if.c revision 1.446 1 /* $NetBSD: if.c,v 1.446 2019/03/01 11:06:57 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.446 2019/03/01 11:06:57 pgoyette Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/compat_stub.h>
123
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152
153 #include "bridge.h"
154 #if NBRIDGE > 0
155 #include <net/if_bridgevar.h>
156 #endif
157
158 #include "carp.h"
159 #if NCARP > 0
160 #include <netinet/ip_carp.h>
161 #endif
162
163 #include <compat/sys/sockio.h>
164 #include <compat/sys/socket.h>
165
166 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
167 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
168
169 /*
170 * Global list of interfaces.
171 */
172 /* DEPRECATED. Remove it once kvm(3) users disappeared */
173 struct ifnet_head ifnet_list;
174
175 struct pslist_head ifnet_pslist;
176 static ifnet_t ** ifindex2ifnet = NULL;
177 static u_int if_index = 1;
178 static size_t if_indexlim = 0;
179 static uint64_t index_gen;
180 /* Mutex to protect the above objects. */
181 kmutex_t ifnet_mtx __cacheline_aligned;
182 static struct psref_class *ifnet_psref_class __read_mostly;
183 static pserialize_t ifnet_psz;
184
185 static kmutex_t if_clone_mtx;
186
187 struct ifnet *lo0ifp;
188 int ifqmaxlen = IFQ_MAXLEN;
189
190 struct psref_class *ifa_psref_class __read_mostly;
191
192 static int if_delroute_matcher(struct rtentry *, void *);
193
194 static bool if_is_unit(const char *);
195 static struct if_clone *if_clone_lookup(const char *, int *);
196
197 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
198 static int if_cloners_count;
199
200 /* Packet filtering hook for interfaces. */
201 pfil_head_t * if_pfil __read_mostly;
202
203 static kauth_listener_t if_listener;
204
205 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
206 static void if_detach_queues(struct ifnet *, struct ifqueue *);
207 static void sysctl_sndq_setup(struct sysctllog **, const char *,
208 struct ifaltq *);
209 static void if_slowtimo(void *);
210 static void if_attachdomain1(struct ifnet *);
211 static int ifconf(u_long, void *);
212 static int if_transmit(struct ifnet *, struct mbuf *);
213 static int if_clone_create(const char *);
214 static int if_clone_destroy(const char *);
215 static void if_link_state_change_si(void *);
216 static void if_up_locked(struct ifnet *);
217 static void _if_down(struct ifnet *);
218 static void if_down_deactivated(struct ifnet *);
219
220 struct if_percpuq {
221 struct ifnet *ipq_ifp;
222 void *ipq_si;
223 struct percpu *ipq_ifqs; /* struct ifqueue */
224 };
225
226 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
227
228 static void if_percpuq_drops(void *, void *, struct cpu_info *);
229 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
230 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
231 struct if_percpuq *);
232
233 struct if_deferred_start {
234 struct ifnet *ids_ifp;
235 void (*ids_if_start)(struct ifnet *);
236 void *ids_si;
237 };
238
239 static void if_deferred_start_softint(void *);
240 static void if_deferred_start_common(struct ifnet *);
241 static void if_deferred_start_destroy(struct ifnet *);
242
243 #if defined(INET) || defined(INET6)
244 static void sysctl_net_pktq_setup(struct sysctllog **, int);
245 #endif
246
247 static void if_sysctl_setup(struct sysctllog **);
248
249 static int
250 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
251 void *arg0, void *arg1, void *arg2, void *arg3)
252 {
253 int result;
254 enum kauth_network_req req;
255
256 result = KAUTH_RESULT_DEFER;
257 req = (enum kauth_network_req)arg1;
258
259 if (action != KAUTH_NETWORK_INTERFACE)
260 return result;
261
262 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
263 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
264 result = KAUTH_RESULT_ALLOW;
265
266 return result;
267 }
268
269 /*
270 * Network interface utility routines.
271 *
272 * Routines with ifa_ifwith* names take sockaddr *'s as
273 * parameters.
274 */
275 void
276 ifinit(void)
277 {
278
279 #if (defined(INET) || defined(INET6))
280 encapinit();
281 #endif
282
283 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
284 if_listener_cb, NULL);
285
286 /* interfaces are available, inform socket code */
287 ifioctl = doifioctl;
288 }
289
290 /*
291 * XXX Initialization before configure().
292 * XXX hack to get pfil_add_hook working in autoconf.
293 */
294 void
295 ifinit1(void)
296 {
297
298 #ifdef NET_MPSAFE
299 printf("NET_MPSAFE enabled\n");
300 #endif
301
302 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
303
304 TAILQ_INIT(&ifnet_list);
305 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
306 ifnet_psz = pserialize_create();
307 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
308 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
309 PSLIST_INIT(&ifnet_pslist);
310
311 if_indexlim = 8;
312
313 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
314 KASSERT(if_pfil != NULL);
315
316 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
317 etherinit();
318 #endif
319 }
320
321 /* XXX must be after domaininit() */
322 void
323 ifinit_post(void)
324 {
325
326 if_sysctl_setup(NULL);
327 }
328
329 ifnet_t *
330 if_alloc(u_char type)
331 {
332 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
333 }
334
335 void
336 if_free(ifnet_t *ifp)
337 {
338 kmem_free(ifp, sizeof(ifnet_t));
339 }
340
341 void
342 if_initname(struct ifnet *ifp, const char *name, int unit)
343 {
344 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
345 "%s%d", name, unit);
346 }
347
348 /*
349 * Null routines used while an interface is going away. These routines
350 * just return an error.
351 */
352
353 int
354 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
355 const struct sockaddr *so, const struct rtentry *rt)
356 {
357
358 return ENXIO;
359 }
360
361 void
362 if_nullinput(struct ifnet *ifp, struct mbuf *m)
363 {
364
365 /* Nothing. */
366 }
367
368 void
369 if_nullstart(struct ifnet *ifp)
370 {
371
372 /* Nothing. */
373 }
374
375 int
376 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
377 {
378
379 m_freem(m);
380 return ENXIO;
381 }
382
383 int
384 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
385 {
386
387 return ENXIO;
388 }
389
390 int
391 if_nullinit(struct ifnet *ifp)
392 {
393
394 return ENXIO;
395 }
396
397 void
398 if_nullstop(struct ifnet *ifp, int disable)
399 {
400
401 /* Nothing. */
402 }
403
404 void
405 if_nullslowtimo(struct ifnet *ifp)
406 {
407
408 /* Nothing. */
409 }
410
411 void
412 if_nulldrain(struct ifnet *ifp)
413 {
414
415 /* Nothing. */
416 }
417
418 void
419 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
420 {
421 struct ifaddr *ifa;
422 struct sockaddr_dl *sdl;
423
424 ifp->if_addrlen = addrlen;
425 if_alloc_sadl(ifp);
426 ifa = ifp->if_dl;
427 sdl = satosdl(ifa->ifa_addr);
428
429 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
430 if (factory) {
431 KASSERT(ifp->if_hwdl == NULL);
432 ifp->if_hwdl = ifp->if_dl;
433 ifaref(ifp->if_hwdl);
434 }
435 /* TBD routing socket */
436 }
437
438 struct ifaddr *
439 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
440 {
441 unsigned socksize, ifasize;
442 int addrlen, namelen;
443 struct sockaddr_dl *mask, *sdl;
444 struct ifaddr *ifa;
445
446 namelen = strlen(ifp->if_xname);
447 addrlen = ifp->if_addrlen;
448 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
449 ifasize = sizeof(*ifa) + 2 * socksize;
450 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
451
452 sdl = (struct sockaddr_dl *)(ifa + 1);
453 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
454
455 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
456 ifp->if_xname, namelen, NULL, addrlen);
457 mask->sdl_family = AF_LINK;
458 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
459 memset(&mask->sdl_data[0], 0xff, namelen);
460 ifa->ifa_rtrequest = link_rtrequest;
461 ifa->ifa_addr = (struct sockaddr *)sdl;
462 ifa->ifa_netmask = (struct sockaddr *)mask;
463 ifa_psref_init(ifa);
464
465 *sdlp = sdl;
466
467 return ifa;
468 }
469
470 static void
471 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
472 {
473 const struct sockaddr_dl *sdl;
474
475 ifp->if_dl = ifa;
476 ifaref(ifa);
477 sdl = satosdl(ifa->ifa_addr);
478 ifp->if_sadl = sdl;
479 }
480
481 /*
482 * Allocate the link level name for the specified interface. This
483 * is an attachment helper. It must be called after ifp->if_addrlen
484 * is initialized, which may not be the case when if_attach() is
485 * called.
486 */
487 void
488 if_alloc_sadl(struct ifnet *ifp)
489 {
490 struct ifaddr *ifa;
491 const struct sockaddr_dl *sdl;
492
493 /*
494 * If the interface already has a link name, release it
495 * now. This is useful for interfaces that can change
496 * link types, and thus switch link names often.
497 */
498 if (ifp->if_sadl != NULL)
499 if_free_sadl(ifp, 0);
500
501 ifa = if_dl_create(ifp, &sdl);
502
503 ifa_insert(ifp, ifa);
504 if_sadl_setrefs(ifp, ifa);
505 }
506
507 static void
508 if_deactivate_sadl(struct ifnet *ifp)
509 {
510 struct ifaddr *ifa;
511
512 KASSERT(ifp->if_dl != NULL);
513
514 ifa = ifp->if_dl;
515
516 ifp->if_sadl = NULL;
517
518 ifp->if_dl = NULL;
519 ifafree(ifa);
520 }
521
522 static void
523 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
524 {
525 struct ifaddr *old;
526
527 KASSERT(ifp->if_dl != NULL);
528
529 old = ifp->if_dl;
530
531 ifaref(ifa);
532 /* XXX Update if_dl and if_sadl atomically */
533 ifp->if_dl = ifa;
534 ifp->if_sadl = satosdl(ifa->ifa_addr);
535
536 ifafree(old);
537 }
538
539 void
540 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
541 const struct sockaddr_dl *sdl)
542 {
543 int s, ss;
544 struct ifaddr *ifa;
545 int bound = curlwp_bind();
546
547 KASSERT(ifa_held(ifa0));
548
549 s = splsoftnet();
550
551 if_replace_sadl(ifp, ifa0);
552
553 ss = pserialize_read_enter();
554 IFADDR_READER_FOREACH(ifa, ifp) {
555 struct psref psref;
556 ifa_acquire(ifa, &psref);
557 pserialize_read_exit(ss);
558
559 rtinit(ifa, RTM_LLINFO_UPD, 0);
560
561 ss = pserialize_read_enter();
562 ifa_release(ifa, &psref);
563 }
564 pserialize_read_exit(ss);
565
566 splx(s);
567 curlwp_bindx(bound);
568 }
569
570 /*
571 * Free the link level name for the specified interface. This is
572 * a detach helper. This is called from if_detach().
573 */
574 void
575 if_free_sadl(struct ifnet *ifp, int factory)
576 {
577 struct ifaddr *ifa;
578 int s;
579
580 if (factory && ifp->if_hwdl != NULL) {
581 ifa = ifp->if_hwdl;
582 ifp->if_hwdl = NULL;
583 ifafree(ifa);
584 }
585
586 ifa = ifp->if_dl;
587 if (ifa == NULL) {
588 KASSERT(ifp->if_sadl == NULL);
589 return;
590 }
591
592 KASSERT(ifp->if_sadl != NULL);
593
594 s = splsoftnet();
595 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
596 ifa_remove(ifp, ifa);
597 if_deactivate_sadl(ifp);
598 splx(s);
599 }
600
601 static void
602 if_getindex(ifnet_t *ifp)
603 {
604 bool hitlimit = false;
605
606 ifp->if_index_gen = index_gen++;
607
608 ifp->if_index = if_index;
609 if (ifindex2ifnet == NULL) {
610 if_index++;
611 goto skip;
612 }
613 while (if_byindex(ifp->if_index)) {
614 /*
615 * If we hit USHRT_MAX, we skip back to 0 since
616 * there are a number of places where the value
617 * of if_index or if_index itself is compared
618 * to or stored in an unsigned short. By
619 * jumping back, we won't botch those assignments
620 * or comparisons.
621 */
622 if (++if_index == 0) {
623 if_index = 1;
624 } else if (if_index == USHRT_MAX) {
625 /*
626 * However, if we have to jump back to
627 * zero *twice* without finding an empty
628 * slot in ifindex2ifnet[], then there
629 * there are too many (>65535) interfaces.
630 */
631 if (hitlimit) {
632 panic("too many interfaces");
633 }
634 hitlimit = true;
635 if_index = 1;
636 }
637 ifp->if_index = if_index;
638 }
639 skip:
640 /*
641 * ifindex2ifnet is indexed by if_index. Since if_index will
642 * grow dynamically, it should grow too.
643 */
644 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
645 size_t m, n, oldlim;
646 void *q;
647
648 oldlim = if_indexlim;
649 while (ifp->if_index >= if_indexlim)
650 if_indexlim <<= 1;
651
652 /* grow ifindex2ifnet */
653 m = oldlim * sizeof(struct ifnet *);
654 n = if_indexlim * sizeof(struct ifnet *);
655 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
656 if (ifindex2ifnet != NULL) {
657 memcpy(q, ifindex2ifnet, m);
658 free(ifindex2ifnet, M_IFADDR);
659 }
660 ifindex2ifnet = (struct ifnet **)q;
661 }
662 ifindex2ifnet[ifp->if_index] = ifp;
663 }
664
665 /*
666 * Initialize an interface and assign an index for it.
