Home | History | Annotate | Line # | Download | only in net
if.c revision 1.471
      1 /*	$NetBSD: if.c,v 1.471 2020/02/06 23:30:19 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.471 2020/02/06 23:30:19 thorpej Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_atalk.h"
     99 #include "opt_wlan.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mrouting.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 #include <sys/module_hook.h>
    123 #include <sys/compat_stub.h>
    124 #include <sys/msan.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net80211/ieee80211.h>
    131 #include <net80211/ieee80211_ioctl.h>
    132 #include <net/if_types.h>
    133 #include <net/route.h>
    134 #include <net/netisr.h>
    135 #include <sys/module.h>
    136 #ifdef NETATALK
    137 #include <netatalk/at_extern.h>
    138 #include <netatalk/at.h>
    139 #endif
    140 #include <net/pfil.h>
    141 #include <netinet/in.h>
    142 #include <netinet/in_var.h>
    143 #include <netinet/ip_encap.h>
    144 #include <net/bpf.h>
    145 
    146 #ifdef INET6
    147 #include <netinet6/in6_var.h>
    148 #include <netinet6/nd6.h>
    149 #endif
    150 
    151 #include "ether.h"
    152 
    153 #include "bridge.h"
    154 #if NBRIDGE > 0
    155 #include <net/if_bridgevar.h>
    156 #endif
    157 
    158 #include "carp.h"
    159 #if NCARP > 0
    160 #include <netinet/ip_carp.h>
    161 #endif
    162 
    163 #include <compat/sys/sockio.h>
    164 
    165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    167 
    168 /*
    169  * Global list of interfaces.
    170  */
    171 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    172 struct ifnet_head		ifnet_list;
    173 
    174 struct pslist_head		ifnet_pslist;
    175 static ifnet_t **		ifindex2ifnet = NULL;
    176 static u_int			if_index = 1;
    177 static size_t			if_indexlim = 0;
    178 static uint64_t			index_gen;
    179 /* Mutex to protect the above objects. */
    180 kmutex_t			ifnet_mtx __cacheline_aligned;
    181 static struct psref_class	*ifnet_psref_class __read_mostly;
    182 static pserialize_t		ifnet_psz;
    183 static struct workqueue		*ifnet_link_state_wq __read_mostly;
    184 
    185 static kmutex_t			if_clone_mtx;
    186 
    187 struct ifnet *lo0ifp;
    188 int	ifqmaxlen = IFQ_MAXLEN;
    189 
    190 struct psref_class		*ifa_psref_class __read_mostly;
    191 
    192 static int	if_delroute_matcher(struct rtentry *, void *);
    193 
    194 static bool if_is_unit(const char *);
    195 static struct if_clone *if_clone_lookup(const char *, int *);
    196 
    197 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    198 static int if_cloners_count;
    199 
    200 /* Packet filtering hook for interfaces. */
    201 pfil_head_t *			if_pfil __read_mostly;
    202 
    203 static kauth_listener_t if_listener;
    204 
    205 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    206 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    207 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    208     struct ifaltq *);
    209 static void if_slowtimo(void *);
    210 static void if_attachdomain1(struct ifnet *);
    211 static int ifconf(u_long, void *);
    212 static int if_transmit(struct ifnet *, struct mbuf *);
    213 static int if_clone_create(const char *);
    214 static int if_clone_destroy(const char *);
    215 static void if_link_state_change_work(struct work *, void *);
    216 static void if_up_locked(struct ifnet *);
    217 static void _if_down(struct ifnet *);
    218 static void if_down_deactivated(struct ifnet *);
    219 
    220 struct if_percpuq {
    221 	struct ifnet	*ipq_ifp;
    222 	void		*ipq_si;
    223 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    224 };
    225 
    226 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    227 
    228 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    229 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    230 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    231     struct if_percpuq *);
    232 
    233 struct if_deferred_start {
    234 	struct ifnet	*ids_ifp;
    235 	void		(*ids_if_start)(struct ifnet *);
    236 	void		*ids_si;
    237 };
    238 
    239 static void if_deferred_start_softint(void *);
    240 static void if_deferred_start_common(struct ifnet *);
    241 static void if_deferred_start_destroy(struct ifnet *);
    242 
    243 #if defined(INET) || defined(INET6)
    244 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    245 #endif
    246 
    247 /*
    248  * Hook for if_vlan - needed by if_agr
    249  */
    250 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
    251 
    252 static void if_sysctl_setup(struct sysctllog **);
    253 
    254 static int
    255 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    256     void *arg0, void *arg1, void *arg2, void *arg3)
    257 {
    258 	int result;
    259 	enum kauth_network_req req;
    260 
    261 	result = KAUTH_RESULT_DEFER;
    262 	req = (enum kauth_network_req)arg1;
    263 
    264 	if (action != KAUTH_NETWORK_INTERFACE)
    265 		return result;
    266 
    267 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    268 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    269 		result = KAUTH_RESULT_ALLOW;
    270 
    271 	return result;
    272 }
    273 
    274 /*
    275  * Network interface utility routines.
    276  *
    277  * Routines with ifa_ifwith* names take sockaddr *'s as
    278  * parameters.
    279  */
    280 void
    281 ifinit(void)
    282 {
    283 
    284 #if (defined(INET) || defined(INET6))
    285 	encapinit();
    286 #endif
    287 
    288 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    289 	    if_listener_cb, NULL);
    290 
    291 	/* interfaces are available, inform socket code */
    292 	ifioctl = doifioctl;
    293 }
    294 
    295 /*
    296  * XXX Initialization before configure().
    297  * XXX hack to get pfil_add_hook working in autoconf.
    298  */
    299 void
    300 ifinit1(void)
    301 {
    302 	int error __diagused;
    303 
    304 #ifdef NET_MPSAFE
    305 	printf("NET_MPSAFE enabled\n");
    306 #endif
    307 
    308 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    309 
    310 	TAILQ_INIT(&ifnet_list);
    311 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    312 	ifnet_psz = pserialize_create();
    313 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    314 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    315 	error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
    316 	    if_link_state_change_work, NULL, PRI_SOFTNET, IPL_SOFTNET,
    317 	    WQ_MPSAFE);
    318 	KASSERT(error == 0);
    319 	PSLIST_INIT(&ifnet_pslist);
    320 
    321 	if_indexlim = 8;
    322 
    323 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    324 	KASSERT(if_pfil != NULL);
    325 
    326 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
    327 	etherinit();
    328 #endif
    329 }
    330 
    331 /* XXX must be after domaininit() */
    332 void
    333 ifinit_post(void)
    334 {
    335 
    336 	if_sysctl_setup(NULL);
    337 }
    338 
    339 ifnet_t *
    340 if_alloc(u_char type)
    341 {
    342 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    343 }
    344 
    345 void
    346 if_free(ifnet_t *ifp)
    347 {
    348 	kmem_free(ifp, sizeof(ifnet_t));
    349 }
    350 
    351 void
    352 if_initname(struct ifnet *ifp, const char *name, int unit)
    353 {
    354 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    355 	    "%s%d", name, unit);
    356 }
    357 
    358 /*
    359  * Null routines used while an interface is going away.  These routines
    360  * just return an error.
