if.c revision 1.455 1 /* $NetBSD: if.c,v 1.455 2019/05/21 09:18:37 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.455 2019/05/21 09:18:37 msaitoh Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124
125 #include <net/if.h>
126 #include <net/if_dl.h>
127 #include <net/if_ether.h>
128 #include <net/if_media.h>
129 #include <net80211/ieee80211.h>
130 #include <net80211/ieee80211_ioctl.h>
131 #include <net/if_types.h>
132 #include <net/route.h>
133 #include <net/netisr.h>
134 #include <sys/module.h>
135 #ifdef NETATALK
136 #include <netatalk/at_extern.h>
137 #include <netatalk/at.h>
138 #endif
139 #include <net/pfil.h>
140 #include <netinet/in.h>
141 #include <netinet/in_var.h>
142 #include <netinet/ip_encap.h>
143 #include <net/bpf.h>
144
145 #ifdef INET6
146 #include <netinet6/in6_var.h>
147 #include <netinet6/nd6.h>
148 #endif
149
150 #include "ether.h"
151 #include "fddi.h"
152 #include "token.h"
153
154 #include "bridge.h"
155 #if NBRIDGE > 0
156 #include <net/if_bridgevar.h>
157 #endif
158
159 #include "carp.h"
160 #if NCARP > 0
161 #include <netinet/ip_carp.h>
162 #endif
163
164 #include <compat/sys/sockio.h>
165
166 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
167 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
168
169 /*
170 * Global list of interfaces.
171 */
172 /* DEPRECATED. Remove it once kvm(3) users disappeared */
173 struct ifnet_head ifnet_list;
174
175 struct pslist_head ifnet_pslist;
176 static ifnet_t ** ifindex2ifnet = NULL;
177 static u_int if_index = 1;
178 static size_t if_indexlim = 0;
179 static uint64_t index_gen;
180 /* Mutex to protect the above objects. */
181 kmutex_t ifnet_mtx __cacheline_aligned;
182 static struct psref_class *ifnet_psref_class __read_mostly;
183 static pserialize_t ifnet_psz;
184
185 static kmutex_t if_clone_mtx;
186
187 struct ifnet *lo0ifp;
188 int ifqmaxlen = IFQ_MAXLEN;
189
190 struct psref_class *ifa_psref_class __read_mostly;
191
192 static int if_delroute_matcher(struct rtentry *, void *);
193
194 static bool if_is_unit(const char *);
195 static struct if_clone *if_clone_lookup(const char *, int *);
196
197 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
198 static int if_cloners_count;
199
200 /* Packet filtering hook for interfaces. */
201 pfil_head_t * if_pfil __read_mostly;
202
203 static kauth_listener_t if_listener;
204
205 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
206 static void if_detach_queues(struct ifnet *, struct ifqueue *);
207 static void sysctl_sndq_setup(struct sysctllog **, const char *,
208 struct ifaltq *);
209 static void if_slowtimo(void *);
210 static void if_attachdomain1(struct ifnet *);
211 static int ifconf(u_long, void *);
212 static int if_transmit(struct ifnet *, struct mbuf *);
213 static int if_clone_create(const char *);
214 static int if_clone_destroy(const char *);
215 static void if_link_state_change_si(void *);
216 static void if_up_locked(struct ifnet *);
217 static void _if_down(struct ifnet *);
218 static void if_down_deactivated(struct ifnet *);
219
220 struct if_percpuq {
221 struct ifnet *ipq_ifp;
222 void *ipq_si;
223 struct percpu *ipq_ifqs; /* struct ifqueue */
224 };
225
226 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
227
228 static void if_percpuq_drops(void *, void *, struct cpu_info *);
229 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
230 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
231 struct if_percpuq *);
232
233 struct if_deferred_start {
234 struct ifnet *ids_ifp;
235 void (*ids_if_start)(struct ifnet *);
236 void *ids_si;
237 };
238
239 static void if_deferred_start_softint(void *);
240 static void if_deferred_start_common(struct ifnet *);
241 static void if_deferred_start_destroy(struct ifnet *);
242
243 #if defined(INET) || defined(INET6)
244 static void sysctl_net_pktq_setup(struct sysctllog **, int);
245 #endif
246
247 /*
248 * Hook for if_vlan - needed by if_agr
249 */
250 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
251
252 static void if_sysctl_setup(struct sysctllog **);
253
254 static int
255 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
256 void *arg0, void *arg1, void *arg2, void *arg3)
257 {
258 int result;
259 enum kauth_network_req req;
260
261 result = KAUTH_RESULT_DEFER;
262 req = (enum kauth_network_req)arg1;
263
264 if (action != KAUTH_NETWORK_INTERFACE)
265 return result;
266
267 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
268 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
269 result = KAUTH_RESULT_ALLOW;
270
271 return result;
272 }
273
274 /*
275 * Network interface utility routines.
276 *
277 * Routines with ifa_ifwith* names take sockaddr *'s as
278 * parameters.
279 */
280 void
281 ifinit(void)
282 {
283
284 #if (defined(INET) || defined(INET6))
285 encapinit();
286 #endif
287
288 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
289 if_listener_cb, NULL);
290
291 /* interfaces are available, inform socket code */
292 ifioctl = doifioctl;
293 }
294
295 /*
296 * XXX Initialization before configure().
297 * XXX hack to get pfil_add_hook working in autoconf.
298 */
299 void
300 ifinit1(void)
301 {
302
303 #ifdef NET_MPSAFE
304 printf("NET_MPSAFE enabled\n");
305 #endif
306
307 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
308
309 TAILQ_INIT(&ifnet_list);
310 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
311 ifnet_psz = pserialize_create();
312 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
313 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
314 PSLIST_INIT(&ifnet_pslist);
315
316 if_indexlim = 8;
317
318 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
319 KASSERT(if_pfil != NULL);
320
321 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
322 etherinit();
323 #endif
324 }
325
326 /* XXX must be after domaininit() */
327 void
328 ifinit_post(void)
329 {
330
331 if_sysctl_setup(NULL);
332 }
333
334 ifnet_t *
335 if_alloc(u_char type)
336 {
337 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
338 }
339
340 void
341 if_free(ifnet_t *ifp)
342 {
343 kmem_free(ifp, sizeof(ifnet_t));
344 }
345
346 void
347 if_initname(struct ifnet *ifp, const char *name, int unit)
348 {
349 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
350 "%s%d", name, unit);
351 }
352
353 /*
354 * Null routines used while an interface is going away. These routines
355 * just return an error.
356 */
357
358 int
359 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
360 const struct sockaddr *so, const struct rtentry *rt)
361 {
362
363 return ENXIO;
364 }
365
366 void
367 if_nullinput(struct ifnet *ifp, struct mbuf *m)
368 {
369
370 /* Nothing. */
371 }
372
373 void
374 if_nullstart(struct ifnet *ifp)
375 {
376
377 /* Nothing. */
378 }
379
380 int
381 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
382 {
383
384 m_freem(m);
385 return ENXIO;
386 }
387
388 int
389 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
390 {
391
392 return ENXIO;
393 }
394
395 int
396 if_nullinit(struct ifnet *ifp)
397 {
398
399 return ENXIO;
400 }
401
402 void
403 if_nullstop(struct ifnet *ifp, int disable)
404 {
405
406 /* Nothing. */
407 }
408
409 void
410 if_nullslowtimo(struct ifnet *ifp)
411 {
412
413 /* Nothing. */
414 }
415
416 void
417 if_nulldrain(struct ifnet *ifp)
418 {
419
420 /* Nothing. */
421 }
422
423 void
424 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
425 {
426 struct ifaddr *ifa;
427 struct sockaddr_dl *sdl;
428
429 ifp->if_addrlen = addrlen;
430 if_alloc_sadl(ifp);
431 ifa = ifp->if_dl;
432 sdl = satosdl(ifa->ifa_addr);
433
434 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
435 if (factory) {
436 KASSERT(ifp->if_hwdl == NULL);
437 ifp->if_hwdl = ifp->if_dl;
438 ifaref(ifp->if_hwdl);
439 }
440 /* TBD routing socket */
441 }
442
443 struct ifaddr *
444 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
445 {
446 unsigned socksize, ifasize;
447 int addrlen, namelen;
448 struct sockaddr_dl *mask, *sdl;
449 struct ifaddr *ifa;
450
451 namelen = strlen(ifp->if_xname);
452 addrlen = ifp->if_addrlen;
453 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
454 ifasize = sizeof(*ifa) + 2 * socksize;
455 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
456
457 sdl = (struct sockaddr_dl *)(ifa + 1);
458 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
459
460 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
461 ifp->if_xname, namelen, NULL, addrlen);
462 mask->sdl_family = AF_LINK;
463 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
464 memset(&mask->sdl_data[0], 0xff, namelen);
465 ifa->ifa_rtrequest = link_rtrequest;
466 ifa->ifa_addr = (struct sockaddr *)sdl;
467 ifa->ifa_netmask = (struct sockaddr *)mask;
468 ifa_psref_init(ifa);
469
470 *sdlp = sdl;
471
472 return ifa;
473 }
474
475 static void
476 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
477 {
478 const struct sockaddr_dl *sdl;
479
480 ifp->if_dl = ifa;
481 ifaref(ifa);
482 sdl = satosdl(ifa->ifa_addr);
483 ifp->if_sadl = sdl;
484 }
485
486 /*
487 * Allocate the link level name for the specified interface. This
488 * is an attachment helper. It must be called after ifp->if_addrlen
489 * is initialized, which may not be the case when if_attach() is
490 * called.
491 */
492 void
493 if_alloc_sadl(struct ifnet *ifp)
494 {
495 struct ifaddr *ifa;
496 const struct sockaddr_dl *sdl;
497
498 /*
499 * If the interface already has a link name, release it
500 * now. This is useful for interfaces that can change
501 * link types, and thus switch link names often.
502 */
503 if (ifp->if_sadl != NULL)
504 if_free_sadl(ifp, 0);
505
506 ifa = if_dl_create(ifp, &sdl);
507
508 ifa_insert(ifp, ifa);
509 if_sadl_setrefs(ifp, ifa);
510 }
511
512 static void
513 if_deactivate_sadl(struct ifnet *ifp)
514 {
515 struct ifaddr *ifa;
516
517 KASSERT(ifp->if_dl != NULL);
518
519 ifa = ifp->if_dl;
520
521 ifp->if_sadl = NULL;
522
523 ifp->if_dl = NULL;
524 ifafree(ifa);
525 }
526
527 static void
528 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
529 {
530 struct ifaddr *old;
531
532 KASSERT(ifp->if_dl != NULL);
533
534 old = ifp->if_dl;
535
536 ifaref(ifa);
537 /* XXX Update if_dl and if_sadl atomically */
538 ifp->if_dl = ifa;
539 ifp->if_sadl = satosdl(ifa->ifa_addr);
540
541 ifafree(old);
542 }
543
544 void
545 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
546 const struct sockaddr_dl *sdl)
547 {
548 int s, ss;
549 struct ifaddr *ifa;
550 int bound = curlwp_bind();
551
552 KASSERT(ifa_held(ifa0));
553
554 s = splsoftnet();
555
556 if_replace_sadl(ifp, ifa0);
557
558 ss = pserialize_read_enter();
559 IFADDR_READER_FOREACH(ifa, ifp) {
560 struct psref psref;
561 ifa_acquire(ifa, &psref);
562 pserialize_read_exit(ss);
563
564 rtinit(ifa, RTM_LLINFO_UPD, 0);
565
566 ss = pserialize_read_enter();
567 ifa_release(ifa, &psref);
568 }
569 pserialize_read_exit(ss);
570
571 splx(s);
572 curlwp_bindx(bound);
573 }
574
575 /*
576 * Free the link level name for the specified interface. This is
577 * a detach helper. This is called from if_detach().
578 */
579 void
580 if_free_sadl(struct ifnet *ifp, int factory)
581 {
582 struct ifaddr *ifa;
583 int s;
584
585 if (factory && ifp->if_hwdl != NULL) {
586 ifa = ifp->if_hwdl;
587 ifp->if_hwdl = NULL;
588 ifafree(ifa);
589 }
590
591 ifa = ifp->if_dl;
592 if (ifa == NULL) {
593 KASSERT(ifp->if_sadl == NULL);
594 return;
595 }
596
597 KASSERT(ifp->if_sadl != NULL);
598
599 s = splsoftnet();
600 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
601 ifa_remove(ifp, ifa);
602 if_deactivate_sadl(ifp);
603 splx(s);
604 }
605
606 static void
607 if_getindex(ifnet_t *ifp)
608 {
609 bool hitlimit = false;
610
611 ifp->if_index_gen = index_gen++;
612
613 ifp->if_index = if_index;
614 if (ifindex2ifnet == NULL) {
615 if_index++;
616 goto skip;
617 }
618 while (if_byindex(ifp->if_index)) {
619 /*
620 * If we hit USHRT_MAX, we skip back to 0 since
621 * there are a number of places where the value
622 * of if_index or if_index itself is compared
623 * to or stored in an unsigned short. By
624 * jumping back, we won't botch those assignments
625 * or comparisons.
626 */
627 if (++if_index == 0) {
628 if_index = 1;
629 } else if (if_index == USHRT_MAX) {
630 /*
631 * However, if we have to jump back to
632 * zero *twice* without finding an empty
633 * slot in ifindex2ifnet[], then there
634 * there are too many (>65535) interfaces.
