMPAT_OIFREQ
   3239 	if (cmd != ocmd)
   3240 		ifreqn2o(oifr, ifr);
   3241 #endif
   3242 
   3243 	IFNET_UNLOCK(ifp);
   3244 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3245 out:
   3246 	if_put(ifp, &psref);
   3247 	curlwp_bindx(bound);
   3248 	return error;
   3249 }
   3250 
   3251 /*
   3252  * Return interface configuration
   3253  * of system.  List may be used
   3254  * in later ioctl's (above) to get
   3255  * other information.
   3256  *
   3257  * Each record is a struct ifreq.  Before the addition of
   3258  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3259  * not fit would extend beyond the struct ifreq, with the next struct
   3260  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3261  * union in struct ifreq includes struct sockaddr_storage, every kind
   3262  * of sockaddr must fit.  Thus, there are no longer any overlength
   3263  * records.
   3264  *
   3265  * Records are added to the user buffer if they fit, and ifc_len is
   3266  * adjusted to the length that was written.  Thus, the user is only
   3267  * assured of getting the complete list if ifc_len on return is at
   3268  * least sizeof(struct ifreq) less than it was on entry.
   3269  *
   3270  * If the user buffer pointer is NULL, this routine copies no data and
   3271  * returns the amount of space that would be needed.
   3272  *
   3273  * Invariants:
   3274  * ifrp points to the next part of the user's buffer to be used.  If
   3275  * ifrp != NULL, space holds the number of bytes remaining that we may
   3276  * write at ifrp.  Otherwise, space holds the number of bytes that
   3277  * would have been written had there been adequate space.
   3278  */
   3279 /*ARGSUSED*/
   3280 static int
   3281 ifconf(u_long cmd, void *data)
   3282 {
   3283 	struct ifconf *ifc = (struct ifconf *)data;
   3284 	struct ifnet *ifp;
   3285 	struct ifaddr *ifa;
   3286 	struct ifreq ifr, *ifrp = NULL;
   3287 	int space = 0, error = 0;
   3288 	const int sz = (int)sizeof(struct ifreq);
   3289 	const bool docopy = ifc->ifc_req != NULL;
   3290 	int s;
   3291 	int bound;
   3292 	struct psref psref;
   3293 
   3294 	if (docopy) {
   3295 		space = ifc->ifc_len;
   3296 		ifrp = ifc->ifc_req;
   3297 	}
   3298 
   3299 	bound = curlwp_bind();
   3300 	s = pserialize_read_enter();
   3301 	IFNET_READER_FOREACH(ifp) {
   3302 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3303 		pserialize_read_exit(s);
   3304 
   3305 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3306 		    sizeof(ifr.ifr_name));
   3307 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3308 			error = ENAMETOOLONG;
   3309 			goto release_exit;
   3310 		}
   3311 		if (IFADDR_READER_EMPTY(ifp)) {
   3312 			/* Interface with no addresses - send zero sockaddr. */
   3313 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3314 			if (!docopy) {
   3315 				space += sz;
   3316 				goto next;
   3317 			}
   3318 			if (space >= sz) {
   3319 				error = copyout(&ifr, ifrp, sz);
   3320 				if (error != 0)
   3321 					goto release_exit;
   3322 				ifrp++;
   3323 				space -= sz;
   3324 			}
   3325 		}
   3326 
   3327 		s = pserialize_read_enter();
   3328 		IFADDR_READER_FOREACH(ifa, ifp) {
   3329 			struct sockaddr *sa = ifa->ifa_addr;
   3330 			/* all sockaddrs must fit in sockaddr_storage */
   3331 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3332 
