Home | History | Annotate | Line # | Download | only in net
if.c revision 1.468
      1 /*	$NetBSD: if.c,v 1.468 2020/01/20 18:38:18 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.468 2020/01/20 18:38:18 thorpej Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_atalk.h"
     99 #include "opt_wlan.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mrouting.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 #include <sys/module_hook.h>
    123 #include <sys/compat_stub.h>
    124 #include <sys/msan.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net80211/ieee80211.h>
    131 #include <net80211/ieee80211_ioctl.h>
    132 #include <net/if_types.h>
    133 #include <net/route.h>
    134 #include <net/netisr.h>
    135 #include <sys/module.h>
    136 #ifdef NETATALK
    137 #include <netatalk/at_extern.h>
    138 #include <netatalk/at.h>
    139 #endif
    140 #include <net/pfil.h>
    141 #include <netinet/in.h>
    142 #include <netinet/in_var.h>
    143 #include <netinet/ip_encap.h>
    144 #include <net/bpf.h>
    145 
    146 #ifdef INET6
    147 #include <netinet6/in6_var.h>
    148 #include <netinet6/nd6.h>
    149 #endif
    150 
    151 #include "ether.h"
    152 
    153 #include "bridge.h"
    154 #if NBRIDGE > 0
    155 #include <net/if_bridgevar.h>
    156 #endif
    157 
    158 #include "carp.h"
    159 #if NCARP > 0
    160 #include <netinet/ip_carp.h>
    161 #endif
    162 
    163 #include <compat/sys/sockio.h>
    164 
    165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    167 
    168 /*
    169  * Global list of interfaces.
    170  */
    171 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    172 struct ifnet_head		ifnet_list;
    173 
    174 struct pslist_head		ifnet_pslist;
    175 static ifnet_t **		ifindex2ifnet = NULL;
    176 static u_int			if_index = 1;
    177 static size_t			if_indexlim = 0;
    178 static uint64_t			index_gen;
    179 /* Mutex to protect the above objects. */
    180 kmutex_t			ifnet_mtx __cacheline_aligned;
    181 static struct psref_class	*ifnet_psref_class __read_mostly;
    182 static pserialize_t		ifnet_psz;
    183 
    184 static kmutex_t			if_clone_mtx;
    185 
    186 struct ifnet *lo0ifp;
    187 int	ifqmaxlen = IFQ_MAXLEN;
    188 
    189 struct psref_class		*ifa_psref_class __read_mostly;
    190 
    191 static int	if_delroute_matcher(struct rtentry *, void *);
    192 
    193 static bool if_is_unit(const char *);
    194 static struct if_clone *if_clone_lookup(const char *, int *);
    195 
    196 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    197 static int if_cloners_count;
    198 
    199 /* Packet filtering hook for interfaces. */
    200 pfil_head_t *			if_pfil __read_mostly;
    201 
    202 static kauth_listener_t if_listener;
    203 
    204 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    205 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    206 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    207     struct ifaltq *);
    208 static void if_slowtimo(void *);
    209 static void if_attachdomain1(struct ifnet *);
    210 static int ifconf(u_long, void *);
    211 static int if_transmit(struct ifnet *, struct mbuf *);
    212 static int if_clone_create(const char *);
    213 static int if_clone_destroy(const char *);
    214 static void if_link_state_change_si(void *);
    215 static void if_up_locked(struct ifnet *);
    216 static void _if_down(struct ifnet *);
    217 static void if_down_deactivated(struct ifnet *);
    218 
    219 struct if_percpuq {
    220 	struct ifnet	*ipq_ifp;
    221 	void		*ipq_si;
    222 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    223 };
    224 
    225 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    226 
    227 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    228 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    229 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    230     struct if_percpuq *);
    231 
    232 struct if_deferred_start {
    233 	struct ifnet	*ids_ifp;
    234 	void		(*ids_if_start)(struct ifnet *);
    235 	void		*ids_si;
    236 };
    237 
    238 static void if_deferred_start_softint(void *);
    239 static void if_deferred_start_common(struct ifnet *);
    240 static void if_deferred_start_destroy(struct ifnet *);
    241 
    242 #if defined(INET) || defined(INET6)
    243 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    244 #endif
    245 
    246 /*
    247  * Hook for if_vlan - needed by if_agr
    248  */
    249 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
    250 
    251 static void if_sysctl_setup(struct sysctllog **);
    252 
    253 static int
    254 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    255     void *arg0, void *arg1, void *arg2, void *arg3)
    256 {
    257 	int result;
    258 	enum kauth_network_req req;
    259 
    260 	result = KAUTH_RESULT_DEFER;
    261 	req = (enum kauth_network_req)arg1;
    262 
    263 	if (action != KAUTH_NETWORK_INTERFACE)
    264 		return result;
    265 
    266 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    267 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    268 		result = KAUTH_RESULT_ALLOW;
    269 
    270 	return result;
    271 }
    272 
    273 /*
    274  * Network interface utility routines.
    275  *
    276  * Routines with ifa_ifwith* names take sockaddr *'s as
    277  * parameters.
    278  */
    279 void
    280 ifinit(void)
    281 {
    282 
    283 #if (defined(INET) || defined(INET6))
    284 	encapinit();
    285 #endif
    286 
    287 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    288 	    if_listener_cb, NULL);
    289 
    290 	/* interfaces are available, inform socket code */
    291 	ifioctl = doifioctl;
    292 }
    293 
    294 /*
    295  * XXX Initialization before configure().
    296  * XXX hack to get pfil_add_hook working in autoconf.
    297  */
    298 void
    299 ifinit1(void)
    300 {
    301 
    302 #ifdef NET_MPSAFE
    303 	printf("NET_MPSAFE enabled\n");
    304 #endif
    305 
    306 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    307 
    308 	TAILQ_INIT(&ifnet_list);
    309 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    310 	ifnet_psz = pserialize_create();
    311 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    312 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    313 	PSLIST_INIT(&ifnet_pslist);
    314 
    315 	if_indexlim = 8;
    316 
    317 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    318 	KASSERT(if_pfil != NULL);
    319 
    320 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
    321 	etherinit();
    322 #endif
    323 }
    324 
    325 /* XXX must be after domaininit() */
    326 void
    327 ifinit_post(void)
    328 {
    329 
    330 	if_sysctl_setup(NULL);
    331 }
    332 
    333 ifnet_t *
    334 if_alloc(u_char type)
    335 {
    336 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    337 }
    338 
    339 void
    340 if_free(ifnet_t *ifp)
    341 {
    342 	kmem_free(ifp, sizeof(ifnet_t));
    343 }
    344 
    345 void
    346 if_initname(struct ifnet *ifp, const char *name, int unit)
    347 {
    348 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    349 	    "%s%d", name, unit);
    350 }
    351 
    352 /*
    353  * Null routines used while an interface is going away.  These routines
    354  * just return an error.
    355  */
    356 
    357 int
    358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    359     const struct sockaddr *so, const struct rtentry *rt)
    360 {
    361 
    362 	return ENXIO;
    363 }
    364 
    365 void
    366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    367 {
    368 
    369 	/* Nothing. */
    370 }
    371 
    372 void
    373 if_nullstart(struct ifnet *ifp)
    374 {
    375 
    376 	/* Nothing. */
    377 }
    378 
    379 int
    380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    381 {
    382 
    383 	m_freem(m);
    384 	return ENXIO;
    385 }
    386 
    387 int
    388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    389 {
    390 
    391 	return ENXIO;
    392 }
    393 
    394 int
    395 if_nullinit(struct ifnet *ifp)
    396 {
    397 
    398 	return ENXIO;
    399 }
    400 
    401 void
    402 if_nullstop(struct ifnet *ifp, int disable)
    403 {
    404 
    405 	/* Nothing. */
    406 }
    407 
    408 void
    409 if_nullslowtimo(struct ifnet *ifp)
    410 {
    411 
    412 	/* Nothing. */
    413 }
    414 
    415 void
    416 if_nulldrain(struct ifnet *ifp)
    417 {
    418 
    419 	/* Nothing. */
    420 }
    421 
    422 void
    423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    424 {
    425 	struct ifaddr *ifa;
    426 	struct sockaddr_dl *sdl;
    427 
    428 	ifp->if_addrlen = addrlen;
    429 	if_alloc_sadl(ifp);
    430 	ifa = ifp->if_dl;
    431 	sdl = satosdl(ifa->ifa_addr);
    432 
    433 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    434 	if (factory) {
    435 		KASSERT(ifp->if_hwdl == NULL);
    436 		ifp->if_hwdl = ifp->if_dl;
    437 		ifaref(ifp->if_hwdl);
    438 	}
    439 	/* TBD routing socket */
    440 }
    441 
    442 struct ifaddr *
    443 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    444 {
    445 	unsigned socksize, ifasize;
    446 	int addrlen, namelen;
    447 	struct sockaddr_dl *mask, *sdl;
    448 	struct ifaddr *ifa;
    449 
    450 	namelen = strlen(ifp->if_xname);
    451 	addrlen = ifp->if_addrlen;
    452 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    453 	ifasize = sizeof(*ifa) + 2 * socksize;
    454 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
    455 
    456 	sdl = (struct sockaddr_dl *)(ifa + 1);
    457 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    458 
    459 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    460 	    ifp->if_xname, namelen, NULL, addrlen);
    461 	mask->sdl_family = AF_LINK;
    462 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    463 	memset(&mask->sdl_data[0], 0xff, namelen);
    464 	ifa->ifa_rtrequest = link_rtrequest;
    465 	ifa->ifa_addr = (struct sockaddr *)sdl;
    466 	ifa->ifa_netmask = (struct sockaddr *)mask;
    467 	ifa_psref_init(ifa);
    468 
    469 	*sdlp = sdl;
    470 
    471 	return ifa;
    472 }
    473 
    474 static void
    475 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    476 {
    477 	const struct sockaddr_dl *sdl;
    478 
    479 	ifp->if_dl = ifa;
    480 	ifaref(ifa);
    481 	sdl = satosdl(ifa->ifa_addr);
    482 	ifp->if_sadl = sdl;
    483 }
    484 
    485 /*
    486  * Allocate the link level name for the specified interface.  This
    487  * is an attachment helper.  It must be called after ifp->if_addrlen
    488  * is initialized, which may not be the case when if_attach() is
    489  * called.
    490  */
    491 void
    492 if_alloc_sadl(struct ifnet *ifp)
    493 {
    494 	struct ifaddr *ifa;
    495 	const struct sockaddr_dl *sdl;
    496 
    497 	/*
    498 	 * If the interface already has a link name, release it
    499 	 * now.  This is useful for interfaces that can change
    500 	 * link types, and thus switch link names often.
    501 	 */
    502 	if (ifp->if_sadl != NULL)
    503 		if_free_sadl(ifp, 0);
    504 
    505 	ifa = if_dl_create(ifp, &sdl);
    506 
    507 	ifa_insert(ifp, ifa);
    508 	if_sadl_setrefs(ifp, ifa);
    509 }
    510 
    511 static void
    512 if_deactivate_sadl(struct ifnet *ifp)
    513 {
    514 	struct ifaddr *ifa;
    515 
    516 	KASSERT(ifp->if_dl != NULL);
    517 
    518 	ifa = ifp->if_dl;
    519 
    520 	ifp->if_sadl = NULL;
    521 
    522 	ifp->if_dl = NULL;
    523 	ifafree(ifa);
    524 }
    525 
    526 static void
    527 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    528 {
    529 	struct ifaddr *old;
    530 
    531 	KASSERT(ifp->if_dl != NULL);
    532 
    533 	old = ifp->if_dl;
    534 
    535 	ifaref(ifa);
    536 	/* XXX Update if_dl and if_sadl atomically */
    537 	ifp->if_dl = ifa;
    538 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    539 
    540 	ifafree(old);
    541 }
    542 
    543 void
    544 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    545     const struct sockaddr_dl *sdl)
    546 {
    547 	int s, ss;
    548 	struct ifaddr *ifa;
    549 	int bound = curlwp_bind();
    550 
    551 	KASSERT(ifa_held(ifa0));
    552 
    553 	s = splsoftnet();
    554 
    555 	if_replace_sadl(ifp, ifa0);
    556 
    557 	ss = pserialize_read_enter();
    558 	IFADDR_READER_FOREACH(ifa, ifp) {
    559 		struct psref psref;
    560 		ifa_acquire(ifa, &psref);
    561 		pserialize_read_exit(ss);
    562 
    563 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    564 
    565 		ss = pserialize_read_enter();
    566 		ifa_release(ifa, &psref);
    567 	}
    568 	pserialize_read_exit(ss);
    569 
    570 	splx(s);
    571 	curlwp_bindx(bound);
    572 }
    573 
    574 /*
    575  * Free the link level name for the specified interface.  This is
    576  * a detach helper.  This is called from if_detach().
    577  */
    578 void
    579 if_free_sadl(struct ifnet *ifp, int factory)
    580 {
    581 	struct ifaddr *ifa;
    582 	int s;
    583 
    584 	if (factory && ifp->if_hwdl != NULL) {
    585 		ifa = ifp->if_hwdl;
    586 		ifp->if_hwdl = NULL;
    587 		ifafree(ifa);
    588 	}
    589 
    590 	ifa = ifp->if_dl;
    591 	if (ifa == NULL) {
    592 		KASSERT(ifp->if_sadl == NULL);
    593 		return;
    594 	}
    595 
    596 	KASSERT(ifp->if_sadl != NULL);
    597 
    598 	s = splsoftnet();
    599 	KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
    600 	ifa_remove(ifp, ifa);
    601 	if_deactivate_sadl(ifp);
    602 	splx(s);
    603 }
    604 
    605 static void
    606 if_getindex(ifnet_t *ifp)
    607 {
    608 	bool hitlimit = false;
    609 
    610 	ifp->if_index_gen = index_gen++;
    611 
    612 	ifp->if_index = if_index;
    613 	if (ifindex2ifnet == NULL) {
    614 		if_index++;
    615 		goto skip;
    616 	}
    617 	while (if_byindex(ifp->if_index)) {
    618 		/*
    619 		 * If we hit USHRT_MAX, we skip back to 0 since
    620 		 * there are a number of places where the value
    621 		 * of if_index or if_index itself is compared
    622 		 * to or stored in an unsigned short.  By
    623 		 * jumping back, we won't botch those assignments
    624 		 * or comparisons.
    625 		 */
    626 		if (++if_index == 0) {
    627 			if_index = 1;
    628 		} else if (if_index == USHRT_MAX) {
    629 			/*
    630 			 * However, if we have to jump back to
    631 			 * zero *twice* without finding an empty
    632 			 * slot in ifindex2ifnet[], then there
    633 			 * there are too many (>65535) interfaces.
    634 			 */
    635 			if (hitlimit) {
    636 				panic("too many interfaces");
    637 			}
    638 			hitlimit = true;
    639 			if_index = 1;
    640 		}
    641 		ifp->if_index = if_index;
    642 	}
    643 skip:
    644 	/*
    645 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    646 	 * grow dynamically, it should grow too.