635 */
636 if (hitlimit) {
637 panic("too many interfaces");
638 }
639 hitlimit = true;
640 if_index = 1;
641 }
642 ifp->if_index = if_index;
643 }
644 skip:
645 /*
646 * ifindex2ifnet is indexed by if_index. Since if_index will
647 * grow dynamically, it should grow too.
648 */
649 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
650 size_t m, n, oldlim;
651 void *q;
652
653 oldlim = if_indexlim;
654 while (ifp->if_index >= if_indexlim)
655 if_indexlim <<= 1;
656
657 /* grow ifindex2ifnet */
658 m = oldlim * sizeof(struct ifnet *);
659 n = if_indexlim * sizeof(struct ifnet *);
660 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
661 if (ifindex2ifnet != NULL) {
662 memcpy(q, ifindex2ifnet, m);
663 free(ifindex2ifnet, M_IFADDR);
664 }
665 ifindex2ifnet = (struct ifnet **)q;
666 }
667 ifindex2ifnet[ifp->if_index] = ifp;
668 }
669
670 /*
671 * Initialize an interface and assign an index for it.
672 *
673 * It must be called prior to a device specific attach routine
674 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
675 * and be followed by if_register:
676 *
677 * if_initialize(ifp);
678 * ether_ifattach(ifp, enaddr);
679 * if_register(ifp);
680 */
681 int
682 if_initialize(ifnet_t *ifp)
683 {
684 int rv = 0;
685
686 KASSERT(if_indexlim > 0);
687 TAILQ_INIT(&ifp->if_addrlist);
688
689 /*
690 * Link level name is allocated later by a separate call to
691 * if_alloc_sadl().
692 */
693
694 if (ifp->if_snd.ifq_maxlen == 0)
695 ifp->if_snd.ifq_maxlen = ifqmaxlen;
696
697 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
698
699 ifp->if_link_state = LINK_STATE_UNKNOWN;
700 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
701
702 ifp->if_capenable = 0;
703 ifp->if_csum_flags_tx = 0;
704 ifp->if_csum_flags_rx = 0;
705
706 #ifdef ALTQ
707 ifp->if_snd.altq_type = 0;
708 ifp->if_snd.altq_disc = NULL;
709 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
710 ifp->if_snd.altq_tbr = NULL;
711 ifp->if_snd.altq_ifp = ifp;
712 #endif
713
714 IFQ_LOCK_INIT(&ifp->if_snd);
715
716 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
717 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
718
719 IF_AFDATA_LOCK_INIT(ifp);
720
721 if (if_is_link_state_changeable(ifp)) {
722 u_int flags = SOFTINT_NET;
723 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
724 ifp->if_link_si = softint_establish(flags,
725 if_link_state_change_si, ifp);
726 if (ifp->if_link_si == NULL) {
727 rv = ENOMEM;
728 goto fail;
729 }
730 }
731
732 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
733 PSLIST_INIT(&ifp->if_addr_pslist);
734 psref_target_init(&ifp->if_psref, ifnet_psref_class);
735 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
736 LIST_INIT(&ifp->if_multiaddrs);
737
738 IFNET_GLOBAL_LOCK();
739 if_getindex(ifp);
740 IFNET_GLOBAL_UNLOCK();
741
742 return 0;
743
744 fail:
745 IF_AFDATA_LOCK_DESTROY(ifp);
746
747 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
748 (void)pfil_head_destroy(ifp->if_pfil);
749
750 IFQ_LOCK_DESTROY(&ifp->if_snd);
751
752 return rv;
753 }
754
755 /*
756 * Register an interface to the list of "active" interfaces.
757 */
758 void
759 if_register(ifnet_t *ifp)
760 {
761 /*
762 * If the driver has not supplied its own if_ioctl, then
763 * supply the default.
764 */
765 if (ifp->if_ioctl == NULL)
766 ifp->if_ioctl = ifioctl_common;
767
768 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
769
770 if (!STAILQ_EMPTY(&domains))
771 if_attachdomain1(ifp);
772
773 /* Announce the interface. */
774 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
775
776 if (ifp->if_slowtimo != NULL) {
777 ifp->if_slowtimo_ch =
778 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
779 callout_init(ifp->if_slowtimo_ch, 0);
780 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
781 if_slowtimo(ifp);
782 }
783
784 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
785 ifp->if_transmit = if_transmit;
786
787 IFNET_GLOBAL_LOCK();
788 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
789 IFNET_WRITER_INSERT_TAIL(ifp);
790 IFNET_GLOBAL_UNLOCK();
791 }
792
793 /*
794 * The if_percpuq framework
795 *
796 * It allows network device drivers to execute the network stack
797 * in softint (so called softint-based if_input). It utilizes
798 * softint and percpu ifqueue. It doesn't distribute any packets
799 * between CPUs, unlike pktqueue(9).
800 *
801 * Currently we support two options for device drivers to apply the framework:
802 * - Use it implicitly with less changes
803 * - If you use if_attach in driver's _attach function and if_input in
804 * driver's Rx interrupt handler, a packet is queued and a softint handles
805 * the packet implicitly
806 * - Use it explicitly in each driver (recommended)
807 * - You can use if_percpuq_* directly in your driver
808 * - In this case, you need to allocate struct if_percpuq in driver's softc
809 * - See wm(4) as a reference implementation
810 */
811
812 static void
813 if_percpuq_softint(void *arg)
814 {
815 struct if_percpuq *ipq = arg;
816 struct ifnet *ifp = ipq->ipq_ifp;
817 struct mbuf *m;
818
819 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
820 ifp->if_ipackets++;
821 bpf_mtap(ifp, m, BPF_D_IN);
822
823 ifp->_if_input(ifp, m);
824 }
825 }
826
827 static void
828 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
829 {
830 struct ifqueue *const ifq = p;
831
832 memset(ifq, 0, sizeof(*ifq));
833 ifq->ifq_maxlen = IFQ_MAXLEN;
834 }
835
836 struct if_percpuq *
837 if_percpuq_create(struct ifnet *ifp)
838 {
839 struct if_percpuq *ipq;
840 u_int flags = SOFTINT_NET;
841
842 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
843
844 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
845 ipq->ipq_ifp = ifp;
846 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
847 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
848 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
849
850 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
851
852 return ipq;
853 }
854
855 static struct mbuf *
856 if_percpuq_dequeue(struct if_percpuq *ipq)
857 {
858 struct mbuf *m;
859 struct ifqueue *ifq;
860 int s;
861
862 s = splnet();
863 ifq = percpu_getref(ipq->ipq_ifqs);
864 IF_DEQUEUE(ifq, m);
865 percpu_putref(ipq->ipq_ifqs);
866 splx(s);
867
868 return m;
869 }
870
871 static void
872 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
873 {
874 struct ifqueue *const ifq = p;
875
876 IF_PURGE(ifq);
877 }
878
879 void
880 if_percpuq_destroy(struct if_percpuq *ipq)
881 {
882
883 /* if_detach may already destroy it */
884 if (ipq == NULL)
885 return;
886
887 softint_disestablish(ipq->ipq_si);
888 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
889 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
890 kmem_free(ipq, sizeof(*ipq));
891 }
892
893 void
894 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
895 {
896 struct ifqueue *ifq;
897 int s;
898
899 KASSERT(ipq != NULL);
900
901 s = splnet();
902 ifq = percpu_getref(ipq->ipq_ifqs);
903 if (IF_QFULL(ifq)) {
904 IF_DROP(ifq);
905 percpu_putref(ipq->ipq_ifqs);
906 m_freem(m);
907 goto out;
908 }
909 IF_ENQUEUE(ifq, m);
910 percpu_putref(ipq->ipq_ifqs);
911
912 softint_schedule(ipq->ipq_si);
913 out:
914 splx(s);
915 }
916
917 static void
918 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
919 {
920 struct ifqueue *const ifq = p;
921 int *sum = arg;
922
923 *sum += ifq->ifq_drops;
924 }
925
926 static int
927 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
928 {
929 struct sysctlnode node;
930 struct if_percpuq *ipq;
931 int sum = 0;
932 int error;
933
934 node = *rnode;
935 ipq = node.sysctl_data;
936
937 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
938
939 node.sysctl_data = ∑
940 error = sysctl_lookup(SYSCTLFN_CALL(&node));
941 if (error != 0 || newp == NULL)
942 return error;
943
944 return 0;
945 }
946
947 static void
948 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
949 struct if_percpuq *ipq)
950 {
951 const struct sysctlnode *cnode, *rnode;
952
953 if (sysctl_createv(clog, 0, NULL, &rnode,
954 CTLFLAG_PERMANENT,
955 CTLTYPE_NODE, "interfaces",
956 SYSCTL_DESCR("Per-interface controls"),
957 NULL, 0, NULL, 0,
958 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
959 goto bad;
960
961 if (sysctl_createv(clog, 0, &rnode, &rnode,
962 CTLFLAG_PERMANENT,
963 CTLTYPE_NODE, ifname,
964 SYSCTL_DESCR("Interface controls"),
965 NULL, 0, NULL, 0,
966 CTL_CREATE, CTL_EOL) != 0)
967 goto bad;
968
969 if (sysctl_createv(clog, 0, &rnode, &rnode,
970 CTLFLAG_PERMANENT,
971 CTLTYPE_NODE, "rcvq",
972 SYSCTL_DESCR("Interface input queue controls"),
973 NULL, 0, NULL, 0,
974 CTL_CREATE, CTL_EOL) != 0)
975 goto bad;
976
977 #ifdef NOTYET
978 /* XXX Should show each per-CPU queue length? */
979 if (sysctl_createv(clog, 0, &rnode, &rnode,
980 CTLFLAG_PERMANENT,
981 CTLTYPE_INT, "len",
982 SYSCTL_DESCR("Current input queue length"),
983 sysctl_percpuq_len, 0, NULL, 0,
984 CTL_CREATE, CTL_EOL) != 0)
985 goto bad;
986
987 if (sysctl_createv(clog, 0, &rnode, &cnode,
988 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
989 CTLTYPE_INT, "maxlen",
990 SYSCTL_DESCR("Maximum allowed input queue length"),
991 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
992 CTL_CREATE, CTL_EOL) != 0)
993 goto bad;
994 #endif
995
996 if (sysctl_createv(clog, 0, &rnode, &cnode,
997 CTLFLAG_PERMANENT,
998 CTLTYPE_INT, "drops",
999 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1000 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1001 CTL_CREATE, CTL_EOL) != 0)
1002 goto bad;
1003
1004 return;
1005 bad:
1006 printf("%s: could not attach sysctl nodes\n", ifname);
1007 return;
1008 }
1009
1010 /*
1011 * The deferred if_start framework
1012 *
1013 * The common APIs to defer if_start to softint when if_start is requested
1014 * from a device driver running in hardware interrupt context.
1015 */
1016 /*
1017 * Call ifp->if_start (or equivalent) in a dedicated softint for
1018 * deferred if_start.
1019 */
1020 static void
1021 if_deferred_start_softint(void *arg)
1022 {
1023 struct if_deferred_start *ids = arg;
1024 struct ifnet *ifp = ids->ids_ifp;
1025
1026 ids->ids_if_start(ifp);
1027 }
1028
1029 /*
1030 * The default callback function for deferred if_start.
1031 */
1032 static void
1033 if_deferred_start_common(struct ifnet *ifp)
1034 {
1035 int s;
1036
1037 s = splnet();
1038 if_start_lock(ifp);
1039 splx(s);
1040 }
1041
1042 static inline bool
1043 if_snd_is_used(struct ifnet *ifp)
1044 {
1045
1046 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1047 ifp->if_transmit == if_transmit ||
1048 ALTQ_IS_ENABLED(&ifp->if_snd);
1049 }
1050
1051 /*
1052 * Schedule deferred if_start.
1053 */
1054 void
1055 if_schedule_deferred_start(struct ifnet *ifp)
1056 {
1057
1058 KASSERT(ifp->if_deferred_start != NULL);
1059
1060 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1061 return;
1062
1063 softint_schedule(ifp->if_deferred_start->ids_si);
1064 }
1065
1066 /*
1067 * Create an instance of deferred if_start. A driver should call the function
1068 * only if the driver needs deferred if_start. Drivers can setup their own
1069 * deferred if_start function via 2nd argument.
1070 */
1071 void
1072 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1073 {
1074 struct if_deferred_start *ids;
1075 u_int flags = SOFTINT_NET;
1076
1077 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1078
1079 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1080 ids->ids_ifp = ifp;
1081 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1082 if (func != NULL)
1083 ids->ids_if_start = func;
1084 else
1085 ids->ids_if_start = if_deferred_start_common;
1086
1087 ifp->if_deferred_start = ids;
1088 }
1089
1090 static void
1091 if_deferred_start_destroy(struct ifnet *ifp)
1092 {
1093
1094 if (ifp->if_deferred_start == NULL)
1095 return;
1096
1097 softint_disestablish(ifp->if_deferred_start->ids_si);
1098 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1099 ifp->if_deferred_start = NULL;
1100 }
1101
1102 /*
1103 * The common interface input routine that is called by device drivers,
1104 * which should be used only when the driver's rx handler already runs
1105 * in softint.
