if.c revision 1.466 1 /* $NetBSD: if.c,v 1.466 2019/12/17 04:54:36 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.466 2019/12/17 04:54:36 christos Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net80211/ieee80211.h>
131 #include <net80211/ieee80211_ioctl.h>
132 #include <net/if_types.h>
133 #include <net/route.h>
134 #include <net/netisr.h>
135 #include <sys/module.h>
136 #ifdef NETATALK
137 #include <netatalk/at_extern.h>
138 #include <netatalk/at.h>
139 #endif
140 #include <net/pfil.h>
141 #include <netinet/in.h>
142 #include <netinet/in_var.h>
143 #include <netinet/ip_encap.h>
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152 #include "fddi.h"
153 #include "token.h"
154
155 #include "bridge.h"
156 #if NBRIDGE > 0
157 #include <net/if_bridgevar.h>
158 #endif
159
160 #include "carp.h"
161 #if NCARP > 0
162 #include <netinet/ip_carp.h>
163 #endif
164
165 #include <compat/sys/sockio.h>
166
167 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
168 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
169
170 /*
171 * Global list of interfaces.
172 */
173 /* DEPRECATED. Remove it once kvm(3) users disappeared */
174 struct ifnet_head ifnet_list;
175
176 struct pslist_head ifnet_pslist;
177 static ifnet_t ** ifindex2ifnet = NULL;
178 static u_int if_index = 1;
179 static size_t if_indexlim = 0;
180 static uint64_t index_gen;
181 /* Mutex to protect the above objects. */
182 kmutex_t ifnet_mtx __cacheline_aligned;
183 static struct psref_class *ifnet_psref_class __read_mostly;
184 static pserialize_t ifnet_psz;
185
186 static kmutex_t if_clone_mtx;
187
188 struct ifnet *lo0ifp;
189 int ifqmaxlen = IFQ_MAXLEN;
190
191 struct psref_class *ifa_psref_class __read_mostly;
192
193 static int if_delroute_matcher(struct rtentry *, void *);
194
195 static bool if_is_unit(const char *);
196 static struct if_clone *if_clone_lookup(const char *, int *);
197
198 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
199 static int if_cloners_count;
200
201 /* Packet filtering hook for interfaces. */
202 pfil_head_t * if_pfil __read_mostly;
203
204 static kauth_listener_t if_listener;
205
206 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
207 static void if_detach_queues(struct ifnet *, struct ifqueue *);
208 static void sysctl_sndq_setup(struct sysctllog **, const char *,
209 struct ifaltq *);
210 static void if_slowtimo(void *);
211 static void if_attachdomain1(struct ifnet *);
212 static int ifconf(u_long, void *);
213 static int if_transmit(struct ifnet *, struct mbuf *);
214 static int if_clone_create(const char *);
215 static int if_clone_destroy(const char *);
216 static void if_link_state_change_si(void *);
217 static void if_up_locked(struct ifnet *);
218 static void _if_down(struct ifnet *);
219 static void if_down_deactivated(struct ifnet *);
220
221 struct if_percpuq {
222 struct ifnet *ipq_ifp;
223 void *ipq_si;
224 struct percpu *ipq_ifqs; /* struct ifqueue */
225 };
226
227 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
228
229 static void if_percpuq_drops(void *, void *, struct cpu_info *);
230 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
231 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
232 struct if_percpuq *);
233
234 struct if_deferred_start {
235 struct ifnet *ids_ifp;
236 void (*ids_if_start)(struct ifnet *);
237 void *ids_si;
238 };
239
240 static void if_deferred_start_softint(void *);
241 static void if_deferred_start_common(struct ifnet *);
242 static void if_deferred_start_destroy(struct ifnet *);
243
244 #if defined(INET) || defined(INET6)
245 static void sysctl_net_pktq_setup(struct sysctllog **, int);
246 #endif
247
248 /*
249 * Hook for if_vlan - needed by if_agr
250 */
251 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
252
253 static void if_sysctl_setup(struct sysctllog **);
254
255 static int
256 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
257 void *arg0, void *arg1, void *arg2, void *arg3)
258 {
259 int result;
260 enum kauth_network_req req;
261
262 result = KAUTH_RESULT_DEFER;
263 req = (enum kauth_network_req)arg1;
264
265 if (action != KAUTH_NETWORK_INTERFACE)
266 return result;
267
268 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
269 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
270 result = KAUTH_RESULT_ALLOW;
271
272 return result;
273 }
274
275 /*
276 * Network interface utility routines.
277 *
278 * Routines with ifa_ifwith* names take sockaddr *'s as
279 * parameters.
280 */
281 void
282 ifinit(void)
283 {
284
285 #if (defined(INET) || defined(INET6))
286 encapinit();
287 #endif
288
289 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
290 if_listener_cb, NULL);
291
292 /* interfaces are available, inform socket code */
293 ifioctl = doifioctl;
294 }
295
296 /*
297 * XXX Initialization before configure().
298 * XXX hack to get pfil_add_hook working in autoconf.
299 */
300 void
301 ifinit1(void)
302 {
303
304 #ifdef NET_MPSAFE
305 printf("NET_MPSAFE enabled\n");
306 #endif
307
308 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
309
310 TAILQ_INIT(&ifnet_list);
311 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
312 ifnet_psz = pserialize_create();
313 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
314 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
315 PSLIST_INIT(&ifnet_pslist);
316
317 if_indexlim = 8;
318
319 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
320 KASSERT(if_pfil != NULL);
321
322 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
323 etherinit();
324 #endif
325 }
326
327 /* XXX must be after domaininit() */
328 void
329 ifinit_post(void)
330 {
331
332 if_sysctl_setup(NULL);
333 }
334
335 ifnet_t *
336 if_alloc(u_char type)
337 {
338 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
339 }
340
341 void
342 if_free(ifnet_t *ifp)
343 {
344 kmem_free(ifp, sizeof(ifnet_t));
345 }
346
347 void
348 if_initname(struct ifnet *ifp, const char *name, int unit)
349 {
350 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
351 "%s%d", name, unit);
352 }
353
354 /*
355 * Null routines used while an interface is going away. These routines
356 * just return an error.
357 */
358
359 int
360 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
361 const struct sockaddr *so, const struct rtentry *rt)
362 {
363
364 return ENXIO;
365 }
366
367 void
368 if_nullinput(struct ifnet *ifp, struct mbuf *m)
369 {
370
371 /* Nothing. */
372 }
373
374 void
375 if_nullstart(struct ifnet *ifp)
376 {
377
378 /* Nothing. */
379 }
380
381 int
382 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
383 {
384
385 m_freem(m);
386 return ENXIO;
387 }
388
389 int
390 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
391 {
392
393 return ENXIO;
394 }
395
396 int
397 if_nullinit(struct ifnet *ifp)
398 {
399
400 return ENXIO;
401 }
402
403 void
404 if_nullstop(struct ifnet *ifp, int disable)
405 {
406
407 /* Nothing. */
408 }
409
410 void
411 if_nullslowtimo(struct ifnet *ifp)
412 {
413
414 /* Nothing. */
415 }
416
417 void
418 if_nulldrain(struct ifnet *ifp)
419 {
420
421 /* Nothing. */
422 }
423
424 void
425 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
426 {
427 struct ifaddr *ifa;
428 struct sockaddr_dl *sdl;
429
430 ifp->if_addrlen = addrlen;
431 if_alloc_sadl(ifp);
432 ifa = ifp->if_dl;
433 sdl = satosdl(ifa->ifa_addr);
434
435 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
436 if (factory) {
437 KASSERT(ifp->if_hwdl == NULL);
438 ifp->if_hwdl = ifp->if_dl;
439 ifaref(ifp->if_hwdl);
440 }
441 /* TBD routing socket */
442 }
443
444 struct ifaddr *
445 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
446 {
447 unsigned socksize, ifasize;
448 int addrlen, namelen;
449 struct sockaddr_dl *mask, *sdl;
450 struct ifaddr *ifa;
451
452 namelen = strlen(ifp->if_xname);
453 addrlen = ifp->if_addrlen;
454 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
455 ifasize = sizeof(*ifa) + 2 * socksize;
456 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
457
458 sdl = (struct sockaddr_dl *)(ifa + 1);
459 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
460
461 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
462 ifp->if_xname, namelen, NULL, addrlen);
463 mask->sdl_family = AF_LINK;
464 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
465 memset(&mask->sdl_data[0], 0xff, namelen);
466 ifa->ifa_rtrequest = link_rtrequest;
467 ifa->ifa_addr = (struct sockaddr *)sdl;
468 ifa->ifa_netmask = (struct sockaddr *)mask;
469 ifa_psref_init(ifa);
470
471 *sdlp = sdl;
472
473 return ifa;
474 }
475
476 static void
477 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
478 {
479 const struct sockaddr_dl *sdl;
480
481 ifp->if_dl = ifa;
482 ifaref(ifa);
483 sdl = satosdl(ifa->ifa_addr);
484 ifp->if_sadl = sdl;
485 }
486
487 /*
488 * Allocate the link level name for the specified interface. This
489 * is an attachment helper. It must be called after ifp->if_addrlen
490 * is initialized, which may not be the case when if_attach() is
491 * called.
492 */
493 void
494 if_alloc_sadl(struct ifnet *ifp)
495 {
496 struct ifaddr *ifa;
497 const struct sockaddr_dl *sdl;
498
499 /*
500 * If the interface already has a link name, release it
501 * now. This is useful for interfaces that can change
502 * link types, and thus switch link names often.
503 */
504 if (ifp->if_sadl != NULL)
505 if_free_sadl(ifp, 0);
506
507 ifa = if_dl_create(ifp, &sdl);
508
509 ifa_insert(ifp, ifa);
510 if_sadl_setrefs(ifp, ifa);
511 }
512
513 static void
514 if_deactivate_sadl(struct ifnet *ifp)
515 {
516 struct ifaddr *ifa;
517
518 KASSERT(ifp->if_dl != NULL);
519
520 ifa = ifp->if_dl;
521
522 ifp->if_sadl = NULL;
523
524 ifp->if_dl = NULL;
525 ifafree(ifa);
526 }
527
528 static void
529 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
530 {
531 struct ifaddr *old;
532
533 KASSERT(ifp->if_dl != NULL);
534
535 old = ifp->if_dl;
536
537 ifaref(ifa);
538 /* XXX Update if_dl and if_sadl atomically */
539 ifp->if_dl = ifa;
540 ifp->if_sadl = satosdl(ifa->ifa_addr);
541
542 ifafree(old);
543 }
544
545 void
546 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
547 const struct sockaddr_dl *sdl)
548 {
549 int s, ss;
550 struct ifaddr *ifa;
551 int bound = curlwp_bind();
552
553 KASSERT(ifa_held(ifa0));
554
555 s = splsoftnet();
556
557 if_replace_sadl(ifp, ifa0);
558
559 ss = pserialize_read_enter();
560 IFADDR_READER_FOREACH(ifa, ifp) {
561 struct psref psref;
562 ifa_acquire(ifa, &psref);
563 pserialize_read_exit(ss);
564
565 rtinit(ifa, RTM_LLINFO_UPD, 0);
566
567 ss = pserialize_read_enter();
568 ifa_release(ifa, &psref);
569 }
570 pserialize_read_exit(ss);
571
572 splx(s);
573 curlwp_bindx(bound);
574 }
575
576 /*
577 * Free the link level name for the specified interface. This is
578 * a detach helper. This is called from if_detach().
579 */
580 void
581 if_free_sadl(struct ifnet *ifp, int factory)
582 {
583 struct ifaddr *ifa;
584 int s;
585
586 if (factory && ifp->if_hwdl != NULL) {
587 ifa = ifp->if_hwdl;
588 ifp->if_hwdl = NULL;
589 ifafree(ifa);
590 }
591
592 ifa = ifp->if_dl;
593 if (ifa == NULL) {
594 KASSERT(ifp->if_sadl == NULL);
595 return;
596 }
597
598 KASSERT(ifp->if_sadl != NULL);
599
600 s = splsoftnet();
601 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
602 ifa_remove(ifp, ifa);
603 if_deactivate_sadl(ifp);
604 splx(s);
605 }
606
607 static void
608 if_getindex(ifnet_t *ifp)
609 {
610 bool hitlimit = false;
611
612 ifp->if_index_gen = index_gen++;
613
614 ifp->if_index = if_index;
615 if (ifindex2ifnet == NULL) {
616 if_index++;
617 goto skip;
618 }
619 while (if_byindex(ifp->if_index)) {
620 /*
621 * If we hit USHRT_MAX, we skip back to 0 since
622 * there are a number of places where the value
623 * of if_index or if_index itself is compared
624 * to or stored in an unsigned short. By
625 * jumping back, we won't botch those assignments
626 * or comparisons.
627 */
628 if (++if_index == 0) {
629 if_index = 1;
630 } else if (if_index == USHRT_MAX) {
631 /*
632 * However, if we have to jump back to
633 * zero *twice* without finding an empty
634 * slot in ifindex2ifnet[], then there
635 * there are too many (>65535) interfaces.
636 */
637 if (hitlimit) {
638 panic("too many interfaces");
639 }
640 hitlimit = true;
641 if_index = 1;
642 }
643 ifp->if_index = if_index;
644 }
645 skip:
646 /*
647 * ifindex2ifnet is indexed by if_index. Since if_index will
648 * grow dynamically, it should grow too.
649 */
650 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
651 size_t m, n, oldlim;
652 void *q;
653
654 oldlim = if_indexlim;
655 while (ifp->if_index >= if_indexlim)
656 if_indexlim <<= 1;
657
658 /* grow ifindex2ifnet */
659 m = oldlim * sizeof(struct ifnet *);
660 n = if_indexlim * sizeof(struct ifnet *);
661 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
662 if (ifindex2ifnet != NULL) {
663 memcpy(q, ifindex2ifnet, m);
664 free(ifindex2ifnet, M_IFADDR);
665 }
666 ifindex2ifnet = (struct ifnet **)q;
667 }
668 ifindex2ifnet[ifp->if_index] = ifp;
669 }
670
671 /*
672 * Initialize an interface and assign an index for it.