667 *
668 * It must be called prior to a device specific attach routine
669 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
670 * and be followed by if_register:
671 *
672 * if_initialize(ifp);
673 * ether_ifattach(ifp, enaddr);
674 * if_register(ifp);
675 */
676 int
677 if_initialize(ifnet_t *ifp)
678 {
679 int rv = 0;
680
681 KASSERT(if_indexlim > 0);
682 TAILQ_INIT(&ifp->if_addrlist);
683
684 /*
685 * Link level name is allocated later by a separate call to
686 * if_alloc_sadl().
687 */
688
689 if (ifp->if_snd.ifq_maxlen == 0)
690 ifp->if_snd.ifq_maxlen = ifqmaxlen;
691
692 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
693
694 ifp->if_link_state = LINK_STATE_UNKNOWN;
695 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
696
697 ifp->if_capenable = 0;
698 ifp->if_csum_flags_tx = 0;
699 ifp->if_csum_flags_rx = 0;
700
701 #ifdef ALTQ
702 ifp->if_snd.altq_type = 0;
703 ifp->if_snd.altq_disc = NULL;
704 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
705 ifp->if_snd.altq_tbr = NULL;
706 ifp->if_snd.altq_ifp = ifp;
707 #endif
708
709 IFQ_LOCK_INIT(&ifp->if_snd);
710
711 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
712 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
713
714 IF_AFDATA_LOCK_INIT(ifp);
715
716 if (if_is_link_state_changeable(ifp)) {
717 u_int flags = SOFTINT_NET;
718 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
719 ifp->if_link_si = softint_establish(flags,
720 if_link_state_change_si, ifp);
721 if (ifp->if_link_si == NULL) {
722 rv = ENOMEM;
723 goto fail;
724 }
725 }
726
727 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
728 PSLIST_INIT(&ifp->if_addr_pslist);
729 psref_target_init(&ifp->if_psref, ifnet_psref_class);
730 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
731 LIST_INIT(&ifp->if_multiaddrs);
732
733 IFNET_GLOBAL_LOCK();
734 if_getindex(ifp);
735 IFNET_GLOBAL_UNLOCK();
736
737 return 0;
738
739 fail:
740 IF_AFDATA_LOCK_DESTROY(ifp);
741
742 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
743 (void)pfil_head_destroy(ifp->if_pfil);
744
745 IFQ_LOCK_DESTROY(&ifp->if_snd);
746
747 return rv;
748 }
749
750 /*
751 * Register an interface to the list of "active" interfaces.
752 */
753 void
754 if_register(ifnet_t *ifp)
755 {
756 /*
757 * If the driver has not supplied its own if_ioctl, then
758 * supply the default.
759 */
760 if (ifp->if_ioctl == NULL)
761 ifp->if_ioctl = ifioctl_common;
762
763 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
764
765 if (!STAILQ_EMPTY(&domains))
766 if_attachdomain1(ifp);
767
768 /* Announce the interface. */
769 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
770
771 if (ifp->if_slowtimo != NULL) {
772 ifp->if_slowtimo_ch =
773 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
774 callout_init(ifp->if_slowtimo_ch, 0);
775 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
776 if_slowtimo(ifp);
777 }
778
779 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
780 ifp->if_transmit = if_transmit;
781
782 IFNET_GLOBAL_LOCK();
783 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
784 IFNET_WRITER_INSERT_TAIL(ifp);
785 IFNET_GLOBAL_UNLOCK();
786 }
787
788 /*
789 * The if_percpuq framework
790 *
791 * It allows network device drivers to execute the network stack
792 * in softint (so called softint-based if_input). It utilizes
793 * softint and percpu ifqueue. It doesn't distribute any packets
794 * between CPUs, unlike pktqueue(9).
795 *
796 * Currently we support two options for device drivers to apply the framework:
797 * - Use it implicitly with less changes
798 * - If you use if_attach in driver's _attach function and if_input in
799 * driver's Rx interrupt handler, a packet is queued and a softint handles
800 * the packet implicitly
801 * - Use it explicitly in each driver (recommended)
802 * - You can use if_percpuq_* directly in your driver
803 * - In this case, you need to allocate struct if_percpuq in driver's softc
804 * - See wm(4) as a reference implementation
805 */
806
807 static void
808 if_percpuq_softint(void *arg)
809 {
810 struct if_percpuq *ipq = arg;
811 struct ifnet *ifp = ipq->ipq_ifp;
812 struct mbuf *m;
813
814 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
815 ifp->if_ipackets++;
816 bpf_mtap(ifp, m, BPF_D_IN);
817
818 ifp->_if_input(ifp, m);
819 }
820 }
821
822 static void
823 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
824 {
825 struct ifqueue *const ifq = p;
826
827 memset(ifq, 0, sizeof(*ifq));
828 ifq->ifq_maxlen = IFQ_MAXLEN;
829 }
830
831 struct if_percpuq *
832 if_percpuq_create(struct ifnet *ifp)
833 {
834 struct if_percpuq *ipq;
835 u_int flags = SOFTINT_NET;
836
837 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
838
839 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
840 ipq->ipq_ifp = ifp;
841 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
842 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
843 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
844
845 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
846
847 return ipq;
848 }
849
850 static struct mbuf *
851 if_percpuq_dequeue(struct if_percpuq *ipq)
852 {
853 struct mbuf *m;
854 struct ifqueue *ifq;
855 int s;
856
857 s = splnet();
858 ifq = percpu_getref(ipq->ipq_ifqs);
859 IF_DEQUEUE(ifq, m);
860 percpu_putref(ipq->ipq_ifqs);
861 splx(s);
862
863 return m;
864 }
865
866 static void
867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
868 {
869 struct ifqueue *const ifq = p;
870
871 IF_PURGE(ifq);
872 }
873
874 void
875 if_percpuq_destroy(struct if_percpuq *ipq)
876 {
877
878 /* if_detach may already destroy it */
879 if (ipq == NULL)
880 return;
881
882 softint_disestablish(ipq->ipq_si);
883 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
884 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
885 kmem_free(ipq, sizeof(*ipq));
886 }
887
888 void
889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
890 {
891 struct ifqueue *ifq;
892 int s;
893
894 KASSERT(ipq != NULL);
895
896 s = splnet();
897 ifq = percpu_getref(ipq->ipq_ifqs);
898 if (IF_QFULL(ifq)) {
899 IF_DROP(ifq);
900 percpu_putref(ipq->ipq_ifqs);
901 m_freem(m);
902 goto out;
903 }
904 IF_ENQUEUE(ifq, m);
905 percpu_putref(ipq->ipq_ifqs);
906
907 softint_schedule(ipq->ipq_si);
908 out:
909 splx(s);
910 }
911
912 static void
913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
914 {
915 struct ifqueue *const ifq = p;
916 int *sum = arg;
917
918 *sum += ifq->ifq_drops;
919 }
920
921 static int
922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
923 {
924 struct sysctlnode node;
925 struct if_percpuq *ipq;
926 int sum = 0;
927 int error;
928
929 node = *rnode;
930 ipq = node.sysctl_data;
931
932 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
933
934 node.sysctl_data = ∑
935 error = sysctl_lookup(SYSCTLFN_CALL(&node));
936 if (error != 0 || newp == NULL)
937 return error;
938
939 return 0;
940 }
941
942 static void
943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
944 struct if_percpuq *ipq)
945 {
946 const struct sysctlnode *cnode, *rnode;
947
948 if (sysctl_createv(clog, 0, NULL, &rnode,
949 CTLFLAG_PERMANENT,
950 CTLTYPE_NODE, "interfaces",
951 SYSCTL_DESCR("Per-interface controls"),
952 NULL, 0, NULL, 0,
953 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
954 goto bad;
955
956 if (sysctl_createv(clog, 0, &rnode, &rnode,
957 CTLFLAG_PERMANENT,
958 CTLTYPE_NODE, ifname,
959 SYSCTL_DESCR("Interface controls"),
960 NULL, 0, NULL, 0,
961 CTL_CREATE, CTL_EOL) != 0)
962 goto bad;
963
964 if (sysctl_createv(clog, 0, &rnode, &rnode,
965 CTLFLAG_PERMANENT,
966 CTLTYPE_NODE, "rcvq",
967 SYSCTL_DESCR("Interface input queue controls"),
968 NULL, 0, NULL, 0,
969 CTL_CREATE, CTL_EOL) != 0)
970 goto bad;
971
972 #ifdef NOTYET
973 /* XXX Should show each per-CPU queue length? */
974 if (sysctl_createv(clog, 0, &rnode, &rnode,
975 CTLFLAG_PERMANENT,
976 CTLTYPE_INT, "len",
977 SYSCTL_DESCR("Current input queue length"),
978 sysctl_percpuq_len, 0, NULL, 0,
979 CTL_CREATE, CTL_EOL) != 0)
980 goto bad;
981
982 if (sysctl_createv(clog, 0, &rnode, &cnode,
983 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
984 CTLTYPE_INT, "maxlen",
985 SYSCTL_DESCR("Maximum allowed input queue length"),
986 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
987 CTL_CREATE, CTL_EOL) != 0)
988 goto bad;
989 #endif
990
991 if (sysctl_createv(clog, 0, &rnode, &cnode,
992 CTLFLAG_PERMANENT,
993 CTLTYPE_INT, "drops",
994 SYSCTL_DESCR("Total packets dropped due to full input queue"),
995 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
996 CTL_CREATE, CTL_EOL) != 0)
997 goto bad;
998
999 return;
1000 bad:
1001 printf("%s: could not attach sysctl nodes\n", ifname);
1002 return;
1003 }
1004
1005 /*
1006 * The deferred if_start framework
1007 *
1008 * The common APIs to defer if_start to softint when if_start is requested
1009 * from a device driver running in hardware interrupt context.
1010 */
1011 /*
1012 * Call ifp->if_start (or equivalent) in a dedicated softint for
1013 * deferred if_start.
1014 */
1015 static void
1016 if_deferred_start_softint(void *arg)
1017 {
1018 struct if_deferred_start *ids = arg;
1019 struct ifnet *ifp = ids->ids_ifp;
1020
1021 ids->ids_if_start(ifp);
1022 }
1023
1024 /*
1025 * The default callback function for deferred if_start.
1026 */
1027 static void
1028 if_deferred_start_common(struct ifnet *ifp)
1029 {
1030 int s;
1031
1032 s = splnet();
1033 if_start_lock(ifp);
1034 splx(s);
1035 }
1036
1037 static inline bool
1038 if_snd_is_used(struct ifnet *ifp)
1039 {
1040
1041 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1042 ifp->if_transmit == if_transmit ||
1043 ALTQ_IS_ENABLED(&ifp->if_snd);
1044 }
1045
1046 /*
1047 * Schedule deferred if_start.
1048 */
1049 void
1050 if_schedule_deferred_start(struct ifnet *ifp)
1051 {
1052
1053 KASSERT(ifp->if_deferred_start != NULL);
1054
1055 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1056 return;
1057
1058 softint_schedule(ifp->if_deferred_start->ids_si);
1059 }
1060
1061 /*
1062 * Create an instance of deferred if_start. A driver should call the function
1063 * only if the driver needs deferred if_start. Drivers can setup their own
1064 * deferred if_start function via 2nd argument.
1065 */
1066 void
1067 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1068 {
1069 struct if_deferred_start *ids;
1070 u_int flags = SOFTINT_NET;
1071
1072 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1073
1074 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1075 ids->ids_ifp = ifp;
1076 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1077 if (func != NULL)
1078 ids->ids_if_start = func;
1079 else
1080 ids->ids_if_start = if_deferred_start_common;
1081
1082 ifp->if_deferred_start = ids;
1083 }
1084
1085 static void
1086 if_deferred_start_destroy(struct ifnet *ifp)
1087 {
1088
1089 if (ifp->if_deferred_start == NULL)
1090 return;
1091
1092 softint_disestablish(ifp->if_deferred_start->ids_si);
1093 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1094 ifp->if_deferred_start = NULL;
1095 }
1096
1097 /*
1098 * The common interface input routine that is called by device drivers,
1099 * which should be used only when the driver's rx handler already runs
1100 * in softint.
1101 */
1102 void
1103 if_input(struct ifnet *ifp, struct mbuf *m)
1104 {
1105
1106 KASSERT(ifp->if_percpuq == NULL);
1107 KASSERT(!cpu_intr_p());
1108
1109 ifp->if_ipackets++;
1110 bpf_mtap(ifp, m, BPF_D_IN);
1111
1112 ifp->_if_input(ifp, m);
1113 }
1114
1115 /*
1116 * DEPRECATED. Use if_initialize and if_register instead.
1117 * See the above comment of if_initialize.
1118 *
1119 * Note that it implicitly enables if_percpuq to make drivers easy to
1120 * migrate softint-based if_input without much changes. If you don't
1121 * want to enable it, use if_initialize instead.
