if.c revision 1.427 1 /* $NetBSD: if.c,v 1.427 2018/06/01 07:16:23 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.427 2018/06/01 07:16:23 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #include "opt_mrouting.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152
153 #include "carp.h"
154 #if NCARP > 0
155 #include <netinet/ip_carp.h>
156 #endif
157
158 #include <compat/sys/sockio.h>
159 #include <compat/sys/socket.h>
160
161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
163
164 /*
165 * Global list of interfaces.
166 */
167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
168 struct ifnet_head ifnet_list;
169
170 struct pslist_head ifnet_pslist;
171 static ifnet_t ** ifindex2ifnet = NULL;
172 static u_int if_index = 1;
173 static size_t if_indexlim = 0;
174 static uint64_t index_gen;
175 /* Mutex to protect the above objects. */
176 kmutex_t ifnet_mtx __cacheline_aligned;
177 static struct psref_class *ifnet_psref_class __read_mostly;
178 static pserialize_t ifnet_psz;
179
180 static kmutex_t if_clone_mtx;
181
182 struct ifnet *lo0ifp;
183 int ifqmaxlen = IFQ_MAXLEN;
184
185 struct psref_class *ifa_psref_class __read_mostly;
186
187 static int if_delroute_matcher(struct rtentry *, void *);
188
189 static bool if_is_unit(const char *);
190 static struct if_clone *if_clone_lookup(const char *, int *);
191
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t * if_pfil __read_mostly;
197
198 static kauth_listener_t if_listener;
199
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203 struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *, int);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212 static void if_up_locked(struct ifnet *);
213 static void _if_down(struct ifnet *);
214 static void if_down_deactivated(struct ifnet *);
215
216 struct if_percpuq {
217 struct ifnet *ipq_ifp;
218 void *ipq_si;
219 struct percpu *ipq_ifqs; /* struct ifqueue */
220 };
221
222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
223
224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
227 struct if_percpuq *);
228
229 struct if_deferred_start {
230 struct ifnet *ids_ifp;
231 void (*ids_if_start)(struct ifnet *);
232 void *ids_si;
233 };
234
235 static void if_deferred_start_softint(void *);
236 static void if_deferred_start_common(struct ifnet *);
237 static void if_deferred_start_destroy(struct ifnet *);
238
239 #if defined(INET) || defined(INET6)
240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
241 #endif
242
243 static void if_sysctl_setup(struct sysctllog **);
244
245 /* Compatibility vector functions */
246 u_long (*vec_compat_cvtcmd)(u_long) = NULL;
247 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
248 struct lwp *) = NULL;
249 int (*vec_compat_ifconf)(struct lwp *, u_long, void *) = (void *)enosys;
250 int (*vec_compat_ifdatareq)(struct lwp *, u_long, void *) = (void *)enosys;
251
252 static int
253 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
254 void *arg0, void *arg1, void *arg2, void *arg3)
255 {
256 int result;
257 enum kauth_network_req req;
258
259 result = KAUTH_RESULT_DEFER;
260 req = (enum kauth_network_req)arg1;
261
262 if (action != KAUTH_NETWORK_INTERFACE)
263 return result;
264
265 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
266 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
267 result = KAUTH_RESULT_ALLOW;
268
269 return result;
270 }
271
272 /*
273 * Network interface utility routines.
274 *
275 * Routines with ifa_ifwith* names take sockaddr *'s as
276 * parameters.
277 */
278 void
279 ifinit(void)
280 {
281
282 if_sysctl_setup(NULL);
283
284 #if (defined(INET) || defined(INET6))
285 encapinit();
286 #endif
287
288 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
289 if_listener_cb, NULL);
290
291 /* interfaces are available, inform socket code */
292 ifioctl = doifioctl;
293 }
294
295 /*
296 * XXX Initialization before configure().
297 * XXX hack to get pfil_add_hook working in autoconf.
298 */
299 void
300 ifinit1(void)
301 {
302
303 #ifdef NET_MPSAFE
304 printf("NET_MPSAFE enabled\n");
305 #endif
306
307 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
308
309 TAILQ_INIT(&ifnet_list);
310 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
311 ifnet_psz = pserialize_create();
312 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
313 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
314 PSLIST_INIT(&ifnet_pslist);
315
316 if_indexlim = 8;
317
318 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
319 KASSERT(if_pfil != NULL);
320
321 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
322 etherinit();
323 #endif
324 }
325
326 ifnet_t *
327 if_alloc(u_char type)
328 {
329 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
330 }
331
332 void
333 if_free(ifnet_t *ifp)
334 {
335 kmem_free(ifp, sizeof(ifnet_t));
336 }
337
338 void
339 if_initname(struct ifnet *ifp, const char *name, int unit)
340 {
341 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
342 "%s%d", name, unit);
343 }
344
345 /*
346 * Null routines used while an interface is going away. These routines
347 * just return an error.
348 */
349
350 int
351 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
352 const struct sockaddr *so, const struct rtentry *rt)
353 {
354
355 return ENXIO;
356 }
357
358 void
359 if_nullinput(struct ifnet *ifp, struct mbuf *m)
360 {
361
362 /* Nothing. */
363 }
364
365 void
366 if_nullstart(struct ifnet *ifp)
367 {
368
369 /* Nothing. */
370 }
371
372 int
373 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
374 {
375
376 m_freem(m);
377 return ENXIO;
378 }
379
380 int
381 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
382 {
383
384 return ENXIO;
385 }
386
387 int
388 if_nullinit(struct ifnet *ifp)
389 {
390
391 return ENXIO;
392 }
393
394 void
395 if_nullstop(struct ifnet *ifp, int disable)
396 {
397
398 /* Nothing. */
399 }
400
401 void
402 if_nullslowtimo(struct ifnet *ifp)
403 {
404
405 /* Nothing. */
406 }
407
408 void
409 if_nulldrain(struct ifnet *ifp)
410 {
411
412 /* Nothing. */
413 }
414
415 void
416 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
417 {
418 struct ifaddr *ifa;
419 struct sockaddr_dl *sdl;
420
421 ifp->if_addrlen = addrlen;
422 if_alloc_sadl(ifp);
423 ifa = ifp->if_dl;
424 sdl = satosdl(ifa->ifa_addr);
425
426 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
427 if (factory) {
428 KASSERT(ifp->if_hwdl == NULL);
429 ifp->if_hwdl = ifp->if_dl;
430 ifaref(ifp->if_hwdl);
431 }
432 /* TBD routing socket */
433 }
434
435 struct ifaddr *
436 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
437 {
438 unsigned socksize, ifasize;
439 int addrlen, namelen;
440 struct sockaddr_dl *mask, *sdl;
441 struct ifaddr *ifa;
442
443 namelen = strlen(ifp->if_xname);
444 addrlen = ifp->if_addrlen;
445 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
446 ifasize = sizeof(*ifa) + 2 * socksize;
447 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
448
449 sdl = (struct sockaddr_dl *)(ifa + 1);
450 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
451
452 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
453 ifp->if_xname, namelen, NULL, addrlen);
454 mask->sdl_family = AF_LINK;
455 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
456 memset(&mask->sdl_data[0], 0xff, namelen);
457 ifa->ifa_rtrequest = link_rtrequest;
458 ifa->ifa_addr = (struct sockaddr *)sdl;
459 ifa->ifa_netmask = (struct sockaddr *)mask;
460 ifa_psref_init(ifa);
461
462 *sdlp = sdl;
463
464 return ifa;
465 }
466
467 static void
468 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
469 {
470 const struct sockaddr_dl *sdl;
471
472 ifp->if_dl = ifa;
473 ifaref(ifa);
474 sdl = satosdl(ifa->ifa_addr);
475 ifp->if_sadl = sdl;
476 }
477
478 /*
479 * Allocate the link level name for the specified interface. This
480 * is an attachment helper. It must be called after ifp->if_addrlen
481 * is initialized, which may not be the case when if_attach() is
482 * called.
483 */
484 void
485 if_alloc_sadl(struct ifnet *ifp)
486 {
487 struct ifaddr *ifa;
488 const struct sockaddr_dl *sdl;
489
490 /*
491 * If the interface already has a link name, release it
492 * now. This is useful for interfaces that can change
493 * link types, and thus switch link names often.
494 */
495 if (ifp->if_sadl != NULL)
496 if_free_sadl(ifp, 0);
497
498 ifa = if_dl_create(ifp, &sdl);
499
500 ifa_insert(ifp, ifa);
501 if_sadl_setrefs(ifp, ifa);
502 }
503
504 static void
505 if_deactivate_sadl(struct ifnet *ifp)
506 {
507 struct ifaddr *ifa;
508
509 KASSERT(ifp->if_dl != NULL);
510
511 ifa = ifp->if_dl;
512
513 ifp->if_sadl = NULL;
514
515 ifp->if_dl = NULL;
516 ifafree(ifa);
517 }
518
519 static void
520 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
521 {
522 struct ifaddr *old;
523
524 KASSERT(ifp->if_dl != NULL);
525
526 old = ifp->if_dl;
527
528 ifaref(ifa);
529 /* XXX Update if_dl and if_sadl atomically */
530 ifp->if_dl = ifa;
531 ifp->if_sadl = satosdl(ifa->ifa_addr);
532
533 ifafree(old);
534 }
535
536 void
537 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
538 const struct sockaddr_dl *sdl)
539 {
540 int s, ss;
541 struct ifaddr *ifa;
542 int bound = curlwp_bind();
543
544 KASSERT(ifa_held(ifa0));
545
546 s = splsoftnet();
547
548 if_replace_sadl(ifp, ifa0);
549
550 ss = pserialize_read_enter();
551 IFADDR_READER_FOREACH(ifa, ifp) {
552 struct psref psref;
553 ifa_acquire(ifa, &psref);
554 pserialize_read_exit(ss);
555
556 rtinit(ifa, RTM_LLINFO_UPD, 0);
557
558 ss = pserialize_read_enter();
559 ifa_release(ifa, &psref);
560 }
561 pserialize_read_exit(ss);
562
563 splx(s);
564 curlwp_bindx(bound);
565 }
566
567 /*
568 * Free the link level name for the specified interface. This is
569 * a detach helper. This is called from if_detach().
570 */
571 static void
572 if_free_sadl(struct ifnet *ifp, int factory)
573 {
574 struct ifaddr *ifa;
575 int s;
576
577 if (factory && ifp->if_hwdl != NULL) {
578 ifa = ifp->if_hwdl;
579 ifp->if_hwdl = NULL;
580 ifafree(ifa);
581 }
582
583 ifa = ifp->if_dl;
584 if (ifa == NULL) {
585 KASSERT(ifp->if_sadl == NULL);
586 return;
587 }
588
589 KASSERT(ifp->if_sadl != NULL);
590
591 s = splsoftnet();
592 rtinit(ifa, RTM_DELETE, 0);
593 ifa_remove(ifp, ifa);
594 if_deactivate_sadl(ifp);
595 splx(s);
596 }
597
598 static void
599 if_getindex(ifnet_t *ifp)
600 {
601 bool hitlimit = false;
602
603 ifp->if_index_gen = index_gen++;
604
605 ifp->if_index = if_index;
606 if (ifindex2ifnet == NULL) {
607 if_index++;
608 goto skip;
609 }
610 while (if_byindex(ifp->if_index)) {
611 /*
612 * If we hit USHRT_MAX, we skip back to 0 since
613 * there are a number of places where the value
614 * of if_index or if_index itself is compared
615 * to or stored in an unsigned short. By
616 * jumping back, we won't botch those assignments
617 * or comparisons.
618 */
619 if (++if_index == 0) {
620 if_index = 1;
621 } else if (if_index == USHRT_MAX) {
622 /*
623 * However, if we have to jump back to
624 * zero *twice* without finding an empty
625 * slot in ifindex2ifnet[], then there
626 * there are too many (>65535) interfaces.
627 */
628 if (hitlimit) {
629 panic("too many interfaces");
630 }
631 hitlimit = true;
632 if_index = 1;
633 }
634 ifp->if_index = if_index;
635 }
636 skip:
637 /*
638 * ifindex2ifnet is indexed by if_index. Since if_index will
639 * grow dynamically, it should grow too.
640 */
641 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
642 size_t m, n, oldlim;
643 void *q;
644
645 oldlim = if_indexlim;
646 while (ifp->if_index >= if_indexlim)
647 if_indexlim <<= 1;
648
649 /* grow ifindex2ifnet */
650 m = oldlim * sizeof(struct ifnet *);
651 n = if_indexlim * sizeof(struct ifnet *);
652 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
653 if (ifindex2ifnet != NULL) {
654 memcpy(q, ifindex2ifnet, m);
655 free(ifindex2ifnet, M_IFADDR);
656 }
657 ifindex2ifnet = (struct ifnet **)q;
658 }
659 ifindex2ifnet[ifp->if_index] = ifp;
660 }
661
662 /*
663 * Initialize an interface and assign an index for it.
