if.c revision 1.440 1 /* $NetBSD: if.c,v 1.440 2018/10/30 05:54:42 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.440 2018/10/30 05:54:42 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/if_ether.h>
126 #include <net/if_media.h>
127 #include <net80211/ieee80211.h>
128 #include <net80211/ieee80211_ioctl.h>
129 #include <net/if_types.h>
130 #include <net/route.h>
131 #include <net/netisr.h>
132 #include <sys/module.h>
133 #ifdef NETATALK
134 #include <netatalk/at_extern.h>
135 #include <netatalk/at.h>
136 #endif
137 #include <net/pfil.h>
138 #include <netinet/in.h>
139 #include <netinet/in_var.h>
140 #include <netinet/ip_encap.h>
141 #include <net/bpf.h>
142
143 #ifdef INET6
144 #include <netinet6/in6_var.h>
145 #include <netinet6/nd6.h>
146 #endif
147
148 #include "ether.h"
149 #include "fddi.h"
150 #include "token.h"
151
152 #include "carp.h"
153 #if NCARP > 0
154 #include <netinet/ip_carp.h>
155 #endif
156
157 #include <compat/sys/sockio.h>
158 #include <compat/sys/socket.h>
159
160 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
161 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
162
163 /*
164 * Global list of interfaces.
165 */
166 /* DEPRECATED. Remove it once kvm(3) users disappeared */
167 struct ifnet_head ifnet_list;
168
169 struct pslist_head ifnet_pslist;
170 static ifnet_t ** ifindex2ifnet = NULL;
171 static u_int if_index = 1;
172 static size_t if_indexlim = 0;
173 static uint64_t index_gen;
174 /* Mutex to protect the above objects. */
175 kmutex_t ifnet_mtx __cacheline_aligned;
176 static struct psref_class *ifnet_psref_class __read_mostly;
177 static pserialize_t ifnet_psz;
178
179 static kmutex_t if_clone_mtx;
180
181 struct ifnet *lo0ifp;
182 int ifqmaxlen = IFQ_MAXLEN;
183
184 struct psref_class *ifa_psref_class __read_mostly;
185
186 static int if_delroute_matcher(struct rtentry *, void *);
187
188 static bool if_is_unit(const char *);
189 static struct if_clone *if_clone_lookup(const char *, int *);
190
191 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
192 static int if_cloners_count;
193
194 /* Packet filtering hook for interfaces. */
195 pfil_head_t * if_pfil __read_mostly;
196
197 static kauth_listener_t if_listener;
198
199 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
200 static void if_detach_queues(struct ifnet *, struct ifqueue *);
201 static void sysctl_sndq_setup(struct sysctllog **, const char *,
202 struct ifaltq *);
203 static void if_slowtimo(void *);
204 static void if_attachdomain1(struct ifnet *);
205 static int ifconf(u_long, void *);
206 static int if_transmit(struct ifnet *, struct mbuf *);
207 static int if_clone_create(const char *);
208 static int if_clone_destroy(const char *);
209 static void if_link_state_change_si(void *);
210 static void if_up_locked(struct ifnet *);
211 static void _if_down(struct ifnet *);
212 static void if_down_deactivated(struct ifnet *);
213
214 struct if_percpuq {
215 struct ifnet *ipq_ifp;
216 void *ipq_si;
217 struct percpu *ipq_ifqs; /* struct ifqueue */
218 };
219
220 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
221
222 static void if_percpuq_drops(void *, void *, struct cpu_info *);
223 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
224 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
225 struct if_percpuq *);
226
227 struct if_deferred_start {
228 struct ifnet *ids_ifp;
229 void (*ids_if_start)(struct ifnet *);
230 void *ids_si;
231 };
232
233 static void if_deferred_start_softint(void *);
234 static void if_deferred_start_common(struct ifnet *);
235 static void if_deferred_start_destroy(struct ifnet *);
236
237 #if defined(INET) || defined(INET6)
238 static void sysctl_net_pktq_setup(struct sysctllog **, int);
239 #endif
240
241 static void if_sysctl_setup(struct sysctllog **);
242
243 /* Compatibility vector functions */
244 u_long (*vec_compat_cvtcmd)(u_long) = NULL;
245 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
246 struct lwp *) = NULL;
247 int (*vec_compat_ifconf)(struct lwp *, u_long, void *) = (void *)enosys;
248 int (*vec_compat_ifdatareq)(struct lwp *, u_long, void *) = (void *)enosys;
249
250 static int
251 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
252 void *arg0, void *arg1, void *arg2, void *arg3)
253 {
254 int result;
255 enum kauth_network_req req;
256
257 result = KAUTH_RESULT_DEFER;
258 req = (enum kauth_network_req)arg1;
259
260 if (action != KAUTH_NETWORK_INTERFACE)
261 return result;
262
263 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
264 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
265 result = KAUTH_RESULT_ALLOW;
266
267 return result;
268 }
269
270 /*
271 * Network interface utility routines.
272 *
273 * Routines with ifa_ifwith* names take sockaddr *'s as
274 * parameters.
275 */
276 void
277 ifinit(void)
278 {
279
280 #if (defined(INET) || defined(INET6))
281 encapinit();
282 #endif
283
284 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
285 if_listener_cb, NULL);
286
287 /* interfaces are available, inform socket code */
288 ifioctl = doifioctl;
289 }
290
291 /*
292 * XXX Initialization before configure().
293 * XXX hack to get pfil_add_hook working in autoconf.
294 */
295 void
296 ifinit1(void)
297 {
298
299 #ifdef NET_MPSAFE
300 printf("NET_MPSAFE enabled\n");
301 #endif
302
303 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
304
305 TAILQ_INIT(&ifnet_list);
306 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
307 ifnet_psz = pserialize_create();
308 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
309 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
310 PSLIST_INIT(&ifnet_pslist);
311
312 if_indexlim = 8;
313
314 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
315 KASSERT(if_pfil != NULL);
316
317 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
318 etherinit();
319 #endif
320 }
321
322 /* XXX must be after domaininit() */
323 void
324 ifinit_post(void)
325 {
326
327 if_sysctl_setup(NULL);
328 }
329
330 ifnet_t *
331 if_alloc(u_char type)
332 {
333 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
334 }
335
336 void
337 if_free(ifnet_t *ifp)
338 {
339 kmem_free(ifp, sizeof(ifnet_t));
340 }
341
342 void
343 if_initname(struct ifnet *ifp, const char *name, int unit)
344 {
345 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
346 "%s%d", name, unit);
347 }
348
349 /*
350 * Null routines used while an interface is going away. These routines
351 * just return an error.
352 */
353
354 int
355 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
356 const struct sockaddr *so, const struct rtentry *rt)
357 {
358
359 return ENXIO;
360 }
361
362 void
363 if_nullinput(struct ifnet *ifp, struct mbuf *m)
364 {
365
366 /* Nothing. */
367 }
368
369 void
370 if_nullstart(struct ifnet *ifp)
371 {
372
373 /* Nothing. */
374 }
375
376 int
377 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
378 {
379
380 m_freem(m);
381 return ENXIO;
382 }
383
384 int
385 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
386 {
387
388 return ENXIO;
389 }
390
391 int
392 if_nullinit(struct ifnet *ifp)
393 {
394
395 return ENXIO;
396 }
397
398 void
399 if_nullstop(struct ifnet *ifp, int disable)
400 {
401
402 /* Nothing. */
403 }
404
405 void
406 if_nullslowtimo(struct ifnet *ifp)
407 {
408
409 /* Nothing. */
410 }
411
412 void
413 if_nulldrain(struct ifnet *ifp)
414 {
415
416 /* Nothing. */
417 }
418
419 void
420 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
421 {
422 struct ifaddr *ifa;
423 struct sockaddr_dl *sdl;
424
425 ifp->if_addrlen = addrlen;
426 if_alloc_sadl(ifp);
427 ifa = ifp->if_dl;
428 sdl = satosdl(ifa->ifa_addr);
429
430 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
431 if (factory) {
432 KASSERT(ifp->if_hwdl == NULL);
433 ifp->if_hwdl = ifp->if_dl;
434 ifaref(ifp->if_hwdl);
435 }
436 /* TBD routing socket */
437 }
438
439 struct ifaddr *
440 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
441 {
442 unsigned socksize, ifasize;
443 int addrlen, namelen;
444 struct sockaddr_dl *mask, *sdl;
445 struct ifaddr *ifa;
446
447 namelen = strlen(ifp->if_xname);
448 addrlen = ifp->if_addrlen;
449 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
450 ifasize = sizeof(*ifa) + 2 * socksize;
451 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
452
453 sdl = (struct sockaddr_dl *)(ifa + 1);
454 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
455
456 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
457 ifp->if_xname, namelen, NULL, addrlen);
458 mask->sdl_family = AF_LINK;
459 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
460 memset(&mask->sdl_data[0], 0xff, namelen);
461 ifa->ifa_rtrequest = link_rtrequest;
462 ifa->ifa_addr = (struct sockaddr *)sdl;
463 ifa->ifa_netmask = (struct sockaddr *)mask;
464 ifa_psref_init(ifa);
465
466 *sdlp = sdl;
467
468 return ifa;
469 }
470
471 static void
472 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
473 {
474 const struct sockaddr_dl *sdl;
475
476 ifp->if_dl = ifa;
477 ifaref(ifa);
478 sdl = satosdl(ifa->ifa_addr);
479 ifp->if_sadl = sdl;
480 }
481
482 /*
483 * Allocate the link level name for the specified interface. This
484 * is an attachment helper. It must be called after ifp->if_addrlen
485 * is initialized, which may not be the case when if_attach() is
486 * called.
487 */
488 void
489 if_alloc_sadl(struct ifnet *ifp)
490 {
491 struct ifaddr *ifa;
492 const struct sockaddr_dl *sdl;
493
494 /*
495 * If the interface already has a link name, release it
496 * now. This is useful for interfaces that can change
497 * link types, and thus switch link names often.
498 */
499 if (ifp->if_sadl != NULL)
500 if_free_sadl(ifp, 0);
501
502 ifa = if_dl_create(ifp, &sdl);
503
504 ifa_insert(ifp, ifa);
505 if_sadl_setrefs(ifp, ifa);
506 }
507
508 static void
509 if_deactivate_sadl(struct ifnet *ifp)
510 {
511 struct ifaddr *ifa;
512
513 KASSERT(ifp->if_dl != NULL);
514
515 ifa = ifp->if_dl;
516
517 ifp->if_sadl = NULL;
518
519 ifp->if_dl = NULL;
520 ifafree(ifa);
521 }
522
523 static void
524 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
525 {
526 struct ifaddr *old;
527
528 KASSERT(ifp->if_dl != NULL);
529
530 old = ifp->if_dl;
531
532 ifaref(ifa);
533 /* XXX Update if_dl and if_sadl atomically */
534 ifp->if_dl = ifa;
535 ifp->if_sadl = satosdl(ifa->ifa_addr);
536
537 ifafree(old);
538 }
539
540 void
541 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
542 const struct sockaddr_dl *sdl)
543 {
544 int s, ss;
545 struct ifaddr *ifa;
546 int bound = curlwp_bind();
547
548 KASSERT(ifa_held(ifa0));
549
550 s = splsoftnet();
551
552 if_replace_sadl(ifp, ifa0);
553
554 ss = pserialize_read_enter();
555 IFADDR_READER_FOREACH(ifa, ifp) {
556 struct psref psref;
557 ifa_acquire(ifa, &psref);
558 pserialize_read_exit(ss);
559
560 rtinit(ifa, RTM_LLINFO_UPD, 0);
561
562 ss = pserialize_read_enter();
563 ifa_release(ifa, &psref);
564 }
565 pserialize_read_exit(ss);
566
567 splx(s);
568 curlwp_bindx(bound);
569 }
570
571 /*
572 * Free the link level name for the specified interface. This is
573 * a detach helper. This is called from if_detach().
574 */
575 void
576 if_free_sadl(struct ifnet *ifp, int factory)
577 {
578 struct ifaddr *ifa;
579 int s;
580
581 if (factory && ifp->if_hwdl != NULL) {
582 ifa = ifp->if_hwdl;
583 ifp->if_hwdl = NULL;
584 ifafree(ifa);
585 }
586
587 ifa = ifp->if_dl;
588 if (ifa == NULL) {
589 KASSERT(ifp->if_sadl == NULL);
590 return;
591 }
592
593 KASSERT(ifp->if_sadl != NULL);
594
595 s = splsoftnet();
596 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
597 ifa_remove(ifp, ifa);
598 if_deactivate_sadl(ifp);
599 splx(s);
600 }
601
602 static void
603 if_getindex(ifnet_t *ifp)
604 {
605 bool hitlimit = false;
606
607 ifp->if_index_gen = index_gen++;
608
609 ifp->if_index = if_index;
610 if (ifindex2ifnet == NULL) {
611 if_index++;
612 goto skip;
613 }
614 while (if_byindex(ifp->if_index)) {
615 /*
616 * If we hit USHRT_MAX, we skip back to 0 since
617 * there are a number of places where the value
618 * of if_index or if_index itself is compared
619 * to or stored in an unsigned short. By
620 * jumping back, we won't botch those assignments
621 * or comparisons.
622 */
623 if (++if_index == 0) {
624 if_index = 1;
625 } else if (if_index == USHRT_MAX) {
626 /*
627 * However, if we have to jump back to
628 * zero *twice* without finding an empty
629 * slot in ifindex2ifnet[], then there
630 * there are too many (>65535) interfaces.