    647 	 */
    648 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    649 		size_t m, n, oldlim;
    650 		void *q;
    651 
    652 		oldlim = if_indexlim;
    653 		while (ifp->if_index >= if_indexlim)
    654 			if_indexlim <<= 1;
    655 
    656 		/* grow ifindex2ifnet */
    657 		m = oldlim * sizeof(struct ifnet *);
    658 		n = if_indexlim * sizeof(struct ifnet *);
    659 		q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
    660 		if (ifindex2ifnet != NULL) {
    661 			memcpy(q, ifindex2ifnet, m);
    662 			free(ifindex2ifnet, M_IFADDR);
    663 		}
    664 		ifindex2ifnet = (struct ifnet **)q;
    665 	}
    666 	ifindex2ifnet[ifp->if_index] = ifp;
    667 }
    668 
    669 /*
    670  * Initialize an interface and assign an index for it.
    671  *
    672  * It must be called prior to a device specific attach routine
    673  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    674  * and be followed by if_register:
    675  *
    676  *     if_initialize(ifp);
    677  *     ether_ifattach(ifp, enaddr);
    678  *     if_register(ifp);
    679  */
    680 int
    681 if_initialize(ifnet_t *ifp)
    682 {
    683 	int rv = 0;
    684 
    685 	KASSERT(if_indexlim > 0);
    686 	TAILQ_INIT(&ifp->if_addrlist);
    687 
    688 	/*
    689 	 * Link level name is allocated later by a separate call to
    690 	 * if_alloc_sadl().
    691 	 */
    692 
    693 	if (ifp->if_snd.ifq_maxlen == 0)
    694 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    695 
    696 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    697 
    698 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    699 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    700 
    701 	ifp->if_capenable = 0;
    702 	ifp->if_csum_flags_tx = 0;
    703 	ifp->if_csum_flags_rx = 0;
    704 
    705 #ifdef ALTQ
    706 	ifp->if_snd.altq_type = 0;
    707 	ifp->if_snd.altq_disc = NULL;
    708 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    709 	ifp->if_snd.altq_tbr  = NULL;
    710 	ifp->if_snd.altq_ifp  = ifp;
    711 #endif
    712 
    713 	IFQ_LOCK_INIT(&ifp->if_snd);
    714 
    715 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    716 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    717 
    718 	IF_AFDATA_LOCK_INIT(ifp);
    719 
    720 	if (if_is_link_state_changeable(ifp)) {
    721 		u_int flags = SOFTINT_NET;
    722 		flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
    723 		ifp->if_link_si = softint_establish(flags,
    724 		    if_link_state_change_si, ifp);
    725 		if (ifp->if_link_si == NULL) {
    726 			rv = ENOMEM;
    727 			goto fail;
    728 		}
    729 	}
    730 
    731 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    732 	PSLIST_INIT(&ifp->if_addr_pslist);
    733 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    734 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    735 	LIST_INIT(&ifp->if_multiaddrs);
    736 
    737 	IFNET_GLOBAL_LOCK();
    738 	if_getindex(ifp);
    739 	IFNET_GLOBAL_UNLOCK();
    740 
    741 	return 0;
    742 
    743 fail:
    744 	IF_AFDATA_LOCK_DESTROY(ifp);
    745 
    746 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    747 	(void)pfil_head_destroy(ifp->if_pfil);
    748 
    749 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    750 
    751 	return rv;
    752 }
    753 
    754 /*
    755  * Register an interface to the list of "active" interfaces.
    756  */
    757 void
    758 if_register(ifnet_t *ifp)
    759 {
    760 	/*
    761 	 * If the driver has not supplied its own if_ioctl, then
    762 	 * supply the default.
    763 	 */
    764 	if (ifp->if_ioctl == NULL)
    765 		ifp->if_ioctl = ifioctl_common;
    766 
    767 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    768 
    769 	if (!STAILQ_EMPTY(&domains))
    770 		if_attachdomain1(ifp);
    771 
    772 	/* Announce the interface. */
    773 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    774 
    775 	if (ifp->if_slowtimo != NULL) {
    776 		ifp->if_slowtimo_ch =
    777 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    778 		callout_init(ifp->if_slowtimo_ch, 0);
    779 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    780 		if_slowtimo(ifp);
    781 	}
    782 
    783 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    784 		ifp->if_transmit = if_transmit;
    785 
    786 	IFNET_GLOBAL_LOCK();
    787 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    788 	IFNET_WRITER_INSERT_TAIL(ifp);
    789 	IFNET_GLOBAL_UNLOCK();
    790 }
    791 
    792 /*
    793  * The if_percpuq framework
    794  *
    795  * It allows network device drivers to execute the network stack
    796  * in softint (so called softint-based if_input). It utilizes
    797  * softint and percpu ifqueue. It doesn't distribute any packets
    798  * between CPUs, unlike pktqueue(9).
    799  *
    800  * Currently we support two options for device drivers to apply the framework:
    801  * - Use it implicitly with less changes
    802  *   - If you use if_attach in driver's _attach function and if_input in
    803  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    804  *     the packet implicitly
    805  * - Use it explicitly in each driver (recommended)
    806  *   - You can use if_percpuq_* directly in your driver
    807  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    808  *   - See wm(4) as a reference implementation
    809  */
    810 
    811 static void
    812 if_percpuq_softint(void *arg)
    813 {
    814 	struct if_percpuq *ipq = arg;
    815 	struct ifnet *ifp = ipq->ipq_ifp;
    816 	struct mbuf *m;
    817 
    818 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    819 		ifp->if_ipackets++;
    820 		bpf_mtap(ifp, m, BPF_D_IN);
    821 
    822 		ifp->_if_input(ifp, m);
    823 	}
    824 }
    825 
    826 static void
    827 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    828 {
    829 	struct ifqueue *const ifq = p;
    830 
    831 	memset(ifq, 0, sizeof(*ifq));
    832 	ifq->ifq_maxlen = IFQ_MAXLEN;
    833 }
    834 
    835 struct if_percpuq *
    836 if_percpuq_create(struct ifnet *ifp)
    837 {
    838 	struct if_percpuq *ipq;
    839 	u_int flags = SOFTINT_NET;
    840 
    841 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
    842 
    843 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    844 	ipq->ipq_ifp = ifp;
    845 	ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
    846 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    847 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    848 
    849 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    850 
    851 	return ipq;
    852 }
    853 
    854 static struct mbuf *
    855 if_percpuq_dequeue(struct if_percpuq *ipq)
    856 {
    857 	struct mbuf *m;
    858 	struct ifqueue *ifq;
    859 	int s;
    860 
    861 	s = splnet();
    862 	ifq = percpu_getref(ipq->ipq_ifqs);
    863 	IF_DEQUEUE(ifq, m);
    864 	percpu_putref(ipq->ipq_ifqs);
    865 	splx(s);
    866 
    867 	return m;
    868 }
    869 
    870 static void
    871 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    872 {
    873 	struct ifqueue *const ifq = p;
    874 
    875 	IF_PURGE(ifq);
    876 }
    877 
    878 void
    879 if_percpuq_destroy(struct if_percpuq *ipq)
    880 {
    881 
    882 	/* if_detach may already destroy it */
    883 	if (ipq == NULL)
    884 		return;
    885 
    886 	softint_disestablish(ipq->ipq_si);
    887 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    888 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    889 	kmem_free(ipq, sizeof(*ipq));
    890 }
    891 
    892 void
    893 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    894 {
    895 	struct ifqueue *ifq;
    896 	int s;
    897 
    898 	KASSERT(ipq != NULL);
    899 
    900 	s = splnet();
    901 	ifq = percpu_getref(ipq->ipq_ifqs);
    902 	if (IF_QFULL(ifq)) {
    903 		IF_DROP(ifq);
    904 		percpu_putref(ipq->ipq_ifqs);
    905 		m_freem(m);
    906 		goto out;
    907 	}
    908 	IF_ENQUEUE(ifq, m);
    909 	percpu_putref(ipq->ipq_ifqs);
    910 
    911 	softint_schedule(ipq->ipq_si);
    912 out:
    913 	splx(s);
    914 }
    915 
    916 static void
    917 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    918 {
    919 	struct ifqueue *const ifq = p;
    920 	int *sum = arg;
    921 
    922 	*sum += ifq->ifq_drops;
    923 }
    924 
    925 static int
    926 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    927 {
    928 	struct sysctlnode node;
    929 	struct if_percpuq *ipq;
    930 	int sum = 0;
    931 	int error;
    932 
    933 	node = *rnode;
    934 	ipq = node.sysctl_data;
    935 
    936 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    937 
    938 	node.sysctl_data = &sum;
    939 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    940 	if (error != 0 || newp == NULL)
    941 		return error;
    942 
    943 	return 0;
    944 }
    945 
    946 static void
    947 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    948     struct if_percpuq *ipq)
    949 {
    950 	const struct sysctlnode *cnode, *rnode;
    951 
    952 	if (sysctl_createv(clog, 0, NULL, &rnode,
    953 		       CTLFLAG_PERMANENT,
    954 		       CTLTYPE_NODE, "interfaces",
    955 		       SYSCTL_DESCR("Per-interface controls"),
    956 		       NULL, 0, NULL, 0,
    957 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    958 		goto bad;
    959 
    960 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    961 		       CTLFLAG_PERMANENT,
    962 		       CTLTYPE_NODE, ifname,
    963 		       SYSCTL_DESCR("Interface controls"),
    964 		       NULL, 0, NULL, 0,
    965 		       CTL_CREATE, CTL_EOL) != 0)
    966 		goto bad;
    967 
    968 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    969 		       CTLFLAG_PERMANENT,
    970 		       CTLTYPE_NODE, "rcvq",
    971 		       SYSCTL_DESCR("Interface input queue controls"),
    972 		       NULL, 0, NULL, 0,
    973 		       CTL_CREATE, CTL_EOL) != 0)
    974 		goto bad;
    975 
    976 #ifdef NOTYET
    977 	/* XXX Should show each per-CPU queue length? */
    978 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    979 		       CTLFLAG_PERMANENT,
    980 		       CTLTYPE_INT, "len",
    981 		       SYSCTL_DESCR("Current input queue length"),
    982 		       sysctl_percpuq_len, 0, NULL, 0,
    983 		       CTL_CREATE, CTL_EOL) != 0)
    984 		goto bad;
    985 
    986 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    987 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    988 		       CTLTYPE_INT, "maxlen",
    989 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    990 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    991 		       CTL_CREATE, CTL_EOL) != 0)
    992 		goto bad;
    993 #endif
    994 
    995 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    996 		       CTLFLAG_PERMANENT,
    997 		       CTLTYPE_INT, "drops",
    998 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    999 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
   1000 		       CTL_CREATE, CTL_EOL) != 0)
   1001 		goto bad;
   1002 
   1003 	return;
   1004 bad:
   1005 	printf("%s: could not attach sysctl nodes\n", ifname);
   1006 	return;
   1007 }
   1008 
   1009 /*
   1010  * The deferred if_start framework
   1011  *
   1012  * The common APIs to defer if_start to softint when if_start is requested
   1013  * from a device driver running in hardware interrupt context.
   1014  */
   1015 /*
   1016  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1017  * deferred if_start.
   1018  */
   1019 static void
   1020 if_deferred_start_softint(void *arg)
   1021 {
   1022 	struct if_deferred_start *ids = arg;
   1023 	struct ifnet *ifp = ids->ids_ifp;
   1024 
   1025 	ids->ids_if_start(ifp);
   1026 }
   1027 
   1028 /*
   1029  * The default callback function for deferred if_start.
   1030  */
   1031 static void
   1032 if_deferred_start_common(struct ifnet *ifp)
   1033 {
   1034 	int s;
   1035 
   1036 	s = splnet();
   1037 	if_start_lock(ifp);
   1038 	splx(s);
   1039 }
   1040 
   1041 static inline bool
   1042 if_snd_is_used(struct ifnet *ifp)
   1043 {
   1044 
   1045 	return ALTQ_IS_ENABLED(&ifp->if_snd) ||
   1046 		ifp->if_transmit == if_transmit ||
   1047 		ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
   1048 }
   1049 
   1050 /*
   1051  * Schedule deferred if_start.
   1052  */
   1053 void
   1054 if_schedule_deferred_start(struct ifnet *ifp)
   1055 {
   1056 
   1057 	KASSERT(ifp->if_deferred_start != NULL);
   1058 
   1059 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1060 		return;
   1061 
   1062 	softint_schedule(ifp->if_deferred_start->ids_si);
   1063 }
   1064 
   1065 /*
   1066  * Create an instance of deferred if_start. A driver should call the function
   1067  * only if the driver needs deferred if_start. Drivers can setup their own
   1068  * deferred if_start function via 2nd argument.
   1069  */
   1070 void
   1071 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1072 {
   1073 	struct if_deferred_start *ids;
   1074 	u_int flags = SOFTINT_NET;
   1075 
   1076 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
   1077 
   1078 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1079 	ids->ids_ifp = ifp;
   1080 	ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
   1081 	if (func != NULL)
   1082 		ids->ids_if_start = func;
   1083 	else
   1084 		ids->ids_if_start = if_deferred_start_common;
   1085 
   1086 	ifp->if_deferred_start = ids;
   1087 }
   1088 
   1089 static void
   1090 if_deferred_start_destroy(struct ifnet *ifp)
   1091 {
   1092 
   1093 	if (ifp->if_deferred_start == NULL)
   1094 		return;
   1095 
   1096 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1097 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1098 	ifp->if_deferred_start = NULL;
   1099 }
   1100 
   1101 /*
   1102  * The common interface input routine that is called by device drivers,
   1103  * which should be used only when the driver's rx handler already runs
   1104  * in softint.
   1105  */
   1106 void
   1107 if_input(struct ifnet *ifp, struct mbuf *m)
   1108 {
   1109 
   1110 	KASSERT(ifp->if_percpuq == NULL);
   1111 	KASSERT(!cpu_intr_p());
   1112 
   1113 	ifp->if_ipackets++;
   1114 	bpf_mtap(ifp, m, BPF_D_IN);
   1115 
   1116 	ifp->_if_input(ifp, m);
   1117 }
   1118 
   1119 /*
   1120  * DEPRECATED. Use if_initialize and if_register instead.
   1121  * See the above comment of if_initialize.
   1122  *
   1123  * Note that it implicitly enables if_percpuq to make drivers easy to
   1124  * migrate softint-based if_input without much changes. If you don't
   1125  * want to enable it, use if_initialize instead.