664 *
665 * It must be called prior to a device specific attach routine
666 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
667 * and be followed by if_register:
668 *
669 * if_initialize(ifp);
670 * ether_ifattach(ifp, enaddr);
671 * if_register(ifp);
672 */
673 int
674 if_initialize(ifnet_t *ifp)
675 {
676 int rv = 0;
677
678 KASSERT(if_indexlim > 0);
679 TAILQ_INIT(&ifp->if_addrlist);
680
681 /*
682 * Link level name is allocated later by a separate call to
683 * if_alloc_sadl().
684 */
685
686 if (ifp->if_snd.ifq_maxlen == 0)
687 ifp->if_snd.ifq_maxlen = ifqmaxlen;
688
689 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
690
691 ifp->if_link_state = LINK_STATE_UNKNOWN;
692 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
693
694 ifp->if_capenable = 0;
695 ifp->if_csum_flags_tx = 0;
696 ifp->if_csum_flags_rx = 0;
697
698 #ifdef ALTQ
699 ifp->if_snd.altq_type = 0;
700 ifp->if_snd.altq_disc = NULL;
701 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
702 ifp->if_snd.altq_tbr = NULL;
703 ifp->if_snd.altq_ifp = ifp;
704 #endif
705
706 IFQ_LOCK_INIT(&ifp->if_snd);
707
708 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
709 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
710
711 IF_AFDATA_LOCK_INIT(ifp);
712
713 if (if_is_link_state_changeable(ifp)) {
714 u_int flags = SOFTINT_NET;
715 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
716 ifp->if_link_si = softint_establish(flags,
717 if_link_state_change_si, ifp);
718 if (ifp->if_link_si == NULL) {
719 rv = ENOMEM;
720 goto fail;
721 }
722 }
723
724 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
725 PSLIST_INIT(&ifp->if_addr_pslist);
726 psref_target_init(&ifp->if_psref, ifnet_psref_class);
727 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
728 LIST_INIT(&ifp->if_multiaddrs);
729
730 IFNET_GLOBAL_LOCK();
731 if_getindex(ifp);
732 IFNET_GLOBAL_UNLOCK();
733
734 return 0;
735
736 fail:
737 IF_AFDATA_LOCK_DESTROY(ifp);
738
739 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
740 (void)pfil_head_destroy(ifp->if_pfil);
741
742 IFQ_LOCK_DESTROY(&ifp->if_snd);
743
744 return rv;
745 }
746
747 /*
748 * Register an interface to the list of "active" interfaces.
749 */
750 void
751 if_register(ifnet_t *ifp)
752 {
753 /*
754 * If the driver has not supplied its own if_ioctl, then
755 * supply the default.
756 */
757 if (ifp->if_ioctl == NULL)
758 ifp->if_ioctl = ifioctl_common;
759
760 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
761
762 if (!STAILQ_EMPTY(&domains))
763 if_attachdomain1(ifp);
764
765 /* Announce the interface. */
766 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
767
768 if (ifp->if_slowtimo != NULL) {
769 ifp->if_slowtimo_ch =
770 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
771 callout_init(ifp->if_slowtimo_ch, 0);
772 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
773 if_slowtimo(ifp);
774 }
775
776 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
777 ifp->if_transmit = if_transmit;
778
779 IFNET_GLOBAL_LOCK();
780 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
781 IFNET_WRITER_INSERT_TAIL(ifp);
782 IFNET_GLOBAL_UNLOCK();
783 }
784
785 /*
786 * The if_percpuq framework
787 *
788 * It allows network device drivers to execute the network stack
789 * in softint (so called softint-based if_input). It utilizes
790 * softint and percpu ifqueue. It doesn't distribute any packets
791 * between CPUs, unlike pktqueue(9).
792 *
793 * Currently we support two options for device drivers to apply the framework:
794 * - Use it implicitly with less changes
795 * - If you use if_attach in driver's _attach function and if_input in
796 * driver's Rx interrupt handler, a packet is queued and a softint handles
797 * the packet implicitly
798 * - Use it explicitly in each driver (recommended)
799 * - You can use if_percpuq_* directly in your driver
800 * - In this case, you need to allocate struct if_percpuq in driver's softc
801 * - See wm(4) as a reference implementation
802 */
803
804 static void
805 if_percpuq_softint(void *arg)
806 {
807 struct if_percpuq *ipq = arg;
808 struct ifnet *ifp = ipq->ipq_ifp;
809 struct mbuf *m;
810
811 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
812 ifp->if_ipackets++;
813 bpf_mtap(ifp, m);
814
815 ifp->_if_input(ifp, m);
816 }
817 }
818
819 static void
820 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
821 {
822 struct ifqueue *const ifq = p;
823
824 memset(ifq, 0, sizeof(*ifq));
825 ifq->ifq_maxlen = IFQ_MAXLEN;
826 }
827
828 struct if_percpuq *
829 if_percpuq_create(struct ifnet *ifp)
830 {
831 struct if_percpuq *ipq;
832 u_int flags = SOFTINT_NET;
833
834 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
835
836 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
837 ipq->ipq_ifp = ifp;
838 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
839 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
840 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
841
842 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
843
844 return ipq;
845 }
846
847 static struct mbuf *
848 if_percpuq_dequeue(struct if_percpuq *ipq)
849 {
850 struct mbuf *m;
851 struct ifqueue *ifq;
852 int s;
853
854 s = splnet();
855 ifq = percpu_getref(ipq->ipq_ifqs);
856 IF_DEQUEUE(ifq, m);
857 percpu_putref(ipq->ipq_ifqs);
858 splx(s);
859
860 return m;
861 }
862
863 static void
864 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
865 {
866 struct ifqueue *const ifq = p;
867
868 IF_PURGE(ifq);
869 }
870
871 void
872 if_percpuq_destroy(struct if_percpuq *ipq)
873 {
874
875 /* if_detach may already destroy it */
876 if (ipq == NULL)
877 return;
878
879 softint_disestablish(ipq->ipq_si);
880 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
881 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
882 kmem_free(ipq, sizeof(*ipq));
883 }
884
885 void
886 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
887 {
888 struct ifqueue *ifq;
889 int s;
890
891 KASSERT(ipq != NULL);
892
893 s = splnet();
894 ifq = percpu_getref(ipq->ipq_ifqs);
895 if (IF_QFULL(ifq)) {
896 IF_DROP(ifq);
897 percpu_putref(ipq->ipq_ifqs);
898 m_freem(m);
899 goto out;
900 }
901 IF_ENQUEUE(ifq, m);
902 percpu_putref(ipq->ipq_ifqs);
903
904 softint_schedule(ipq->ipq_si);
905 out:
906 splx(s);
907 }
908
909 static void
910 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
911 {
912 struct ifqueue *const ifq = p;
913 int *sum = arg;
914
915 *sum += ifq->ifq_drops;
916 }
917
918 static int
919 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
920 {
921 struct sysctlnode node;
922 struct if_percpuq *ipq;
923 int sum = 0;
924 int error;
925
926 node = *rnode;
927 ipq = node.sysctl_data;
928
929 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
930
931 node.sysctl_data = ∑
932 error = sysctl_lookup(SYSCTLFN_CALL(&node));
933 if (error != 0 || newp == NULL)
934 return error;
935
936 return 0;
937 }
938
939 static void
940 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
941 struct if_percpuq *ipq)
942 {
943 const struct sysctlnode *cnode, *rnode;
944
945 if (sysctl_createv(clog, 0, NULL, &rnode,
946 CTLFLAG_PERMANENT,
947 CTLTYPE_NODE, "interfaces",
948 SYSCTL_DESCR("Per-interface controls"),
949 NULL, 0, NULL, 0,
950 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
951 goto bad;
952
953 if (sysctl_createv(clog, 0, &rnode, &rnode,
954 CTLFLAG_PERMANENT,
955 CTLTYPE_NODE, ifname,
956 SYSCTL_DESCR("Interface controls"),
957 NULL, 0, NULL, 0,
958 CTL_CREATE, CTL_EOL) != 0)
959 goto bad;
960
961 if (sysctl_createv(clog, 0, &rnode, &rnode,
962 CTLFLAG_PERMANENT,
963 CTLTYPE_NODE, "rcvq",
964 SYSCTL_DESCR("Interface input queue controls"),
965 NULL, 0, NULL, 0,
966 CTL_CREATE, CTL_EOL) != 0)
967 goto bad;
968
969 #ifdef NOTYET
970 /* XXX Should show each per-CPU queue length? */
971 if (sysctl_createv(clog, 0, &rnode, &rnode,
972 CTLFLAG_PERMANENT,
973 CTLTYPE_INT, "len",
974 SYSCTL_DESCR("Current input queue length"),
975 sysctl_percpuq_len, 0, NULL, 0,
976 CTL_CREATE, CTL_EOL) != 0)
977 goto bad;
978
979 if (sysctl_createv(clog, 0, &rnode, &cnode,
980 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
981 CTLTYPE_INT, "maxlen",
982 SYSCTL_DESCR("Maximum allowed input queue length"),
983 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
984 CTL_CREATE, CTL_EOL) != 0)
985 goto bad;
986 #endif
987
988 if (sysctl_createv(clog, 0, &rnode, &cnode,
989 CTLFLAG_PERMANENT,
990 CTLTYPE_INT, "drops",
991 SYSCTL_DESCR("Total packets dropped due to full input queue"),
992 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
993 CTL_CREATE, CTL_EOL) != 0)
994 goto bad;
995
996 return;
997 bad:
998 printf("%s: could not attach sysctl nodes\n", ifname);
999 return;
1000 }
1001
1002 /*
1003 * The deferred if_start framework
1004 *
1005 * The common APIs to defer if_start to softint when if_start is requested
1006 * from a device driver running in hardware interrupt context.
1007 */
1008 /*
1009 * Call ifp->if_start (or equivalent) in a dedicated softint for
1010 * deferred if_start.
1011 */
1012 static void
1013 if_deferred_start_softint(void *arg)
1014 {
1015 struct if_deferred_start *ids = arg;
1016 struct ifnet *ifp = ids->ids_ifp;
1017
1018 ids->ids_if_start(ifp);
1019 }
1020
1021 /*
1022 * The default callback function for deferred if_start.
1023 */
1024 static void
1025 if_deferred_start_common(struct ifnet *ifp)
1026 {
1027 int s;
1028
1029 s = splnet();
1030 if_start_lock(ifp);
1031 splx(s);
1032 }
1033
1034 static inline bool
1035 if_snd_is_used(struct ifnet *ifp)
1036 {
1037
1038 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1039 ALTQ_IS_ENABLED(&ifp->if_snd);
1040 }
1041
1042 /*
1043 * Schedule deferred if_start.
1044 */
1045 void
1046 if_schedule_deferred_start(struct ifnet *ifp)
1047 {
1048
1049 KASSERT(ifp->if_deferred_start != NULL);
1050
1051 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1052 return;
1053
1054 softint_schedule(ifp->if_deferred_start->ids_si);
1055 }
1056
1057 /*
1058 * Create an instance of deferred if_start. A driver should call the function
1059 * only if the driver needs deferred if_start. Drivers can setup their own
1060 * deferred if_start function via 2nd argument.
1061 */
1062 void
1063 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1064 {
1065 struct if_deferred_start *ids;
1066 u_int flags = SOFTINT_NET;
1067
1068 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1069
1070 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1071 ids->ids_ifp = ifp;
1072 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1073 if (func != NULL)
1074 ids->ids_if_start = func;
1075 else
1076 ids->ids_if_start = if_deferred_start_common;
1077
1078 ifp->if_deferred_start = ids;
1079 }
1080
1081 static void
1082 if_deferred_start_destroy(struct ifnet *ifp)
1083 {
1084
1085 if (ifp->if_deferred_start == NULL)
1086 return;
1087
1088 softint_disestablish(ifp->if_deferred_start->ids_si);
1089 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1090 ifp->if_deferred_start = NULL;
1091 }
1092
1093 /*
1094 * The common interface input routine that is called by device drivers,
1095 * which should be used only when the driver's rx handler already runs
1096 * in softint.
1097 */
1098 void
1099 if_input(struct ifnet *ifp, struct mbuf *m)
1100 {
1101
1102 KASSERT(ifp->if_percpuq == NULL);
1103 KASSERT(!cpu_intr_p());
1104
1105 ifp->if_ipackets++;
1106 bpf_mtap(ifp, m);
1107
1108 ifp->_if_input(ifp, m);
1109 }
1110
1111 /*
1112 * DEPRECATED. Use if_initialize and if_register instead.
1113 * See the above comment of if_initialize.
1114 *
1115 * Note that it implicitly enables if_percpuq to make drivers easy to
1116 * migrate softint-based if_input without much changes. If you don't
1117 * want to enable it, use if_initialize instead.