1106 */
1107 void
1108 if_input(struct ifnet *ifp, struct mbuf *m)
1109 {
1110
1111 KASSERT(ifp->if_percpuq == NULL);
1112 KASSERT(!cpu_intr_p());
1113
1114 ifp->if_ipackets++;
1115 bpf_mtap(ifp, m, BPF_D_IN);
1116
1117 ifp->_if_input(ifp, m);
1118 }
1119
1120 /*
1121 * DEPRECATED. Use if_initialize and if_register instead.
1122 * See the above comment of if_initialize.
1123 *
1124 * Note that it implicitly enables if_percpuq to make drivers easy to
1125 * migrate softint-based if_input without much changes. If you don't
1126 * want to enable it, use if_initialize instead.
1127 */
1128 int
1129 if_attach(ifnet_t *ifp)
1130 {
1131 int rv;
1132
1133 rv = if_initialize(ifp);
1134 if (rv != 0)
1135 return rv;
1136
1137 ifp->if_percpuq = if_percpuq_create(ifp);
1138 if_register(ifp);
1139
1140 return 0;
1141 }
1142
1143 void
1144 if_attachdomain(void)
1145 {
1146 struct ifnet *ifp;
1147 int s;
1148 int bound = curlwp_bind();
1149
1150 s = pserialize_read_enter();
1151 IFNET_READER_FOREACH(ifp) {
1152 struct psref psref;
1153 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1154 pserialize_read_exit(s);
1155 if_attachdomain1(ifp);
1156 s = pserialize_read_enter();
1157 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1158 }
1159 pserialize_read_exit(s);
1160 curlwp_bindx(bound);
1161 }
1162
1163 static void
1164 if_attachdomain1(struct ifnet *ifp)
1165 {
1166 struct domain *dp;
1167 int s;
1168
1169 s = splsoftnet();
1170
1171 /* address family dependent data region */
1172 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1173 DOMAIN_FOREACH(dp) {
1174 if (dp->dom_ifattach != NULL)
1175 ifp->if_afdata[dp->dom_family] =
1176 (*dp->dom_ifattach)(ifp);
1177 }
1178
1179 splx(s);
1180 }
1181
1182 /*
1183 * Deactivate an interface. This points all of the procedure
1184 * handles at error stubs. May be called from interrupt context.
1185 */
1186 void
1187 if_deactivate(struct ifnet *ifp)
1188 {
1189 int s;
1190
1191 s = splsoftnet();
1192
1193 ifp->if_output = if_nulloutput;
1194 ifp->_if_input = if_nullinput;
1195 ifp->if_start = if_nullstart;
1196 ifp->if_transmit = if_nulltransmit;
1197 ifp->if_ioctl = if_nullioctl;
1198 ifp->if_init = if_nullinit;
1199 ifp->if_stop = if_nullstop;
1200 ifp->if_slowtimo = if_nullslowtimo;
1201 ifp->if_drain = if_nulldrain;
1202
1203 /* No more packets may be enqueued. */
1204 ifp->if_snd.ifq_maxlen = 0;
1205
1206 splx(s);
1207 }
1208
1209 bool
1210 if_is_deactivated(const struct ifnet *ifp)
1211 {
1212
1213 return ifp->if_output == if_nulloutput;
1214 }
1215
1216 void
1217 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1218 {
1219 struct ifaddr *ifa, *nifa;
1220 int s;
1221
1222 s = pserialize_read_enter();
1223 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1224 nifa = IFADDR_READER_NEXT(ifa);
1225 if (ifa->ifa_addr->sa_family != family)
1226 continue;
1227 pserialize_read_exit(s);
1228
1229 (*purgeaddr)(ifa);
1230
1231 s = pserialize_read_enter();
1232 }
1233 pserialize_read_exit(s);
1234 }
1235
1236 #ifdef IFAREF_DEBUG
1237 static struct ifaddr **ifa_list;
1238 static int ifa_list_size;
1239
1240 /* Depends on only one if_attach runs at once */
1241 static void
1242 if_build_ifa_list(struct ifnet *ifp)
1243 {
1244 struct ifaddr *ifa;
1245 int i;
1246
1247 KASSERT(ifa_list == NULL);
1248 KASSERT(ifa_list_size == 0);
1249
1250 IFADDR_READER_FOREACH(ifa, ifp)
1251 ifa_list_size++;
1252
1253 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1254 i = 0;
1255 IFADDR_READER_FOREACH(ifa, ifp) {
1256 ifa_list[i++] = ifa;
1257 ifaref(ifa);
1258 }
1259 }
1260
1261 static void
1262 if_check_and_free_ifa_list(struct ifnet *ifp)
1263 {
1264 int i;
1265 struct ifaddr *ifa;
1266
1267 if (ifa_list == NULL)
1268 return;
1269
1270 for (i = 0; i < ifa_list_size; i++) {
1271 char buf[64];
1272
1273 ifa = ifa_list[i];
1274 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1275 if (ifa->ifa_refcnt > 1) {
1276 log(LOG_WARNING,
1277 "ifa(%s) still referenced (refcnt=%d)\n",
1278 buf, ifa->ifa_refcnt - 1);
1279 } else
1280 log(LOG_DEBUG,
1281 "ifa(%s) not referenced (refcnt=%d)\n",
1282 buf, ifa->ifa_refcnt - 1);
1283 ifafree(ifa);
1284 }
1285
1286 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1287 ifa_list = NULL;
1288 ifa_list_size = 0;
1289 }
1290 #endif
1291
1292 /*
1293 * Detach an interface from the list of "active" interfaces,
1294 * freeing any resources as we go along.
1295 *
1296 * NOTE: This routine must be called with a valid thread context,
1297 * as it may block.
1298 */
1299 void
1300 if_detach(struct ifnet *ifp)
1301 {
1302 struct socket so;
1303 struct ifaddr *ifa;
1304 #ifdef IFAREF_DEBUG
1305 struct ifaddr *last_ifa = NULL;
1306 #endif
1307 struct domain *dp;
1308 const struct protosw *pr;
1309 int s, i, family, purged;
1310 uint64_t xc;
1311
1312 #ifdef IFAREF_DEBUG
1313 if_build_ifa_list(ifp);
1314 #endif
1315 /*
1316 * XXX It's kind of lame that we have to have the
1317 * XXX socket structure...
1318 */
1319 memset(&so, 0, sizeof(so));
1320
1321 s = splnet();
1322
1323 sysctl_teardown(&ifp->if_sysctl_log);
1324 IFNET_LOCK(ifp);
1325 if_deactivate(ifp);
1326 IFNET_UNLOCK(ifp);
1327
1328 /*
1329 * Unlink from the list and wait for all readers to leave
1330 * from pserialize read sections. Note that we can't do
1331 * psref_target_destroy here. See below.
1332 */
1333 IFNET_GLOBAL_LOCK();
1334 ifindex2ifnet[ifp->if_index] = NULL;
1335 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1336 IFNET_WRITER_REMOVE(ifp);
1337 pserialize_perform(ifnet_psz);
1338 IFNET_GLOBAL_UNLOCK();
1339
1340 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1341 ifp->if_slowtimo = NULL;
1342 callout_halt(ifp->if_slowtimo_ch, NULL);
1343 callout_destroy(ifp->if_slowtimo_ch);
1344 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1345 }
1346 if_deferred_start_destroy(ifp);
1347
1348 /*
1349 * Do an if_down() to give protocols a chance to do something.
1350 */
1351 if_down_deactivated(ifp);
1352
1353 #ifdef ALTQ
1354 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1355 altq_disable(&ifp->if_snd);
1356 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1357 altq_detach(&ifp->if_snd);
1358 #endif
1359
1360 #if NCARP > 0
1361 /* Remove the interface from any carp group it is a part of. */
1362 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1363 carp_ifdetach(ifp);
1364 #endif
1365
1366 /*
1367 * Rip all the addresses off the interface. This should make
1368 * all of the routes go away.
1369 *
1370 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1371 * from the list, including our "cursor", ifa. For safety,
1372 * and to honor the TAILQ abstraction, I just restart the
1373 * loop after each removal. Note that the loop will exit
1374 * when all of the remaining ifaddrs belong to the AF_LINK
1375 * family. I am counting on the historical fact that at
1376 * least one pr_usrreq in each address domain removes at
1377 * least one ifaddr.
1378 */
1379 again:
1380 /*
1381 * At this point, no other one tries to remove ifa in the list,
1382 * so we don't need to take a lock or psref. Avoid using
1383 * IFADDR_READER_FOREACH to pass over an inspection of contract
1384 * violations of pserialize.
1385 */
1386 IFADDR_WRITER_FOREACH(ifa, ifp) {
1387 family = ifa->ifa_addr->sa_family;
1388 #ifdef IFAREF_DEBUG
1389 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1390 ifa, family, ifa->ifa_refcnt);
1391 if (last_ifa != NULL && ifa == last_ifa)
1392 panic("if_detach: loop detected");
1393 last_ifa = ifa;
1394 #endif
1395 if (family == AF_LINK)
1396 continue;
1397 dp = pffinddomain(family);
1398 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1399 /*
1400 * XXX These PURGEIF calls are redundant with the
1401 * purge-all-families calls below, but are left in for
1402 * now both to make a smaller change, and to avoid
1403 * unplanned interactions with clearing of
1404 * ifp->if_addrlist.
1405 */
1406 purged = 0;
1407 for (pr = dp->dom_protosw;
1408 pr < dp->dom_protoswNPROTOSW; pr++) {
1409 so.so_proto = pr;
1410 if (pr->pr_usrreqs) {
1411 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1412 purged = 1;
1413 }
1414 }
1415 if (purged == 0) {
1416 /*
1417 * XXX What's really the best thing to do
1418 * XXX here? --thorpej (at) NetBSD.org
1419 */
1420 printf("if_detach: WARNING: AF %d not purged\n",
1421 family);
1422 ifa_remove(ifp, ifa);
1423 }
1424 goto again;
1425 }
1426
1427 if_free_sadl(ifp, 1);
1428
1429 restart:
1430 IFADDR_WRITER_FOREACH(ifa, ifp) {
1431 family = ifa->ifa_addr->sa_family;
1432 KASSERT(family == AF_LINK);
1433 ifa_remove(ifp, ifa);
1434 goto restart;
1435 }
1436
1437 /* Delete stray routes from the routing table. */
1438 for (i = 0; i <= AF_MAX; i++)
1439 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1440
1441 DOMAIN_FOREACH(dp) {
1442 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1443 {
1444 void *p = ifp->if_afdata[dp->dom_family];
1445 if (p) {
1446 ifp->if_afdata[dp->dom_family] = NULL;
1447 (*dp->dom_ifdetach)(ifp, p);
1448 }
1449 }
1450
1451 /*
1452 * One would expect multicast memberships (INET and
1453 * INET6) on UDP sockets to be purged by the PURGEIF
1454 * calls above, but if all addresses were removed from
1455 * the interface prior to destruction, the calls will
1456 * not be made (e.g. ppp, for which pppd(8) generally
1457 * removes addresses before destroying the interface).
1458 * Because there is no invariant that multicast
1459 * memberships only exist for interfaces with IPv4
1460 * addresses, we must call PURGEIF regardless of
1461 * addresses. (Protocols which might store ifnet
1462 * pointers are marked with PR_PURGEIF.)
1463 */
1464 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1465 so.so_proto = pr;
1466 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1467 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1468 }
1469 }
1470
1471 /*
1472 * Must be done after the above pr_purgeif because if_psref may be
1473 * still used in pr_purgeif.
1474 */
1475 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1476 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1477
1478 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1479 (void)pfil_head_destroy(ifp->if_pfil);
1480
1481 /* Announce that the interface is gone. */
1482 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1483
1484 IF_AFDATA_LOCK_DESTROY(ifp);
1485
1486 if (if_is_link_state_changeable(ifp)) {
1487 softint_disestablish(ifp->if_link_si);
1488 ifp->if_link_si = NULL;
1489 }
1490
1491 /*
1492 * remove packets that came from ifp, from software interrupt queues.
1493 */
1494 DOMAIN_FOREACH(dp) {
1495 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1496 struct ifqueue *iq = dp->dom_ifqueues[i];
1497 if (iq == NULL)
1498 break;
1499 dp->dom_ifqueues[i] = NULL;
1500 if_detach_queues(ifp, iq);
1501 }
1502 }
1503
1504 /*
1505 * IP queues have to be processed separately: net-queue barrier
1506 * ensures that the packets are dequeued while a cross-call will
1507 * ensure that the interrupts have completed. FIXME: not quite..
1508 */
1509 #ifdef INET
1510 pktq_barrier(ip_pktq);
1511 #endif
1512 #ifdef INET6
1513 if (in6_present)
1514 pktq_barrier(ip6_pktq);
1515 #endif
1516 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1517 xc_wait(xc);
1518
1519 if (ifp->if_percpuq != NULL) {
1520 if_percpuq_destroy(ifp->if_percpuq);
1521 ifp->if_percpuq = NULL;
1522 }
1523
1524 mutex_obj_free(ifp->if_ioctl_lock);
1525 ifp->if_ioctl_lock = NULL;
1526 mutex_obj_free(ifp->if_snd.ifq_lock);
1527
1528 splx(s);
1529
1530 #ifdef IFAREF_DEBUG
1531 if_check_and_free_ifa_list(ifp);
1532 #endif
1533 }
1534
1535 static void
1536 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1537 {
1538 struct mbuf *m, *prev, *next;
1539
1540 prev = NULL;
1541 for (m = q->ifq_head; m != NULL; m = next) {
1542 KASSERT((m->m_flags & M_PKTHDR) != 0);
1543
1544 next = m->m_nextpkt;
1545 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1546 prev = m;
1547 continue;
1548 }
1549
1550 if (prev != NULL)
1551 prev->m_nextpkt = m->m_nextpkt;
1552 else
1553 q->ifq_head = m->m_nextpkt;
1554 if (q->ifq_tail == m)
1555 q->ifq_tail = prev;
1556 q->ifq_len--;
1557
1558 m->m_nextpkt = NULL;
1559 m_freem(m);
1560 IF_DROP(q);
1561 }
1562 }
1563
1564 /*
1565 * Callback for a radix tree walk to delete all references to an
1566 * ifnet.