   3333 			if (!docopy) {
   3334 				space += sz;
   3335 				continue;
   3336 			}
   3337 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3338 			pserialize_read_exit(s);
   3339 
   3340 			if (space >= sz) {
   3341 				error = copyout(&ifr, ifrp, sz);
   3342 				if (error != 0)
   3343 					goto release_exit;
   3344 				ifrp++; space -= sz;
   3345 			}
   3346 			s = pserialize_read_enter();
   3347 		}
   3348 		pserialize_read_exit(s);
   3349 
   3350         next:
   3351 		s = pserialize_read_enter();
   3352 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3353 	}
   3354 	pserialize_read_exit(s);
   3355 	curlwp_bindx(bound);
   3356 
   3357 	if (docopy) {
   3358 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3359 		ifc->ifc_len -= space;
   3360 	} else {
   3361 		KASSERT(space >= 0);
   3362 		ifc->ifc_len = space;
   3363 	}
   3364 	return (0);
   3365 
   3366 release_exit:
   3367 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3368 	curlwp_bindx(bound);
   3369 	return error;
   3370 }
   3371 
   3372 int
   3373 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3374 {
   3375 	uint8_t len;
   3376 #ifdef COMPAT_OIFREQ
   3377 	struct ifreq ifrb;
   3378 	struct oifreq *oifr = NULL;
   3379 	u_long ocmd = cmd;
   3380 	cmd = (*vec_compat_cvtcmd)(cmd);
   3381 	if (cmd != ocmd) {
   3382 		oifr = (struct oifreq *)(void *)ifr;
   3383 		ifr = &ifrb;
   3384 		ifreqo2n(oifr, ifr);
   3385 		len = sizeof(oifr->ifr_addr);
   3386 	} else
   3387 #endif
   3388 		len = sizeof(ifr->ifr_ifru.ifru_space);
   3389 
   3390 	if (len < sa->sa_len)
   3391 		return EFBIG;
   3392 
   3393 	memset(&ifr->ifr_addr, 0, len);
   3394 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3395 
   3396 #ifdef COMPAT_OIFREQ
   3397 	if (cmd != ocmd)
   3398 		ifreqn2o(oifr, ifr);
   3399 #endif
   3400 	return 0;
   3401 }
   3402 
   3403 /*
   3404  * wrapper function for the drivers which doesn't have if_transmit().
   3405  */
   3406 static int
   3407 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3408 {
   3409 	int s, error;
   3410 	size_t pktlen = m->m_pkthdr.len;
   3411 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3412 
   3413 	s = splnet();
   3414 
   3415 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3416 	if (error != 0) {
   3417 		/* mbuf is already freed */
   3418 		goto out;
   3419 	}
   3420 
   3421 	ifp->if_obytes += pktlen;
   3422 	if (mcast)
   3423 		ifp->if_omcasts++;
   3424 
   3425 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3426 		if_start_lock(ifp);
   3427 out:
   3428 	splx(s);
   3429 
   3430 	return error;
   3431 }
   3432 
   3433 int
   3434 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3435 {
   3436 	int error;
   3437 
   3438 #ifdef ALTQ
   3439 	KERNEL_LOCK(1, NULL);
   3440 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3441 		error = if_transmit(ifp, m);
   3442 		KERNEL_UNLOCK_ONE(NULL);
   3443 	} else {
   3444 		KERNEL_UNLOCK_ONE(NULL);
   3445 		error = (*ifp->if_transmit)(ifp, m);
   3446 		/* mbuf is alredy freed */
   3447 	}
   3448 #else /* !ALTQ */
   3449 	error = (*ifp->if_transmit)(ifp, m);
   3450 	/* mbuf is alredy freed */
   3451 #endif /* !ALTQ */
   3452 
   3453 	return error;
   3454 }
   3455 
   3456 /*
   3457  * Queue message on interface, and start output if interface
   3458  * not yet active.