1118 */
1119 int
1120 if_attach(ifnet_t *ifp)
1121 {
1122 int rv;
1123
1124 rv = if_initialize(ifp);
1125 if (rv != 0)
1126 return rv;
1127
1128 ifp->if_percpuq = if_percpuq_create(ifp);
1129 if_register(ifp);
1130
1131 return 0;
1132 }
1133
1134 void
1135 if_attachdomain(void)
1136 {
1137 struct ifnet *ifp;
1138 int s;
1139 int bound = curlwp_bind();
1140
1141 s = pserialize_read_enter();
1142 IFNET_READER_FOREACH(ifp) {
1143 struct psref psref;
1144 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1145 pserialize_read_exit(s);
1146 if_attachdomain1(ifp);
1147 s = pserialize_read_enter();
1148 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1149 }
1150 pserialize_read_exit(s);
1151 curlwp_bindx(bound);
1152 }
1153
1154 static void
1155 if_attachdomain1(struct ifnet *ifp)
1156 {
1157 struct domain *dp;
1158 int s;
1159
1160 s = splsoftnet();
1161
1162 /* address family dependent data region */
1163 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1164 DOMAIN_FOREACH(dp) {
1165 if (dp->dom_ifattach != NULL)
1166 ifp->if_afdata[dp->dom_family] =
1167 (*dp->dom_ifattach)(ifp);
1168 }
1169
1170 splx(s);
1171 }
1172
1173 /*
1174 * Deactivate an interface. This points all of the procedure
1175 * handles at error stubs. May be called from interrupt context.
1176 */
1177 void
1178 if_deactivate(struct ifnet *ifp)
1179 {
1180 int s;
1181
1182 s = splsoftnet();
1183
1184 ifp->if_output = if_nulloutput;
1185 ifp->_if_input = if_nullinput;
1186 ifp->if_start = if_nullstart;
1187 ifp->if_transmit = if_nulltransmit;
1188 ifp->if_ioctl = if_nullioctl;
1189 ifp->if_init = if_nullinit;
1190 ifp->if_stop = if_nullstop;
1191 ifp->if_slowtimo = if_nullslowtimo;
1192 ifp->if_drain = if_nulldrain;
1193
1194 /* No more packets may be enqueued. */
1195 ifp->if_snd.ifq_maxlen = 0;
1196
1197 splx(s);
1198 }
1199
1200 bool
1201 if_is_deactivated(const struct ifnet *ifp)
1202 {
1203
1204 return ifp->if_output == if_nulloutput;
1205 }
1206
1207 void
1208 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1209 {
1210 struct ifaddr *ifa, *nifa;
1211 int s;
1212
1213 s = pserialize_read_enter();
1214 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1215 nifa = IFADDR_READER_NEXT(ifa);
1216 if (ifa->ifa_addr->sa_family != family)
1217 continue;
1218 pserialize_read_exit(s);
1219
1220 (*purgeaddr)(ifa);
1221
1222 s = pserialize_read_enter();
1223 }
1224 pserialize_read_exit(s);
1225 }
1226
1227 #ifdef IFAREF_DEBUG
1228 static struct ifaddr **ifa_list;
1229 static int ifa_list_size;
1230
1231 /* Depends on only one if_attach runs at once */
1232 static void
1233 if_build_ifa_list(struct ifnet *ifp)
1234 {
1235 struct ifaddr *ifa;
1236 int i;
1237
1238 KASSERT(ifa_list == NULL);
1239 KASSERT(ifa_list_size == 0);
1240
1241 IFADDR_READER_FOREACH(ifa, ifp)
1242 ifa_list_size++;
1243
1244 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1245 i = 0;
1246 IFADDR_READER_FOREACH(ifa, ifp) {
1247 ifa_list[i++] = ifa;
1248 ifaref(ifa);
1249 }
1250 }
1251
1252 static void
1253 if_check_and_free_ifa_list(struct ifnet *ifp)
1254 {
1255 int i;
1256 struct ifaddr *ifa;
1257
1258 if (ifa_list == NULL)
1259 return;
1260
1261 for (i = 0; i < ifa_list_size; i++) {
1262 char buf[64];
1263
1264 ifa = ifa_list[i];
1265 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1266 if (ifa->ifa_refcnt > 1) {
1267 log(LOG_WARNING,
1268 "ifa(%s) still referenced (refcnt=%d)\n",
1269 buf, ifa->ifa_refcnt - 1);
1270 } else
1271 log(LOG_DEBUG,
1272 "ifa(%s) not referenced (refcnt=%d)\n",
1273 buf, ifa->ifa_refcnt - 1);
1274 ifafree(ifa);
1275 }
1276
1277 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1278 ifa_list = NULL;
1279 ifa_list_size = 0;
1280 }
1281 #endif
1282
1283 /*
1284 * Detach an interface from the list of "active" interfaces,
1285 * freeing any resources as we go along.
1286 *
1287 * NOTE: This routine must be called with a valid thread context,
1288 * as it may block.
1289 */
1290 void
1291 if_detach(struct ifnet *ifp)
1292 {
1293 struct socket so;
1294 struct ifaddr *ifa;
1295 #ifdef IFAREF_DEBUG
1296 struct ifaddr *last_ifa = NULL;
1297 #endif
1298 struct domain *dp;
1299 const struct protosw *pr;
1300 int s, i, family, purged;
1301 uint64_t xc;
1302
1303 #ifdef IFAREF_DEBUG
1304 if_build_ifa_list(ifp);
1305 #endif
1306 /*
1307 * XXX It's kind of lame that we have to have the
1308 * XXX socket structure...
1309 */
1310 memset(&so, 0, sizeof(so));
1311
1312 s = splnet();
1313
1314 sysctl_teardown(&ifp->if_sysctl_log);
1315 IFNET_LOCK(ifp);
1316 if_deactivate(ifp);
1317 IFNET_UNLOCK(ifp);
1318
1319 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1320 ifp->if_slowtimo = NULL;
1321 callout_halt(ifp->if_slowtimo_ch, NULL);
1322 callout_destroy(ifp->if_slowtimo_ch);
1323 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1324 }
1325 if_deferred_start_destroy(ifp);
1326
1327 /*
1328 * Do an if_down() to give protocols a chance to do something.
1329 */
1330 if_down_deactivated(ifp);
1331
1332 #ifdef ALTQ
1333 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1334 altq_disable(&ifp->if_snd);
1335 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1336 altq_detach(&ifp->if_snd);
1337 #endif
1338
1339 #if NCARP > 0
1340 /* Remove the interface from any carp group it is a part of. */
1341 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1342 carp_ifdetach(ifp);
1343 #endif
1344
1345 /*
1346 * Rip all the addresses off the interface. This should make
1347 * all of the routes go away.
1348 *
1349 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1350 * from the list, including our "cursor", ifa. For safety,
1351 * and to honor the TAILQ abstraction, I just restart the
1352 * loop after each removal. Note that the loop will exit
1353 * when all of the remaining ifaddrs belong to the AF_LINK
1354 * family. I am counting on the historical fact that at
1355 * least one pr_usrreq in each address domain removes at
1356 * least one ifaddr.
1357 */
1358 again:
1359 /*
1360 * At this point, no other one tries to remove ifa in the list,
1361 * so we don't need to take a lock or psref. Avoid using
1362 * IFADDR_READER_FOREACH to pass over an inspection of contract
1363 * violations of pserialize.
1364 */
1365 IFADDR_WRITER_FOREACH(ifa, ifp) {
1366 family = ifa->ifa_addr->sa_family;
1367 #ifdef IFAREF_DEBUG
1368 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1369 ifa, family, ifa->ifa_refcnt);
1370 if (last_ifa != NULL && ifa == last_ifa)
1371 panic("if_detach: loop detected");
1372 last_ifa = ifa;
1373 #endif
1374 if (family == AF_LINK)
1375 continue;
1376 dp = pffinddomain(family);
1377 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1378 /*
1379 * XXX These PURGEIF calls are redundant with the
1380 * purge-all-families calls below, but are left in for
1381 * now both to make a smaller change, and to avoid
1382 * unplanned interactions with clearing of
1383 * ifp->if_addrlist.
1384 */
1385 purged = 0;
1386 for (pr = dp->dom_protosw;
1387 pr < dp->dom_protoswNPROTOSW; pr++) {
1388 so.so_proto = pr;
1389 if (pr->pr_usrreqs) {
1390 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1391 purged = 1;
1392 }
1393 }
1394 if (purged == 0) {
1395 /*
1396 * XXX What's really the best thing to do
1397 * XXX here? --thorpej (at) NetBSD.org
1398 */
1399 printf("if_detach: WARNING: AF %d not purged\n",
1400 family);
1401 ifa_remove(ifp, ifa);
1402 }
1403 goto again;
1404 }
1405
1406 if_free_sadl(ifp, 1);
1407
1408 restart:
1409 IFADDR_WRITER_FOREACH(ifa, ifp) {
1410 family = ifa->ifa_addr->sa_family;
1411 KASSERT(family == AF_LINK);
1412 ifa_remove(ifp, ifa);
1413 goto restart;
1414 }
1415
1416 /* Delete stray routes from the routing table. */
1417 for (i = 0; i <= AF_MAX; i++)
1418 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1419
1420 DOMAIN_FOREACH(dp) {
1421 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1422 {
1423 void *p = ifp->if_afdata[dp->dom_family];
1424 if (p) {
1425 ifp->if_afdata[dp->dom_family] = NULL;
1426 (*dp->dom_ifdetach)(ifp, p);
1427 }
1428 }
1429
1430 /*
1431 * One would expect multicast memberships (INET and
1432 * INET6) on UDP sockets to be purged by the PURGEIF
1433 * calls above, but if all addresses were removed from
1434 * the interface prior to destruction, the calls will
1435 * not be made (e.g. ppp, for which pppd(8) generally
1436 * removes addresses before destroying the interface).
1437 * Because there is no invariant that multicast
1438 * memberships only exist for interfaces with IPv4
1439 * addresses, we must call PURGEIF regardless of
1440 * addresses. (Protocols which might store ifnet
1441 * pointers are marked with PR_PURGEIF.)
1442 */
1443 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1444 so.so_proto = pr;
1445 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1446 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1447 }
1448 }
1449
1450 /* Wait for all readers to drain before freeing. */
1451 IFNET_GLOBAL_LOCK();
1452 ifindex2ifnet[ifp->if_index] = NULL;
1453 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1454 IFNET_WRITER_REMOVE(ifp);
1455 pserialize_perform(ifnet_psz);
1456 IFNET_GLOBAL_UNLOCK();
1457
1458 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1459 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1460
1461 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1462 (void)pfil_head_destroy(ifp->if_pfil);
1463
1464 /* Announce that the interface is gone. */
1465 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1466
1467 IF_AFDATA_LOCK_DESTROY(ifp);
1468
1469 if (if_is_link_state_changeable(ifp)) {
1470 softint_disestablish(ifp->if_link_si);
1471 ifp->if_link_si = NULL;
1472 }
1473
1474 /*
1475 * remove packets that came from ifp, from software interrupt queues.
1476 */
1477 DOMAIN_FOREACH(dp) {
1478 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1479 struct ifqueue *iq = dp->dom_ifqueues[i];
1480 if (iq == NULL)
1481 break;
1482 dp->dom_ifqueues[i] = NULL;
1483 if_detach_queues(ifp, iq);
1484 }
1485 }
1486
1487 /*
1488 * IP queues have to be processed separately: net-queue barrier
1489 * ensures that the packets are dequeued while a cross-call will
1490 * ensure that the interrupts have completed. FIXME: not quite..
1491 */
1492 #ifdef INET
1493 pktq_barrier(ip_pktq);
1494 #endif
1495 #ifdef INET6
1496 if (in6_present)
1497 pktq_barrier(ip6_pktq);
1498 #endif
1499 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1500 xc_wait(xc);
1501
1502 if (ifp->if_percpuq != NULL) {
1503 if_percpuq_destroy(ifp->if_percpuq);
1504 ifp->if_percpuq = NULL;
1505 }
1506
1507 mutex_obj_free(ifp->if_ioctl_lock);
1508 ifp->if_ioctl_lock = NULL;
1509 mutex_obj_free(ifp->if_snd.ifq_lock);
1510
1511 splx(s);
1512
1513 #ifdef IFAREF_DEBUG
1514 if_check_and_free_ifa_list(ifp);
1515 #endif
1516 }
1517
1518 static void
1519 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1520 {
1521 struct mbuf *m, *prev, *next;
1522
1523 prev = NULL;
1524 for (m = q->ifq_head; m != NULL; m = next) {
1525 KASSERT((m->m_flags & M_PKTHDR) != 0);
1526
1527 next = m->m_nextpkt;
1528 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1529 prev = m;
1530 continue;
1531 }
1532
1533 if (prev != NULL)
1534 prev->m_nextpkt = m->m_nextpkt;
1535 else
1536 q->ifq_head = m->m_nextpkt;
1537 if (q->ifq_tail == m)
1538 q->ifq_tail = prev;
1539 q->ifq_len--;
1540
1541 m->m_nextpkt = NULL;
1542 m_freem(m);
1543 IF_DROP(q);
1544 }
1545 }
1546
1547 /*
1548 * Callback for a radix tree walk to delete all references to an
1549 * ifnet.
1550 */
1551 static int
1552 if_delroute_matcher(struct rtentry *rt, void *v)
1553 {
1554 struct ifnet *ifp = (struct ifnet *)v;
1555
1556 if (rt->rt_ifp == ifp)
1557 return 1;
1558 else
1559 return 0;
1560 }
1561
1562 /*
1563 * Create a clone network interface.