673 *
674 * It must be called prior to a device specific attach routine
675 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
676 * and be followed by if_register:
677 *
678 * if_initialize(ifp);
679 * ether_ifattach(ifp, enaddr);
680 * if_register(ifp);
681 */
682 int
683 if_initialize(ifnet_t *ifp)
684 {
685 int rv = 0;
686
687 KASSERT(if_indexlim > 0);
688 TAILQ_INIT(&ifp->if_addrlist);
689
690 /*
691 * Link level name is allocated later by a separate call to
692 * if_alloc_sadl().
693 */
694
695 if (ifp->if_snd.ifq_maxlen == 0)
696 ifp->if_snd.ifq_maxlen = ifqmaxlen;
697
698 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
699
700 ifp->if_link_state = LINK_STATE_UNKNOWN;
701 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
702
703 ifp->if_capenable = 0;
704 ifp->if_csum_flags_tx = 0;
705 ifp->if_csum_flags_rx = 0;
706
707 #ifdef ALTQ
708 ifp->if_snd.altq_type = 0;
709 ifp->if_snd.altq_disc = NULL;
710 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
711 ifp->if_snd.altq_tbr = NULL;
712 ifp->if_snd.altq_ifp = ifp;
713 #endif
714
715 IFQ_LOCK_INIT(&ifp->if_snd);
716
717 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
718 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
719
720 IF_AFDATA_LOCK_INIT(ifp);
721
722 if (if_is_link_state_changeable(ifp)) {
723 u_int flags = SOFTINT_NET;
724 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
725 ifp->if_link_si = softint_establish(flags,
726 if_link_state_change_si, ifp);
727 if (ifp->if_link_si == NULL) {
728 rv = ENOMEM;
729 goto fail;
730 }
731 }
732
733 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
734 PSLIST_INIT(&ifp->if_addr_pslist);
735 psref_target_init(&ifp->if_psref, ifnet_psref_class);
736 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
737 LIST_INIT(&ifp->if_multiaddrs);
738
739 IFNET_GLOBAL_LOCK();
740 if_getindex(ifp);
741 IFNET_GLOBAL_UNLOCK();
742
743 return 0;
744
745 fail:
746 IF_AFDATA_LOCK_DESTROY(ifp);
747
748 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
749 (void)pfil_head_destroy(ifp->if_pfil);
750
751 IFQ_LOCK_DESTROY(&ifp->if_snd);
752
753 return rv;
754 }
755
756 /*
757 * Register an interface to the list of "active" interfaces.
758 */
759 void
760 if_register(ifnet_t *ifp)
761 {
762 /*
763 * If the driver has not supplied its own if_ioctl, then
764 * supply the default.
765 */
766 if (ifp->if_ioctl == NULL)
767 ifp->if_ioctl = ifioctl_common;
768
769 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
770
771 if (!STAILQ_EMPTY(&domains))
772 if_attachdomain1(ifp);
773
774 /* Announce the interface. */
775 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
776
777 if (ifp->if_slowtimo != NULL) {
778 ifp->if_slowtimo_ch =
779 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
780 callout_init(ifp->if_slowtimo_ch, 0);
781 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
782 if_slowtimo(ifp);
783 }
784
785 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
786 ifp->if_transmit = if_transmit;
787
788 IFNET_GLOBAL_LOCK();
789 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
790 IFNET_WRITER_INSERT_TAIL(ifp);
791 IFNET_GLOBAL_UNLOCK();
792 }
793
794 /*
795 * The if_percpuq framework
796 *
797 * It allows network device drivers to execute the network stack
798 * in softint (so called softint-based if_input). It utilizes
799 * softint and percpu ifqueue. It doesn't distribute any packets
800 * between CPUs, unlike pktqueue(9).
801 *
802 * Currently we support two options for device drivers to apply the framework:
803 * - Use it implicitly with less changes
804 * - If you use if_attach in driver's _attach function and if_input in
805 * driver's Rx interrupt handler, a packet is queued and a softint handles
806 * the packet implicitly
807 * - Use it explicitly in each driver (recommended)
808 * - You can use if_percpuq_* directly in your driver
809 * - In this case, you need to allocate struct if_percpuq in driver's softc
810 * - See wm(4) as a reference implementation
811 */
812
813 static void
814 if_percpuq_softint(void *arg)
815 {
816 struct if_percpuq *ipq = arg;
817 struct ifnet *ifp = ipq->ipq_ifp;
818 struct mbuf *m;
819
820 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
821 ifp->if_ipackets++;
822 bpf_mtap(ifp, m, BPF_D_IN);
823
824 ifp->_if_input(ifp, m);
825 }
826 }
827
828 static void
829 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
830 {
831 struct ifqueue *const ifq = p;
832
833 memset(ifq, 0, sizeof(*ifq));
834 ifq->ifq_maxlen = IFQ_MAXLEN;
835 }
836
837 struct if_percpuq *
838 if_percpuq_create(struct ifnet *ifp)
839 {
840 struct if_percpuq *ipq;
841 u_int flags = SOFTINT_NET;
842
843 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
844
845 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
846 ipq->ipq_ifp = ifp;
847 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
848 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
849 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
850
851 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
852
853 return ipq;
854 }
855
856 static struct mbuf *
857 if_percpuq_dequeue(struct if_percpuq *ipq)
858 {
859 struct mbuf *m;
860 struct ifqueue *ifq;
861 int s;
862
863 s = splnet();
864 ifq = percpu_getref(ipq->ipq_ifqs);
865 IF_DEQUEUE(ifq, m);
866 percpu_putref(ipq->ipq_ifqs);
867 splx(s);
868
869 return m;
870 }
871
872 static void
873 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
874 {
875 struct ifqueue *const ifq = p;
876
877 IF_PURGE(ifq);
878 }
879
880 void
881 if_percpuq_destroy(struct if_percpuq *ipq)
882 {
883
884 /* if_detach may already destroy it */
885 if (ipq == NULL)
886 return;
887
888 softint_disestablish(ipq->ipq_si);
889 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
890 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
891 kmem_free(ipq, sizeof(*ipq));
892 }
893
894 void
895 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
896 {
897 struct ifqueue *ifq;
898 int s;
899
900 KASSERT(ipq != NULL);
901
902 s = splnet();
903 ifq = percpu_getref(ipq->ipq_ifqs);
904 if (IF_QFULL(ifq)) {
905 IF_DROP(ifq);
906 percpu_putref(ipq->ipq_ifqs);
907 m_freem(m);
908 goto out;
909 }
910 IF_ENQUEUE(ifq, m);
911 percpu_putref(ipq->ipq_ifqs);
912
913 softint_schedule(ipq->ipq_si);
914 out:
915 splx(s);
916 }
917
918 static void
919 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
920 {
921 struct ifqueue *const ifq = p;
922 int *sum = arg;
923
924 *sum += ifq->ifq_drops;
925 }
926
927 static int
928 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
929 {
930 struct sysctlnode node;
931 struct if_percpuq *ipq;
932 int sum = 0;
933 int error;
934
935 node = *rnode;
936 ipq = node.sysctl_data;
937
938 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
939
940 node.sysctl_data = ∑
941 error = sysctl_lookup(SYSCTLFN_CALL(&node));
942 if (error != 0 || newp == NULL)
943 return error;
944
945 return 0;
946 }
947
948 static void
949 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
950 struct if_percpuq *ipq)
951 {
952 const struct sysctlnode *cnode, *rnode;
953
954 if (sysctl_createv(clog, 0, NULL, &rnode,
955 CTLFLAG_PERMANENT,
956 CTLTYPE_NODE, "interfaces",
957 SYSCTL_DESCR("Per-interface controls"),
958 NULL, 0, NULL, 0,
959 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
960 goto bad;
961
962 if (sysctl_createv(clog, 0, &rnode, &rnode,
963 CTLFLAG_PERMANENT,
964 CTLTYPE_NODE, ifname,
965 SYSCTL_DESCR("Interface controls"),
966 NULL, 0, NULL, 0,
967 CTL_CREATE, CTL_EOL) != 0)
968 goto bad;
969
970 if (sysctl_createv(clog, 0, &rnode, &rnode,
971 CTLFLAG_PERMANENT,
972 CTLTYPE_NODE, "rcvq",
973 SYSCTL_DESCR("Interface input queue controls"),
974 NULL, 0, NULL, 0,
975 CTL_CREATE, CTL_EOL) != 0)
976 goto bad;
977
978 #ifdef NOTYET
979 /* XXX Should show each per-CPU queue length? */
980 if (sysctl_createv(clog, 0, &rnode, &rnode,
981 CTLFLAG_PERMANENT,
982 CTLTYPE_INT, "len",
983 SYSCTL_DESCR("Current input queue length"),
984 sysctl_percpuq_len, 0, NULL, 0,
985 CTL_CREATE, CTL_EOL) != 0)
986 goto bad;
987
988 if (sysctl_createv(clog, 0, &rnode, &cnode,
989 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
990 CTLTYPE_INT, "maxlen",
991 SYSCTL_DESCR("Maximum allowed input queue length"),
992 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
993 CTL_CREATE, CTL_EOL) != 0)
994 goto bad;
995 #endif
996
997 if (sysctl_createv(clog, 0, &rnode, &cnode,
998 CTLFLAG_PERMANENT,
999 CTLTYPE_INT, "drops",
1000 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1001 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1002 CTL_CREATE, CTL_EOL) != 0)
1003 goto bad;
1004
1005 return;
1006 bad:
1007 printf("%s: could not attach sysctl nodes\n", ifname);
1008 return;
1009 }
1010
1011 /*
1012 * The deferred if_start framework
1013 *
1014 * The common APIs to defer if_start to softint when if_start is requested
1015 * from a device driver running in hardware interrupt context.
1016 */
1017 /*
1018 * Call ifp->if_start (or equivalent) in a dedicated softint for
1019 * deferred if_start.
1020 */
1021 static void
1022 if_deferred_start_softint(void *arg)
1023 {
1024 struct if_deferred_start *ids = arg;
1025 struct ifnet *ifp = ids->ids_ifp;
1026
1027 ids->ids_if_start(ifp);
1028 }
1029
1030 /*
1031 * The default callback function for deferred if_start.
1032 */
1033 static void
1034 if_deferred_start_common(struct ifnet *ifp)
1035 {
1036 int s;
1037
1038 s = splnet();
1039 if_start_lock(ifp);
1040 splx(s);
1041 }
1042
1043 static inline bool
1044 if_snd_is_used(struct ifnet *ifp)
1045 {
1046
1047 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1048 ifp->if_transmit == if_transmit ||
1049 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
1050 }
1051
1052 /*
1053 * Schedule deferred if_start.
1054 */
1055 void
1056 if_schedule_deferred_start(struct ifnet *ifp)
1057 {
1058
1059 KASSERT(ifp->if_deferred_start != NULL);
1060
1061 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1062 return;
1063
1064 softint_schedule(ifp->if_deferred_start->ids_si);
1065 }
1066
1067 /*
1068 * Create an instance of deferred if_start. A driver should call the function
1069 * only if the driver needs deferred if_start. Drivers can setup their own
1070 * deferred if_start function via 2nd argument.
1071 */
1072 void
1073 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1074 {
1075 struct if_deferred_start *ids;
1076 u_int flags = SOFTINT_NET;
1077
1078 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1079
1080 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1081 ids->ids_ifp = ifp;
1082 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1083 if (func != NULL)
1084 ids->ids_if_start = func;
1085 else
1086 ids->ids_if_start = if_deferred_start_common;
1087
1088 ifp->if_deferred_start = ids;
1089 }
1090
1091 static void
1092 if_deferred_start_destroy(struct ifnet *ifp)
1093 {
1094
1095 if (ifp->if_deferred_start == NULL)
1096 return;
1097
1098 softint_disestablish(ifp->if_deferred_start->ids_si);
1099 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1100 ifp->if_deferred_start = NULL;
1101 }
1102
1103 /*
1104 * The common interface input routine that is called by device drivers,
1105 * which should be used only when the driver's rx handler already runs
1106 * in softint.
1107 */
1108 void
1109 if_input(struct ifnet *ifp, struct mbuf *m)
1110 {
1111
1112 KASSERT(ifp->if_percpuq == NULL);
1113 KASSERT(!cpu_intr_p());
1114
1115 ifp->if_ipackets++;
1116 bpf_mtap(ifp, m, BPF_D_IN);
1117
1118 ifp->_if_input(ifp, m);
1119 }
1120
1121 /*
1122 * DEPRECATED. Use if_initialize and if_register instead.
1123 * See the above comment of if_initialize.
1124 *
1125 * Note that it implicitly enables if_percpuq to make drivers easy to
1126 * migrate softint-based if_input without much changes. If you don't
1127 * want to enable it, use if_initialize instead.