    361  */
    362 
    363 int
    364 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    365     const struct sockaddr *so, const struct rtentry *rt)
    366 {
    367 
    368 	return ENXIO;
    369 }
    370 
    371 void
    372 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    373 {
    374 
    375 	/* Nothing. */
    376 }
    377 
    378 void
    379 if_nullstart(struct ifnet *ifp)
    380 {
    381 
    382 	/* Nothing. */
    383 }
    384 
    385 int
    386 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    387 {
    388 
    389 	m_freem(m);
    390 	return ENXIO;
    391 }
    392 
    393 int
    394 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    395 {
    396 
    397 	return ENXIO;
    398 }
    399 
    400 int
    401 if_nullinit(struct ifnet *ifp)
    402 {
    403 
    404 	return ENXIO;
    405 }
    406 
    407 void
    408 if_nullstop(struct ifnet *ifp, int disable)
    409 {
    410 
    411 	/* Nothing. */
    412 }
    413 
    414 void
    415 if_nullslowtimo(struct ifnet *ifp)
    416 {
    417 
    418 	/* Nothing. */
    419 }
    420 
    421 void
    422 if_nulldrain(struct ifnet *ifp)
    423 {
    424 
    425 	/* Nothing. */
    426 }
    427 
    428 void
    429 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    430 {
    431 	struct ifaddr *ifa;
    432 	struct sockaddr_dl *sdl;
    433 
    434 	ifp->if_addrlen = addrlen;
    435 	if_alloc_sadl(ifp);
    436 	ifa = ifp->if_dl;
    437 	sdl = satosdl(ifa->ifa_addr);
    438 
    439 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    440 	if (factory) {
    441 		KASSERT(ifp->if_hwdl == NULL);
    442 		ifp->if_hwdl = ifp->if_dl;
    443 		ifaref(ifp->if_hwdl);
    444 	}
    445 	/* TBD routing socket */
    446 }
    447 
    448 struct ifaddr *
    449 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    450 {
    451 	unsigned socksize, ifasize;
    452 	int addrlen, namelen;
    453 	struct sockaddr_dl *mask, *sdl;
    454 	struct ifaddr *ifa;
    455 
    456 	namelen = strlen(ifp->if_xname);
    457 	addrlen = ifp->if_addrlen;
    458 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    459 	ifasize = sizeof(*ifa) + 2 * socksize;
    460 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
    461 
    462 	sdl = (struct sockaddr_dl *)(ifa + 1);
    463 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    464 
    465 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    466 	    ifp->if_xname, namelen, NULL, addrlen);
    467 	mask->sdl_family = AF_LINK;
    468 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    469 	memset(&mask->sdl_data[0], 0xff, namelen);
    470 	ifa->ifa_rtrequest = link_rtrequest;
    471 	ifa->ifa_addr = (struct sockaddr *)sdl;
    472 	ifa->ifa_netmask = (struct sockaddr *)mask;
    473 	ifa_psref_init(ifa);
    474 
    475 	*sdlp = sdl;
    476 
    477 	return ifa;
    478 }
    479 
    480 static void
    481 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    482 {
    483 	const struct sockaddr_dl *sdl;
    484 
    485 	ifp->if_dl = ifa;
    486 	ifaref(ifa);
    487 	sdl = satosdl(ifa->ifa_addr);
    488 	ifp->if_sadl = sdl;
    489 }
    490 
    491 /*
    492  * Allocate the link level name for the specified interface.  This
    493  * is an attachment helper.  It must be called after ifp->if_addrlen
    494  * is initialized, which may not be the case when if_attach() is
    495  * called.
    496  */
    497 void
    498 if_alloc_sadl(struct ifnet *ifp)
    499 {
    500 	struct ifaddr *ifa;
    501 	const struct sockaddr_dl *sdl;
    502 
    503 	/*
    504 	 * If the interface already has a link name, release it
    505 	 * now.  This is useful for interfaces that can change
    506 	 * link types, and thus switch link names often.
    507 	 */
    508 	if (ifp->if_sadl != NULL)
    509 		if_free_sadl(ifp, 0);
    510 
    511 	ifa = if_dl_create(ifp, &sdl);
    512 
    513 	ifa_insert(ifp, ifa);
    514 	if_sadl_setrefs(ifp, ifa);
    515 }
    516 
    517 static void
    518 if_deactivate_sadl(struct ifnet *ifp)
    519 {
    520 	struct ifaddr *ifa;
    521 
    522 	KASSERT(ifp->if_dl != NULL);
    523 
    524 	ifa = ifp->if_dl;
    525 
    526 	ifp->if_sadl = NULL;
    527 
    528 	ifp->if_dl = NULL;
    529 	ifafree(ifa);
    530 }
    531 
    532 static void
    533 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    534 {
    535 	struct ifaddr *old;
    536 
    537 	KASSERT(ifp->if_dl != NULL);
    538 
    539 	old = ifp->if_dl;
    540 
    541 	ifaref(ifa);
    542 	/* XXX Update if_dl and if_sadl atomically */
    543 	ifp->if_dl = ifa;
    544 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    545 
    546 	ifafree(old);
    547 }
    548 
    549 void
    550 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    551     const struct sockaddr_dl *sdl)
    552 {
    553 	int s, ss;
    554 	struct ifaddr *ifa;
    555 	int bound = curlwp_bind();
    556 
    557 	KASSERT(ifa_held(ifa0));
    558 
    559 	s = splsoftnet();
    560 
    561 	if_replace_sadl(ifp, ifa0);
    562 
    563 	ss = pserialize_read_enter();
    564 	IFADDR_READER_FOREACH(ifa, ifp) {
    565 		struct psref psref;
    566 		ifa_acquire(ifa, &psref);
    567 		pserialize_read_exit(ss);
    568 
    569 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    570 
    571 		ss = pserialize_read_enter();
    572 		ifa_release(ifa, &psref);
    573 	}
    574 	pserialize_read_exit(ss);
    575 
    576 	splx(s);
    577 	curlwp_bindx(bound);
    578 }
    579 
    580 /*
    581  * Free the link level name for the specified interface.  This is
    582  * a detach helper.  This is called from if_detach().
    583  */
    584 void
    585 if_free_sadl(struct ifnet *ifp, int factory)
    586 {
    587 	struct ifaddr *ifa;
    588 	int s;
    589 
    590 	if (factory && ifp->if_hwdl != NULL) {
    591 		ifa = ifp->if_hwdl;
    592 		ifp->if_hwdl = NULL;
    593 		ifafree(ifa);
    594 	}
    595 
    596 	ifa = ifp->if_dl;
    597 	if (ifa == NULL) {
    598 		KASSERT(ifp->if_sadl == NULL);
    599 		return;
    600 	}
    601 
    602 	KASSERT(ifp->if_sadl != NULL);
    603 
    604 	s = splsoftnet();
    605 	KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
    606 	ifa_remove(ifp, ifa);
    607 	if_deactivate_sadl(ifp);
    608 	splx(s);
    609 }
    610 
    611 static void
    612 if_getindex(ifnet_t *ifp)
    613 {
    614 	bool hitlimit = false;
    615 
    616 	ifp->if_index_gen = index_gen++;
    617 
    618 	ifp->if_index = if_index;
    619 	if (ifindex2ifnet == NULL) {
    620 		if_index++;
    621 		goto skip;
    622 	}
    623 	while (if_byindex(ifp->if_index)) {
    624 		/*
    625 		 * If we hit USHRT_MAX, we skip back to 0 since
    626 		 * there are a number of places where the value
    627 		 * of if_index or if_index itself is compared
    628 		 * to or stored in an unsigned short.  By
    629 		 * jumping back, we won't botch those assignments
    630 		 * or comparisons.
    631 		 */
    632 		if (++if_index == 0) {
    633 			if_index = 1;
    634 		} else if (if_index == USHRT_MAX) {
    635 			/*
    636 			 * However, if we have to jump back to
    637 			 * zero *twice* without finding an empty
    638 			 * slot in ifindex2ifnet[], then there
    639 			 * there are too many (>65535) interfaces.
    640 			 */
    641 			if (hitlimit) {
    642 				panic("too many interfaces");
    643 			}
    644 			hitlimit = true;
    645 			if_index = 1;
    646 		}
    647 		ifp->if_index = if_index;
    648 	}
    649 skip:
    650 	/*
    651 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    652 	 * grow dynamically, it should grow too.