1564 */
1565 static int
1566 if_clone_create(const char *name)
1567 {
1568 struct if_clone *ifc;
1569 int unit;
1570 struct ifnet *ifp;
1571 struct psref psref;
1572
1573 KASSERT(mutex_owned(&if_clone_mtx));
1574
1575 ifc = if_clone_lookup(name, &unit);
1576 if (ifc == NULL)
1577 return EINVAL;
1578
1579 ifp = if_get(name, &psref);
1580 if (ifp != NULL) {
1581 if_put(ifp, &psref);
1582 return EEXIST;
1583 }
1584
1585 return (*ifc->ifc_create)(ifc, unit);
1586 }
1587
1588 /*
1589 * Destroy a clone network interface.
1590 */
1591 static int
1592 if_clone_destroy(const char *name)
1593 {
1594 struct if_clone *ifc;
1595 struct ifnet *ifp;
1596 struct psref psref;
1597
1598 KASSERT(mutex_owned(&if_clone_mtx));
1599
1600 ifc = if_clone_lookup(name, NULL);
1601 if (ifc == NULL)
1602 return EINVAL;
1603
1604 if (ifc->ifc_destroy == NULL)
1605 return EOPNOTSUPP;
1606
1607 ifp = if_get(name, &psref);
1608 if (ifp == NULL)
1609 return ENXIO;
1610
1611 /* We have to disable ioctls here */
1612 IFNET_LOCK(ifp);
1613 ifp->if_ioctl = if_nullioctl;
1614 IFNET_UNLOCK(ifp);
1615
1616 /*
1617 * We cannot call ifc_destroy with holding ifp.
1618 * Releasing ifp here is safe thanks to if_clone_mtx.
1619 */
1620 if_put(ifp, &psref);
1621
1622 return (*ifc->ifc_destroy)(ifp);
1623 }
1624
1625 static bool
1626 if_is_unit(const char *name)
1627 {
1628
1629 while(*name != '\0') {
1630 if (*name < '0' || *name > '9')
1631 return false;
1632 name++;
1633 }
1634
1635 return true;
1636 }
1637
1638 /*
1639 * Look up a network interface cloner.
1640 */
1641 static struct if_clone *
1642 if_clone_lookup(const char *name, int *unitp)
1643 {
1644 struct if_clone *ifc;
1645 const char *cp;
1646 char *dp, ifname[IFNAMSIZ + 3];
1647 int unit;
1648
1649 KASSERT(mutex_owned(&if_clone_mtx));
1650
1651 strcpy(ifname, "if_");
1652 /* separate interface name from unit */
1653 /* TODO: search unit number from backward */
1654 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1655 *cp && !if_is_unit(cp);)
1656 *dp++ = *cp++;
1657
1658 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1659 return NULL; /* No name or unit number */
1660 *dp++ = '\0';
1661
1662 again:
1663 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1664 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1665 break;
1666 }
1667
1668 if (ifc == NULL) {
1669 int error;
1670 if (*ifname == '\0')
1671 return NULL;
1672 mutex_exit(&if_clone_mtx);
1673 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1674 mutex_enter(&if_clone_mtx);
1675 if (error)
1676 return NULL;
1677 *ifname = '\0';
1678 goto again;
1679 }
1680
1681 unit = 0;
1682 while (cp - name < IFNAMSIZ && *cp) {
1683 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1684 /* Bogus unit number. */
1685 return NULL;
1686 }
1687 unit = (unit * 10) + (*cp++ - '0');
1688 }
1689
1690 if (unitp != NULL)
1691 *unitp = unit;
1692 return ifc;
1693 }
1694
1695 /*
1696 * Register a network interface cloner.
1697 */
1698 void
1699 if_clone_attach(struct if_clone *ifc)
1700 {
1701
1702 mutex_enter(&if_clone_mtx);
1703 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1704 if_cloners_count++;
1705 mutex_exit(&if_clone_mtx);
1706 }
1707
1708 /*
1709 * Unregister a network interface cloner.
1710 */
1711 void
1712 if_clone_detach(struct if_clone *ifc)
1713 {
1714
1715 mutex_enter(&if_clone_mtx);
1716 LIST_REMOVE(ifc, ifc_list);
1717 if_cloners_count--;
1718 mutex_exit(&if_clone_mtx);
1719 }
1720
1721 /*
1722 * Provide list of interface cloners to userspace.
1723 */
1724 int
1725 if_clone_list(int buf_count, char *buffer, int *total)
1726 {
1727 char outbuf[IFNAMSIZ], *dst;
1728 struct if_clone *ifc;
1729 int count, error = 0;
1730
1731 mutex_enter(&if_clone_mtx);
1732 *total = if_cloners_count;
1733 if ((dst = buffer) == NULL) {
1734 /* Just asking how many there are. */
1735 goto out;
1736 }
1737
1738 if (buf_count < 0) {
1739 error = EINVAL;
1740 goto out;
1741 }
1742
1743 count = (if_cloners_count < buf_count) ?
1744 if_cloners_count : buf_count;
1745
1746 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1747 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1748 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1749 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1750 error = ENAMETOOLONG;
1751 goto out;
1752 }
1753 error = copyout(outbuf, dst, sizeof(outbuf));
1754 if (error != 0)
1755 break;
1756 }
1757
1758 out:
1759 mutex_exit(&if_clone_mtx);
1760 return error;
1761 }
1762
1763 void
1764 ifa_psref_init(struct ifaddr *ifa)
1765 {
1766
1767 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1768 }
1769
1770 void
1771 ifaref(struct ifaddr *ifa)
1772 {
1773 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1774 ifa->ifa_refcnt++;
1775 }
1776
1777 void
1778 ifafree(struct ifaddr *ifa)
1779 {
1780 KASSERT(ifa != NULL);
1781 KASSERT(ifa->ifa_refcnt > 0);
1782
1783 if (--ifa->ifa_refcnt == 0) {
1784 free(ifa, M_IFADDR);
1785 }
1786 }
1787
1788 bool
1789 ifa_is_destroying(struct ifaddr *ifa)
1790 {
1791
1792 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1793 }
1794
1795 void
1796 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1797 {
1798
1799 ifa->ifa_ifp = ifp;
1800
1801 /*
1802 * Check MP-safety for IFEF_MPSAFE drivers.
1803 * Check !IFF_RUNNING for initialization routines that normally don't
1804 * take IFNET_LOCK but it's safe because there is no competitor.
1805 * XXX there are false positive cases because IFF_RUNNING can be off on
1806 * if_stop.
1807 */
1808 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1809 IFNET_LOCKED(ifp));
1810
1811 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1812 IFADDR_ENTRY_INIT(ifa);
1813 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1814
1815 ifaref(ifa);
1816 }
1817
1818 void
1819 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1820 {
1821
1822 KASSERT(ifa->ifa_ifp == ifp);
1823 /*
1824 * Check MP-safety for IFEF_MPSAFE drivers.
1825 * if_is_deactivated indicates ifa_remove is called form if_detach
1826 * where is safe even if IFNET_LOCK isn't held.
1827 */
1828 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1829
1830 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1831 IFADDR_WRITER_REMOVE(ifa);
1832 #ifdef NET_MPSAFE
1833 IFNET_GLOBAL_LOCK();
1834 pserialize_perform(ifnet_psz);
1835 IFNET_GLOBAL_UNLOCK();
1836 #endif
1837
1838 #ifdef NET_MPSAFE
1839 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1840 #endif
1841 IFADDR_ENTRY_DESTROY(ifa);
1842 ifafree(ifa);
1843 }
1844
1845 void
1846 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1847 {
1848
1849 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1850 }
1851
1852 void
1853 ifa_release(struct ifaddr *ifa, struct psref *psref)
1854 {
1855
1856 if (ifa == NULL)
1857 return;
1858
1859 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1860 }
1861
1862 bool
1863 ifa_held(struct ifaddr *ifa)
1864 {
1865
1866 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1867 }
1868
1869 static inline int
1870 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1871 {
1872 return sockaddr_cmp(sa1, sa2) == 0;
1873 }
1874
1875 /*
1876 * Locate an interface based on a complete address.
1877 */
1878 /*ARGSUSED*/
1879 struct ifaddr *
1880 ifa_ifwithaddr(const struct sockaddr *addr)
1881 {
1882 struct ifnet *ifp;
1883 struct ifaddr *ifa;
1884
1885 IFNET_READER_FOREACH(ifp) {
1886 if (if_is_deactivated(ifp))
1887 continue;
1888 IFADDR_READER_FOREACH(ifa, ifp) {
1889 if (ifa->ifa_addr->sa_family != addr->sa_family)
1890 continue;
1891 if (equal(addr, ifa->ifa_addr))
1892 return ifa;
1893 if ((ifp->if_flags & IFF_BROADCAST) &&
1894 ifa->ifa_broadaddr &&
1895 /* IP6 doesn't have broadcast */
1896 ifa->ifa_broadaddr->sa_len != 0 &&
1897 equal(ifa->ifa_broadaddr, addr))
1898 return ifa;
1899 }
1900 }
1901 return NULL;
1902 }
1903
1904 struct ifaddr *
1905 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1906 {
1907 struct ifaddr *ifa;
1908 int s = pserialize_read_enter();
1909
1910 ifa = ifa_ifwithaddr(addr);
1911 if (ifa != NULL)
1912 ifa_acquire(ifa, psref);
1913 pserialize_read_exit(s);
1914
1915 return ifa;
1916 }
1917
1918 /*
1919 * Locate the point to point interface with a given destination address.
1920 */
1921 /*ARGSUSED*/
1922 struct ifaddr *
1923 ifa_ifwithdstaddr(const struct sockaddr *addr)
1924 {
1925 struct ifnet *ifp;
1926 struct ifaddr *ifa;
1927
1928 IFNET_READER_FOREACH(ifp) {
1929 if (if_is_deactivated(ifp))
1930 continue;
1931 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1932 continue;
1933 IFADDR_READER_FOREACH(ifa, ifp) {
1934 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1935 ifa->ifa_dstaddr == NULL)
1936 continue;
1937 if (equal(addr, ifa->ifa_dstaddr))
1938 return ifa;
1939 }
1940 }
1941
1942 return NULL;
1943 }
1944
1945 struct ifaddr *
1946 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1947 {
1948 struct ifaddr *ifa;
1949 int s;
1950
1951 s = pserialize_read_enter();
1952 ifa = ifa_ifwithdstaddr(addr);
1953 if (ifa != NULL)
1954 ifa_acquire(ifa, psref);
1955 pserialize_read_exit(s);
1956
1957 return ifa;
1958 }
1959
1960 /*
1961 * Find an interface on a specific network. If many, choice
1962 * is most specific found.
1963 */
1964 struct ifaddr *
1965 ifa_ifwithnet(const struct sockaddr *addr)
1966 {
1967 struct ifnet *ifp;
1968 struct ifaddr *ifa, *ifa_maybe = NULL;
1969 const struct sockaddr_dl *sdl;
1970 u_int af = addr->sa_family;
1971 const char *addr_data = addr->sa_data, *cplim;
1972
1973 if (af == AF_LINK) {
1974 sdl = satocsdl(addr);
1975 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1976 ifindex2ifnet[sdl->sdl_index] &&
1977 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1978 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1979 }
1980 }
1981 #ifdef NETATALK
1982 if (af == AF_APPLETALK) {
1983 const struct sockaddr_at *sat, *sat2;
1984 sat = (const struct sockaddr_at *)addr;
1985 IFNET_READER_FOREACH(ifp) {
1986 if (if_is_deactivated(ifp))
1987 continue;
1988 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1989 if (ifa == NULL)
1990 continue;
1991 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1992 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1993 return ifa; /* exact match */
1994 if (ifa_maybe == NULL) {
1995 /* else keep the if with the right range */
1996 ifa_maybe = ifa;
1997 }
1998 }
1999 return ifa_maybe;
2000 }
2001 #endif
2002 IFNET_READER_FOREACH(ifp) {
2003 if (if_is_deactivated(ifp))
2004 continue;
2005 IFADDR_READER_FOREACH(ifa, ifp) {
2006 const char *cp, *cp2, *cp3;
2007
2008 if (ifa->ifa_addr->sa_family != af ||
2009 ifa->ifa_netmask == NULL)
2010 next: continue;
2011 cp = addr_data;
2012 cp2 = ifa->ifa_addr->sa_data;
2013 cp3 = ifa->ifa_netmask->sa_data;
2014 cplim = (const char *)ifa->ifa_netmask +
2015 ifa->ifa_netmask->sa_len;
2016 while (cp3 < cplim) {
2017 if ((*cp++ ^ *cp2++) & *cp3++) {
2018 /* want to continue for() loop */
2019 goto next;
2020 }
2021 }
2022 if (ifa_maybe == NULL ||
2023 rt_refines(ifa->ifa_netmask,
2024 ifa_maybe->ifa_netmask))
2025 ifa_maybe = ifa;
2026 }
2027 }
2028 return ifa_maybe;
2029 }
2030
2031 struct ifaddr *
2032 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2033 {
2034 struct ifaddr *ifa;
2035 int s;
2036
2037 s = pserialize_read_enter();
2038 ifa = ifa_ifwithnet(addr);
2039 if (ifa != NULL)
2040 ifa_acquire(ifa, psref);
2041 pserialize_read_exit(s);
2042
2043 return ifa;
2044 }
2045
2046 /*
2047 * Find the interface of the addresss.