1128 */
1129 int
1130 if_attach(ifnet_t *ifp)
1131 {
1132 int rv;
1133
1134 rv = if_initialize(ifp);
1135 if (rv != 0)
1136 return rv;
1137
1138 ifp->if_percpuq = if_percpuq_create(ifp);
1139 if_register(ifp);
1140
1141 return 0;
1142 }
1143
1144 void
1145 if_attachdomain(void)
1146 {
1147 struct ifnet *ifp;
1148 int s;
1149 int bound = curlwp_bind();
1150
1151 s = pserialize_read_enter();
1152 IFNET_READER_FOREACH(ifp) {
1153 struct psref psref;
1154 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1155 pserialize_read_exit(s);
1156 if_attachdomain1(ifp);
1157 s = pserialize_read_enter();
1158 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1159 }
1160 pserialize_read_exit(s);
1161 curlwp_bindx(bound);
1162 }
1163
1164 static void
1165 if_attachdomain1(struct ifnet *ifp)
1166 {
1167 struct domain *dp;
1168 int s;
1169
1170 s = splsoftnet();
1171
1172 /* address family dependent data region */
1173 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1174 DOMAIN_FOREACH(dp) {
1175 if (dp->dom_ifattach != NULL)
1176 ifp->if_afdata[dp->dom_family] =
1177 (*dp->dom_ifattach)(ifp);
1178 }
1179
1180 splx(s);
1181 }
1182
1183 /*
1184 * Deactivate an interface. This points all of the procedure
1185 * handles at error stubs. May be called from interrupt context.
1186 */
1187 void
1188 if_deactivate(struct ifnet *ifp)
1189 {
1190 int s;
1191
1192 s = splsoftnet();
1193
1194 ifp->if_output = if_nulloutput;
1195 ifp->_if_input = if_nullinput;
1196 ifp->if_start = if_nullstart;
1197 ifp->if_transmit = if_nulltransmit;
1198 ifp->if_ioctl = if_nullioctl;
1199 ifp->if_init = if_nullinit;
1200 ifp->if_stop = if_nullstop;
1201 ifp->if_slowtimo = if_nullslowtimo;
1202 ifp->if_drain = if_nulldrain;
1203
1204 /* No more packets may be enqueued. */
1205 ifp->if_snd.ifq_maxlen = 0;
1206
1207 splx(s);
1208 }
1209
1210 bool
1211 if_is_deactivated(const struct ifnet *ifp)
1212 {
1213
1214 return ifp->if_output == if_nulloutput;
1215 }
1216
1217 void
1218 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1219 {
1220 struct ifaddr *ifa, *nifa;
1221 int s;
1222
1223 s = pserialize_read_enter();
1224 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1225 nifa = IFADDR_READER_NEXT(ifa);
1226 if (ifa->ifa_addr->sa_family != family)
1227 continue;
1228 pserialize_read_exit(s);
1229
1230 (*purgeaddr)(ifa);
1231
1232 s = pserialize_read_enter();
1233 }
1234 pserialize_read_exit(s);
1235 }
1236
1237 #ifdef IFAREF_DEBUG
1238 static struct ifaddr **ifa_list;
1239 static int ifa_list_size;
1240
1241 /* Depends on only one if_attach runs at once */
1242 static void
1243 if_build_ifa_list(struct ifnet *ifp)
1244 {
1245 struct ifaddr *ifa;
1246 int i;
1247
1248 KASSERT(ifa_list == NULL);
1249 KASSERT(ifa_list_size == 0);
1250
1251 IFADDR_READER_FOREACH(ifa, ifp)
1252 ifa_list_size++;
1253
1254 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1255 i = 0;
1256 IFADDR_READER_FOREACH(ifa, ifp) {
1257 ifa_list[i++] = ifa;
1258 ifaref(ifa);
1259 }
1260 }
1261
1262 static void
1263 if_check_and_free_ifa_list(struct ifnet *ifp)
1264 {
1265 int i;
1266 struct ifaddr *ifa;
1267
1268 if (ifa_list == NULL)
1269 return;
1270
1271 for (i = 0; i < ifa_list_size; i++) {
1272 char buf[64];
1273
1274 ifa = ifa_list[i];
1275 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1276 if (ifa->ifa_refcnt > 1) {
1277 log(LOG_WARNING,
1278 "ifa(%s) still referenced (refcnt=%d)\n",
1279 buf, ifa->ifa_refcnt - 1);
1280 } else
1281 log(LOG_DEBUG,
1282 "ifa(%s) not referenced (refcnt=%d)\n",
1283 buf, ifa->ifa_refcnt - 1);
1284 ifafree(ifa);
1285 }
1286
1287 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1288 ifa_list = NULL;
1289 ifa_list_size = 0;
1290 }
1291 #endif
1292
1293 /*
1294 * Detach an interface from the list of "active" interfaces,
1295 * freeing any resources as we go along.
1296 *
1297 * NOTE: This routine must be called with a valid thread context,
1298 * as it may block.
1299 */
1300 void
1301 if_detach(struct ifnet *ifp)
1302 {
1303 struct socket so;
1304 struct ifaddr *ifa;
1305 #ifdef IFAREF_DEBUG
1306 struct ifaddr *last_ifa = NULL;
1307 #endif
1308 struct domain *dp;
1309 const struct protosw *pr;
1310 int s, i, family, purged;
1311
1312 #ifdef IFAREF_DEBUG
1313 if_build_ifa_list(ifp);
1314 #endif
1315 /*
1316 * XXX It's kind of lame that we have to have the
1317 * XXX socket structure...
1318 */
1319 memset(&so, 0, sizeof(so));
1320
1321 s = splnet();
1322
1323 sysctl_teardown(&ifp->if_sysctl_log);
1324 IFNET_LOCK(ifp);
1325 if_deactivate(ifp);
1326 IFNET_UNLOCK(ifp);
1327
1328 /*
1329 * Unlink from the list and wait for all readers to leave
1330 * from pserialize read sections. Note that we can't do
1331 * psref_target_destroy here. See below.
1332 */
1333 IFNET_GLOBAL_LOCK();
1334 ifindex2ifnet[ifp->if_index] = NULL;
1335 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1336 IFNET_WRITER_REMOVE(ifp);
1337 pserialize_perform(ifnet_psz);
1338 IFNET_GLOBAL_UNLOCK();
1339
1340 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1341 ifp->if_slowtimo = NULL;
1342 callout_halt(ifp->if_slowtimo_ch, NULL);
1343 callout_destroy(ifp->if_slowtimo_ch);
1344 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1345 }
1346 if_deferred_start_destroy(ifp);
1347
1348 /*
1349 * Do an if_down() to give protocols a chance to do something.
1350 */
1351 if_down_deactivated(ifp);
1352
1353 #ifdef ALTQ
1354 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1355 altq_disable(&ifp->if_snd);
1356 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1357 altq_detach(&ifp->if_snd);
1358 #endif
1359
1360 #if NCARP > 0
1361 /* Remove the interface from any carp group it is a part of. */
1362 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1363 carp_ifdetach(ifp);
1364 #endif
1365
1366 /*
1367 * Rip all the addresses off the interface. This should make
1368 * all of the routes go away.
1369 *
1370 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1371 * from the list, including our "cursor", ifa. For safety,
1372 * and to honor the TAILQ abstraction, I just restart the
1373 * loop after each removal. Note that the loop will exit
1374 * when all of the remaining ifaddrs belong to the AF_LINK
1375 * family. I am counting on the historical fact that at
1376 * least one pr_usrreq in each address domain removes at
1377 * least one ifaddr.
1378 */
1379 again:
1380 /*
1381 * At this point, no other one tries to remove ifa in the list,
1382 * so we don't need to take a lock or psref. Avoid using
1383 * IFADDR_READER_FOREACH to pass over an inspection of contract
1384 * violations of pserialize.
1385 */
1386 IFADDR_WRITER_FOREACH(ifa, ifp) {
1387 family = ifa->ifa_addr->sa_family;
1388 #ifdef IFAREF_DEBUG
1389 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1390 ifa, family, ifa->ifa_refcnt);
1391 if (last_ifa != NULL && ifa == last_ifa)
1392 panic("if_detach: loop detected");
1393 last_ifa = ifa;
1394 #endif
1395 if (family == AF_LINK)
1396 continue;
1397 dp = pffinddomain(family);
1398 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1399 /*
1400 * XXX These PURGEIF calls are redundant with the
1401 * purge-all-families calls below, but are left in for
1402 * now both to make a smaller change, and to avoid
1403 * unplanned interactions with clearing of
1404 * ifp->if_addrlist.
1405 */
1406 purged = 0;
1407 for (pr = dp->dom_protosw;
1408 pr < dp->dom_protoswNPROTOSW; pr++) {
1409 so.so_proto = pr;
1410 if (pr->pr_usrreqs) {
1411 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1412 purged = 1;
1413 }
1414 }
1415 if (purged == 0) {
1416 /*
1417 * XXX What's really the best thing to do
1418 * XXX here? --thorpej (at) NetBSD.org
1419 */
1420 printf("if_detach: WARNING: AF %d not purged\n",
1421 family);
1422 ifa_remove(ifp, ifa);
1423 }
1424 goto again;
1425 }
1426
1427 if_free_sadl(ifp, 1);
1428
1429 restart:
1430 IFADDR_WRITER_FOREACH(ifa, ifp) {
1431 family = ifa->ifa_addr->sa_family;
1432 KASSERT(family == AF_LINK);
1433 ifa_remove(ifp, ifa);
1434 goto restart;
1435 }
1436
1437 /* Delete stray routes from the routing table. */
1438 for (i = 0; i <= AF_MAX; i++)
1439 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1440
1441 DOMAIN_FOREACH(dp) {
1442 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1443 {
1444 void *p = ifp->if_afdata[dp->dom_family];
1445 if (p) {
1446 ifp->if_afdata[dp->dom_family] = NULL;
1447 (*dp->dom_ifdetach)(ifp, p);
1448 }
1449 }
1450
1451 /*
1452 * One would expect multicast memberships (INET and
1453 * INET6) on UDP sockets to be purged by the PURGEIF
1454 * calls above, but if all addresses were removed from
1455 * the interface prior to destruction, the calls will
1456 * not be made (e.g. ppp, for which pppd(8) generally
1457 * removes addresses before destroying the interface).
1458 * Because there is no invariant that multicast
1459 * memberships only exist for interfaces with IPv4
1460 * addresses, we must call PURGEIF regardless of
1461 * addresses. (Protocols which might store ifnet
1462 * pointers are marked with PR_PURGEIF.)
1463 */
1464 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1465 so.so_proto = pr;
1466 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1467 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1468 }
1469 }
1470
1471 /*
1472 * Must be done after the above pr_purgeif because if_psref may be
1473 * still used in pr_purgeif.
1474 */
1475 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1476 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1477
1478 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1479 (void)pfil_head_destroy(ifp->if_pfil);
1480
1481 /* Announce that the interface is gone. */
1482 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1483
1484 IF_AFDATA_LOCK_DESTROY(ifp);
1485
1486 if (if_is_link_state_changeable(ifp)) {
1487 softint_disestablish(ifp->if_link_si);
1488 ifp->if_link_si = NULL;
1489 }
1490
1491 /*
1492 * remove packets that came from ifp, from software interrupt queues.
1493 */
1494 DOMAIN_FOREACH(dp) {
1495 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1496 struct ifqueue *iq = dp->dom_ifqueues[i];
1497 if (iq == NULL)
1498 break;
1499 dp->dom_ifqueues[i] = NULL;
1500 if_detach_queues(ifp, iq);
1501 }
1502 }
1503
1504 /*
1505 * IP queues have to be processed separately: net-queue barrier
1506 * ensures that the packets are dequeued while a cross-call will
1507 * ensure that the interrupts have completed. FIXME: not quite..
1508 */
1509 #ifdef INET
1510 pktq_barrier(ip_pktq);
1511 #endif
1512 #ifdef INET6
1513 if (in6_present)
1514 pktq_barrier(ip6_pktq);
1515 #endif
1516 xc_barrier(0);
1517
1518 if (ifp->if_percpuq != NULL) {
1519 if_percpuq_destroy(ifp->if_percpuq);
1520 ifp->if_percpuq = NULL;
1521 }
1522
1523 mutex_obj_free(ifp->if_ioctl_lock);
1524 ifp->if_ioctl_lock = NULL;
1525 mutex_obj_free(ifp->if_snd.ifq_lock);
1526
1527 splx(s);
1528
1529 #ifdef IFAREF_DEBUG
1530 if_check_and_free_ifa_list(ifp);
1531 #endif
1532 }
1533
1534 static void
1535 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1536 {
1537 struct mbuf *m, *prev, *next;
1538
1539 prev = NULL;
1540 for (m = q->ifq_head; m != NULL; m = next) {
1541 KASSERT((m->m_flags & M_PKTHDR) != 0);
1542
1543 next = m->m_nextpkt;
1544 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1545 prev = m;
1546 continue;
1547 }
1548
1549 if (prev != NULL)
1550 prev->m_nextpkt = m->m_nextpkt;
1551 else
1552 q->ifq_head = m->m_nextpkt;
1553 if (q->ifq_tail == m)
1554 q->ifq_tail = prev;
1555 q->ifq_len--;
1556
1557 m->m_nextpkt = NULL;
1558 m_freem(m);
1559 IF_DROP(q);
1560 }
1561 }
1562
1563 /*
1564 * Callback for a radix tree walk to delete all references to an
1565 * ifnet.
1566 */
1567 static int
1568 if_delroute_matcher(struct rtentry *rt, void *v)
1569 {
1570 struct ifnet *ifp = (struct ifnet *)v;
1571
1572 if (rt->rt_ifp == ifp)
1573 return 1;
1574 else
1575 return 0;
1576 }
1577
1578 /*
1579 * Create a clone network interface.
1580 */
1581 static int
1582 if_clone_create(const char *name)
1583 {
1584 struct if_clone *ifc;
1585 int unit;
1586 struct ifnet *ifp;
1587 struct psref psref;
1588
1589 KASSERT(mutex_owned(&if_clone_mtx));
1590
1591 ifc = if_clone_lookup(name, &unit);
1592 if (ifc == NULL)
1593 return EINVAL;
1594
1595 ifp = if_get(name, &psref);
1596 if (ifp != NULL) {
1597 if_put(ifp, &psref);
1598 return EEXIST;
1599 }
1600
1601 return (*ifc->ifc_create)(ifc, unit);
1602 }
1603
1604 /*
1605 * Destroy a clone network interface.