    653 	 */
    654 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    655 		size_t m, n, oldlim;
    656 		void *q;
    657 
    658 		oldlim = if_indexlim;
    659 		while (ifp->if_index >= if_indexlim)
    660 			if_indexlim <<= 1;
    661 
    662 		/* grow ifindex2ifnet */
    663 		m = oldlim * sizeof(struct ifnet *);
    664 		n = if_indexlim * sizeof(struct ifnet *);
    665 		q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
    666 		if (ifindex2ifnet != NULL) {
    667 			memcpy(q, ifindex2ifnet, m);
    668 			free(ifindex2ifnet, M_IFADDR);
    669 		}
    670 		ifindex2ifnet = (struct ifnet **)q;
    671 	}
    672 	ifindex2ifnet[ifp->if_index] = ifp;
    673 }
    674 
    675 /*
    676  * Initialize an interface and assign an index for it.
    677  *
    678  * It must be called prior to a device specific attach routine
    679  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    680  * and be followed by if_register:
    681  *
    682  *     if_initialize(ifp);
    683  *     ether_ifattach(ifp, enaddr);
    684  *     if_register(ifp);
    685  */
    686 int
    687 if_initialize(ifnet_t *ifp)
    688 {
    689 	int rv = 0;
    690 
    691 	KASSERT(if_indexlim > 0);
    692 	TAILQ_INIT(&ifp->if_addrlist);
    693 
    694 	/*
    695 	 * Link level name is allocated later by a separate call to
    696 	 * if_alloc_sadl().
    697 	 */
    698 
    699 	if (ifp->if_snd.ifq_maxlen == 0)
    700 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    701 
    702 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    703 
    704 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    705 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    706 
    707 	ifp->if_capenable = 0;
    708 	ifp->if_csum_flags_tx = 0;
    709 	ifp->if_csum_flags_rx = 0;
    710 
    711 #ifdef ALTQ
    712 	ifp->if_snd.altq_type = 0;
    713 	ifp->if_snd.altq_disc = NULL;
    714 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    715 	ifp->if_snd.altq_tbr  = NULL;
    716 	ifp->if_snd.altq_ifp  = ifp;
    717 #endif
    718 
    719 	IFQ_LOCK_INIT(&ifp->if_snd);
    720 
    721 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    722 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    723 
    724 	IF_AFDATA_LOCK_INIT(ifp);
    725 
    726 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    727 	PSLIST_INIT(&ifp->if_addr_pslist);
    728 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    729 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    730 	LIST_INIT(&ifp->if_multiaddrs);
    731 	if ((rv = if_stats_init(ifp)) != 0) {
    732 		goto fail;
    733 	}
    734 
    735 	IFNET_GLOBAL_LOCK();
    736 	if_getindex(ifp);
    737 	IFNET_GLOBAL_UNLOCK();
    738 
    739 	return 0;
    740 
    741 fail:
    742 	IF_AFDATA_LOCK_DESTROY(ifp);
    743 
    744 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    745 	(void)pfil_head_destroy(ifp->if_pfil);
    746 
    747 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    748 
    749 	return rv;
    750 }
    751 
    752 /*
    753  * Register an interface to the list of "active" interfaces.
    754  */
    755 void
    756 if_register(ifnet_t *ifp)
    757 {
    758 	/*
    759 	 * If the driver has not supplied its own if_ioctl, then
    760 	 * supply the default.
    761 	 */
    762 	if (ifp->if_ioctl == NULL)
    763 		ifp->if_ioctl = ifioctl_common;
    764 
    765 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    766 
    767 	if (!STAILQ_EMPTY(&domains))
    768 		if_attachdomain1(ifp);
    769 
    770 	/* Announce the interface. */
    771 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    772 
    773 	if (ifp->if_slowtimo != NULL) {
    774 		ifp->if_slowtimo_ch =
    775 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    776 		callout_init(ifp->if_slowtimo_ch, 0);
    777 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    778 		if_slowtimo(ifp);
    779 	}
    780 
    781 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    782 		ifp->if_transmit = if_transmit;
    783 
    784 	IFNET_GLOBAL_LOCK();
    785 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    786 	IFNET_WRITER_INSERT_TAIL(ifp);
    787 	IFNET_GLOBAL_UNLOCK();
    788 }
    789 
    790 /*
    791  * The if_percpuq framework
    792  *
    793  * It allows network device drivers to execute the network stack
    794  * in softint (so called softint-based if_input). It utilizes
    795  * softint and percpu ifqueue. It doesn't distribute any packets
    796  * between CPUs, unlike pktqueue(9).
    797  *
    798  * Currently we support two options for device drivers to apply the framework:
    799  * - Use it implicitly with less changes
    800  *   - If you use if_attach in driver's _attach function and if_input in
    801  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    802  *     the packet implicitly
    803  * - Use it explicitly in each driver (recommended)
    804  *   - You can use if_percpuq_* directly in your driver
    805  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    806  *   - See wm(4) as a reference implementation
    807  */
    808 
    809 static void
    810 if_percpuq_softint(void *arg)
    811 {
    812 	struct if_percpuq *ipq = arg;
    813 	struct ifnet *ifp = ipq->ipq_ifp;
    814 	struct mbuf *m;
    815 
    816 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    817 		if_statinc(ifp, if_ipackets);
    818 		bpf_mtap(ifp, m, BPF_D_IN);
    819 
    820 		ifp->_if_input(ifp, m);
    821 	}
    822 }
    823 
    824 static void
    825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    826 {
    827 	struct ifqueue *const ifq = p;
    828 
    829 	memset(ifq, 0, sizeof(*ifq));
    830 	ifq->ifq_maxlen = IFQ_MAXLEN;
    831 }
    832 
    833 struct if_percpuq *
    834 if_percpuq_create(struct ifnet *ifp)
    835 {
    836 	struct if_percpuq *ipq;
    837 	u_int flags = SOFTINT_NET;
    838 
    839 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
    840 
    841 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    842 	ipq->ipq_ifp = ifp;
    843 	ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
    844 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    845 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    846 
    847 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    848 
    849 	return ipq;
    850 }
    851 
    852 static struct mbuf *
    853 if_percpuq_dequeue(struct if_percpuq *ipq)
    854 {
    855 	struct mbuf *m;
    856 	struct ifqueue *ifq;
    857 	int s;
    858 
    859 	s = splnet();
    860 	ifq = percpu_getref(ipq->ipq_ifqs);
    861 	IF_DEQUEUE(ifq, m);
    862 	percpu_putref(ipq->ipq_ifqs);
    863 	splx(s);
    864 
    865 	return m;
    866 }
    867 
    868 static void
    869 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    870 {
    871 	struct ifqueue *const ifq = p;
    872 
    873 	IF_PURGE(ifq);
    874 }
    875 
    876 void
    877 if_percpuq_destroy(struct if_percpuq *ipq)
    878 {
    879 
    880 	/* if_detach may already destroy it */
    881 	if (ipq == NULL)
    882 		return;
    883 
    884 	softint_disestablish(ipq->ipq_si);