2048 */
2049 struct ifaddr *
2050 ifa_ifwithladdr(const struct sockaddr *addr)
2051 {
2052 struct ifaddr *ia;
2053
2054 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2055 (ia = ifa_ifwithnet(addr)))
2056 return ia;
2057 return NULL;
2058 }
2059
2060 struct ifaddr *
2061 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2062 {
2063 struct ifaddr *ifa;
2064 int s;
2065
2066 s = pserialize_read_enter();
2067 ifa = ifa_ifwithladdr(addr);
2068 if (ifa != NULL)
2069 ifa_acquire(ifa, psref);
2070 pserialize_read_exit(s);
2071
2072 return ifa;
2073 }
2074
2075 /*
2076 * Find an interface using a specific address family
2077 */
2078 struct ifaddr *
2079 ifa_ifwithaf(int af)
2080 {
2081 struct ifnet *ifp;
2082 struct ifaddr *ifa = NULL;
2083 int s;
2084
2085 s = pserialize_read_enter();
2086 IFNET_READER_FOREACH(ifp) {
2087 if (if_is_deactivated(ifp))
2088 continue;
2089 IFADDR_READER_FOREACH(ifa, ifp) {
2090 if (ifa->ifa_addr->sa_family == af)
2091 goto out;
2092 }
2093 }
2094 out:
2095 pserialize_read_exit(s);
2096 return ifa;
2097 }
2098
2099 /*
2100 * Find an interface address specific to an interface best matching
2101 * a given address.
2102 */
2103 struct ifaddr *
2104 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2105 {
2106 struct ifaddr *ifa;
2107 const char *cp, *cp2, *cp3;
2108 const char *cplim;
2109 struct ifaddr *ifa_maybe = 0;
2110 u_int af = addr->sa_family;
2111
2112 if (if_is_deactivated(ifp))
2113 return NULL;
2114
2115 if (af >= AF_MAX)
2116 return NULL;
2117
2118 IFADDR_READER_FOREACH(ifa, ifp) {
2119 if (ifa->ifa_addr->sa_family != af)
2120 continue;
2121 ifa_maybe = ifa;
2122 if (ifa->ifa_netmask == NULL) {
2123 if (equal(addr, ifa->ifa_addr) ||
2124 (ifa->ifa_dstaddr &&
2125 equal(addr, ifa->ifa_dstaddr)))
2126 return ifa;
2127 continue;
2128 }
2129 cp = addr->sa_data;
2130 cp2 = ifa->ifa_addr->sa_data;
2131 cp3 = ifa->ifa_netmask->sa_data;
2132 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2133 for (; cp3 < cplim; cp3++) {
2134 if ((*cp++ ^ *cp2++) & *cp3)
2135 break;
2136 }
2137 if (cp3 == cplim)
2138 return ifa;
2139 }
2140 return ifa_maybe;
2141 }
2142
2143 struct ifaddr *
2144 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2145 struct psref *psref)
2146 {
2147 struct ifaddr *ifa;
2148 int s;
2149
2150 s = pserialize_read_enter();
2151 ifa = ifaof_ifpforaddr(addr, ifp);
2152 if (ifa != NULL)
2153 ifa_acquire(ifa, psref);
2154 pserialize_read_exit(s);
2155
2156 return ifa;
2157 }
2158
2159 /*
2160 * Default action when installing a route with a Link Level gateway.
2161 * Lookup an appropriate real ifa to point to.
2162 * This should be moved to /sys/net/link.c eventually.
2163 */
2164 void
2165 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2166 {
2167 struct ifaddr *ifa;
2168 const struct sockaddr *dst;
2169 struct ifnet *ifp;
2170 struct psref psref;
2171
2172 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2173 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2174 return;
2175 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2176 rt_replace_ifa(rt, ifa);
2177 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2178 ifa->ifa_rtrequest(cmd, rt, info);
2179 ifa_release(ifa, &psref);
2180 }
2181 }
2182
2183 /*
2184 * bitmask macros to manage a densely packed link_state change queue.
2185 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2186 * LINK_STATE_UP(2) we need 2 bits for each state change.
2187 * As a state change to store is 0, treat all bits set as an unset item.
2188 */
2189 #define LQ_ITEM_BITS 2
2190 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2191 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2192 #define LINK_STATE_UNSET LQ_ITEM_MASK
2193 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2194 #define LQ_STORE(q, i, v) \
2195 do { \
2196 (q) &= ~LQ_MASK((i)); \
2197 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2198 } while (0 /* CONSTCOND */)
2199 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2200 #define LQ_POP(q, v) \
2201 do { \
2202 (v) = LQ_ITEM((q), 0); \
2203 (q) >>= LQ_ITEM_BITS; \
2204 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2205 } while (0 /* CONSTCOND */)
2206 #define LQ_PUSH(q, v) \
2207 do { \
2208 (q) >>= LQ_ITEM_BITS; \
2209 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2210 } while (0 /* CONSTCOND */)
2211 #define LQ_FIND_UNSET(q, i) \
2212 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2213 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2214 break; \
2215 }
2216
2217 /*
2218 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2219 * for each ifnet. It doesn't matter because:
2220 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2221 * ifq_lock don't happen
2222 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2223 * because if_snd, if_link_state_change and if_link_state_change_softint
2224 * are all called with KERNEL_LOCK
2225 */
2226 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2227 mutex_enter((ifp)->if_snd.ifq_lock)
2228 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2229 mutex_exit((ifp)->if_snd.ifq_lock)
2230
2231 /*
2232 * Handle a change in the interface link state and
2233 * queue notifications.
2234 */
2235 void
2236 if_link_state_change(struct ifnet *ifp, int link_state)
2237 {
2238 int idx;
2239
2240 KASSERTMSG(if_is_link_state_changeable(ifp),
2241 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2242 ifp->if_xname, ifp->if_extflags);
2243
2244 /* Ensure change is to a valid state */
2245 switch (link_state) {
2246 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2247 case LINK_STATE_DOWN: /* FALLTHROUGH */
2248 case LINK_STATE_UP:
2249 break;
2250 default:
2251 #ifdef DEBUG
2252 printf("%s: invalid link state %d\n",
2253 ifp->if_xname, link_state);
2254 #endif
2255 return;
2256 }
2257
2258 IF_LINK_STATE_CHANGE_LOCK(ifp);
2259
2260 /* Find the last unset event in the queue. */
2261 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2262
2263 /*
2264 * Ensure link_state doesn't match the last event in the queue.
2265 * ifp->if_link_state is not checked and set here because
2266 * that would present an inconsistent picture to the system.
2267 */
2268 if (idx != 0 &&
2269 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2270 goto out;
2271
2272 /* Handle queue overflow. */
2273 if (idx == LQ_MAX(ifp->if_link_queue)) {
2274 uint8_t lost;
2275
2276 /*
2277 * The DOWN state must be protected from being pushed off
2278 * the queue to ensure that userland will always be
2279 * in a sane state.
2280 * Because DOWN is protected, there is no need to protect
2281 * UNKNOWN.
2282 * It should be invalid to change from any other state to
2283 * UNKNOWN anyway ...
2284 */
2285 lost = LQ_ITEM(ifp->if_link_queue, 0);
2286 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2287 if (lost == LINK_STATE_DOWN) {
2288 lost = LQ_ITEM(ifp->if_link_queue, 0);
2289 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2290 }
2291 printf("%s: lost link state change %s\n",
2292 ifp->if_xname,
2293 lost == LINK_STATE_UP ? "UP" :
2294 lost == LINK_STATE_DOWN ? "DOWN" :
2295 "UNKNOWN");
2296 } else
2297 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2298
2299 softint_schedule(ifp->if_link_si);
2300
2301 out:
2302 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2303 }
2304
2305 /*
2306 * Handle interface link state change notifications.
2307 */
2308 void
2309 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2310 {
2311 struct domain *dp;
2312 int s = splnet();
2313 bool notify;
2314
2315 KASSERT(!cpu_intr_p());
2316
2317 IF_LINK_STATE_CHANGE_LOCK(ifp);
2318
2319 /* Ensure the change is still valid. */
2320 if (ifp->if_link_state == link_state) {
2321 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2322 return;
2323 }
2324
2325 #ifdef DEBUG
2326 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2327 link_state == LINK_STATE_UP ? "UP" :
2328 link_state == LINK_STATE_DOWN ? "DOWN" :
2329 "UNKNOWN",
2330 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2331 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2332 "UNKNOWN");
2333 #endif
2334
2335 /*
2336 * When going from UNKNOWN to UP, we need to mark existing
2337 * addresses as tentative and restart DAD as we may have
2338 * erroneously not found a duplicate.
2339 *
2340 * This needs to happen before rt_ifmsg to avoid a race where
2341 * listeners would have an address and expect it to work right
2342 * away.
2343 */
2344 notify = (link_state == LINK_STATE_UP &&
2345 ifp->if_link_state == LINK_STATE_UNKNOWN);
2346 ifp->if_link_state = link_state;
2347 /* The following routines may sleep so release the spin mutex */
2348 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2349
2350 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2351 if (notify) {
2352 DOMAIN_FOREACH(dp) {
2353 if (dp->dom_if_link_state_change != NULL)
2354 dp->dom_if_link_state_change(ifp,
2355 LINK_STATE_DOWN);
2356 }
2357 }
2358
2359 /* Notify that the link state has changed. */
2360 rt_ifmsg(ifp);
2361
2362 #if NCARP > 0
2363 if (ifp->if_carp)
2364 carp_carpdev_state(ifp);
2365 #endif
2366
2367 DOMAIN_FOREACH(dp) {
2368 if (dp->dom_if_link_state_change != NULL)
2369 dp->dom_if_link_state_change(ifp, link_state);
2370 }
2371 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2372 splx(s);
2373 }
2374
2375 /*
2376 * Process the interface link state change queue.
2377 */
2378 static void
2379 if_link_state_change_si(void *arg)
2380 {
2381 struct ifnet *ifp = arg;
2382 int s;
2383 uint8_t state;
2384 bool schedule;
2385
2386 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2387 s = splnet();
2388
2389 /* Pop a link state change from the queue and process it. */
2390 IF_LINK_STATE_CHANGE_LOCK(ifp);
2391 LQ_POP(ifp->if_link_queue, state);
2392 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2393
2394 if_link_state_change_softint(ifp, state);
2395
2396 /* If there is a link state change to come, schedule it. */
2397 IF_LINK_STATE_CHANGE_LOCK(ifp);
2398 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2399 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2400 if (schedule)
2401 softint_schedule(ifp->if_link_si);
2402
2403 splx(s);
2404 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2405 }
2406
2407 /*
2408 * Default action when installing a local route on a point-to-point
2409 * interface.
2410 */
2411 void
2412 p2p_rtrequest(int req, struct rtentry *rt,
2413 __unused const struct rt_addrinfo *info)
2414 {
2415 struct ifnet *ifp = rt->rt_ifp;
2416 struct ifaddr *ifa, *lo0ifa;
2417 int s = pserialize_read_enter();
2418
2419 switch (req) {
2420 case RTM_ADD:
2421 if ((rt->rt_flags & RTF_LOCAL) == 0)
2422 break;
2423
2424 rt->rt_ifp = lo0ifp;
2425
2426 IFADDR_READER_FOREACH(ifa, ifp) {
2427 if (equal(rt_getkey(rt), ifa->ifa_addr))
2428 break;
2429 }
2430 if (ifa == NULL)
2431 break;
2432
2433 /*
2434 * Ensure lo0 has an address of the same family.
2435 */
2436 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2437 if (lo0ifa->ifa_addr->sa_family ==
2438 ifa->ifa_addr->sa_family)
2439 break;
2440 }
2441 if (lo0ifa == NULL)
2442 break;
2443
2444 /*
2445 * Make sure to set rt->rt_ifa to the interface
2446 * address we are using, otherwise we will have trouble
2447 * with source address selection.
2448 */
2449 if (ifa != rt->rt_ifa)
2450 rt_replace_ifa(rt, ifa);
2451 break;
2452 case RTM_DELETE:
2453 default:
2454 break;
2455 }
2456 pserialize_read_exit(s);
2457 }
2458
2459 static void
2460 _if_down(struct ifnet *ifp)
2461 {
2462 struct ifaddr *ifa;
2463 struct domain *dp;
2464 int s, bound;
2465 struct psref psref;
2466
2467 ifp->if_flags &= ~IFF_UP;
2468 nanotime(&ifp->if_lastchange);
2469
2470 bound = curlwp_bind();
2471 s = pserialize_read_enter();
2472 IFADDR_READER_FOREACH(ifa, ifp) {
2473 ifa_acquire(ifa, &psref);
2474 pserialize_read_exit(s);
2475
2476 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2477
2478 s = pserialize_read_enter();
2479 ifa_release(ifa, &psref);
2480 }
2481 pserialize_read_exit(s);
2482 curlwp_bindx(bound);
2483
2484 IFQ_PURGE(&ifp->if_snd);
2485 #if NCARP > 0
2486 if (ifp->if_carp)
2487 carp_carpdev_state(ifp);
2488 #endif
2489 rt_ifmsg(ifp);
2490 DOMAIN_FOREACH(dp) {
2491 if (dp->dom_if_down)
2492 dp->dom_if_down(ifp);
2493 }
2494 }
2495
2496 static void
2497 if_down_deactivated(struct ifnet *ifp)
2498 {
2499
2500 KASSERT(if_is_deactivated(ifp));
2501 _if_down(ifp);
2502 }
2503
2504 void
2505 if_down_locked(struct ifnet *ifp)
2506 {
2507
2508 KASSERT(IFNET_LOCKED(ifp));
2509 _if_down(ifp);
2510 }
2511
2512 /*
2513 * Mark an interface down and notify protocols of
2514 * the transition.