1606 */
1607 static int
1608 if_clone_destroy(const char *name)
1609 {
1610 struct if_clone *ifc;
1611 struct ifnet *ifp;
1612 struct psref psref;
1613 int error;
1614 int (*if_ioctl)(struct ifnet *, u_long, void *);
1615
1616 KASSERT(mutex_owned(&if_clone_mtx));
1617
1618 ifc = if_clone_lookup(name, NULL);
1619 if (ifc == NULL)
1620 return EINVAL;
1621
1622 if (ifc->ifc_destroy == NULL)
1623 return EOPNOTSUPP;
1624
1625 ifp = if_get(name, &psref);
1626 if (ifp == NULL)
1627 return ENXIO;
1628
1629 /* We have to disable ioctls here */
1630 IFNET_LOCK(ifp);
1631 if_ioctl = ifp->if_ioctl;
1632 ifp->if_ioctl = if_nullioctl;
1633 IFNET_UNLOCK(ifp);
1634
1635 /*
1636 * We cannot call ifc_destroy with holding ifp.
1637 * Releasing ifp here is safe thanks to if_clone_mtx.
1638 */
1639 if_put(ifp, &psref);
1640
1641 error = (*ifc->ifc_destroy)(ifp);
1642
1643 if (error != 0) {
1644 /* We have to restore if_ioctl on error */
1645 IFNET_LOCK(ifp);
1646 ifp->if_ioctl = if_ioctl;
1647 IFNET_UNLOCK(ifp);
1648 }
1649
1650 return error;
1651 }
1652
1653 static bool
1654 if_is_unit(const char *name)
1655 {
1656
1657 while (*name != '\0') {
1658 if (*name < '0' || *name > '9')
1659 return false;
1660 name++;
1661 }
1662
1663 return true;
1664 }
1665
1666 /*
1667 * Look up a network interface cloner.
1668 */
1669 static struct if_clone *
1670 if_clone_lookup(const char *name, int *unitp)
1671 {
1672 struct if_clone *ifc;
1673 const char *cp;
1674 char *dp, ifname[IFNAMSIZ + 3];
1675 int unit;
1676
1677 KASSERT(mutex_owned(&if_clone_mtx));
1678
1679 strcpy(ifname, "if_");
1680 /* separate interface name from unit */
1681 /* TODO: search unit number from backward */
1682 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1683 *cp && !if_is_unit(cp);)
1684 *dp++ = *cp++;
1685
1686 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1687 return NULL; /* No name or unit number */
1688 *dp++ = '\0';
1689
1690 again:
1691 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1692 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1693 break;
1694 }
1695
1696 if (ifc == NULL) {
1697 int error;
1698 if (*ifname == '\0')
1699 return NULL;
1700 mutex_exit(&if_clone_mtx);
1701 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1702 mutex_enter(&if_clone_mtx);
1703 if (error)
1704 return NULL;
1705 *ifname = '\0';
1706 goto again;
1707 }
1708
1709 unit = 0;
1710 while (cp - name < IFNAMSIZ && *cp) {
1711 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1712 /* Bogus unit number. */
1713 return NULL;
1714 }
1715 unit = (unit * 10) + (*cp++ - '0');
1716 }
1717
1718 if (unitp != NULL)
1719 *unitp = unit;
1720 return ifc;
1721 }
1722
1723 /*
1724 * Register a network interface cloner.
1725 */
1726 void
1727 if_clone_attach(struct if_clone *ifc)
1728 {
1729
1730 mutex_enter(&if_clone_mtx);
1731 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1732 if_cloners_count++;
1733 mutex_exit(&if_clone_mtx);
1734 }
1735
1736 /*
1737 * Unregister a network interface cloner.
1738 */
1739 void
1740 if_clone_detach(struct if_clone *ifc)
1741 {
1742
1743 mutex_enter(&if_clone_mtx);
1744 LIST_REMOVE(ifc, ifc_list);
1745 if_cloners_count--;
1746 mutex_exit(&if_clone_mtx);
1747 }
1748
1749 /*
1750 * Provide list of interface cloners to userspace.
1751 */
1752 int
1753 if_clone_list(int buf_count, char *buffer, int *total)
1754 {
1755 char outbuf[IFNAMSIZ], *dst;
1756 struct if_clone *ifc;
1757 int count, error = 0;
1758
1759 mutex_enter(&if_clone_mtx);
1760 *total = if_cloners_count;
1761 if ((dst = buffer) == NULL) {
1762 /* Just asking how many there are. */
1763 goto out;
1764 }
1765
1766 if (buf_count < 0) {
1767 error = EINVAL;
1768 goto out;
1769 }
1770
1771 count = (if_cloners_count < buf_count) ?
1772 if_cloners_count : buf_count;
1773
1774 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1775 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1776 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1777 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1778 error = ENAMETOOLONG;
1779 goto out;
1780 }
1781 error = copyout(outbuf, dst, sizeof(outbuf));
1782 if (error != 0)
1783 break;
1784 }
1785
1786 out:
1787 mutex_exit(&if_clone_mtx);
1788 return error;
1789 }
1790
1791 void
1792 ifa_psref_init(struct ifaddr *ifa)
1793 {
1794
1795 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1796 }
1797
1798 void
1799 ifaref(struct ifaddr *ifa)
1800 {
1801
1802 atomic_inc_uint(&ifa->ifa_refcnt);
1803 }
1804
1805 void
1806 ifafree(struct ifaddr *ifa)
1807 {
1808 KASSERT(ifa != NULL);
1809 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1810
1811 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1812 free(ifa, M_IFADDR);
1813 }
1814 }
1815
1816 bool
1817 ifa_is_destroying(struct ifaddr *ifa)
1818 {
1819
1820 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1821 }
1822
1823 void
1824 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1825 {
1826
1827 ifa->ifa_ifp = ifp;
1828
1829 /*
1830 * Check MP-safety for IFEF_MPSAFE drivers.
1831 * Check !IFF_RUNNING for initialization routines that normally don't
1832 * take IFNET_LOCK but it's safe because there is no competitor.
1833 * XXX there are false positive cases because IFF_RUNNING can be off on
1834 * if_stop.
1835 */
1836 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1837 IFNET_LOCKED(ifp));
1838
1839 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1840 IFADDR_ENTRY_INIT(ifa);
1841 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1842
1843 ifaref(ifa);
1844 }
1845
1846 void
1847 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1848 {
1849
1850 KASSERT(ifa->ifa_ifp == ifp);
1851 /*
1852 * Check MP-safety for IFEF_MPSAFE drivers.
1853 * if_is_deactivated indicates ifa_remove is called form if_detach
1854 * where is safe even if IFNET_LOCK isn't held.
1855 */
1856 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1857
1858 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1859 IFADDR_WRITER_REMOVE(ifa);
1860 #ifdef NET_MPSAFE
1861 IFNET_GLOBAL_LOCK();
1862 pserialize_perform(ifnet_psz);
1863 IFNET_GLOBAL_UNLOCK();
1864 #endif
1865
1866 #ifdef NET_MPSAFE
1867 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1868 #endif
1869 IFADDR_ENTRY_DESTROY(ifa);
1870 ifafree(ifa);
1871 }
1872
1873 void
1874 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1875 {
1876
1877 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1878 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1879 }
1880
1881 void
1882 ifa_release(struct ifaddr *ifa, struct psref *psref)
1883 {
1884
1885 if (ifa == NULL)
1886 return;
1887
1888 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1889 }
1890
1891 bool
1892 ifa_held(struct ifaddr *ifa)
1893 {
1894
1895 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1896 }
1897
1898 static inline int
1899 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1900 {
1901 return sockaddr_cmp(sa1, sa2) == 0;
1902 }
1903
1904 /*
1905 * Locate an interface based on a complete address.
1906 */
1907 /*ARGSUSED*/
1908 struct ifaddr *
1909 ifa_ifwithaddr(const struct sockaddr *addr)
1910 {
1911 struct ifnet *ifp;
1912 struct ifaddr *ifa;
1913
1914 IFNET_READER_FOREACH(ifp) {
1915 if (if_is_deactivated(ifp))
1916 continue;
1917 IFADDR_READER_FOREACH(ifa, ifp) {
1918 if (ifa->ifa_addr->sa_family != addr->sa_family)
1919 continue;
1920 if (equal(addr, ifa->ifa_addr))
1921 return ifa;
1922 if ((ifp->if_flags & IFF_BROADCAST) &&
1923 ifa->ifa_broadaddr &&
1924 /* IP6 doesn't have broadcast */
1925 ifa->ifa_broadaddr->sa_len != 0 &&
1926 equal(ifa->ifa_broadaddr, addr))
1927 return ifa;
1928 }
1929 }
1930 return NULL;
1931 }
1932
1933 struct ifaddr *
1934 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1935 {
1936 struct ifaddr *ifa;
1937 int s = pserialize_read_enter();
1938
1939 ifa = ifa_ifwithaddr(addr);
1940 if (ifa != NULL)
1941 ifa_acquire(ifa, psref);
1942 pserialize_read_exit(s);
1943
1944 return ifa;
1945 }
1946
1947 /*
1948 * Locate the point to point interface with a given destination address.
1949 */
1950 /*ARGSUSED*/
1951 struct ifaddr *
1952 ifa_ifwithdstaddr(const struct sockaddr *addr)
1953 {
1954 struct ifnet *ifp;
1955 struct ifaddr *ifa;
1956
1957 IFNET_READER_FOREACH(ifp) {
1958 if (if_is_deactivated(ifp))
1959 continue;
1960 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1961 continue;
1962 IFADDR_READER_FOREACH(ifa, ifp) {
1963 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1964 ifa->ifa_dstaddr == NULL)
1965 continue;
1966 if (equal(addr, ifa->ifa_dstaddr))
1967 return ifa;
1968 }
1969 }
1970
1971 return NULL;
1972 }
1973
1974 struct ifaddr *
1975 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1976 {
1977 struct ifaddr *ifa;
1978 int s;
1979
1980 s = pserialize_read_enter();
1981 ifa = ifa_ifwithdstaddr(addr);
1982 if (ifa != NULL)
1983 ifa_acquire(ifa, psref);
1984 pserialize_read_exit(s);
1985
1986 return ifa;
1987 }
1988
1989 /*
1990 * Find an interface on a specific network. If many, choice
1991 * is most specific found.
1992 */
1993 struct ifaddr *
1994 ifa_ifwithnet(const struct sockaddr *addr)
1995 {
1996 struct ifnet *ifp;
1997 struct ifaddr *ifa, *ifa_maybe = NULL;
1998 const struct sockaddr_dl *sdl;
1999 u_int af = addr->sa_family;
2000 const char *addr_data = addr->sa_data, *cplim;
2001
2002 if (af == AF_LINK) {
2003 sdl = satocsdl(addr);
2004 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
2005 ifindex2ifnet[sdl->sdl_index] &&
2006 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2007 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2008 }
2009 }
2010 #ifdef NETATALK
2011 if (af == AF_APPLETALK) {
2012 const struct sockaddr_at *sat, *sat2;
2013 sat = (const struct sockaddr_at *)addr;
2014 IFNET_READER_FOREACH(ifp) {
2015 if (if_is_deactivated(ifp))
2016 continue;
2017 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2018 if (ifa == NULL)
2019 continue;
2020 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2021 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2022 return ifa; /* exact match */
2023 if (ifa_maybe == NULL) {
2024 /* else keep the if with the right range */
2025 ifa_maybe = ifa;
2026 }
2027 }
2028 return ifa_maybe;
2029 }
2030 #endif
2031 IFNET_READER_FOREACH(ifp) {
2032 if (if_is_deactivated(ifp))
2033 continue;
2034 IFADDR_READER_FOREACH(ifa, ifp) {
2035 const char *cp, *cp2, *cp3;
2036
2037 if (ifa->ifa_addr->sa_family != af ||
2038 ifa->ifa_netmask == NULL)
2039 next: continue;
2040 cp = addr_data;
2041 cp2 = ifa->ifa_addr->sa_data;
2042 cp3 = ifa->ifa_netmask->sa_data;
2043 cplim = (const char *)ifa->ifa_netmask +
2044 ifa->ifa_netmask->sa_len;
2045 while (cp3 < cplim) {
2046 if ((*cp++ ^ *cp2++) & *cp3++) {
2047 /* want to continue for() loop */
2048 goto next;
2049 }
2050 }
2051 if (ifa_maybe == NULL ||
2052 rt_refines(ifa->ifa_netmask,
2053 ifa_maybe->ifa_netmask))
2054 ifa_maybe = ifa;
2055 }
2056 }
2057 return ifa_maybe;
2058 }
2059
2060 struct ifaddr *
2061 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2062 {
2063 struct ifaddr *ifa;
2064 int s;
2065
2066 s = pserialize_read_enter();
2067 ifa = ifa_ifwithnet(addr);
2068 if (ifa != NULL)
2069 ifa_acquire(ifa, psref);
2070 pserialize_read_exit(s);
2071
2072 return ifa;
2073 }
2074
2075 /*
2076 * Find the interface of the addresss.