    885 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    886 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    887 	kmem_free(ipq, sizeof(*ipq));
    888 }
    889 
    890 void
    891 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    892 {
    893 	struct ifqueue *ifq;
    894 	int s;
    895 
    896 	KASSERT(ipq != NULL);
    897 
    898 	s = splnet();
    899 	ifq = percpu_getref(ipq->ipq_ifqs);
    900 	if (IF_QFULL(ifq)) {
    901 		IF_DROP(ifq);
    902 		percpu_putref(ipq->ipq_ifqs);
    903 		m_freem(m);
    904 		goto out;
    905 	}
    906 	IF_ENQUEUE(ifq, m);
    907 	percpu_putref(ipq->ipq_ifqs);
    908 
    909 	softint_schedule(ipq->ipq_si);
    910 out:
    911 	splx(s);
    912 }
    913 
    914 static void
    915 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    916 {
    917 	struct ifqueue *const ifq = p;
    918 	int *sum = arg;
    919 
    920 	*sum += ifq->ifq_drops;
    921 }
    922 
    923 static int
    924 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    925 {
    926 	struct sysctlnode node;
    927 	struct if_percpuq *ipq;
    928 	int sum = 0;
    929 	int error;
    930 
    931 	node = *rnode;
    932 	ipq = node.sysctl_data;
    933 
    934 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    935 
    936 	node.sysctl_data = &sum;
    937 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    938 	if (error != 0 || newp == NULL)
    939 		return error;
    940 
    941 	return 0;
    942 }
    943 
    944 static void
    945 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    946     struct if_percpuq *ipq)
    947 {
    948 	const struct sysctlnode *cnode, *rnode;
    949 
    950 	if (sysctl_createv(clog, 0, NULL, &rnode,
    951 		       CTLFLAG_PERMANENT,
    952 		       CTLTYPE_NODE, "interfaces",
    953 		       SYSCTL_DESCR("Per-interface controls"),
    954 		       NULL, 0, NULL, 0,
    955 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    956 		goto bad;
    957 
    958 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    959 		       CTLFLAG_PERMANENT,
    960 		       CTLTYPE_NODE, ifname,
    961 		       SYSCTL_DESCR("Interface controls"),
    962 		       NULL, 0, NULL, 0,
    963 		       CTL_CREATE, CTL_EOL) != 0)
    964 		goto bad;
    965 
    966 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    967 		       CTLFLAG_PERMANENT,
    968 		       CTLTYPE_NODE, "rcvq",
    969 		       SYSCTL_DESCR("Interface input queue controls"),
    970 		       NULL, 0, NULL, 0,
    971 		       CTL_CREATE, CTL_EOL) != 0)
    972 		goto bad;
    973 
    974 #ifdef NOTYET
    975 	/* XXX Should show each per-CPU queue length? */
    976 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    977 		       CTLFLAG_PERMANENT,
    978 		       CTLTYPE_INT, "len",
    979 		       SYSCTL_DESCR("Current input queue length"),
    980 		       sysctl_percpuq_len, 0, NULL, 0,
    981 		       CTL_CREATE, CTL_EOL) != 0)
    982 		goto bad;
    983 
    984 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    985 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    986 		       CTLTYPE_INT, "maxlen",
    987 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    988 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
    989 		       CTL_CREATE, CTL_EOL) != 0)
    990 		goto bad;
    991 #endif
    992 
    993 	if (sysctl_createv(clog, 0, &rnode, &cnode,
    994 		       CTLFLAG_PERMANENT,
    995 		       CTLTYPE_INT, "drops",
    996 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
    997 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
    998 		       CTL_CREATE, CTL_EOL) != 0)
    999 		goto bad;
   1000 
   1001 	return;
   1002 bad:
   1003 	printf("%s: could not attach sysctl nodes\n", ifname);
   1004 	return;
   1005 }
   1006 
   1007 /*
   1008  * The deferred if_start framework
   1009  *
   1010  * The common APIs to defer if_start to softint when if_start is requested
   1011  * from a device driver running in hardware interrupt context.
   1012  */
   1013 /*
   1014  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1015  * deferred if_start.
   1016  */
   1017 static void
   1018 if_deferred_start_softint(void *arg)
   1019 {
   1020 	struct if_deferred_start *ids = arg;
   1021 	struct ifnet *ifp = ids->ids_ifp;
   1022 
   1023 	ids->ids_if_start(ifp);
   1024 }
   1025 
   1026 /*
   1027  * The default callback function for deferred if_start.
   1028  */
   1029 static void
   1030 if_deferred_start_common(struct ifnet *ifp)
   1031 {
   1032 	int s;
   1033 
   1034 	s = splnet();
   1035 	if_start_lock(ifp);
   1036 	splx(s);
   1037 }
   1038 
   1039 static inline bool
   1040 if_snd_is_used(struct ifnet *ifp)
   1041 {
   1042 
   1043 	return ALTQ_IS_ENABLED(&ifp->if_snd) ||
   1044 		ifp->if_transmit == if_transmit ||
   1045 		ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
   1046 }
   1047 
   1048 /*
   1049  * Schedule deferred if_start.
   1050  */
   1051 void
   1052 if_schedule_deferred_start(struct ifnet *ifp)
   1053 {
   1054 
   1055 	KASSERT(ifp->if_deferred_start != NULL);
   1056 
   1057 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1058 		return;
   1059 
   1060 	softint_schedule(ifp->if_deferred_start->ids_si);
   1061 }
   1062 
   1063 /*
   1064  * Create an instance of deferred if_start. A driver should call the function
   1065  * only if the driver needs deferred if_start. Drivers can setup their own
   1066  * deferred if_start function via 2nd argument.
   1067  */
   1068 void
   1069 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1070 {
   1071 	struct if_deferred_start *ids;
   1072 	u_int flags = SOFTINT_NET;
   1073 
   1074 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
   1075 
   1076 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1077 	ids->ids_ifp = ifp;
   1078 	ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
   1079 	if (func != NULL)
   1080 		ids->ids_if_start = func;
   1081 	else
   1082 		ids->ids_if_start = if_deferred_start_common;
   1083 
   1084 	ifp->if_deferred_start = ids;
   1085 }
   1086 
   1087 static void
   1088 if_deferred_start_destroy(struct ifnet *ifp)
   1089 {
   1090 
   1091 	if (ifp->if_deferred_start == NULL)
   1092 		return;
   1093 
   1094 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1095 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1096 	ifp->if_deferred_start = NULL;
   1097 }
   1098 
   1099 /*
   1100  * The common interface input routine that is called by device drivers,
   1101  * which should be used only when the driver's rx handler already runs
   1102  * in softint.
   1103  */
   1104 void
   1105 if_input(struct ifnet *ifp, struct mbuf *m)
   1106 {
   1107 
   1108 	KASSERT(ifp->if_percpuq == NULL);
   1109 	KASSERT(!cpu_intr_p());
   1110 
   1111 	if_statinc(ifp, if_ipackets);
   1112 	bpf_mtap(ifp, m, BPF_D_IN);
   1113 
   1114 	ifp->_if_input(ifp, m);
   1115 }
   1116 
   1117 /*
   1118  * DEPRECATED. Use if_initialize and if_register instead.
   1119  * See the above comment of if_initialize.
   1120  *
   1121  * Note that it implicitly enables if_percpuq to make drivers easy to
   1122  * migrate softint-based if_input without much changes. If you don't
   1123  * want to enable it, use if_initialize instead.