1567 */
1568 static int
1569 if_delroute_matcher(struct rtentry *rt, void *v)
1570 {
1571 struct ifnet *ifp = (struct ifnet *)v;
1572
1573 if (rt->rt_ifp == ifp)
1574 return 1;
1575 else
1576 return 0;
1577 }
1578
1579 /*
1580 * Create a clone network interface.
1581 */
1582 static int
1583 if_clone_create(const char *name)
1584 {
1585 struct if_clone *ifc;
1586 int unit;
1587 struct ifnet *ifp;
1588 struct psref psref;
1589
1590 KASSERT(mutex_owned(&if_clone_mtx));
1591
1592 ifc = if_clone_lookup(name, &unit);
1593 if (ifc == NULL)
1594 return EINVAL;
1595
1596 ifp = if_get(name, &psref);
1597 if (ifp != NULL) {
1598 if_put(ifp, &psref);
1599 return EEXIST;
1600 }
1601
1602 return (*ifc->ifc_create)(ifc, unit);
1603 }
1604
1605 /*
1606 * Destroy a clone network interface.
1607 */
1608 static int
1609 if_clone_destroy(const char *name)
1610 {
1611 struct if_clone *ifc;
1612 struct ifnet *ifp;
1613 struct psref psref;
1614
1615 KASSERT(mutex_owned(&if_clone_mtx));
1616
1617 ifc = if_clone_lookup(name, NULL);
1618 if (ifc == NULL)
1619 return EINVAL;
1620
1621 if (ifc->ifc_destroy == NULL)
1622 return EOPNOTSUPP;
1623
1624 ifp = if_get(name, &psref);
1625 if (ifp == NULL)
1626 return ENXIO;
1627
1628 /* We have to disable ioctls here */
1629 IFNET_LOCK(ifp);
1630 ifp->if_ioctl = if_nullioctl;
1631 IFNET_UNLOCK(ifp);
1632
1633 /*
1634 * We cannot call ifc_destroy with holding ifp.
1635 * Releasing ifp here is safe thanks to if_clone_mtx.
1636 */
1637 if_put(ifp, &psref);
1638
1639 return (*ifc->ifc_destroy)(ifp);
1640 }
1641
1642 static bool
1643 if_is_unit(const char *name)
1644 {
1645
1646 while (*name != '\0') {
1647 if (*name < '0' || *name > '9')
1648 return false;
1649 name++;
1650 }
1651
1652 return true;
1653 }
1654
1655 /*
1656 * Look up a network interface cloner.
1657 */
1658 static struct if_clone *
1659 if_clone_lookup(const char *name, int *unitp)
1660 {
1661 struct if_clone *ifc;
1662 const char *cp;
1663 char *dp, ifname[IFNAMSIZ + 3];
1664 int unit;
1665
1666 KASSERT(mutex_owned(&if_clone_mtx));
1667
1668 strcpy(ifname, "if_");
1669 /* separate interface name from unit */
1670 /* TODO: search unit number from backward */
1671 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1672 *cp && !if_is_unit(cp);)
1673 *dp++ = *cp++;
1674
1675 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1676 return NULL; /* No name or unit number */
1677 *dp++ = '\0';
1678
1679 again:
1680 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1681 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1682 break;
1683 }
1684
1685 if (ifc == NULL) {
1686 int error;
1687 if (*ifname == '\0')
1688 return NULL;
1689 mutex_exit(&if_clone_mtx);
1690 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1691 mutex_enter(&if_clone_mtx);
1692 if (error)
1693 return NULL;
1694 *ifname = '\0';
1695 goto again;
1696 }
1697
1698 unit = 0;
1699 while (cp - name < IFNAMSIZ && *cp) {
1700 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1701 /* Bogus unit number. */
1702 return NULL;
1703 }
1704 unit = (unit * 10) + (*cp++ - '0');
1705 }
1706
1707 if (unitp != NULL)
1708 *unitp = unit;
1709 return ifc;
1710 }
1711
1712 /*
1713 * Register a network interface cloner.
1714 */
1715 void
1716 if_clone_attach(struct if_clone *ifc)
1717 {
1718
1719 mutex_enter(&if_clone_mtx);
1720 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1721 if_cloners_count++;
1722 mutex_exit(&if_clone_mtx);
1723 }
1724
1725 /*
1726 * Unregister a network interface cloner.
1727 */
1728 void
1729 if_clone_detach(struct if_clone *ifc)
1730 {
1731
1732 mutex_enter(&if_clone_mtx);
1733 LIST_REMOVE(ifc, ifc_list);
1734 if_cloners_count--;
1735 mutex_exit(&if_clone_mtx);
1736 }
1737
1738 /*
1739 * Provide list of interface cloners to userspace.
1740 */
1741 int
1742 if_clone_list(int buf_count, char *buffer, int *total)
1743 {
1744 char outbuf[IFNAMSIZ], *dst;
1745 struct if_clone *ifc;
1746 int count, error = 0;
1747
1748 mutex_enter(&if_clone_mtx);
1749 *total = if_cloners_count;
1750 if ((dst = buffer) == NULL) {
1751 /* Just asking how many there are. */
1752 goto out;
1753 }
1754
1755 if (buf_count < 0) {
1756 error = EINVAL;
1757 goto out;
1758 }
1759
1760 count = (if_cloners_count < buf_count) ?
1761 if_cloners_count : buf_count;
1762
1763 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1764 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1765 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1766 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1767 error = ENAMETOOLONG;
1768 goto out;
1769 }
1770 error = copyout(outbuf, dst, sizeof(outbuf));
1771 if (error != 0)
1772 break;
1773 }
1774
1775 out:
1776 mutex_exit(&if_clone_mtx);
1777 return error;
1778 }
1779
1780 void
1781 ifa_psref_init(struct ifaddr *ifa)
1782 {
1783
1784 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1785 }
1786
1787 void
1788 ifaref(struct ifaddr *ifa)
1789 {
1790
1791 atomic_inc_uint(&ifa->ifa_refcnt);
1792 }
1793
1794 void
1795 ifafree(struct ifaddr *ifa)
1796 {
1797 KASSERT(ifa != NULL);
1798 KASSERT(ifa->ifa_refcnt > 0);
1799
1800 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1801 free(ifa, M_IFADDR);
1802 }
1803 }
1804
1805 bool
1806 ifa_is_destroying(struct ifaddr *ifa)
1807 {
1808
1809 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1810 }
1811
1812 void
1813 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1814 {
1815
1816 ifa->ifa_ifp = ifp;
1817
1818 /*
1819 * Check MP-safety for IFEF_MPSAFE drivers.
1820 * Check !IFF_RUNNING for initialization routines that normally don't
1821 * take IFNET_LOCK but it's safe because there is no competitor.
1822 * XXX there are false positive cases because IFF_RUNNING can be off on
1823 * if_stop.
1824 */
1825 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1826 IFNET_LOCKED(ifp));
1827
1828 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1829 IFADDR_ENTRY_INIT(ifa);
1830 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1831
1832 ifaref(ifa);
1833 }
1834
1835 void
1836 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1837 {
1838
1839 KASSERT(ifa->ifa_ifp == ifp);
1840 /*
1841 * Check MP-safety for IFEF_MPSAFE drivers.
1842 * if_is_deactivated indicates ifa_remove is called form if_detach
1843 * where is safe even if IFNET_LOCK isn't held.
1844 */
1845 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1846
1847 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1848 IFADDR_WRITER_REMOVE(ifa);
1849 #ifdef NET_MPSAFE
1850 IFNET_GLOBAL_LOCK();
1851 pserialize_perform(ifnet_psz);
1852 IFNET_GLOBAL_UNLOCK();
1853 #endif
1854
1855 #ifdef NET_MPSAFE
1856 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1857 #endif
1858 IFADDR_ENTRY_DESTROY(ifa);
1859 ifafree(ifa);
1860 }
1861
1862 void
1863 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1864 {
1865
1866 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1867 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1868 }
1869
1870 void
1871 ifa_release(struct ifaddr *ifa, struct psref *psref)
1872 {
1873
1874 if (ifa == NULL)
1875 return;
1876
1877 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1878 }
1879
1880 bool
1881 ifa_held(struct ifaddr *ifa)
1882 {
1883
1884 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1885 }
1886
1887 static inline int
1888 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1889 {
1890 return sockaddr_cmp(sa1, sa2) == 0;
1891 }
1892
1893 /*
1894 * Locate an interface based on a complete address.
1895 */
1896 /*ARGSUSED*/
1897 struct ifaddr *
1898 ifa_ifwithaddr(const struct sockaddr *addr)
1899 {
1900 struct ifnet *ifp;
1901 struct ifaddr *ifa;
1902
1903 IFNET_READER_FOREACH(ifp) {
1904 if (if_is_deactivated(ifp))
1905 continue;
1906 IFADDR_READER_FOREACH(ifa, ifp) {
1907 if (ifa->ifa_addr->sa_family != addr->sa_family)
1908 continue;
1909 if (equal(addr, ifa->ifa_addr))
1910 return ifa;
1911 if ((ifp->if_flags & IFF_BROADCAST) &&
1912 ifa->ifa_broadaddr &&
1913 /* IP6 doesn't have broadcast */
1914 ifa->ifa_broadaddr->sa_len != 0 &&
1915 equal(ifa->ifa_broadaddr, addr))
1916 return ifa;
1917 }
1918 }
1919 return NULL;
1920 }
1921
1922 struct ifaddr *
1923 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1924 {
1925 struct ifaddr *ifa;
1926 int s = pserialize_read_enter();
1927
1928 ifa = ifa_ifwithaddr(addr);
1929 if (ifa != NULL)
1930 ifa_acquire(ifa, psref);
1931 pserialize_read_exit(s);
1932
1933 return ifa;
1934 }
1935
1936 /*
1937 * Locate the point to point interface with a given destination address.
1938 */
1939 /*ARGSUSED*/
1940 struct ifaddr *
1941 ifa_ifwithdstaddr(const struct sockaddr *addr)
1942 {
1943 struct ifnet *ifp;
1944 struct ifaddr *ifa;
1945
1946 IFNET_READER_FOREACH(ifp) {
1947 if (if_is_deactivated(ifp))
1948 continue;
1949 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1950 continue;
1951 IFADDR_READER_FOREACH(ifa, ifp) {
1952 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1953 ifa->ifa_dstaddr == NULL)
1954 continue;
1955 if (equal(addr, ifa->ifa_dstaddr))
1956 return ifa;
1957 }
1958 }
1959
1960 return NULL;
1961 }
1962
1963 struct ifaddr *
1964 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1965 {
1966 struct ifaddr *ifa;
1967 int s;
1968
1969 s = pserialize_read_enter();
1970 ifa = ifa_ifwithdstaddr(addr);
1971 if (ifa != NULL)
1972 ifa_acquire(ifa, psref);
1973 pserialize_read_exit(s);
1974
1975 return ifa;
1976 }
1977
1978 /*
1979 * Find an interface on a specific network. If many, choice
1980 * is most specific found.
1981 */
1982 struct ifaddr *
1983 ifa_ifwithnet(const struct sockaddr *addr)
1984 {
1985 struct ifnet *ifp;
1986 struct ifaddr *ifa, *ifa_maybe = NULL;
1987 const struct sockaddr_dl *sdl;
1988 u_int af = addr->sa_family;
1989 const char *addr_data = addr->sa_data, *cplim;
1990
1991 if (af == AF_LINK) {
1992 sdl = satocsdl(addr);
1993 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1994 ifindex2ifnet[sdl->sdl_index] &&
1995 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1996 return ifindex2ifnet[sdl->sdl_index]->if_dl;
1997 }
1998 }
1999 #ifdef NETATALK
2000 if (af == AF_APPLETALK) {
2001 const struct sockaddr_at *sat, *sat2;
2002 sat = (const struct sockaddr_at *)addr;
2003 IFNET_READER_FOREACH(ifp) {
2004 if (if_is_deactivated(ifp))
2005 continue;
2006 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2007 if (ifa == NULL)
2008 continue;
2009 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2010 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2011 return ifa; /* exact match */
2012 if (ifa_maybe == NULL) {
2013 /* else keep the if with the right range */
2014 ifa_maybe = ifa;
2015 }
2016 }
2017 return ifa_maybe;
2018 }
2019 #endif
2020 IFNET_READER_FOREACH(ifp) {
2021 if (if_is_deactivated(ifp))
2022 continue;
2023 IFADDR_READER_FOREACH(ifa, ifp) {
2024 const char *cp, *cp2, *cp3;
2025
2026 if (ifa->ifa_addr->sa_family != af ||
2027 ifa->ifa_netmask == NULL)
2028 next: continue;
2029 cp = addr_data;
2030 cp2 = ifa->ifa_addr->sa_data;
2031 cp3 = ifa->ifa_netmask->sa_data;
2032 cplim = (const char *)ifa->ifa_netmask +
2033 ifa->ifa_netmask->sa_len;
2034 while (cp3 < cplim) {
2035 if ((*cp++ ^ *cp2++) & *cp3++) {
2036 /* want to continue for() loop */
2037 goto next;
2038 }
2039 }
2040 if (ifa_maybe == NULL ||
2041 rt_refines(ifa->ifa_netmask,
2042 ifa_maybe->ifa_netmask))
2043 ifa_maybe = ifa;
2044 }
2045 }
2046 return ifa_maybe;
2047 }
2048
2049 struct ifaddr *
2050 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2051 {
2052 struct ifaddr *ifa;
2053 int s;
2054
2055 s = pserialize_read_enter();
2056 ifa = ifa_ifwithnet(addr);
2057 if (ifa != NULL)
2058 ifa_acquire(ifa, psref);
2059 pserialize_read_exit(s);
2060
2061 return ifa;
2062 }
2063
2064 /*
2065 * Find the interface of the addresss.