2077 */
2078 struct ifaddr *
2079 ifa_ifwithladdr(const struct sockaddr *addr)
2080 {
2081 struct ifaddr *ia;
2082
2083 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2084 (ia = ifa_ifwithnet(addr)))
2085 return ia;
2086 return NULL;
2087 }
2088
2089 struct ifaddr *
2090 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2091 {
2092 struct ifaddr *ifa;
2093 int s;
2094
2095 s = pserialize_read_enter();
2096 ifa = ifa_ifwithladdr(addr);
2097 if (ifa != NULL)
2098 ifa_acquire(ifa, psref);
2099 pserialize_read_exit(s);
2100
2101 return ifa;
2102 }
2103
2104 /*
2105 * Find an interface using a specific address family
2106 */
2107 struct ifaddr *
2108 ifa_ifwithaf(int af)
2109 {
2110 struct ifnet *ifp;
2111 struct ifaddr *ifa = NULL;
2112 int s;
2113
2114 s = pserialize_read_enter();
2115 IFNET_READER_FOREACH(ifp) {
2116 if (if_is_deactivated(ifp))
2117 continue;
2118 IFADDR_READER_FOREACH(ifa, ifp) {
2119 if (ifa->ifa_addr->sa_family == af)
2120 goto out;
2121 }
2122 }
2123 out:
2124 pserialize_read_exit(s);
2125 return ifa;
2126 }
2127
2128 /*
2129 * Find an interface address specific to an interface best matching
2130 * a given address.
2131 */
2132 struct ifaddr *
2133 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2134 {
2135 struct ifaddr *ifa;
2136 const char *cp, *cp2, *cp3;
2137 const char *cplim;
2138 struct ifaddr *ifa_maybe = 0;
2139 u_int af = addr->sa_family;
2140
2141 if (if_is_deactivated(ifp))
2142 return NULL;
2143
2144 if (af >= AF_MAX)
2145 return NULL;
2146
2147 IFADDR_READER_FOREACH(ifa, ifp) {
2148 if (ifa->ifa_addr->sa_family != af)
2149 continue;
2150 ifa_maybe = ifa;
2151 if (ifa->ifa_netmask == NULL) {
2152 if (equal(addr, ifa->ifa_addr) ||
2153 (ifa->ifa_dstaddr &&
2154 equal(addr, ifa->ifa_dstaddr)))
2155 return ifa;
2156 continue;
2157 }
2158 cp = addr->sa_data;
2159 cp2 = ifa->ifa_addr->sa_data;
2160 cp3 = ifa->ifa_netmask->sa_data;
2161 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2162 for (; cp3 < cplim; cp3++) {
2163 if ((*cp++ ^ *cp2++) & *cp3)
2164 break;
2165 }
2166 if (cp3 == cplim)
2167 return ifa;
2168 }
2169 return ifa_maybe;
2170 }
2171
2172 struct ifaddr *
2173 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2174 struct psref *psref)
2175 {
2176 struct ifaddr *ifa;
2177 int s;
2178
2179 s = pserialize_read_enter();
2180 ifa = ifaof_ifpforaddr(addr, ifp);
2181 if (ifa != NULL)
2182 ifa_acquire(ifa, psref);
2183 pserialize_read_exit(s);
2184
2185 return ifa;
2186 }
2187
2188 /*
2189 * Default action when installing a route with a Link Level gateway.
2190 * Lookup an appropriate real ifa to point to.
2191 * This should be moved to /sys/net/link.c eventually.
2192 */
2193 void
2194 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2195 {
2196 struct ifaddr *ifa;
2197 const struct sockaddr *dst;
2198 struct ifnet *ifp;
2199 struct psref psref;
2200
2201 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2202 return;
2203 ifp = rt->rt_ifa->ifa_ifp;
2204 dst = rt_getkey(rt);
2205 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2206 rt_replace_ifa(rt, ifa);
2207 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2208 ifa->ifa_rtrequest(cmd, rt, info);
2209 ifa_release(ifa, &psref);
2210 }
2211 }
2212
2213 /*
2214 * bitmask macros to manage a densely packed link_state change queue.
2215 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2216 * LINK_STATE_UP(2) we need 2 bits for each state change.
2217 * As a state change to store is 0, treat all bits set as an unset item.
2218 */
2219 #define LQ_ITEM_BITS 2
2220 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2221 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2222 #define LINK_STATE_UNSET LQ_ITEM_MASK
2223 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2224 #define LQ_STORE(q, i, v) \
2225 do { \
2226 (q) &= ~LQ_MASK((i)); \
2227 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2228 } while (0 /* CONSTCOND */)
2229 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2230 #define LQ_POP(q, v) \
2231 do { \
2232 (v) = LQ_ITEM((q), 0); \
2233 (q) >>= LQ_ITEM_BITS; \
2234 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2235 } while (0 /* CONSTCOND */)
2236 #define LQ_PUSH(q, v) \
2237 do { \
2238 (q) >>= LQ_ITEM_BITS; \
2239 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2240 } while (0 /* CONSTCOND */)
2241 #define LQ_FIND_UNSET(q, i) \
2242 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2243 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2244 break; \
2245 }
2246
2247 /*
2248 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2249 * for each ifnet. It doesn't matter because:
2250 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2251 * ifq_lock don't happen
2252 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2253 * because if_snd, if_link_state_change and if_link_state_change_softint
2254 * are all called with KERNEL_LOCK
2255 */
2256 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
2257 mutex_enter((ifp)->if_snd.ifq_lock)
2258 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
2259 mutex_exit((ifp)->if_snd.ifq_lock)
2260
2261 /*
2262 * Handle a change in the interface link state and
2263 * queue notifications.
2264 */
2265 void
2266 if_link_state_change(struct ifnet *ifp, int link_state)
2267 {
2268 int idx;
2269
2270 KASSERTMSG(if_is_link_state_changeable(ifp),
2271 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2272 ifp->if_xname, ifp->if_extflags);
2273
2274 /* Ensure change is to a valid state */
2275 switch (link_state) {
2276 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2277 case LINK_STATE_DOWN: /* FALLTHROUGH */
2278 case LINK_STATE_UP:
2279 break;
2280 default:
2281 #ifdef DEBUG
2282 printf("%s: invalid link state %d\n",
2283 ifp->if_xname, link_state);
2284 #endif
2285 return;
2286 }
2287
2288 IF_LINK_STATE_CHANGE_LOCK(ifp);
2289
2290 /* Find the last unset event in the queue. */
2291 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2292
2293 /*
2294 * Ensure link_state doesn't match the last event in the queue.
2295 * ifp->if_link_state is not checked and set here because
2296 * that would present an inconsistent picture to the system.
2297 */
2298 if (idx != 0 &&
2299 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2300 goto out;
2301
2302 /* Handle queue overflow. */
2303 if (idx == LQ_MAX(ifp->if_link_queue)) {
2304 uint8_t lost;
2305
2306 /*
2307 * The DOWN state must be protected from being pushed off
2308 * the queue to ensure that userland will always be
2309 * in a sane state.
2310 * Because DOWN is protected, there is no need to protect
2311 * UNKNOWN.
2312 * It should be invalid to change from any other state to
2313 * UNKNOWN anyway ...
2314 */
2315 lost = LQ_ITEM(ifp->if_link_queue, 0);
2316 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2317 if (lost == LINK_STATE_DOWN) {
2318 lost = LQ_ITEM(ifp->if_link_queue, 0);
2319 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2320 }
2321 printf("%s: lost link state change %s\n",
2322 ifp->if_xname,
2323 lost == LINK_STATE_UP ? "UP" :
2324 lost == LINK_STATE_DOWN ? "DOWN" :
2325 "UNKNOWN");
2326 } else
2327 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2328
2329 softint_schedule(ifp->if_link_si);
2330
2331 out:
2332 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2333 }
2334
2335 /*
2336 * Handle interface link state change notifications.
2337 */
2338 void
2339 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2340 {
2341 struct domain *dp;
2342 int s = splnet();
2343 bool notify;
2344
2345 KASSERT(!cpu_intr_p());
2346
2347 IF_LINK_STATE_CHANGE_LOCK(ifp);
2348
2349 /* Ensure the change is still valid. */
2350 if (ifp->if_link_state == link_state) {
2351 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2352 splx(s);
2353 return;
2354 }
2355
2356 #ifdef DEBUG
2357 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2358 link_state == LINK_STATE_UP ? "UP" :
2359 link_state == LINK_STATE_DOWN ? "DOWN" :
2360 "UNKNOWN",
2361 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2362 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2363 "UNKNOWN");
2364 #endif
2365
2366 /*
2367 * When going from UNKNOWN to UP, we need to mark existing
2368 * addresses as tentative and restart DAD as we may have
2369 * erroneously not found a duplicate.
2370 *
2371 * This needs to happen before rt_ifmsg to avoid a race where
2372 * listeners would have an address and expect it to work right
2373 * away.
2374 */
2375 notify = (link_state == LINK_STATE_UP &&
2376 ifp->if_link_state == LINK_STATE_UNKNOWN);
2377 ifp->if_link_state = link_state;
2378 /* The following routines may sleep so release the spin mutex */
2379 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2380
2381 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2382 if (notify) {
2383 DOMAIN_FOREACH(dp) {
2384 if (dp->dom_if_link_state_change != NULL)
2385 dp->dom_if_link_state_change(ifp,
2386 LINK_STATE_DOWN);
2387 }
2388 }
2389
2390 /* Notify that the link state has changed. */
2391 rt_ifmsg(ifp);
2392
2393 #if NCARP > 0
2394 if (ifp->if_carp)
2395 carp_carpdev_state(ifp);
2396 #endif
2397
2398 DOMAIN_FOREACH(dp) {
2399 if (dp->dom_if_link_state_change != NULL)
2400 dp->dom_if_link_state_change(ifp, link_state);
2401 }
2402 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2403 splx(s);
2404 }
2405
2406 /*
2407 * Process the interface link state change queue.
2408 */
2409 static void
2410 if_link_state_change_si(void *arg)
2411 {
2412 struct ifnet *ifp = arg;
2413 int s;
2414 uint8_t state;
2415 bool schedule;
2416
2417 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2418 s = splnet();
2419
2420 /* Pop a link state change from the queue and process it. */
2421 IF_LINK_STATE_CHANGE_LOCK(ifp);
2422 LQ_POP(ifp->if_link_queue, state);
2423 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2424
2425 if_link_state_change_softint(ifp, state);
2426
2427 /* If there is a link state change to come, schedule it. */
2428 IF_LINK_STATE_CHANGE_LOCK(ifp);
2429 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2430 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2431 if (schedule)
2432 softint_schedule(ifp->if_link_si);
2433
2434 splx(s);
2435 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2436 }
2437
2438 /*
2439 * Default action when installing a local route on a point-to-point
2440 * interface.
2441 */
2442 void
2443 p2p_rtrequest(int req, struct rtentry *rt,
2444 __unused const struct rt_addrinfo *info)
2445 {
2446 struct ifnet *ifp = rt->rt_ifp;
2447 struct ifaddr *ifa, *lo0ifa;
2448 int s = pserialize_read_enter();
2449
2450 switch (req) {
2451 case RTM_ADD:
2452 if ((rt->rt_flags & RTF_LOCAL) == 0)
2453 break;
2454
2455 rt->rt_ifp = lo0ifp;
2456
2457 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2458 break;
2459
2460 IFADDR_READER_FOREACH(ifa, ifp) {
2461 if (equal(rt_getkey(rt), ifa->ifa_addr))
2462 break;
2463 }
2464 if (ifa == NULL)
2465 break;
2466
2467 /*
2468 * Ensure lo0 has an address of the same family.
2469 */
2470 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2471 if (lo0ifa->ifa_addr->sa_family ==
2472 ifa->ifa_addr->sa_family)
2473 break;
2474 }
2475 if (lo0ifa == NULL)
2476 break;
2477
2478 /*
2479 * Make sure to set rt->rt_ifa to the interface
2480 * address we are using, otherwise we will have trouble
2481 * with source address selection.
2482 */
2483 if (ifa != rt->rt_ifa)
2484 rt_replace_ifa(rt, ifa);
2485 break;
2486 case RTM_DELETE:
2487 default:
2488 break;
2489 }
2490 pserialize_read_exit(s);
2491 }
2492
2493 static void
2494 _if_down(struct ifnet *ifp)
2495 {
2496 struct ifaddr *ifa;
2497 struct domain *dp;
2498 int s, bound;
2499 struct psref psref;
2500
2501 ifp->if_flags &= ~IFF_UP;
2502 nanotime(&ifp->if_lastchange);
2503
2504 bound = curlwp_bind();
2505 s = pserialize_read_enter();
2506 IFADDR_READER_FOREACH(ifa, ifp) {
2507 ifa_acquire(ifa, &psref);
2508 pserialize_read_exit(s);
2509
2510 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2511
2512 s = pserialize_read_enter();
2513 ifa_release(ifa, &psref);
2514 }
2515 pserialize_read_exit(s);
2516 curlwp_bindx(bound);
2517
2518 IFQ_PURGE(&ifp->if_snd);
2519 #if NCARP > 0
2520 if (ifp->if_carp)
2521 carp_carpdev_state(ifp);
2522 #endif
2523 rt_ifmsg(ifp);
2524 DOMAIN_FOREACH(dp) {
2525 if (dp->dom_if_down)
2526 dp->dom_if_down(ifp);
2527 }
2528 }
2529
2530 static void
2531 if_down_deactivated(struct ifnet *ifp)
2532 {
2533
2534 KASSERT(if_is_deactivated(ifp));
2535 _if_down(ifp);
2536 }
2537
2538 void
2539 if_down_locked(struct ifnet *ifp)
2540 {
2541
2542 KASSERT(IFNET_LOCKED(ifp));
2543 _if_down(ifp);
2544 }
2545
2546 /*
2547 * Mark an interface down and notify protocols of
2548 * the transition.
2549 * NOTE: must be called at splsoftnet or equivalent.
2550 */
2551 void
2552 if_down(struct ifnet *ifp)
2553 {
2554
2555 IFNET_LOCK(ifp);
2556 if_down_locked(ifp);
2557 IFNET_UNLOCK(ifp);
2558 }
2559
2560 /*
2561 * Must be called with holding if_ioctl_lock.