1122 */
1123 int
1124 if_attach(ifnet_t *ifp)
1125 {
1126 int rv;
1127
1128 rv = if_initialize(ifp);
1129 if (rv != 0)
1130 return rv;
1131
1132 ifp->if_percpuq = if_percpuq_create(ifp);
1133 if_register(ifp);
1134
1135 return 0;
1136 }
1137
1138 void
1139 if_attachdomain(void)
1140 {
1141 struct ifnet *ifp;
1142 int s;
1143 int bound = curlwp_bind();
1144
1145 s = pserialize_read_enter();
1146 IFNET_READER_FOREACH(ifp) {
1147 struct psref psref;
1148 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1149 pserialize_read_exit(s);
1150 if_attachdomain1(ifp);
1151 s = pserialize_read_enter();
1152 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1153 }
1154 pserialize_read_exit(s);
1155 curlwp_bindx(bound);
1156 }
1157
1158 static void
1159 if_attachdomain1(struct ifnet *ifp)
1160 {
1161 struct domain *dp;
1162 int s;
1163
1164 s = splsoftnet();
1165
1166 /* address family dependent data region */
1167 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1168 DOMAIN_FOREACH(dp) {
1169 if (dp->dom_ifattach != NULL)
1170 ifp->if_afdata[dp->dom_family] =
1171 (*dp->dom_ifattach)(ifp);
1172 }
1173
1174 splx(s);
1175 }
1176
1177 /*
1178 * Deactivate an interface. This points all of the procedure
1179 * handles at error stubs. May be called from interrupt context.
1180 */
1181 void
1182 if_deactivate(struct ifnet *ifp)
1183 {
1184 int s;
1185
1186 s = splsoftnet();
1187
1188 ifp->if_output = if_nulloutput;
1189 ifp->_if_input = if_nullinput;
1190 ifp->if_start = if_nullstart;
1191 ifp->if_transmit = if_nulltransmit;
1192 ifp->if_ioctl = if_nullioctl;
1193 ifp->if_init = if_nullinit;
1194 ifp->if_stop = if_nullstop;
1195 ifp->if_slowtimo = if_nullslowtimo;
1196 ifp->if_drain = if_nulldrain;
1197
1198 /* No more packets may be enqueued. */
1199 ifp->if_snd.ifq_maxlen = 0;
1200
1201 splx(s);
1202 }
1203
1204 bool
1205 if_is_deactivated(const struct ifnet *ifp)
1206 {
1207
1208 return ifp->if_output == if_nulloutput;
1209 }
1210
1211 void
1212 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1213 {
1214 struct ifaddr *ifa, *nifa;
1215 int s;
1216
1217 s = pserialize_read_enter();
1218 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1219 nifa = IFADDR_READER_NEXT(ifa);
1220 if (ifa->ifa_addr->sa_family != family)
1221 continue;
1222 pserialize_read_exit(s);
1223
1224 (*purgeaddr)(ifa);
1225
1226 s = pserialize_read_enter();
1227 }
1228 pserialize_read_exit(s);
1229 }
1230
1231 #ifdef IFAREF_DEBUG
1232 static struct ifaddr **ifa_list;
1233 static int ifa_list_size;
1234
1235 /* Depends on only one if_attach runs at once */
1236 static void
1237 if_build_ifa_list(struct ifnet *ifp)
1238 {
1239 struct ifaddr *ifa;
1240 int i;
1241
1242 KASSERT(ifa_list == NULL);
1243 KASSERT(ifa_list_size == 0);
1244
1245 IFADDR_READER_FOREACH(ifa, ifp)
1246 ifa_list_size++;
1247
1248 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1249 i = 0;
1250 IFADDR_READER_FOREACH(ifa, ifp) {
1251 ifa_list[i++] = ifa;
1252 ifaref(ifa);
1253 }
1254 }
1255
1256 static void
1257 if_check_and_free_ifa_list(struct ifnet *ifp)
1258 {
1259 int i;
1260 struct ifaddr *ifa;
1261
1262 if (ifa_list == NULL)
1263 return;
1264
1265 for (i = 0; i < ifa_list_size; i++) {
1266 char buf[64];
1267
1268 ifa = ifa_list[i];
1269 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1270 if (ifa->ifa_refcnt > 1) {
1271 log(LOG_WARNING,
1272 "ifa(%s) still referenced (refcnt=%d)\n",
1273 buf, ifa->ifa_refcnt - 1);
1274 } else
1275 log(LOG_DEBUG,
1276 "ifa(%s) not referenced (refcnt=%d)\n",
1277 buf, ifa->ifa_refcnt - 1);
1278 ifafree(ifa);
1279 }
1280
1281 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1282 ifa_list = NULL;
1283 ifa_list_size = 0;
1284 }
1285 #endif
1286
1287 /*
1288 * Detach an interface from the list of "active" interfaces,
1289 * freeing any resources as we go along.
1290 *
1291 * NOTE: This routine must be called with a valid thread context,
1292 * as it may block.
1293 */
1294 void
1295 if_detach(struct ifnet *ifp)
1296 {
1297 struct socket so;
1298 struct ifaddr *ifa;
1299 #ifdef IFAREF_DEBUG
1300 struct ifaddr *last_ifa = NULL;
1301 #endif
1302 struct domain *dp;
1303 const struct protosw *pr;
1304 int s, i, family, purged;
1305 uint64_t xc;
1306
1307 #ifdef IFAREF_DEBUG
1308 if_build_ifa_list(ifp);
1309 #endif
1310 /*
1311 * XXX It's kind of lame that we have to have the
1312 * XXX socket structure...
1313 */
1314 memset(&so, 0, sizeof(so));
1315
1316 s = splnet();
1317
1318 sysctl_teardown(&ifp->if_sysctl_log);
1319 IFNET_LOCK(ifp);
1320 if_deactivate(ifp);
1321 IFNET_UNLOCK(ifp);
1322
1323 /*
1324 * Unlink from the list and wait for all readers to leave
1325 * from pserialize read sections. Note that we can't do
1326 * psref_target_destroy here. See below.
1327 */
1328 IFNET_GLOBAL_LOCK();
1329 ifindex2ifnet[ifp->if_index] = NULL;
1330 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1331 IFNET_WRITER_REMOVE(ifp);
1332 pserialize_perform(ifnet_psz);
1333 IFNET_GLOBAL_UNLOCK();
1334
1335 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1336 ifp->if_slowtimo = NULL;
1337 callout_halt(ifp->if_slowtimo_ch, NULL);
1338 callout_destroy(ifp->if_slowtimo_ch);
1339 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1340 }
1341 if_deferred_start_destroy(ifp);
1342
1343 /*
1344 * Do an if_down() to give protocols a chance to do something.
1345 */
1346 if_down_deactivated(ifp);
1347
1348 #ifdef ALTQ
1349 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1350 altq_disable(&ifp->if_snd);
1351 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1352 altq_detach(&ifp->if_snd);
1353 #endif
1354
1355 #if NCARP > 0
1356 /* Remove the interface from any carp group it is a part of. */
1357 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1358 carp_ifdetach(ifp);
1359 #endif
1360
1361 /*
1362 * Rip all the addresses off the interface. This should make
1363 * all of the routes go away.
1364 *
1365 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1366 * from the list, including our "cursor", ifa. For safety,
1367 * and to honor the TAILQ abstraction, I just restart the
1368 * loop after each removal. Note that the loop will exit
1369 * when all of the remaining ifaddrs belong to the AF_LINK
1370 * family. I am counting on the historical fact that at
1371 * least one pr_usrreq in each address domain removes at
1372 * least one ifaddr.
1373 */
1374 again:
1375 /*
1376 * At this point, no other one tries to remove ifa in the list,
1377 * so we don't need to take a lock or psref. Avoid using
1378 * IFADDR_READER_FOREACH to pass over an inspection of contract
1379 * violations of pserialize.
1380 */
1381 IFADDR_WRITER_FOREACH(ifa, ifp) {
1382 family = ifa->ifa_addr->sa_family;
1383 #ifdef IFAREF_DEBUG
1384 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1385 ifa, family, ifa->ifa_refcnt);
1386 if (last_ifa != NULL && ifa == last_ifa)
1387 panic("if_detach: loop detected");
1388 last_ifa = ifa;
1389 #endif
1390 if (family == AF_LINK)
1391 continue;
1392 dp = pffinddomain(family);
1393 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1394 /*
1395 * XXX These PURGEIF calls are redundant with the
1396 * purge-all-families calls below, but are left in for
1397 * now both to make a smaller change, and to avoid
1398 * unplanned interactions with clearing of
1399 * ifp->if_addrlist.
1400 */
1401 purged = 0;
1402 for (pr = dp->dom_protosw;
1403 pr < dp->dom_protoswNPROTOSW; pr++) {
1404 so.so_proto = pr;
1405 if (pr->pr_usrreqs) {
1406 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1407 purged = 1;
1408 }
1409 }
1410 if (purged == 0) {
1411 /*
1412 * XXX What's really the best thing to do
1413 * XXX here? --thorpej (at) NetBSD.org
1414 */
1415 printf("if_detach: WARNING: AF %d not purged\n",
1416 family);
1417 ifa_remove(ifp, ifa);
1418 }
1419 goto again;
1420 }
1421
1422 if_free_sadl(ifp, 1);
1423
1424 restart:
1425 IFADDR_WRITER_FOREACH(ifa, ifp) {
1426 family = ifa->ifa_addr->sa_family;
1427 KASSERT(family == AF_LINK);
1428 ifa_remove(ifp, ifa);
1429 goto restart;
1430 }
1431
1432 /* Delete stray routes from the routing table. */
1433 for (i = 0; i <= AF_MAX; i++)
1434 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1435
1436 DOMAIN_FOREACH(dp) {
1437 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1438 {
1439 void *p = ifp->if_afdata[dp->dom_family];
1440 if (p) {
1441 ifp->if_afdata[dp->dom_family] = NULL;
1442 (*dp->dom_ifdetach)(ifp, p);
1443 }
1444 }
1445
1446 /*
1447 * One would expect multicast memberships (INET and
1448 * INET6) on UDP sockets to be purged by the PURGEIF
1449 * calls above, but if all addresses were removed from
1450 * the interface prior to destruction, the calls will
1451 * not be made (e.g. ppp, for which pppd(8) generally
1452 * removes addresses before destroying the interface).
1453 * Because there is no invariant that multicast
1454 * memberships only exist for interfaces with IPv4
1455 * addresses, we must call PURGEIF regardless of
1456 * addresses. (Protocols which might store ifnet
1457 * pointers are marked with PR_PURGEIF.)
1458 */
1459 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1460 so.so_proto = pr;
1461 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1462 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1463 }
1464 }
1465
1466 /*
1467 * Must be done after the above pr_purgeif because if_psref may be
1468 * still used in pr_purgeif.
1469 */
1470 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1471 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1472
1473 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1474 (void)pfil_head_destroy(ifp->if_pfil);
1475
1476 /* Announce that the interface is gone. */
1477 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1478
1479 IF_AFDATA_LOCK_DESTROY(ifp);
1480
1481 if (if_is_link_state_changeable(ifp)) {
1482 softint_disestablish(ifp->if_link_si);
1483 ifp->if_link_si = NULL;
1484 }
1485
1486 /*
1487 * remove packets that came from ifp, from software interrupt queues.
1488 */
1489 DOMAIN_FOREACH(dp) {
1490 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1491 struct ifqueue *iq = dp->dom_ifqueues[i];
1492 if (iq == NULL)
1493 break;
1494 dp->dom_ifqueues[i] = NULL;
1495 if_detach_queues(ifp, iq);
1496 }
1497 }
1498
1499 /*
1500 * IP queues have to be processed separately: net-queue barrier
1501 * ensures that the packets are dequeued while a cross-call will
1502 * ensure that the interrupts have completed. FIXME: not quite..
1503 */
1504 #ifdef INET
1505 pktq_barrier(ip_pktq);
1506 #endif
1507 #ifdef INET6
1508 if (in6_present)
1509 pktq_barrier(ip6_pktq);
1510 #endif
1511 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1512 xc_wait(xc);
1513
1514 if (ifp->if_percpuq != NULL) {
1515 if_percpuq_destroy(ifp->if_percpuq);
1516 ifp->if_percpuq = NULL;
1517 }
1518
1519 mutex_obj_free(ifp->if_ioctl_lock);
1520 ifp->if_ioctl_lock = NULL;
1521 mutex_obj_free(ifp->if_snd.ifq_lock);
1522
1523 splx(s);
1524
1525 #ifdef IFAREF_DEBUG
1526 if_check_and_free_ifa_list(ifp);
1527 #endif
1528 }
1529
1530 static void
1531 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1532 {
1533 struct mbuf *m, *prev, *next;
1534
1535 prev = NULL;
1536 for (m = q->ifq_head; m != NULL; m = next) {
1537 KASSERT((m->m_flags & M_PKTHDR) != 0);
1538
1539 next = m->m_nextpkt;
1540 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1541 prev = m;
1542 continue;
1543 }
1544
1545 if (prev != NULL)
1546 prev->m_nextpkt = m->m_nextpkt;
1547 else
1548 q->ifq_head = m->m_nextpkt;
1549 if (q->ifq_tail == m)
1550 q->ifq_tail = prev;
1551 q->ifq_len--;
1552
1553 m->m_nextpkt = NULL;
1554 m_freem(m);
1555 IF_DROP(q);
1556 }
1557 }
1558
1559 /*
1560 * Callback for a radix tree walk to delete all references to an
1561 * ifnet.