631 */
632 if (hitlimit) {
633 panic("too many interfaces");
634 }
635 hitlimit = true;
636 if_index = 1;
637 }
638 ifp->if_index = if_index;
639 }
640 skip:
641 /*
642 * ifindex2ifnet is indexed by if_index. Since if_index will
643 * grow dynamically, it should grow too.
644 */
645 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
646 size_t m, n, oldlim;
647 void *q;
648
649 oldlim = if_indexlim;
650 while (ifp->if_index >= if_indexlim)
651 if_indexlim <<= 1;
652
653 /* grow ifindex2ifnet */
654 m = oldlim * sizeof(struct ifnet *);
655 n = if_indexlim * sizeof(struct ifnet *);
656 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
657 if (ifindex2ifnet != NULL) {
658 memcpy(q, ifindex2ifnet, m);
659 free(ifindex2ifnet, M_IFADDR);
660 }
661 ifindex2ifnet = (struct ifnet **)q;
662 }
663 ifindex2ifnet[ifp->if_index] = ifp;
664 }
665
666 /*
667 * Initialize an interface and assign an index for it.
668 *
669 * It must be called prior to a device specific attach routine
670 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
671 * and be followed by if_register:
672 *
673 * if_initialize(ifp);
674 * ether_ifattach(ifp, enaddr);
675 * if_register(ifp);
676 */
677 int
678 if_initialize(ifnet_t *ifp)
679 {
680 int rv = 0;
681
682 KASSERT(if_indexlim > 0);
683 TAILQ_INIT(&ifp->if_addrlist);
684
685 /*
686 * Link level name is allocated later by a separate call to
687 * if_alloc_sadl().
688 */
689
690 if (ifp->if_snd.ifq_maxlen == 0)
691 ifp->if_snd.ifq_maxlen = ifqmaxlen;
692
693 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
694
695 ifp->if_link_state = LINK_STATE_UNKNOWN;
696 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
697
698 ifp->if_capenable = 0;
699 ifp->if_csum_flags_tx = 0;
700 ifp->if_csum_flags_rx = 0;
701
702 #ifdef ALTQ
703 ifp->if_snd.altq_type = 0;
704 ifp->if_snd.altq_disc = NULL;
705 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
706 ifp->if_snd.altq_tbr = NULL;
707 ifp->if_snd.altq_ifp = ifp;
708 #endif
709
710 IFQ_LOCK_INIT(&ifp->if_snd);
711
712 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
713 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
714
715 IF_AFDATA_LOCK_INIT(ifp);
716
717 if (if_is_link_state_changeable(ifp)) {
718 u_int flags = SOFTINT_NET;
719 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
720 ifp->if_link_si = softint_establish(flags,
721 if_link_state_change_si, ifp);
722 if (ifp->if_link_si == NULL) {
723 rv = ENOMEM;
724 goto fail;
725 }
726 }
727
728 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
729 PSLIST_INIT(&ifp->if_addr_pslist);
730 psref_target_init(&ifp->if_psref, ifnet_psref_class);
731 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
732 LIST_INIT(&ifp->if_multiaddrs);
733
734 IFNET_GLOBAL_LOCK();
735 if_getindex(ifp);
736 IFNET_GLOBAL_UNLOCK();
737
738 return 0;
739
740 fail:
741 IF_AFDATA_LOCK_DESTROY(ifp);
742
743 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
744 (void)pfil_head_destroy(ifp->if_pfil);
745
746 IFQ_LOCK_DESTROY(&ifp->if_snd);
747
748 return rv;
749 }
750
751 /*
752 * Register an interface to the list of "active" interfaces.
753 */
754 void
755 if_register(ifnet_t *ifp)
756 {
757 /*
758 * If the driver has not supplied its own if_ioctl, then
759 * supply the default.
760 */
761 if (ifp->if_ioctl == NULL)
762 ifp->if_ioctl = ifioctl_common;
763
764 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
765
766 if (!STAILQ_EMPTY(&domains))
767 if_attachdomain1(ifp);
768
769 /* Announce the interface. */
770 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
771
772 if (ifp->if_slowtimo != NULL) {
773 ifp->if_slowtimo_ch =
774 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
775 callout_init(ifp->if_slowtimo_ch, 0);
776 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
777 if_slowtimo(ifp);
778 }
779
780 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
781 ifp->if_transmit = if_transmit;
782
783 IFNET_GLOBAL_LOCK();
784 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
785 IFNET_WRITER_INSERT_TAIL(ifp);
786 IFNET_GLOBAL_UNLOCK();
787 }
788
789 /*
790 * The if_percpuq framework
791 *
792 * It allows network device drivers to execute the network stack
793 * in softint (so called softint-based if_input). It utilizes
794 * softint and percpu ifqueue. It doesn't distribute any packets
795 * between CPUs, unlike pktqueue(9).
796 *
797 * Currently we support two options for device drivers to apply the framework:
798 * - Use it implicitly with less changes
799 * - If you use if_attach in driver's _attach function and if_input in
800 * driver's Rx interrupt handler, a packet is queued and a softint handles
801 * the packet implicitly
802 * - Use it explicitly in each driver (recommended)
803 * - You can use if_percpuq_* directly in your driver
804 * - In this case, you need to allocate struct if_percpuq in driver's softc
805 * - See wm(4) as a reference implementation
806 */
807
808 static void
809 if_percpuq_softint(void *arg)
810 {
811 struct if_percpuq *ipq = arg;
812 struct ifnet *ifp = ipq->ipq_ifp;
813 struct mbuf *m;
814
815 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
816 ifp->if_ipackets++;
817 bpf_mtap(ifp, m, BPF_D_IN);
818
819 ifp->_if_input(ifp, m);
820 }
821 }
822
823 static void
824 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
825 {
826 struct ifqueue *const ifq = p;
827
828 memset(ifq, 0, sizeof(*ifq));
829 ifq->ifq_maxlen = IFQ_MAXLEN;
830 }
831
832 struct if_percpuq *
833 if_percpuq_create(struct ifnet *ifp)
834 {
835 struct if_percpuq *ipq;
836 u_int flags = SOFTINT_NET;
837
838 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
839
840 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
841 ipq->ipq_ifp = ifp;
842 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
843 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
844 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
845
846 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
847
848 return ipq;
849 }
850
851 static struct mbuf *
852 if_percpuq_dequeue(struct if_percpuq *ipq)
853 {
854 struct mbuf *m;
855 struct ifqueue *ifq;
856 int s;
857
858 s = splnet();
859 ifq = percpu_getref(ipq->ipq_ifqs);
860 IF_DEQUEUE(ifq, m);
861 percpu_putref(ipq->ipq_ifqs);
862 splx(s);
863
864 return m;
865 }
866
867 static void
868 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
869 {
870 struct ifqueue *const ifq = p;
871
872 IF_PURGE(ifq);
873 }
874
875 void
876 if_percpuq_destroy(struct if_percpuq *ipq)
877 {
878
879 /* if_detach may already destroy it */
880 if (ipq == NULL)
881 return;
882
883 softint_disestablish(ipq->ipq_si);
884 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
885 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
886 kmem_free(ipq, sizeof(*ipq));
887 }
888
889 void
890 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
891 {
892 struct ifqueue *ifq;
893 int s;
894
895 KASSERT(ipq != NULL);
896
897 s = splnet();
898 ifq = percpu_getref(ipq->ipq_ifqs);
899 if (IF_QFULL(ifq)) {
900 IF_DROP(ifq);
901 percpu_putref(ipq->ipq_ifqs);
902 m_freem(m);
903 goto out;
904 }
905 IF_ENQUEUE(ifq, m);
906 percpu_putref(ipq->ipq_ifqs);
907
908 softint_schedule(ipq->ipq_si);
909 out:
910 splx(s);
911 }
912
913 static void
914 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
915 {
916 struct ifqueue *const ifq = p;
917 int *sum = arg;
918
919 *sum += ifq->ifq_drops;
920 }
921
922 static int
923 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
924 {
925 struct sysctlnode node;
926 struct if_percpuq *ipq;
927 int sum = 0;
928 int error;
929
930 node = *rnode;
931 ipq = node.sysctl_data;
932
933 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
934
935 node.sysctl_data = ∑
936 error = sysctl_lookup(SYSCTLFN_CALL(&node));
937 if (error != 0 || newp == NULL)
938 return error;
939
940 return 0;
941 }
942
943 static void
944 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
945 struct if_percpuq *ipq)
946 {
947 const struct sysctlnode *cnode, *rnode;
948
949 if (sysctl_createv(clog, 0, NULL, &rnode,
950 CTLFLAG_PERMANENT,
951 CTLTYPE_NODE, "interfaces",
952 SYSCTL_DESCR("Per-interface controls"),
953 NULL, 0, NULL, 0,
954 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
955 goto bad;
956
957 if (sysctl_createv(clog, 0, &rnode, &rnode,
958 CTLFLAG_PERMANENT,
959 CTLTYPE_NODE, ifname,
960 SYSCTL_DESCR("Interface controls"),
961 NULL, 0, NULL, 0,
962 CTL_CREATE, CTL_EOL) != 0)
963 goto bad;
964
965 if (sysctl_createv(clog, 0, &rnode, &rnode,
966 CTLFLAG_PERMANENT,
967 CTLTYPE_NODE, "rcvq",
968 SYSCTL_DESCR("Interface input queue controls"),
969 NULL, 0, NULL, 0,
970 CTL_CREATE, CTL_EOL) != 0)
971 goto bad;
972
973 #ifdef NOTYET
974 /* XXX Should show each per-CPU queue length? */
975 if (sysctl_createv(clog, 0, &rnode, &rnode,
976 CTLFLAG_PERMANENT,
977 CTLTYPE_INT, "len",
978 SYSCTL_DESCR("Current input queue length"),
979 sysctl_percpuq_len, 0, NULL, 0,
980 CTL_CREATE, CTL_EOL) != 0)
981 goto bad;
982
983 if (sysctl_createv(clog, 0, &rnode, &cnode,
984 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
985 CTLTYPE_INT, "maxlen",
986 SYSCTL_DESCR("Maximum allowed input queue length"),
987 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
988 CTL_CREATE, CTL_EOL) != 0)
989 goto bad;
990 #endif
991
992 if (sysctl_createv(clog, 0, &rnode, &cnode,
993 CTLFLAG_PERMANENT,
994 CTLTYPE_INT, "drops",
995 SYSCTL_DESCR("Total packets dropped due to full input queue"),
996 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
997 CTL_CREATE, CTL_EOL) != 0)
998 goto bad;
999
1000 return;
1001 bad:
1002 printf("%s: could not attach sysctl nodes\n", ifname);
1003 return;
1004 }
1005
1006 /*
1007 * The deferred if_start framework
1008 *
1009 * The common APIs to defer if_start to softint when if_start is requested
1010 * from a device driver running in hardware interrupt context.
1011 */
1012 /*
1013 * Call ifp->if_start (or equivalent) in a dedicated softint for
1014 * deferred if_start.
1015 */
1016 static void
1017 if_deferred_start_softint(void *arg)
1018 {
1019 struct if_deferred_start *ids = arg;
1020 struct ifnet *ifp = ids->ids_ifp;
1021
1022 ids->ids_if_start(ifp);
1023 }
1024
1025 /*
1026 * The default callback function for deferred if_start.
1027 */
1028 static void
1029 if_deferred_start_common(struct ifnet *ifp)
1030 {
1031 int s;
1032
1033 s = splnet();
1034 if_start_lock(ifp);
1035 splx(s);
1036 }
1037
1038 static inline bool
1039 if_snd_is_used(struct ifnet *ifp)
1040 {
1041
1042 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1043 ifp->if_transmit == if_transmit ||
1044 ALTQ_IS_ENABLED(&ifp->if_snd);
1045 }
1046
1047 /*
1048 * Schedule deferred if_start.
1049 */
1050 void
1051 if_schedule_deferred_start(struct ifnet *ifp)
1052 {
1053
1054 KASSERT(ifp->if_deferred_start != NULL);
1055
1056 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1057 return;
1058
1059 softint_schedule(ifp->if_deferred_start->ids_si);
1060 }
1061
1062 /*
1063 * Create an instance of deferred if_start. A driver should call the function
1064 * only if the driver needs deferred if_start. Drivers can setup their own
1065 * deferred if_start function via 2nd argument.
1066 */
1067 void
1068 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1069 {
1070 struct if_deferred_start *ids;
1071 u_int flags = SOFTINT_NET;
1072
1073 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1074
1075 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1076 ids->ids_ifp = ifp;
1077 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1078 if (func != NULL)
1079 ids->ids_if_start = func;
1080 else
1081 ids->ids_if_start = if_deferred_start_common;
1082
1083 ifp->if_deferred_start = ids;
1084 }
1085
1086 static void
1087 if_deferred_start_destroy(struct ifnet *ifp)
1088 {
1089
1090 if (ifp->if_deferred_start == NULL)
1091 return;
1092
1093 softint_disestablish(ifp->if_deferred_start->ids_si);
1094 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1095 ifp->if_deferred_start = NULL;
1096 }
1097
1098 /*
1099 * The common interface input routine that is called by device drivers,
1100 * which should be used only when the driver's rx handler already runs
1101 * in softint.