2066 */
2067 struct ifaddr *
2068 ifa_ifwithladdr(const struct sockaddr *addr)
2069 {
2070 struct ifaddr *ia;
2071
2072 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2073 (ia = ifa_ifwithnet(addr)))
2074 return ia;
2075 return NULL;
2076 }
2077
2078 struct ifaddr *
2079 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2080 {
2081 struct ifaddr *ifa;
2082 int s;
2083
2084 s = pserialize_read_enter();
2085 ifa = ifa_ifwithladdr(addr);
2086 if (ifa != NULL)
2087 ifa_acquire(ifa, psref);
2088 pserialize_read_exit(s);
2089
2090 return ifa;
2091 }
2092
2093 /*
2094 * Find an interface using a specific address family
2095 */
2096 struct ifaddr *
2097 ifa_ifwithaf(int af)
2098 {
2099 struct ifnet *ifp;
2100 struct ifaddr *ifa = NULL;
2101 int s;
2102
2103 s = pserialize_read_enter();
2104 IFNET_READER_FOREACH(ifp) {
2105 if (if_is_deactivated(ifp))
2106 continue;
2107 IFADDR_READER_FOREACH(ifa, ifp) {
2108 if (ifa->ifa_addr->sa_family == af)
2109 goto out;
2110 }
2111 }
2112 out:
2113 pserialize_read_exit(s);
2114 return ifa;
2115 }
2116
2117 /*
2118 * Find an interface address specific to an interface best matching
2119 * a given address.
2120 */
2121 struct ifaddr *
2122 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2123 {
2124 struct ifaddr *ifa;
2125 const char *cp, *cp2, *cp3;
2126 const char *cplim;
2127 struct ifaddr *ifa_maybe = 0;
2128 u_int af = addr->sa_family;
2129
2130 if (if_is_deactivated(ifp))
2131 return NULL;
2132
2133 if (af >= AF_MAX)
2134 return NULL;
2135
2136 IFADDR_READER_FOREACH(ifa, ifp) {
2137 if (ifa->ifa_addr->sa_family != af)
2138 continue;
2139 ifa_maybe = ifa;
2140 if (ifa->ifa_netmask == NULL) {
2141 if (equal(addr, ifa->ifa_addr) ||
2142 (ifa->ifa_dstaddr &&
2143 equal(addr, ifa->ifa_dstaddr)))
2144 return ifa;
2145 continue;
2146 }
2147 cp = addr->sa_data;
2148 cp2 = ifa->ifa_addr->sa_data;
2149 cp3 = ifa->ifa_netmask->sa_data;
2150 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2151 for (; cp3 < cplim; cp3++) {
2152 if ((*cp++ ^ *cp2++) & *cp3)
2153 break;
2154 }
2155 if (cp3 == cplim)
2156 return ifa;
2157 }
2158 return ifa_maybe;
2159 }
2160
2161 struct ifaddr *
2162 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2163 struct psref *psref)
2164 {
2165 struct ifaddr *ifa;
2166 int s;
2167
2168 s = pserialize_read_enter();
2169 ifa = ifaof_ifpforaddr(addr, ifp);
2170 if (ifa != NULL)
2171 ifa_acquire(ifa, psref);
2172 pserialize_read_exit(s);
2173
2174 return ifa;
2175 }
2176
2177 /*
2178 * Default action when installing a route with a Link Level gateway.
2179 * Lookup an appropriate real ifa to point to.
2180 * This should be moved to /sys/net/link.c eventually.
2181 */
2182 void
2183 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2184 {
2185 struct ifaddr *ifa;
2186 const struct sockaddr *dst;
2187 struct ifnet *ifp;
2188 struct psref psref;
2189
2190 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2191 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL ||
2192 ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2193 return;
2194 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2195 rt_replace_ifa(rt, ifa);
2196 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2197 ifa->ifa_rtrequest(cmd, rt, info);
2198 ifa_release(ifa, &psref);
2199 }
2200 }
2201
2202 /*
2203 * bitmask macros to manage a densely packed link_state change queue.
2204 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2205 * LINK_STATE_UP(2) we need 2 bits for each state change.
2206 * As a state change to store is 0, treat all bits set as an unset item.
2207 */
2208 #define LQ_ITEM_BITS 2
2209 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2210 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2211 #define LINK_STATE_UNSET LQ_ITEM_MASK
2212 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2213 #define LQ_STORE(q, i, v) \
2214 do { \
2215 (q) &= ~LQ_MASK((i)); \
2216 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2217 } while (0 /* CONSTCOND */)
2218 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2219 #define LQ_POP(q, v) \
2220 do { \
2221 (v) = LQ_ITEM((q), 0); \
2222 (q) >>= LQ_ITEM_BITS; \
2223 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2224 } while (0 /* CONSTCOND */)
2225 #define LQ_PUSH(q, v) \
2226 do { \
2227 (q) >>= LQ_ITEM_BITS; \
2228 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2229 } while (0 /* CONSTCOND */)
2230 #define LQ_FIND_UNSET(q, i) \
2231 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2232 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2233 break; \
2234 }
2235
2236 /*
2237 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2238 * for each ifnet. It doesn't matter because:
2239 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2240 * ifq_lock don't happen
2241 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2242 * because if_snd, if_link_state_change and if_link_state_change_softint
2243 * are all called with KERNEL_LOCK
2244 */
2245 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2246 mutex_enter((ifp)->if_snd.ifq_lock)
2247 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2248 mutex_exit((ifp)->if_snd.ifq_lock)
2249
2250 /*
2251 * Handle a change in the interface link state and
2252 * queue notifications.
2253 */
2254 void
2255 if_link_state_change(struct ifnet *ifp, int link_state)
2256 {
2257 int idx;
2258
2259 KASSERTMSG(if_is_link_state_changeable(ifp),
2260 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2261 ifp->if_xname, ifp->if_extflags);
2262
2263 /* Ensure change is to a valid state */
2264 switch (link_state) {
2265 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2266 case LINK_STATE_DOWN: /* FALLTHROUGH */
2267 case LINK_STATE_UP:
2268 break;
2269 default:
2270 #ifdef DEBUG
2271 printf("%s: invalid link state %d\n",
2272 ifp->if_xname, link_state);
2273 #endif
2274 return;
2275 }
2276
2277 IF_LINK_STATE_CHANGE_LOCK(ifp);
2278
2279 /* Find the last unset event in the queue. */
2280 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2281
2282 /*
2283 * Ensure link_state doesn't match the last event in the queue.
2284 * ifp->if_link_state is not checked and set here because
2285 * that would present an inconsistent picture to the system.
2286 */
2287 if (idx != 0 &&
2288 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2289 goto out;
2290
2291 /* Handle queue overflow. */
2292 if (idx == LQ_MAX(ifp->if_link_queue)) {
2293 uint8_t lost;
2294
2295 /*
2296 * The DOWN state must be protected from being pushed off
2297 * the queue to ensure that userland will always be
2298 * in a sane state.
2299 * Because DOWN is protected, there is no need to protect
2300 * UNKNOWN.
2301 * It should be invalid to change from any other state to
2302 * UNKNOWN anyway ...
2303 */
2304 lost = LQ_ITEM(ifp->if_link_queue, 0);
2305 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2306 if (lost == LINK_STATE_DOWN) {
2307 lost = LQ_ITEM(ifp->if_link_queue, 0);
2308 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2309 }
2310 printf("%s: lost link state change %s\n",
2311 ifp->if_xname,
2312 lost == LINK_STATE_UP ? "UP" :
2313 lost == LINK_STATE_DOWN ? "DOWN" :
2314 "UNKNOWN");
2315 } else
2316 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2317
2318 softint_schedule(ifp->if_link_si);
2319
2320 out:
2321 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2322 }
2323
2324 /*
2325 * Handle interface link state change notifications.
2326 */
2327 void
2328 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2329 {
2330 struct domain *dp;
2331 int s = splnet();
2332 bool notify;
2333
2334 KASSERT(!cpu_intr_p());
2335
2336 IF_LINK_STATE_CHANGE_LOCK(ifp);
2337
2338 /* Ensure the change is still valid. */
2339 if (ifp->if_link_state == link_state) {
2340 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2341 splx(s);
2342 return;
2343 }
2344
2345 #ifdef DEBUG
2346 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2347 link_state == LINK_STATE_UP ? "UP" :
2348 link_state == LINK_STATE_DOWN ? "DOWN" :
2349 "UNKNOWN",
2350 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2351 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2352 "UNKNOWN");
2353 #endif
2354
2355 /*
2356 * When going from UNKNOWN to UP, we need to mark existing
2357 * addresses as tentative and restart DAD as we may have
2358 * erroneously not found a duplicate.
2359 *
2360 * This needs to happen before rt_ifmsg to avoid a race where
2361 * listeners would have an address and expect it to work right
2362 * away.
2363 */
2364 notify = (link_state == LINK_STATE_UP &&
2365 ifp->if_link_state == LINK_STATE_UNKNOWN);
2366 ifp->if_link_state = link_state;
2367 /* The following routines may sleep so release the spin mutex */
2368 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2369
2370 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2371 if (notify) {
2372 DOMAIN_FOREACH(dp) {
2373 if (dp->dom_if_link_state_change != NULL)
2374 dp->dom_if_link_state_change(ifp,
2375 LINK_STATE_DOWN);
2376 }
2377 }
2378
2379 /* Notify that the link state has changed. */
2380 rt_ifmsg(ifp);
2381
2382 #if NCARP > 0
2383 if (ifp->if_carp)
2384 carp_carpdev_state(ifp);
2385 #endif
2386
2387 DOMAIN_FOREACH(dp) {
2388 if (dp->dom_if_link_state_change != NULL)
2389 dp->dom_if_link_state_change(ifp, link_state);
2390 }
2391 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2392 splx(s);
2393 }
2394
2395 /*
2396 * Process the interface link state change queue.
2397 */
2398 static void
2399 if_link_state_change_si(void *arg)
2400 {
2401 struct ifnet *ifp = arg;
2402 int s;
2403 uint8_t state;
2404 bool schedule;
2405
2406 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2407 s = splnet();
2408
2409 /* Pop a link state change from the queue and process it. */
2410 IF_LINK_STATE_CHANGE_LOCK(ifp);
2411 LQ_POP(ifp->if_link_queue, state);
2412 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2413
2414 if_link_state_change_softint(ifp, state);
2415
2416 /* If there is a link state change to come, schedule it. */
2417 IF_LINK_STATE_CHANGE_LOCK(ifp);
2418 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2419 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2420 if (schedule)
2421 softint_schedule(ifp->if_link_si);
2422
2423 splx(s);
2424 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2425 }
2426
2427 /*
2428 * Default action when installing a local route on a point-to-point
2429 * interface.
2430 */
2431 void
2432 p2p_rtrequest(int req, struct rtentry *rt,
2433 __unused const struct rt_addrinfo *info)
2434 {
2435 struct ifnet *ifp = rt->rt_ifp;
2436 struct ifaddr *ifa, *lo0ifa;
2437 int s = pserialize_read_enter();
2438
2439 switch (req) {
2440 case RTM_ADD:
2441 if ((rt->rt_flags & RTF_LOCAL) == 0)
2442 break;
2443
2444 rt->rt_ifp = lo0ifp;
2445
2446 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2447 break;
2448
2449 IFADDR_READER_FOREACH(ifa, ifp) {
2450 if (equal(rt_getkey(rt), ifa->ifa_addr))
2451 break;
2452 }
2453 if (ifa == NULL)
2454 break;
2455
2456 /*
2457 * Ensure lo0 has an address of the same family.
2458 */
2459 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2460 if (lo0ifa->ifa_addr->sa_family ==
2461 ifa->ifa_addr->sa_family)
2462 break;
2463 }
2464 if (lo0ifa == NULL)
2465 break;
2466
2467 /*
2468 * Make sure to set rt->rt_ifa to the interface
2469 * address we are using, otherwise we will have trouble
2470 * with source address selection.