   1126  */
   1127 int
   1128 if_attach(ifnet_t *ifp)
   1129 {
   1130 	int rv;
   1131 
   1132 	rv = if_initialize(ifp);
   1133 	if (rv != 0)
   1134 		return rv;
   1135 
   1136 	ifp->if_percpuq = if_percpuq_create(ifp);
   1137 	if_register(ifp);
   1138 
   1139 	return 0;
   1140 }
   1141 
   1142 void
   1143 if_attachdomain(void)
   1144 {
   1145 	struct ifnet *ifp;
   1146 	int s;
   1147 	int bound = curlwp_bind();
   1148 
   1149 	s = pserialize_read_enter();
   1150 	IFNET_READER_FOREACH(ifp) {
   1151 		struct psref psref;
   1152 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1153 		pserialize_read_exit(s);
   1154 		if_attachdomain1(ifp);
   1155 		s = pserialize_read_enter();
   1156 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1157 	}
   1158 	pserialize_read_exit(s);
   1159 	curlwp_bindx(bound);
   1160 }
   1161 
   1162 static void
   1163 if_attachdomain1(struct ifnet *ifp)
   1164 {
   1165 	struct domain *dp;
   1166 	int s;
   1167 
   1168 	s = splsoftnet();
   1169 
   1170 	/* address family dependent data region */
   1171 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1172 	DOMAIN_FOREACH(dp) {
   1173 		if (dp->dom_ifattach != NULL)
   1174 			ifp->if_afdata[dp->dom_family] =
   1175 			    (*dp->dom_ifattach)(ifp);
   1176 	}
   1177 
   1178 	splx(s);
   1179 }
   1180 
   1181 /*
   1182  * Deactivate an interface.  This points all of the procedure
   1183  * handles at error stubs.  May be called from interrupt context.
   1184  */
   1185 void
   1186 if_deactivate(struct ifnet *ifp)
   1187 {
   1188 	int s;
   1189 
   1190 	s = splsoftnet();
   1191 
   1192 	ifp->if_output	 = if_nulloutput;
   1193 	ifp->_if_input	 = if_nullinput;
   1194 	ifp->if_start	 = if_nullstart;
   1195 	ifp->if_transmit = if_nulltransmit;
   1196 	ifp->if_ioctl	 = if_nullioctl;
   1197 	ifp->if_init	 = if_nullinit;
   1198 	ifp->if_stop	 = if_nullstop;
   1199 	ifp->if_slowtimo = if_nullslowtimo;
   1200 	ifp->if_drain	 = if_nulldrain;
   1201 
   1202 	/* No more packets may be enqueued. */
   1203 	ifp->if_snd.ifq_maxlen = 0;
   1204 
   1205 	splx(s);
   1206 }
   1207 
   1208 bool
   1209 if_is_deactivated(const struct ifnet *ifp)
   1210 {
   1211 
   1212 	return ifp->if_output == if_nulloutput;
   1213 }
   1214 
   1215 void
   1216 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1217 {
   1218 	struct ifaddr *ifa, *nifa;
   1219 	int s;
   1220 
   1221 	s = pserialize_read_enter();
   1222 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1223 		nifa = IFADDR_READER_NEXT(ifa);
   1224 		if (ifa->ifa_addr->sa_family != family)
   1225 			continue;
   1226 		pserialize_read_exit(s);
   1227 
   1228 		(*purgeaddr)(ifa);
   1229 
   1230 		s = pserialize_read_enter();
   1231 	}
   1232 	pserialize_read_exit(s);
   1233 }
   1234 
   1235 #ifdef IFAREF_DEBUG
   1236 static struct ifaddr **ifa_list;
   1237 static int ifa_list_size;
   1238 
   1239 /* Depends on only one if_attach runs at once */
   1240 static void
   1241 if_build_ifa_list(struct ifnet *ifp)
   1242 {
   1243 	struct ifaddr *ifa;
   1244 	int i;
   1245 
   1246 	KASSERT(ifa_list == NULL);
   1247 	KASSERT(ifa_list_size == 0);
   1248 
   1249 	IFADDR_READER_FOREACH(ifa, ifp)
   1250 		ifa_list_size++;
   1251 
   1252 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1253 	i = 0;
   1254 	IFADDR_READER_FOREACH(ifa, ifp) {
   1255 		ifa_list[i++] = ifa;
   1256 		ifaref(ifa);
   1257 	}
   1258 }
   1259 
   1260 static void
   1261 if_check_and_free_ifa_list(struct ifnet *ifp)
   1262 {
   1263 	int i;
   1264 	struct ifaddr *ifa;
   1265 
   1266 	if (ifa_list == NULL)
   1267 		return;
   1268 
   1269 	for (i = 0; i < ifa_list_size; i++) {
   1270 		char buf[64];
   1271 
   1272 		ifa = ifa_list[i];
   1273 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1274 		if (ifa->ifa_refcnt > 1) {
   1275 			log(LOG_WARNING,
   1276 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1277 			    buf, ifa->ifa_refcnt - 1);
   1278 		} else
   1279 			log(LOG_DEBUG,
   1280 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1281 			    buf, ifa->ifa_refcnt - 1);
   1282 		ifafree(ifa);
   1283 	}
   1284 
   1285 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1286 	ifa_list = NULL;
   1287 	ifa_list_size = 0;
   1288 }
   1289 #endif
   1290 
   1291 /*
   1292  * Detach an interface from the list of "active" interfaces,
   1293  * freeing any resources as we go along.
   1294  *
   1295  * NOTE: This routine must be called with a valid thread context,
   1296  * as it may block.
   1297  */
   1298 void
   1299 if_detach(struct ifnet *ifp)
   1300 {
   1301 	struct socket so;
   1302 	struct ifaddr *ifa;
   1303 #ifdef IFAREF_DEBUG
   1304 	struct ifaddr *last_ifa = NULL;
   1305 #endif
   1306 	struct domain *dp;
   1307 	const struct protosw *pr;
   1308 	int s, i, family, purged;
   1309 
   1310 #ifdef IFAREF_DEBUG
   1311 	if_build_ifa_list(ifp);
   1312 #endif
   1313 	/*
   1314 	 * XXX It's kind of lame that we have to have the
   1315 	 * XXX socket structure...
   1316 	 */
   1317 	memset(&so, 0, sizeof(so));
   1318 
   1319 	s = splnet();
   1320 
   1321 	sysctl_teardown(&ifp->if_sysctl_log);
   1322 	IFNET_LOCK(ifp);
   1323 	if_deactivate(ifp);
   1324 	IFNET_UNLOCK(ifp);
   1325 
   1326 	/*
   1327 	 * Unlink from the list and wait for all readers to leave
   1328 	 * from pserialize read sections.  Note that we can't do
   1329 	 * psref_target_destroy here.  See below.
   1330 	 */
   1331 	IFNET_GLOBAL_LOCK();
   1332 	ifindex2ifnet[ifp->if_index] = NULL;
   1333 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1334 	IFNET_WRITER_REMOVE(ifp);
   1335 	pserialize_perform(ifnet_psz);
   1336 	IFNET_GLOBAL_UNLOCK();
   1337 
   1338 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1339 		ifp->if_slowtimo = NULL;
   1340 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1341 		callout_destroy(ifp->if_slowtimo_ch);
   1342 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1343 	}
   1344 	if_deferred_start_destroy(ifp);
   1345 
   1346 	/*
   1347 	 * Do an if_down() to give protocols a chance to do something.
   1348 	 */
   1349 	if_down_deactivated(ifp);
   1350 
   1351 #ifdef ALTQ
   1352 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1353 		altq_disable(&ifp->if_snd);
   1354 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1355 		altq_detach(&ifp->if_snd);
   1356 #endif
   1357 
   1358 #if NCARP > 0
   1359 	/* Remove the interface from any carp group it is a part of.  */
   1360 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1361 		carp_ifdetach(ifp);
   1362 #endif
   1363 
   1364 	/*
   1365 	 * Rip all the addresses off the interface.  This should make
   1366 	 * all of the routes go away.
   1367 	 *
   1368 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1369 	 * from the list, including our "cursor", ifa.  For safety,
   1370 	 * and to honor the TAILQ abstraction, I just restart the
   1371 	 * loop after each removal.  Note that the loop will exit
   1372 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1373 	 * family.  I am counting on the historical fact that at
   1374 	 * least one pr_usrreq in each address domain removes at
   1375 	 * least one ifaddr.
   1376 	 */
   1377 again:
   1378 	/*
   1379 	 * At this point, no other one tries to remove ifa in the list,
   1380 	 * so we don't need to take a lock or psref.  Avoid using
   1381 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1382 	 * violations of pserialize.
   1383 	 */
   1384 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1385 		family = ifa->ifa_addr->sa_family;
   1386 #ifdef IFAREF_DEBUG
   1387 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1388 		    ifa, family, ifa->ifa_refcnt);
   1389 		if (last_ifa != NULL && ifa == last_ifa)
   1390 			panic("if_detach: loop detected");
   1391 		last_ifa = ifa;
   1392 #endif
   1393 		if (family == AF_LINK)
   1394 			continue;
   1395 		dp = pffinddomain(family);
   1396 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1397 		/*
   1398 		 * XXX These PURGEIF calls are redundant with the
   1399 		 * purge-all-families calls below, but are left in for
   1400 		 * now both to make a smaller change, and to avoid
   1401 		 * unplanned interactions with clearing of
   1402 		 * ifp->if_addrlist.
   1403 		 */
   1404 		purged = 0;
   1405 		for (pr = dp->dom_protosw;
   1406 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1407 			so.so_proto = pr;
   1408 			if (pr->pr_usrreqs) {
   1409 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1410 				purged = 1;
   1411 			}
   1412 		}
   1413 		if (purged == 0) {
   1414 			/*
   1415 			 * XXX What's really the best thing to do
   1416 			 * XXX here?  --thorpej (at) NetBSD.org
   1417 			 */
   1418 			printf("if_detach: WARNING: AF %d not purged\n",
   1419 			    family);
   1420 			ifa_remove(ifp, ifa);
   1421 		}
   1422 		goto again;
   1423 	}
   1424 
   1425 	if_free_sadl(ifp, 1);
   1426 
   1427 restart:
   1428 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1429 		family = ifa->ifa_addr->sa_family;
   1430 		KASSERT(family == AF_LINK);
   1431 		ifa_remove(ifp, ifa);
   1432 		goto restart;
   1433 	}
   1434 
   1435 	/* Delete stray routes from the routing table. */
   1436 	for (i = 0; i <= AF_MAX; i++)
   1437 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1438 
   1439 	DOMAIN_FOREACH(dp) {
   1440 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1441 		{
   1442 			void *p = ifp->if_afdata[dp->dom_family];
   1443 			if (p) {
   1444 				ifp->if_afdata[dp->dom_family] = NULL;
   1445 				(*dp->dom_ifdetach)(ifp, p);
   1446 			}
   1447 		}
   1448 
   1449 		/*
   1450 		 * One would expect multicast memberships (INET and
   1451 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1452 		 * calls above, but if all addresses were removed from
   1453 		 * the interface prior to destruction, the calls will
   1454 		 * not be made (e.g. ppp, for which pppd(8) generally
   1455 		 * removes addresses before destroying the interface).
   1456 		 * Because there is no invariant that multicast
   1457 		 * memberships only exist for interfaces with IPv4
   1458 		 * addresses, we must call PURGEIF regardless of
   1459 		 * addresses.  (Protocols which might store ifnet
   1460 		 * pointers are marked with PR_PURGEIF.)
   1461 		 */
   1462 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1463 			so.so_proto = pr;
   1464 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1465 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1466 		}
   1467 	}
   1468 
   1469 	/*
   1470 	 * Must be done after the above pr_purgeif because if_psref may be
   1471 	 * still used in pr_purgeif.
   1472 	 */
   1473 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1474 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1475 
   1476 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1477 	(void)pfil_head_destroy(ifp->if_pfil);
   1478 
   1479 	/* Announce that the interface is gone. */
   1480 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1481 
   1482 	IF_AFDATA_LOCK_DESTROY(ifp);
   1483 
   1484 	if (if_is_link_state_changeable(ifp)) {
   1485 		softint_disestablish(ifp->if_link_si);
   1486 		ifp->if_link_si = NULL;
   1487 	}
   1488 
   1489 	/*
   1490 	 * remove packets that came from ifp, from software interrupt queues.
   1491 	 */
   1492 	DOMAIN_FOREACH(dp) {
   1493 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1494 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1495 			if (iq == NULL)
   1496 				break;
   1497 			dp->dom_ifqueues[i] = NULL;
   1498 			if_detach_queues(ifp, iq);
   1499 		}
   1500 	}
   1501 
   1502 	/*
   1503 	 * IP queues have to be processed separately: net-queue barrier
   1504 	 * ensures that the packets are dequeued while a cross-call will
   1505 	 * ensure that the interrupts have completed. FIXME: not quite..
   1506 	 */
   1507 #ifdef INET
   1508 	pktq_barrier(ip_pktq);
   1509 #endif
   1510 #ifdef INET6
   1511 	if (in6_present)
   1512 		pktq_barrier(ip6_pktq);
   1513 #endif
   1514 	xc_barrier(0);
   1515 
   1516 	if (ifp->if_percpuq != NULL) {
   1517 		if_percpuq_destroy(ifp->if_percpuq);
   1518 		ifp->if_percpuq = NULL;
   1519 	}
   1520 
   1521 	mutex_obj_free(ifp->if_ioctl_lock);
   1522 	ifp->if_ioctl_lock = NULL;
   1523 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1524 
   1525 	splx(s);
   1526 
   1527 #ifdef IFAREF_DEBUG
   1528 	if_check_and_free_ifa_list(ifp);
   1529 #endif
   1530 }
   1531 
   1532 static void
   1533 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1534 {
   1535 	struct mbuf *m, *prev, *next;
   1536 
   1537 	prev = NULL;
   1538 	for (m = q->ifq_head; m != NULL; m = next) {
   1539 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1540 
   1541 		next = m->m_nextpkt;
   1542 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1543 			prev = m;
   1544 			continue;
   1545 		}
   1546 
   1547 		if (prev != NULL)
   1548 			prev->m_nextpkt = m->m_nextpkt;
   1549 		else
   1550 			q->ifq_head = m->m_nextpkt;
   1551 		if (q->ifq_tail == m)
   1552 			q->ifq_tail = prev;
   1553 		q->ifq_len--;
   1554 
   1555 		m->m_nextpkt = NULL;
   1556 		m_freem(m);
   1557 		IF_DROP(q);
   1558 	}
   1559 }
   1560 
   1561 /*
   1562  * Callback for a radix tree walk to delete all references to an
   1563  * ifnet.
   1564  */
   1565 static int
   1566 if_delroute_matcher(struct rtentry *rt, void *v)
   1567 {
   1568 	struct ifnet *ifp = (struct ifnet *)v;
   1569 
   1570 	if (rt->rt_ifp == ifp)
   1571 		return 1;
   1572 	else
   1573 		return 0;
   1574 }
   1575 
   1576 /*
   1577  * Create a clone network interface.
   1578  */
   1579 static int
   1580 if_clone_create(const char *name)
   1581 {
   1582 	struct if_clone *ifc;
   1583 	int unit;
   1584 	struct ifnet *ifp;
   1585 	struct psref psref;
   1586 
   1587 	KASSERT(mutex_owned(&if_clone_mtx));
   1588 
   1589 	ifc = if_clone_lookup(name, &unit);
   1590 	if (ifc == NULL)
   1591 		return EINVAL;
   1592 
   1593 	ifp = if_get(name, &psref);
   1594 	if (ifp != NULL) {
   1595 		if_put(ifp, &psref);
   1596 		return EEXIST;
   1597 	}
   1598 
   1599 	return (*ifc->ifc_create)(ifc, unit);
   1600 }
   1601 
   1602 /*
   1603  * Destroy a clone network interface.