1102 */
1103 void
1104 if_input(struct ifnet *ifp, struct mbuf *m)
1105 {
1106
1107 KASSERT(ifp->if_percpuq == NULL);
1108 KASSERT(!cpu_intr_p());
1109
1110 ifp->if_ipackets++;
1111 bpf_mtap(ifp, m, BPF_D_IN);
1112
1113 ifp->_if_input(ifp, m);
1114 }
1115
1116 /*
1117 * DEPRECATED. Use if_initialize and if_register instead.
1118 * See the above comment of if_initialize.
1119 *
1120 * Note that it implicitly enables if_percpuq to make drivers easy to
1121 * migrate softint-based if_input without much changes. If you don't
1122 * want to enable it, use if_initialize instead.
1123 */
1124 int
1125 if_attach(ifnet_t *ifp)
1126 {
1127 int rv;
1128
1129 rv = if_initialize(ifp);
1130 if (rv != 0)
1131 return rv;
1132
1133 ifp->if_percpuq = if_percpuq_create(ifp);
1134 if_register(ifp);
1135
1136 return 0;
1137 }
1138
1139 void
1140 if_attachdomain(void)
1141 {
1142 struct ifnet *ifp;
1143 int s;
1144 int bound = curlwp_bind();
1145
1146 s = pserialize_read_enter();
1147 IFNET_READER_FOREACH(ifp) {
1148 struct psref psref;
1149 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1150 pserialize_read_exit(s);
1151 if_attachdomain1(ifp);
1152 s = pserialize_read_enter();
1153 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1154 }
1155 pserialize_read_exit(s);
1156 curlwp_bindx(bound);
1157 }
1158
1159 static void
1160 if_attachdomain1(struct ifnet *ifp)
1161 {
1162 struct domain *dp;
1163 int s;
1164
1165 s = splsoftnet();
1166
1167 /* address family dependent data region */
1168 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1169 DOMAIN_FOREACH(dp) {
1170 if (dp->dom_ifattach != NULL)
1171 ifp->if_afdata[dp->dom_family] =
1172 (*dp->dom_ifattach)(ifp);
1173 }
1174
1175 splx(s);
1176 }
1177
1178 /*
1179 * Deactivate an interface. This points all of the procedure
1180 * handles at error stubs. May be called from interrupt context.
1181 */
1182 void
1183 if_deactivate(struct ifnet *ifp)
1184 {
1185 int s;
1186
1187 s = splsoftnet();
1188
1189 ifp->if_output = if_nulloutput;
1190 ifp->_if_input = if_nullinput;
1191 ifp->if_start = if_nullstart;
1192 ifp->if_transmit = if_nulltransmit;
1193 ifp->if_ioctl = if_nullioctl;
1194 ifp->if_init = if_nullinit;
1195 ifp->if_stop = if_nullstop;
1196 ifp->if_slowtimo = if_nullslowtimo;
1197 ifp->if_drain = if_nulldrain;
1198
1199 /* No more packets may be enqueued. */
1200 ifp->if_snd.ifq_maxlen = 0;
1201
1202 splx(s);
1203 }
1204
1205 bool
1206 if_is_deactivated(const struct ifnet *ifp)
1207 {
1208
1209 return ifp->if_output == if_nulloutput;
1210 }
1211
1212 void
1213 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1214 {
1215 struct ifaddr *ifa, *nifa;
1216 int s;
1217
1218 s = pserialize_read_enter();
1219 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1220 nifa = IFADDR_READER_NEXT(ifa);
1221 if (ifa->ifa_addr->sa_family != family)
1222 continue;
1223 pserialize_read_exit(s);
1224
1225 (*purgeaddr)(ifa);
1226
1227 s = pserialize_read_enter();
1228 }
1229 pserialize_read_exit(s);
1230 }
1231
1232 #ifdef IFAREF_DEBUG
1233 static struct ifaddr **ifa_list;
1234 static int ifa_list_size;
1235
1236 /* Depends on only one if_attach runs at once */
1237 static void
1238 if_build_ifa_list(struct ifnet *ifp)
1239 {
1240 struct ifaddr *ifa;
1241 int i;
1242
1243 KASSERT(ifa_list == NULL);
1244 KASSERT(ifa_list_size == 0);
1245
1246 IFADDR_READER_FOREACH(ifa, ifp)
1247 ifa_list_size++;
1248
1249 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1250 i = 0;
1251 IFADDR_READER_FOREACH(ifa, ifp) {
1252 ifa_list[i++] = ifa;
1253 ifaref(ifa);
1254 }
1255 }
1256
1257 static void
1258 if_check_and_free_ifa_list(struct ifnet *ifp)
1259 {
1260 int i;
1261 struct ifaddr *ifa;
1262
1263 if (ifa_list == NULL)
1264 return;
1265
1266 for (i = 0; i < ifa_list_size; i++) {
1267 char buf[64];
1268
1269 ifa = ifa_list[i];
1270 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1271 if (ifa->ifa_refcnt > 1) {
1272 log(LOG_WARNING,
1273 "ifa(%s) still referenced (refcnt=%d)\n",
1274 buf, ifa->ifa_refcnt - 1);
1275 } else
1276 log(LOG_DEBUG,
1277 "ifa(%s) not referenced (refcnt=%d)\n",
1278 buf, ifa->ifa_refcnt - 1);
1279 ifafree(ifa);
1280 }
1281
1282 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1283 ifa_list = NULL;
1284 ifa_list_size = 0;
1285 }
1286 #endif
1287
1288 /*
1289 * Detach an interface from the list of "active" interfaces,
1290 * freeing any resources as we go along.
1291 *
1292 * NOTE: This routine must be called with a valid thread context,
1293 * as it may block.
1294 */
1295 void
1296 if_detach(struct ifnet *ifp)
1297 {
1298 struct socket so;
1299 struct ifaddr *ifa;
1300 #ifdef IFAREF_DEBUG
1301 struct ifaddr *last_ifa = NULL;
1302 #endif
1303 struct domain *dp;
1304 const struct protosw *pr;
1305 int s, i, family, purged;
1306 uint64_t xc;
1307
1308 #ifdef IFAREF_DEBUG
1309 if_build_ifa_list(ifp);
1310 #endif
1311 /*
1312 * XXX It's kind of lame that we have to have the
1313 * XXX socket structure...
1314 */
1315 memset(&so, 0, sizeof(so));
1316
1317 s = splnet();
1318
1319 sysctl_teardown(&ifp->if_sysctl_log);
1320 IFNET_LOCK(ifp);
1321 if_deactivate(ifp);
1322 IFNET_UNLOCK(ifp);
1323
1324 /*
1325 * Unlink from the list and wait for all readers to leave
1326 * from pserialize read sections. Note that we can't do
1327 * psref_target_destroy here. See below.
1328 */
1329 IFNET_GLOBAL_LOCK();
1330 ifindex2ifnet[ifp->if_index] = NULL;
1331 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1332 IFNET_WRITER_REMOVE(ifp);
1333 pserialize_perform(ifnet_psz);
1334 IFNET_GLOBAL_UNLOCK();
1335
1336 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1337 ifp->if_slowtimo = NULL;
1338 callout_halt(ifp->if_slowtimo_ch, NULL);
1339 callout_destroy(ifp->if_slowtimo_ch);
1340 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1341 }
1342 if_deferred_start_destroy(ifp);
1343
1344 /*
1345 * Do an if_down() to give protocols a chance to do something.
1346 */
1347 if_down_deactivated(ifp);
1348
1349 #ifdef ALTQ
1350 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1351 altq_disable(&ifp->if_snd);
1352 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1353 altq_detach(&ifp->if_snd);
1354 #endif
1355
1356 #if NCARP > 0
1357 /* Remove the interface from any carp group it is a part of. */
1358 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1359 carp_ifdetach(ifp);
1360 #endif
1361
1362 /*
1363 * Rip all the addresses off the interface. This should make
1364 * all of the routes go away.
1365 *
1366 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1367 * from the list, including our "cursor", ifa. For safety,
1368 * and to honor the TAILQ abstraction, I just restart the
1369 * loop after each removal. Note that the loop will exit
1370 * when all of the remaining ifaddrs belong to the AF_LINK
1371 * family. I am counting on the historical fact that at
1372 * least one pr_usrreq in each address domain removes at
1373 * least one ifaddr.
1374 */
1375 again:
1376 /*
1377 * At this point, no other one tries to remove ifa in the list,
1378 * so we don't need to take a lock or psref. Avoid using
1379 * IFADDR_READER_FOREACH to pass over an inspection of contract
1380 * violations of pserialize.
1381 */
1382 IFADDR_WRITER_FOREACH(ifa, ifp) {
1383 family = ifa->ifa_addr->sa_family;
1384 #ifdef IFAREF_DEBUG
1385 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1386 ifa, family, ifa->ifa_refcnt);
1387 if (last_ifa != NULL && ifa == last_ifa)
1388 panic("if_detach: loop detected");
1389 last_ifa = ifa;
1390 #endif
1391 if (family == AF_LINK)
1392 continue;
1393 dp = pffinddomain(family);
1394 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1395 /*
1396 * XXX These PURGEIF calls are redundant with the
1397 * purge-all-families calls below, but are left in for
1398 * now both to make a smaller change, and to avoid
1399 * unplanned interactions with clearing of
1400 * ifp->if_addrlist.
1401 */
1402 purged = 0;
1403 for (pr = dp->dom_protosw;
1404 pr < dp->dom_protoswNPROTOSW; pr++) {
1405 so.so_proto = pr;
1406 if (pr->pr_usrreqs) {
1407 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1408 purged = 1;
1409 }
1410 }
1411 if (purged == 0) {
1412 /*
1413 * XXX What's really the best thing to do
1414 * XXX here? --thorpej (at) NetBSD.org
1415 */
1416 printf("if_detach: WARNING: AF %d not purged\n",
1417 family);
1418 ifa_remove(ifp, ifa);
1419 }
1420 goto again;
1421 }
1422
1423 if_free_sadl(ifp, 1);
1424
1425 restart:
1426 IFADDR_WRITER_FOREACH(ifa, ifp) {
1427 family = ifa->ifa_addr->sa_family;
1428 KASSERT(family == AF_LINK);
1429 ifa_remove(ifp, ifa);
1430 goto restart;
1431 }
1432
1433 /* Delete stray routes from the routing table. */
1434 for (i = 0; i <= AF_MAX; i++)
1435 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1436
1437 DOMAIN_FOREACH(dp) {
1438 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1439 {
1440 void *p = ifp->if_afdata[dp->dom_family];
1441 if (p) {
1442 ifp->if_afdata[dp->dom_family] = NULL;
1443 (*dp->dom_ifdetach)(ifp, p);
1444 }
1445 }
1446
1447 /*
1448 * One would expect multicast memberships (INET and
1449 * INET6) on UDP sockets to be purged by the PURGEIF
1450 * calls above, but if all addresses were removed from
1451 * the interface prior to destruction, the calls will
1452 * not be made (e.g. ppp, for which pppd(8) generally
1453 * removes addresses before destroying the interface).
1454 * Because there is no invariant that multicast
1455 * memberships only exist for interfaces with IPv4
1456 * addresses, we must call PURGEIF regardless of
1457 * addresses. (Protocols which might store ifnet
1458 * pointers are marked with PR_PURGEIF.)
1459 */
1460 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1461 so.so_proto = pr;
1462 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1463 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1464 }
1465 }
1466
1467 /*
1468 * Must be done after the above pr_purgeif because if_psref may be
1469 * still used in pr_purgeif.
1470 */
1471 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1472 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1473
1474 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1475 (void)pfil_head_destroy(ifp->if_pfil);
1476
1477 /* Announce that the interface is gone. */
1478 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1479
1480 IF_AFDATA_LOCK_DESTROY(ifp);
1481
1482 if (if_is_link_state_changeable(ifp)) {
1483 softint_disestablish(ifp->if_link_si);
1484 ifp->if_link_si = NULL;
1485 }
1486
1487 /*
1488 * remove packets that came from ifp, from software interrupt queues.
1489 */
1490 DOMAIN_FOREACH(dp) {
1491 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1492 struct ifqueue *iq = dp->dom_ifqueues[i];
1493 if (iq == NULL)
1494 break;
1495 dp->dom_ifqueues[i] = NULL;
1496 if_detach_queues(ifp, iq);
1497 }
1498 }
1499
1500 /*
1501 * IP queues have to be processed separately: net-queue barrier
1502 * ensures that the packets are dequeued while a cross-call will
1503 * ensure that the interrupts have completed. FIXME: not quite..
1504 */
1505 #ifdef INET
1506 pktq_barrier(ip_pktq);
1507 #endif
1508 #ifdef INET6
1509 if (in6_present)
1510 pktq_barrier(ip6_pktq);
1511 #endif
1512 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1513 xc_wait(xc);
1514
1515 if (ifp->if_percpuq != NULL) {
1516 if_percpuq_destroy(ifp->if_percpuq);
1517 ifp->if_percpuq = NULL;
1518 }
1519
1520 mutex_obj_free(ifp->if_ioctl_lock);
1521 ifp->if_ioctl_lock = NULL;
1522 mutex_obj_free(ifp->if_snd.ifq_lock);
1523
1524 splx(s);
1525
1526 #ifdef IFAREF_DEBUG
1527 if_check_and_free_ifa_list(ifp);
1528 #endif
1529 }
1530
1531 static void
1532 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1533 {
1534 struct mbuf *m, *prev, *next;
1535
1536 prev = NULL;
1537 for (m = q->ifq_head; m != NULL; m = next) {
1538 KASSERT((m->m_flags & M_PKTHDR) != 0);
1539
1540 next = m->m_nextpkt;
1541 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1542 prev = m;
1543 continue;
1544 }
1545
1546 if (prev != NULL)
1547 prev->m_nextpkt = m->m_nextpkt;
1548 else
1549 q->ifq_head = m->m_nextpkt;
1550 if (q->ifq_tail == m)
1551 q->ifq_tail = prev;
1552 q->ifq_len--;
1553
1554 m->m_nextpkt = NULL;
1555 m_freem(m);
1556 IF_DROP(q);
1557 }
1558 }
1559
1560 /*
1561 * Callback for a radix tree walk to delete all references to an
1562 * ifnet.