2471 */
2472 if (ifa != rt->rt_ifa)
2473 rt_replace_ifa(rt, ifa);
2474 break;
2475 case RTM_DELETE:
2476 default:
2477 break;
2478 }
2479 pserialize_read_exit(s);
2480 }
2481
2482 static void
2483 _if_down(struct ifnet *ifp)
2484 {
2485 struct ifaddr *ifa;
2486 struct domain *dp;
2487 int s, bound;
2488 struct psref psref;
2489
2490 ifp->if_flags &= ~IFF_UP;
2491 nanotime(&ifp->if_lastchange);
2492
2493 bound = curlwp_bind();
2494 s = pserialize_read_enter();
2495 IFADDR_READER_FOREACH(ifa, ifp) {
2496 ifa_acquire(ifa, &psref);
2497 pserialize_read_exit(s);
2498
2499 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2500
2501 s = pserialize_read_enter();
2502 ifa_release(ifa, &psref);
2503 }
2504 pserialize_read_exit(s);
2505 curlwp_bindx(bound);
2506
2507 IFQ_PURGE(&ifp->if_snd);
2508 #if NCARP > 0
2509 if (ifp->if_carp)
2510 carp_carpdev_state(ifp);
2511 #endif
2512 rt_ifmsg(ifp);
2513 DOMAIN_FOREACH(dp) {
2514 if (dp->dom_if_down)
2515 dp->dom_if_down(ifp);
2516 }
2517 }
2518
2519 static void
2520 if_down_deactivated(struct ifnet *ifp)
2521 {
2522
2523 KASSERT(if_is_deactivated(ifp));
2524 _if_down(ifp);
2525 }
2526
2527 void
2528 if_down_locked(struct ifnet *ifp)
2529 {
2530
2531 KASSERT(IFNET_LOCKED(ifp));
2532 _if_down(ifp);
2533 }
2534
2535 /*
2536 * Mark an interface down and notify protocols of
2537 * the transition.
2538 * NOTE: must be called at splsoftnet or equivalent.
2539 */
2540 void
2541 if_down(struct ifnet *ifp)
2542 {
2543
2544 IFNET_LOCK(ifp);
2545 if_down_locked(ifp);
2546 IFNET_UNLOCK(ifp);
2547 }
2548
2549 /*
2550 * Must be called with holding if_ioctl_lock.
2551 */
2552 static void
2553 if_up_locked(struct ifnet *ifp)
2554 {
2555 #ifdef notyet
2556 struct ifaddr *ifa;
2557 #endif
2558 struct domain *dp;
2559
2560 KASSERT(IFNET_LOCKED(ifp));
2561
2562 KASSERT(!if_is_deactivated(ifp));
2563 ifp->if_flags |= IFF_UP;
2564 nanotime(&ifp->if_lastchange);
2565 #ifdef notyet
2566 /* this has no effect on IP, and will kill all ISO connections XXX */
2567 IFADDR_READER_FOREACH(ifa, ifp)
2568 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2569 #endif
2570 #if NCARP > 0
2571 if (ifp->if_carp)
2572 carp_carpdev_state(ifp);
2573 #endif
2574 rt_ifmsg(ifp);
2575 DOMAIN_FOREACH(dp) {
2576 if (dp->dom_if_up)
2577 dp->dom_if_up(ifp);
2578 }
2579 }
2580
2581 /*
2582 * Handle interface slowtimo timer routine. Called
2583 * from softclock, we decrement timer (if set) and
2584 * call the appropriate interface routine on expiration.
2585 */
2586 static void
2587 if_slowtimo(void *arg)
2588 {
2589 void (*slowtimo)(struct ifnet *);
2590 struct ifnet *ifp = arg;
2591 int s;
2592
2593 slowtimo = ifp->if_slowtimo;
2594 if (__predict_false(slowtimo == NULL))
2595 return;
2596
2597 s = splnet();
2598 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2599 (*slowtimo)(ifp);
2600
2601 splx(s);
2602
2603 if (__predict_true(ifp->if_slowtimo != NULL))
2604 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2605 }
2606
2607 /*
2608 * Mark an interface up and notify protocols of
2609 * the transition.
2610 * NOTE: must be called at splsoftnet or equivalent.
2611 */
2612 void
2613 if_up(struct ifnet *ifp)
2614 {
2615
2616 IFNET_LOCK(ifp);
2617 if_up_locked(ifp);
2618 IFNET_UNLOCK(ifp);
2619 }
2620
2621 /*
2622 * Set/clear promiscuous mode on interface ifp based on the truth value
2623 * of pswitch. The calls are reference counted so that only the first
2624 * "on" request actually has an effect, as does the final "off" request.
2625 * Results are undefined if the "off" and "on" requests are not matched.
2626 */
2627 int
2628 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2629 {
2630 int pcount, ret = 0;
2631 short nflags;
2632
2633 KASSERT(IFNET_LOCKED(ifp));
2634
2635 pcount = ifp->if_pcount;
2636 if (pswitch) {
2637 /*
2638 * Allow the device to be "placed" into promiscuous
2639 * mode even if it is not configured up. It will
2640 * consult IFF_PROMISC when it is brought up.
2641 */
2642 if (ifp->if_pcount++ != 0)
2643 goto out;
2644 nflags = ifp->if_flags | IFF_PROMISC;
2645 } else {
2646 if (--ifp->if_pcount > 0)
2647 goto out;
2648 nflags = ifp->if_flags & ~IFF_PROMISC;
2649 }
2650 ret = if_flags_set(ifp, nflags);
2651 /* Restore interface state if not successful. */
2652 if (ret != 0) {
2653 ifp->if_pcount = pcount;
2654 }
2655 out:
2656 return ret;
2657 }
2658
2659 int
2660 ifpromisc(struct ifnet *ifp, int pswitch)
2661 {
2662 int e;
2663
2664 IFNET_LOCK(ifp);
2665 e = ifpromisc_locked(ifp, pswitch);
2666 IFNET_UNLOCK(ifp);
2667
2668 return e;
2669 }
2670
2671 /*
2672 * Map interface name to
2673 * interface structure pointer.
2674 */
2675 struct ifnet *
2676 ifunit(const char *name)
2677 {
2678 struct ifnet *ifp;
2679 const char *cp = name;
2680 u_int unit = 0;
2681 u_int i;
2682 int s;
2683
2684 /*
2685 * If the entire name is a number, treat it as an ifindex.
2686 */
2687 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2688 unit = unit * 10 + (*cp - '0');
2689 }
2690
2691 /*
2692 * If the number took all of the name, then it's a valid ifindex.
2693 */
2694 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2695 return if_byindex(unit);
2696
2697 ifp = NULL;
2698 s = pserialize_read_enter();
2699 IFNET_READER_FOREACH(ifp) {
2700 if (if_is_deactivated(ifp))
2701 continue;
2702 if (strcmp(ifp->if_xname, name) == 0)
2703 goto out;
2704 }
2705 out:
2706 pserialize_read_exit(s);
2707 return ifp;
2708 }
2709
2710 /*
2711 * Get a reference of an ifnet object by an interface name.
2712 * The returned reference is protected by psref(9). The caller
2713 * must release a returned reference by if_put after use.
2714 */
2715 struct ifnet *
2716 if_get(const char *name, struct psref *psref)
2717 {
2718 struct ifnet *ifp;
2719 const char *cp = name;
2720 u_int unit = 0;
2721 u_int i;
2722 int s;
2723
2724 /*
2725 * If the entire name is a number, treat it as an ifindex.
2726 */
2727 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2728 unit = unit * 10 + (*cp - '0');
2729 }
2730
2731 /*
2732 * If the number took all of the name, then it's a valid ifindex.
2733 */
2734 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2735 return if_get_byindex(unit, psref);
2736
2737 ifp = NULL;
2738 s = pserialize_read_enter();
2739 IFNET_READER_FOREACH(ifp) {
2740 if (if_is_deactivated(ifp))
2741 continue;
2742 if (strcmp(ifp->if_xname, name) == 0) {
2743 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2744 psref_acquire(psref, &ifp->if_psref,
2745 ifnet_psref_class);
2746 goto out;
2747 }
2748 }
2749 out:
2750 pserialize_read_exit(s);
2751 return ifp;
2752 }
2753
2754 /*
2755 * Release a reference of an ifnet object given by if_get, if_get_byindex
2756 * or if_get_bylla.
2757 */
2758 void
2759 if_put(const struct ifnet *ifp, struct psref *psref)
2760 {
2761
2762 if (ifp == NULL)
2763 return;
2764
2765 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2766 }
2767
2768 /*
2769 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2770 * should be used.
2771 */
2772 ifnet_t *
2773 _if_byindex(u_int idx)
2774 {
2775
2776 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2777 }
2778
2779 /*
2780 * Return ifp having idx. Return NULL if not found or the found ifp is
2781 * already deactivated.
2782 */
2783 ifnet_t *
2784 if_byindex(u_int idx)
2785 {
2786 ifnet_t *ifp;
2787
2788 ifp = _if_byindex(idx);
2789 if (ifp != NULL && if_is_deactivated(ifp))
2790 ifp = NULL;
2791 return ifp;
2792 }
2793
2794 /*
2795 * Get a reference of an ifnet object by an interface index.
2796 * The returned reference is protected by psref(9). The caller
2797 * must release a returned reference by if_put after use.
2798 */
2799 ifnet_t *
2800 if_get_byindex(u_int idx, struct psref *psref)
2801 {
2802 ifnet_t *ifp;
2803 int s;
2804
2805 s = pserialize_read_enter();
2806 ifp = if_byindex(idx);
2807 if (__predict_true(ifp != NULL)) {
2808 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2809 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2810 }
2811 pserialize_read_exit(s);
2812
2813 return ifp;
2814 }
2815
2816 ifnet_t *
2817 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2818 {
2819 ifnet_t *ifp;
2820 int s;
2821
2822 s = pserialize_read_enter();
2823 IFNET_READER_FOREACH(ifp) {
2824 if (if_is_deactivated(ifp))
2825 continue;
2826 if (ifp->if_addrlen != lla_len)
2827 continue;
2828 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2829 psref_acquire(psref, &ifp->if_psref,
2830 ifnet_psref_class);
2831 break;
2832 }
2833 }
2834 pserialize_read_exit(s);
2835
2836 return ifp;
2837 }
2838
2839 /*
2840 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2841 * for example using pserialize or the ifp is already held or some other
2842 * object is held which guarantes the ifp to not be freed indirectly.
2843 */
2844 void
2845 if_acquire(struct ifnet *ifp, struct psref *psref)
2846 {
2847
2848 KASSERT(ifp->if_index != 0);
2849 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2850 }
2851
2852 bool
2853 if_held(struct ifnet *ifp)
2854 {
2855
2856 return psref_held(&ifp->if_psref, ifnet_psref_class);
2857 }
2858
2859 /*
2860 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2861 * Check the tunnel nesting count.
2862 * Return > 0, if tunnel nesting count is more than limit.
2863 * Return 0, if tunnel nesting count is equal or less than limit.
2864 */
2865 int
2866 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2867 {
2868 struct m_tag *mtag;
2869 int *count;
2870
2871 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2872 if (mtag != NULL) {
2873 count = (int *)(mtag + 1);
2874 if (++(*count) > limit) {
2875 log(LOG_NOTICE,
2876 "%s: recursively called too many times(%d)\n",
2877 ifp->if_xname, *count);
2878 return EIO;
2879 }
2880 } else {
2881 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2882 M_NOWAIT);
2883 if (mtag != NULL) {
2884 m_tag_prepend(m, mtag);
2885 count = (int *)(mtag + 1);
2886 *count = 0;
2887 } else {
2888 log(LOG_DEBUG,
2889 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2890 ifp->if_xname);
2891 }
2892 }
2893
2894 return 0;
2895 }
2896
2897 /* common */
2898 int
2899 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2900 {
2901 int s;
2902 struct ifreq *ifr;
2903 struct ifcapreq *ifcr;
2904 struct ifdatareq *ifdr;
2905
2906 switch (cmd) {
2907 case SIOCSIFCAP:
2908 ifcr = data;
2909 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2910 return EINVAL;
2911
2912 if (ifcr->ifcr_capenable == ifp->if_capenable)
2913 return 0;
2914
2915 ifp->if_capenable = ifcr->ifcr_capenable;
2916
2917 /* Pre-compute the checksum flags mask. */
2918 ifp->if_csum_flags_tx = 0;
2919 ifp->if_csum_flags_rx = 0;
2920 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
2921 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2922 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2923 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2924
2925 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
2926 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2927 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
2928 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2929
2930 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
2931 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2932 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
2933 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2934
2935 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
2936 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2937 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
2938 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2939
2940 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
2941 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2942 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
2943 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2944
2945 if (ifp->if_capenable & IFCAP_TSOv4)
2946 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
2947 if (ifp->if_capenable & IFCAP_TSOv6)
2948 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
2949
2950 #if NBRIDGE > 0
2951 if (ifp->if_bridge != NULL)
2952 bridge_calc_csum_flags(ifp->if_bridge);
2953 #endif
2954
2955 if (ifp->if_flags & IFF_UP)
2956 return ENETRESET;
2957 return 0;
2958 case SIOCSIFFLAGS:
2959 ifr = data;
2960 /*
2961 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2962 * and if_down aren't MP-safe yet, so we must hold the lock.