   1604  */
   1605 static int
   1606 if_clone_destroy(const char *name)
   1607 {
   1608 	struct if_clone *ifc;
   1609 	struct ifnet *ifp;
   1610 	struct psref psref;
   1611 	int error;
   1612 	int (*if_ioctl)(struct ifnet *, u_long, void *);
   1613 
   1614 	KASSERT(mutex_owned(&if_clone_mtx));
   1615 
   1616 	ifc = if_clone_lookup(name, NULL);
   1617 	if (ifc == NULL)
   1618 		return EINVAL;
   1619 
   1620 	if (ifc->ifc_destroy == NULL)
   1621 		return EOPNOTSUPP;
   1622 
   1623 	ifp = if_get(name, &psref);
   1624 	if (ifp == NULL)
   1625 		return ENXIO;
   1626 
   1627 	/* We have to disable ioctls here */
   1628 	IFNET_LOCK(ifp);
   1629 	if_ioctl = ifp->if_ioctl;
   1630 	ifp->if_ioctl = if_nullioctl;
   1631 	IFNET_UNLOCK(ifp);
   1632 
   1633 	/*
   1634 	 * We cannot call ifc_destroy with holding ifp.
   1635 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1636 	 */
   1637 	if_put(ifp, &psref);
   1638 
   1639 	error = (*ifc->ifc_destroy)(ifp);
   1640 
   1641 	if (error != 0) {
   1642 		/* We have to restore if_ioctl on error */
   1643 		IFNET_LOCK(ifp);
   1644 		ifp->if_ioctl = if_ioctl;
   1645 		IFNET_UNLOCK(ifp);
   1646 	}
   1647 
   1648 	return error;
   1649 }
   1650 
   1651 static bool
   1652 if_is_unit(const char *name)
   1653 {
   1654 
   1655 	while (*name != '\0') {
   1656 		if (*name < '0' || *name > '9')
   1657 			return false;
   1658 		name++;
   1659 	}
   1660 
   1661 	return true;
   1662 }
   1663 
   1664 /*
   1665  * Look up a network interface cloner.
   1666  */
   1667 static struct if_clone *
   1668 if_clone_lookup(const char *name, int *unitp)
   1669 {
   1670 	struct if_clone *ifc;
   1671 	const char *cp;
   1672 	char *dp, ifname[IFNAMSIZ + 3];
   1673 	int unit;
   1674 
   1675 	KASSERT(mutex_owned(&if_clone_mtx));
   1676 
   1677 	strcpy(ifname, "if_");
   1678 	/* separate interface name from unit */
   1679 	/* TODO: search unit number from backward */
   1680 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1681 	    *cp && !if_is_unit(cp);)
   1682 		*dp++ = *cp++;
   1683 
   1684 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1685 		return NULL;	/* No name or unit number */
   1686 	*dp++ = '\0';
   1687 
   1688 again:
   1689 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1690 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1691 			break;
   1692 	}
   1693 
   1694 	if (ifc == NULL) {
   1695 		int error;
   1696 		if (*ifname == '\0')
   1697 			return NULL;
   1698 		mutex_exit(&if_clone_mtx);
   1699 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1700 		mutex_enter(&if_clone_mtx);
   1701 		if (error)
   1702 			return NULL;
   1703 		*ifname = '\0';
   1704 		goto again;
   1705 	}
   1706 
   1707 	unit = 0;
   1708 	while (cp - name < IFNAMSIZ && *cp) {
   1709 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1710 			/* Bogus unit number. */
   1711 			return NULL;
   1712 		}
   1713 		unit = (unit * 10) + (*cp++ - '0');
   1714 	}
   1715 
   1716 	if (unitp != NULL)
   1717 		*unitp = unit;
   1718 	return ifc;
   1719 }
   1720 
   1721 /*
   1722  * Register a network interface cloner.
   1723  */
   1724 void
   1725 if_clone_attach(struct if_clone *ifc)
   1726 {
   1727 
   1728 	mutex_enter(&if_clone_mtx);
   1729 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1730 	if_cloners_count++;
   1731 	mutex_exit(&if_clone_mtx);
   1732 }
   1733 
   1734 /*
   1735  * Unregister a network interface cloner.
   1736  */
   1737 void
   1738 if_clone_detach(struct if_clone *ifc)
   1739 {
   1740 
   1741 	mutex_enter(&if_clone_mtx);
   1742 	LIST_REMOVE(ifc, ifc_list);
   1743 	if_cloners_count--;
   1744 	mutex_exit(&if_clone_mtx);
   1745 }
   1746 
   1747 /*
   1748  * Provide list of interface cloners to userspace.
   1749  */
   1750 int
   1751 if_clone_list(int buf_count, char *buffer, int *total)
   1752 {
   1753 	char outbuf[IFNAMSIZ], *dst;
   1754 	struct if_clone *ifc;
   1755 	int count, error = 0;
   1756 
   1757 	mutex_enter(&if_clone_mtx);
   1758 	*total = if_cloners_count;
   1759 	if ((dst = buffer) == NULL) {
   1760 		/* Just asking how many there are. */
   1761 		goto out;
   1762 	}
   1763 
   1764 	if (buf_count < 0) {
   1765 		error = EINVAL;
   1766 		goto out;
   1767 	}
   1768 
   1769 	count = (if_cloners_count < buf_count) ?
   1770 	    if_cloners_count : buf_count;
   1771 
   1772 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1773 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1774 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1775 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1776 			error = ENAMETOOLONG;
   1777 			goto out;
   1778 		}
   1779 		error = copyout(outbuf, dst, sizeof(outbuf));
   1780 		if (error != 0)
   1781 			break;
   1782 	}
   1783 
   1784 out:
   1785 	mutex_exit(&if_clone_mtx);
   1786 	return error;
   1787 }
   1788 
   1789 void
   1790 ifa_psref_init(struct ifaddr *ifa)
   1791 {
   1792 
   1793 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1794 }
   1795 
   1796 void
   1797 ifaref(struct ifaddr *ifa)
   1798 {
   1799 
   1800 	atomic_inc_uint(&ifa->ifa_refcnt);
   1801 }
   1802 
   1803 void
   1804 ifafree(struct ifaddr *ifa)
   1805 {
   1806 	KASSERT(ifa != NULL);
   1807 	KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
   1808 
   1809 	if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
   1810 		free(ifa, M_IFADDR);
   1811 	}
   1812 }
   1813 
   1814 bool
   1815 ifa_is_destroying(struct ifaddr *ifa)
   1816 {
   1817 
   1818 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1819 }
   1820 
   1821 void
   1822 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1823 {
   1824 
   1825 	ifa->ifa_ifp = ifp;
   1826 
   1827 	/*
   1828 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1829 	 * Check !IFF_RUNNING for initialization routines that normally don't
   1830 	 * take IFNET_LOCK but it's safe because there is no competitor.
   1831 	 * XXX there are false positive cases because IFF_RUNNING can be off on
   1832 	 * if_stop.
   1833 	 */
   1834 	KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
   1835 	    IFNET_LOCKED(ifp));
   1836 
   1837 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1838 	IFADDR_ENTRY_INIT(ifa);
   1839 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1840 
   1841 	ifaref(ifa);
   1842 }
   1843 
   1844 void
   1845 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1846 {
   1847 
   1848 	KASSERT(ifa->ifa_ifp == ifp);
   1849 	/*
   1850 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1851 	 * if_is_deactivated indicates ifa_remove is called form if_detach
   1852 	 * where is safe even if IFNET_LOCK isn't held.
   1853 	 */
   1854 	KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
   1855 
   1856 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1857 	IFADDR_WRITER_REMOVE(ifa);
   1858 #ifdef NET_MPSAFE
   1859 	IFNET_GLOBAL_LOCK();
   1860 	pserialize_perform(ifnet_psz);
   1861 	IFNET_GLOBAL_UNLOCK();
   1862 #endif
   1863 
   1864 #ifdef NET_MPSAFE
   1865 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1866 #endif
   1867 	IFADDR_ENTRY_DESTROY(ifa);
   1868 	ifafree(ifa);
   1869 }
   1870 
   1871 void
   1872 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1873 {
   1874 
   1875 	PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   1876 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1877 }
   1878 
   1879 void
   1880 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1881 {
   1882 
   1883 	if (ifa == NULL)
   1884 		return;
   1885 
   1886 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1887 }
   1888 
   1889 bool
   1890 ifa_held(struct ifaddr *ifa)
   1891 {
   1892 
   1893 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1894 }
   1895 
   1896 static inline int
   1897 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1898 {
   1899 	return sockaddr_cmp(sa1, sa2) == 0;
   1900 }
   1901 
   1902 /*
   1903  * Locate an interface based on a complete address.
   1904  */
   1905 /*ARGSUSED*/
   1906 struct ifaddr *
   1907 ifa_ifwithaddr(const struct sockaddr *addr)
   1908 {
   1909 	struct ifnet *ifp;
   1910 	struct ifaddr *ifa;
   1911 
   1912 	IFNET_READER_FOREACH(ifp) {
   1913 		if (if_is_deactivated(ifp))
   1914 			continue;
   1915 		IFADDR_READER_FOREACH(ifa, ifp) {
   1916 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1917 				continue;
   1918 			if (equal(addr, ifa->ifa_addr))
   1919 				return ifa;
   1920 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1921 			    ifa->ifa_broadaddr &&
   1922 			    /* IP6 doesn't have broadcast */
   1923 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1924 			    equal(ifa->ifa_broadaddr, addr))
   1925 				return ifa;
   1926 		}
   1927 	}
   1928 	return NULL;
   1929 }
   1930 
   1931 struct ifaddr *
   1932 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1933 {
   1934 	struct ifaddr *ifa;
   1935 	int s = pserialize_read_enter();
   1936 
   1937 	ifa = ifa_ifwithaddr(addr);
   1938 	if (ifa != NULL)
   1939 		ifa_acquire(ifa, psref);
   1940 	pserialize_read_exit(s);
   1941 
   1942 	return ifa;
   1943 }
   1944 
   1945 /*
   1946  * Locate the point to point interface with a given destination address.
   1947  */
   1948 /*ARGSUSED*/
   1949 struct ifaddr *
   1950 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1951 {
   1952 	struct ifnet *ifp;
   1953 	struct ifaddr *ifa;
   1954 
   1955 	IFNET_READER_FOREACH(ifp) {
   1956 		if (if_is_deactivated(ifp))
   1957 			continue;
   1958 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1959 			continue;
   1960 		IFADDR_READER_FOREACH(ifa, ifp) {
   1961 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1962 			    ifa->ifa_dstaddr == NULL)
   1963 				continue;
   1964 			if (equal(addr, ifa->ifa_dstaddr))
   1965 				return ifa;
   1966 		}
   1967 	}
   1968 
   1969 	return NULL;
   1970 }
   1971 
   1972 struct ifaddr *
   1973 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1974 {
   1975 	struct ifaddr *ifa;
   1976 	int s;
   1977 
   1978 	s = pserialize_read_enter();
   1979 	ifa = ifa_ifwithdstaddr(addr);
   1980 	if (ifa != NULL)
   1981 		ifa_acquire(ifa, psref);
   1982 	pserialize_read_exit(s);
   1983 
   1984 	return ifa;
   1985 }
   1986 
   1987 /*
   1988  * Find an interface on a specific network.  If many, choice
   1989  * is most specific found.
   1990  */
   1991 struct ifaddr *
   1992 ifa_ifwithnet(const struct sockaddr *addr)
   1993 {
   1994 	struct ifnet *ifp;
   1995 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1996 	const struct sockaddr_dl *sdl;
   1997 	u_int af = addr->sa_family;
   1998 	const char *addr_data = addr->sa_data, *cplim;
   1999 
   2000 	if (af == AF_LINK) {
   2001 		sdl = satocsdl(addr);
   2002 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   2003 		    ifindex2ifnet[sdl->sdl_index] &&
   2004 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   2005 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   2006 		}
   2007 	}
   2008 #ifdef NETATALK
   2009 	if (af == AF_APPLETALK) {
   2010 		const struct sockaddr_at *sat, *sat2;
   2011 		sat = (const struct sockaddr_at *)addr;
   2012 		IFNET_READER_FOREACH(ifp) {
   2013 			if (if_is_deactivated(ifp))
   2014 				continue;
   2015 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   2016 			if (ifa == NULL)
   2017 				continue;
   2018 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   2019 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   2020 				return ifa; /* exact match */
   2021 			if (ifa_maybe == NULL) {
   2022 				/* else keep the if with the right range */
   2023 				ifa_maybe = ifa;
   2024 			}
   2025 		}
   2026 		return ifa_maybe;
   2027 	}
   2028 #endif
   2029 	IFNET_READER_FOREACH(ifp) {
   2030 		if (if_is_deactivated(ifp))
   2031 			continue;
   2032 		IFADDR_READER_FOREACH(ifa, ifp) {
   2033 			const char *cp, *cp2, *cp3;
   2034 
   2035 			if (ifa->ifa_addr->sa_family != af ||
   2036 			    ifa->ifa_netmask == NULL)
   2037  next:				continue;
   2038 			cp = addr_data;
   2039 			cp2 = ifa->ifa_addr->sa_data;
   2040 			cp3 = ifa->ifa_netmask->sa_data;
   2041 			cplim = (const char *)ifa->ifa_netmask +
   2042 			    ifa->ifa_netmask->sa_len;
   2043 			while (cp3 < cplim) {
   2044 				if ((*cp++ ^ *cp2++) & *cp3++) {
   2045 					/* want to continue for() loop */
   2046 					goto next;
   2047 				}
   2048 			}
   2049 			if (ifa_maybe == NULL ||
   2050 			    rt_refines(ifa->ifa_netmask,
   2051 			               ifa_maybe->ifa_netmask))
   2052 				ifa_maybe = ifa;
   2053 		}
   2054 	}
   2055 	return ifa_maybe;
   2056 }
   2057 
   2058 struct ifaddr *
   2059 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2060 {
   2061 	struct ifaddr *ifa;
   2062 	int s;
   2063 
   2064 	s = pserialize_read_enter();
   2065 	ifa = ifa_ifwithnet(addr);
   2066 	if (ifa != NULL)
   2067 		ifa_acquire(ifa, psref);
   2068 	pserialize_read_exit(s);
   2069 
   2070 	return ifa;
   2071 }
   2072 
   2073 /*
   2074  * Find the interface of the addresss.