1563 */
1564 static int
1565 if_delroute_matcher(struct rtentry *rt, void *v)
1566 {
1567 struct ifnet *ifp = (struct ifnet *)v;
1568
1569 if (rt->rt_ifp == ifp)
1570 return 1;
1571 else
1572 return 0;
1573 }
1574
1575 /*
1576 * Create a clone network interface.
1577 */
1578 static int
1579 if_clone_create(const char *name)
1580 {
1581 struct if_clone *ifc;
1582 int unit;
1583 struct ifnet *ifp;
1584 struct psref psref;
1585
1586 KASSERT(mutex_owned(&if_clone_mtx));
1587
1588 ifc = if_clone_lookup(name, &unit);
1589 if (ifc == NULL)
1590 return EINVAL;
1591
1592 ifp = if_get(name, &psref);
1593 if (ifp != NULL) {
1594 if_put(ifp, &psref);
1595 return EEXIST;
1596 }
1597
1598 return (*ifc->ifc_create)(ifc, unit);
1599 }
1600
1601 /*
1602 * Destroy a clone network interface.
1603 */
1604 static int
1605 if_clone_destroy(const char *name)
1606 {
1607 struct if_clone *ifc;
1608 struct ifnet *ifp;
1609 struct psref psref;
1610
1611 KASSERT(mutex_owned(&if_clone_mtx));
1612
1613 ifc = if_clone_lookup(name, NULL);
1614 if (ifc == NULL)
1615 return EINVAL;
1616
1617 if (ifc->ifc_destroy == NULL)
1618 return EOPNOTSUPP;
1619
1620 ifp = if_get(name, &psref);
1621 if (ifp == NULL)
1622 return ENXIO;
1623
1624 /* We have to disable ioctls here */
1625 IFNET_LOCK(ifp);
1626 ifp->if_ioctl = if_nullioctl;
1627 IFNET_UNLOCK(ifp);
1628
1629 /*
1630 * We cannot call ifc_destroy with holding ifp.
1631 * Releasing ifp here is safe thanks to if_clone_mtx.
1632 */
1633 if_put(ifp, &psref);
1634
1635 return (*ifc->ifc_destroy)(ifp);
1636 }
1637
1638 static bool
1639 if_is_unit(const char *name)
1640 {
1641
1642 while(*name != '\0') {
1643 if (*name < '0' || *name > '9')
1644 return false;
1645 name++;
1646 }
1647
1648 return true;
1649 }
1650
1651 /*
1652 * Look up a network interface cloner.
1653 */
1654 static struct if_clone *
1655 if_clone_lookup(const char *name, int *unitp)
1656 {
1657 struct if_clone *ifc;
1658 const char *cp;
1659 char *dp, ifname[IFNAMSIZ + 3];
1660 int unit;
1661
1662 KASSERT(mutex_owned(&if_clone_mtx));
1663
1664 strcpy(ifname, "if_");
1665 /* separate interface name from unit */
1666 /* TODO: search unit number from backward */
1667 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1668 *cp && !if_is_unit(cp);)
1669 *dp++ = *cp++;
1670
1671 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1672 return NULL; /* No name or unit number */
1673 *dp++ = '\0';
1674
1675 again:
1676 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1677 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1678 break;
1679 }
1680
1681 if (ifc == NULL) {
1682 int error;
1683 if (*ifname == '\0')
1684 return NULL;
1685 mutex_exit(&if_clone_mtx);
1686 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1687 mutex_enter(&if_clone_mtx);
1688 if (error)
1689 return NULL;
1690 *ifname = '\0';
1691 goto again;
1692 }
1693
1694 unit = 0;
1695 while (cp - name < IFNAMSIZ && *cp) {
1696 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1697 /* Bogus unit number. */
1698 return NULL;
1699 }
1700 unit = (unit * 10) + (*cp++ - '0');
1701 }
1702
1703 if (unitp != NULL)
1704 *unitp = unit;
1705 return ifc;
1706 }
1707
1708 /*
1709 * Register a network interface cloner.
1710 */
1711 void
1712 if_clone_attach(struct if_clone *ifc)
1713 {
1714
1715 mutex_enter(&if_clone_mtx);
1716 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1717 if_cloners_count++;
1718 mutex_exit(&if_clone_mtx);
1719 }
1720
1721 /*
1722 * Unregister a network interface cloner.
1723 */
1724 void
1725 if_clone_detach(struct if_clone *ifc)
1726 {
1727
1728 mutex_enter(&if_clone_mtx);
1729 LIST_REMOVE(ifc, ifc_list);
1730 if_cloners_count--;
1731 mutex_exit(&if_clone_mtx);
1732 }
1733
1734 /*
1735 * Provide list of interface cloners to userspace.
1736 */
1737 int
1738 if_clone_list(int buf_count, char *buffer, int *total)
1739 {
1740 char outbuf[IFNAMSIZ], *dst;
1741 struct if_clone *ifc;
1742 int count, error = 0;
1743
1744 mutex_enter(&if_clone_mtx);
1745 *total = if_cloners_count;
1746 if ((dst = buffer) == NULL) {
1747 /* Just asking how many there are. */
1748 goto out;
1749 }
1750
1751 if (buf_count < 0) {
1752 error = EINVAL;
1753 goto out;
1754 }
1755
1756 count = (if_cloners_count < buf_count) ?
1757 if_cloners_count : buf_count;
1758
1759 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1760 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1761 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1762 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1763 error = ENAMETOOLONG;
1764 goto out;
1765 }
1766 error = copyout(outbuf, dst, sizeof(outbuf));
1767 if (error != 0)
1768 break;
1769 }
1770
1771 out:
1772 mutex_exit(&if_clone_mtx);
1773 return error;
1774 }
1775
1776 void
1777 ifa_psref_init(struct ifaddr *ifa)
1778 {
1779
1780 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1781 }
1782
1783 void
1784 ifaref(struct ifaddr *ifa)
1785 {
1786
1787 atomic_inc_uint(&ifa->ifa_refcnt);
1788 }
1789
1790 void
1791 ifafree(struct ifaddr *ifa)
1792 {
1793 KASSERT(ifa != NULL);
1794 KASSERT(ifa->ifa_refcnt > 0);
1795
1796 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1797 free(ifa, M_IFADDR);
1798 }
1799 }
1800
1801 bool
1802 ifa_is_destroying(struct ifaddr *ifa)
1803 {
1804
1805 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1806 }
1807
1808 void
1809 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1810 {
1811
1812 ifa->ifa_ifp = ifp;
1813
1814 /*
1815 * Check MP-safety for IFEF_MPSAFE drivers.
1816 * Check !IFF_RUNNING for initialization routines that normally don't
1817 * take IFNET_LOCK but it's safe because there is no competitor.
1818 * XXX there are false positive cases because IFF_RUNNING can be off on
1819 * if_stop.
1820 */
1821 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1822 IFNET_LOCKED(ifp));
1823
1824 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1825 IFADDR_ENTRY_INIT(ifa);
1826 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1827
1828 ifaref(ifa);
1829 }
1830
1831 void
1832 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1833 {
1834
1835 KASSERT(ifa->ifa_ifp == ifp);
1836 /*
1837 * Check MP-safety for IFEF_MPSAFE drivers.
1838 * if_is_deactivated indicates ifa_remove is called form if_detach
1839 * where is safe even if IFNET_LOCK isn't held.
1840 */
1841 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1842
1843 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1844 IFADDR_WRITER_REMOVE(ifa);
1845 #ifdef NET_MPSAFE
1846 IFNET_GLOBAL_LOCK();
1847 pserialize_perform(ifnet_psz);
1848 IFNET_GLOBAL_UNLOCK();
1849 #endif
1850
1851 #ifdef NET_MPSAFE
1852 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1853 #endif
1854 IFADDR_ENTRY_DESTROY(ifa);
1855 ifafree(ifa);
1856 }
1857
1858 void
1859 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1860 {
1861
1862 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1863 }
1864
1865 void
1866 ifa_release(struct ifaddr *ifa, struct psref *psref)
1867 {
1868
1869 if (ifa == NULL)
1870 return;
1871
1872 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1873 }
1874
1875 bool
1876 ifa_held(struct ifaddr *ifa)
1877 {
1878
1879 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1880 }
1881
1882 static inline int
1883 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1884 {
1885 return sockaddr_cmp(sa1, sa2) == 0;
1886 }
1887
1888 /*
1889 * Locate an interface based on a complete address.
1890 */
1891 /*ARGSUSED*/
1892 struct ifaddr *
1893 ifa_ifwithaddr(const struct sockaddr *addr)
1894 {
1895 struct ifnet *ifp;
1896 struct ifaddr *ifa;
1897
1898 IFNET_READER_FOREACH(ifp) {
1899 if (if_is_deactivated(ifp))
1900 continue;
1901 IFADDR_READER_FOREACH(ifa, ifp) {
1902 if (ifa->ifa_addr->sa_family != addr->sa_family)
1903 continue;
1904 if (equal(addr, ifa->ifa_addr))
1905 return ifa;
1906 if ((ifp->if_flags & IFF_BROADCAST) &&
1907 ifa->ifa_broadaddr &&
1908 /* IP6 doesn't have broadcast */
1909 ifa->ifa_broadaddr->sa_len != 0 &&
1910 equal(ifa->ifa_broadaddr, addr))
1911 return ifa;
1912 }
1913 }
1914 return NULL;
1915 }
1916
1917 struct ifaddr *
1918 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1919 {
1920 struct ifaddr *ifa;
1921 int s = pserialize_read_enter();
1922
1923 ifa = ifa_ifwithaddr(addr);
1924 if (ifa != NULL)
1925 ifa_acquire(ifa, psref);
1926 pserialize_read_exit(s);
1927
1928 return ifa;
1929 }
1930
1931 /*
1932 * Locate the point to point interface with a given destination address.
1933 */
1934 /*ARGSUSED*/
1935 struct ifaddr *
1936 ifa_ifwithdstaddr(const struct sockaddr *addr)
1937 {
1938 struct ifnet *ifp;
1939 struct ifaddr *ifa;
1940
1941 IFNET_READER_FOREACH(ifp) {
1942 if (if_is_deactivated(ifp))
1943 continue;
1944 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1945 continue;
1946 IFADDR_READER_FOREACH(ifa, ifp) {
1947 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1948 ifa->ifa_dstaddr == NULL)
1949 continue;
1950 if (equal(addr, ifa->ifa_dstaddr))
1951 return ifa;
1952 }
1953 }
1954
1955 return NULL;
1956 }
1957
1958 struct ifaddr *
1959 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1960 {
1961 struct ifaddr *ifa;
1962 int s;
1963
1964 s = pserialize_read_enter();
1965 ifa = ifa_ifwithdstaddr(addr);
1966 if (ifa != NULL)
1967 ifa_acquire(ifa, psref);
1968 pserialize_read_exit(s);
1969
1970 return ifa;
1971 }
1972
1973 /*
1974 * Find an interface on a specific network. If many, choice
1975 * is most specific found.
1976 */
1977 struct ifaddr *
1978 ifa_ifwithnet(const struct sockaddr *addr)
1979 {
1980 struct ifnet *ifp;
1981 struct ifaddr *ifa, *ifa_maybe = NULL;
1982 const struct sockaddr_dl *sdl;
1983 u_int af = addr->sa_family;
1984 const char *addr_data = addr->sa_data, *cplim;
1985
1986 if (af == AF_LINK) {
1987 sdl = satocsdl(addr);
1988 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1989 ifindex2ifnet[sdl->sdl_index] &&
1990 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1991 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1992 }
1993 }
1994 #ifdef NETATALK
1995 if (af == AF_APPLETALK) {
1996 const struct sockaddr_at *sat, *sat2;
1997 sat = (const struct sockaddr_at *)addr;
1998 IFNET_READER_FOREACH(ifp) {
1999 if (if_is_deactivated(ifp))
2000 continue;
2001 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2002 if (ifa == NULL)
2003 continue;
2004 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2005 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2006 return ifa; /* exact match */
2007 if (ifa_maybe == NULL) {
2008 /* else keep the if with the right range */
2009 ifa_maybe = ifa;
2010 }
2011 }
2012 return ifa_maybe;
2013 }
2014 #endif
2015 IFNET_READER_FOREACH(ifp) {
2016 if (if_is_deactivated(ifp))
2017 continue;
2018 IFADDR_READER_FOREACH(ifa, ifp) {
2019 const char *cp, *cp2, *cp3;
2020
2021 if (ifa->ifa_addr->sa_family != af ||
2022 ifa->ifa_netmask == NULL)
2023 next: continue;
2024 cp = addr_data;
2025 cp2 = ifa->ifa_addr->sa_data;
2026 cp3 = ifa->ifa_netmask->sa_data;
2027 cplim = (const char *)ifa->ifa_netmask +
2028 ifa->ifa_netmask->sa_len;
2029 while (cp3 < cplim) {
2030 if ((*cp++ ^ *cp2++) & *cp3++) {
2031 /* want to continue for() loop */
2032 goto next;
2033 }
2034 }
2035 if (ifa_maybe == NULL ||
2036 rt_refines(ifa->ifa_netmask,
2037 ifa_maybe->ifa_netmask))
2038 ifa_maybe = ifa;
2039 }
2040 }
2041 return ifa_maybe;
2042 }
2043
2044 struct ifaddr *
2045 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2046 {
2047 struct ifaddr *ifa;
2048 int s;
2049
2050 s = pserialize_read_enter();
2051 ifa = ifa_ifwithnet(addr);
2052 if (ifa != NULL)
2053 ifa_acquire(ifa, psref);
2054 pserialize_read_exit(s);
2055
2056 return ifa;
2057 }
2058
2059 /*
2060 * Find the interface of the addresss.