   3459  */
   3460 int
   3461 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3462 {
   3463 
   3464 	return if_transmit_lock(ifp, m);
   3465 }
   3466 
   3467 /*
   3468  * Queue message on interface, possibly using a second fast queue
   3469  */
   3470 int
   3471 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3472 {
   3473 	int error = 0;
   3474 
   3475 	if (ifq != NULL
   3476 #ifdef ALTQ
   3477 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3478 #endif
   3479 	    ) {
   3480 		if (IF_QFULL(ifq)) {
   3481 			IF_DROP(&ifp->if_snd);
   3482 			m_freem(m);
   3483 			if (error == 0)
   3484 				error = ENOBUFS;
   3485 		} else
   3486 			IF_ENQUEUE(ifq, m);
   3487 	} else
   3488 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3489 	if (error != 0) {
   3490 		++ifp->if_oerrors;
   3491 		return error;
   3492 	}
   3493 	return 0;
   3494 }
   3495 
   3496 int
   3497 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3498 {
   3499 	int rc;
   3500 
   3501 	KASSERT(IFNET_LOCKED(ifp));
   3502 	if (ifp->if_initaddr != NULL)
   3503 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3504 	else if (src ||
   3505 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3506 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3507 
   3508 	return rc;
   3509 }
   3510 
   3511 int
   3512 if_do_dad(struct ifnet *ifp)
   3513 {
   3514 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3515 		return 0;
   3516 
   3517 	switch (ifp->if_type) {
   3518 	case IFT_FAITH:
   3519 		/*
   3520 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3521 		 * but loop packets back.  We do not have to do DAD on such
   3522 		 * interfaces.  We should even omit it, because loop-backed
   3523 		 * responses would confuse the DAD procedure.
   3524 		 */
   3525 		return 0;
   3526 	default:
   3527 		/*
   3528 		 * Our DAD routine requires the interface up and running.
   3529 		 * However, some interfaces can be up before the RUNNING
   3530 		 * status.  Additionaly, users may try to assign addresses
   3531 		 * before the interface becomes up (or running).
   3532 		 * We simply skip DAD in such a case as a work around.
   3533 		 * XXX: we should rather mark "tentative" on such addresses,
   3534 		 * and do DAD after the interface becomes ready.
   3535 		 */
   3536 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   3537 		    (IFF_UP|IFF_RUNNING))
   3538 			return 0;
   3539 
   3540 		return 1;
   3541 	}
   3542 }
   3543 
   3544 int
   3545 if_flags_set(ifnet_t *ifp, const short flags)
   3546 {
   3547 	int rc;
   3548 
   3549 	KASSERT(IFNET_LOCKED(ifp));
   3550 
   3551 	if (ifp->if_setflags != NULL)
   3552 		rc = (*ifp->if_setflags)(ifp, flags);
   3553 	else {
   3554 		short cantflags, chgdflags;
   3555 		struct ifreq ifr;
   3556 
   3557 		chgdflags = ifp->if_flags ^ flags;
   3558 		cantflags = chgdflags & IFF_CANTCHANGE;
   3559 
   3560 		if (cantflags != 0)
   3561 			ifp->if_flags ^= cantflags;
   3562 
   3563                 /* Traditionally, we do not call if_ioctl after
   3564                  * setting/clearing only IFF_PROMISC if the interface
   3565                  * isn't IFF_UP.  Uphold that tradition.