   1124  */
   1125 int
   1126 if_attach(ifnet_t *ifp)
   1127 {
   1128 	int rv;
   1129 
   1130 	rv = if_initialize(ifp);
   1131 	if (rv != 0)
   1132 		return rv;
   1133 
   1134 	ifp->if_percpuq = if_percpuq_create(ifp);
   1135 	if_register(ifp);
   1136 
   1137 	return 0;
   1138 }
   1139 
   1140 void
   1141 if_attachdomain(void)
   1142 {
   1143 	struct ifnet *ifp;
   1144 	int s;
   1145 	int bound = curlwp_bind();
   1146 
   1147 	s = pserialize_read_enter();
   1148 	IFNET_READER_FOREACH(ifp) {
   1149 		struct psref psref;
   1150 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1151 		pserialize_read_exit(s);
   1152 		if_attachdomain1(ifp);
   1153 		s = pserialize_read_enter();
   1154 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1155 	}
   1156 	pserialize_read_exit(s);
   1157 	curlwp_bindx(bound);
   1158 }
   1159 
   1160 static void
   1161 if_attachdomain1(struct ifnet *ifp)
   1162 {
   1163 	struct domain *dp;
   1164 	int s;
   1165 
   1166 	s = splsoftnet();
   1167 
   1168 	/* address family dependent data region */
   1169 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1170 	DOMAIN_FOREACH(dp) {
   1171 		if (dp->dom_ifattach != NULL)
   1172 			ifp->if_afdata[dp->dom_family] =
   1173 			    (*dp->dom_ifattach)(ifp);
   1174 	}
   1175 
   1176 	splx(s);
   1177 }
   1178 
   1179 /*
   1180  * Deactivate an interface.  This points all of the procedure
   1181  * handles at error stubs.  May be called from interrupt context.
   1182  */
   1183 void
   1184 if_deactivate(struct ifnet *ifp)
   1185 {
   1186 	int s;
   1187 
   1188 	s = splsoftnet();
   1189 
   1190 	ifp->if_output	 = if_nulloutput;
   1191 	ifp->_if_input	 = if_nullinput;
   1192 	ifp->if_start	 = if_nullstart;
   1193 	ifp->if_transmit = if_nulltransmit;
   1194 	ifp->if_ioctl	 = if_nullioctl;
   1195 	ifp->if_init	 = if_nullinit;
   1196 	ifp->if_stop	 = if_nullstop;
   1197 	ifp->if_slowtimo = if_nullslowtimo;
   1198 	ifp->if_drain	 = if_nulldrain;
   1199 
   1200 	/* No more packets may be enqueued. */
   1201 	ifp->if_snd.ifq_maxlen = 0;
   1202 
   1203 	splx(s);
   1204 }
   1205 
   1206 bool
   1207 if_is_deactivated(const struct ifnet *ifp)
   1208 {
   1209 
   1210 	return ifp->if_output == if_nulloutput;
   1211 }
   1212 
   1213 void
   1214 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1215 {
   1216 	struct ifaddr *ifa, *nifa;
   1217 	int s;
   1218 
   1219 	s = pserialize_read_enter();
   1220 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1221 		nifa = IFADDR_READER_NEXT(ifa);
   1222 		if (ifa->ifa_addr->sa_family != family)
   1223 			continue;
   1224 		pserialize_read_exit(s);
   1225 
   1226 		(*purgeaddr)(ifa);
   1227 
   1228 		s = pserialize_read_enter();
   1229 	}
   1230 	pserialize_read_exit(s);
   1231 }
   1232 
   1233 #ifdef IFAREF_DEBUG
   1234 static struct ifaddr **ifa_list;
   1235 static int ifa_list_size;
   1236 
   1237 /* Depends on only one if_attach runs at once */
   1238 static void
   1239 if_build_ifa_list(struct ifnet *ifp)
   1240 {
   1241 	struct ifaddr *ifa;
   1242 	int i;
   1243 
   1244 	KASSERT(ifa_list == NULL);
   1245 	KASSERT(ifa_list_size == 0);
   1246 
   1247 	IFADDR_READER_FOREACH(ifa, ifp)
   1248 		ifa_list_size++;
   1249 
   1250 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1251 	i = 0;
   1252 	IFADDR_READER_FOREACH(ifa, ifp) {
   1253 		ifa_list[i++] = ifa;
   1254 		ifaref(ifa);
   1255 	}
   1256 }
   1257 
   1258 static void
   1259 if_check_and_free_ifa_list(struct ifnet *ifp)
   1260 {
   1261 	int i;
   1262 	struct ifaddr *ifa;
   1263 
   1264 	if (ifa_list == NULL)
   1265 		return;
   1266 
   1267 	for (i = 0; i < ifa_list_size; i++) {
   1268 		char buf[64];
   1269 
   1270 		ifa = ifa_list[i];
   1271 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1272 		if (ifa->ifa_refcnt > 1) {
   1273 			log(LOG_WARNING,
   1274 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1275 			    buf, ifa->ifa_refcnt - 1);
   1276 		} else
   1277 			log(LOG_DEBUG,
   1278 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1279 			    buf, ifa->ifa_refcnt - 1);
   1280 		ifafree(ifa);
   1281 	}
   1282 
   1283 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1284 	ifa_list = NULL;
   1285 	ifa_list_size = 0;
   1286 }
   1287 #endif
   1288 
   1289 /*
   1290  * Detach an interface from the list of "active" interfaces,
   1291  * freeing any resources as we go along.
   1292  *
   1293  * NOTE: This routine must be called with a valid thread context,
   1294  * as it may block.
   1295  */
   1296 void
   1297 if_detach(struct ifnet *ifp)
   1298 {
   1299 	struct socket so;
   1300 	struct ifaddr *ifa;
   1301 #ifdef IFAREF_DEBUG
   1302 	struct ifaddr *last_ifa = NULL;
   1303 #endif
   1304 	struct domain *dp;
   1305 	const struct protosw *pr;
   1306 	int s, i, family, purged;
   1307 
   1308 #ifdef IFAREF_DEBUG
   1309 	if_build_ifa_list(ifp);
   1310 #endif
   1311 	/*
   1312 	 * XXX It's kind of lame that we have to have the
   1313 	 * XXX socket structure...
   1314 	 */
   1315 	memset(&so, 0, sizeof(so));
   1316 
   1317 	s = splnet();
   1318 
   1319 	sysctl_teardown(&ifp->if_sysctl_log);
   1320 	IFNET_LOCK(ifp);
   1321 	if_deactivate(ifp);
   1322 	IFNET_UNLOCK(ifp);
   1323 
   1324 	/*
   1325 	 * Unlink from the list and wait for all readers to leave
   1326 	 * from pserialize read sections.  Note that we can't do
   1327 	 * psref_target_destroy here.  See below.
   1328 	 */
   1329 	IFNET_GLOBAL_LOCK();
   1330 	ifindex2ifnet[ifp->if_index] = NULL;
   1331 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1332 	IFNET_WRITER_REMOVE(ifp);
   1333 	pserialize_perform(ifnet_psz);
   1334 	IFNET_GLOBAL_UNLOCK();
   1335 
   1336 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1337 		ifp->if_slowtimo = NULL;
   1338 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1339 		callout_destroy(ifp->if_slowtimo_ch);
   1340 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1341 	}
   1342 	if_deferred_start_destroy(ifp);
   1343 
   1344 	/*
   1345 	 * Do an if_down() to give protocols a chance to do something.
   1346 	 */
   1347 	if_down_deactivated(ifp);
   1348 
   1349 #ifdef ALTQ
   1350 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1351 		altq_disable(&ifp->if_snd);
   1352 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1353 		altq_detach(&ifp->if_snd);
   1354 #endif
   1355 
   1356 #if NCARP > 0
   1357 	/* Remove the interface from any carp group it is a part of.  */
   1358 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1359 		carp_ifdetach(ifp);
   1360 #endif
   1361 
   1362 	/*
   1363 	 * Rip all the addresses off the interface.  This should make
   1364 	 * all of the routes go away.
   1365 	 *
   1366 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1367 	 * from the list, including our "cursor", ifa.  For safety,
   1368 	 * and to honor the TAILQ abstraction, I just restart the
   1369 	 * loop after each removal.  Note that the loop will exit
   1370 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1371 	 * family.  I am counting on the historical fact that at
   1372 	 * least one pr_usrreq in each address domain removes at
   1373 	 * least one ifaddr.