1562 */
1563 static int
1564 if_delroute_matcher(struct rtentry *rt, void *v)
1565 {
1566 struct ifnet *ifp = (struct ifnet *)v;
1567
1568 if (rt->rt_ifp == ifp)
1569 return 1;
1570 else
1571 return 0;
1572 }
1573
1574 /*
1575 * Create a clone network interface.
1576 */
1577 static int
1578 if_clone_create(const char *name)
1579 {
1580 struct if_clone *ifc;
1581 int unit;
1582 struct ifnet *ifp;
1583 struct psref psref;
1584
1585 KASSERT(mutex_owned(&if_clone_mtx));
1586
1587 ifc = if_clone_lookup(name, &unit);
1588 if (ifc == NULL)
1589 return EINVAL;
1590
1591 ifp = if_get(name, &psref);
1592 if (ifp != NULL) {
1593 if_put(ifp, &psref);
1594 return EEXIST;
1595 }
1596
1597 return (*ifc->ifc_create)(ifc, unit);
1598 }
1599
1600 /*
1601 * Destroy a clone network interface.
1602 */
1603 static int
1604 if_clone_destroy(const char *name)
1605 {
1606 struct if_clone *ifc;
1607 struct ifnet *ifp;
1608 struct psref psref;
1609
1610 KASSERT(mutex_owned(&if_clone_mtx));
1611
1612 ifc = if_clone_lookup(name, NULL);
1613 if (ifc == NULL)
1614 return EINVAL;
1615
1616 if (ifc->ifc_destroy == NULL)
1617 return EOPNOTSUPP;
1618
1619 ifp = if_get(name, &psref);
1620 if (ifp == NULL)
1621 return ENXIO;
1622
1623 /* We have to disable ioctls here */
1624 IFNET_LOCK(ifp);
1625 ifp->if_ioctl = if_nullioctl;
1626 IFNET_UNLOCK(ifp);
1627
1628 /*
1629 * We cannot call ifc_destroy with holding ifp.
1630 * Releasing ifp here is safe thanks to if_clone_mtx.
1631 */
1632 if_put(ifp, &psref);
1633
1634 return (*ifc->ifc_destroy)(ifp);
1635 }
1636
1637 static bool
1638 if_is_unit(const char *name)
1639 {
1640
1641 while(*name != '\0') {
1642 if (*name < '0' || *name > '9')
1643 return false;
1644 name++;
1645 }
1646
1647 return true;
1648 }
1649
1650 /*
1651 * Look up a network interface cloner.
1652 */
1653 static struct if_clone *
1654 if_clone_lookup(const char *name, int *unitp)
1655 {
1656 struct if_clone *ifc;
1657 const char *cp;
1658 char *dp, ifname[IFNAMSIZ + 3];
1659 int unit;
1660
1661 KASSERT(mutex_owned(&if_clone_mtx));
1662
1663 strcpy(ifname, "if_");
1664 /* separate interface name from unit */
1665 /* TODO: search unit number from backward */
1666 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1667 *cp && !if_is_unit(cp);)
1668 *dp++ = *cp++;
1669
1670 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1671 return NULL; /* No name or unit number */
1672 *dp++ = '\0';
1673
1674 again:
1675 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1676 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1677 break;
1678 }
1679
1680 if (ifc == NULL) {
1681 int error;
1682 if (*ifname == '\0')
1683 return NULL;
1684 mutex_exit(&if_clone_mtx);
1685 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1686 mutex_enter(&if_clone_mtx);
1687 if (error)
1688 return NULL;
1689 *ifname = '\0';
1690 goto again;
1691 }
1692
1693 unit = 0;
1694 while (cp - name < IFNAMSIZ && *cp) {
1695 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1696 /* Bogus unit number. */
1697 return NULL;
1698 }
1699 unit = (unit * 10) + (*cp++ - '0');
1700 }
1701
1702 if (unitp != NULL)
1703 *unitp = unit;
1704 return ifc;
1705 }
1706
1707 /*
1708 * Register a network interface cloner.
1709 */
1710 void
1711 if_clone_attach(struct if_clone *ifc)
1712 {
1713
1714 mutex_enter(&if_clone_mtx);
1715 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1716 if_cloners_count++;
1717 mutex_exit(&if_clone_mtx);
1718 }
1719
1720 /*
1721 * Unregister a network interface cloner.
1722 */
1723 void
1724 if_clone_detach(struct if_clone *ifc)
1725 {
1726
1727 mutex_enter(&if_clone_mtx);
1728 LIST_REMOVE(ifc, ifc_list);
1729 if_cloners_count--;
1730 mutex_exit(&if_clone_mtx);
1731 }
1732
1733 /*
1734 * Provide list of interface cloners to userspace.
1735 */
1736 int
1737 if_clone_list(int buf_count, char *buffer, int *total)
1738 {
1739 char outbuf[IFNAMSIZ], *dst;
1740 struct if_clone *ifc;
1741 int count, error = 0;
1742
1743 mutex_enter(&if_clone_mtx);
1744 *total = if_cloners_count;
1745 if ((dst = buffer) == NULL) {
1746 /* Just asking how many there are. */
1747 goto out;
1748 }
1749
1750 if (buf_count < 0) {
1751 error = EINVAL;
1752 goto out;
1753 }
1754
1755 count = (if_cloners_count < buf_count) ?
1756 if_cloners_count : buf_count;
1757
1758 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1759 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1760 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1761 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1762 error = ENAMETOOLONG;
1763 goto out;
1764 }
1765 error = copyout(outbuf, dst, sizeof(outbuf));
1766 if (error != 0)
1767 break;
1768 }
1769
1770 out:
1771 mutex_exit(&if_clone_mtx);
1772 return error;
1773 }
1774
1775 void
1776 ifa_psref_init(struct ifaddr *ifa)
1777 {
1778
1779 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1780 }
1781
1782 void
1783 ifaref(struct ifaddr *ifa)
1784 {
1785
1786 atomic_inc_uint(&ifa->ifa_refcnt);
1787 }
1788
1789 void
1790 ifafree(struct ifaddr *ifa)
1791 {
1792 KASSERT(ifa != NULL);
1793 KASSERT(ifa->ifa_refcnt > 0);
1794
1795 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1796 free(ifa, M_IFADDR);
1797 }
1798 }
1799
1800 bool
1801 ifa_is_destroying(struct ifaddr *ifa)
1802 {
1803
1804 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1805 }
1806
1807 void
1808 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1809 {
1810
1811 ifa->ifa_ifp = ifp;
1812
1813 /*
1814 * Check MP-safety for IFEF_MPSAFE drivers.
1815 * Check !IFF_RUNNING for initialization routines that normally don't
1816 * take IFNET_LOCK but it's safe because there is no competitor.
1817 * XXX there are false positive cases because IFF_RUNNING can be off on
1818 * if_stop.
1819 */
1820 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1821 IFNET_LOCKED(ifp));
1822
1823 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1824 IFADDR_ENTRY_INIT(ifa);
1825 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1826
1827 ifaref(ifa);
1828 }
1829
1830 void
1831 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1832 {
1833
1834 KASSERT(ifa->ifa_ifp == ifp);
1835 /*
1836 * Check MP-safety for IFEF_MPSAFE drivers.
1837 * if_is_deactivated indicates ifa_remove is called form if_detach
1838 * where is safe even if IFNET_LOCK isn't held.
1839 */
1840 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1841
1842 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1843 IFADDR_WRITER_REMOVE(ifa);
1844 #ifdef NET_MPSAFE
1845 IFNET_GLOBAL_LOCK();
1846 pserialize_perform(ifnet_psz);
1847 IFNET_GLOBAL_UNLOCK();
1848 #endif
1849
1850 #ifdef NET_MPSAFE
1851 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1852 #endif
1853 IFADDR_ENTRY_DESTROY(ifa);
1854 ifafree(ifa);
1855 }
1856
1857 void
1858 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1859 {
1860
1861 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1862 }
1863
1864 void
1865 ifa_release(struct ifaddr *ifa, struct psref *psref)
1866 {
1867
1868 if (ifa == NULL)
1869 return;
1870
1871 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1872 }
1873
1874 bool
1875 ifa_held(struct ifaddr *ifa)
1876 {
1877
1878 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1879 }
1880
1881 static inline int
1882 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1883 {
1884 return sockaddr_cmp(sa1, sa2) == 0;
1885 }
1886
1887 /*
1888 * Locate an interface based on a complete address.
1889 */
1890 /*ARGSUSED*/
1891 struct ifaddr *
1892 ifa_ifwithaddr(const struct sockaddr *addr)
1893 {
1894 struct ifnet *ifp;
1895 struct ifaddr *ifa;
1896
1897 IFNET_READER_FOREACH(ifp) {
1898 if (if_is_deactivated(ifp))
1899 continue;
1900 IFADDR_READER_FOREACH(ifa, ifp) {
1901 if (ifa->ifa_addr->sa_family != addr->sa_family)
1902 continue;
1903 if (equal(addr, ifa->ifa_addr))
1904 return ifa;
1905 if ((ifp->if_flags & IFF_BROADCAST) &&
1906 ifa->ifa_broadaddr &&
1907 /* IP6 doesn't have broadcast */
1908 ifa->ifa_broadaddr->sa_len != 0 &&
1909 equal(ifa->ifa_broadaddr, addr))
1910 return ifa;
1911 }
1912 }
1913 return NULL;
1914 }
1915
1916 struct ifaddr *
1917 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1918 {
1919 struct ifaddr *ifa;
1920 int s = pserialize_read_enter();
1921
1922 ifa = ifa_ifwithaddr(addr);
1923 if (ifa != NULL)
1924 ifa_acquire(ifa, psref);
1925 pserialize_read_exit(s);
1926
1927 return ifa;
1928 }
1929
1930 /*
1931 * Locate the point to point interface with a given destination address.
1932 */
1933 /*ARGSUSED*/
1934 struct ifaddr *
1935 ifa_ifwithdstaddr(const struct sockaddr *addr)
1936 {
1937 struct ifnet *ifp;
1938 struct ifaddr *ifa;
1939
1940 IFNET_READER_FOREACH(ifp) {
1941 if (if_is_deactivated(ifp))
1942 continue;
1943 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1944 continue;
1945 IFADDR_READER_FOREACH(ifa, ifp) {
1946 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1947 ifa->ifa_dstaddr == NULL)
1948 continue;
1949 if (equal(addr, ifa->ifa_dstaddr))
1950 return ifa;
1951 }
1952 }
1953
1954 return NULL;
1955 }
1956
1957 struct ifaddr *
1958 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1959 {
1960 struct ifaddr *ifa;
1961 int s;
1962
1963 s = pserialize_read_enter();
1964 ifa = ifa_ifwithdstaddr(addr);
1965 if (ifa != NULL)
1966 ifa_acquire(ifa, psref);
1967 pserialize_read_exit(s);
1968
1969 return ifa;
1970 }
1971
1972 /*
1973 * Find an interface on a specific network. If many, choice
1974 * is most specific found.
1975 */
1976 struct ifaddr *
1977 ifa_ifwithnet(const struct sockaddr *addr)
1978 {
1979 struct ifnet *ifp;
1980 struct ifaddr *ifa, *ifa_maybe = NULL;
1981 const struct sockaddr_dl *sdl;
1982 u_int af = addr->sa_family;
1983 const char *addr_data = addr->sa_data, *cplim;
1984
1985 if (af == AF_LINK) {
1986 sdl = satocsdl(addr);
1987 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1988 ifindex2ifnet[sdl->sdl_index] &&
1989 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1990 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1991 }
1992 }
1993 #ifdef NETATALK
1994 if (af == AF_APPLETALK) {
1995 const struct sockaddr_at *sat, *sat2;
1996 sat = (const struct sockaddr_at *)addr;
1997 IFNET_READER_FOREACH(ifp) {
1998 if (if_is_deactivated(ifp))
1999 continue;
2000 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2001 if (ifa == NULL)
2002 continue;
2003 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2004 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2005 return ifa; /* exact match */
2006 if (ifa_maybe == NULL) {
2007 /* else keep the if with the right range */
2008 ifa_maybe = ifa;
2009 }
2010 }
2011 return ifa_maybe;
2012 }
2013 #endif
2014 IFNET_READER_FOREACH(ifp) {
2015 if (if_is_deactivated(ifp))
2016 continue;
2017 IFADDR_READER_FOREACH(ifa, ifp) {
2018 const char *cp, *cp2, *cp3;
2019
2020 if (ifa->ifa_addr->sa_family != af ||
2021 ifa->ifa_netmask == NULL)
2022 next: continue;
2023 cp = addr_data;
2024 cp2 = ifa->ifa_addr->sa_data;
2025 cp3 = ifa->ifa_netmask->sa_data;
2026 cplim = (const char *)ifa->ifa_netmask +
2027 ifa->ifa_netmask->sa_len;
2028 while (cp3 < cplim) {
2029 if ((*cp++ ^ *cp2++) & *cp3++) {
2030 /* want to continue for() loop */
2031 goto next;
2032 }
2033 }
2034 if (ifa_maybe == NULL ||
2035 rt_refines(ifa->ifa_netmask,
2036 ifa_maybe->ifa_netmask))
2037 ifa_maybe = ifa;
2038 }
2039 }
2040 return ifa_maybe;
2041 }
2042
2043 struct ifaddr *
2044 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2045 {
2046 struct ifaddr *ifa;
2047 int s;
2048
2049 s = pserialize_read_enter();
2050 ifa = ifa_ifwithnet(addr);
2051 if (ifa != NULL)
2052 ifa_acquire(ifa, psref);
2053 pserialize_read_exit(s);
2054
2055 return ifa;
2056 }
2057
2058 /*
2059 * Find the interface of the addresss.