2515 * NOTE: must be called at splsoftnet or equivalent.
2516 */
2517 void
2518 if_down(struct ifnet *ifp)
2519 {
2520
2521 IFNET_LOCK(ifp);
2522 if_down_locked(ifp);
2523 IFNET_UNLOCK(ifp);
2524 }
2525
2526 /*
2527 * Must be called with holding if_ioctl_lock.
2528 */
2529 static void
2530 if_up_locked(struct ifnet *ifp)
2531 {
2532 #ifdef notyet
2533 struct ifaddr *ifa;
2534 #endif
2535 struct domain *dp;
2536
2537 KASSERT(IFNET_LOCKED(ifp));
2538
2539 KASSERT(!if_is_deactivated(ifp));
2540 ifp->if_flags |= IFF_UP;
2541 nanotime(&ifp->if_lastchange);
2542 #ifdef notyet
2543 /* this has no effect on IP, and will kill all ISO connections XXX */
2544 IFADDR_READER_FOREACH(ifa, ifp)
2545 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2546 #endif
2547 #if NCARP > 0
2548 if (ifp->if_carp)
2549 carp_carpdev_state(ifp);
2550 #endif
2551 rt_ifmsg(ifp);
2552 DOMAIN_FOREACH(dp) {
2553 if (dp->dom_if_up)
2554 dp->dom_if_up(ifp);
2555 }
2556 }
2557
2558 /*
2559 * Handle interface slowtimo timer routine. Called
2560 * from softclock, we decrement timer (if set) and
2561 * call the appropriate interface routine on expiration.
2562 */
2563 static void
2564 if_slowtimo(void *arg)
2565 {
2566 void (*slowtimo)(struct ifnet *);
2567 struct ifnet *ifp = arg;
2568 int s;
2569
2570 slowtimo = ifp->if_slowtimo;
2571 if (__predict_false(slowtimo == NULL))
2572 return;
2573
2574 s = splnet();
2575 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2576 (*slowtimo)(ifp);
2577
2578 splx(s);
2579
2580 if (__predict_true(ifp->if_slowtimo != NULL))
2581 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2582 }
2583
2584 /*
2585 * Mark an interface up and notify protocols of
2586 * the transition.
2587 * NOTE: must be called at splsoftnet or equivalent.
2588 */
2589 void
2590 if_up(struct ifnet *ifp)
2591 {
2592
2593 IFNET_LOCK(ifp);
2594 if_up_locked(ifp);
2595 IFNET_UNLOCK(ifp);
2596 }
2597
2598 /*
2599 * Set/clear promiscuous mode on interface ifp based on the truth value
2600 * of pswitch. The calls are reference counted so that only the first
2601 * "on" request actually has an effect, as does the final "off" request.
2602 * Results are undefined if the "off" and "on" requests are not matched.
2603 */
2604 int
2605 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2606 {
2607 int pcount, ret = 0;
2608 short nflags;
2609
2610 KASSERT(IFNET_LOCKED(ifp));
2611
2612 pcount = ifp->if_pcount;
2613 if (pswitch) {
2614 /*
2615 * Allow the device to be "placed" into promiscuous
2616 * mode even if it is not configured up. It will
2617 * consult IFF_PROMISC when it is brought up.
2618 */
2619 if (ifp->if_pcount++ != 0)
2620 goto out;
2621 nflags = ifp->if_flags | IFF_PROMISC;
2622 } else {
2623 if (--ifp->if_pcount > 0)
2624 goto out;
2625 nflags = ifp->if_flags & ~IFF_PROMISC;
2626 }
2627 ret = if_flags_set(ifp, nflags);
2628 /* Restore interface state if not successful. */
2629 if (ret != 0) {
2630 ifp->if_pcount = pcount;
2631 }
2632 out:
2633 return ret;
2634 }
2635
2636 int
2637 ifpromisc(struct ifnet *ifp, int pswitch)
2638 {
2639 int e;
2640
2641 IFNET_LOCK(ifp);
2642 e = ifpromisc_locked(ifp, pswitch);
2643 IFNET_UNLOCK(ifp);
2644
2645 return e;
2646 }
2647
2648 /*
2649 * Map interface name to
2650 * interface structure pointer.
2651 */
2652 struct ifnet *
2653 ifunit(const char *name)
2654 {
2655 struct ifnet *ifp;
2656 const char *cp = name;
2657 u_int unit = 0;
2658 u_int i;
2659 int s;
2660
2661 /*
2662 * If the entire name is a number, treat it as an ifindex.
2663 */
2664 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2665 unit = unit * 10 + (*cp - '0');
2666 }
2667
2668 /*
2669 * If the number took all of the name, then it's a valid ifindex.
2670 */
2671 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2672 return if_byindex(unit);
2673
2674 ifp = NULL;
2675 s = pserialize_read_enter();
2676 IFNET_READER_FOREACH(ifp) {
2677 if (if_is_deactivated(ifp))
2678 continue;
2679 if (strcmp(ifp->if_xname, name) == 0)
2680 goto out;
2681 }
2682 out:
2683 pserialize_read_exit(s);
2684 return ifp;
2685 }
2686
2687 /*
2688 * Get a reference of an ifnet object by an interface name.
2689 * The returned reference is protected by psref(9). The caller
2690 * must release a returned reference by if_put after use.
2691 */
2692 struct ifnet *
2693 if_get(const char *name, struct psref *psref)
2694 {
2695 struct ifnet *ifp;
2696 const char *cp = name;
2697 u_int unit = 0;
2698 u_int i;
2699 int s;
2700
2701 /*
2702 * If the entire name is a number, treat it as an ifindex.
2703 */
2704 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2705 unit = unit * 10 + (*cp - '0');
2706 }
2707
2708 /*
2709 * If the number took all of the name, then it's a valid ifindex.
2710 */
2711 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2712 return if_get_byindex(unit, psref);
2713
2714 ifp = NULL;
2715 s = pserialize_read_enter();
2716 IFNET_READER_FOREACH(ifp) {
2717 if (if_is_deactivated(ifp))
2718 continue;
2719 if (strcmp(ifp->if_xname, name) == 0) {
2720 psref_acquire(psref, &ifp->if_psref,
2721 ifnet_psref_class);
2722 goto out;
2723 }
2724 }
2725 out:
2726 pserialize_read_exit(s);
2727 return ifp;
2728 }
2729
2730 /*
2731 * Release a reference of an ifnet object given by if_get, if_get_byindex
2732 * or if_get_bylla.
2733 */
2734 void
2735 if_put(const struct ifnet *ifp, struct psref *psref)
2736 {
2737
2738 if (ifp == NULL)
2739 return;
2740
2741 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2742 }
2743
2744 /*
2745 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2746 * should be used.
2747 */
2748 ifnet_t *
2749 _if_byindex(u_int idx)
2750 {
2751
2752 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2753 }
2754
2755 /*
2756 * Return ifp having idx. Return NULL if not found or the found ifp is
2757 * already deactivated.
2758 */
2759 ifnet_t *
2760 if_byindex(u_int idx)
2761 {
2762 ifnet_t *ifp;
2763
2764 ifp = _if_byindex(idx);
2765 if (ifp != NULL && if_is_deactivated(ifp))
2766 ifp = NULL;
2767 return ifp;
2768 }
2769
2770 /*
2771 * Get a reference of an ifnet object by an interface index.
2772 * The returned reference is protected by psref(9). The caller
2773 * must release a returned reference by if_put after use.
2774 */
2775 ifnet_t *
2776 if_get_byindex(u_int idx, struct psref *psref)
2777 {
2778 ifnet_t *ifp;
2779 int s;
2780
2781 s = pserialize_read_enter();
2782 ifp = if_byindex(idx);
2783 if (__predict_true(ifp != NULL))
2784 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2785 pserialize_read_exit(s);
2786
2787 return ifp;
2788 }
2789
2790 ifnet_t *
2791 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2792 {
2793 ifnet_t *ifp;
2794 int s;
2795
2796 s = pserialize_read_enter();
2797 IFNET_READER_FOREACH(ifp) {
2798 if (if_is_deactivated(ifp))
2799 continue;
2800 if (ifp->if_addrlen != lla_len)
2801 continue;
2802 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2803 psref_acquire(psref, &ifp->if_psref,
2804 ifnet_psref_class);
2805 break;
2806 }
2807 }
2808 pserialize_read_exit(s);
2809
2810 return ifp;
2811 }
2812
2813 /*
2814 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2815 * for example using pserialize or the ifp is already held or some other
2816 * object is held which guarantes the ifp to not be freed indirectly.
2817 */
2818 void
2819 if_acquire(struct ifnet *ifp, struct psref *psref)
2820 {
2821
2822 KASSERT(ifp->if_index != 0);
2823 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2824 }
2825
2826 bool
2827 if_held(struct ifnet *ifp)
2828 {
2829
2830 return psref_held(&ifp->if_psref, ifnet_psref_class);
2831 }
2832
2833 /*
2834 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2835 * Check the tunnel nesting count.
2836 * Return > 0, if tunnel nesting count is more than limit.
2837 * Return 0, if tunnel nesting count is equal or less than limit.
2838 */
2839 int
2840 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2841 {
2842 struct m_tag *mtag;
2843 int *count;
2844
2845 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
2846 if (mtag != NULL) {
2847 count = (int *)(mtag + 1);
2848 if (++(*count) > limit) {
2849 log(LOG_NOTICE,
2850 "%s: recursively called too many times(%d)\n",
2851 ifp->if_xname, *count);
2852 return EIO;
2853 }
2854 } else {
2855 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2856 M_NOWAIT);
2857 if (mtag != NULL) {
2858 m_tag_prepend(m, mtag);
2859 count = (int *)(mtag + 1);
2860 *count = 0;
2861 } else {
2862 log(LOG_DEBUG,
2863 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2864 ifp->if_xname);
2865 }
2866 }
2867
2868 return 0;
2869 }
2870
2871 /* common */
2872 int
2873 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2874 {
2875 int s;
2876 struct ifreq *ifr;
2877 struct ifcapreq *ifcr;
2878 struct ifdatareq *ifdr;
2879
2880 switch (cmd) {
2881 case SIOCSIFCAP:
2882 ifcr = data;
2883 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2884 return EINVAL;
2885
2886 if (ifcr->ifcr_capenable == ifp->if_capenable)
2887 return 0;
2888
2889 ifp->if_capenable = ifcr->ifcr_capenable;
2890
2891 /* Pre-compute the checksum flags mask. */
2892 ifp->if_csum_flags_tx = 0;
2893 ifp->if_csum_flags_rx = 0;
2894 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2895 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2896 }
2897 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2898 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2899 }
2900
2901 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2902 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2903 }
2904 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2905 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2906 }
2907
2908 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2909 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2910 }
2911 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2912 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2913 }
2914
2915 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2916 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2917 }
2918 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2919 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2920 }
2921
2922 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2923 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2924 }
2925 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2926 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2927 }
2928 if (ifp->if_flags & IFF_UP)
2929 return ENETRESET;
2930 return 0;
2931 case SIOCSIFFLAGS:
2932 ifr = data;
2933 /*
2934 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2935 * and if_down aren't MP-safe yet, so we must hold the lock.
2936 */
2937 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2938 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2939 s = splsoftnet();
2940 if_down_locked(ifp);
2941 splx(s);
2942 }
2943 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2944 s = splsoftnet();
2945 if_up_locked(ifp);
2946 splx(s);
2947 }
2948 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2949 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2950 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2951 break;
2952 case SIOCGIFFLAGS:
2953 ifr = data;
2954 ifr->ifr_flags = ifp->if_flags;
2955 break;
2956
2957 case SIOCGIFMETRIC:
2958 ifr = data;
2959 ifr->ifr_metric = ifp->if_metric;
2960 break;
2961
2962 case SIOCGIFMTU:
2963 ifr = data;
2964 ifr->ifr_mtu = ifp->if_mtu;
2965 break;
2966
2967 case SIOCGIFDLT:
2968 ifr = data;
2969 ifr->ifr_dlt = ifp->if_dlt;
2970 break;
2971
2972 case SIOCGIFCAP:
2973 ifcr = data;
2974 ifcr->ifcr_capabilities = ifp->if_capabilities;
2975 ifcr->ifcr_capenable = ifp->if_capenable;
2976 break;
2977
2978 case SIOCSIFMETRIC:
2979 ifr = data;
2980 ifp->if_metric = ifr->ifr_metric;
2981 break;
2982
2983 case SIOCGIFDATA:
2984 ifdr = data;
2985 ifdr->ifdr_data = ifp->if_data;
2986 break;
2987
2988 case SIOCGIFINDEX:
2989 ifr = data;
2990 ifr->ifr_index = ifp->if_index;
2991 break;
2992
2993 case SIOCZIFDATA:
2994 ifdr = data;
2995 ifdr->ifdr_data = ifp->if_data;
2996 /*
2997 * Assumes that the volatile counters that can be
2998 * zero'ed are at the end of if_data.