2562 */
2563 static void
2564 if_up_locked(struct ifnet *ifp)
2565 {
2566 #ifdef notyet
2567 struct ifaddr *ifa;
2568 #endif
2569 struct domain *dp;
2570
2571 KASSERT(IFNET_LOCKED(ifp));
2572
2573 KASSERT(!if_is_deactivated(ifp));
2574 ifp->if_flags |= IFF_UP;
2575 nanotime(&ifp->if_lastchange);
2576 #ifdef notyet
2577 /* this has no effect on IP, and will kill all ISO connections XXX */
2578 IFADDR_READER_FOREACH(ifa, ifp)
2579 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2580 #endif
2581 #if NCARP > 0
2582 if (ifp->if_carp)
2583 carp_carpdev_state(ifp);
2584 #endif
2585 rt_ifmsg(ifp);
2586 DOMAIN_FOREACH(dp) {
2587 if (dp->dom_if_up)
2588 dp->dom_if_up(ifp);
2589 }
2590 }
2591
2592 /*
2593 * Handle interface slowtimo timer routine. Called
2594 * from softclock, we decrement timer (if set) and
2595 * call the appropriate interface routine on expiration.
2596 */
2597 static void
2598 if_slowtimo(void *arg)
2599 {
2600 void (*slowtimo)(struct ifnet *);
2601 struct ifnet *ifp = arg;
2602 int s;
2603
2604 slowtimo = ifp->if_slowtimo;
2605 if (__predict_false(slowtimo == NULL))
2606 return;
2607
2608 s = splnet();
2609 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2610 (*slowtimo)(ifp);
2611
2612 splx(s);
2613
2614 if (__predict_true(ifp->if_slowtimo != NULL))
2615 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2616 }
2617
2618 /*
2619 * Mark an interface up and notify protocols of
2620 * the transition.
2621 * NOTE: must be called at splsoftnet or equivalent.
2622 */
2623 void
2624 if_up(struct ifnet *ifp)
2625 {
2626
2627 IFNET_LOCK(ifp);
2628 if_up_locked(ifp);
2629 IFNET_UNLOCK(ifp);
2630 }
2631
2632 /*
2633 * Set/clear promiscuous mode on interface ifp based on the truth value
2634 * of pswitch. The calls are reference counted so that only the first
2635 * "on" request actually has an effect, as does the final "off" request.
2636 * Results are undefined if the "off" and "on" requests are not matched.
2637 */
2638 int
2639 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2640 {
2641 int pcount, ret = 0;
2642 u_short nflags;
2643
2644 KASSERT(IFNET_LOCKED(ifp));
2645
2646 pcount = ifp->if_pcount;
2647 if (pswitch) {
2648 /*
2649 * Allow the device to be "placed" into promiscuous
2650 * mode even if it is not configured up. It will
2651 * consult IFF_PROMISC when it is brought up.
2652 */
2653 if (ifp->if_pcount++ != 0)
2654 goto out;
2655 nflags = ifp->if_flags | IFF_PROMISC;
2656 } else {
2657 if (--ifp->if_pcount > 0)
2658 goto out;
2659 nflags = ifp->if_flags & ~IFF_PROMISC;
2660 }
2661 ret = if_flags_set(ifp, nflags);
2662 /* Restore interface state if not successful. */
2663 if (ret != 0) {
2664 ifp->if_pcount = pcount;
2665 }
2666 out:
2667 return ret;
2668 }
2669
2670 int
2671 ifpromisc(struct ifnet *ifp, int pswitch)
2672 {
2673 int e;
2674
2675 IFNET_LOCK(ifp);
2676 e = ifpromisc_locked(ifp, pswitch);
2677 IFNET_UNLOCK(ifp);
2678
2679 return e;
2680 }
2681
2682 /*
2683 * Map interface name to
2684 * interface structure pointer.
2685 */
2686 struct ifnet *
2687 ifunit(const char *name)
2688 {
2689 struct ifnet *ifp;
2690 const char *cp = name;
2691 u_int unit = 0;
2692 u_int i;
2693 int s;
2694
2695 /*
2696 * If the entire name is a number, treat it as an ifindex.
2697 */
2698 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2699 unit = unit * 10 + (*cp - '0');
2700 }
2701
2702 /*
2703 * If the number took all of the name, then it's a valid ifindex.
2704 */
2705 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2706 return if_byindex(unit);
2707
2708 ifp = NULL;
2709 s = pserialize_read_enter();
2710 IFNET_READER_FOREACH(ifp) {
2711 if (if_is_deactivated(ifp))
2712 continue;
2713 if (strcmp(ifp->if_xname, name) == 0)
2714 goto out;
2715 }
2716 out:
2717 pserialize_read_exit(s);
2718 return ifp;
2719 }
2720
2721 /*
2722 * Get a reference of an ifnet object by an interface name.
2723 * The returned reference is protected by psref(9). The caller
2724 * must release a returned reference by if_put after use.
2725 */
2726 struct ifnet *
2727 if_get(const char *name, struct psref *psref)
2728 {
2729 struct ifnet *ifp;
2730 const char *cp = name;
2731 u_int unit = 0;
2732 u_int i;
2733 int s;
2734
2735 /*
2736 * If the entire name is a number, treat it as an ifindex.
2737 */
2738 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2739 unit = unit * 10 + (*cp - '0');
2740 }
2741
2742 /*
2743 * If the number took all of the name, then it's a valid ifindex.
2744 */
2745 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2746 return if_get_byindex(unit, psref);
2747
2748 ifp = NULL;
2749 s = pserialize_read_enter();
2750 IFNET_READER_FOREACH(ifp) {
2751 if (if_is_deactivated(ifp))
2752 continue;
2753 if (strcmp(ifp->if_xname, name) == 0) {
2754 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2755 psref_acquire(psref, &ifp->if_psref,
2756 ifnet_psref_class);
2757 goto out;
2758 }
2759 }
2760 out:
2761 pserialize_read_exit(s);
2762 return ifp;
2763 }
2764
2765 /*
2766 * Release a reference of an ifnet object given by if_get, if_get_byindex
2767 * or if_get_bylla.
2768 */
2769 void
2770 if_put(const struct ifnet *ifp, struct psref *psref)
2771 {
2772
2773 if (ifp == NULL)
2774 return;
2775
2776 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2777 }
2778
2779 /*
2780 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2781 * should be used.
2782 */
2783 ifnet_t *
2784 _if_byindex(u_int idx)
2785 {
2786
2787 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2788 }
2789
2790 /*
2791 * Return ifp having idx. Return NULL if not found or the found ifp is
2792 * already deactivated.
2793 */
2794 ifnet_t *
2795 if_byindex(u_int idx)
2796 {
2797 ifnet_t *ifp;
2798
2799 ifp = _if_byindex(idx);
2800 if (ifp != NULL && if_is_deactivated(ifp))
2801 ifp = NULL;
2802 return ifp;
2803 }
2804
2805 /*
2806 * Get a reference of an ifnet object by an interface index.
2807 * The returned reference is protected by psref(9). The caller
2808 * must release a returned reference by if_put after use.
2809 */
2810 ifnet_t *
2811 if_get_byindex(u_int idx, struct psref *psref)
2812 {
2813 ifnet_t *ifp;
2814 int s;
2815
2816 s = pserialize_read_enter();
2817 ifp = if_byindex(idx);
2818 if (__predict_true(ifp != NULL)) {
2819 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2820 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2821 }
2822 pserialize_read_exit(s);
2823
2824 return ifp;
2825 }
2826
2827 ifnet_t *
2828 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2829 {
2830 ifnet_t *ifp;
2831 int s;
2832
2833 s = pserialize_read_enter();
2834 IFNET_READER_FOREACH(ifp) {
2835 if (if_is_deactivated(ifp))
2836 continue;
2837 if (ifp->if_addrlen != lla_len)
2838 continue;
2839 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2840 psref_acquire(psref, &ifp->if_psref,
2841 ifnet_psref_class);
2842 break;
2843 }
2844 }
2845 pserialize_read_exit(s);
2846
2847 return ifp;
2848 }
2849
2850 /*
2851 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2852 * for example using pserialize or the ifp is already held or some other
2853 * object is held which guarantes the ifp to not be freed indirectly.
2854 */
2855 void
2856 if_acquire(struct ifnet *ifp, struct psref *psref)
2857 {
2858
2859 KASSERT(ifp->if_index != 0);
2860 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2861 }
2862
2863 bool
2864 if_held(struct ifnet *ifp)
2865 {
2866
2867 return psref_held(&ifp->if_psref, ifnet_psref_class);
2868 }
2869
2870 /*
2871 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2872 * Check the tunnel nesting count.
2873 * Return > 0, if tunnel nesting count is more than limit.
2874 * Return 0, if tunnel nesting count is equal or less than limit.
2875 */
2876 int
2877 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2878 {
2879 struct m_tag *mtag;
2880 int *count;
2881
2882 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2883 if (mtag != NULL) {
2884 count = (int *)(mtag + 1);
2885 if (++(*count) > limit) {
2886 log(LOG_NOTICE,
2887 "%s: recursively called too many times(%d)\n",
2888 ifp->if_xname, *count);
2889 return EIO;
2890 }
2891 } else {
2892 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2893 M_NOWAIT);
2894 if (mtag != NULL) {
2895 m_tag_prepend(m, mtag);
2896 count = (int *)(mtag + 1);
2897 *count = 0;
2898 } else {
2899 log(LOG_DEBUG,
2900 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2901 ifp->if_xname);
2902 }
2903 }
2904
2905 return 0;
2906 }
2907
2908 static void
2909 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2910 {
2911 struct tunnel_ro *tro = p;
2912
2913 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
2914 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2915 }
2916
2917 percpu_t *
2918 if_tunnel_alloc_ro_percpu(void)
2919 {
2920 percpu_t *ro_percpu;
2921
2922 ro_percpu = percpu_alloc(sizeof(struct tunnel_ro));
2923 percpu_foreach(ro_percpu, if_tunnel_ro_init_pc, NULL);
2924
2925 return ro_percpu;
2926 }
2927
2928 static void
2929 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2930 {
2931 struct tunnel_ro *tro = p;
2932
2933 rtcache_free(tro->tr_ro);
2934 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
2935
2936 mutex_obj_free(tro->tr_lock);
2937 }
2938
2939 void
2940 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
2941 {
2942
2943 percpu_foreach(ro_percpu, if_tunnel_ro_fini_pc, NULL);
2944 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
2945 }
2946
2947
2948 static void
2949 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2950 {
2951 struct tunnel_ro *tro = p;
2952
2953 mutex_enter(tro->tr_lock);
2954 rtcache_free(tro->tr_ro);
2955 mutex_exit(tro->tr_lock);
2956 }
2957
2958 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
2959 {
2960
2961 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
2962 }
2963
2964
2965 /* common */
2966 int
2967 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2968 {
2969 int s;
2970 struct ifreq *ifr;
2971 struct ifcapreq *ifcr;
2972 struct ifdatareq *ifdr;
2973 unsigned short flags;
2974 char *descr;
2975 int error;
2976
2977 switch (cmd) {
2978 case SIOCSIFCAP:
2979 ifcr = data;
2980 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2981 return EINVAL;
2982
2983 if (ifcr->ifcr_capenable == ifp->if_capenable)
2984 return 0;
2985
2986 ifp->if_capenable = ifcr->ifcr_capenable;
2987
2988 /* Pre-compute the checksum flags mask. */
2989 ifp->if_csum_flags_tx = 0;
2990 ifp->if_csum_flags_rx = 0;
2991 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
2992 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2993 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
2994 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2995
2996 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
2997 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2998 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
2999 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3000
3001 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3002 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3003 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3004 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3005
3006 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3007 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3008 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3009 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3010
3011 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3012 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3013 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3014 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3015
3016 if (ifp->if_capenable & IFCAP_TSOv4)
3017 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3018 if (ifp->if_capenable & IFCAP_TSOv6)
3019 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3020
3021 #if NBRIDGE > 0
3022 if (ifp->if_bridge != NULL)
3023 bridge_calc_csum_flags(ifp->if_bridge);
3024 #endif
3025
3026 if (ifp->if_flags & IFF_UP)
3027 return ENETRESET;
3028 return 0;
3029 case SIOCSIFFLAGS:
3030 ifr = data;
3031 /*
3032 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3033 * and if_down aren't MP-safe yet, so we must hold the lock.
3034 */
3035 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3036 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3037 s = splsoftnet();
3038 if_down_locked(ifp);
3039 splx(s);
3040 }
3041 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3042 s = splsoftnet();
3043 if_up_locked(ifp);
3044 splx(s);
3045 }
3046 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3047 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3048 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3049 if (ifp->if_flags != flags) {
3050 ifp->if_flags = flags;
3051 /* Notify that the flags have changed. */
3052 rt_ifmsg(ifp);
3053 }
3054 break;
3055 case SIOCGIFFLAGS:
3056 ifr = data;
3057 ifr->ifr_flags = ifp->if_flags;
3058 break;
3059
3060 case SIOCGIFMETRIC:
3061 ifr = data;
3062 ifr->ifr_metric = ifp->if_metric;
3063 break;
3064
3065 case SIOCGIFMTU:
3066 ifr = data;
3067 ifr->ifr_mtu = ifp->if_mtu;
3068 break;
3069
3070 case SIOCGIFDLT:
3071 ifr = data;
3072 ifr->ifr_dlt = ifp->if_dlt;
3073 break;
3074
3075 case SIOCGIFCAP:
3076 ifcr = data;
3077 ifcr->ifcr_capabilities = ifp->if_capabilities;
3078 ifcr->ifcr_capenable = ifp->if_capenable;
3079 break;
3080
3081 case SIOCSIFMETRIC:
3082 ifr = data;
3083 ifp->if_metric = ifr->ifr_metric;
3084 break;
3085
3086 case SIOCGIFDATA:
3087 ifdr = data;
3088 ifdr->ifdr_data = ifp->if_data;
3089 break;
3090
3091 case SIOCGIFINDEX:
3092 ifr = data;
3093 ifr->ifr_index = ifp->if_index;
3094 break;
3095
3096 case SIOCZIFDATA:
3097 ifdr = data;
3098 ifdr->ifdr_data = ifp->if_data;
3099 /*
3100 * Assumes that the volatile counters that can be
3101 * zero'ed are at the end of if_data.