   3566 		 */
   3567 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3568 			return 0;
   3569 
   3570 		memset(&ifr, 0, sizeof(ifr));
   3571 
   3572 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3573 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3574 
   3575 		if (rc != 0 && cantflags != 0)
   3576 			ifp->if_flags ^= cantflags;
   3577 	}
   3578 
   3579 	return rc;
   3580 }
   3581 
   3582 int
   3583 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3584 {
   3585 	int rc;
   3586 	struct ifreq ifr;
   3587 
   3588 	/* CARP still doesn't deal with the lock yet */
   3589 #if !defined(NCARP) || (NCARP == 0)
   3590 	KASSERT(IFNET_LOCKED(ifp));
   3591 #endif
   3592 	if (ifp->if_mcastop != NULL)
   3593 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3594 	else {
   3595 		ifreq_setaddr(cmd, &ifr, sa);
   3596 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3597 	}
   3598 
   3599 	return rc;
   3600 }
   3601 
   3602 static void
   3603 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3604     struct ifaltq *ifq)
   3605 {
   3606 	const struct sysctlnode *cnode, *rnode;
   3607 
   3608 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3609 		       CTLFLAG_PERMANENT,
   3610 		       CTLTYPE_NODE, "interfaces",
   3611 		       SYSCTL_DESCR("Per-interface controls"),
   3612 		       NULL, 0, NULL, 0,
   3613 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3614 		goto bad;
   3615 
   3616 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3617 		       CTLFLAG_PERMANENT,
   3618 		       CTLTYPE_NODE, ifname,
   3619 		       SYSCTL_DESCR("Interface controls"),
   3620 		       NULL, 0, NULL, 0,
   3621 		       CTL_CREATE, CTL_EOL) != 0)
   3622 		goto bad;
   3623 
   3624 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3625 		       CTLFLAG_PERMANENT,
   3626 		       CTLTYPE_NODE, "sndq",
   3627 		       SYSCTL_DESCR("Interface output queue controls"),
   3628 		       NULL, 0, NULL, 0,
   3629 		       CTL_CREATE, CTL_EOL) != 0)
   3630 		goto bad;
   3631 
   3632 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3633 		       CTLFLAG_PERMANENT,
   3634 		       CTLTYPE_INT, "len",
   3635 		       SYSCTL_DESCR("Current output queue length"),
   3636 		       NULL, 0, &ifq->ifq_len, 0,
   3637 		       CTL_CREATE, CTL_EOL) != 0)
   3638 		goto bad;
   3639 
   3640 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3641 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3642 		       CTLTYPE_INT, "maxlen",
   3643 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3644 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3645 		       CTL_CREATE, CTL_EOL) != 0)
   3646 		goto bad;
   3647 
   3648 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3649 		       CTLFLAG_PERMANENT,
   3650 		       CTLTYPE_INT, "drops",
   3651 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3652 		       NULL, 0, &ifq->ifq_drops, 0,
   3653 		       CTL_CREATE, CTL_EOL) != 0)
   3654 		goto bad;
   3655 
   3656 	return;
   3657 bad:
   3658 	printf("%s: could not attach sysctl nodes\n", ifname);
   3659 	return;
   3660 }
   3661 
   3662 #if defined(INET) || defined(INET6)
   3663 
   3664 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3665 	static int							\
   3666 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3667 	{								\
   3668 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3669 	}
   3670 
   3671 #if defined(INET)
   3672 static int
   3673 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3674 {
   3675 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3676 }
   3677 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3678 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3679 #endif
   3680 
   3681 #if defined(INET6)
   3682 static int
   3683 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3684 {
   3685 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3686 }
   3687 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3688 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3689 #endif
   3690 
   3691 static void