2999 */
3000 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
3001 offsetof(struct if_data, ifi_ipackets));
3002 /*
3003 * The memset() clears to the bottm of if_data. In the area,
3004 * if_lastchange is included. Please be careful if new entry
3005 * will be added into if_data or rewite this.
3006 *
3007 * And also, update if_lastchnage.
3008 */
3009 getnanotime(&ifp->if_lastchange);
3010 break;
3011 case SIOCSIFMTU:
3012 ifr = data;
3013 if (ifp->if_mtu == ifr->ifr_mtu)
3014 break;
3015 ifp->if_mtu = ifr->ifr_mtu;
3016 /*
3017 * If the link MTU changed, do network layer specific procedure.
3018 */
3019 #ifdef INET6
3020 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3021 if (in6_present)
3022 nd6_setmtu(ifp);
3023 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3024 #endif
3025 return ENETRESET;
3026 default:
3027 return ENOTTY;
3028 }
3029 return 0;
3030 }
3031
3032 int
3033 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3034 {
3035 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3036 struct ifaddr *ifa;
3037 const struct sockaddr *any, *sa;
3038 union {
3039 struct sockaddr sa;
3040 struct sockaddr_storage ss;
3041 } u, v;
3042 int s, error = 0;
3043
3044 switch (cmd) {
3045 case SIOCSIFADDRPREF:
3046 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3047 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3048 NULL) != 0)
3049 return EPERM;
3050 case SIOCGIFADDRPREF:
3051 break;
3052 default:
3053 return EOPNOTSUPP;
3054 }
3055
3056 /* sanity checks */
3057 if (data == NULL || ifp == NULL) {
3058 panic("invalid argument to %s", __func__);
3059 /*NOTREACHED*/
3060 }
3061
3062 /* address must be specified on ADD and DELETE */
3063 sa = sstocsa(&ifap->ifap_addr);
3064 if (sa->sa_family != sofamily(so))
3065 return EINVAL;
3066 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3067 return EINVAL;
3068
3069 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3070
3071 s = pserialize_read_enter();
3072 IFADDR_READER_FOREACH(ifa, ifp) {
3073 if (ifa->ifa_addr->sa_family != sa->sa_family)
3074 continue;
3075 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3076 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3077 break;
3078 }
3079 if (ifa == NULL) {
3080 error = EADDRNOTAVAIL;
3081 goto out;
3082 }
3083
3084 switch (cmd) {
3085 case SIOCSIFADDRPREF:
3086 ifa->ifa_preference = ifap->ifap_preference;
3087 goto out;
3088 case SIOCGIFADDRPREF:
3089 /* fill in the if_laddrreq structure */
3090 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3091 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3092 ifap->ifap_preference = ifa->ifa_preference;
3093 goto out;
3094 default:
3095 error = EOPNOTSUPP;
3096 }
3097 out:
3098 pserialize_read_exit(s);
3099 return error;
3100 }
3101
3102 /*
3103 * Interface ioctls.
3104 */
3105 static int
3106 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3107 {
3108 struct ifnet *ifp;
3109 struct ifreq *ifr;
3110 int error = 0;
3111 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
3112 u_long ocmd = cmd;
3113 #endif
3114 short oif_flags;
3115 #ifdef COMPAT_OIFREQ
3116 struct ifreq ifrb;
3117 struct oifreq *oifr = NULL;
3118 #endif
3119 int r;
3120 struct psref psref;
3121 int bound;
3122
3123 switch (cmd) {
3124 case SIOCGIFCONF:
3125 return ifconf(cmd, data);
3126 case SIOCINITIFADDR:
3127 return EPERM;
3128 default:
3129 error = (*vec_compat_ifconf)(l, cmd, data);
3130 if (error != ENOSYS)
3131 return error;
3132 error = (*vec_compat_ifdatareq)(l, cmd, data);
3133 if (error != ENOSYS)
3134 return error;
3135 break;
3136 }
3137
3138 ifr = data;
3139 #ifdef COMPAT_OIFREQ
3140 if (vec_compat_cvtcmd) {
3141 cmd = (*vec_compat_cvtcmd)(cmd);
3142 if (cmd != ocmd) {
3143 oifr = data;
3144 data = ifr = &ifrb;
3145 ifreqo2n(oifr, ifr);
3146 }
3147 }
3148 #endif
3149
3150 switch (cmd) {
3151 case SIOCIFCREATE:
3152 case SIOCIFDESTROY:
3153 bound = curlwp_bind();
3154 if (l != NULL) {
3155 ifp = if_get(ifr->ifr_name, &psref);
3156 error = kauth_authorize_network(l->l_cred,
3157 KAUTH_NETWORK_INTERFACE,
3158 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3159 (void *)cmd, NULL);
3160 if (ifp != NULL)
3161 if_put(ifp, &psref);
3162 if (error != 0) {
3163 curlwp_bindx(bound);
3164 return error;
3165 }
3166 }
3167 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3168 mutex_enter(&if_clone_mtx);
3169 r = (cmd == SIOCIFCREATE) ?
3170 if_clone_create(ifr->ifr_name) :
3171 if_clone_destroy(ifr->ifr_name);
3172 mutex_exit(&if_clone_mtx);
3173 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3174 curlwp_bindx(bound);
3175 return r;
3176
3177 case SIOCIFGCLONERS:
3178 {
3179 struct if_clonereq *req = (struct if_clonereq *)data;
3180 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3181 &req->ifcr_total);
3182 }
3183 }
3184
3185 bound = curlwp_bind();
3186 ifp = if_get(ifr->ifr_name, &psref);
3187 if (ifp == NULL) {
3188 curlwp_bindx(bound);
3189 return ENXIO;
3190 }
3191
3192 switch (cmd) {
3193 case SIOCALIFADDR:
3194 case SIOCDLIFADDR:
3195 case SIOCSIFADDRPREF:
3196 case SIOCSIFFLAGS:
3197 case SIOCSIFCAP:
3198 case SIOCSIFMETRIC:
3199 case SIOCZIFDATA:
3200 case SIOCSIFMTU:
3201 case SIOCSIFPHYADDR:
3202 case SIOCDIFPHYADDR:
3203 #ifdef INET6
3204 case SIOCSIFPHYADDR_IN6:
3205 #endif
3206 case SIOCSLIFPHYADDR:
3207 case SIOCADDMULTI:
3208 case SIOCDELMULTI:
3209 case SIOCSIFMEDIA:
3210 case SIOCSDRVSPEC:
3211 case SIOCG80211:
3212 case SIOCS80211:
3213 case SIOCS80211NWID:
3214 case SIOCS80211NWKEY:
3215 case SIOCS80211POWER:
3216 case SIOCS80211BSSID:
3217 case SIOCS80211CHANNEL:
3218 case SIOCSLINKSTR:
3219 if (l != NULL) {
3220 error = kauth_authorize_network(l->l_cred,
3221 KAUTH_NETWORK_INTERFACE,
3222 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3223 (void *)cmd, NULL);
3224 if (error != 0)
3225 goto out;
3226 }
3227 }
3228
3229 oif_flags = ifp->if_flags;
3230
3231 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3232 IFNET_LOCK(ifp);
3233
3234 error = (*ifp->if_ioctl)(ifp, cmd, data);
3235 if (error != ENOTTY)
3236 ;
3237 else if (so->so_proto == NULL)
3238 error = EOPNOTSUPP;
3239 else {
3240 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3241 #ifdef COMPAT_OSOCK
3242 if (vec_compat_ifioctl != NULL)
3243 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3244 else
3245 #endif
3246 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3247 cmd, data, ifp);
3248 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3249 }
3250
3251 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3252 if ((ifp->if_flags & IFF_UP) != 0) {
3253 int s = splsoftnet();
3254 if_up_locked(ifp);
3255 splx(s);
3256 }
3257 }
3258 #ifdef COMPAT_OIFREQ
3259 if (cmd != ocmd)
3260 ifreqn2o(oifr, ifr);
3261 #endif
3262
3263 IFNET_UNLOCK(ifp);
3264 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3265 out:
3266 if_put(ifp, &psref);
3267 curlwp_bindx(bound);
3268 return error;
3269 }
3270
3271 /*
3272 * Return interface configuration
3273 * of system. List may be used
3274 * in later ioctl's (above) to get
3275 * other information.
3276 *
3277 * Each record is a struct ifreq. Before the addition of
3278 * sockaddr_storage, the API rule was that sockaddr flavors that did
3279 * not fit would extend beyond the struct ifreq, with the next struct
3280 * ifreq starting sa_len beyond the struct sockaddr. Because the
3281 * union in struct ifreq includes struct sockaddr_storage, every kind
3282 * of sockaddr must fit. Thus, there are no longer any overlength
3283 * records.
3284 *
3285 * Records are added to the user buffer if they fit, and ifc_len is
3286 * adjusted to the length that was written. Thus, the user is only
3287 * assured of getting the complete list if ifc_len on return is at
3288 * least sizeof(struct ifreq) less than it was on entry.
3289 *
3290 * If the user buffer pointer is NULL, this routine copies no data and
3291 * returns the amount of space that would be needed.
3292 *
3293 * Invariants:
3294 * ifrp points to the next part of the user's buffer to be used. If
3295 * ifrp != NULL, space holds the number of bytes remaining that we may
3296 * write at ifrp. Otherwise, space holds the number of bytes that
3297 * would have been written had there been adequate space.
3298 */
3299 /*ARGSUSED*/
3300 static int
3301 ifconf(u_long cmd, void *data)
3302 {
3303 struct ifconf *ifc = (struct ifconf *)data;
3304 struct ifnet *ifp;
3305 struct ifaddr *ifa;
3306 struct ifreq ifr, *ifrp = NULL;
3307 int space = 0, error = 0;
3308 const int sz = (int)sizeof(struct ifreq);
3309 const bool docopy = ifc->ifc_req != NULL;
3310 int s;
3311 int bound;
3312 struct psref psref;
3313
3314 if (docopy) {
3315 space = ifc->ifc_len;
3316 ifrp = ifc->ifc_req;
3317 }
3318
3319 bound = curlwp_bind();
3320 s = pserialize_read_enter();
3321 IFNET_READER_FOREACH(ifp) {
3322 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3323 pserialize_read_exit(s);
3324
3325 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3326 sizeof(ifr.ifr_name));
3327 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3328 error = ENAMETOOLONG;
3329 goto release_exit;
3330 }
3331 if (IFADDR_READER_EMPTY(ifp)) {
3332 /* Interface with no addresses - send zero sockaddr. */
3333 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3334 if (!docopy) {
3335 space += sz;
3336 goto next;
3337 }
3338 if (space >= sz) {
3339 error = copyout(&ifr, ifrp, sz);
3340 if (error != 0)
3341 goto release_exit;
3342 ifrp++;
3343 space -= sz;
3344 }
3345 }
3346
3347 s = pserialize_read_enter();
3348 IFADDR_READER_FOREACH(ifa, ifp) {
3349 struct sockaddr *sa = ifa->ifa_addr;
3350 /* all sockaddrs must fit in sockaddr_storage */
3351 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3352
3353 if (!docopy) {
3354 space += sz;
3355 continue;
3356 }
3357 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3358 pserialize_read_exit(s);
3359
3360 if (space >= sz) {
3361 error = copyout(&ifr, ifrp, sz);
3362 if (error != 0)
3363 goto release_exit;
3364 ifrp++; space -= sz;
3365 }
3366 s = pserialize_read_enter();
3367 }
3368 pserialize_read_exit(s);
3369
3370 next:
3371 s = pserialize_read_enter();
3372 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3373 }
3374 pserialize_read_exit(s);
3375 curlwp_bindx(bound);
3376
3377 if (docopy) {
3378 KASSERT(0 <= space && space <= ifc->ifc_len);
3379 ifc->ifc_len -= space;
3380 } else {
3381 KASSERT(space >= 0);
3382 ifc->ifc_len = space;
3383 }
3384 return (0);
3385
3386 release_exit:
3387 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3388 curlwp_bindx(bound);
3389 return error;
3390 }
3391
3392 int
3393 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3394 {
3395 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3396 #ifdef COMPAT_OIFREQ
3397 struct ifreq ifrb;
3398 struct oifreq *oifr = NULL;
3399 u_long ocmd = cmd;
3400
3401 if (vec_compat_cvtcmd) {
3402 cmd = (*vec_compat_cvtcmd)(cmd);
3403 if (cmd != ocmd) {
3404 oifr = (struct oifreq *)(void *)ifr;
3405 ifr = &ifrb;
3406 ifreqo2n(oifr, ifr);
3407 len = sizeof(oifr->ifr_addr);
3408 }
3409 }
3410 #endif
3411 if (len < sa->sa_len)
3412 return EFBIG;
3413
3414 memset(&ifr->ifr_addr, 0, len);
3415 sockaddr_copy(&ifr->ifr_addr, len, sa);
3416
3417 #ifdef COMPAT_OIFREQ
3418 if (cmd != ocmd)
3419 ifreqn2o(oifr, ifr);
3420 #endif
3421 return 0;
3422 }
3423
3424 /*
3425 * wrapper function for the drivers which doesn't have if_transmit().