   1374 	 */
   1375 again:
   1376 	/*
   1377 	 * At this point, no other one tries to remove ifa in the list,
   1378 	 * so we don't need to take a lock or psref.  Avoid using
   1379 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1380 	 * violations of pserialize.
   1381 	 */
   1382 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1383 		family = ifa->ifa_addr->sa_family;
   1384 #ifdef IFAREF_DEBUG
   1385 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1386 		    ifa, family, ifa->ifa_refcnt);
   1387 		if (last_ifa != NULL && ifa == last_ifa)
   1388 			panic("if_detach: loop detected");
   1389 		last_ifa = ifa;
   1390 #endif
   1391 		if (family == AF_LINK)
   1392 			continue;
   1393 		dp = pffinddomain(family);
   1394 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1395 		/*
   1396 		 * XXX These PURGEIF calls are redundant with the
   1397 		 * purge-all-families calls below, but are left in for
   1398 		 * now both to make a smaller change, and to avoid
   1399 		 * unplanned interactions with clearing of
   1400 		 * ifp->if_addrlist.
   1401 		 */
   1402 		purged = 0;
   1403 		for (pr = dp->dom_protosw;
   1404 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1405 			so.so_proto = pr;
   1406 			if (pr->pr_usrreqs) {
   1407 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1408 				purged = 1;
   1409 			}
   1410 		}
   1411 		if (purged == 0) {
   1412 			/*
   1413 			 * XXX What's really the best thing to do
   1414 			 * XXX here?  --thorpej (at) NetBSD.org
   1415 			 */
   1416 			printf("if_detach: WARNING: AF %d not purged\n",
   1417 			    family);
   1418 			ifa_remove(ifp, ifa);
   1419 		}
   1420 		goto again;
   1421 	}
   1422 
   1423 	if_free_sadl(ifp, 1);
   1424 
   1425 restart:
   1426 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1427 		family = ifa->ifa_addr->sa_family;
   1428 		KASSERT(family == AF_LINK);
   1429 		ifa_remove(ifp, ifa);
   1430 		goto restart;
   1431 	}
   1432 
   1433 	/* Delete stray routes from the routing table. */
   1434 	for (i = 0; i <= AF_MAX; i++)
   1435 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1436 
   1437 	DOMAIN_FOREACH(dp) {
   1438 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1439 		{
   1440 			void *p = ifp->if_afdata[dp->dom_family];
   1441 			if (p) {
   1442 				ifp->if_afdata[dp->dom_family] = NULL;
   1443 				(*dp->dom_ifdetach)(ifp, p);
   1444 			}
   1445 		}
   1446 
   1447 		/*
   1448 		 * One would expect multicast memberships (INET and
   1449 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1450 		 * calls above, but if all addresses were removed from
   1451 		 * the interface prior to destruction, the calls will
   1452 		 * not be made (e.g. ppp, for which pppd(8) generally
   1453 		 * removes addresses before destroying the interface).
   1454 		 * Because there is no invariant that multicast
   1455 		 * memberships only exist for interfaces with IPv4
   1456 		 * addresses, we must call PURGEIF regardless of
   1457 		 * addresses.  (Protocols which might store ifnet
   1458 		 * pointers are marked with PR_PURGEIF.)
   1459 		 */
   1460 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1461 			so.so_proto = pr;
   1462 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1463 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1464 		}
   1465 	}
   1466 
   1467 	/*
   1468 	 * Must be done after the above pr_purgeif because if_psref may be
   1469 	 * still used in pr_purgeif.
   1470 	 */
   1471 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1472 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1473 
   1474 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1475 	(void)pfil_head_destroy(ifp->if_pfil);
   1476 
   1477 	/* Announce that the interface is gone. */
   1478 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1479 
   1480 	IF_AFDATA_LOCK_DESTROY(ifp);
   1481 
   1482 	/*
   1483 	 * remove packets that came from ifp, from software interrupt queues.
   1484 	 */
   1485 	DOMAIN_FOREACH(dp) {
   1486 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1487 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1488 			if (iq == NULL)
   1489 				break;
   1490 			dp->dom_ifqueues[i] = NULL;
   1491 			if_detach_queues(ifp, iq);
   1492 		}
   1493 	}
   1494 
   1495 	/*
   1496 	 * IP queues have to be processed separately: net-queue barrier
   1497 	 * ensures that the packets are dequeued while a cross-call will
   1498 	 * ensure that the interrupts have completed. FIXME: not quite..
   1499 	 */
   1500 #ifdef INET
   1501 	pktq_barrier(ip_pktq);
   1502 #endif
   1503 #ifdef INET6
   1504 	if (in6_present)
   1505 		pktq_barrier(ip6_pktq);
   1506 #endif
   1507 	xc_barrier(0);
   1508 
   1509 	if (ifp->if_percpuq != NULL) {
   1510 		if_percpuq_destroy(ifp->if_percpuq);
   1511 		ifp->if_percpuq = NULL;
   1512 	}
   1513 
   1514 	mutex_obj_free(ifp->if_ioctl_lock);
   1515 	ifp->if_ioctl_lock = NULL;
   1516 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1517 	if_stats_fini(ifp);
   1518 
   1519 	splx(s);
   1520 
   1521 #ifdef IFAREF_DEBUG
   1522 	if_check_and_free_ifa_list(ifp);
   1523 #endif
   1524 }
   1525 
   1526 static void
   1527 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1528 {
   1529 	struct mbuf *m, *prev, *next;
   1530 
   1531 	prev = NULL;
   1532 	for (m = q->ifq_head; m != NULL; m = next) {
   1533 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1534 
   1535 		next = m->m_nextpkt;
   1536 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1537 			prev = m;
   1538 			continue;
   1539 		}
   1540 
   1541 		if (prev != NULL)
   1542 			prev->m_nextpkt = m->m_nextpkt;
   1543 		else
   1544 			q->ifq_head = m->m_nextpkt;
   1545 		if (q->ifq_tail == m)
   1546 			q->ifq_tail = prev;
   1547 		q->ifq_len--;
   1548 
   1549 		m->m_nextpkt = NULL;
   1550 		m_freem(m);
   1551 		IF_DROP(q);
   1552 	}
   1553 }
   1554 
   1555 /*
   1556  * Callback for a radix tree walk to delete all references to an
   1557  * ifnet.
   1558  */
   1559 static int
   1560 if_delroute_matcher(struct rtentry *rt, void *v)
   1561 {
   1562 	struct ifnet *ifp = (struct ifnet *)v;
   1563 
   1564 	if (rt->rt_ifp == ifp)
   1565 		return 1;
   1566 	else
   1567 		return 0;
   1568 }
   1569 
   1570 /*
   1571  * Create a clone network interface.
   1572  */
   1573 static int
   1574 if_clone_create(const char *name)
   1575 {
   1576 	struct if_clone *ifc;
   1577 	int unit;
   1578 	struct ifnet *ifp;
   1579 	struct psref psref;
   1580 
   1581 	KASSERT(mutex_owned(&if_clone_mtx));
   1582 
   1583 	ifc = if_clone_lookup(name, &unit);
   1584 	if (ifc == NULL)
   1585 		return EINVAL;
   1586 
   1587 	ifp = if_get(name, &psref);
   1588 	if (ifp != NULL) {
   1589 		if_put(ifp, &psref);
   1590 		return EEXIST;
   1591 	}
   1592 
   1593 	return (*ifc->ifc_create)(ifc, unit);
   1594 }
   1595 
   1596 /*
   1597  * Destroy a clone network interface.