   3692 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3693 {
   3694 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3695 	const char *pfname = NULL, *ipname = NULL;
   3696 	int ipn = 0, qid = 0;
   3697 
   3698 	switch (pf) {
   3699 #if defined(INET)
   3700 	case PF_INET:
   3701 		len_func = sysctl_net_ip_pktq_items;
   3702 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3703 		drops_func = sysctl_net_ip_pktq_drops;
   3704 		pfname = "inet", ipn = IPPROTO_IP;
   3705 		ipname = "ip", qid = IPCTL_IFQ;
   3706 		break;
   3707 #endif
   3708 #if defined(INET6)
   3709 	case PF_INET6:
   3710 		len_func = sysctl_net_ip6_pktq_items;
   3711 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3712 		drops_func = sysctl_net_ip6_pktq_drops;
   3713 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3714 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3715 		break;
   3716 #endif
   3717 	default:
   3718 		KASSERT(false);
   3719 	}
   3720 
   3721 	sysctl_createv(clog, 0, NULL, NULL,
   3722 		       CTLFLAG_PERMANENT,
   3723 		       CTLTYPE_NODE, pfname, NULL,
   3724 		       NULL, 0, NULL, 0,
   3725 		       CTL_NET, pf, CTL_EOL);
   3726 	sysctl_createv(clog, 0, NULL, NULL,
   3727 		       CTLFLAG_PERMANENT,
   3728 		       CTLTYPE_NODE, ipname, NULL,
   3729 		       NULL, 0, NULL, 0,
   3730 		       CTL_NET, pf, ipn, CTL_EOL);
   3731 	sysctl_createv(clog, 0, NULL, NULL,
   3732 		       CTLFLAG_PERMANENT,
   3733 		       CTLTYPE_NODE, "ifq",
   3734 		       SYSCTL_DESCR("Protocol input queue controls"),
   3735 		       NULL, 0, NULL, 0,
   3736 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3737 
   3738 	sysctl_createv(clog, 0, NULL, NULL,
   3739 		       CTLFLAG_PERMANENT,
   3740 		       CTLTYPE_INT, "len",
   3741 		       SYSCTL_DESCR("Current input queue length"),
   3742 		       len_func, 0, NULL, 0,
   3743 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3744 	sysctl_createv(clog, 0, NULL, NULL,
   3745 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3746 		       CTLTYPE_INT, "maxlen",
   3747 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3748 		       maxlen_func, 0, NULL, 0,
   3749 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3750 	sysctl_createv(clog, 0, NULL, NULL,
   3751 		       CTLFLAG_PERMANENT,
   3752 		       CTLTYPE_INT, "drops",
   3753 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3754 		       drops_func, 0, NULL, 0,
   3755 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3756 }
   3757 #endif /* INET || INET6 */
   3758 
   3759 static int
   3760 if_sdl_sysctl(SYSCTLFN_ARGS)
   3761 {
   3762 	struct ifnet *ifp;
   3763 	const struct sockaddr_dl *sdl;
   3764 	struct psref psref;
   3765 	int error = 0;
   3766 	int bound;
   3767 
   3768 	if (namelen != 1)
   3769 		return EINVAL;
   3770 
   3771 	bound = curlwp_bind();
   3772 	ifp = if_get_byindex(name[0], &psref);
   3773 	if (ifp == NULL) {
   3774 		error = ENODEV;
   3775 		goto out0;
   3776 	}
   3777 
   3778 	sdl = ifp->if_sadl;
   3779 	if (sdl == NULL) {
   3780 		*oldlenp = 0;
   3781 		goto out1;
   3782 	}
   3783 
   3784 	if (oldp == NULL) {
   3785 		*oldlenp = sdl->sdl_alen;
   3786 		goto out1;
   3787 	}
   3788 
   3789 	if (*oldlenp >= sdl->sdl_alen)
   3790 		*oldlenp = sdl->sdl_alen;
   3791 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3792 out1:
   3793 	if_put(ifp, &psref);
   3794 out0:
   3795 	curlwp_bindx(bound);
   3796 	return error;
   3797 }
   3798 
   3799 static void
   3800 if_sysctl_setup(struct sysctllog **clog)
   3801 {
   3802 	const struct sysctlnode *rnode = NULL;
   3803 
   3804 	sysctl_createv(clog, 0, NULL, &rnode,
   3805 		       CTLFLAG_PERMANENT,
   3806 		       CTLTYPE_NODE, "sdl",
   3807 		       SYSCTL_DESCR("Get active link-layer address"),
   3808 		       if_sdl_sysctl, 0, NULL, 0,
   3809 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3810 
   3811 #if defined(INET)
   3812 	sysctl_net_pktq_setup(NULL, PF_INET);
   3813 #endif
   3814 #ifdef INET6
   3815 	if (in6_present)
   3816 		sysctl_net_pktq_setup(NULL, PF_INET6);
   3817 #endif
   3818 }
   3819