2061 */
2062 struct ifaddr *
2063 ifa_ifwithladdr(const struct sockaddr *addr)
2064 {
2065 struct ifaddr *ia;
2066
2067 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2068 (ia = ifa_ifwithnet(addr)))
2069 return ia;
2070 return NULL;
2071 }
2072
2073 struct ifaddr *
2074 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2075 {
2076 struct ifaddr *ifa;
2077 int s;
2078
2079 s = pserialize_read_enter();
2080 ifa = ifa_ifwithladdr(addr);
2081 if (ifa != NULL)
2082 ifa_acquire(ifa, psref);
2083 pserialize_read_exit(s);
2084
2085 return ifa;
2086 }
2087
2088 /*
2089 * Find an interface using a specific address family
2090 */
2091 struct ifaddr *
2092 ifa_ifwithaf(int af)
2093 {
2094 struct ifnet *ifp;
2095 struct ifaddr *ifa = NULL;
2096 int s;
2097
2098 s = pserialize_read_enter();
2099 IFNET_READER_FOREACH(ifp) {
2100 if (if_is_deactivated(ifp))
2101 continue;
2102 IFADDR_READER_FOREACH(ifa, ifp) {
2103 if (ifa->ifa_addr->sa_family == af)
2104 goto out;
2105 }
2106 }
2107 out:
2108 pserialize_read_exit(s);
2109 return ifa;
2110 }
2111
2112 /*
2113 * Find an interface address specific to an interface best matching
2114 * a given address.
2115 */
2116 struct ifaddr *
2117 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2118 {
2119 struct ifaddr *ifa;
2120 const char *cp, *cp2, *cp3;
2121 const char *cplim;
2122 struct ifaddr *ifa_maybe = 0;
2123 u_int af = addr->sa_family;
2124
2125 if (if_is_deactivated(ifp))
2126 return NULL;
2127
2128 if (af >= AF_MAX)
2129 return NULL;
2130
2131 IFADDR_READER_FOREACH(ifa, ifp) {
2132 if (ifa->ifa_addr->sa_family != af)
2133 continue;
2134 ifa_maybe = ifa;
2135 if (ifa->ifa_netmask == NULL) {
2136 if (equal(addr, ifa->ifa_addr) ||
2137 (ifa->ifa_dstaddr &&
2138 equal(addr, ifa->ifa_dstaddr)))
2139 return ifa;
2140 continue;
2141 }
2142 cp = addr->sa_data;
2143 cp2 = ifa->ifa_addr->sa_data;
2144 cp3 = ifa->ifa_netmask->sa_data;
2145 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2146 for (; cp3 < cplim; cp3++) {
2147 if ((*cp++ ^ *cp2++) & *cp3)
2148 break;
2149 }
2150 if (cp3 == cplim)
2151 return ifa;
2152 }
2153 return ifa_maybe;
2154 }
2155
2156 struct ifaddr *
2157 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2158 struct psref *psref)
2159 {
2160 struct ifaddr *ifa;
2161 int s;
2162
2163 s = pserialize_read_enter();
2164 ifa = ifaof_ifpforaddr(addr, ifp);
2165 if (ifa != NULL)
2166 ifa_acquire(ifa, psref);
2167 pserialize_read_exit(s);
2168
2169 return ifa;
2170 }
2171
2172 /*
2173 * Default action when installing a route with a Link Level gateway.
2174 * Lookup an appropriate real ifa to point to.
2175 * This should be moved to /sys/net/link.c eventually.
2176 */
2177 void
2178 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2179 {
2180 struct ifaddr *ifa;
2181 const struct sockaddr *dst;
2182 struct ifnet *ifp;
2183 struct psref psref;
2184
2185 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2186 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL ||
2187 ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2188 return;
2189 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2190 rt_replace_ifa(rt, ifa);
2191 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2192 ifa->ifa_rtrequest(cmd, rt, info);
2193 ifa_release(ifa, &psref);
2194 }
2195 }
2196
2197 /*
2198 * bitmask macros to manage a densely packed link_state change queue.
2199 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2200 * LINK_STATE_UP(2) we need 2 bits for each state change.
2201 * As a state change to store is 0, treat all bits set as an unset item.
2202 */
2203 #define LQ_ITEM_BITS 2
2204 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2205 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2206 #define LINK_STATE_UNSET LQ_ITEM_MASK
2207 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2208 #define LQ_STORE(q, i, v) \
2209 do { \
2210 (q) &= ~LQ_MASK((i)); \
2211 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2212 } while (0 /* CONSTCOND */)
2213 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2214 #define LQ_POP(q, v) \
2215 do { \
2216 (v) = LQ_ITEM((q), 0); \
2217 (q) >>= LQ_ITEM_BITS; \
2218 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2219 } while (0 /* CONSTCOND */)
2220 #define LQ_PUSH(q, v) \
2221 do { \
2222 (q) >>= LQ_ITEM_BITS; \
2223 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2224 } while (0 /* CONSTCOND */)
2225 #define LQ_FIND_UNSET(q, i) \
2226 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2227 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2228 break; \
2229 }
2230
2231 /*
2232 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2233 * for each ifnet. It doesn't matter because:
2234 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2235 * ifq_lock don't happen
2236 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2237 * because if_snd, if_link_state_change and if_link_state_change_softint
2238 * are all called with KERNEL_LOCK
2239 */
2240 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2241 mutex_enter((ifp)->if_snd.ifq_lock)
2242 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2243 mutex_exit((ifp)->if_snd.ifq_lock)
2244
2245 /*
2246 * Handle a change in the interface link state and
2247 * queue notifications.
2248 */
2249 void
2250 if_link_state_change(struct ifnet *ifp, int link_state)
2251 {
2252 int idx;
2253
2254 KASSERTMSG(if_is_link_state_changeable(ifp),
2255 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2256 ifp->if_xname, ifp->if_extflags);
2257
2258 /* Ensure change is to a valid state */
2259 switch (link_state) {
2260 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2261 case LINK_STATE_DOWN: /* FALLTHROUGH */
2262 case LINK_STATE_UP:
2263 break;
2264 default:
2265 #ifdef DEBUG
2266 printf("%s: invalid link state %d\n",
2267 ifp->if_xname, link_state);
2268 #endif
2269 return;
2270 }
2271
2272 IF_LINK_STATE_CHANGE_LOCK(ifp);
2273
2274 /* Find the last unset event in the queue. */
2275 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2276
2277 /*
2278 * Ensure link_state doesn't match the last event in the queue.
2279 * ifp->if_link_state is not checked and set here because
2280 * that would present an inconsistent picture to the system.
2281 */
2282 if (idx != 0 &&
2283 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2284 goto out;
2285
2286 /* Handle queue overflow. */
2287 if (idx == LQ_MAX(ifp->if_link_queue)) {
2288 uint8_t lost;
2289
2290 /*
2291 * The DOWN state must be protected from being pushed off
2292 * the queue to ensure that userland will always be
2293 * in a sane state.
2294 * Because DOWN is protected, there is no need to protect
2295 * UNKNOWN.
2296 * It should be invalid to change from any other state to
2297 * UNKNOWN anyway ...
2298 */
2299 lost = LQ_ITEM(ifp->if_link_queue, 0);
2300 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2301 if (lost == LINK_STATE_DOWN) {
2302 lost = LQ_ITEM(ifp->if_link_queue, 0);
2303 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2304 }
2305 printf("%s: lost link state change %s\n",
2306 ifp->if_xname,
2307 lost == LINK_STATE_UP ? "UP" :
2308 lost == LINK_STATE_DOWN ? "DOWN" :
2309 "UNKNOWN");
2310 } else
2311 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2312
2313 softint_schedule(ifp->if_link_si);
2314
2315 out:
2316 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2317 }
2318
2319 /*
2320 * Handle interface link state change notifications.
2321 */
2322 void
2323 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2324 {
2325 struct domain *dp;
2326 int s = splnet();
2327 bool notify;
2328
2329 KASSERT(!cpu_intr_p());
2330
2331 IF_LINK_STATE_CHANGE_LOCK(ifp);
2332
2333 /* Ensure the change is still valid. */
2334 if (ifp->if_link_state == link_state) {
2335 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2336 splx(s);
2337 return;
2338 }
2339
2340 #ifdef DEBUG
2341 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2342 link_state == LINK_STATE_UP ? "UP" :
2343 link_state == LINK_STATE_DOWN ? "DOWN" :
2344 "UNKNOWN",
2345 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2346 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2347 "UNKNOWN");
2348 #endif
2349
2350 /*
2351 * When going from UNKNOWN to UP, we need to mark existing
2352 * addresses as tentative and restart DAD as we may have
2353 * erroneously not found a duplicate.
2354 *
2355 * This needs to happen before rt_ifmsg to avoid a race where
2356 * listeners would have an address and expect it to work right
2357 * away.
2358 */
2359 notify = (link_state == LINK_STATE_UP &&
2360 ifp->if_link_state == LINK_STATE_UNKNOWN);
2361 ifp->if_link_state = link_state;
2362 /* The following routines may sleep so release the spin mutex */
2363 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2364
2365 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2366 if (notify) {
2367 DOMAIN_FOREACH(dp) {
2368 if (dp->dom_if_link_state_change != NULL)
2369 dp->dom_if_link_state_change(ifp,
2370 LINK_STATE_DOWN);
2371 }
2372 }
2373
2374 /* Notify that the link state has changed. */
2375 rt_ifmsg(ifp);
2376
2377 #if NCARP > 0
2378 if (ifp->if_carp)
2379 carp_carpdev_state(ifp);
2380 #endif
2381
2382 DOMAIN_FOREACH(dp) {
2383 if (dp->dom_if_link_state_change != NULL)
2384 dp->dom_if_link_state_change(ifp, link_state);
2385 }
2386 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2387 splx(s);
2388 }
2389
2390 /*
2391 * Process the interface link state change queue.
2392 */
2393 static void
2394 if_link_state_change_si(void *arg)
2395 {
2396 struct ifnet *ifp = arg;
2397 int s;
2398 uint8_t state;
2399 bool schedule;
2400
2401 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2402 s = splnet();
2403
2404 /* Pop a link state change from the queue and process it. */
2405 IF_LINK_STATE_CHANGE_LOCK(ifp);
2406 LQ_POP(ifp->if_link_queue, state);
2407 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2408
2409 if_link_state_change_softint(ifp, state);
2410
2411 /* If there is a link state change to come, schedule it. */
2412 IF_LINK_STATE_CHANGE_LOCK(ifp);
2413 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2414 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2415 if (schedule)
2416 softint_schedule(ifp->if_link_si);
2417
2418 splx(s);
2419 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2420 }
2421
2422 /*
2423 * Default action when installing a local route on a point-to-point
2424 * interface.
2425 */
2426 void
2427 p2p_rtrequest(int req, struct rtentry *rt,
2428 __unused const struct rt_addrinfo *info)
2429 {
2430 struct ifnet *ifp = rt->rt_ifp;
2431 struct ifaddr *ifa, *lo0ifa;
2432 int s = pserialize_read_enter();
2433
2434 switch (req) {
2435 case RTM_ADD:
2436 if ((rt->rt_flags & RTF_LOCAL) == 0)
2437 break;
2438
2439 rt->rt_ifp = lo0ifp;
2440
2441 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2442 break;
2443
2444 IFADDR_READER_FOREACH(ifa, ifp) {
2445 if (equal(rt_getkey(rt), ifa->ifa_addr))
2446 break;
2447 }
2448 if (ifa == NULL)
2449 break;
2450
2451 /*
2452 * Ensure lo0 has an address of the same family.
2453 */
2454 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2455 if (lo0ifa->ifa_addr->sa_family ==
2456 ifa->ifa_addr->sa_family)
2457 break;
2458 }
2459 if (lo0ifa == NULL)
2460 break;
2461
2462 /*
2463 * Make sure to set rt->rt_ifa to the interface
2464 * address we are using, otherwise we will have trouble
2465 * with source address selection.