2060 */
2061 struct ifaddr *
2062 ifa_ifwithladdr(const struct sockaddr *addr)
2063 {
2064 struct ifaddr *ia;
2065
2066 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2067 (ia = ifa_ifwithnet(addr)))
2068 return ia;
2069 return NULL;
2070 }
2071
2072 struct ifaddr *
2073 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2074 {
2075 struct ifaddr *ifa;
2076 int s;
2077
2078 s = pserialize_read_enter();
2079 ifa = ifa_ifwithladdr(addr);
2080 if (ifa != NULL)
2081 ifa_acquire(ifa, psref);
2082 pserialize_read_exit(s);
2083
2084 return ifa;
2085 }
2086
2087 /*
2088 * Find an interface using a specific address family
2089 */
2090 struct ifaddr *
2091 ifa_ifwithaf(int af)
2092 {
2093 struct ifnet *ifp;
2094 struct ifaddr *ifa = NULL;
2095 int s;
2096
2097 s = pserialize_read_enter();
2098 IFNET_READER_FOREACH(ifp) {
2099 if (if_is_deactivated(ifp))
2100 continue;
2101 IFADDR_READER_FOREACH(ifa, ifp) {
2102 if (ifa->ifa_addr->sa_family == af)
2103 goto out;
2104 }
2105 }
2106 out:
2107 pserialize_read_exit(s);
2108 return ifa;
2109 }
2110
2111 /*
2112 * Find an interface address specific to an interface best matching
2113 * a given address.
2114 */
2115 struct ifaddr *
2116 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2117 {
2118 struct ifaddr *ifa;
2119 const char *cp, *cp2, *cp3;
2120 const char *cplim;
2121 struct ifaddr *ifa_maybe = 0;
2122 u_int af = addr->sa_family;
2123
2124 if (if_is_deactivated(ifp))
2125 return NULL;
2126
2127 if (af >= AF_MAX)
2128 return NULL;
2129
2130 IFADDR_READER_FOREACH(ifa, ifp) {
2131 if (ifa->ifa_addr->sa_family != af)
2132 continue;
2133 ifa_maybe = ifa;
2134 if (ifa->ifa_netmask == NULL) {
2135 if (equal(addr, ifa->ifa_addr) ||
2136 (ifa->ifa_dstaddr &&
2137 equal(addr, ifa->ifa_dstaddr)))
2138 return ifa;
2139 continue;
2140 }
2141 cp = addr->sa_data;
2142 cp2 = ifa->ifa_addr->sa_data;
2143 cp3 = ifa->ifa_netmask->sa_data;
2144 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2145 for (; cp3 < cplim; cp3++) {
2146 if ((*cp++ ^ *cp2++) & *cp3)
2147 break;
2148 }
2149 if (cp3 == cplim)
2150 return ifa;
2151 }
2152 return ifa_maybe;
2153 }
2154
2155 struct ifaddr *
2156 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2157 struct psref *psref)
2158 {
2159 struct ifaddr *ifa;
2160 int s;
2161
2162 s = pserialize_read_enter();
2163 ifa = ifaof_ifpforaddr(addr, ifp);
2164 if (ifa != NULL)
2165 ifa_acquire(ifa, psref);
2166 pserialize_read_exit(s);
2167
2168 return ifa;
2169 }
2170
2171 /*
2172 * Default action when installing a route with a Link Level gateway.
2173 * Lookup an appropriate real ifa to point to.
2174 * This should be moved to /sys/net/link.c eventually.
2175 */
2176 void
2177 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2178 {
2179 struct ifaddr *ifa;
2180 const struct sockaddr *dst;
2181 struct ifnet *ifp;
2182 struct psref psref;
2183
2184 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2185 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL ||
2186 ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2187 return;
2188 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2189 rt_replace_ifa(rt, ifa);
2190 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2191 ifa->ifa_rtrequest(cmd, rt, info);
2192 ifa_release(ifa, &psref);
2193 }
2194 }
2195
2196 /*
2197 * bitmask macros to manage a densely packed link_state change queue.
2198 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2199 * LINK_STATE_UP(2) we need 2 bits for each state change.
2200 * As a state change to store is 0, treat all bits set as an unset item.
2201 */
2202 #define LQ_ITEM_BITS 2
2203 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2204 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2205 #define LINK_STATE_UNSET LQ_ITEM_MASK
2206 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2207 #define LQ_STORE(q, i, v) \
2208 do { \
2209 (q) &= ~LQ_MASK((i)); \
2210 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2211 } while (0 /* CONSTCOND */)
2212 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2213 #define LQ_POP(q, v) \
2214 do { \
2215 (v) = LQ_ITEM((q), 0); \
2216 (q) >>= LQ_ITEM_BITS; \
2217 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2218 } while (0 /* CONSTCOND */)
2219 #define LQ_PUSH(q, v) \
2220 do { \
2221 (q) >>= LQ_ITEM_BITS; \
2222 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2223 } while (0 /* CONSTCOND */)
2224 #define LQ_FIND_UNSET(q, i) \
2225 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2226 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2227 break; \
2228 }
2229
2230 /*
2231 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2232 * for each ifnet. It doesn't matter because:
2233 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2234 * ifq_lock don't happen
2235 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2236 * because if_snd, if_link_state_change and if_link_state_change_softint
2237 * are all called with KERNEL_LOCK
2238 */
2239 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2240 mutex_enter((ifp)->if_snd.ifq_lock)
2241 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2242 mutex_exit((ifp)->if_snd.ifq_lock)
2243
2244 /*
2245 * Handle a change in the interface link state and
2246 * queue notifications.
2247 */
2248 void
2249 if_link_state_change(struct ifnet *ifp, int link_state)
2250 {
2251 int idx;
2252
2253 KASSERTMSG(if_is_link_state_changeable(ifp),
2254 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2255 ifp->if_xname, ifp->if_extflags);
2256
2257 /* Ensure change is to a valid state */
2258 switch (link_state) {
2259 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2260 case LINK_STATE_DOWN: /* FALLTHROUGH */
2261 case LINK_STATE_UP:
2262 break;
2263 default:
2264 #ifdef DEBUG
2265 printf("%s: invalid link state %d\n",
2266 ifp->if_xname, link_state);
2267 #endif
2268 return;
2269 }
2270
2271 IF_LINK_STATE_CHANGE_LOCK(ifp);
2272
2273 /* Find the last unset event in the queue. */
2274 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2275
2276 /*
2277 * Ensure link_state doesn't match the last event in the queue.
2278 * ifp->if_link_state is not checked and set here because
2279 * that would present an inconsistent picture to the system.
2280 */
2281 if (idx != 0 &&
2282 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2283 goto out;
2284
2285 /* Handle queue overflow. */
2286 if (idx == LQ_MAX(ifp->if_link_queue)) {
2287 uint8_t lost;
2288
2289 /*
2290 * The DOWN state must be protected from being pushed off
2291 * the queue to ensure that userland will always be
2292 * in a sane state.
2293 * Because DOWN is protected, there is no need to protect
2294 * UNKNOWN.
2295 * It should be invalid to change from any other state to
2296 * UNKNOWN anyway ...
2297 */
2298 lost = LQ_ITEM(ifp->if_link_queue, 0);
2299 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2300 if (lost == LINK_STATE_DOWN) {
2301 lost = LQ_ITEM(ifp->if_link_queue, 0);
2302 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2303 }
2304 printf("%s: lost link state change %s\n",
2305 ifp->if_xname,
2306 lost == LINK_STATE_UP ? "UP" :
2307 lost == LINK_STATE_DOWN ? "DOWN" :
2308 "UNKNOWN");
2309 } else
2310 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2311
2312 softint_schedule(ifp->if_link_si);
2313
2314 out:
2315 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2316 }
2317
2318 /*
2319 * Handle interface link state change notifications.
2320 */
2321 void
2322 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2323 {
2324 struct domain *dp;
2325 int s = splnet();
2326 bool notify;
2327
2328 KASSERT(!cpu_intr_p());
2329
2330 IF_LINK_STATE_CHANGE_LOCK(ifp);
2331
2332 /* Ensure the change is still valid. */
2333 if (ifp->if_link_state == link_state) {
2334 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2335 splx(s);
2336 return;
2337 }
2338
2339 #ifdef DEBUG
2340 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2341 link_state == LINK_STATE_UP ? "UP" :
2342 link_state == LINK_STATE_DOWN ? "DOWN" :
2343 "UNKNOWN",
2344 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2345 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2346 "UNKNOWN");
2347 #endif
2348
2349 /*
2350 * When going from UNKNOWN to UP, we need to mark existing
2351 * addresses as tentative and restart DAD as we may have
2352 * erroneously not found a duplicate.
2353 *
2354 * This needs to happen before rt_ifmsg to avoid a race where
2355 * listeners would have an address and expect it to work right
2356 * away.
2357 */
2358 notify = (link_state == LINK_STATE_UP &&
2359 ifp->if_link_state == LINK_STATE_UNKNOWN);
2360 ifp->if_link_state = link_state;
2361 /* The following routines may sleep so release the spin mutex */
2362 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2363
2364 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2365 if (notify) {
2366 DOMAIN_FOREACH(dp) {
2367 if (dp->dom_if_link_state_change != NULL)
2368 dp->dom_if_link_state_change(ifp,
2369 LINK_STATE_DOWN);
2370 }
2371 }
2372
2373 /* Notify that the link state has changed. */
2374 rt_ifmsg(ifp);
2375
2376 #if NCARP > 0
2377 if (ifp->if_carp)
2378 carp_carpdev_state(ifp);
2379 #endif
2380
2381 DOMAIN_FOREACH(dp) {
2382 if (dp->dom_if_link_state_change != NULL)
2383 dp->dom_if_link_state_change(ifp, link_state);
2384 }
2385 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2386 splx(s);
2387 }
2388
2389 /*
2390 * Process the interface link state change queue.
2391 */
2392 static void
2393 if_link_state_change_si(void *arg)
2394 {
2395 struct ifnet *ifp = arg;
2396 int s;
2397 uint8_t state;
2398 bool schedule;
2399
2400 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2401 s = splnet();
2402
2403 /* Pop a link state change from the queue and process it. */
2404 IF_LINK_STATE_CHANGE_LOCK(ifp);
2405 LQ_POP(ifp->if_link_queue, state);
2406 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2407
2408 if_link_state_change_softint(ifp, state);
2409
2410 /* If there is a link state change to come, schedule it. */
2411 IF_LINK_STATE_CHANGE_LOCK(ifp);
2412 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2413 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2414 if (schedule)
2415 softint_schedule(ifp->if_link_si);
2416
2417 splx(s);
2418 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2419 }
2420
2421 /*
2422 * Default action when installing a local route on a point-to-point
2423 * interface.
2424 */
2425 void
2426 p2p_rtrequest(int req, struct rtentry *rt,
2427 __unused const struct rt_addrinfo *info)
2428 {
2429 struct ifnet *ifp = rt->rt_ifp;
2430 struct ifaddr *ifa, *lo0ifa;
2431 int s = pserialize_read_enter();
2432
2433 switch (req) {
2434 case RTM_ADD:
2435 if ((rt->rt_flags & RTF_LOCAL) == 0)
2436 break;
2437
2438 rt->rt_ifp = lo0ifp;
2439
2440 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2441 break;
2442
2443 IFADDR_READER_FOREACH(ifa, ifp) {
2444 if (equal(rt_getkey(rt), ifa->ifa_addr))
2445 break;
2446 }
2447 if (ifa == NULL)
2448 break;
2449
2450 /*
2451 * Ensure lo0 has an address of the same family.
2452 */
2453 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2454 if (lo0ifa->ifa_addr->sa_family ==
2455 ifa->ifa_addr->sa_family)
2456 break;
2457 }
2458 if (lo0ifa == NULL)
2459 break;
2460
2461 /*
2462 * Make sure to set rt->rt_ifa to the interface
2463 * address we are using, otherwise we will have trouble
2464 * with source address selection.