   2075  */
   2076 struct ifaddr *
   2077 ifa_ifwithladdr(const struct sockaddr *addr)
   2078 {
   2079 	struct ifaddr *ia;
   2080 
   2081 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2082 	    (ia = ifa_ifwithnet(addr)))
   2083 		return ia;
   2084 	return NULL;
   2085 }
   2086 
   2087 struct ifaddr *
   2088 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2089 {
   2090 	struct ifaddr *ifa;
   2091 	int s;
   2092 
   2093 	s = pserialize_read_enter();
   2094 	ifa = ifa_ifwithladdr(addr);
   2095 	if (ifa != NULL)
   2096 		ifa_acquire(ifa, psref);
   2097 	pserialize_read_exit(s);
   2098 
   2099 	return ifa;
   2100 }
   2101 
   2102 /*
   2103  * Find an interface using a specific address family
   2104  */
   2105 struct ifaddr *
   2106 ifa_ifwithaf(int af)
   2107 {
   2108 	struct ifnet *ifp;
   2109 	struct ifaddr *ifa = NULL;
   2110 	int s;
   2111 
   2112 	s = pserialize_read_enter();
   2113 	IFNET_READER_FOREACH(ifp) {
   2114 		if (if_is_deactivated(ifp))
   2115 			continue;
   2116 		IFADDR_READER_FOREACH(ifa, ifp) {
   2117 			if (ifa->ifa_addr->sa_family == af)
   2118 				goto out;
   2119 		}
   2120 	}
   2121 out:
   2122 	pserialize_read_exit(s);
   2123 	return ifa;
   2124 }
   2125 
   2126 /*
   2127  * Find an interface address specific to an interface best matching
   2128  * a given address.
   2129  */
   2130 struct ifaddr *
   2131 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2132 {
   2133 	struct ifaddr *ifa;
   2134 	const char *cp, *cp2, *cp3;
   2135 	const char *cplim;
   2136 	struct ifaddr *ifa_maybe = 0;
   2137 	u_int af = addr->sa_family;
   2138 
   2139 	if (if_is_deactivated(ifp))
   2140 		return NULL;
   2141 
   2142 	if (af >= AF_MAX)
   2143 		return NULL;
   2144 
   2145 	IFADDR_READER_FOREACH(ifa, ifp) {
   2146 		if (ifa->ifa_addr->sa_family != af)
   2147 			continue;
   2148 		ifa_maybe = ifa;
   2149 		if (ifa->ifa_netmask == NULL) {
   2150 			if (equal(addr, ifa->ifa_addr) ||
   2151 			    (ifa->ifa_dstaddr &&
   2152 			     equal(addr, ifa->ifa_dstaddr)))
   2153 				return ifa;
   2154 			continue;
   2155 		}
   2156 		cp = addr->sa_data;
   2157 		cp2 = ifa->ifa_addr->sa_data;
   2158 		cp3 = ifa->ifa_netmask->sa_data;
   2159 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2160 		for (; cp3 < cplim; cp3++) {
   2161 			if ((*cp++ ^ *cp2++) & *cp3)
   2162 				break;
   2163 		}
   2164 		if (cp3 == cplim)
   2165 			return ifa;
   2166 	}
   2167 	return ifa_maybe;
   2168 }
   2169 
   2170 struct ifaddr *
   2171 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2172     struct psref *psref)
   2173 {
   2174 	struct ifaddr *ifa;
   2175 	int s;
   2176 
   2177 	s = pserialize_read_enter();
   2178 	ifa = ifaof_ifpforaddr(addr, ifp);
   2179 	if (ifa != NULL)
   2180 		ifa_acquire(ifa, psref);
   2181 	pserialize_read_exit(s);
   2182 
   2183 	return ifa;
   2184 }
   2185 
   2186 /*
   2187  * Default action when installing a route with a Link Level gateway.
   2188  * Lookup an appropriate real ifa to point to.
   2189  * This should be moved to /sys/net/link.c eventually.
   2190  */
   2191 void
   2192 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2193 {
   2194 	struct ifaddr *ifa;
   2195 	const struct sockaddr *dst;
   2196 	struct ifnet *ifp;
   2197 	struct psref psref;
   2198 
   2199 	if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2200 		return;
   2201 	ifp = rt->rt_ifa->ifa_ifp;
   2202 	dst = rt_getkey(rt);
   2203 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2204 		rt_replace_ifa(rt, ifa);
   2205 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2206 			ifa->ifa_rtrequest(cmd, rt, info);
   2207 		ifa_release(ifa, &psref);
   2208 	}
   2209 }
   2210 
   2211 /*
   2212  * bitmask macros to manage a densely packed link_state change queue.
   2213  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2214  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2215  * As a state change to store is 0, treat all bits set as an unset item.
   2216  */
   2217 #define LQ_ITEM_BITS		2
   2218 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2219 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2220 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2221 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2222 #define LQ_STORE(q, i, v)						      \
   2223 	do {								      \
   2224 		(q) &= ~LQ_MASK((i));					      \
   2225 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2226 	} while (0 /* CONSTCOND */)
   2227 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2228 #define LQ_POP(q, v)							      \
   2229 	do {								      \
   2230 		(v) = LQ_ITEM((q), 0);					      \
   2231 		(q) >>= LQ_ITEM_BITS;					      \
   2232 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2233 	} while (0 /* CONSTCOND */)
   2234 #define LQ_PUSH(q, v)							      \
   2235 	do {								      \
   2236 		(q) >>= LQ_ITEM_BITS;					      \
   2237 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2238 	} while (0 /* CONSTCOND */)
   2239 #define LQ_FIND_UNSET(q, i)						      \
   2240 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2241 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2242 			break;						      \
   2243 	}
   2244 
   2245 /*
   2246  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2247  * for each ifnet.  It doesn't matter because:
   2248  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
   2249  *   ifq_lock don't happen
   2250  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2251  *   because if_snd, if_link_state_change and if_link_state_change_softint
   2252  *   are all called with KERNEL_LOCK
   2253  */
   2254 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
   2255 	mutex_enter((ifp)->if_snd.ifq_lock)
   2256 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
   2257 	mutex_exit((ifp)->if_snd.ifq_lock)
   2258 
   2259 /*
   2260  * Handle a change in the interface link state and
   2261  * queue notifications.
   2262  */
   2263 void
   2264 if_link_state_change(struct ifnet *ifp, int link_state)
   2265 {
   2266 	int idx;
   2267 
   2268 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2269 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2270 	    ifp->if_xname, ifp->if_extflags);
   2271 
   2272 	/* Ensure change is to a valid state */
   2273 	switch (link_state) {
   2274 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2275 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2276 	case LINK_STATE_UP:
   2277 		break;
   2278 	default:
   2279 #ifdef DEBUG
   2280 		printf("%s: invalid link state %d\n",
   2281 		    ifp->if_xname, link_state);
   2282 #endif
   2283 		return;
   2284 	}
   2285 
   2286 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2287 
   2288 	/* Find the last unset event in the queue. */
   2289 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2290 
   2291 	/*
   2292 	 * Ensure link_state doesn't match the last event in the queue.
   2293 	 * ifp->if_link_state is not checked and set here because
   2294 	 * that would present an inconsistent picture to the system.
   2295 	 */
   2296 	if (idx != 0 &&
   2297 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2298 		goto out;
   2299 
   2300 	/* Handle queue overflow. */
   2301 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2302 		uint8_t lost;
   2303 
   2304 		/*
   2305 		 * The DOWN state must be protected from being pushed off
   2306 		 * the queue to ensure that userland will always be
   2307 		 * in a sane state.
   2308 		 * Because DOWN is protected, there is no need to protect
   2309 		 * UNKNOWN.
   2310 		 * It should be invalid to change from any other state to
   2311 		 * UNKNOWN anyway ...
   2312 		 */
   2313 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2314 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2315 		if (lost == LINK_STATE_DOWN) {
   2316 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2317 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2318 		}
   2319 		printf("%s: lost link state change %s\n",
   2320 		    ifp->if_xname,
   2321 		    lost == LINK_STATE_UP ? "UP" :
   2322 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2323 		    "UNKNOWN");
   2324 	} else
   2325 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2326 
   2327 	softint_schedule(ifp->if_link_si);
   2328 
   2329 out:
   2330 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2331 }
   2332 
   2333 /*
   2334  * Handle interface link state change notifications.
   2335  */
   2336 void
   2337 if_link_state_change_softint(struct ifnet *ifp, int link_state)
   2338 {
   2339 	struct domain *dp;
   2340 	int s = splnet();
   2341 	bool notify;
   2342 
   2343 	KASSERT(!cpu_intr_p());
   2344 
   2345 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2346 
   2347 	/* Ensure the change is still valid. */
   2348 	if (ifp->if_link_state == link_state) {
   2349 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2350 		splx(s);
   2351 		return;
   2352 	}
   2353 
   2354 #ifdef DEBUG
   2355 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2356 		link_state == LINK_STATE_UP ? "UP" :
   2357 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2358 		"UNKNOWN",
   2359 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2360 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2361 		"UNKNOWN");
   2362 #endif
   2363 
   2364 	/*
   2365 	 * When going from UNKNOWN to UP, we need to mark existing
   2366 	 * addresses as tentative and restart DAD as we may have
   2367 	 * erroneously not found a duplicate.
   2368 	 *
   2369 	 * This needs to happen before rt_ifmsg to avoid a race where
   2370 	 * listeners would have an address and expect it to work right
   2371 	 * away.
   2372 	 */
   2373 	notify = (link_state == LINK_STATE_UP &&
   2374 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2375 	ifp->if_link_state = link_state;
   2376 	/* The following routines may sleep so release the spin mutex */
   2377 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2378 
   2379 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2380 	if (notify) {
   2381 		DOMAIN_FOREACH(dp) {
   2382 			if (dp->dom_if_link_state_change != NULL)
   2383 				dp->dom_if_link_state_change(ifp,
   2384 				    LINK_STATE_DOWN);
   2385 		}
   2386 	}
   2387 
   2388 	/* Notify that the link state has changed. */
   2389 	rt_ifmsg(ifp);
   2390 
   2391 #if NCARP > 0
   2392 	if (ifp->if_carp)
   2393 		carp_carpdev_state(ifp);
   2394 #endif
   2395 
   2396 	DOMAIN_FOREACH(dp) {
   2397 		if (dp->dom_if_link_state_change != NULL)
   2398 			dp->dom_if_link_state_change(ifp, link_state);
   2399 	}
   2400 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2401 	splx(s);
   2402 }
   2403 
   2404 /*
   2405  * Process the interface link state change queue.
   2406  */
   2407 static void
   2408 if_link_state_change_si(void *arg)
   2409 {
   2410 	struct ifnet *ifp = arg;
   2411 	int s;
   2412 	uint8_t state;
   2413 	bool schedule;
   2414 
   2415 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2416 	s = splnet();
   2417 
   2418 	/* Pop a link state change from the queue and process it. */
   2419 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2420 	LQ_POP(ifp->if_link_queue, state);
   2421 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2422 
   2423 	if_link_state_change_softint(ifp, state);
   2424 
   2425 	/* If there is a link state change to come, schedule it. */
   2426 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2427 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
   2428 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2429 	if (schedule)
   2430 		softint_schedule(ifp->if_link_si);
   2431 
   2432 	splx(s);
   2433 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2434 }
   2435 
   2436 /*
   2437  * Default action when installing a local route on a point-to-point
   2438  * interface.
   2439  */
   2440 void
   2441 p2p_rtrequest(int req, struct rtentry *rt,
   2442     __unused const struct rt_addrinfo *info)
   2443 {
   2444 	struct ifnet *ifp = rt->rt_ifp;
   2445 	struct ifaddr *ifa, *lo0ifa;
   2446 	int s = pserialize_read_enter();
   2447 
   2448 	switch (req) {
   2449 	case RTM_ADD:
   2450 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2451 			break;
   2452 
   2453 		rt->rt_ifp = lo0ifp;
   2454 
   2455 		if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2456 			break;
   2457 
   2458 		IFADDR_READER_FOREACH(ifa, ifp) {
   2459 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2460 				break;
   2461 		}
   2462 		if (ifa == NULL)
   2463 			break;
   2464 
   2465 		/*
   2466 		 * Ensure lo0 has an address of the same family.
   2467 		 */
   2468 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2469 			if (lo0ifa->ifa_addr->sa_family ==
   2470 			    ifa->ifa_addr->sa_family)
   2471 				break;
   2472 		}
   2473 		if (lo0ifa == NULL)
   2474 			break;
   2475 
   2476 		/*
   2477 		 * Make sure to set rt->rt_ifa to the interface
   2478 		 * address we are using, otherwise we will have trouble
   2479 		 * with source address selection.
   2480 		 */
   2481 		if (ifa != rt->rt_ifa)
   2482 			rt_replace_ifa(rt, ifa);
   2483 		break;
   2484 	case RTM_DELETE:
   2485 	default:
   2486 		break;
   2487 	}
   2488 	pserialize_read_exit(s);
   2489 }
   2490 
   2491 static void
   2492 _if_down(struct ifnet *ifp)
   2493 {
   2494 	struct ifaddr *ifa;
   2495 	struct domain *dp;
   2496 	int s, bound;
   2497 	struct psref psref;
   2498 
   2499 	ifp->if_flags &= ~IFF_UP;
   2500 	nanotime(&ifp->if_lastchange);
   2501 
   2502 	bound = curlwp_bind();
   2503 	s = pserialize_read_enter();
   2504 	IFADDR_READER_FOREACH(ifa, ifp) {
   2505 		ifa_acquire(ifa, &psref);
   2506 		pserialize_read_exit(s);
   2507 
   2508 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2509 
   2510 		s = pserialize_read_enter();
   2511 		ifa_release(ifa, &psref);
   2512 	}
   2513 	pserialize_read_exit(s);
   2514 	curlwp_bindx(bound);
   2515 
   2516 	IFQ_PURGE(&ifp->if_snd);
   2517 #if NCARP > 0
   2518 	if (ifp->if_carp)
   2519 		carp_carpdev_state(ifp);
   2520 #endif
   2521 	rt_ifmsg(ifp);
   2522 	DOMAIN_FOREACH(dp) {
   2523 		if (dp->dom_if_down)
   2524 			dp->dom_if_down(ifp);
   2525 	}
   2526 }
   2527 
   2528 static void
   2529 if_down_deactivated(struct ifnet *ifp)
   2530 {
   2531 
   2532 	KASSERT(if_is_deactivated(ifp));
   2533 	_if_down(ifp);
   2534 }
   2535 
   2536 void
   2537 if_down_locked(struct ifnet *ifp)
   2538 {
   2539 
   2540 	KASSERT(IFNET_LOCKED(ifp));
   2541 	_if_down(ifp);
   2542 }
   2543 
   2544 /*
   2545  * Mark an interface down and notify protocols of
   2546  * the transition.
   2547  * NOTE: must be called at splsoftnet or equivalent.
   2548  */
   2549 void
   2550 if_down(struct ifnet *ifp)
   2551 {
   2552 
   2553 	IFNET_LOCK(ifp);
   2554 	if_down_locked(ifp);
   2555 	IFNET_UNLOCK(ifp);
   2556 }
   2557 
   2558 /*
   2559  * Must be called with holding if_ioctl_lock.