2466 */
2467 if (ifa != rt->rt_ifa)
2468 rt_replace_ifa(rt, ifa);
2469 break;
2470 case RTM_DELETE:
2471 default:
2472 break;
2473 }
2474 pserialize_read_exit(s);
2475 }
2476
2477 static void
2478 _if_down(struct ifnet *ifp)
2479 {
2480 struct ifaddr *ifa;
2481 struct domain *dp;
2482 int s, bound;
2483 struct psref psref;
2484
2485 ifp->if_flags &= ~IFF_UP;
2486 nanotime(&ifp->if_lastchange);
2487
2488 bound = curlwp_bind();
2489 s = pserialize_read_enter();
2490 IFADDR_READER_FOREACH(ifa, ifp) {
2491 ifa_acquire(ifa, &psref);
2492 pserialize_read_exit(s);
2493
2494 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2495
2496 s = pserialize_read_enter();
2497 ifa_release(ifa, &psref);
2498 }
2499 pserialize_read_exit(s);
2500 curlwp_bindx(bound);
2501
2502 IFQ_PURGE(&ifp->if_snd);
2503 #if NCARP > 0
2504 if (ifp->if_carp)
2505 carp_carpdev_state(ifp);
2506 #endif
2507 rt_ifmsg(ifp);
2508 DOMAIN_FOREACH(dp) {
2509 if (dp->dom_if_down)
2510 dp->dom_if_down(ifp);
2511 }
2512 }
2513
2514 static void
2515 if_down_deactivated(struct ifnet *ifp)
2516 {
2517
2518 KASSERT(if_is_deactivated(ifp));
2519 _if_down(ifp);
2520 }
2521
2522 void
2523 if_down_locked(struct ifnet *ifp)
2524 {
2525
2526 KASSERT(IFNET_LOCKED(ifp));
2527 _if_down(ifp);
2528 }
2529
2530 /*
2531 * Mark an interface down and notify protocols of
2532 * the transition.
2533 * NOTE: must be called at splsoftnet or equivalent.
2534 */
2535 void
2536 if_down(struct ifnet *ifp)
2537 {
2538
2539 IFNET_LOCK(ifp);
2540 if_down_locked(ifp);
2541 IFNET_UNLOCK(ifp);
2542 }
2543
2544 /*
2545 * Must be called with holding if_ioctl_lock.
2546 */
2547 static void
2548 if_up_locked(struct ifnet *ifp)
2549 {
2550 #ifdef notyet
2551 struct ifaddr *ifa;
2552 #endif
2553 struct domain *dp;
2554
2555 KASSERT(IFNET_LOCKED(ifp));
2556
2557 KASSERT(!if_is_deactivated(ifp));
2558 ifp->if_flags |= IFF_UP;
2559 nanotime(&ifp->if_lastchange);
2560 #ifdef notyet
2561 /* this has no effect on IP, and will kill all ISO connections XXX */
2562 IFADDR_READER_FOREACH(ifa, ifp)
2563 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2564 #endif
2565 #if NCARP > 0
2566 if (ifp->if_carp)
2567 carp_carpdev_state(ifp);
2568 #endif
2569 rt_ifmsg(ifp);
2570 DOMAIN_FOREACH(dp) {
2571 if (dp->dom_if_up)
2572 dp->dom_if_up(ifp);
2573 }
2574 }
2575
2576 /*
2577 * Handle interface slowtimo timer routine. Called
2578 * from softclock, we decrement timer (if set) and
2579 * call the appropriate interface routine on expiration.
2580 */
2581 static void
2582 if_slowtimo(void *arg)
2583 {
2584 void (*slowtimo)(struct ifnet *);
2585 struct ifnet *ifp = arg;
2586 int s;
2587
2588 slowtimo = ifp->if_slowtimo;
2589 if (__predict_false(slowtimo == NULL))
2590 return;
2591
2592 s = splnet();
2593 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2594 (*slowtimo)(ifp);
2595
2596 splx(s);
2597
2598 if (__predict_true(ifp->if_slowtimo != NULL))
2599 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2600 }
2601
2602 /*
2603 * Mark an interface up and notify protocols of
2604 * the transition.
2605 * NOTE: must be called at splsoftnet or equivalent.
2606 */
2607 void
2608 if_up(struct ifnet *ifp)
2609 {
2610
2611 IFNET_LOCK(ifp);
2612 if_up_locked(ifp);
2613 IFNET_UNLOCK(ifp);
2614 }
2615
2616 /*
2617 * Set/clear promiscuous mode on interface ifp based on the truth value
2618 * of pswitch. The calls are reference counted so that only the first
2619 * "on" request actually has an effect, as does the final "off" request.
2620 * Results are undefined if the "off" and "on" requests are not matched.
2621 */
2622 int
2623 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2624 {
2625 int pcount, ret = 0;
2626 short nflags;
2627
2628 KASSERT(IFNET_LOCKED(ifp));
2629
2630 pcount = ifp->if_pcount;
2631 if (pswitch) {
2632 /*
2633 * Allow the device to be "placed" into promiscuous
2634 * mode even if it is not configured up. It will
2635 * consult IFF_PROMISC when it is brought up.
2636 */
2637 if (ifp->if_pcount++ != 0)
2638 goto out;
2639 nflags = ifp->if_flags | IFF_PROMISC;
2640 } else {
2641 if (--ifp->if_pcount > 0)
2642 goto out;
2643 nflags = ifp->if_flags & ~IFF_PROMISC;
2644 }
2645 ret = if_flags_set(ifp, nflags);
2646 /* Restore interface state if not successful. */
2647 if (ret != 0) {
2648 ifp->if_pcount = pcount;
2649 }
2650 out:
2651 return ret;
2652 }
2653
2654 int
2655 ifpromisc(struct ifnet *ifp, int pswitch)
2656 {
2657 int e;
2658
2659 IFNET_LOCK(ifp);
2660 e = ifpromisc_locked(ifp, pswitch);
2661 IFNET_UNLOCK(ifp);
2662
2663 return e;
2664 }
2665
2666 /*
2667 * Map interface name to
2668 * interface structure pointer.
2669 */
2670 struct ifnet *
2671 ifunit(const char *name)
2672 {
2673 struct ifnet *ifp;
2674 const char *cp = name;
2675 u_int unit = 0;
2676 u_int i;
2677 int s;
2678
2679 /*
2680 * If the entire name is a number, treat it as an ifindex.
2681 */
2682 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2683 unit = unit * 10 + (*cp - '0');
2684 }
2685
2686 /*
2687 * If the number took all of the name, then it's a valid ifindex.
2688 */
2689 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2690 return if_byindex(unit);
2691
2692 ifp = NULL;
2693 s = pserialize_read_enter();
2694 IFNET_READER_FOREACH(ifp) {
2695 if (if_is_deactivated(ifp))
2696 continue;
2697 if (strcmp(ifp->if_xname, name) == 0)
2698 goto out;
2699 }
2700 out:
2701 pserialize_read_exit(s);
2702 return ifp;
2703 }
2704
2705 /*
2706 * Get a reference of an ifnet object by an interface name.
2707 * The returned reference is protected by psref(9). The caller
2708 * must release a returned reference by if_put after use.
2709 */
2710 struct ifnet *
2711 if_get(const char *name, struct psref *psref)
2712 {
2713 struct ifnet *ifp;
2714 const char *cp = name;
2715 u_int unit = 0;
2716 u_int i;
2717 int s;
2718
2719 /*
2720 * If the entire name is a number, treat it as an ifindex.
2721 */
2722 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2723 unit = unit * 10 + (*cp - '0');
2724 }
2725
2726 /*
2727 * If the number took all of the name, then it's a valid ifindex.
2728 */
2729 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2730 return if_get_byindex(unit, psref);
2731
2732 ifp = NULL;
2733 s = pserialize_read_enter();
2734 IFNET_READER_FOREACH(ifp) {
2735 if (if_is_deactivated(ifp))
2736 continue;
2737 if (strcmp(ifp->if_xname, name) == 0) {
2738 psref_acquire(psref, &ifp->if_psref,
2739 ifnet_psref_class);
2740 goto out;
2741 }
2742 }
2743 out:
2744 pserialize_read_exit(s);
2745 return ifp;
2746 }
2747
2748 /*
2749 * Release a reference of an ifnet object given by if_get, if_get_byindex
2750 * or if_get_bylla.
2751 */
2752 void
2753 if_put(const struct ifnet *ifp, struct psref *psref)
2754 {
2755
2756 if (ifp == NULL)
2757 return;
2758
2759 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2760 }
2761
2762 /*
2763 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2764 * should be used.
2765 */
2766 ifnet_t *
2767 _if_byindex(u_int idx)
2768 {
2769
2770 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2771 }
2772
2773 /*
2774 * Return ifp having idx. Return NULL if not found or the found ifp is
2775 * already deactivated.
2776 */
2777 ifnet_t *
2778 if_byindex(u_int idx)
2779 {
2780 ifnet_t *ifp;
2781
2782 ifp = _if_byindex(idx);
2783 if (ifp != NULL && if_is_deactivated(ifp))
2784 ifp = NULL;
2785 return ifp;
2786 }
2787
2788 /*
2789 * Get a reference of an ifnet object by an interface index.
2790 * The returned reference is protected by psref(9). The caller
2791 * must release a returned reference by if_put after use.
2792 */
2793 ifnet_t *
2794 if_get_byindex(u_int idx, struct psref *psref)
2795 {
2796 ifnet_t *ifp;
2797 int s;
2798
2799 s = pserialize_read_enter();
2800 ifp = if_byindex(idx);
2801 if (__predict_true(ifp != NULL))
2802 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2803 pserialize_read_exit(s);
2804
2805 return ifp;
2806 }
2807
2808 ifnet_t *
2809 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2810 {
2811 ifnet_t *ifp;
2812 int s;
2813
2814 s = pserialize_read_enter();
2815 IFNET_READER_FOREACH(ifp) {
2816 if (if_is_deactivated(ifp))
2817 continue;
2818 if (ifp->if_addrlen != lla_len)
2819 continue;
2820 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2821 psref_acquire(psref, &ifp->if_psref,
2822 ifnet_psref_class);
2823 break;
2824 }
2825 }
2826 pserialize_read_exit(s);
2827
2828 return ifp;
2829 }
2830
2831 /*
2832 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2833 * for example using pserialize or the ifp is already held or some other
2834 * object is held which guarantes the ifp to not be freed indirectly.
2835 */
2836 void
2837 if_acquire(struct ifnet *ifp, struct psref *psref)
2838 {
2839
2840 KASSERT(ifp->if_index != 0);
2841 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2842 }
2843
2844 bool
2845 if_held(struct ifnet *ifp)
2846 {
2847
2848 return psref_held(&ifp->if_psref, ifnet_psref_class);
2849 }
2850
2851 /*
2852 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2853 * Check the tunnel nesting count.
2854 * Return > 0, if tunnel nesting count is more than limit.
2855 * Return 0, if tunnel nesting count is equal or less than limit.
2856 */
2857 int
2858 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2859 {
2860 struct m_tag *mtag;
2861 int *count;
2862
2863 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
2864 if (mtag != NULL) {
2865 count = (int *)(mtag + 1);
2866 if (++(*count) > limit) {
2867 log(LOG_NOTICE,
2868 "%s: recursively called too many times(%d)\n",
2869 ifp->if_xname, *count);
2870 return EIO;
2871 }
2872 } else {
2873 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2874 M_NOWAIT);
2875 if (mtag != NULL) {
2876 m_tag_prepend(m, mtag);
2877 count = (int *)(mtag + 1);
2878 *count = 0;
2879 } else {
2880 log(LOG_DEBUG,
2881 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2882 ifp->if_xname);
2883 }
2884 }
2885
2886 return 0;
2887 }
2888
2889 /* common */
2890 int
2891 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2892 {
2893 int s;
2894 struct ifreq *ifr;
2895 struct ifcapreq *ifcr;
2896 struct ifdatareq *ifdr;
2897
2898 switch (cmd) {
2899 case SIOCSIFCAP:
2900 ifcr = data;
2901 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2902 return EINVAL;
2903
2904 if (ifcr->ifcr_capenable == ifp->if_capenable)
2905 return 0;
2906
2907 ifp->if_capenable = ifcr->ifcr_capenable;
2908
2909 /* Pre-compute the checksum flags mask. */
2910 ifp->if_csum_flags_tx = 0;
2911 ifp->if_csum_flags_rx = 0;
2912 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2913 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2914 }
2915 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2916 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2917 }
2918
2919 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2920 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2921 }
2922 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2923 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2924 }
2925
2926 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2927 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2928 }
2929 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2930 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2931 }
2932
2933 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2934 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2935 }
2936 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2937 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2938 }
2939
2940 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2941 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2942 }
2943 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2944 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2945 }
2946 if (ifp->if_flags & IFF_UP)
2947 return ENETRESET;
2948 return 0;
2949 case SIOCSIFFLAGS:
2950 ifr = data;
2951 /*
2952 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2953 * and if_down aren't MP-safe yet, so we must hold the lock.
2954 */
2955 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2956 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2957 s = splsoftnet();
2958 if_down_locked(ifp);
2959 splx(s);
2960 }
2961 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2962 s = splsoftnet();
2963 if_up_locked(ifp);
2964 splx(s);
2965 }
2966 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2967 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2968 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2969 break;
2970 case SIOCGIFFLAGS:
2971 ifr = data;
2972 ifr->ifr_flags = ifp->if_flags;
2973 break;
2974
2975 case SIOCGIFMETRIC:
2976 ifr = data;
2977 ifr->ifr_metric = ifp->if_metric;
2978 break;
2979
2980 case SIOCGIFMTU:
2981 ifr = data;
2982 ifr->ifr_mtu = ifp->if_mtu;
2983 break;
2984
2985 case SIOCGIFDLT:
2986 ifr = data;
2987 ifr->ifr_dlt = ifp->if_dlt;
2988 break;
2989
2990 case SIOCGIFCAP:
2991 ifcr = data;
2992 ifcr->ifcr_capabilities = ifp->if_capabilities;
2993 ifcr->ifcr_capenable = ifp->if_capenable;
2994 break;
2995
2996 case SIOCSIFMETRIC:
2997 ifr = data;
2998 ifp->if_metric = ifr->ifr_metric;
2999 break;
3000
3001 case SIOCGIFDATA:
3002 ifdr = data;
3003 ifdr->ifdr_data = ifp->if_data;
3004 break;
3005
3006 case SIOCGIFINDEX:
3007 ifr = data;
3008 ifr->ifr_index = ifp->if_index;
3009 break;
3010
3011 case SIOCZIFDATA:
3012 ifdr = data;
3013 ifdr->ifdr_data = ifp->if_data;
3014 /*
3015 * Assumes that the volatile counters that can be
3016 * zero'ed are at the end of if_data.