2963 */
2964 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2965 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2966 s = splsoftnet();
2967 if_down_locked(ifp);
2968 splx(s);
2969 }
2970 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2971 s = splsoftnet();
2972 if_up_locked(ifp);
2973 splx(s);
2974 }
2975 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2976 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2977 (ifr->ifr_flags &~ IFF_CANTCHANGE);
2978 break;
2979 case SIOCGIFFLAGS:
2980 ifr = data;
2981 ifr->ifr_flags = ifp->if_flags;
2982 break;
2983
2984 case SIOCGIFMETRIC:
2985 ifr = data;
2986 ifr->ifr_metric = ifp->if_metric;
2987 break;
2988
2989 case SIOCGIFMTU:
2990 ifr = data;
2991 ifr->ifr_mtu = ifp->if_mtu;
2992 break;
2993
2994 case SIOCGIFDLT:
2995 ifr = data;
2996 ifr->ifr_dlt = ifp->if_dlt;
2997 break;
2998
2999 case SIOCGIFCAP:
3000 ifcr = data;
3001 ifcr->ifcr_capabilities = ifp->if_capabilities;
3002 ifcr->ifcr_capenable = ifp->if_capenable;
3003 break;
3004
3005 case SIOCSIFMETRIC:
3006 ifr = data;
3007 ifp->if_metric = ifr->ifr_metric;
3008 break;
3009
3010 case SIOCGIFDATA:
3011 ifdr = data;
3012 ifdr->ifdr_data = ifp->if_data;
3013 break;
3014
3015 case SIOCGIFINDEX:
3016 ifr = data;
3017 ifr->ifr_index = ifp->if_index;
3018 break;
3019
3020 case SIOCZIFDATA:
3021 ifdr = data;
3022 ifdr->ifdr_data = ifp->if_data;
3023 /*
3024 * Assumes that the volatile counters that can be
3025 * zero'ed are at the end of if_data.
3026 */
3027 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
3028 offsetof(struct if_data, ifi_ipackets));
3029 /*
3030 * The memset() clears to the bottm of if_data. In the area,
3031 * if_lastchange is included. Please be careful if new entry
3032 * will be added into if_data or rewite this.
3033 *
3034 * And also, update if_lastchnage.
3035 */
3036 getnanotime(&ifp->if_lastchange);
3037 break;
3038 case SIOCSIFMTU:
3039 ifr = data;
3040 if (ifp->if_mtu == ifr->ifr_mtu)
3041 break;
3042 ifp->if_mtu = ifr->ifr_mtu;
3043 /*
3044 * If the link MTU changed, do network layer specific procedure.
3045 */
3046 #ifdef INET6
3047 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3048 if (in6_present)
3049 nd6_setmtu(ifp);
3050 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3051 #endif
3052 return ENETRESET;
3053 default:
3054 return ENOTTY;
3055 }
3056 return 0;
3057 }
3058
3059 int
3060 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3061 {
3062 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3063 struct ifaddr *ifa;
3064 const struct sockaddr *any, *sa;
3065 union {
3066 struct sockaddr sa;
3067 struct sockaddr_storage ss;
3068 } u, v;
3069 int s, error = 0;
3070
3071 switch (cmd) {
3072 case SIOCSIFADDRPREF:
3073 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3074 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3075 NULL) != 0)
3076 return EPERM;
3077 case SIOCGIFADDRPREF:
3078 break;
3079 default:
3080 return EOPNOTSUPP;
3081 }
3082
3083 /* sanity checks */
3084 if (data == NULL || ifp == NULL) {
3085 panic("invalid argument to %s", __func__);
3086 /*NOTREACHED*/
3087 }
3088
3089 /* address must be specified on ADD and DELETE */
3090 sa = sstocsa(&ifap->ifap_addr);
3091 if (sa->sa_family != sofamily(so))
3092 return EINVAL;
3093 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3094 return EINVAL;
3095
3096 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3097
3098 s = pserialize_read_enter();
3099 IFADDR_READER_FOREACH(ifa, ifp) {
3100 if (ifa->ifa_addr->sa_family != sa->sa_family)
3101 continue;
3102 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3103 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3104 break;
3105 }
3106 if (ifa == NULL) {
3107 error = EADDRNOTAVAIL;
3108 goto out;
3109 }
3110
3111 switch (cmd) {
3112 case SIOCSIFADDRPREF:
3113 ifa->ifa_preference = ifap->ifap_preference;
3114 goto out;
3115 case SIOCGIFADDRPREF:
3116 /* fill in the if_laddrreq structure */
3117 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3118 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3119 ifap->ifap_preference = ifa->ifa_preference;
3120 goto out;
3121 default:
3122 error = EOPNOTSUPP;
3123 }
3124 out:
3125 pserialize_read_exit(s);
3126 return error;
3127 }
3128
3129 /*
3130 * Interface ioctls.
3131 */
3132 static int
3133 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3134 {
3135 struct ifnet *ifp;
3136 struct ifreq *ifr;
3137 int error = 0;
3138 u_long ocmd = cmd;
3139 short oif_flags;
3140 struct ifreq ifrb;
3141 struct oifreq *oifr = NULL;
3142 int r;
3143 struct psref psref;
3144 int bound;
3145 bool do_if43_post = false;
3146 bool do_ifm80_post = false;
3147
3148 switch (cmd) {
3149 case SIOCGIFCONF:
3150 return ifconf(cmd, data);
3151 case SIOCINITIFADDR:
3152 return EPERM;
3153 default:
3154 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3155 error);
3156 if (error != ENOSYS)
3157 return error;
3158 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3159 enosys(), error);
3160 if (error != ENOSYS)
3161 return error;
3162 error = 0;
3163 break;
3164 }
3165
3166 ifr = data;
3167 /* Pre-conversion */
3168 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3169 if (cmd != ocmd) {
3170 oifr = data;
3171 data = ifr = &ifrb;
3172 IFREQO2N_43(oifr, ifr);
3173 do_if43_post = true;
3174 }
3175 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3176 enosys(), error);
3177
3178 switch (cmd) {
3179 case SIOCIFCREATE:
3180 case SIOCIFDESTROY:
3181 bound = curlwp_bind();
3182 if (l != NULL) {
3183 ifp = if_get(ifr->ifr_name, &psref);
3184 error = kauth_authorize_network(l->l_cred,
3185 KAUTH_NETWORK_INTERFACE,
3186 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3187 (void *)cmd, NULL);
3188 if (ifp != NULL)
3189 if_put(ifp, &psref);
3190 if (error != 0) {
3191 curlwp_bindx(bound);
3192 return error;
3193 }
3194 }
3195 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3196 mutex_enter(&if_clone_mtx);
3197 r = (cmd == SIOCIFCREATE) ?
3198 if_clone_create(ifr->ifr_name) :
3199 if_clone_destroy(ifr->ifr_name);
3200 mutex_exit(&if_clone_mtx);
3201 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3202 curlwp_bindx(bound);
3203 return r;
3204
3205 case SIOCIFGCLONERS:
3206 {
3207 struct if_clonereq *req = (struct if_clonereq *)data;
3208 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3209 &req->ifcr_total);
3210 }
3211 }
3212
3213 bound = curlwp_bind();
3214 ifp = if_get(ifr->ifr_name, &psref);
3215 if (ifp == NULL) {
3216 curlwp_bindx(bound);
3217 return ENXIO;
3218 }
3219
3220 switch (cmd) {
3221 case SIOCALIFADDR:
3222 case SIOCDLIFADDR:
3223 case SIOCSIFADDRPREF:
3224 case SIOCSIFFLAGS:
3225 case SIOCSIFCAP:
3226 case SIOCSIFMETRIC:
3227 case SIOCZIFDATA:
3228 case SIOCSIFMTU:
3229 case SIOCSIFPHYADDR:
3230 case SIOCDIFPHYADDR:
3231 #ifdef INET6
3232 case SIOCSIFPHYADDR_IN6:
3233 #endif
3234 case SIOCSLIFPHYADDR:
3235 case SIOCADDMULTI:
3236 case SIOCDELMULTI:
3237 case SIOCSETHERCAP:
3238 case SIOCSIFMEDIA:
3239 case SIOCSDRVSPEC:
3240 case SIOCG80211:
3241 case SIOCS80211:
3242 case SIOCS80211NWID:
3243 case SIOCS80211NWKEY:
3244 case SIOCS80211POWER:
3245 case SIOCS80211BSSID:
3246 case SIOCS80211CHANNEL:
3247 case SIOCSLINKSTR:
3248 if (l != NULL) {
3249 error = kauth_authorize_network(l->l_cred,
3250 KAUTH_NETWORK_INTERFACE,
3251 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3252 (void *)cmd, NULL);
3253 if (error != 0)
3254 goto out;
3255 }
3256 }
3257
3258 oif_flags = ifp->if_flags;
3259
3260 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3261 IFNET_LOCK(ifp);
3262
3263 error = (*ifp->if_ioctl)(ifp, cmd, data);
3264 if (error != ENOTTY)
3265 ;
3266 else if (so->so_proto == NULL)
3267 error = EOPNOTSUPP;
3268 else {
3269 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3270 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3271 (so, ocmd, cmd, data, l), enosys(), error);
3272 if (error == ENOSYS)
3273 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3274 cmd, data, ifp);
3275 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3276 }
3277
3278 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3279 if ((ifp->if_flags & IFF_UP) != 0) {
3280 int s = splsoftnet();
3281 if_up_locked(ifp);
3282 splx(s);
3283 }
3284 }
3285
3286 /* Post-conversion */
3287 if (do_ifm80_post && (error == 0))
3288 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3289 enosys(), error);
3290 if (do_if43_post)
3291 IFREQN2O_43(oifr, ifr);
3292
3293 IFNET_UNLOCK(ifp);
3294 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3295 out:
3296 if_put(ifp, &psref);
3297 curlwp_bindx(bound);
3298 return error;
3299 }
3300
3301 /*
3302 * Return interface configuration
3303 * of system. List may be used
3304 * in later ioctl's (above) to get
3305 * other information.
3306 *
3307 * Each record is a struct ifreq. Before the addition of
3308 * sockaddr_storage, the API rule was that sockaddr flavors that did
3309 * not fit would extend beyond the struct ifreq, with the next struct
3310 * ifreq starting sa_len beyond the struct sockaddr. Because the
3311 * union in struct ifreq includes struct sockaddr_storage, every kind
3312 * of sockaddr must fit. Thus, there are no longer any overlength
3313 * records.
3314 *
3315 * Records are added to the user buffer if they fit, and ifc_len is
3316 * adjusted to the length that was written. Thus, the user is only
3317 * assured of getting the complete list if ifc_len on return is at
3318 * least sizeof(struct ifreq) less than it was on entry.
3319 *
3320 * If the user buffer pointer is NULL, this routine copies no data and
3321 * returns the amount of space that would be needed.
3322 *
3323 * Invariants:
3324 * ifrp points to the next part of the user's buffer to be used. If
3325 * ifrp != NULL, space holds the number of bytes remaining that we may
3326 * write at ifrp. Otherwise, space holds the number of bytes that
3327 * would have been written had there been adequate space.
3328 */
3329 /*ARGSUSED*/
3330 static int
3331 ifconf(u_long cmd, void *data)
3332 {
3333 struct ifconf *ifc = (struct ifconf *)data;
3334 struct ifnet *ifp;
3335 struct ifaddr *ifa;
3336 struct ifreq ifr, *ifrp = NULL;
3337 int space = 0, error = 0;
3338 const int sz = (int)sizeof(struct ifreq);
3339 const bool docopy = ifc->ifc_req != NULL;
3340 int s;
3341 int bound;
3342 struct psref psref;
3343
3344 memset(&ifr, 0, sizeof(ifr));
3345 if (docopy) {
3346 space = ifc->ifc_len;
3347 ifrp = ifc->ifc_req;
3348 }
3349
3350 bound = curlwp_bind();
3351 s = pserialize_read_enter();
3352 IFNET_READER_FOREACH(ifp) {
3353 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3354 pserialize_read_exit(s);
3355
3356 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3357 sizeof(ifr.ifr_name));
3358 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3359 error = ENAMETOOLONG;
3360 goto release_exit;
3361 }
3362 if (IFADDR_READER_EMPTY(ifp)) {
3363 /* Interface with no addresses - send zero sockaddr. */
3364 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3365 if (!docopy) {
3366 space += sz;
3367 goto next;
3368 }
3369 if (space >= sz) {
3370 error = copyout(&ifr, ifrp, sz);
3371 if (error != 0)
3372 goto release_exit;
3373 ifrp++;
3374 space -= sz;
3375 }
3376 }
3377
3378 s = pserialize_read_enter();
3379 IFADDR_READER_FOREACH(ifa, ifp) {
3380 struct sockaddr *sa = ifa->ifa_addr;
3381 /* all sockaddrs must fit in sockaddr_storage */
3382 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3383
3384 if (!docopy) {
3385 space += sz;
3386 continue;
3387 }
3388 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3389 pserialize_read_exit(s);
3390
3391 if (space >= sz) {
3392 error = copyout(&ifr, ifrp, sz);
3393 if (error != 0)
3394 goto release_exit;
3395 ifrp++; space -= sz;
3396 }
3397 s = pserialize_read_enter();
3398 }
3399 pserialize_read_exit(s);
3400
3401 next:
3402 s = pserialize_read_enter();
3403 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3404 }
3405 pserialize_read_exit(s);
3406 curlwp_bindx(bound);
3407
3408 if (docopy) {
3409 KASSERT(0 <= space && space <= ifc->ifc_len);
3410 ifc->ifc_len -= space;
3411 } else {
3412 KASSERT(space >= 0);
3413 ifc->ifc_len = space;
3414 }
3415 return (0);
3416
3417 release_exit:
3418 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3419 curlwp_bindx(bound);
3420 return error;
3421 }
3422
3423 int
3424 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3425 {
3426 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3427 struct ifreq ifrb;
3428 struct oifreq *oifr = NULL;
3429 u_long ocmd = cmd;
3430 int hook;
3431
3432 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3433 if (hook != ENOSYS) {
3434 if (cmd != ocmd) {
3435 oifr = (struct oifreq *)(void *)ifr;
3436 ifr = &ifrb;
3437 IFREQO2N_43(oifr, ifr);
3438 len = sizeof(oifr->ifr_addr);
3439 }
3440 }
3441
3442 if (len < sa->sa_len)
3443 return EFBIG;
3444
3445 memset(&ifr->ifr_addr, 0, len);
3446 sockaddr_copy(&ifr->ifr_addr, len, sa);
3447
3448 if (cmd != ocmd)
3449 IFREQN2O_43(oifr, ifr);
3450 return 0;
3451 }
3452
3453 /*
3454 * wrapper function for the drivers which doesn't have if_transmit().