   2560  */
   2561 static void
   2562 if_up_locked(struct ifnet *ifp)
   2563 {
   2564 #ifdef notyet
   2565 	struct ifaddr *ifa;
   2566 #endif
   2567 	struct domain *dp;
   2568 
   2569 	KASSERT(IFNET_LOCKED(ifp));
   2570 
   2571 	KASSERT(!if_is_deactivated(ifp));
   2572 	ifp->if_flags |= IFF_UP;
   2573 	nanotime(&ifp->if_lastchange);
   2574 #ifdef notyet
   2575 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2576 	IFADDR_READER_FOREACH(ifa, ifp)
   2577 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2578 #endif
   2579 #if NCARP > 0
   2580 	if (ifp->if_carp)
   2581 		carp_carpdev_state(ifp);
   2582 #endif
   2583 	rt_ifmsg(ifp);
   2584 	DOMAIN_FOREACH(dp) {
   2585 		if (dp->dom_if_up)
   2586 			dp->dom_if_up(ifp);
   2587 	}
   2588 }
   2589 
   2590 /*
   2591  * Handle interface slowtimo timer routine.  Called
   2592  * from softclock, we decrement timer (if set) and
   2593  * call the appropriate interface routine on expiration.
   2594  */
   2595 static void
   2596 if_slowtimo(void *arg)
   2597 {
   2598 	void (*slowtimo)(struct ifnet *);
   2599 	struct ifnet *ifp = arg;
   2600 	int s;
   2601 
   2602 	slowtimo = ifp->if_slowtimo;
   2603 	if (__predict_false(slowtimo == NULL))
   2604 		return;
   2605 
   2606 	s = splnet();
   2607 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2608 		(*slowtimo)(ifp);
   2609 
   2610 	splx(s);
   2611 
   2612 	if (__predict_true(ifp->if_slowtimo != NULL))
   2613 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2614 }
   2615 
   2616 /*
   2617  * Mark an interface up and notify protocols of
   2618  * the transition.
   2619  * NOTE: must be called at splsoftnet or equivalent.
   2620  */
   2621 void
   2622 if_up(struct ifnet *ifp)
   2623 {
   2624 
   2625 	IFNET_LOCK(ifp);
   2626 	if_up_locked(ifp);
   2627 	IFNET_UNLOCK(ifp);
   2628 }
   2629 
   2630 /*
   2631  * Set/clear promiscuous mode on interface ifp based on the truth value
   2632  * of pswitch.  The calls are reference counted so that only the first
   2633  * "on" request actually has an effect, as does the final "off" request.
   2634  * Results are undefined if the "off" and "on" requests are not matched.
   2635  */
   2636 int
   2637 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2638 {
   2639 	int pcount, ret = 0;
   2640 	u_short nflags;
   2641 
   2642 	KASSERT(IFNET_LOCKED(ifp));
   2643 
   2644 	pcount = ifp->if_pcount;
   2645 	if (pswitch) {
   2646 		/*
   2647 		 * Allow the device to be "placed" into promiscuous
   2648 		 * mode even if it is not configured up.  It will
   2649 		 * consult IFF_PROMISC when it is brought up.
   2650 		 */
   2651 		if (ifp->if_pcount++ != 0)
   2652 			goto out;
   2653 		nflags = ifp->if_flags | IFF_PROMISC;
   2654 	} else {
   2655 		if (--ifp->if_pcount > 0)
   2656 			goto out;
   2657 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2658 	}
   2659 	ret = if_flags_set(ifp, nflags);
   2660 	/* Restore interface state if not successful. */
   2661 	if (ret != 0) {
   2662 		ifp->if_pcount = pcount;
   2663 	}
   2664 out:
   2665 	return ret;
   2666 }
   2667 
   2668 int
   2669 ifpromisc(struct ifnet *ifp, int pswitch)
   2670 {
   2671 	int e;
   2672 
   2673 	IFNET_LOCK(ifp);
   2674 	e = ifpromisc_locked(ifp, pswitch);
   2675 	IFNET_UNLOCK(ifp);
   2676 
   2677 	return e;
   2678 }
   2679 
   2680 /*
   2681  * Map interface name to
   2682  * interface structure pointer.
   2683  */
   2684 struct ifnet *
   2685 ifunit(const char *name)
   2686 {
   2687 	struct ifnet *ifp;
   2688 	const char *cp = name;
   2689 	u_int unit = 0;
   2690 	u_int i;
   2691 	int s;
   2692 
   2693 	/*
   2694 	 * If the entire name is a number, treat it as an ifindex.
   2695 	 */
   2696 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2697 		unit = unit * 10 + (*cp - '0');
   2698 	}
   2699 
   2700 	/*
   2701 	 * If the number took all of the name, then it's a valid ifindex.
   2702 	 */
   2703 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2704 		return if_byindex(unit);
   2705 
   2706 	ifp = NULL;
   2707 	s = pserialize_read_enter();
   2708 	IFNET_READER_FOREACH(ifp) {
   2709 		if (if_is_deactivated(ifp))
   2710 			continue;
   2711 	 	if (strcmp(ifp->if_xname, name) == 0)
   2712 			goto out;
   2713 	}
   2714 out:
   2715 	pserialize_read_exit(s);
   2716 	return ifp;
   2717 }
   2718 
   2719 /*
   2720  * Get a reference of an ifnet object by an interface name.
   2721  * The returned reference is protected by psref(9). The caller
   2722  * must release a returned reference by if_put after use.
   2723  */
   2724 struct ifnet *
   2725 if_get(const char *name, struct psref *psref)
   2726 {
   2727 	struct ifnet *ifp;
   2728 	const char *cp = name;
   2729 	u_int unit = 0;
   2730 	u_int i;
   2731 	int s;
   2732 
   2733 	/*
   2734 	 * If the entire name is a number, treat it as an ifindex.
   2735 	 */
   2736 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2737 		unit = unit * 10 + (*cp - '0');
   2738 	}
   2739 
   2740 	/*
   2741 	 * If the number took all of the name, then it's a valid ifindex.
   2742 	 */
   2743 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2744 		return if_get_byindex(unit, psref);
   2745 
   2746 	ifp = NULL;
   2747 	s = pserialize_read_enter();
   2748 	IFNET_READER_FOREACH(ifp) {
   2749 		if (if_is_deactivated(ifp))
   2750 			continue;
   2751 		if (strcmp(ifp->if_xname, name) == 0) {
   2752 			PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2753 			psref_acquire(psref, &ifp->if_psref,
   2754 			    ifnet_psref_class);
   2755 			goto out;
   2756 		}
   2757 	}
   2758 out:
   2759 	pserialize_read_exit(s);
   2760 	return ifp;
   2761 }
   2762 
   2763 /*
   2764  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2765  * or if_get_bylla.
   2766  */
   2767 void
   2768 if_put(const struct ifnet *ifp, struct psref *psref)
   2769 {
   2770 
   2771 	if (ifp == NULL)
   2772 		return;
   2773 
   2774 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2775 }
   2776 
   2777 /*
   2778  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
   2779  * should be used.
   2780  */
   2781 ifnet_t *
   2782 _if_byindex(u_int idx)
   2783 {
   2784 
   2785 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2786 }
   2787 
   2788 /*
   2789  * Return ifp having idx. Return NULL if not found or the found ifp is
   2790  * already deactivated.
   2791  */
   2792 ifnet_t *
   2793 if_byindex(u_int idx)
   2794 {
   2795 	ifnet_t *ifp;
   2796 
   2797 	ifp = _if_byindex(idx);
   2798 	if (ifp != NULL && if_is_deactivated(ifp))
   2799 		ifp = NULL;
   2800 	return ifp;
   2801 }
   2802 
   2803 /*
   2804  * Get a reference of an ifnet object by an interface index.
   2805  * The returned reference is protected by psref(9). The caller
   2806  * must release a returned reference by if_put after use.
   2807  */
   2808 ifnet_t *
   2809 if_get_byindex(u_int idx, struct psref *psref)
   2810 {
   2811 	ifnet_t *ifp;
   2812 	int s;
   2813 
   2814 	s = pserialize_read_enter();
   2815 	ifp = if_byindex(idx);
   2816 	if (__predict_true(ifp != NULL)) {
   2817 		PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2818 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2819 	}
   2820 	pserialize_read_exit(s);
   2821 
   2822 	return ifp;
   2823 }
   2824 
   2825 ifnet_t *
   2826 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2827 {
   2828 	ifnet_t *ifp;
   2829 	int s;
   2830 
   2831 	s = pserialize_read_enter();
   2832 	IFNET_READER_FOREACH(ifp) {
   2833 		if (if_is_deactivated(ifp))
   2834 			continue;
   2835 		if (ifp->if_addrlen != lla_len)
   2836 			continue;
   2837 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2838 			psref_acquire(psref, &ifp->if_psref,
   2839 			    ifnet_psref_class);
   2840 			break;
   2841 		}
   2842 	}
   2843 	pserialize_read_exit(s);
   2844 
   2845 	return ifp;
   2846 }
   2847 
   2848 /*
   2849  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2850  * for example using pserialize or the ifp is already held or some other
   2851  * object is held which guarantes the ifp to not be freed indirectly.
   2852  */
   2853 void
   2854 if_acquire(struct ifnet *ifp, struct psref *psref)
   2855 {
   2856 
   2857 	KASSERT(ifp->if_index != 0);
   2858 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2859 }
   2860 
   2861 bool
   2862 if_held(struct ifnet *ifp)
   2863 {
   2864 
   2865 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2866 }
   2867 
   2868 /*
   2869  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2870  * Check the tunnel nesting count.
   2871  * Return > 0, if tunnel nesting count is more than limit.
   2872  * Return 0, if tunnel nesting count is equal or less than limit.
   2873  */
   2874 int
   2875 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2876 {
   2877 	struct m_tag *mtag;
   2878 	int *count;
   2879 
   2880 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
   2881 	if (mtag != NULL) {
   2882 		count = (int *)(mtag + 1);
   2883 		if (++(*count) > limit) {
   2884 			log(LOG_NOTICE,
   2885 			    "%s: recursively called too many times(%d)\n",
   2886 			    ifp->if_xname, *count);
   2887 			return EIO;
   2888 		}
   2889 	} else {
   2890 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2891 		    M_NOWAIT);
   2892 		if (mtag != NULL) {
   2893 			m_tag_prepend(m, mtag);
   2894 			count = (int *)(mtag + 1);
   2895 			*count = 0;
   2896 		} else {
   2897 			log(LOG_DEBUG,
   2898 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2899 			    ifp->if_xname);
   2900 		}
   2901 	}
   2902 
   2903 	return 0;
   2904 }
   2905 
   2906 static void
   2907 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2908 {
   2909 	struct tunnel_ro *tro = p;
   2910 
   2911 	tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
   2912 	tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2913 }
   2914 
   2915 percpu_t *
   2916 if_tunnel_alloc_ro_percpu(void)
   2917 {
   2918 	percpu_t *ro_percpu;
   2919 
   2920 	ro_percpu = percpu_alloc(sizeof(struct tunnel_ro));
   2921 	percpu_foreach(ro_percpu, if_tunnel_ro_init_pc, NULL);
   2922 
   2923 	return ro_percpu;
   2924 }
   2925 
   2926 static void
   2927 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2928 {
   2929 	struct tunnel_ro *tro = p;
   2930 
   2931 	rtcache_free(tro->tr_ro);
   2932 	kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
   2933 
   2934 	mutex_obj_free(tro->tr_lock);
   2935 }
   2936 
   2937 void
   2938 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
   2939 {
   2940 
   2941 	percpu_foreach(ro_percpu, if_tunnel_ro_fini_pc, NULL);
   2942 	percpu_free(ro_percpu, sizeof(struct tunnel_ro));
   2943 }
   2944 
   2945 
   2946 static void
   2947 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2948 {
   2949 	struct tunnel_ro *tro = p;
   2950 
   2951 	mutex_enter(tro->tr_lock);
   2952 	rtcache_free(tro->tr_ro);
   2953 	mutex_exit(tro->tr_lock);
   2954 }
   2955 
   2956 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
   2957 {
   2958 
   2959 	percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
   2960 }
   2961 
   2962 
   2963 /* common */
   2964 int
   2965 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2966 {
   2967 	int s;
   2968 	struct ifreq *ifr;
   2969 	struct ifcapreq *ifcr;
   2970 	struct ifdatareq *ifdr;
   2971 	unsigned short flags;
   2972 	char *descr;
   2973 	int error;
   2974 
   2975 	switch (cmd) {
   2976 	case SIOCSIFCAP:
   2977 		ifcr = data;
   2978 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   2979 			return EINVAL;
   2980 
   2981 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   2982 			return 0;
   2983 
   2984 		ifp->if_capenable = ifcr->ifcr_capenable;
   2985 
   2986 		/* Pre-compute the checksum flags mask. */
   2987 		ifp->if_csum_flags_tx = 0;
   2988 		ifp->if_csum_flags_rx = 0;
   2989 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   2990 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   2991 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   2992 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   2993 
   2994 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
   2995 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   2996 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
   2997 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   2998 
   2999 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
   3000 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   3001 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
   3002 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   3003 
   3004 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
   3005 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   3006 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
   3007 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   3008 
   3009 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
   3010 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   3011 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
   3012 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   3013 
   3014 		if (ifp->if_capenable & IFCAP_TSOv4)
   3015 			ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
   3016 		if (ifp->if_capenable & IFCAP_TSOv6)
   3017 			ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
   3018 
   3019 #if NBRIDGE > 0
   3020 		if (ifp->if_bridge != NULL)
   3021 			bridge_calc_csum_flags(ifp->if_bridge);
   3022 #endif
   3023 
   3024 		if (ifp->if_flags & IFF_UP)
   3025 			return ENETRESET;
   3026 		return 0;
   3027 	case SIOCSIFFLAGS:
   3028 		ifr = data;
   3029 		/*
   3030 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   3031 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   3032 		 */
   3033 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3034 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   3035 			s = splsoftnet();
   3036 			if_down_locked(ifp);
   3037 			splx(s);
   3038 		}
   3039 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   3040 			s = splsoftnet();
   3041 			if_up_locked(ifp);
   3042 			splx(s);
   3043 		}
   3044 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3045 		flags = (ifp->if_flags & IFF_CANTCHANGE) |
   3046 		    (ifr->ifr_flags &~ IFF_CANTCHANGE);
   3047 		if (ifp->if_flags != flags) {
   3048 			ifp->if_flags = flags;
   3049 			/* Notify that the flags have changed. */
   3050 			rt_ifmsg(ifp);
   3051 		}
   3052 		break;
   3053 	case SIOCGIFFLAGS:
   3054 		ifr = data;
   3055 		ifr->ifr_flags = ifp->if_flags;
   3056 		break;
   3057 
   3058 	case SIOCGIFMETRIC:
   3059 		ifr = data;
   3060 		ifr->ifr_metric = ifp->if_metric;
   3061 		break;
   3062 
   3063 	case SIOCGIFMTU:
   3064 		ifr = data;
   3065 		ifr->ifr_mtu = ifp->if_mtu;
   3066 		break;
   3067 
   3068 	case SIOCGIFDLT:
   3069 		ifr = data;
   3070 		ifr->ifr_dlt = ifp->if_dlt;
   3071 		break;
   3072 
   3073 	case SIOCGIFCAP:
   3074 		ifcr = data;
   3075 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   3076 		ifcr->ifcr_capenable = ifp->if_capenable;
   3077 		break;
   3078 
   3079 	case SIOCSIFMETRIC:
   3080 		ifr = data;
   3081 		ifp->if_metric = ifr->ifr_metric;
   3082 		break;
   3083 
   3084 	case SIOCGIFDATA:
   3085 		ifdr = data;
   3086 		ifdr->ifdr_data = ifp->if_data;
   3087 		break;
   3088 
   3089 	case SIOCGIFINDEX:
   3090 		ifr = data;
   3091 		ifr->ifr_index = ifp->if_index;
   3092 		break;
   3093 
   3094 	case SIOCZIFDATA:
   3095 		ifdr = data;
   3096 		ifdr->ifdr_data = ifp->if_data;
   3097 		/*
   3098 		 * Assumes that the volatile counters that can be
   3099 		 * zero'ed are at the end of if_data.