2465 */
2466 if (ifa != rt->rt_ifa)
2467 rt_replace_ifa(rt, ifa);
2468 break;
2469 case RTM_DELETE:
2470 default:
2471 break;
2472 }
2473 pserialize_read_exit(s);
2474 }
2475
2476 static void
2477 _if_down(struct ifnet *ifp)
2478 {
2479 struct ifaddr *ifa;
2480 struct domain *dp;
2481 int s, bound;
2482 struct psref psref;
2483
2484 ifp->if_flags &= ~IFF_UP;
2485 nanotime(&ifp->if_lastchange);
2486
2487 bound = curlwp_bind();
2488 s = pserialize_read_enter();
2489 IFADDR_READER_FOREACH(ifa, ifp) {
2490 ifa_acquire(ifa, &psref);
2491 pserialize_read_exit(s);
2492
2493 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2494
2495 s = pserialize_read_enter();
2496 ifa_release(ifa, &psref);
2497 }
2498 pserialize_read_exit(s);
2499 curlwp_bindx(bound);
2500
2501 IFQ_PURGE(&ifp->if_snd);
2502 #if NCARP > 0
2503 if (ifp->if_carp)
2504 carp_carpdev_state(ifp);
2505 #endif
2506 rt_ifmsg(ifp);
2507 DOMAIN_FOREACH(dp) {
2508 if (dp->dom_if_down)
2509 dp->dom_if_down(ifp);
2510 }
2511 }
2512
2513 static void
2514 if_down_deactivated(struct ifnet *ifp)
2515 {
2516
2517 KASSERT(if_is_deactivated(ifp));
2518 _if_down(ifp);
2519 }
2520
2521 void
2522 if_down_locked(struct ifnet *ifp)
2523 {
2524
2525 KASSERT(IFNET_LOCKED(ifp));
2526 _if_down(ifp);
2527 }
2528
2529 /*
2530 * Mark an interface down and notify protocols of
2531 * the transition.
2532 * NOTE: must be called at splsoftnet or equivalent.
2533 */
2534 void
2535 if_down(struct ifnet *ifp)
2536 {
2537
2538 IFNET_LOCK(ifp);
2539 if_down_locked(ifp);
2540 IFNET_UNLOCK(ifp);
2541 }
2542
2543 /*
2544 * Must be called with holding if_ioctl_lock.
2545 */
2546 static void
2547 if_up_locked(struct ifnet *ifp)
2548 {
2549 #ifdef notyet
2550 struct ifaddr *ifa;
2551 #endif
2552 struct domain *dp;
2553
2554 KASSERT(IFNET_LOCKED(ifp));
2555
2556 KASSERT(!if_is_deactivated(ifp));
2557 ifp->if_flags |= IFF_UP;
2558 nanotime(&ifp->if_lastchange);
2559 #ifdef notyet
2560 /* this has no effect on IP, and will kill all ISO connections XXX */
2561 IFADDR_READER_FOREACH(ifa, ifp)
2562 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2563 #endif
2564 #if NCARP > 0
2565 if (ifp->if_carp)
2566 carp_carpdev_state(ifp);
2567 #endif
2568 rt_ifmsg(ifp);
2569 DOMAIN_FOREACH(dp) {
2570 if (dp->dom_if_up)
2571 dp->dom_if_up(ifp);
2572 }
2573 }
2574
2575 /*
2576 * Handle interface slowtimo timer routine. Called
2577 * from softclock, we decrement timer (if set) and
2578 * call the appropriate interface routine on expiration.
2579 */
2580 static void
2581 if_slowtimo(void *arg)
2582 {
2583 void (*slowtimo)(struct ifnet *);
2584 struct ifnet *ifp = arg;
2585 int s;
2586
2587 slowtimo = ifp->if_slowtimo;
2588 if (__predict_false(slowtimo == NULL))
2589 return;
2590
2591 s = splnet();
2592 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2593 (*slowtimo)(ifp);
2594
2595 splx(s);
2596
2597 if (__predict_true(ifp->if_slowtimo != NULL))
2598 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2599 }
2600
2601 /*
2602 * Mark an interface up and notify protocols of
2603 * the transition.
2604 * NOTE: must be called at splsoftnet or equivalent.
2605 */
2606 void
2607 if_up(struct ifnet *ifp)
2608 {
2609
2610 IFNET_LOCK(ifp);
2611 if_up_locked(ifp);
2612 IFNET_UNLOCK(ifp);
2613 }
2614
2615 /*
2616 * Set/clear promiscuous mode on interface ifp based on the truth value
2617 * of pswitch. The calls are reference counted so that only the first
2618 * "on" request actually has an effect, as does the final "off" request.
2619 * Results are undefined if the "off" and "on" requests are not matched.
2620 */
2621 int
2622 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2623 {
2624 int pcount, ret = 0;
2625 short nflags;
2626
2627 KASSERT(IFNET_LOCKED(ifp));
2628
2629 pcount = ifp->if_pcount;
2630 if (pswitch) {
2631 /*
2632 * Allow the device to be "placed" into promiscuous
2633 * mode even if it is not configured up. It will
2634 * consult IFF_PROMISC when it is brought up.
2635 */
2636 if (ifp->if_pcount++ != 0)
2637 goto out;
2638 nflags = ifp->if_flags | IFF_PROMISC;
2639 } else {
2640 if (--ifp->if_pcount > 0)
2641 goto out;
2642 nflags = ifp->if_flags & ~IFF_PROMISC;
2643 }
2644 ret = if_flags_set(ifp, nflags);
2645 /* Restore interface state if not successful. */
2646 if (ret != 0) {
2647 ifp->if_pcount = pcount;
2648 }
2649 out:
2650 return ret;
2651 }
2652
2653 int
2654 ifpromisc(struct ifnet *ifp, int pswitch)
2655 {
2656 int e;
2657
2658 IFNET_LOCK(ifp);
2659 e = ifpromisc_locked(ifp, pswitch);
2660 IFNET_UNLOCK(ifp);
2661
2662 return e;
2663 }
2664
2665 /*
2666 * Map interface name to
2667 * interface structure pointer.
2668 */
2669 struct ifnet *
2670 ifunit(const char *name)
2671 {
2672 struct ifnet *ifp;
2673 const char *cp = name;
2674 u_int unit = 0;
2675 u_int i;
2676 int s;
2677
2678 /*
2679 * If the entire name is a number, treat it as an ifindex.
2680 */
2681 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2682 unit = unit * 10 + (*cp - '0');
2683 }
2684
2685 /*
2686 * If the number took all of the name, then it's a valid ifindex.
2687 */
2688 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2689 return if_byindex(unit);
2690
2691 ifp = NULL;
2692 s = pserialize_read_enter();
2693 IFNET_READER_FOREACH(ifp) {
2694 if (if_is_deactivated(ifp))
2695 continue;
2696 if (strcmp(ifp->if_xname, name) == 0)
2697 goto out;
2698 }
2699 out:
2700 pserialize_read_exit(s);
2701 return ifp;
2702 }
2703
2704 /*
2705 * Get a reference of an ifnet object by an interface name.
2706 * The returned reference is protected by psref(9). The caller
2707 * must release a returned reference by if_put after use.
2708 */
2709 struct ifnet *
2710 if_get(const char *name, struct psref *psref)
2711 {
2712 struct ifnet *ifp;
2713 const char *cp = name;
2714 u_int unit = 0;
2715 u_int i;
2716 int s;
2717
2718 /*
2719 * If the entire name is a number, treat it as an ifindex.
2720 */
2721 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2722 unit = unit * 10 + (*cp - '0');
2723 }
2724
2725 /*
2726 * If the number took all of the name, then it's a valid ifindex.
2727 */
2728 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2729 return if_get_byindex(unit, psref);
2730
2731 ifp = NULL;
2732 s = pserialize_read_enter();
2733 IFNET_READER_FOREACH(ifp) {
2734 if (if_is_deactivated(ifp))
2735 continue;
2736 if (strcmp(ifp->if_xname, name) == 0) {
2737 psref_acquire(psref, &ifp->if_psref,
2738 ifnet_psref_class);
2739 goto out;
2740 }
2741 }
2742 out:
2743 pserialize_read_exit(s);
2744 return ifp;
2745 }
2746
2747 /*
2748 * Release a reference of an ifnet object given by if_get, if_get_byindex
2749 * or if_get_bylla.
2750 */
2751 void
2752 if_put(const struct ifnet *ifp, struct psref *psref)
2753 {
2754
2755 if (ifp == NULL)
2756 return;
2757
2758 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2759 }
2760
2761 /*
2762 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2763 * should be used.
2764 */
2765 ifnet_t *
2766 _if_byindex(u_int idx)
2767 {
2768
2769 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2770 }
2771
2772 /*
2773 * Return ifp having idx. Return NULL if not found or the found ifp is
2774 * already deactivated.
2775 */
2776 ifnet_t *
2777 if_byindex(u_int idx)
2778 {
2779 ifnet_t *ifp;
2780
2781 ifp = _if_byindex(idx);
2782 if (ifp != NULL && if_is_deactivated(ifp))
2783 ifp = NULL;
2784 return ifp;
2785 }
2786
2787 /*
2788 * Get a reference of an ifnet object by an interface index.
2789 * The returned reference is protected by psref(9). The caller
2790 * must release a returned reference by if_put after use.
2791 */
2792 ifnet_t *
2793 if_get_byindex(u_int idx, struct psref *psref)
2794 {
2795 ifnet_t *ifp;
2796 int s;
2797
2798 s = pserialize_read_enter();
2799 ifp = if_byindex(idx);
2800 if (__predict_true(ifp != NULL))
2801 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2802 pserialize_read_exit(s);
2803
2804 return ifp;
2805 }
2806
2807 ifnet_t *
2808 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2809 {
2810 ifnet_t *ifp;
2811 int s;
2812
2813 s = pserialize_read_enter();
2814 IFNET_READER_FOREACH(ifp) {
2815 if (if_is_deactivated(ifp))
2816 continue;
2817 if (ifp->if_addrlen != lla_len)
2818 continue;
2819 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2820 psref_acquire(psref, &ifp->if_psref,
2821 ifnet_psref_class);
2822 break;
2823 }
2824 }
2825 pserialize_read_exit(s);
2826
2827 return ifp;
2828 }
2829
2830 /*
2831 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2832 * for example using pserialize or the ifp is already held or some other
2833 * object is held which guarantes the ifp to not be freed indirectly.
2834 */
2835 void
2836 if_acquire(struct ifnet *ifp, struct psref *psref)
2837 {
2838
2839 KASSERT(ifp->if_index != 0);
2840 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2841 }
2842
2843 bool
2844 if_held(struct ifnet *ifp)
2845 {
2846
2847 return psref_held(&ifp->if_psref, ifnet_psref_class);
2848 }
2849
2850 /*
2851 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2852 * Check the tunnel nesting count.
2853 * Return > 0, if tunnel nesting count is more than limit.
2854 * Return 0, if tunnel nesting count is equal or less than limit.
2855 */
2856 int
2857 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2858 {
2859 struct m_tag *mtag;
2860 int *count;
2861
2862 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2863 if (mtag != NULL) {
2864 count = (int *)(mtag + 1);
2865 if (++(*count) > limit) {
2866 log(LOG_NOTICE,
2867 "%s: recursively called too many times(%d)\n",
2868 ifp->if_xname, *count);
2869 return EIO;
2870 }
2871 } else {
2872 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2873 M_NOWAIT);
2874 if (mtag != NULL) {
2875 m_tag_prepend(m, mtag);
2876 count = (int *)(mtag + 1);
2877 *count = 0;
2878 } else {
2879 log(LOG_DEBUG,
2880 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2881 ifp->if_xname);
2882 }
2883 }
2884
2885 return 0;
2886 }
2887
2888 /* common */
2889 int
2890 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2891 {
2892 int s;
2893 struct ifreq *ifr;
2894 struct ifcapreq *ifcr;
2895 struct ifdatareq *ifdr;
2896
2897 switch (cmd) {
2898 case SIOCSIFCAP:
2899 ifcr = data;
2900 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2901 return EINVAL;
2902
2903 if (ifcr->ifcr_capenable == ifp->if_capenable)
2904 return 0;
2905
2906 ifp->if_capenable = ifcr->ifcr_capenable;
2907
2908 /* Pre-compute the checksum flags mask. */
2909 ifp->if_csum_flags_tx = 0;
2910 ifp->if_csum_flags_rx = 0;
2911 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
2912 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2913 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2914 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2915
2916 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
2917 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2918 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
2919 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2920
2921 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
2922 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2923 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
2924 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2925
2926 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
2927 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2928 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
2929 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2930
2931 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
2932 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2933 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
2934 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2935
2936 if (ifp->if_capenable & IFCAP_TSOv4)
2937 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
2938 if (ifp->if_capenable & IFCAP_TSOv6)
2939 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
2940
2941 #if NBRIDGE > 0
2942 if (ifp->if_bridge != NULL)
2943 bridge_calc_csum_flags(ifp->if_bridge);
2944 #endif
2945
2946 if (ifp->if_flags & IFF_UP)
2947 return ENETRESET;
2948 return 0;
2949 case SIOCSIFFLAGS:
2950 ifr = data;
2951 /*
2952 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2953 * and if_down aren't MP-safe yet, so we must hold the lock.