3455 */
3456 static int
3457 if_transmit(struct ifnet *ifp, struct mbuf *m)
3458 {
3459 int s, error;
3460 size_t pktlen = m->m_pkthdr.len;
3461 bool mcast = (m->m_flags & M_MCAST) != 0;
3462
3463 s = splnet();
3464
3465 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3466 if (error != 0) {
3467 /* mbuf is already freed */
3468 goto out;
3469 }
3470
3471 ifp->if_obytes += pktlen;
3472 if (mcast)
3473 ifp->if_omcasts++;
3474
3475 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3476 if_start_lock(ifp);
3477 out:
3478 splx(s);
3479
3480 return error;
3481 }
3482
3483 int
3484 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3485 {
3486 int error;
3487
3488 #ifdef ALTQ
3489 KERNEL_LOCK(1, NULL);
3490 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3491 error = if_transmit(ifp, m);
3492 KERNEL_UNLOCK_ONE(NULL);
3493 } else {
3494 KERNEL_UNLOCK_ONE(NULL);
3495 error = (*ifp->if_transmit)(ifp, m);
3496 /* mbuf is alredy freed */
3497 }
3498 #else /* !ALTQ */
3499 error = (*ifp->if_transmit)(ifp, m);
3500 /* mbuf is alredy freed */
3501 #endif /* !ALTQ */
3502
3503 return error;
3504 }
3505
3506 /*
3507 * Queue message on interface, and start output if interface
3508 * not yet active.
3509 */
3510 int
3511 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3512 {
3513
3514 return if_transmit_lock(ifp, m);
3515 }
3516
3517 /*
3518 * Queue message on interface, possibly using a second fast queue
3519 */
3520 int
3521 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3522 {
3523 int error = 0;
3524
3525 if (ifq != NULL
3526 #ifdef ALTQ
3527 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3528 #endif
3529 ) {
3530 if (IF_QFULL(ifq)) {
3531 IF_DROP(&ifp->if_snd);
3532 m_freem(m);
3533 if (error == 0)
3534 error = ENOBUFS;
3535 } else
3536 IF_ENQUEUE(ifq, m);
3537 } else
3538 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3539 if (error != 0) {
3540 ++ifp->if_oerrors;
3541 return error;
3542 }
3543 return 0;
3544 }
3545
3546 int
3547 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3548 {
3549 int rc;
3550
3551 KASSERT(IFNET_LOCKED(ifp));
3552 if (ifp->if_initaddr != NULL)
3553 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3554 else if (src ||
3555 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3556 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3557
3558 return rc;
3559 }
3560
3561 int
3562 if_do_dad(struct ifnet *ifp)
3563 {
3564 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3565 return 0;
3566
3567 switch (ifp->if_type) {
3568 case IFT_FAITH:
3569 /*
3570 * These interfaces do not have the IFF_LOOPBACK flag,
3571 * but loop packets back. We do not have to do DAD on such
3572 * interfaces. We should even omit it, because loop-backed
3573 * responses would confuse the DAD procedure.
3574 */
3575 return 0;
3576 default:
3577 /*
3578 * Our DAD routine requires the interface up and running.
3579 * However, some interfaces can be up before the RUNNING
3580 * status. Additionaly, users may try to assign addresses
3581 * before the interface becomes up (or running).
3582 * We simply skip DAD in such a case as a work around.
3583 * XXX: we should rather mark "tentative" on such addresses,
3584 * and do DAD after the interface becomes ready.
3585 */
3586 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3587 (IFF_UP | IFF_RUNNING))
3588 return 0;
3589
3590 return 1;
3591 }
3592 }
3593
3594 int
3595 if_flags_set(ifnet_t *ifp, const short flags)
3596 {
3597 int rc;
3598
3599 KASSERT(IFNET_LOCKED(ifp));
3600
3601 if (ifp->if_setflags != NULL)
3602 rc = (*ifp->if_setflags)(ifp, flags);
3603 else {
3604 short cantflags, chgdflags;
3605 struct ifreq ifr;
3606
3607 chgdflags = ifp->if_flags ^ flags;
3608 cantflags = chgdflags & IFF_CANTCHANGE;
3609
3610 if (cantflags != 0)
3611 ifp->if_flags ^= cantflags;
3612
3613 /* Traditionally, we do not call if_ioctl after
3614 * setting/clearing only IFF_PROMISC if the interface
3615 * isn't IFF_UP. Uphold that tradition.
3616 */
3617 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3618 return 0;
3619
3620 memset(&ifr, 0, sizeof(ifr));
3621
3622 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3623 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3624
3625 if (rc != 0 && cantflags != 0)
3626 ifp->if_flags ^= cantflags;
3627 }
3628
3629 return rc;
3630 }
3631
3632 int
3633 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3634 {
3635 int rc;
3636 struct ifreq ifr;
3637
3638 if (ifp->if_mcastop != NULL)
3639 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3640 else {
3641 ifreq_setaddr(cmd, &ifr, sa);
3642 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3643 }
3644
3645 return rc;
3646 }
3647
3648 static void
3649 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3650 struct ifaltq *ifq)
3651 {
3652 const struct sysctlnode *cnode, *rnode;
3653
3654 if (sysctl_createv(clog, 0, NULL, &rnode,
3655 CTLFLAG_PERMANENT,
3656 CTLTYPE_NODE, "interfaces",
3657 SYSCTL_DESCR("Per-interface controls"),
3658 NULL, 0, NULL, 0,
3659 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3660 goto bad;
3661
3662 if (sysctl_createv(clog, 0, &rnode, &rnode,
3663 CTLFLAG_PERMANENT,
3664 CTLTYPE_NODE, ifname,
3665 SYSCTL_DESCR("Interface controls"),
3666 NULL, 0, NULL, 0,
3667 CTL_CREATE, CTL_EOL) != 0)
3668 goto bad;
3669
3670 if (sysctl_createv(clog, 0, &rnode, &rnode,
3671 CTLFLAG_PERMANENT,
3672 CTLTYPE_NODE, "sndq",
3673 SYSCTL_DESCR("Interface output queue controls"),
3674 NULL, 0, NULL, 0,
3675 CTL_CREATE, CTL_EOL) != 0)
3676 goto bad;
3677
3678 if (sysctl_createv(clog, 0, &rnode, &cnode,
3679 CTLFLAG_PERMANENT,
3680 CTLTYPE_INT, "len",
3681 SYSCTL_DESCR("Current output queue length"),
3682 NULL, 0, &ifq->ifq_len, 0,
3683 CTL_CREATE, CTL_EOL) != 0)
3684 goto bad;
3685
3686 if (sysctl_createv(clog, 0, &rnode, &cnode,
3687 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3688 CTLTYPE_INT, "maxlen",
3689 SYSCTL_DESCR("Maximum allowed output queue length"),
3690 NULL, 0, &ifq->ifq_maxlen, 0,
3691 CTL_CREATE, CTL_EOL) != 0)
3692 goto bad;
3693
3694 if (sysctl_createv(clog, 0, &rnode, &cnode,
3695 CTLFLAG_PERMANENT,
3696 CTLTYPE_INT, "drops",
3697 SYSCTL_DESCR("Packets dropped due to full output queue"),
3698 NULL, 0, &ifq->ifq_drops, 0,
3699 CTL_CREATE, CTL_EOL) != 0)
3700 goto bad;
3701
3702 return;
3703 bad:
3704 printf("%s: could not attach sysctl nodes\n", ifname);
3705 return;
3706 }
3707
3708 #if defined(INET) || defined(INET6)
3709
3710 #define SYSCTL_NET_PKTQ(q, cn, c) \
3711 static int \
3712 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3713 { \
3714 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3715 }
3716
3717 #if defined(INET)
3718 static int
3719 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3720 {
3721 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3722 }
3723 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3724 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3725 #endif
3726
3727 #if defined(INET6)
3728 static int
3729 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3730 {
3731 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3732 }
3733 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3734 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3735 #endif
3736
3737 static void
3738 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3739 {
3740 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3741 const char *pfname = NULL, *ipname = NULL;
3742 int ipn = 0, qid = 0;
3743
3744 switch (pf) {
3745 #if defined(INET)
3746 case PF_INET:
3747 len_func = sysctl_net_ip_pktq_items;
3748 maxlen_func = sysctl_net_ip_pktq_maxlen;
3749 drops_func = sysctl_net_ip_pktq_drops;
3750 pfname = "inet", ipn = IPPROTO_IP;
3751 ipname = "ip", qid = IPCTL_IFQ;
3752 break;
3753 #endif
3754 #if defined(INET6)
3755 case PF_INET6:
3756 len_func = sysctl_net_ip6_pktq_items;
3757 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3758 drops_func = sysctl_net_ip6_pktq_drops;
3759 pfname = "inet6", ipn = IPPROTO_IPV6;
3760 ipname = "ip6", qid = IPV6CTL_IFQ;
3761 break;
3762 #endif
3763 default:
3764 KASSERT(false);
3765 }
3766
3767 sysctl_createv(clog, 0, NULL, NULL,
3768 CTLFLAG_PERMANENT,
3769 CTLTYPE_NODE, pfname, NULL,
3770 NULL, 0, NULL, 0,
3771 CTL_NET, pf, CTL_EOL);
3772 sysctl_createv(clog, 0, NULL, NULL,
3773 CTLFLAG_PERMANENT,
3774 CTLTYPE_NODE, ipname, NULL,
3775 NULL, 0, NULL, 0,
3776 CTL_NET, pf, ipn, CTL_EOL);
3777 sysctl_createv(clog, 0, NULL, NULL,
3778 CTLFLAG_PERMANENT,
3779 CTLTYPE_NODE, "ifq",
3780 SYSCTL_DESCR("Protocol input queue controls"),
3781 NULL, 0, NULL, 0,
3782 CTL_NET, pf, ipn, qid, CTL_EOL);
3783
3784 sysctl_createv(clog, 0, NULL, NULL,
3785 CTLFLAG_PERMANENT,
3786 CTLTYPE_QUAD, "len",
3787 SYSCTL_DESCR("Current input queue length"),
3788 len_func, 0, NULL, 0,
3789 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3790 sysctl_createv(clog, 0, NULL, NULL,
3791 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3792 CTLTYPE_INT, "maxlen",
3793 SYSCTL_DESCR("Maximum allowed input queue length"),
3794 maxlen_func, 0, NULL, 0,
3795 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3796 sysctl_createv(clog, 0, NULL, NULL,
3797 CTLFLAG_PERMANENT,
3798 CTLTYPE_QUAD, "drops",
3799 SYSCTL_DESCR("Packets dropped due to full input queue"),
3800 drops_func, 0, NULL, 0,
3801 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3802 }
3803 #endif /* INET || INET6 */
3804
3805 static int
3806 if_sdl_sysctl(SYSCTLFN_ARGS)
3807 {
3808 struct ifnet *ifp;
3809 const struct sockaddr_dl *sdl;
3810 struct psref psref;
3811 int error = 0;
3812 int bound;
3813
3814 if (namelen != 1)
3815 return EINVAL;
3816
3817 bound = curlwp_bind();
3818 ifp = if_get_byindex(name[0], &psref);
3819 if (ifp == NULL) {
3820 error = ENODEV;
3821 goto out0;
3822 }
3823
3824 sdl = ifp->if_sadl;
3825 if (sdl == NULL) {
3826 *oldlenp = 0;
3827 goto out1;
3828 }
3829
3830 if (oldp == NULL) {
3831 *oldlenp = sdl->sdl_alen;
3832 goto out1;
3833 }
3834
3835 if (*oldlenp >= sdl->sdl_alen)
3836 *oldlenp = sdl->sdl_alen;
3837 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3838 out1:
3839 if_put(ifp, &psref);
3840 out0:
3841 curlwp_bindx(bound);
3842 return error;
3843 }
3844
3845 static void
3846 if_sysctl_setup(struct sysctllog **clog)
3847 {
3848 const struct sysctlnode *rnode = NULL;
3849
3850 sysctl_createv(clog, 0, NULL, &rnode,
3851 CTLFLAG_PERMANENT,
3852 CTLTYPE_NODE, "sdl",
3853 SYSCTL_DESCR("Get active link-layer address"),
3854 if_sdl_sysctl, 0, NULL, 0,
3855 CTL_NET, CTL_CREATE, CTL_EOL);
3856
3857 #if defined(INET)
3858 sysctl_net_pktq_setup(NULL, PF_INET);
3859 #endif
3860 #ifdef INET6
3861 if (in6_present)
3862 sysctl_net_pktq_setup(NULL, PF_INET6);
3863 #endif
3864 }
3865