   3100 		 */
   3101 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
   3102 		    offsetof(struct if_data, ifi_ipackets));
   3103 		/*
   3104 		 * The memset() clears to the bottm of if_data. In the area,
   3105 		 * if_lastchange is included. Please be careful if new entry
   3106 		 * will be added into if_data or rewite this.
   3107 		 *
   3108 		 * And also, update if_lastchnage.
   3109 		 */
   3110 		getnanotime(&ifp->if_lastchange);
   3111 		break;
   3112 	case SIOCSIFMTU:
   3113 		ifr = data;
   3114 		if (ifp->if_mtu == ifr->ifr_mtu)
   3115 			break;
   3116 		ifp->if_mtu = ifr->ifr_mtu;
   3117 		/*
   3118 		 * If the link MTU changed, do network layer specific procedure.
   3119 		 */
   3120 #ifdef INET6
   3121 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3122 		if (in6_present)
   3123 			nd6_setmtu(ifp);
   3124 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3125 #endif
   3126 		return ENETRESET;
   3127 	case SIOCSIFDESCR:
   3128 		error = kauth_authorize_network(curlwp->l_cred,
   3129 		    KAUTH_NETWORK_INTERFACE,
   3130 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3131 		    NULL);
   3132 		if (error)
   3133 			return error;
   3134 
   3135 		ifr = data;
   3136 
   3137 		if (ifr->ifr_buflen > IFDESCRSIZE)
   3138 			return ENAMETOOLONG;
   3139 
   3140 		if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
   3141 			/* unset description */
   3142 			descr = NULL;
   3143 		} else {
   3144 			descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
   3145 			/*
   3146 			 * copy (IFDESCRSIZE - 1) bytes to ensure
   3147 			 * terminating nul
   3148 			 */
   3149 			error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
   3150 			if (error) {
   3151 				kmem_free(descr, IFDESCRSIZE);
   3152 				return error;
   3153 			}
   3154 		}
   3155 
   3156 		if (ifp->if_description != NULL)
   3157 			kmem_free(ifp->if_description, IFDESCRSIZE);
   3158 
   3159 		ifp->if_description = descr;
   3160 		break;
   3161 
   3162  	case SIOCGIFDESCR:
   3163 		ifr = data;
   3164 		descr = ifp->if_description;
   3165 
   3166 		if (descr == NULL)
   3167 			return ENOMSG;
   3168 
   3169 		if (ifr->ifr_buflen < IFDESCRSIZE)
   3170 			return EINVAL;
   3171 
   3172 		error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
   3173 		if (error)
   3174 			return error;
   3175  		break;
   3176 
   3177 	default:
   3178 		return ENOTTY;
   3179 	}
   3180 	return 0;
   3181 }
   3182 
   3183 int
   3184 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3185 {
   3186 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3187 	struct ifaddr *ifa;
   3188 	const struct sockaddr *any, *sa;
   3189 	union {
   3190 		struct sockaddr sa;
   3191 		struct sockaddr_storage ss;
   3192 	} u, v;
   3193 	int s, error = 0;
   3194 
   3195 	switch (cmd) {
   3196 	case SIOCSIFADDRPREF:
   3197 		error = kauth_authorize_network(curlwp->l_cred,
   3198 		    KAUTH_NETWORK_INTERFACE,
   3199 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3200 		    NULL);
   3201 		if (error)
   3202 			return error;
   3203 		break;
   3204 	case SIOCGIFADDRPREF:
   3205 		break;
   3206 	default:
   3207 		return EOPNOTSUPP;
   3208 	}
   3209 
   3210 	/* sanity checks */
   3211 	if (data == NULL || ifp == NULL) {
   3212 		panic("invalid argument to %s", __func__);
   3213 		/*NOTREACHED*/
   3214 	}
   3215 
   3216 	/* address must be specified on ADD and DELETE */
   3217 	sa = sstocsa(&ifap->ifap_addr);
   3218 	if (sa->sa_family != sofamily(so))
   3219 		return EINVAL;
   3220 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3221 		return EINVAL;
   3222 
   3223 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3224 
   3225 	s = pserialize_read_enter();
   3226 	IFADDR_READER_FOREACH(ifa, ifp) {
   3227 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3228 			continue;
   3229 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3230 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3231 			break;
   3232 	}
   3233 	if (ifa == NULL) {
   3234 		error = EADDRNOTAVAIL;
   3235 		goto out;
   3236 	}
   3237 
   3238 	switch (cmd) {
   3239 	case SIOCSIFADDRPREF:
   3240 		ifa->ifa_preference = ifap->ifap_preference;
   3241 		goto out;
   3242 	case SIOCGIFADDRPREF:
   3243 		/* fill in the if_laddrreq structure */
   3244 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3245 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3246 		ifap->ifap_preference = ifa->ifa_preference;
   3247 		goto out;
   3248 	default:
   3249 		error = EOPNOTSUPP;
   3250 	}
   3251 out:
   3252 	pserialize_read_exit(s);
   3253 	return error;
   3254 }
   3255 
   3256 /*
   3257  * Interface ioctls.
   3258  */
   3259 static int
   3260 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3261 {
   3262 	struct ifnet *ifp;
   3263 	struct ifreq *ifr;
   3264 	int error = 0;
   3265 	u_long ocmd = cmd;
   3266 	u_short oif_flags;
   3267 	struct ifreq ifrb;
   3268 	struct oifreq *oifr = NULL;
   3269 	int r;
   3270 	struct psref psref;
   3271 	int bound;
   3272 	bool do_if43_post = false;
   3273 	bool do_ifm80_post = false;
   3274 
   3275 	switch (cmd) {
   3276 	case SIOCGIFCONF:
   3277 		return ifconf(cmd, data);
   3278 	case SIOCINITIFADDR:
   3279 		return EPERM;
   3280 	default:
   3281 		MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
   3282 		    error);
   3283 		if (error != ENOSYS)
   3284 			return error;
   3285 		MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
   3286 		    enosys(), error);
   3287 		if (error != ENOSYS)
   3288 			return error;
   3289 		error = 0;
   3290 		break;
   3291 	}
   3292 
   3293 	ifr = data;
   3294 	/* Pre-conversion */
   3295 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
   3296 	if (cmd != ocmd) {
   3297 		oifr = data;
   3298 		data = ifr = &ifrb;
   3299 		IFREQO2N_43(oifr, ifr);
   3300 		do_if43_post = true;
   3301 	}
   3302 	MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
   3303 	    enosys(), error);
   3304 
   3305 	switch (cmd) {
   3306 	case SIOCIFCREATE:
   3307 	case SIOCIFDESTROY:
   3308 		bound = curlwp_bind();
   3309 		if (l != NULL) {
   3310 			ifp = if_get(ifr->ifr_name, &psref);
   3311 			error = kauth_authorize_network(l->l_cred,
   3312 			    KAUTH_NETWORK_INTERFACE,
   3313 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3314 			    KAUTH_ARG(cmd), NULL);
   3315 			if (ifp != NULL)
   3316 				if_put(ifp, &psref);
   3317 			if (error != 0) {
   3318 				curlwp_bindx(bound);
   3319 				return error;
   3320 			}
   3321 		}
   3322 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3323 		mutex_enter(&if_clone_mtx);
   3324 		r = (cmd == SIOCIFCREATE) ?
   3325 			if_clone_create(ifr->ifr_name) :
   3326 			if_clone_destroy(ifr->ifr_name);
   3327 		mutex_exit(&if_clone_mtx);
   3328 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3329 		curlwp_bindx(bound);
   3330 		return r;
   3331 
   3332 	case SIOCIFGCLONERS:
   3333 		{
   3334 			struct if_clonereq *req = (struct if_clonereq *)data;
   3335 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3336 			    &req->ifcr_total);
   3337 		}
   3338 	}
   3339 
   3340 	bound = curlwp_bind();
   3341 	ifp = if_get(ifr->ifr_name, &psref);
   3342 	if (ifp == NULL) {
   3343 		curlwp_bindx(bound);
   3344 		return ENXIO;
   3345 	}
   3346 
   3347 	switch (cmd) {
   3348 	case SIOCALIFADDR:
   3349 	case SIOCDLIFADDR:
   3350 	case SIOCSIFADDRPREF:
   3351 	case SIOCSIFFLAGS:
   3352 	case SIOCSIFCAP:
   3353 	case SIOCSIFMETRIC:
   3354 	case SIOCZIFDATA:
   3355 	case SIOCSIFMTU:
   3356 	case SIOCSIFPHYADDR:
   3357 	case SIOCDIFPHYADDR:
   3358 #ifdef INET6
   3359 	case SIOCSIFPHYADDR_IN6:
   3360 #endif
   3361 	case SIOCSLIFPHYADDR:
   3362 	case SIOCADDMULTI:
   3363 	case SIOCDELMULTI:
   3364 	case SIOCSETHERCAP:
   3365 	case SIOCSIFMEDIA:
   3366 	case SIOCSDRVSPEC:
   3367 	case SIOCG80211:
   3368 	case SIOCS80211:
   3369 	case SIOCS80211NWID:
   3370 	case SIOCS80211NWKEY:
   3371 	case SIOCS80211POWER:
   3372 	case SIOCS80211BSSID:
   3373 	case SIOCS80211CHANNEL:
   3374 	case SIOCSLINKSTR:
   3375 		if (l != NULL) {
   3376 			error = kauth_authorize_network(l->l_cred,
   3377 			    KAUTH_NETWORK_INTERFACE,
   3378 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3379 			    KAUTH_ARG(cmd), NULL);
   3380 			if (error != 0)
   3381 				goto out;
   3382 		}
   3383 	}
   3384 
   3385 	oif_flags = ifp->if_flags;
   3386 
   3387 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3388 	IFNET_LOCK(ifp);
   3389 
   3390 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3391 	if (error != ENOTTY)
   3392 		;
   3393 	else if (so->so_proto == NULL)
   3394 		error = EOPNOTSUPP;
   3395 	else {
   3396 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3397 		MODULE_HOOK_CALL(if_ifioctl_43_hook,
   3398 			     (so, ocmd, cmd, data, l), enosys(), error);
   3399 		if (error == ENOSYS)
   3400 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3401 			    cmd, data, ifp);
   3402 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3403 	}
   3404 
   3405 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3406 		if ((ifp->if_flags & IFF_UP) != 0) {
   3407 			int s = splsoftnet();
   3408 			if_up_locked(ifp);
   3409 			splx(s);
   3410 		}
   3411 	}
   3412 
   3413 	/* Post-conversion */
   3414 	if (do_ifm80_post && (error == 0))
   3415 		MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
   3416 		    enosys(), error);
   3417 	if (do_if43_post)
   3418 		IFREQN2O_43(oifr, ifr);
   3419 
   3420 	IFNET_UNLOCK(ifp);
   3421 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3422 out:
   3423 	if_put(ifp, &psref);
   3424 	curlwp_bindx(bound);
   3425 	return error;
   3426 }
   3427 
   3428 /*
   3429  * Return interface configuration
   3430  * of system.  List may be used
   3431  * in later ioctl's (above) to get
   3432  * other information.
   3433  *
   3434  * Each record is a struct ifreq.  Before the addition of
   3435  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3436  * not fit would extend beyond the struct ifreq, with the next struct
   3437  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3438  * union in struct ifreq includes struct sockaddr_storage, every kind
   3439  * of sockaddr must fit.  Thus, there are no longer any overlength
   3440  * records.
   3441  *
   3442  * Records are added to the user buffer if they fit, and ifc_len is
   3443  * adjusted to the length that was written.  Thus, the user is only
   3444  * assured of getting the complete list if ifc_len on return is at
   3445  * least sizeof(struct ifreq) less than it was on entry.
   3446  *
   3447  * If the user buffer pointer is NULL, this routine copies no data and
   3448  * returns the amount of space that would be needed.
   3449  *
   3450  * Invariants:
   3451  * ifrp points to the next part of the user's buffer to be used.  If
   3452  * ifrp != NULL, space holds the number of bytes remaining that we may
   3453  * write at ifrp.  Otherwise, space holds the number of bytes that
   3454  * would have been written had there been adequate space.
   3455  */
   3456 /*ARGSUSED*/
   3457 static int
   3458 ifconf(u_long cmd, void *data)
   3459 {
   3460 	struct ifconf *ifc = (struct ifconf *)data;
   3461 	struct ifnet *ifp;
   3462 	struct ifaddr *ifa;
   3463 	struct ifreq ifr, *ifrp = NULL;
   3464 	int space = 0, error = 0;
   3465 	const int sz = (int)sizeof(struct ifreq);
   3466 	const bool docopy = ifc->ifc_req != NULL;
   3467 	int s;
   3468 	int bound;
   3469 	struct psref psref;
   3470 
   3471 	memset(&ifr, 0, sizeof(ifr));
   3472 	if (docopy) {
   3473 		space = ifc->ifc_len;
   3474 		ifrp = ifc->ifc_req;
   3475 	}
   3476 
   3477 	bound = curlwp_bind();
   3478 	s = pserialize_read_enter();
   3479 	IFNET_READER_FOREACH(ifp) {
   3480 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3481 		pserialize_read_exit(s);
   3482 
   3483 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3484 		    sizeof(ifr.ifr_name));
   3485 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3486 			error = ENAMETOOLONG;
   3487 			goto release_exit;
   3488 		}
   3489 		if (IFADDR_READER_EMPTY(ifp)) {
   3490 			/* Interface with no addresses - send zero sockaddr. */
   3491 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3492 			if (!docopy) {
   3493 				space += sz;
   3494 				goto next;
   3495 			}
   3496 			if (space >= sz) {
   3497 				error = copyout(&ifr, ifrp, sz);
   3498 				if (error != 0)
   3499 					goto release_exit;
   3500 				ifrp++;
   3501 				space -= sz;
   3502 			}
   3503 		}
   3504 
   3505 		s = pserialize_read_enter();
   3506 		IFADDR_READER_FOREACH(ifa, ifp) {
   3507 			struct sockaddr *sa = ifa->ifa_addr;
   3508 			/* all sockaddrs must fit in sockaddr_storage */
   3509 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3510 
   3511 			if (!docopy) {
   3512 				space += sz;
   3513 				continue;
   3514 			}
   3515 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3516 			pserialize_read_exit(s);
   3517 
   3518 			if (space >= sz) {
   3519 				error = copyout(&ifr, ifrp, sz);
   3520 				if (error != 0)
   3521 					goto release_exit;
   3522 				ifrp++; space -= sz;
   3523 			}
   3524 			s = pserialize_read_enter();
   3525 		}
   3526 		pserialize_read_exit(s);
   3527 
   3528         next:
   3529 		s = pserialize_read_enter();
   3530 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3531 	}
   3532 	pserialize_read_exit(s);
   3533 	curlwp_bindx(bound);
   3534 
   3535 	if (docopy) {
   3536 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3537 		ifc->ifc_len -= space;
   3538 	} else {
   3539 		KASSERT(space >= 0);
   3540 		ifc->ifc_len = space;
   3541 	}
   3542 	return (0);
   3543 
   3544 release_exit:
   3545 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3546 	curlwp_bindx(bound);
   3547 	return error;
   3548 }
   3549 
   3550 int
   3551 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3552 {
   3553 	uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
   3554 	struct ifreq ifrb;
   3555 	struct oifreq *oifr = NULL;
   3556 	u_long ocmd = cmd;
   3557 	int hook;
   3558 
   3559 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
   3560 	if (hook != ENOSYS) {
   3561 		if (cmd != ocmd) {
   3562 			oifr = (struct oifreq *)(void *)ifr;
   3563 			ifr = &ifrb;
   3564 			IFREQO2N_43(oifr, ifr);
   3565 				len = sizeof(oifr->ifr_addr);
   3566 		}
   3567 	}
   3568 
   3569 	if (len < sa->sa_len)
   3570 		return EFBIG;
   3571 
   3572 	memset(&ifr->ifr_addr, 0, len);
   3573 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3574 
   3575 	if (cmd != ocmd)
   3576 		IFREQN2O_43(oifr, ifr);
   3577 	return 0;
   3578 }
   3579 
   3580 /*
   3581  * wrapper function for the drivers which doesn't have if_transmit().