   1598  */
   1599 static int
   1600 if_clone_destroy(const char *name)
   1601 {
   1602 	struct if_clone *ifc;
   1603 	struct ifnet *ifp;
   1604 	struct psref psref;
   1605 	int error;
   1606 	int (*if_ioctl)(struct ifnet *, u_long, void *);
   1607 
   1608 	KASSERT(mutex_owned(&if_clone_mtx));
   1609 
   1610 	ifc = if_clone_lookup(name, NULL);
   1611 	if (ifc == NULL)
   1612 		return EINVAL;
   1613 
   1614 	if (ifc->ifc_destroy == NULL)
   1615 		return EOPNOTSUPP;
   1616 
   1617 	ifp = if_get(name, &psref);
   1618 	if (ifp == NULL)
   1619 		return ENXIO;
   1620 
   1621 	/* We have to disable ioctls here */
   1622 	IFNET_LOCK(ifp);
   1623 	if_ioctl = ifp->if_ioctl;
   1624 	ifp->if_ioctl = if_nullioctl;
   1625 	IFNET_UNLOCK(ifp);
   1626 
   1627 	/*
   1628 	 * We cannot call ifc_destroy with holding ifp.
   1629 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1630 	 */
   1631 	if_put(ifp, &psref);
   1632 
   1633 	error = (*ifc->ifc_destroy)(ifp);
   1634 
   1635 	if (error != 0) {
   1636 		/* We have to restore if_ioctl on error */
   1637 		IFNET_LOCK(ifp);
   1638 		ifp->if_ioctl = if_ioctl;
   1639 		IFNET_UNLOCK(ifp);
   1640 	}
   1641 
   1642 	return error;
   1643 }
   1644 
   1645 static bool
   1646 if_is_unit(const char *name)
   1647 {
   1648 
   1649 	while (*name != '\0') {
   1650 		if (*name < '0' || *name > '9')
   1651 			return false;
   1652 		name++;
   1653 	}
   1654 
   1655 	return true;
   1656 }
   1657 
   1658 /*
   1659  * Look up a network interface cloner.
   1660  */
   1661 static struct if_clone *
   1662 if_clone_lookup(const char *name, int *unitp)
   1663 {
   1664 	struct if_clone *ifc;
   1665 	const char *cp;
   1666 	char *dp, ifname[IFNAMSIZ + 3];
   1667 	int unit;
   1668 
   1669 	KASSERT(mutex_owned(&if_clone_mtx));
   1670 
   1671 	strcpy(ifname, "if_");
   1672 	/* separate interface name from unit */
   1673 	/* TODO: search unit number from backward */
   1674 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1675 	    *cp && !if_is_unit(cp);)
   1676 		*dp++ = *cp++;
   1677 
   1678 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1679 		return NULL;	/* No name or unit number */
   1680 	*dp++ = '\0';
   1681 
   1682 again:
   1683 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1684 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1685 			break;
   1686 	}
   1687 
   1688 	if (ifc == NULL) {
   1689 		int error;
   1690 		if (*ifname == '\0')
   1691 			return NULL;
   1692 		mutex_exit(&if_clone_mtx);
   1693 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1694 		mutex_enter(&if_clone_mtx);
   1695 		if (error)
   1696 			return NULL;
   1697 		*ifname = '\0';
   1698 		goto again;
   1699 	}
   1700 
   1701 	unit = 0;
   1702 	while (cp - name < IFNAMSIZ && *cp) {
   1703 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1704 			/* Bogus unit number. */
   1705 			return NULL;
   1706 		}
   1707 		unit = (unit * 10) + (*cp++ - '0');
   1708 	}
   1709 
   1710 	if (unitp != NULL)
   1711 		*unitp = unit;
   1712 	return ifc;
   1713 }
   1714 
   1715 /*
   1716  * Register a network interface cloner.
   1717  */
   1718 void
   1719 if_clone_attach(struct if_clone *ifc)
   1720 {
   1721 
   1722 	mutex_enter(&if_clone_mtx);
   1723 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1724 	if_cloners_count++;
   1725 	mutex_exit(&if_clone_mtx);
   1726 }
   1727 
   1728 /*
   1729  * Unregister a network interface cloner.
   1730  */
   1731 void
   1732 if_clone_detach(struct if_clone *ifc)
   1733 {
   1734 
   1735 	mutex_enter(&if_clone_mtx);
   1736 	LIST_REMOVE(ifc, ifc_list);
   1737 	if_cloners_count--;
   1738 	mutex_exit(&if_clone_mtx);
   1739 }
   1740 
   1741 /*
   1742  * Provide list of interface cloners to userspace.
   1743  */
   1744 int
   1745 if_clone_list(int buf_count, char *buffer, int *total)
   1746 {
   1747 	char outbuf[IFNAMSIZ], *dst;
   1748 	struct if_clone *ifc;
   1749 	int count, error = 0;
   1750 
   1751 	mutex_enter(&if_clone_mtx);
   1752 	*total = if_cloners_count;
   1753 	if ((dst = buffer) == NULL) {
   1754 		/* Just asking how many there are. */
   1755 		goto out;
   1756 	}
   1757 
   1758 	if (buf_count < 0) {
   1759 		error = EINVAL;
   1760 		goto out;
   1761 	}
   1762 
   1763 	count = (if_cloners_count < buf_count) ?
   1764 	    if_cloners_count : buf_count;
   1765 
   1766 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1767 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1768 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1769 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1770 			error = ENAMETOOLONG;
   1771 			goto out;
   1772 		}
   1773 		error = copyout(outbuf, dst, sizeof(outbuf));
   1774 		if (error != 0)
   1775 			break;
   1776 	}
   1777 
   1778 out:
   1779 	mutex_exit(&if_clone_mtx);
   1780 	return error;
   1781 }
   1782 
   1783 void
   1784 ifa_psref_init(struct ifaddr *ifa)
   1785 {
   1786 
   1787 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1788 }
   1789 
   1790 void
   1791 ifaref(struct ifaddr *ifa)
   1792 {
   1793 
   1794 	atomic_inc_uint(&ifa->ifa_refcnt);
   1795 }
   1796 
   1797 void
   1798 ifafree(struct ifaddr *ifa)
   1799 {
   1800 	KASSERT(ifa != NULL);
   1801 	KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
   1802 
   1803 	if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
   1804 		free(ifa, M_IFADDR);
   1805 	}
   1806 }
   1807 
   1808 bool
   1809 ifa_is_destroying(struct ifaddr *ifa)
   1810 {
   1811 
   1812 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1813 }
   1814 
   1815 void
   1816 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1817 {
   1818 
   1819 	ifa->ifa_ifp = ifp;
   1820 
   1821 	/*
   1822 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1823 	 * Check !IFF_RUNNING for initialization routines that normally don't
   1824 	 * take IFNET_LOCK but it's safe because there is no competitor.
   1825 	 * XXX there are false positive cases because IFF_RUNNING can be off on
   1826 	 * if_stop.
   1827 	 */
   1828 	KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
   1829 	    IFNET_LOCKED(ifp));
   1830 
   1831 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1832 	IFADDR_ENTRY_INIT(ifa);
   1833 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1834 
   1835 	ifaref(ifa);
   1836 }
   1837 
   1838 void
   1839 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1840 {
   1841 
   1842 	KASSERT(ifa->ifa_ifp == ifp);
   1843 	/*
   1844 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1845 	 * if_is_deactivated indicates ifa_remove is called form if_detach
   1846 	 * where is safe even if IFNET_LOCK isn't held.