2954 */
2955 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2956 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2957 s = splsoftnet();
2958 if_down_locked(ifp);
2959 splx(s);
2960 }
2961 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2962 s = splsoftnet();
2963 if_up_locked(ifp);
2964 splx(s);
2965 }
2966 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2967 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2968 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2969 break;
2970 case SIOCGIFFLAGS:
2971 ifr = data;
2972 ifr->ifr_flags = ifp->if_flags;
2973 break;
2974
2975 case SIOCGIFMETRIC:
2976 ifr = data;
2977 ifr->ifr_metric = ifp->if_metric;
2978 break;
2979
2980 case SIOCGIFMTU:
2981 ifr = data;
2982 ifr->ifr_mtu = ifp->if_mtu;
2983 break;
2984
2985 case SIOCGIFDLT:
2986 ifr = data;
2987 ifr->ifr_dlt = ifp->if_dlt;
2988 break;
2989
2990 case SIOCGIFCAP:
2991 ifcr = data;
2992 ifcr->ifcr_capabilities = ifp->if_capabilities;
2993 ifcr->ifcr_capenable = ifp->if_capenable;
2994 break;
2995
2996 case SIOCSIFMETRIC:
2997 ifr = data;
2998 ifp->if_metric = ifr->ifr_metric;
2999 break;
3000
3001 case SIOCGIFDATA:
3002 ifdr = data;
3003 ifdr->ifdr_data = ifp->if_data;
3004 break;
3005
3006 case SIOCGIFINDEX:
3007 ifr = data;
3008 ifr->ifr_index = ifp->if_index;
3009 break;
3010
3011 case SIOCZIFDATA:
3012 ifdr = data;
3013 ifdr->ifdr_data = ifp->if_data;
3014 /*
3015 * Assumes that the volatile counters that can be
3016 * zero'ed are at the end of if_data.
3017 */
3018 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
3019 offsetof(struct if_data, ifi_ipackets));
3020 /*
3021 * The memset() clears to the bottm of if_data. In the area,
3022 * if_lastchange is included. Please be careful if new entry
3023 * will be added into if_data or rewite this.
3024 *
3025 * And also, update if_lastchnage.
3026 */
3027 getnanotime(&ifp->if_lastchange);
3028 break;
3029 case SIOCSIFMTU:
3030 ifr = data;
3031 if (ifp->if_mtu == ifr->ifr_mtu)
3032 break;
3033 ifp->if_mtu = ifr->ifr_mtu;
3034 /*
3035 * If the link MTU changed, do network layer specific procedure.
3036 */
3037 #ifdef INET6
3038 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3039 if (in6_present)
3040 nd6_setmtu(ifp);
3041 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3042 #endif
3043 return ENETRESET;
3044 default:
3045 return ENOTTY;
3046 }
3047 return 0;
3048 }
3049
3050 int
3051 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3052 {
3053 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3054 struct ifaddr *ifa;
3055 const struct sockaddr *any, *sa;
3056 union {
3057 struct sockaddr sa;
3058 struct sockaddr_storage ss;
3059 } u, v;
3060 int s, error = 0;
3061
3062 switch (cmd) {
3063 case SIOCSIFADDRPREF:
3064 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3065 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3066 NULL) != 0)
3067 return EPERM;
3068 case SIOCGIFADDRPREF:
3069 break;
3070 default:
3071 return EOPNOTSUPP;
3072 }
3073
3074 /* sanity checks */
3075 if (data == NULL || ifp == NULL) {
3076 panic("invalid argument to %s", __func__);
3077 /*NOTREACHED*/
3078 }
3079
3080 /* address must be specified on ADD and DELETE */
3081 sa = sstocsa(&ifap->ifap_addr);
3082 if (sa->sa_family != sofamily(so))
3083 return EINVAL;
3084 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3085 return EINVAL;
3086
3087 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3088
3089 s = pserialize_read_enter();
3090 IFADDR_READER_FOREACH(ifa, ifp) {
3091 if (ifa->ifa_addr->sa_family != sa->sa_family)
3092 continue;
3093 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3094 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3095 break;
3096 }
3097 if (ifa == NULL) {
3098 error = EADDRNOTAVAIL;
3099 goto out;
3100 }
3101
3102 switch (cmd) {
3103 case SIOCSIFADDRPREF:
3104 ifa->ifa_preference = ifap->ifap_preference;
3105 goto out;
3106 case SIOCGIFADDRPREF:
3107 /* fill in the if_laddrreq structure */
3108 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3109 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3110 ifap->ifap_preference = ifa->ifa_preference;
3111 goto out;
3112 default:
3113 error = EOPNOTSUPP;
3114 }
3115 out:
3116 pserialize_read_exit(s);
3117 return error;
3118 }
3119
3120 /*
3121 * Interface ioctls.
3122 */
3123 static int
3124 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3125 {
3126 struct ifnet *ifp;
3127 struct ifreq *ifr;
3128 int error = 0, hook;
3129 u_long ocmd = cmd;
3130 short oif_flags;
3131 struct ifreq ifrb;
3132 struct oifreq *oifr = NULL;
3133 int r;
3134 struct psref psref;
3135 int bound;
3136
3137 switch (cmd) {
3138 case SIOCGIFCONF:
3139 return ifconf(cmd, data);
3140 case SIOCINITIFADDR:
3141 return EPERM;
3142 default:
3143 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3144 error);
3145 if (error != ENOSYS)
3146 return error;
3147 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3148 enosys(), error);
3149 if (error != ENOSYS)
3150 return error;
3151 error = 0;
3152 break;
3153 }
3154
3155 ifr = data;
3156 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3157 if (hook != ENOSYS) {
3158 if (cmd != ocmd) {
3159 oifr = data;
3160 data = ifr = &ifrb;
3161 ifreqo2n(oifr, ifr);
3162 }
3163 }
3164
3165 switch (cmd) {
3166 case SIOCIFCREATE:
3167 case SIOCIFDESTROY:
3168 bound = curlwp_bind();
3169 if (l != NULL) {
3170 ifp = if_get(ifr->ifr_name, &psref);
3171 error = kauth_authorize_network(l->l_cred,
3172 KAUTH_NETWORK_INTERFACE,
3173 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3174 (void *)cmd, NULL);
3175 if (ifp != NULL)
3176 if_put(ifp, &psref);
3177 if (error != 0) {
3178 curlwp_bindx(bound);
3179 return error;
3180 }
3181 }
3182 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3183 mutex_enter(&if_clone_mtx);
3184 r = (cmd == SIOCIFCREATE) ?
3185 if_clone_create(ifr->ifr_name) :
3186 if_clone_destroy(ifr->ifr_name);
3187 mutex_exit(&if_clone_mtx);
3188 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3189 curlwp_bindx(bound);
3190 return r;
3191
3192 case SIOCIFGCLONERS:
3193 {
3194 struct if_clonereq *req = (struct if_clonereq *)data;
3195 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3196 &req->ifcr_total);
3197 }
3198 }
3199
3200 bound = curlwp_bind();
3201 ifp = if_get(ifr->ifr_name, &psref);
3202 if (ifp == NULL) {
3203 curlwp_bindx(bound);
3204 return ENXIO;
3205 }
3206
3207 switch (cmd) {
3208 case SIOCALIFADDR:
3209 case SIOCDLIFADDR:
3210 case SIOCSIFADDRPREF:
3211 case SIOCSIFFLAGS:
3212 case SIOCSIFCAP:
3213 case SIOCSIFMETRIC:
3214 case SIOCZIFDATA:
3215 case SIOCSIFMTU:
3216 case SIOCSIFPHYADDR:
3217 case SIOCDIFPHYADDR:
3218 #ifdef INET6
3219 case SIOCSIFPHYADDR_IN6:
3220 #endif
3221 case SIOCSLIFPHYADDR:
3222 case SIOCADDMULTI:
3223 case SIOCDELMULTI:
3224 case SIOCSETHERCAP:
3225 case SIOCSIFMEDIA:
3226 case SIOCSDRVSPEC:
3227 case SIOCG80211:
3228 case SIOCS80211:
3229 case SIOCS80211NWID:
3230 case SIOCS80211NWKEY:
3231 case SIOCS80211POWER:
3232 case SIOCS80211BSSID:
3233 case SIOCS80211CHANNEL:
3234 case SIOCSLINKSTR:
3235 if (l != NULL) {
3236 error = kauth_authorize_network(l->l_cred,
3237 KAUTH_NETWORK_INTERFACE,
3238 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3239 (void *)cmd, NULL);
3240 if (error != 0)
3241 goto out;
3242 }
3243 }
3244
3245 oif_flags = ifp->if_flags;
3246
3247 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3248 IFNET_LOCK(ifp);
3249
3250 error = (*ifp->if_ioctl)(ifp, cmd, data);
3251 if (error != ENOTTY)
3252 ;
3253 else if (so->so_proto == NULL)
3254 error = EOPNOTSUPP;
3255 else {
3256 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3257 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3258 (so, ocmd, cmd, data, l), enosys(), error);
3259 if (error == ENOSYS)
3260 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3261 cmd, data, ifp);
3262 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3263 }
3264
3265 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3266 if ((ifp->if_flags & IFF_UP) != 0) {
3267 int s = splsoftnet();
3268 if_up_locked(ifp);
3269 splx(s);
3270 }
3271 }
3272 if (cmd != ocmd)
3273 ifreqn2o(oifr, ifr);
3274
3275 IFNET_UNLOCK(ifp);
3276 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3277 out:
3278 if_put(ifp, &psref);
3279 curlwp_bindx(bound);
3280 return error;
3281 }
3282
3283 /*
3284 * Return interface configuration
3285 * of system. List may be used
3286 * in later ioctl's (above) to get
3287 * other information.
3288 *
3289 * Each record is a struct ifreq. Before the addition of
3290 * sockaddr_storage, the API rule was that sockaddr flavors that did
3291 * not fit would extend beyond the struct ifreq, with the next struct
3292 * ifreq starting sa_len beyond the struct sockaddr. Because the
3293 * union in struct ifreq includes struct sockaddr_storage, every kind
3294 * of sockaddr must fit. Thus, there are no longer any overlength
3295 * records.
3296 *
3297 * Records are added to the user buffer if they fit, and ifc_len is
3298 * adjusted to the length that was written. Thus, the user is only
3299 * assured of getting the complete list if ifc_len on return is at
3300 * least sizeof(struct ifreq) less than it was on entry.
3301 *
3302 * If the user buffer pointer is NULL, this routine copies no data and
3303 * returns the amount of space that would be needed.
3304 *
3305 * Invariants:
3306 * ifrp points to the next part of the user's buffer to be used. If
3307 * ifrp != NULL, space holds the number of bytes remaining that we may
3308 * write at ifrp. Otherwise, space holds the number of bytes that
3309 * would have been written had there been adequate space.
3310 */
3311 /*ARGSUSED*/
3312 static int
3313 ifconf(u_long cmd, void *data)
3314 {
3315 struct ifconf *ifc = (struct ifconf *)data;
3316 struct ifnet *ifp;
3317 struct ifaddr *ifa;
3318 struct ifreq ifr, *ifrp = NULL;
3319 int space = 0, error = 0;
3320 const int sz = (int)sizeof(struct ifreq);
3321 const bool docopy = ifc->ifc_req != NULL;
3322 int s;
3323 int bound;
3324 struct psref psref;
3325
3326 if (docopy) {
3327 space = ifc->ifc_len;
3328 ifrp = ifc->ifc_req;
3329 }
3330
3331 bound = curlwp_bind();
3332 s = pserialize_read_enter();
3333 IFNET_READER_FOREACH(ifp) {
3334 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3335 pserialize_read_exit(s);
3336
3337 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3338 sizeof(ifr.ifr_name));
3339 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3340 error = ENAMETOOLONG;
3341 goto release_exit;
3342 }
3343 if (IFADDR_READER_EMPTY(ifp)) {
3344 /* Interface with no addresses - send zero sockaddr. */
3345 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3346 if (!docopy) {
3347 space += sz;
3348 goto next;
3349 }
3350 if (space >= sz) {
3351 error = copyout(&ifr, ifrp, sz);
3352 if (error != 0)
3353 goto release_exit;
3354 ifrp++;
3355 space -= sz;
3356 }
3357 }
3358
3359 s = pserialize_read_enter();
3360 IFADDR_READER_FOREACH(ifa, ifp) {
3361 struct sockaddr *sa = ifa->ifa_addr;
3362 /* all sockaddrs must fit in sockaddr_storage */
3363 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3364
3365 if (!docopy) {
3366 space += sz;
3367 continue;
3368 }
3369 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3370 pserialize_read_exit(s);
3371
3372 if (space >= sz) {
3373 error = copyout(&ifr, ifrp, sz);
3374 if (error != 0)
3375 goto release_exit;
3376 ifrp++; space -= sz;
3377 }
3378 s = pserialize_read_enter();
3379 }
3380 pserialize_read_exit(s);
3381
3382 next:
3383 s = pserialize_read_enter();
3384 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3385 }
3386 pserialize_read_exit(s);
3387 curlwp_bindx(bound);
3388
3389 if (docopy) {
3390 KASSERT(0 <= space && space <= ifc->ifc_len);
3391 ifc->ifc_len -= space;
3392 } else {
3393 KASSERT(space >= 0);
3394 ifc->ifc_len = space;
3395 }
3396 return (0);
3397
3398 release_exit:
3399 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3400 curlwp_bindx(bound);
3401 return error;
3402 }
3403
3404 int
3405 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3406 {
3407 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3408 struct ifreq ifrb;
3409 struct oifreq *oifr = NULL;
3410 u_long ocmd = cmd;
3411 int hook;
3412
3413 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3414 if (hook != ENOSYS) {
3415 if (cmd != ocmd) {
3416 oifr = (struct oifreq *)(void *)ifr;
3417 ifr = &ifrb;
3418 ifreqo2n(oifr, ifr);
3419 len = sizeof(oifr->ifr_addr);
3420 }
3421 }
3422
3423 if (len < sa->sa_len)
3424 return EFBIG;
3425
3426 memset(&ifr->ifr_addr, 0, len);
3427 sockaddr_copy(&ifr->ifr_addr, len, sa);
3428
3429 if (cmd != ocmd)
3430 ifreqn2o(oifr, ifr);
3431 return 0;
3432 }
3433
3434 /*
3435 * wrapper function for the drivers which doesn't have if_transmit().