   3582  */
   3583 static int
   3584 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3585 {
   3586 	int s, error;
   3587 	size_t pktlen = m->m_pkthdr.len;
   3588 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3589 
   3590 	s = splnet();
   3591 
   3592 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3593 	if (error != 0) {
   3594 		/* mbuf is already freed */
   3595 		goto out;
   3596 	}
   3597 
   3598 	ifp->if_obytes += pktlen;
   3599 	if (mcast)
   3600 		ifp->if_omcasts++;
   3601 
   3602 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3603 		if_start_lock(ifp);
   3604 out:
   3605 	splx(s);
   3606 
   3607 	return error;
   3608 }
   3609 
   3610 int
   3611 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3612 {
   3613 	int error;
   3614 
   3615 	kmsan_check_mbuf(m);
   3616 
   3617 #ifdef ALTQ
   3618 	KERNEL_LOCK(1, NULL);
   3619 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3620 		error = if_transmit(ifp, m);
   3621 		KERNEL_UNLOCK_ONE(NULL);
   3622 	} else {
   3623 		KERNEL_UNLOCK_ONE(NULL);
   3624 		error = (*ifp->if_transmit)(ifp, m);
   3625 		/* mbuf is alredy freed */
   3626 	}
   3627 #else /* !ALTQ */
   3628 	error = (*ifp->if_transmit)(ifp, m);
   3629 	/* mbuf is alredy freed */
   3630 #endif /* !ALTQ */
   3631 
   3632 	return error;
   3633 }
   3634 
   3635 /*
   3636  * Queue message on interface, and start output if interface
   3637  * not yet active.
   3638  */
   3639 int
   3640 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3641 {
   3642 
   3643 	return if_transmit_lock(ifp, m);
   3644 }
   3645 
   3646 /*
   3647  * Queue message on interface, possibly using a second fast queue
   3648  */
   3649 int
   3650 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3651 {
   3652 	int error = 0;
   3653 
   3654 	if (ifq != NULL
   3655 #ifdef ALTQ
   3656 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3657 #endif
   3658 	    ) {
   3659 		if (IF_QFULL(ifq)) {
   3660 			IF_DROP(&ifp->if_snd);
   3661 			m_freem(m);
   3662 			if (error == 0)
   3663 				error = ENOBUFS;
   3664 		} else
   3665 			IF_ENQUEUE(ifq, m);
   3666 	} else
   3667 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3668 	if (error != 0) {
   3669 		++ifp->if_oerrors;
   3670 		return error;
   3671 	}
   3672 	return 0;
   3673 }
   3674 
   3675 int
   3676 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3677 {
   3678 	int rc;
   3679 
   3680 	KASSERT(IFNET_LOCKED(ifp));
   3681 	if (ifp->if_initaddr != NULL)
   3682 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3683 	else if (src ||
   3684 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3685 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3686 
   3687 	return rc;
   3688 }
   3689 
   3690 int
   3691 if_do_dad(struct ifnet *ifp)
   3692 {
   3693 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3694 		return 0;
   3695 
   3696 	switch (ifp->if_type) {
   3697 	case IFT_FAITH:
   3698 		/*
   3699 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3700 		 * but loop packets back.  We do not have to do DAD on such
   3701 		 * interfaces.  We should even omit it, because loop-backed
   3702 		 * responses would confuse the DAD procedure.
   3703 		 */
   3704 		return 0;
   3705 	default:
   3706 		/*
   3707 		 * Our DAD routine requires the interface up and running.
   3708 		 * However, some interfaces can be up before the RUNNING
   3709 		 * status.  Additionaly, users may try to assign addresses
   3710 		 * before the interface becomes up (or running).
   3711 		 * We simply skip DAD in such a case as a work around.
   3712 		 * XXX: we should rather mark "tentative" on such addresses,
   3713 		 * and do DAD after the interface becomes ready.
   3714 		 */
   3715 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   3716 		    (IFF_UP | IFF_RUNNING))
   3717 			return 0;
   3718 
   3719 		return 1;
   3720 	}
   3721 }
   3722 
   3723 int
   3724 if_flags_set(ifnet_t *ifp, const u_short flags)
   3725 {
   3726 	int rc;
   3727 
   3728 	KASSERT(IFNET_LOCKED(ifp));
   3729 
   3730 	if (ifp->if_setflags != NULL)
   3731 		rc = (*ifp->if_setflags)(ifp, flags);
   3732 	else {
   3733 		u_short cantflags, chgdflags;
   3734 		struct ifreq ifr;
   3735 
   3736 		chgdflags = ifp->if_flags ^ flags;
   3737 		cantflags = chgdflags & IFF_CANTCHANGE;
   3738 
   3739 		if (cantflags != 0)
   3740 			ifp->if_flags ^= cantflags;
   3741 
   3742                 /* Traditionally, we do not call if_ioctl after
   3743                  * setting/clearing only IFF_PROMISC if the interface
   3744                  * isn't IFF_UP.  Uphold that tradition.
   3745 		 */
   3746 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3747 			return 0;
   3748 
   3749 		memset(&ifr, 0, sizeof(ifr));
   3750 
   3751 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3752 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3753 
   3754 		if (rc != 0 && cantflags != 0)
   3755 			ifp->if_flags ^= cantflags;
   3756 	}
   3757 
   3758 	return rc;
   3759 }
   3760 
   3761 int
   3762 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3763 {
   3764 	int rc;
   3765 	struct ifreq ifr;
   3766 
   3767 	if (ifp->if_mcastop != NULL)
   3768 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3769 	else {
   3770 		ifreq_setaddr(cmd, &ifr, sa);
   3771 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3772 	}
   3773 
   3774 	return rc;
   3775 }
   3776 
   3777 static void
   3778 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3779     struct ifaltq *ifq)
   3780 {
   3781 	const struct sysctlnode *cnode, *rnode;
   3782 
   3783 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3784 		       CTLFLAG_PERMANENT,
   3785 		       CTLTYPE_NODE, "interfaces",
   3786 		       SYSCTL_DESCR("Per-interface controls"),
   3787 		       NULL, 0, NULL, 0,
   3788 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3789 		goto bad;
   3790 
   3791 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3792 		       CTLFLAG_PERMANENT,
   3793 		       CTLTYPE_NODE, ifname,
   3794 		       SYSCTL_DESCR("Interface controls"),
   3795 		       NULL, 0, NULL, 0,
   3796 		       CTL_CREATE, CTL_EOL) != 0)
   3797 		goto bad;
   3798 
   3799 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3800 		       CTLFLAG_PERMANENT,
   3801 		       CTLTYPE_NODE, "sndq",
   3802 		       SYSCTL_DESCR("Interface output queue controls"),
   3803 		       NULL, 0, NULL, 0,
   3804 		       CTL_CREATE, CTL_EOL) != 0)
   3805 		goto bad;
   3806 
   3807 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3808 		       CTLFLAG_PERMANENT,
   3809 		       CTLTYPE_INT, "len",
   3810 		       SYSCTL_DESCR("Current output queue length"),
   3811 		       NULL, 0, &ifq->ifq_len, 0,
   3812 		       CTL_CREATE, CTL_EOL) != 0)
   3813 		goto bad;
   3814 
   3815 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3816 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3817 		       CTLTYPE_INT, "maxlen",
   3818 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3819 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3820 		       CTL_CREATE, CTL_EOL) != 0)
   3821 		goto bad;
   3822 
   3823 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3824 		       CTLFLAG_PERMANENT,
   3825 		       CTLTYPE_INT, "drops",
   3826 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3827 		       NULL, 0, &ifq->ifq_drops, 0,
   3828 		       CTL_CREATE, CTL_EOL) != 0)
   3829 		goto bad;
   3830 
   3831 	return;
   3832 bad:
   3833 	printf("%s: could not attach sysctl nodes\n", ifname);
   3834 	return;
   3835 }
   3836 
   3837 #if defined(INET) || defined(INET6)
   3838 
   3839 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3840 	static int							\
   3841 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3842 	{								\
   3843 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3844 	}
   3845 
   3846 #if defined(INET)
   3847 static int
   3848 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3849 {
   3850 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3851 }
   3852 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3853 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3854 #endif
   3855 
   3856 #if defined(INET6)
   3857 static int
   3858 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3859 {
   3860 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3861 }
   3862 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3863 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3864 #endif
   3865 
   3866 static void
   3867 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3868 {
   3869 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3870 	const char *pfname = NULL, *ipname = NULL;
   3871 	int ipn = 0, qid = 0;
   3872 
   3873 	switch (pf) {
   3874 #if defined(INET)
   3875 	case PF_INET:
   3876 		len_func = sysctl_net_ip_pktq_items;
   3877 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3878 		drops_func = sysctl_net_ip_pktq_drops;
   3879 		pfname = "inet", ipn = IPPROTO_IP;
   3880 		ipname = "ip", qid = IPCTL_IFQ;
   3881 		break;
   3882 #endif
   3883 #if defined(INET6)
   3884 	case PF_INET6:
   3885 		len_func = sysctl_net_ip6_pktq_items;
   3886 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3887 		drops_func = sysctl_net_ip6_pktq_drops;
   3888 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3889 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3890 		break;
   3891 #endif
   3892 	default:
   3893 		KASSERT(false);
   3894 	}
   3895 
   3896 	sysctl_createv(clog, 0, NULL, NULL,
   3897 		       CTLFLAG_PERMANENT,
   3898 		       CTLTYPE_NODE, pfname, NULL,
   3899 		       NULL, 0, NULL, 0,
   3900 		       CTL_NET, pf, CTL_EOL);
   3901 	sysctl_createv(clog, 0, NULL, NULL,
   3902 		       CTLFLAG_PERMANENT,
   3903 		       CTLTYPE_NODE, ipname, NULL,
   3904 		       NULL, 0, NULL, 0,
   3905 		       CTL_NET, pf, ipn, CTL_EOL);
   3906 	sysctl_createv(clog, 0, NULL, NULL,
   3907 		       CTLFLAG_PERMANENT,
   3908 		       CTLTYPE_NODE, "ifq",
   3909 		       SYSCTL_DESCR("Protocol input queue controls"),
   3910 		       NULL, 0, NULL, 0,
   3911 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3912 
   3913 	sysctl_createv(clog, 0, NULL, NULL,
   3914 		       CTLFLAG_PERMANENT,
   3915 		       CTLTYPE_QUAD, "len",
   3916 		       SYSCTL_DESCR("Current input queue length"),
   3917 		       len_func, 0, NULL, 0,
   3918 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3919 	sysctl_createv(clog, 0, NULL, NULL,
   3920 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3921 		       CTLTYPE_INT, "maxlen",
   3922 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3923 		       maxlen_func, 0, NULL, 0,
   3924 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3925 	sysctl_createv(clog, 0, NULL, NULL,
   3926 		       CTLFLAG_PERMANENT,
   3927 		       CTLTYPE_QUAD, "drops",
   3928 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3929 		       drops_func, 0, NULL, 0,
   3930 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3931 }
   3932 #endif /* INET || INET6 */
   3933 
   3934 static int
   3935 if_sdl_sysctl(SYSCTLFN_ARGS)
   3936 {
   3937 	struct ifnet *ifp;
   3938 	const struct sockaddr_dl *sdl;
   3939 	struct psref psref;
   3940 	int error = 0;
   3941 	int bound;
   3942 
   3943 	if (namelen != 1)
   3944 		return EINVAL;
   3945 
   3946 	bound = curlwp_bind();
   3947 	ifp = if_get_byindex(name[0], &psref);
   3948 	if (ifp == NULL) {
   3949 		error = ENODEV;
   3950 		goto out0;
   3951 	}
   3952 
   3953 	sdl = ifp->if_sadl;
   3954 	if (sdl == NULL) {
   3955 		*oldlenp = 0;
   3956 		goto out1;
   3957 	}
   3958 
   3959 	if (oldp == NULL) {
   3960 		*oldlenp = sdl->sdl_alen;
   3961 		goto out1;
   3962 	}
   3963 
   3964 	if (*oldlenp >= sdl->sdl_alen)
   3965 		*oldlenp = sdl->sdl_alen;
   3966 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3967 out1:
   3968 	if_put(ifp, &psref);
   3969 out0:
   3970 	curlwp_bindx(bound);
   3971 	return error;
   3972 }
   3973 
   3974 static void
   3975 if_sysctl_setup(struct sysctllog **clog)
   3976 {
   3977 	const struct sysctlnode *rnode = NULL;
   3978 
   3979 	sysctl_createv(clog, 0, NULL, &rnode,
   3980 		       CTLFLAG_PERMANENT,
   3981 		       CTLTYPE_NODE, "sdl",
   3982 		       SYSCTL_DESCR("Get active link-layer address"),
   3983 		       if_sdl_sysctl, 0, NULL, 0,
   3984 		       CTL_NET, CTL_CREATE, CTL_EOL);
   3985 
   3986 #if defined(INET)
   3987 	sysctl_net_pktq_setup(NULL, PF_INET);
   3988 #endif
   3989 #ifdef INET6
   3990 	if (in6_present)
   3991 		sysctl_net_pktq_setup(NULL, PF_INET6);
   3992 #endif
   3993 }
   3994