3426 */
3427 static int
3428 if_transmit(struct ifnet *ifp, struct mbuf *m)
3429 {
3430 int s, error;
3431 size_t pktlen = m->m_pkthdr.len;
3432 bool mcast = (m->m_flags & M_MCAST) != 0;
3433
3434 s = splnet();
3435
3436 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3437 if (error != 0) {
3438 /* mbuf is already freed */
3439 goto out;
3440 }
3441
3442 ifp->if_obytes += pktlen;
3443 if (mcast)
3444 ifp->if_omcasts++;
3445
3446 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3447 if_start_lock(ifp);
3448 out:
3449 splx(s);
3450
3451 return error;
3452 }
3453
3454 int
3455 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3456 {
3457 int error;
3458
3459 #ifdef ALTQ
3460 KERNEL_LOCK(1, NULL);
3461 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3462 error = if_transmit(ifp, m);
3463 KERNEL_UNLOCK_ONE(NULL);
3464 } else {
3465 KERNEL_UNLOCK_ONE(NULL);
3466 error = (*ifp->if_transmit)(ifp, m);
3467 /* mbuf is alredy freed */
3468 }
3469 #else /* !ALTQ */
3470 error = (*ifp->if_transmit)(ifp, m);
3471 /* mbuf is alredy freed */
3472 #endif /* !ALTQ */
3473
3474 return error;
3475 }
3476
3477 /*
3478 * Queue message on interface, and start output if interface
3479 * not yet active.
3480 */
3481 int
3482 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3483 {
3484
3485 return if_transmit_lock(ifp, m);
3486 }
3487
3488 /*
3489 * Queue message on interface, possibly using a second fast queue
3490 */
3491 int
3492 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3493 {
3494 int error = 0;
3495
3496 if (ifq != NULL
3497 #ifdef ALTQ
3498 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3499 #endif
3500 ) {
3501 if (IF_QFULL(ifq)) {
3502 IF_DROP(&ifp->if_snd);
3503 m_freem(m);
3504 if (error == 0)
3505 error = ENOBUFS;
3506 } else
3507 IF_ENQUEUE(ifq, m);
3508 } else
3509 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3510 if (error != 0) {
3511 ++ifp->if_oerrors;
3512 return error;
3513 }
3514 return 0;
3515 }
3516
3517 int
3518 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3519 {
3520 int rc;
3521
3522 KASSERT(IFNET_LOCKED(ifp));
3523 if (ifp->if_initaddr != NULL)
3524 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3525 else if (src ||
3526 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3527 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3528
3529 return rc;
3530 }
3531
3532 int
3533 if_do_dad(struct ifnet *ifp)
3534 {
3535 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3536 return 0;
3537
3538 switch (ifp->if_type) {
3539 case IFT_FAITH:
3540 /*
3541 * These interfaces do not have the IFF_LOOPBACK flag,
3542 * but loop packets back. We do not have to do DAD on such
3543 * interfaces. We should even omit it, because loop-backed
3544 * responses would confuse the DAD procedure.
3545 */
3546 return 0;
3547 default:
3548 /*
3549 * Our DAD routine requires the interface up and running.
3550 * However, some interfaces can be up before the RUNNING
3551 * status. Additionaly, users may try to assign addresses
3552 * before the interface becomes up (or running).
3553 * We simply skip DAD in such a case as a work around.
3554 * XXX: we should rather mark "tentative" on such addresses,
3555 * and do DAD after the interface becomes ready.
3556 */
3557 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3558 (IFF_UP|IFF_RUNNING))
3559 return 0;
3560
3561 return 1;
3562 }
3563 }
3564
3565 int
3566 if_flags_set(ifnet_t *ifp, const short flags)
3567 {
3568 int rc;
3569
3570 KASSERT(IFNET_LOCKED(ifp));
3571
3572 if (ifp->if_setflags != NULL)
3573 rc = (*ifp->if_setflags)(ifp, flags);
3574 else {
3575 short cantflags, chgdflags;
3576 struct ifreq ifr;
3577
3578 chgdflags = ifp->if_flags ^ flags;
3579 cantflags = chgdflags & IFF_CANTCHANGE;
3580
3581 if (cantflags != 0)
3582 ifp->if_flags ^= cantflags;
3583
3584 /* Traditionally, we do not call if_ioctl after
3585 * setting/clearing only IFF_PROMISC if the interface
3586 * isn't IFF_UP. Uphold that tradition.
3587 */
3588 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3589 return 0;
3590
3591 memset(&ifr, 0, sizeof(ifr));
3592
3593 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3594 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3595
3596 if (rc != 0 && cantflags != 0)
3597 ifp->if_flags ^= cantflags;
3598 }
3599
3600 return rc;
3601 }
3602
3603 int
3604 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3605 {
3606 int rc;
3607 struct ifreq ifr;
3608
3609 /* There remain some paths that don't hold IFNET_LOCK yet */
3610 #ifdef NET_MPSAFE
3611 /* CARP and MROUTING still don't deal with the lock yet */
3612 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING)
3613 KASSERT(IFNET_LOCKED(ifp));
3614 #endif
3615 #endif
3616 if (ifp->if_mcastop != NULL)
3617 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3618 else {
3619 ifreq_setaddr(cmd, &ifr, sa);
3620 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3621 }
3622
3623 return rc;
3624 }
3625
3626 static void
3627 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3628 struct ifaltq *ifq)
3629 {
3630 const struct sysctlnode *cnode, *rnode;
3631
3632 if (sysctl_createv(clog, 0, NULL, &rnode,
3633 CTLFLAG_PERMANENT,
3634 CTLTYPE_NODE, "interfaces",
3635 SYSCTL_DESCR("Per-interface controls"),
3636 NULL, 0, NULL, 0,
3637 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3638 goto bad;
3639
3640 if (sysctl_createv(clog, 0, &rnode, &rnode,
3641 CTLFLAG_PERMANENT,
3642 CTLTYPE_NODE, ifname,
3643 SYSCTL_DESCR("Interface controls"),
3644 NULL, 0, NULL, 0,
3645 CTL_CREATE, CTL_EOL) != 0)
3646 goto bad;
3647
3648 if (sysctl_createv(clog, 0, &rnode, &rnode,
3649 CTLFLAG_PERMANENT,
3650 CTLTYPE_NODE, "sndq",
3651 SYSCTL_DESCR("Interface output queue controls"),
3652 NULL, 0, NULL, 0,
3653 CTL_CREATE, CTL_EOL) != 0)
3654 goto bad;
3655
3656 if (sysctl_createv(clog, 0, &rnode, &cnode,
3657 CTLFLAG_PERMANENT,
3658 CTLTYPE_INT, "len",
3659 SYSCTL_DESCR("Current output queue length"),
3660 NULL, 0, &ifq->ifq_len, 0,
3661 CTL_CREATE, CTL_EOL) != 0)
3662 goto bad;
3663
3664 if (sysctl_createv(clog, 0, &rnode, &cnode,
3665 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3666 CTLTYPE_INT, "maxlen",
3667 SYSCTL_DESCR("Maximum allowed output queue length"),
3668 NULL, 0, &ifq->ifq_maxlen, 0,
3669 CTL_CREATE, CTL_EOL) != 0)
3670 goto bad;
3671
3672 if (sysctl_createv(clog, 0, &rnode, &cnode,
3673 CTLFLAG_PERMANENT,
3674 CTLTYPE_INT, "drops",
3675 SYSCTL_DESCR("Packets dropped due to full output queue"),
3676 NULL, 0, &ifq->ifq_drops, 0,
3677 CTL_CREATE, CTL_EOL) != 0)
3678 goto bad;
3679
3680 return;
3681 bad:
3682 printf("%s: could not attach sysctl nodes\n", ifname);
3683 return;
3684 }
3685
3686 #if defined(INET) || defined(INET6)
3687
3688 #define SYSCTL_NET_PKTQ(q, cn, c) \
3689 static int \
3690 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3691 { \
3692 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3693 }
3694
3695 #if defined(INET)
3696 static int
3697 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3698 {
3699 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3700 }
3701 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3702 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3703 #endif
3704
3705 #if defined(INET6)
3706 static int
3707 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3708 {
3709 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3710 }
3711 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3712 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3713 #endif
3714
3715 static void
3716 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3717 {
3718 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3719 const char *pfname = NULL, *ipname = NULL;
3720 int ipn = 0, qid = 0;
3721
3722 switch (pf) {
3723 #if defined(INET)
3724 case PF_INET:
3725 len_func = sysctl_net_ip_pktq_items;
3726 maxlen_func = sysctl_net_ip_pktq_maxlen;
3727 drops_func = sysctl_net_ip_pktq_drops;
3728 pfname = "inet", ipn = IPPROTO_IP;
3729 ipname = "ip", qid = IPCTL_IFQ;
3730 break;
3731 #endif
3732 #if defined(INET6)
3733 case PF_INET6:
3734 len_func = sysctl_net_ip6_pktq_items;
3735 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3736 drops_func = sysctl_net_ip6_pktq_drops;
3737 pfname = "inet6", ipn = IPPROTO_IPV6;
3738 ipname = "ip6", qid = IPV6CTL_IFQ;
3739 break;
3740 #endif
3741 default:
3742 KASSERT(false);
3743 }
3744
3745 sysctl_createv(clog, 0, NULL, NULL,
3746 CTLFLAG_PERMANENT,
3747 CTLTYPE_NODE, pfname, NULL,
3748 NULL, 0, NULL, 0,
3749 CTL_NET, pf, CTL_EOL);
3750 sysctl_createv(clog, 0, NULL, NULL,
3751 CTLFLAG_PERMANENT,
3752 CTLTYPE_NODE, ipname, NULL,
3753 NULL, 0, NULL, 0,
3754 CTL_NET, pf, ipn, CTL_EOL);
3755 sysctl_createv(clog, 0, NULL, NULL,
3756 CTLFLAG_PERMANENT,
3757 CTLTYPE_NODE, "ifq",
3758 SYSCTL_DESCR("Protocol input queue controls"),
3759 NULL, 0, NULL, 0,
3760 CTL_NET, pf, ipn, qid, CTL_EOL);
3761
3762 sysctl_createv(clog, 0, NULL, NULL,
3763 CTLFLAG_PERMANENT,
3764 CTLTYPE_INT, "len",
3765 SYSCTL_DESCR("Current input queue length"),
3766 len_func, 0, NULL, 0,
3767 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3768 sysctl_createv(clog, 0, NULL, NULL,
3769 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3770 CTLTYPE_INT, "maxlen",
3771 SYSCTL_DESCR("Maximum allowed input queue length"),
3772 maxlen_func, 0, NULL, 0,
3773 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3774 sysctl_createv(clog, 0, NULL, NULL,
3775 CTLFLAG_PERMANENT,
3776 CTLTYPE_INT, "drops",
3777 SYSCTL_DESCR("Packets dropped due to full input queue"),
3778 drops_func, 0, NULL, 0,
3779 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3780 }
3781 #endif /* INET || INET6 */
3782
3783 static int
3784 if_sdl_sysctl(SYSCTLFN_ARGS)
3785 {
3786 struct ifnet *ifp;
3787 const struct sockaddr_dl *sdl;
3788 struct psref psref;
3789 int error = 0;
3790 int bound;
3791
3792 if (namelen != 1)
3793 return EINVAL;
3794
3795 bound = curlwp_bind();
3796 ifp = if_get_byindex(name[0], &psref);
3797 if (ifp == NULL) {
3798 error = ENODEV;
3799 goto out0;
3800 }
3801
3802 sdl = ifp->if_sadl;
3803 if (sdl == NULL) {
3804 *oldlenp = 0;
3805 goto out1;
3806 }
3807
3808 if (oldp == NULL) {
3809 *oldlenp = sdl->sdl_alen;
3810 goto out1;
3811 }
3812
3813 if (*oldlenp >= sdl->sdl_alen)
3814 *oldlenp = sdl->sdl_alen;
3815 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3816 out1:
3817 if_put(ifp, &psref);
3818 out0:
3819 curlwp_bindx(bound);
3820 return error;
3821 }
3822
3823 static void
3824 if_sysctl_setup(struct sysctllog **clog)
3825 {
3826 const struct sysctlnode *rnode = NULL;
3827
3828 sysctl_createv(clog, 0, NULL, &rnode,
3829 CTLFLAG_PERMANENT,
3830 CTLTYPE_NODE, "sdl",
3831 SYSCTL_DESCR("Get active link-layer address"),
3832 if_sdl_sysctl, 0, NULL, 0,
3833 CTL_NET, CTL_CREATE, CTL_EOL);
3834
3835 #if defined(INET)
3836 sysctl_net_pktq_setup(NULL, PF_INET);
3837 #endif
3838 #ifdef INET6
3839 if (in6_present)
3840 sysctl_net_pktq_setup(NULL, PF_INET6);
3841 #endif
3842 }
3843