3436 */
3437 static int
3438 if_transmit(struct ifnet *ifp, struct mbuf *m)
3439 {
3440 int s, error;
3441 size_t pktlen = m->m_pkthdr.len;
3442 bool mcast = (m->m_flags & M_MCAST) != 0;
3443
3444 s = splnet();
3445
3446 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3447 if (error != 0) {
3448 /* mbuf is already freed */
3449 goto out;
3450 }
3451
3452 ifp->if_obytes += pktlen;
3453 if (mcast)
3454 ifp->if_omcasts++;
3455
3456 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3457 if_start_lock(ifp);
3458 out:
3459 splx(s);
3460
3461 return error;
3462 }
3463
3464 int
3465 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3466 {
3467 int error;
3468
3469 #ifdef ALTQ
3470 KERNEL_LOCK(1, NULL);
3471 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3472 error = if_transmit(ifp, m);
3473 KERNEL_UNLOCK_ONE(NULL);
3474 } else {
3475 KERNEL_UNLOCK_ONE(NULL);
3476 error = (*ifp->if_transmit)(ifp, m);
3477 /* mbuf is alredy freed */
3478 }
3479 #else /* !ALTQ */
3480 error = (*ifp->if_transmit)(ifp, m);
3481 /* mbuf is alredy freed */
3482 #endif /* !ALTQ */
3483
3484 return error;
3485 }
3486
3487 /*
3488 * Queue message on interface, and start output if interface
3489 * not yet active.
3490 */
3491 int
3492 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3493 {
3494
3495 return if_transmit_lock(ifp, m);
3496 }
3497
3498 /*
3499 * Queue message on interface, possibly using a second fast queue
3500 */
3501 int
3502 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3503 {
3504 int error = 0;
3505
3506 if (ifq != NULL
3507 #ifdef ALTQ
3508 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3509 #endif
3510 ) {
3511 if (IF_QFULL(ifq)) {
3512 IF_DROP(&ifp->if_snd);
3513 m_freem(m);
3514 if (error == 0)
3515 error = ENOBUFS;
3516 } else
3517 IF_ENQUEUE(ifq, m);
3518 } else
3519 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3520 if (error != 0) {
3521 ++ifp->if_oerrors;
3522 return error;
3523 }
3524 return 0;
3525 }
3526
3527 int
3528 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3529 {
3530 int rc;
3531
3532 KASSERT(IFNET_LOCKED(ifp));
3533 if (ifp->if_initaddr != NULL)
3534 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3535 else if (src ||
3536 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3537 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3538
3539 return rc;
3540 }
3541
3542 int
3543 if_do_dad(struct ifnet *ifp)
3544 {
3545 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3546 return 0;
3547
3548 switch (ifp->if_type) {
3549 case IFT_FAITH:
3550 /*
3551 * These interfaces do not have the IFF_LOOPBACK flag,
3552 * but loop packets back. We do not have to do DAD on such
3553 * interfaces. We should even omit it, because loop-backed
3554 * responses would confuse the DAD procedure.
3555 */
3556 return 0;
3557 default:
3558 /*
3559 * Our DAD routine requires the interface up and running.
3560 * However, some interfaces can be up before the RUNNING
3561 * status. Additionaly, users may try to assign addresses
3562 * before the interface becomes up (or running).
3563 * We simply skip DAD in such a case as a work around.
3564 * XXX: we should rather mark "tentative" on such addresses,
3565 * and do DAD after the interface becomes ready.
3566 */
3567 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3568 (IFF_UP|IFF_RUNNING))
3569 return 0;
3570
3571 return 1;
3572 }
3573 }
3574
3575 int
3576 if_flags_set(ifnet_t *ifp, const short flags)
3577 {
3578 int rc;
3579
3580 KASSERT(IFNET_LOCKED(ifp));
3581
3582 if (ifp->if_setflags != NULL)
3583 rc = (*ifp->if_setflags)(ifp, flags);
3584 else {
3585 short cantflags, chgdflags;
3586 struct ifreq ifr;
3587
3588 chgdflags = ifp->if_flags ^ flags;
3589 cantflags = chgdflags & IFF_CANTCHANGE;
3590
3591 if (cantflags != 0)
3592 ifp->if_flags ^= cantflags;
3593
3594 /* Traditionally, we do not call if_ioctl after
3595 * setting/clearing only IFF_PROMISC if the interface
3596 * isn't IFF_UP. Uphold that tradition.
3597 */
3598 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3599 return 0;
3600
3601 memset(&ifr, 0, sizeof(ifr));
3602
3603 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3604 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3605
3606 if (rc != 0 && cantflags != 0)
3607 ifp->if_flags ^= cantflags;
3608 }
3609
3610 return rc;
3611 }
3612
3613 int
3614 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3615 {
3616 int rc;
3617 struct ifreq ifr;
3618
3619 /* There remain some paths that don't hold IFNET_LOCK yet */
3620 #ifdef NET_MPSAFE
3621 /* CARP and MROUTING still don't deal with the lock yet */
3622 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING)
3623 KASSERT(IFNET_LOCKED(ifp));
3624 #endif
3625 #endif
3626 if (ifp->if_mcastop != NULL)
3627 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3628 else {
3629 ifreq_setaddr(cmd, &ifr, sa);
3630 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3631 }
3632
3633 return rc;
3634 }
3635
3636 static void
3637 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3638 struct ifaltq *ifq)
3639 {
3640 const struct sysctlnode *cnode, *rnode;
3641
3642 if (sysctl_createv(clog, 0, NULL, &rnode,
3643 CTLFLAG_PERMANENT,
3644 CTLTYPE_NODE, "interfaces",
3645 SYSCTL_DESCR("Per-interface controls"),
3646 NULL, 0, NULL, 0,
3647 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3648 goto bad;
3649
3650 if (sysctl_createv(clog, 0, &rnode, &rnode,
3651 CTLFLAG_PERMANENT,
3652 CTLTYPE_NODE, ifname,
3653 SYSCTL_DESCR("Interface controls"),
3654 NULL, 0, NULL, 0,
3655 CTL_CREATE, CTL_EOL) != 0)
3656 goto bad;
3657
3658 if (sysctl_createv(clog, 0, &rnode, &rnode,
3659 CTLFLAG_PERMANENT,
3660 CTLTYPE_NODE, "sndq",
3661 SYSCTL_DESCR("Interface output queue controls"),
3662 NULL, 0, NULL, 0,
3663 CTL_CREATE, CTL_EOL) != 0)
3664 goto bad;
3665
3666 if (sysctl_createv(clog, 0, &rnode, &cnode,
3667 CTLFLAG_PERMANENT,
3668 CTLTYPE_INT, "len",
3669 SYSCTL_DESCR("Current output queue length"),
3670 NULL, 0, &ifq->ifq_len, 0,
3671 CTL_CREATE, CTL_EOL) != 0)
3672 goto bad;
3673
3674 if (sysctl_createv(clog, 0, &rnode, &cnode,
3675 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3676 CTLTYPE_INT, "maxlen",
3677 SYSCTL_DESCR("Maximum allowed output queue length"),
3678 NULL, 0, &ifq->ifq_maxlen, 0,
3679 CTL_CREATE, CTL_EOL) != 0)
3680 goto bad;
3681
3682 if (sysctl_createv(clog, 0, &rnode, &cnode,
3683 CTLFLAG_PERMANENT,
3684 CTLTYPE_INT, "drops",
3685 SYSCTL_DESCR("Packets dropped due to full output queue"),
3686 NULL, 0, &ifq->ifq_drops, 0,
3687 CTL_CREATE, CTL_EOL) != 0)
3688 goto bad;
3689
3690 return;
3691 bad:
3692 printf("%s: could not attach sysctl nodes\n", ifname);
3693 return;
3694 }
3695
3696 #if defined(INET) || defined(INET6)
3697
3698 #define SYSCTL_NET_PKTQ(q, cn, c) \
3699 static int \
3700 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3701 { \
3702 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3703 }
3704
3705 #if defined(INET)
3706 static int
3707 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3708 {
3709 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3710 }
3711 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3712 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3713 #endif
3714
3715 #if defined(INET6)
3716 static int
3717 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3718 {
3719 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3720 }
3721 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3722 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3723 #endif
3724
3725 static void
3726 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3727 {
3728 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3729 const char *pfname = NULL, *ipname = NULL;
3730 int ipn = 0, qid = 0;
3731
3732 switch (pf) {
3733 #if defined(INET)
3734 case PF_INET:
3735 len_func = sysctl_net_ip_pktq_items;
3736 maxlen_func = sysctl_net_ip_pktq_maxlen;
3737 drops_func = sysctl_net_ip_pktq_drops;
3738 pfname = "inet", ipn = IPPROTO_IP;
3739 ipname = "ip", qid = IPCTL_IFQ;
3740 break;
3741 #endif
3742 #if defined(INET6)
3743 case PF_INET6:
3744 len_func = sysctl_net_ip6_pktq_items;
3745 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3746 drops_func = sysctl_net_ip6_pktq_drops;
3747 pfname = "inet6", ipn = IPPROTO_IPV6;
3748 ipname = "ip6", qid = IPV6CTL_IFQ;
3749 break;
3750 #endif
3751 default:
3752 KASSERT(false);
3753 }
3754
3755 sysctl_createv(clog, 0, NULL, NULL,
3756 CTLFLAG_PERMANENT,
3757 CTLTYPE_NODE, pfname, NULL,
3758 NULL, 0, NULL, 0,
3759 CTL_NET, pf, CTL_EOL);
3760 sysctl_createv(clog, 0, NULL, NULL,
3761 CTLFLAG_PERMANENT,
3762 CTLTYPE_NODE, ipname, NULL,
3763 NULL, 0, NULL, 0,
3764 CTL_NET, pf, ipn, CTL_EOL);
3765 sysctl_createv(clog, 0, NULL, NULL,
3766 CTLFLAG_PERMANENT,
3767 CTLTYPE_NODE, "ifq",
3768 SYSCTL_DESCR("Protocol input queue controls"),
3769 NULL, 0, NULL, 0,
3770 CTL_NET, pf, ipn, qid, CTL_EOL);
3771
3772 sysctl_createv(clog, 0, NULL, NULL,
3773 CTLFLAG_PERMANENT,
3774 CTLTYPE_QUAD, "len",
3775 SYSCTL_DESCR("Current input queue length"),
3776 len_func, 0, NULL, 0,
3777 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3778 sysctl_createv(clog, 0, NULL, NULL,
3779 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3780 CTLTYPE_INT, "maxlen",
3781 SYSCTL_DESCR("Maximum allowed input queue length"),
3782 maxlen_func, 0, NULL, 0,
3783 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3784 sysctl_createv(clog, 0, NULL, NULL,
3785 CTLFLAG_PERMANENT,
3786 CTLTYPE_QUAD, "drops",
3787 SYSCTL_DESCR("Packets dropped due to full input queue"),
3788 drops_func, 0, NULL, 0,
3789 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3790 }
3791 #endif /* INET || INET6 */
3792
3793 static int
3794 if_sdl_sysctl(SYSCTLFN_ARGS)
3795 {
3796 struct ifnet *ifp;
3797 const struct sockaddr_dl *sdl;
3798 struct psref psref;
3799 int error = 0;
3800 int bound;
3801
3802 if (namelen != 1)
3803 return EINVAL;
3804
3805 bound = curlwp_bind();
3806 ifp = if_get_byindex(name[0], &psref);
3807 if (ifp == NULL) {
3808 error = ENODEV;
3809 goto out0;
3810 }
3811
3812 sdl = ifp->if_sadl;
3813 if (sdl == NULL) {
3814 *oldlenp = 0;
3815 goto out1;
3816 }
3817
3818 if (oldp == NULL) {
3819 *oldlenp = sdl->sdl_alen;
3820 goto out1;
3821 }
3822
3823 if (*oldlenp >= sdl->sdl_alen)
3824 *oldlenp = sdl->sdl_alen;
3825 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3826 out1:
3827 if_put(ifp, &psref);
3828 out0:
3829 curlwp_bindx(bound);
3830 return error;
3831 }
3832
3833 static void
3834 if_sysctl_setup(struct sysctllog **clog)
3835 {
3836 const struct sysctlnode *rnode = NULL;
3837
3838 sysctl_createv(clog, 0, NULL, &rnode,
3839 CTLFLAG_PERMANENT,
3840 CTLTYPE_NODE, "sdl",
3841 SYSCTL_DESCR("Get active link-layer address"),
3842 if_sdl_sysctl, 0, NULL, 0,
3843 CTL_NET, CTL_CREATE, CTL_EOL);
3844
3845 #if defined(INET)
3846 sysctl_net_pktq_setup(NULL, PF_INET);
3847 #endif
3848 #ifdef INET6
3849 if (in6_present)
3850 sysctl_net_pktq_setup(NULL, PF_INET6);
3851 #endif
3852 }
3853