3102 */
3103 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
3104 offsetof(struct if_data, ifi_ipackets));
3105 /*
3106 * The memset() clears to the bottm of if_data. In the area,
3107 * if_lastchange is included. Please be careful if new entry
3108 * will be added into if_data or rewite this.
3109 *
3110 * And also, update if_lastchnage.
3111 */
3112 getnanotime(&ifp->if_lastchange);
3113 break;
3114 case SIOCSIFMTU:
3115 ifr = data;
3116 if (ifp->if_mtu == ifr->ifr_mtu)
3117 break;
3118 ifp->if_mtu = ifr->ifr_mtu;
3119 /*
3120 * If the link MTU changed, do network layer specific procedure.
3121 */
3122 #ifdef INET6
3123 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3124 if (in6_present)
3125 nd6_setmtu(ifp);
3126 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3127 #endif
3128 return ENETRESET;
3129 case SIOCSIFDESCR:
3130 error = kauth_authorize_network(curlwp->l_cred,
3131 KAUTH_NETWORK_INTERFACE,
3132 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3133 NULL);
3134 if (error)
3135 return error;
3136
3137 ifr = data;
3138
3139 if (ifr->ifr_buflen > IFDESCRSIZE)
3140 return ENAMETOOLONG;
3141
3142 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3143 /* unset description */
3144 descr = NULL;
3145 } else {
3146 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3147 /*
3148 * copy (IFDESCRSIZE - 1) bytes to ensure
3149 * terminating nul
3150 */
3151 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3152 if (error) {
3153 kmem_free(descr, IFDESCRSIZE);
3154 return error;
3155 }
3156 }
3157
3158 if (ifp->if_description != NULL)
3159 kmem_free(ifp->if_description, IFDESCRSIZE);
3160
3161 ifp->if_description = descr;
3162 break;
3163
3164 case SIOCGIFDESCR:
3165 ifr = data;
3166 descr = ifp->if_description;
3167
3168 if (descr == NULL)
3169 return ENOMSG;
3170
3171 if (ifr->ifr_buflen < IFDESCRSIZE)
3172 return EINVAL;
3173
3174 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3175 if (error)
3176 return error;
3177 break;
3178
3179 default:
3180 return ENOTTY;
3181 }
3182 return 0;
3183 }
3184
3185 int
3186 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3187 {
3188 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3189 struct ifaddr *ifa;
3190 const struct sockaddr *any, *sa;
3191 union {
3192 struct sockaddr sa;
3193 struct sockaddr_storage ss;
3194 } u, v;
3195 int s, error = 0;
3196
3197 switch (cmd) {
3198 case SIOCSIFADDRPREF:
3199 error = kauth_authorize_network(curlwp->l_cred,
3200 KAUTH_NETWORK_INTERFACE,
3201 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3202 NULL);
3203 if (error)
3204 return error;
3205 break;
3206 case SIOCGIFADDRPREF:
3207 break;
3208 default:
3209 return EOPNOTSUPP;
3210 }
3211
3212 /* sanity checks */
3213 if (data == NULL || ifp == NULL) {
3214 panic("invalid argument to %s", __func__);
3215 /*NOTREACHED*/
3216 }
3217
3218 /* address must be specified on ADD and DELETE */
3219 sa = sstocsa(&ifap->ifap_addr);
3220 if (sa->sa_family != sofamily(so))
3221 return EINVAL;
3222 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3223 return EINVAL;
3224
3225 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3226
3227 s = pserialize_read_enter();
3228 IFADDR_READER_FOREACH(ifa, ifp) {
3229 if (ifa->ifa_addr->sa_family != sa->sa_family)
3230 continue;
3231 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3232 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3233 break;
3234 }
3235 if (ifa == NULL) {
3236 error = EADDRNOTAVAIL;
3237 goto out;
3238 }
3239
3240 switch (cmd) {
3241 case SIOCSIFADDRPREF:
3242 ifa->ifa_preference = ifap->ifap_preference;
3243 goto out;
3244 case SIOCGIFADDRPREF:
3245 /* fill in the if_laddrreq structure */
3246 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3247 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3248 ifap->ifap_preference = ifa->ifa_preference;
3249 goto out;
3250 default:
3251 error = EOPNOTSUPP;
3252 }
3253 out:
3254 pserialize_read_exit(s);
3255 return error;
3256 }
3257
3258 /*
3259 * Interface ioctls.
3260 */
3261 static int
3262 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3263 {
3264 struct ifnet *ifp;
3265 struct ifreq *ifr;
3266 int error = 0;
3267 u_long ocmd = cmd;
3268 u_short oif_flags;
3269 struct ifreq ifrb;
3270 struct oifreq *oifr = NULL;
3271 int r;
3272 struct psref psref;
3273 int bound;
3274 bool do_if43_post = false;
3275 bool do_ifm80_post = false;
3276
3277 switch (cmd) {
3278 case SIOCGIFCONF:
3279 return ifconf(cmd, data);
3280 case SIOCINITIFADDR:
3281 return EPERM;
3282 default:
3283 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3284 error);
3285 if (error != ENOSYS)
3286 return error;
3287 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3288 enosys(), error);
3289 if (error != ENOSYS)
3290 return error;
3291 error = 0;
3292 break;
3293 }
3294
3295 ifr = data;
3296 /* Pre-conversion */
3297 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3298 if (cmd != ocmd) {
3299 oifr = data;
3300 data = ifr = &ifrb;
3301 IFREQO2N_43(oifr, ifr);
3302 do_if43_post = true;
3303 }
3304 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3305 enosys(), error);
3306
3307 switch (cmd) {
3308 case SIOCIFCREATE:
3309 case SIOCIFDESTROY:
3310 bound = curlwp_bind();
3311 if (l != NULL) {
3312 ifp = if_get(ifr->ifr_name, &psref);
3313 error = kauth_authorize_network(l->l_cred,
3314 KAUTH_NETWORK_INTERFACE,
3315 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3316 KAUTH_ARG(cmd), NULL);
3317 if (ifp != NULL)
3318 if_put(ifp, &psref);
3319 if (error != 0) {
3320 curlwp_bindx(bound);
3321 return error;
3322 }
3323 }
3324 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3325 mutex_enter(&if_clone_mtx);
3326 r = (cmd == SIOCIFCREATE) ?
3327 if_clone_create(ifr->ifr_name) :
3328 if_clone_destroy(ifr->ifr_name);
3329 mutex_exit(&if_clone_mtx);
3330 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3331 curlwp_bindx(bound);
3332 return r;
3333
3334 case SIOCIFGCLONERS:
3335 {
3336 struct if_clonereq *req = (struct if_clonereq *)data;
3337 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3338 &req->ifcr_total);
3339 }
3340 }
3341
3342 bound = curlwp_bind();
3343 ifp = if_get(ifr->ifr_name, &psref);
3344 if (ifp == NULL) {
3345 curlwp_bindx(bound);
3346 return ENXIO;
3347 }
3348
3349 switch (cmd) {
3350 case SIOCALIFADDR:
3351 case SIOCDLIFADDR:
3352 case SIOCSIFADDRPREF:
3353 case SIOCSIFFLAGS:
3354 case SIOCSIFCAP:
3355 case SIOCSIFMETRIC:
3356 case SIOCZIFDATA:
3357 case SIOCSIFMTU:
3358 case SIOCSIFPHYADDR:
3359 case SIOCDIFPHYADDR:
3360 #ifdef INET6
3361 case SIOCSIFPHYADDR_IN6:
3362 #endif
3363 case SIOCSLIFPHYADDR:
3364 case SIOCADDMULTI:
3365 case SIOCDELMULTI:
3366 case SIOCSETHERCAP:
3367 case SIOCSIFMEDIA:
3368 case SIOCSDRVSPEC:
3369 case SIOCG80211:
3370 case SIOCS80211:
3371 case SIOCS80211NWID:
3372 case SIOCS80211NWKEY:
3373 case SIOCS80211POWER:
3374 case SIOCS80211BSSID:
3375 case SIOCS80211CHANNEL:
3376 case SIOCSLINKSTR:
3377 if (l != NULL) {
3378 error = kauth_authorize_network(l->l_cred,
3379 KAUTH_NETWORK_INTERFACE,
3380 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3381 KAUTH_ARG(cmd), NULL);
3382 if (error != 0)
3383 goto out;
3384 }
3385 }
3386
3387 oif_flags = ifp->if_flags;
3388
3389 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3390 IFNET_LOCK(ifp);
3391
3392 error = (*ifp->if_ioctl)(ifp, cmd, data);
3393 if (error != ENOTTY)
3394 ;
3395 else if (so->so_proto == NULL)
3396 error = EOPNOTSUPP;
3397 else {
3398 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3399 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3400 (so, ocmd, cmd, data, l), enosys(), error);
3401 if (error == ENOSYS)
3402 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3403 cmd, data, ifp);
3404 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3405 }
3406
3407 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3408 if ((ifp->if_flags & IFF_UP) != 0) {
3409 int s = splsoftnet();
3410 if_up_locked(ifp);
3411 splx(s);
3412 }
3413 }
3414
3415 /* Post-conversion */
3416 if (do_ifm80_post && (error == 0))
3417 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3418 enosys(), error);
3419 if (do_if43_post)
3420 IFREQN2O_43(oifr, ifr);
3421
3422 IFNET_UNLOCK(ifp);
3423 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3424 out:
3425 if_put(ifp, &psref);
3426 curlwp_bindx(bound);
3427 return error;
3428 }
3429
3430 /*
3431 * Return interface configuration
3432 * of system. List may be used
3433 * in later ioctl's (above) to get
3434 * other information.
3435 *
3436 * Each record is a struct ifreq. Before the addition of
3437 * sockaddr_storage, the API rule was that sockaddr flavors that did
3438 * not fit would extend beyond the struct ifreq, with the next struct
3439 * ifreq starting sa_len beyond the struct sockaddr. Because the
3440 * union in struct ifreq includes struct sockaddr_storage, every kind
3441 * of sockaddr must fit. Thus, there are no longer any overlength
3442 * records.
3443 *
3444 * Records are added to the user buffer if they fit, and ifc_len is
3445 * adjusted to the length that was written. Thus, the user is only
3446 * assured of getting the complete list if ifc_len on return is at
3447 * least sizeof(struct ifreq) less than it was on entry.
3448 *
3449 * If the user buffer pointer is NULL, this routine copies no data and
3450 * returns the amount of space that would be needed.
3451 *
3452 * Invariants:
3453 * ifrp points to the next part of the user's buffer to be used. If
3454 * ifrp != NULL, space holds the number of bytes remaining that we may
3455 * write at ifrp. Otherwise, space holds the number of bytes that
3456 * would have been written had there been adequate space.
3457 */
3458 /*ARGSUSED*/
3459 static int
3460 ifconf(u_long cmd, void *data)
3461 {
3462 struct ifconf *ifc = (struct ifconf *)data;
3463 struct ifnet *ifp;
3464 struct ifaddr *ifa;
3465 struct ifreq ifr, *ifrp = NULL;
3466 int space = 0, error = 0;
3467 const int sz = (int)sizeof(struct ifreq);
3468 const bool docopy = ifc->ifc_req != NULL;
3469 int s;
3470 int bound;
3471 struct psref psref;
3472
3473 memset(&ifr, 0, sizeof(ifr));
3474 if (docopy) {
3475 space = ifc->ifc_len;
3476 ifrp = ifc->ifc_req;
3477 }
3478
3479 bound = curlwp_bind();
3480 s = pserialize_read_enter();
3481 IFNET_READER_FOREACH(ifp) {
3482 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3483 pserialize_read_exit(s);
3484
3485 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3486 sizeof(ifr.ifr_name));
3487 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3488 error = ENAMETOOLONG;
3489 goto release_exit;
3490 }
3491 if (IFADDR_READER_EMPTY(ifp)) {
3492 /* Interface with no addresses - send zero sockaddr. */
3493 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3494 if (!docopy) {
3495 space += sz;
3496 goto next;
3497 }
3498 if (space >= sz) {
3499 error = copyout(&ifr, ifrp, sz);
3500 if (error != 0)
3501 goto release_exit;
3502 ifrp++;
3503 space -= sz;
3504 }
3505 }
3506
3507 s = pserialize_read_enter();
3508 IFADDR_READER_FOREACH(ifa, ifp) {
3509 struct sockaddr *sa = ifa->ifa_addr;
3510 /* all sockaddrs must fit in sockaddr_storage */
3511 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3512
3513 if (!docopy) {
3514 space += sz;
3515 continue;
3516 }
3517 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3518 pserialize_read_exit(s);
3519
3520 if (space >= sz) {
3521 error = copyout(&ifr, ifrp, sz);
3522 if (error != 0)
3523 goto release_exit;
3524 ifrp++; space -= sz;
3525 }
3526 s = pserialize_read_enter();
3527 }
3528 pserialize_read_exit(s);
3529
3530 next:
3531 s = pserialize_read_enter();
3532 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3533 }
3534 pserialize_read_exit(s);
3535 curlwp_bindx(bound);
3536
3537 if (docopy) {
3538 KASSERT(0 <= space && space <= ifc->ifc_len);
3539 ifc->ifc_len -= space;
3540 } else {
3541 KASSERT(space >= 0);
3542 ifc->ifc_len = space;
3543 }
3544 return (0);
3545
3546 release_exit:
3547 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3548 curlwp_bindx(bound);
3549 return error;
3550 }
3551
3552 int
3553 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3554 {
3555 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3556 struct ifreq ifrb;
3557 struct oifreq *oifr = NULL;
3558 u_long ocmd = cmd;
3559 int hook;
3560
3561 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3562 if (hook != ENOSYS) {
3563 if (cmd != ocmd) {
3564 oifr = (struct oifreq *)(void *)ifr;
3565 ifr = &ifrb;
3566 IFREQO2N_43(oifr, ifr);
3567 len = sizeof(oifr->ifr_addr);
3568 }
3569 }
3570
3571 if (len < sa->sa_len)
3572 return EFBIG;
3573
3574 memset(&ifr->ifr_addr, 0, len);
3575 sockaddr_copy(&ifr->ifr_addr, len, sa);
3576
3577 if (cmd != ocmd)
3578 IFREQN2O_43(oifr, ifr);
3579 return 0;
3580 }
3581
3582 /*
3583 * wrapper function for the drivers which doesn't have if_transmit().