3017 */
3018 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
3019 offsetof(struct if_data, ifi_ipackets));
3020 /*
3021 * The memset() clears to the bottm of if_data. In the area,
3022 * if_lastchange is included. Please be careful if new entry
3023 * will be added into if_data or rewite this.
3024 *
3025 * And also, update if_lastchnage.
3026 */
3027 getnanotime(&ifp->if_lastchange);
3028 break;
3029 case SIOCSIFMTU:
3030 ifr = data;
3031 if (ifp->if_mtu == ifr->ifr_mtu)
3032 break;
3033 ifp->if_mtu = ifr->ifr_mtu;
3034 /*
3035 * If the link MTU changed, do network layer specific procedure.
3036 */
3037 #ifdef INET6
3038 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3039 if (in6_present)
3040 nd6_setmtu(ifp);
3041 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3042 #endif
3043 return ENETRESET;
3044 default:
3045 return ENOTTY;
3046 }
3047 return 0;
3048 }
3049
3050 int
3051 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3052 {
3053 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3054 struct ifaddr *ifa;
3055 const struct sockaddr *any, *sa;
3056 union {
3057 struct sockaddr sa;
3058 struct sockaddr_storage ss;
3059 } u, v;
3060 int s, error = 0;
3061
3062 switch (cmd) {
3063 case SIOCSIFADDRPREF:
3064 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3065 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3066 NULL) != 0)
3067 return EPERM;
3068 case SIOCGIFADDRPREF:
3069 break;
3070 default:
3071 return EOPNOTSUPP;
3072 }
3073
3074 /* sanity checks */
3075 if (data == NULL || ifp == NULL) {
3076 panic("invalid argument to %s", __func__);
3077 /*NOTREACHED*/
3078 }
3079
3080 /* address must be specified on ADD and DELETE */
3081 sa = sstocsa(&ifap->ifap_addr);
3082 if (sa->sa_family != sofamily(so))
3083 return EINVAL;
3084 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3085 return EINVAL;
3086
3087 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3088
3089 s = pserialize_read_enter();
3090 IFADDR_READER_FOREACH(ifa, ifp) {
3091 if (ifa->ifa_addr->sa_family != sa->sa_family)
3092 continue;
3093 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3094 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3095 break;
3096 }
3097 if (ifa == NULL) {
3098 error = EADDRNOTAVAIL;
3099 goto out;
3100 }
3101
3102 switch (cmd) {
3103 case SIOCSIFADDRPREF:
3104 ifa->ifa_preference = ifap->ifap_preference;
3105 goto out;
3106 case SIOCGIFADDRPREF:
3107 /* fill in the if_laddrreq structure */
3108 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3109 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3110 ifap->ifap_preference = ifa->ifa_preference;
3111 goto out;
3112 default:
3113 error = EOPNOTSUPP;
3114 }
3115 out:
3116 pserialize_read_exit(s);
3117 return error;
3118 }
3119
3120 /*
3121 * Interface ioctls.
3122 */
3123 static int
3124 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3125 {
3126 struct ifnet *ifp;
3127 struct ifreq *ifr;
3128 int error = 0;
3129 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
3130 u_long ocmd = cmd;
3131 #endif
3132 short oif_flags;
3133 #ifdef COMPAT_OIFREQ
3134 struct ifreq ifrb;
3135 struct oifreq *oifr = NULL;
3136 #endif
3137 int r;
3138 struct psref psref;
3139 int bound;
3140
3141 switch (cmd) {
3142 case SIOCGIFCONF:
3143 return ifconf(cmd, data);
3144 case SIOCINITIFADDR:
3145 return EPERM;
3146 default:
3147 error = (*vec_compat_ifconf)(l, cmd, data);
3148 if (error != ENOSYS)
3149 return error;
3150 error = (*vec_compat_ifdatareq)(l, cmd, data);
3151 if (error != ENOSYS)
3152 return error;
3153 break;
3154 }
3155
3156 ifr = data;
3157 #ifdef COMPAT_OIFREQ
3158 if (vec_compat_cvtcmd) {
3159 cmd = (*vec_compat_cvtcmd)(cmd);
3160 if (cmd != ocmd) {
3161 oifr = data;
3162 data = ifr = &ifrb;
3163 ifreqo2n(oifr, ifr);
3164 }
3165 }
3166 #endif
3167
3168 switch (cmd) {
3169 case SIOCIFCREATE:
3170 case SIOCIFDESTROY:
3171 bound = curlwp_bind();
3172 if (l != NULL) {
3173 ifp = if_get(ifr->ifr_name, &psref);
3174 error = kauth_authorize_network(l->l_cred,
3175 KAUTH_NETWORK_INTERFACE,
3176 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3177 (void *)cmd, NULL);
3178 if (ifp != NULL)
3179 if_put(ifp, &psref);
3180 if (error != 0) {
3181 curlwp_bindx(bound);
3182 return error;
3183 }
3184 }
3185 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3186 mutex_enter(&if_clone_mtx);
3187 r = (cmd == SIOCIFCREATE) ?
3188 if_clone_create(ifr->ifr_name) :
3189 if_clone_destroy(ifr->ifr_name);
3190 mutex_exit(&if_clone_mtx);
3191 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3192 curlwp_bindx(bound);
3193 return r;
3194
3195 case SIOCIFGCLONERS:
3196 {
3197 struct if_clonereq *req = (struct if_clonereq *)data;
3198 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3199 &req->ifcr_total);
3200 }
3201 }
3202
3203 bound = curlwp_bind();
3204 ifp = if_get(ifr->ifr_name, &psref);
3205 if (ifp == NULL) {
3206 curlwp_bindx(bound);
3207 return ENXIO;
3208 }
3209
3210 switch (cmd) {
3211 case SIOCALIFADDR:
3212 case SIOCDLIFADDR:
3213 case SIOCSIFADDRPREF:
3214 case SIOCSIFFLAGS:
3215 case SIOCSIFCAP:
3216 case SIOCSIFMETRIC:
3217 case SIOCZIFDATA:
3218 case SIOCSIFMTU:
3219 case SIOCSIFPHYADDR:
3220 case SIOCDIFPHYADDR:
3221 #ifdef INET6
3222 case SIOCSIFPHYADDR_IN6:
3223 #endif
3224 case SIOCSLIFPHYADDR:
3225 case SIOCADDMULTI:
3226 case SIOCDELMULTI:
3227 case SIOCSIFMEDIA:
3228 case SIOCSDRVSPEC:
3229 case SIOCG80211:
3230 case SIOCS80211:
3231 case SIOCS80211NWID:
3232 case SIOCS80211NWKEY:
3233 case SIOCS80211POWER:
3234 case SIOCS80211BSSID:
3235 case SIOCS80211CHANNEL:
3236 case SIOCSLINKSTR:
3237 if (l != NULL) {
3238 error = kauth_authorize_network(l->l_cred,
3239 KAUTH_NETWORK_INTERFACE,
3240 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3241 (void *)cmd, NULL);
3242 if (error != 0)
3243 goto out;
3244 }
3245 }
3246
3247 oif_flags = ifp->if_flags;
3248
3249 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3250 IFNET_LOCK(ifp);
3251
3252 error = (*ifp->if_ioctl)(ifp, cmd, data);
3253 if (error != ENOTTY)
3254 ;
3255 else if (so->so_proto == NULL)
3256 error = EOPNOTSUPP;
3257 else {
3258 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3259 #ifdef COMPAT_OSOCK
3260 if (vec_compat_ifioctl != NULL)
3261 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3262 else
3263 #endif
3264 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3265 cmd, data, ifp);
3266 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3267 }
3268
3269 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3270 if ((ifp->if_flags & IFF_UP) != 0) {
3271 int s = splsoftnet();
3272 if_up_locked(ifp);
3273 splx(s);
3274 }
3275 }
3276 #ifdef COMPAT_OIFREQ
3277 if (cmd != ocmd)
3278 ifreqn2o(oifr, ifr);
3279 #endif
3280
3281 IFNET_UNLOCK(ifp);
3282 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3283 out:
3284 if_put(ifp, &psref);
3285 curlwp_bindx(bound);
3286 return error;
3287 }
3288
3289 /*
3290 * Return interface configuration
3291 * of system. List may be used
3292 * in later ioctl's (above) to get
3293 * other information.
3294 *
3295 * Each record is a struct ifreq. Before the addition of
3296 * sockaddr_storage, the API rule was that sockaddr flavors that did
3297 * not fit would extend beyond the struct ifreq, with the next struct
3298 * ifreq starting sa_len beyond the struct sockaddr. Because the
3299 * union in struct ifreq includes struct sockaddr_storage, every kind
3300 * of sockaddr must fit. Thus, there are no longer any overlength
3301 * records.
3302 *
3303 * Records are added to the user buffer if they fit, and ifc_len is
3304 * adjusted to the length that was written. Thus, the user is only
3305 * assured of getting the complete list if ifc_len on return is at
3306 * least sizeof(struct ifreq) less than it was on entry.
3307 *
3308 * If the user buffer pointer is NULL, this routine copies no data and
3309 * returns the amount of space that would be needed.
3310 *
3311 * Invariants:
3312 * ifrp points to the next part of the user's buffer to be used. If
3313 * ifrp != NULL, space holds the number of bytes remaining that we may
3314 * write at ifrp. Otherwise, space holds the number of bytes that
3315 * would have been written had there been adequate space.
3316 */
3317 /*ARGSUSED*/
3318 static int
3319 ifconf(u_long cmd, void *data)
3320 {
3321 struct ifconf *ifc = (struct ifconf *)data;
3322 struct ifnet *ifp;
3323 struct ifaddr *ifa;
3324 struct ifreq ifr, *ifrp = NULL;
3325 int space = 0, error = 0;
3326 const int sz = (int)sizeof(struct ifreq);
3327 const bool docopy = ifc->ifc_req != NULL;
3328 int s;
3329 int bound;
3330 struct psref psref;
3331
3332 if (docopy) {
3333 space = ifc->ifc_len;
3334 ifrp = ifc->ifc_req;
3335 }
3336
3337 bound = curlwp_bind();
3338 s = pserialize_read_enter();
3339 IFNET_READER_FOREACH(ifp) {
3340 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3341 pserialize_read_exit(s);
3342
3343 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3344 sizeof(ifr.ifr_name));
3345 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3346 error = ENAMETOOLONG;
3347 goto release_exit;
3348 }
3349 if (IFADDR_READER_EMPTY(ifp)) {
3350 /* Interface with no addresses - send zero sockaddr. */
3351 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3352 if (!docopy) {
3353 space += sz;
3354 goto next;
3355 }
3356 if (space >= sz) {
3357 error = copyout(&ifr, ifrp, sz);
3358 if (error != 0)
3359 goto release_exit;
3360 ifrp++;
3361 space -= sz;
3362 }
3363 }
3364
3365 s = pserialize_read_enter();
3366 IFADDR_READER_FOREACH(ifa, ifp) {
3367 struct sockaddr *sa = ifa->ifa_addr;
3368 /* all sockaddrs must fit in sockaddr_storage */
3369 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3370
3371 if (!docopy) {
3372 space += sz;
3373 continue;
3374 }
3375 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3376 pserialize_read_exit(s);
3377
3378 if (space >= sz) {
3379 error = copyout(&ifr, ifrp, sz);
3380 if (error != 0)
3381 goto release_exit;
3382 ifrp++; space -= sz;
3383 }
3384 s = pserialize_read_enter();
3385 }
3386 pserialize_read_exit(s);
3387
3388 next:
3389 s = pserialize_read_enter();
3390 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3391 }
3392 pserialize_read_exit(s);
3393 curlwp_bindx(bound);
3394
3395 if (docopy) {
3396 KASSERT(0 <= space && space <= ifc->ifc_len);
3397 ifc->ifc_len -= space;
3398 } else {
3399 KASSERT(space >= 0);
3400 ifc->ifc_len = space;
3401 }
3402 return (0);
3403
3404 release_exit:
3405 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3406 curlwp_bindx(bound);
3407 return error;
3408 }
3409
3410 int
3411 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3412 {
3413 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3414 #ifdef COMPAT_OIFREQ
3415 struct ifreq ifrb;
3416 struct oifreq *oifr = NULL;
3417 u_long ocmd = cmd;
3418
3419 if (vec_compat_cvtcmd) {
3420 cmd = (*vec_compat_cvtcmd)(cmd);
3421 if (cmd != ocmd) {
3422 oifr = (struct oifreq *)(void *)ifr;
3423 ifr = &ifrb;
3424 ifreqo2n(oifr, ifr);
3425 len = sizeof(oifr->ifr_addr);
3426 }
3427 }
3428 #endif
3429 if (len < sa->sa_len)
3430 return EFBIG;
3431
3432 memset(&ifr->ifr_addr, 0, len);
3433 sockaddr_copy(&ifr->ifr_addr, len, sa);
3434
3435 #ifdef COMPAT_OIFREQ
3436 if (cmd != ocmd)
3437 ifreqn2o(oifr, ifr);
3438 #endif
3439 return 0;
3440 }
3441
3442 /*
3443 * wrapper function for the drivers which doesn't have if_transmit().