3584 */
3585 static int
3586 if_transmit(struct ifnet *ifp, struct mbuf *m)
3587 {
3588 int s, error;
3589 size_t pktlen = m->m_pkthdr.len;
3590 bool mcast = (m->m_flags & M_MCAST) != 0;
3591
3592 s = splnet();
3593
3594 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3595 if (error != 0) {
3596 /* mbuf is already freed */
3597 goto out;
3598 }
3599
3600 ifp->if_obytes += pktlen;
3601 if (mcast)
3602 ifp->if_omcasts++;
3603
3604 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3605 if_start_lock(ifp);
3606 out:
3607 splx(s);
3608
3609 return error;
3610 }
3611
3612 int
3613 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3614 {
3615 int error;
3616
3617 kmsan_check_mbuf(m);
3618
3619 #ifdef ALTQ
3620 KERNEL_LOCK(1, NULL);
3621 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3622 error = if_transmit(ifp, m);
3623 KERNEL_UNLOCK_ONE(NULL);
3624 } else {
3625 KERNEL_UNLOCK_ONE(NULL);
3626 error = (*ifp->if_transmit)(ifp, m);
3627 /* mbuf is alredy freed */
3628 }
3629 #else /* !ALTQ */
3630 error = (*ifp->if_transmit)(ifp, m);
3631 /* mbuf is alredy freed */
3632 #endif /* !ALTQ */
3633
3634 return error;
3635 }
3636
3637 /*
3638 * Queue message on interface, and start output if interface
3639 * not yet active.
3640 */
3641 int
3642 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3643 {
3644
3645 return if_transmit_lock(ifp, m);
3646 }
3647
3648 /*
3649 * Queue message on interface, possibly using a second fast queue
3650 */
3651 int
3652 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3653 {
3654 int error = 0;
3655
3656 if (ifq != NULL
3657 #ifdef ALTQ
3658 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3659 #endif
3660 ) {
3661 if (IF_QFULL(ifq)) {
3662 IF_DROP(&ifp->if_snd);
3663 m_freem(m);
3664 if (error == 0)
3665 error = ENOBUFS;
3666 } else
3667 IF_ENQUEUE(ifq, m);
3668 } else
3669 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3670 if (error != 0) {
3671 ++ifp->if_oerrors;
3672 return error;
3673 }
3674 return 0;
3675 }
3676
3677 int
3678 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3679 {
3680 int rc;
3681
3682 KASSERT(IFNET_LOCKED(ifp));
3683 if (ifp->if_initaddr != NULL)
3684 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3685 else if (src ||
3686 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3687 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3688
3689 return rc;
3690 }
3691
3692 int
3693 if_do_dad(struct ifnet *ifp)
3694 {
3695 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3696 return 0;
3697
3698 switch (ifp->if_type) {
3699 case IFT_FAITH:
3700 /*
3701 * These interfaces do not have the IFF_LOOPBACK flag,
3702 * but loop packets back. We do not have to do DAD on such
3703 * interfaces. We should even omit it, because loop-backed
3704 * responses would confuse the DAD procedure.
3705 */
3706 return 0;
3707 default:
3708 /*
3709 * Our DAD routine requires the interface up and running.
3710 * However, some interfaces can be up before the RUNNING
3711 * status. Additionaly, users may try to assign addresses
3712 * before the interface becomes up (or running).
3713 * We simply skip DAD in such a case as a work around.
3714 * XXX: we should rather mark "tentative" on such addresses,
3715 * and do DAD after the interface becomes ready.
3716 */
3717 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3718 (IFF_UP | IFF_RUNNING))
3719 return 0;
3720
3721 return 1;
3722 }
3723 }
3724
3725 int
3726 if_flags_set(ifnet_t *ifp, const u_short flags)
3727 {
3728 int rc;
3729
3730 KASSERT(IFNET_LOCKED(ifp));
3731
3732 if (ifp->if_setflags != NULL)
3733 rc = (*ifp->if_setflags)(ifp, flags);
3734 else {
3735 u_short cantflags, chgdflags;
3736 struct ifreq ifr;
3737
3738 chgdflags = ifp->if_flags ^ flags;
3739 cantflags = chgdflags & IFF_CANTCHANGE;
3740
3741 if (cantflags != 0)
3742 ifp->if_flags ^= cantflags;
3743
3744 /* Traditionally, we do not call if_ioctl after
3745 * setting/clearing only IFF_PROMISC if the interface
3746 * isn't IFF_UP. Uphold that tradition.
3747 */
3748 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3749 return 0;
3750
3751 memset(&ifr, 0, sizeof(ifr));
3752
3753 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3754 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3755
3756 if (rc != 0 && cantflags != 0)
3757 ifp->if_flags ^= cantflags;
3758 }
3759
3760 return rc;
3761 }
3762
3763 int
3764 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3765 {
3766 int rc;
3767 struct ifreq ifr;
3768
3769 if (ifp->if_mcastop != NULL)
3770 rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3771 else {
3772 ifreq_setaddr(cmd, &ifr, sa);
3773 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3774 }
3775
3776 return rc;
3777 }
3778
3779 static void
3780 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3781 struct ifaltq *ifq)
3782 {
3783 const struct sysctlnode *cnode, *rnode;
3784
3785 if (sysctl_createv(clog, 0, NULL, &rnode,
3786 CTLFLAG_PERMANENT,
3787 CTLTYPE_NODE, "interfaces",
3788 SYSCTL_DESCR("Per-interface controls"),
3789 NULL, 0, NULL, 0,
3790 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3791 goto bad;
3792
3793 if (sysctl_createv(clog, 0, &rnode, &rnode,
3794 CTLFLAG_PERMANENT,
3795 CTLTYPE_NODE, ifname,
3796 SYSCTL_DESCR("Interface controls"),
3797 NULL, 0, NULL, 0,
3798 CTL_CREATE, CTL_EOL) != 0)
3799 goto bad;
3800
3801 if (sysctl_createv(clog, 0, &rnode, &rnode,
3802 CTLFLAG_PERMANENT,
3803 CTLTYPE_NODE, "sndq",
3804 SYSCTL_DESCR("Interface output queue controls"),
3805 NULL, 0, NULL, 0,
3806 CTL_CREATE, CTL_EOL) != 0)
3807 goto bad;
3808
3809 if (sysctl_createv(clog, 0, &rnode, &cnode,
3810 CTLFLAG_PERMANENT,
3811 CTLTYPE_INT, "len",
3812 SYSCTL_DESCR("Current output queue length"),
3813 NULL, 0, &ifq->ifq_len, 0,
3814 CTL_CREATE, CTL_EOL) != 0)
3815 goto bad;
3816
3817 if (sysctl_createv(clog, 0, &rnode, &cnode,
3818 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3819 CTLTYPE_INT, "maxlen",
3820 SYSCTL_DESCR("Maximum allowed output queue length"),
3821 NULL, 0, &ifq->ifq_maxlen, 0,
3822 CTL_CREATE, CTL_EOL) != 0)
3823 goto bad;
3824
3825 if (sysctl_createv(clog, 0, &rnode, &cnode,
3826 CTLFLAG_PERMANENT,
3827 CTLTYPE_INT, "drops",
3828 SYSCTL_DESCR("Packets dropped due to full output queue"),
3829 NULL, 0, &ifq->ifq_drops, 0,
3830 CTL_CREATE, CTL_EOL) != 0)
3831 goto bad;
3832
3833 return;
3834 bad:
3835 printf("%s: could not attach sysctl nodes\n", ifname);
3836 return;
3837 }
3838
3839 #if defined(INET) || defined(INET6)
3840
3841 #define SYSCTL_NET_PKTQ(q, cn, c) \
3842 static int \
3843 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3844 { \
3845 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3846 }
3847
3848 #if defined(INET)
3849 static int
3850 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3851 {
3852 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3853 }
3854 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3855 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3856 #endif
3857
3858 #if defined(INET6)
3859 static int
3860 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3861 {
3862 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3863 }
3864 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3865 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3866 #endif
3867
3868 static void
3869 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3870 {
3871 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3872 const char *pfname = NULL, *ipname = NULL;
3873 int ipn = 0, qid = 0;
3874
3875 switch (pf) {
3876 #if defined(INET)
3877 case PF_INET:
3878 len_func = sysctl_net_ip_pktq_items;
3879 maxlen_func = sysctl_net_ip_pktq_maxlen;
3880 drops_func = sysctl_net_ip_pktq_drops;
3881 pfname = "inet", ipn = IPPROTO_IP;
3882 ipname = "ip", qid = IPCTL_IFQ;
3883 break;
3884 #endif
3885 #if defined(INET6)
3886 case PF_INET6:
3887 len_func = sysctl_net_ip6_pktq_items;
3888 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3889 drops_func = sysctl_net_ip6_pktq_drops;
3890 pfname = "inet6", ipn = IPPROTO_IPV6;
3891 ipname = "ip6", qid = IPV6CTL_IFQ;
3892 break;
3893 #endif
3894 default:
3895 KASSERT(false);
3896 }
3897
3898 sysctl_createv(clog, 0, NULL, NULL,
3899 CTLFLAG_PERMANENT,
3900 CTLTYPE_NODE, pfname, NULL,
3901 NULL, 0, NULL, 0,
3902 CTL_NET, pf, CTL_EOL);
3903 sysctl_createv(clog, 0, NULL, NULL,
3904 CTLFLAG_PERMANENT,
3905 CTLTYPE_NODE, ipname, NULL,
3906 NULL, 0, NULL, 0,
3907 CTL_NET, pf, ipn, CTL_EOL);
3908 sysctl_createv(clog, 0, NULL, NULL,
3909 CTLFLAG_PERMANENT,
3910 CTLTYPE_NODE, "ifq",
3911 SYSCTL_DESCR("Protocol input queue controls"),
3912 NULL, 0, NULL, 0,
3913 CTL_NET, pf, ipn, qid, CTL_EOL);
3914
3915 sysctl_createv(clog, 0, NULL, NULL,
3916 CTLFLAG_PERMANENT,
3917 CTLTYPE_QUAD, "len",
3918 SYSCTL_DESCR("Current input queue length"),
3919 len_func, 0, NULL, 0,
3920 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3921 sysctl_createv(clog, 0, NULL, NULL,
3922 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3923 CTLTYPE_INT, "maxlen",
3924 SYSCTL_DESCR("Maximum allowed input queue length"),
3925 maxlen_func, 0, NULL, 0,
3926 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3927 sysctl_createv(clog, 0, NULL, NULL,
3928 CTLFLAG_PERMANENT,
3929 CTLTYPE_QUAD, "drops",
3930 SYSCTL_DESCR("Packets dropped due to full input queue"),
3931 drops_func, 0, NULL, 0,
3932 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3933 }
3934 #endif /* INET || INET6 */
3935
3936 static int
3937 if_sdl_sysctl(SYSCTLFN_ARGS)
3938 {
3939 struct ifnet *ifp;
3940 const struct sockaddr_dl *sdl;
3941 struct psref psref;
3942 int error = 0;
3943 int bound;
3944
3945 if (namelen != 1)
3946 return EINVAL;
3947
3948 bound = curlwp_bind();
3949 ifp = if_get_byindex(name[0], &psref);
3950 if (ifp == NULL) {
3951 error = ENODEV;
3952 goto out0;
3953 }
3954
3955 sdl = ifp->if_sadl;
3956 if (sdl == NULL) {
3957 *oldlenp = 0;
3958 goto out1;
3959 }
3960
3961 if (oldp == NULL) {
3962 *oldlenp = sdl->sdl_alen;
3963 goto out1;
3964 }
3965
3966 if (*oldlenp >= sdl->sdl_alen)
3967 *oldlenp = sdl->sdl_alen;
3968 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3969 out1:
3970 if_put(ifp, &psref);
3971 out0:
3972 curlwp_bindx(bound);
3973 return error;
3974 }
3975
3976 static void
3977 if_sysctl_setup(struct sysctllog **clog)
3978 {
3979 const struct sysctlnode *rnode = NULL;
3980
3981 sysctl_createv(clog, 0, NULL, &rnode,
3982 CTLFLAG_PERMANENT,
3983 CTLTYPE_NODE, "sdl",
3984 SYSCTL_DESCR("Get active link-layer address"),
3985 if_sdl_sysctl, 0, NULL, 0,
3986 CTL_NET, CTL_CREATE, CTL_EOL);
3987
3988 #if defined(INET)
3989 sysctl_net_pktq_setup(NULL, PF_INET);
3990 #endif
3991 #ifdef INET6
3992 if (in6_present)
3993 sysctl_net_pktq_setup(NULL, PF_INET6);
3994 #endif
3995 }
3996