3444 */
3445 static int
3446 if_transmit(struct ifnet *ifp, struct mbuf *m)
3447 {
3448 int s, error;
3449 size_t pktlen = m->m_pkthdr.len;
3450 bool mcast = (m->m_flags & M_MCAST) != 0;
3451
3452 s = splnet();
3453
3454 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3455 if (error != 0) {
3456 /* mbuf is already freed */
3457 goto out;
3458 }
3459
3460 ifp->if_obytes += pktlen;
3461 if (mcast)
3462 ifp->if_omcasts++;
3463
3464 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3465 if_start_lock(ifp);
3466 out:
3467 splx(s);
3468
3469 return error;
3470 }
3471
3472 int
3473 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3474 {
3475 int error;
3476
3477 #ifdef ALTQ
3478 KERNEL_LOCK(1, NULL);
3479 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3480 error = if_transmit(ifp, m);
3481 KERNEL_UNLOCK_ONE(NULL);
3482 } else {
3483 KERNEL_UNLOCK_ONE(NULL);
3484 error = (*ifp->if_transmit)(ifp, m);
3485 /* mbuf is alredy freed */
3486 }
3487 #else /* !ALTQ */
3488 error = (*ifp->if_transmit)(ifp, m);
3489 /* mbuf is alredy freed */
3490 #endif /* !ALTQ */
3491
3492 return error;
3493 }
3494
3495 /*
3496 * Queue message on interface, and start output if interface
3497 * not yet active.
3498 */
3499 int
3500 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3501 {
3502
3503 return if_transmit_lock(ifp, m);
3504 }
3505
3506 /*
3507 * Queue message on interface, possibly using a second fast queue
3508 */
3509 int
3510 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3511 {
3512 int error = 0;
3513
3514 if (ifq != NULL
3515 #ifdef ALTQ
3516 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3517 #endif
3518 ) {
3519 if (IF_QFULL(ifq)) {
3520 IF_DROP(&ifp->if_snd);
3521 m_freem(m);
3522 if (error == 0)
3523 error = ENOBUFS;
3524 } else
3525 IF_ENQUEUE(ifq, m);
3526 } else
3527 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3528 if (error != 0) {
3529 ++ifp->if_oerrors;
3530 return error;
3531 }
3532 return 0;
3533 }
3534
3535 int
3536 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3537 {
3538 int rc;
3539
3540 KASSERT(IFNET_LOCKED(ifp));
3541 if (ifp->if_initaddr != NULL)
3542 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3543 else if (src ||
3544 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3545 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3546
3547 return rc;
3548 }
3549
3550 int
3551 if_do_dad(struct ifnet *ifp)
3552 {
3553 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3554 return 0;
3555
3556 switch (ifp->if_type) {
3557 case IFT_FAITH:
3558 /*
3559 * These interfaces do not have the IFF_LOOPBACK flag,
3560 * but loop packets back. We do not have to do DAD on such
3561 * interfaces. We should even omit it, because loop-backed
3562 * responses would confuse the DAD procedure.
3563 */
3564 return 0;
3565 default:
3566 /*
3567 * Our DAD routine requires the interface up and running.
3568 * However, some interfaces can be up before the RUNNING
3569 * status. Additionaly, users may try to assign addresses
3570 * before the interface becomes up (or running).
3571 * We simply skip DAD in such a case as a work around.
3572 * XXX: we should rather mark "tentative" on such addresses,
3573 * and do DAD after the interface becomes ready.
3574 */
3575 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3576 (IFF_UP|IFF_RUNNING))
3577 return 0;
3578
3579 return 1;
3580 }
3581 }
3582
3583 int
3584 if_flags_set(ifnet_t *ifp, const short flags)
3585 {
3586 int rc;
3587
3588 KASSERT(IFNET_LOCKED(ifp));
3589
3590 if (ifp->if_setflags != NULL)
3591 rc = (*ifp->if_setflags)(ifp, flags);
3592 else {
3593 short cantflags, chgdflags;
3594 struct ifreq ifr;
3595
3596 chgdflags = ifp->if_flags ^ flags;
3597 cantflags = chgdflags & IFF_CANTCHANGE;
3598
3599 if (cantflags != 0)
3600 ifp->if_flags ^= cantflags;
3601
3602 /* Traditionally, we do not call if_ioctl after
3603 * setting/clearing only IFF_PROMISC if the interface
3604 * isn't IFF_UP. Uphold that tradition.
3605 */
3606 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3607 return 0;
3608
3609 memset(&ifr, 0, sizeof(ifr));
3610
3611 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3612 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3613
3614 if (rc != 0 && cantflags != 0)
3615 ifp->if_flags ^= cantflags;
3616 }
3617
3618 return rc;
3619 }
3620
3621 int
3622 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3623 {
3624 int rc;
3625 struct ifreq ifr;
3626
3627 /* There remain some paths that don't hold IFNET_LOCK yet */
3628 #ifdef NET_MPSAFE
3629 /* CARP and MROUTING still don't deal with the lock yet */
3630 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING)
3631 KASSERT(IFNET_LOCKED(ifp));
3632 #endif
3633 #endif
3634 if (ifp->if_mcastop != NULL)
3635 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3636 else {
3637 ifreq_setaddr(cmd, &ifr, sa);
3638 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3639 }
3640
3641 return rc;
3642 }
3643
3644 static void
3645 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3646 struct ifaltq *ifq)
3647 {
3648 const struct sysctlnode *cnode, *rnode;
3649
3650 if (sysctl_createv(clog, 0, NULL, &rnode,
3651 CTLFLAG_PERMANENT,
3652 CTLTYPE_NODE, "interfaces",
3653 SYSCTL_DESCR("Per-interface controls"),
3654 NULL, 0, NULL, 0,
3655 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3656 goto bad;
3657
3658 if (sysctl_createv(clog, 0, &rnode, &rnode,
3659 CTLFLAG_PERMANENT,
3660 CTLTYPE_NODE, ifname,
3661 SYSCTL_DESCR("Interface controls"),
3662 NULL, 0, NULL, 0,
3663 CTL_CREATE, CTL_EOL) != 0)
3664 goto bad;
3665
3666 if (sysctl_createv(clog, 0, &rnode, &rnode,
3667 CTLFLAG_PERMANENT,
3668 CTLTYPE_NODE, "sndq",
3669 SYSCTL_DESCR("Interface output queue controls"),
3670 NULL, 0, NULL, 0,
3671 CTL_CREATE, CTL_EOL) != 0)
3672 goto bad;
3673
3674 if (sysctl_createv(clog, 0, &rnode, &cnode,
3675 CTLFLAG_PERMANENT,
3676 CTLTYPE_INT, "len",
3677 SYSCTL_DESCR("Current output queue length"),
3678 NULL, 0, &ifq->ifq_len, 0,
3679 CTL_CREATE, CTL_EOL) != 0)
3680 goto bad;
3681
3682 if (sysctl_createv(clog, 0, &rnode, &cnode,
3683 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3684 CTLTYPE_INT, "maxlen",
3685 SYSCTL_DESCR("Maximum allowed output queue length"),
3686 NULL, 0, &ifq->ifq_maxlen, 0,
3687 CTL_CREATE, CTL_EOL) != 0)
3688 goto bad;
3689
3690 if (sysctl_createv(clog, 0, &rnode, &cnode,
3691 CTLFLAG_PERMANENT,
3692 CTLTYPE_INT, "drops",
3693 SYSCTL_DESCR("Packets dropped due to full output queue"),
3694 NULL, 0, &ifq->ifq_drops, 0,
3695 CTL_CREATE, CTL_EOL) != 0)
3696 goto bad;
3697
3698 return;
3699 bad:
3700 printf("%s: could not attach sysctl nodes\n", ifname);
3701 return;
3702 }
3703
3704 #if defined(INET) || defined(INET6)
3705
3706 #define SYSCTL_NET_PKTQ(q, cn, c) \
3707 static int \
3708 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3709 { \
3710 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3711 }
3712
3713 #if defined(INET)
3714 static int
3715 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3716 {
3717 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3718 }
3719 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3720 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3721 #endif
3722
3723 #if defined(INET6)
3724 static int
3725 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3726 {
3727 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3728 }
3729 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3730 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3731 #endif
3732
3733 static void
3734 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3735 {
3736 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3737 const char *pfname = NULL, *ipname = NULL;
3738 int ipn = 0, qid = 0;
3739
3740 switch (pf) {
3741 #if defined(INET)
3742 case PF_INET:
3743 len_func = sysctl_net_ip_pktq_items;
3744 maxlen_func = sysctl_net_ip_pktq_maxlen;
3745 drops_func = sysctl_net_ip_pktq_drops;
3746 pfname = "inet", ipn = IPPROTO_IP;
3747 ipname = "ip", qid = IPCTL_IFQ;
3748 break;
3749 #endif
3750 #if defined(INET6)
3751 case PF_INET6:
3752 len_func = sysctl_net_ip6_pktq_items;
3753 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3754 drops_func = sysctl_net_ip6_pktq_drops;
3755 pfname = "inet6", ipn = IPPROTO_IPV6;
3756 ipname = "ip6", qid = IPV6CTL_IFQ;
3757 break;
3758 #endif
3759 default:
3760 KASSERT(false);
3761 }
3762
3763 sysctl_createv(clog, 0, NULL, NULL,
3764 CTLFLAG_PERMANENT,
3765 CTLTYPE_NODE, pfname, NULL,
3766 NULL, 0, NULL, 0,
3767 CTL_NET, pf, CTL_EOL);
3768 sysctl_createv(clog, 0, NULL, NULL,
3769 CTLFLAG_PERMANENT,
3770 CTLTYPE_NODE, ipname, NULL,
3771 NULL, 0, NULL, 0,
3772 CTL_NET, pf, ipn, CTL_EOL);
3773 sysctl_createv(clog, 0, NULL, NULL,
3774 CTLFLAG_PERMANENT,
3775 CTLTYPE_NODE, "ifq",
3776 SYSCTL_DESCR("Protocol input queue controls"),
3777 NULL, 0, NULL, 0,
3778 CTL_NET, pf, ipn, qid, CTL_EOL);
3779
3780 sysctl_createv(clog, 0, NULL, NULL,
3781 CTLFLAG_PERMANENT,
3782 CTLTYPE_QUAD, "len",
3783 SYSCTL_DESCR("Current input queue length"),
3784 len_func, 0, NULL, 0,
3785 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3786 sysctl_createv(clog, 0, NULL, NULL,
3787 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3788 CTLTYPE_INT, "maxlen",
3789 SYSCTL_DESCR("Maximum allowed input queue length"),
3790 maxlen_func, 0, NULL, 0,
3791 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3792 sysctl_createv(clog, 0, NULL, NULL,
3793 CTLFLAG_PERMANENT,
3794 CTLTYPE_QUAD, "drops",
3795 SYSCTL_DESCR("Packets dropped due to full input queue"),
3796 drops_func, 0, NULL, 0,
3797 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3798 }
3799 #endif /* INET || INET6 */
3800
3801 static int
3802 if_sdl_sysctl(SYSCTLFN_ARGS)
3803 {
3804 struct ifnet *ifp;
3805 const struct sockaddr_dl *sdl;
3806 struct psref psref;
3807 int error = 0;
3808 int bound;
3809
3810 if (namelen != 1)
3811 return EINVAL;
3812
3813 bound = curlwp_bind();
3814 ifp = if_get_byindex(name[0], &psref);
3815 if (ifp == NULL) {
3816 error = ENODEV;
3817 goto out0;
3818 }
3819
3820 sdl = ifp->if_sadl;
3821 if (sdl == NULL) {
3822 *oldlenp = 0;
3823 goto out1;
3824 }
3825
3826 if (oldp == NULL) {
3827 *oldlenp = sdl->sdl_alen;
3828 goto out1;
3829 }
3830
3831 if (*oldlenp >= sdl->sdl_alen)
3832 *oldlenp = sdl->sdl_alen;
3833 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3834 out1:
3835 if_put(ifp, &psref);
3836 out0:
3837 curlwp_bindx(bound);
3838 return error;
3839 }
3840
3841 static void
3842 if_sysctl_setup(struct sysctllog **clog)
3843 {
3844 const struct sysctlnode *rnode = NULL;
3845
3846 sysctl_createv(clog, 0, NULL, &rnode,
3847 CTLFLAG_PERMANENT,
3848 CTLTYPE_NODE, "sdl",
3849 SYSCTL_DESCR("Get active link-layer address"),
3850 if_sdl_sysctl, 0, NULL, 0,
3851 CTL_NET, CTL_CREATE, CTL_EOL);
3852
3853 #if defined(INET)
3854 sysctl_net_pktq_setup(NULL, PF_INET);
3855 #endif
3856 #ifdef INET6
3857 if (in6_present)
3858 sysctl_net_pktq_setup(NULL, PF_INET6);
3859 #endif
3860 }
3861