   1847 	 */
   1848 	KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
   1849 
   1850 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1851 	IFADDR_WRITER_REMOVE(ifa);
   1852 #ifdef NET_MPSAFE
   1853 	IFNET_GLOBAL_LOCK();
   1854 	pserialize_perform(ifnet_psz);
   1855 	IFNET_GLOBAL_UNLOCK();
   1856 #endif
   1857 
   1858 #ifdef NET_MPSAFE
   1859 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1860 #endif
   1861 	IFADDR_ENTRY_DESTROY(ifa);
   1862 	ifafree(ifa);
   1863 }
   1864 
   1865 void
   1866 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1867 {
   1868 
   1869 	PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   1870 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1871 }
   1872 
   1873 void
   1874 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1875 {
   1876 
   1877 	if (ifa == NULL)
   1878 		return;
   1879 
   1880 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1881 }
   1882 
   1883 bool
   1884 ifa_held(struct ifaddr *ifa)
   1885 {
   1886 
   1887 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1888 }
   1889 
   1890 static inline int
   1891 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1892 {
   1893 	return sockaddr_cmp(sa1, sa2) == 0;
   1894 }
   1895 
   1896 /*
   1897  * Locate an interface based on a complete address.
   1898  */
   1899 /*ARGSUSED*/
   1900 struct ifaddr *
   1901 ifa_ifwithaddr(const struct sockaddr *addr)
   1902 {
   1903 	struct ifnet *ifp;
   1904 	struct ifaddr *ifa;
   1905 
   1906 	IFNET_READER_FOREACH(ifp) {
   1907 		if (if_is_deactivated(ifp))
   1908 			continue;
   1909 		IFADDR_READER_FOREACH(ifa, ifp) {
   1910 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1911 				continue;
   1912 			if (equal(addr, ifa->ifa_addr))
   1913 				return ifa;
   1914 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1915 			    ifa->ifa_broadaddr &&
   1916 			    /* IP6 doesn't have broadcast */
   1917 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1918 			    equal(ifa->ifa_broadaddr, addr))
   1919 				return ifa;
   1920 		}
   1921 	}
   1922 	return NULL;
   1923 }
   1924 
   1925 struct ifaddr *
   1926 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1927 {
   1928 	struct ifaddr *ifa;
   1929 	int s = pserialize_read_enter();
   1930 
   1931 	ifa = ifa_ifwithaddr(addr);
   1932 	if (ifa != NULL)
   1933 		ifa_acquire(ifa, psref);
   1934 	pserialize_read_exit(s);
   1935 
   1936 	return ifa;
   1937 }
   1938 
   1939 /*
   1940  * Locate the point to point interface with a given destination address.
   1941  */
   1942 /*ARGSUSED*/
   1943 struct ifaddr *
   1944 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1945 {
   1946 	struct ifnet *ifp;
   1947 	struct ifaddr *ifa;
   1948 
   1949 	IFNET_READER_FOREACH(ifp) {
   1950 		if (if_is_deactivated(ifp))
   1951 			continue;
   1952 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1953 			continue;
   1954 		IFADDR_READER_FOREACH(ifa, ifp) {
   1955 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1956 			    ifa->ifa_dstaddr == NULL)
   1957 				continue;
   1958 			if (equal(addr, ifa->ifa_dstaddr))
   1959 				return ifa;
   1960 		}
   1961 	}
   1962 
   1963 	return NULL;
   1964 }
   1965 
   1966 struct ifaddr *
   1967 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1968 {
   1969 	struct ifaddr *ifa;
   1970 	int s;
   1971 
   1972 	s = pserialize_read_enter();
   1973 	ifa = ifa_ifwithdstaddr(addr);
   1974 	if (ifa != NULL)
   1975 		ifa_acquire(ifa, psref);
   1976 	pserialize_read_exit(s);
   1977 
   1978 	return ifa;
   1979 }
   1980 
   1981 /*
   1982  * Find an interface on a specific network.  If many, choice
   1983  * is most specific found.
   1984  */
   1985 struct ifaddr *
   1986 ifa_ifwithnet(const struct sockaddr *addr)
   1987 {
   1988 	struct ifnet *ifp;
   1989 	struct ifaddr *ifa, *ifa_maybe = NULL;
   1990 	const struct sockaddr_dl *sdl;
   1991 	u_int af = addr->sa_family;
   1992 	const char *addr_data = addr->sa_data, *cplim;
   1993 
   1994 	if (af == AF_LINK) {
   1995 		sdl = satocsdl(addr);
   1996 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   1997 		    ifindex2ifnet[sdl->sdl_index] &&
   1998 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   1999 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   2000 		}
   2001 	}
   2002 #ifdef NETATALK
   2003 	if (af == AF_APPLETALK) {
   2004 		const struct sockaddr_at *sat, *sat2;
   2005 		sat = (const struct sockaddr_at *)addr;
   2006 		IFNET_READER_FOREACH(ifp) {
   2007 			if (if_is_deactivated(ifp))
   2008 				continue;
   2009 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   2010 			if (ifa == NULL)
   2011 				continue;
   2012 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   2013 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   2014 				return ifa; /* exact match */
   2015 			if (ifa_maybe == NULL) {
   2016 				/* else keep the if with the right range */
   2017 				ifa_maybe = ifa;
   2018 			}
   2019 		}
   2020 		return ifa_maybe;
   2021 	}
   2022 #endif
   2023 	IFNET_READER_FOREACH(ifp) {
   2024 		if (if_is_deactivated(ifp))
   2025 			continue;
   2026 		IFADDR_READER_FOREACH(ifa, ifp) {
   2027 			const char *cp, *cp2, *cp3;
   2028 
   2029 			if (ifa->ifa_addr->sa_family != af ||
   2030 			    ifa->ifa_netmask == NULL)
   2031  next:				continue;
   2032 			cp = addr_data;
   2033 			cp2 = ifa->ifa_addr->sa_data;
   2034 			cp3 = ifa->ifa_netmask->sa_data;
   2035 			cplim = (const char *)ifa->ifa_netmask +
   2036 			    ifa->ifa_netmask->sa_len;
   2037 			while (cp3 < cplim) {
   2038 				if ((*cp++ ^ *cp2++) & *cp3++) {
   2039 					/* want to continue for() loop */
   2040 					goto next;
   2041 				}
   2042 			}
   2043 			if (ifa_maybe == NULL ||
   2044 			    rt_refines(ifa->ifa_netmask,
   2045 			               ifa_maybe->ifa_netmask))
   2046 				ifa_maybe = ifa;
   2047 		}
   2048 	}
   2049 	return ifa_maybe;
   2050 }
   2051 
   2052 struct ifaddr *
   2053 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2054 {
   2055 	struct ifaddr *ifa;
   2056 	int s;
   2057 
   2058 	s = pserialize_read_enter();
   2059 	ifa = ifa_ifwithnet(addr);
   2060 	if (ifa != NULL)
   2061 		ifa_acquire(ifa, psref);
   2062 	pserialize_read_exit(s);
   2063 
   2064 	return ifa;
   2065 }
   2066 
   2067 /*
   2068  * Find the interface of the addresss.
   2069  */
   2070 struct ifaddr *
   2071 ifa_ifwithladdr(const struct sockaddr *addr)
   2072 {
   2073 	struct ifaddr *ia;
   2074 
   2075 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2076 	    (ia = ifa_ifwithnet(addr)))
   2077 		return ia;
   2078 	return NULL;
   2079 }
   2080 
   2081 struct ifaddr *
   2082 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2083 {
   2084 	struct ifaddr *ifa;
   2085 	int s;
   2086 
   2087 	s = pserialize_read_enter();
   2088 	ifa = ifa_ifwithladdr(addr);
   2089 	if (ifa != NULL)
   2090 		ifa_acquire(ifa, psref);
   2091 	pserialize_read_exit(s);
   2092 
   2093 	return ifa;
   2094 }
   2095 
   2096 /*
   2097  * Find an interface using a specific address family
   2098  */
   2099 struct ifaddr *
   2100 ifa_ifwithaf(int af)
   2101 {
   2102 	struct ifnet *ifp;
   2103 	struct ifaddr *ifa = NULL;
   2104 	int s;
   2105 
   2106 	s = pserialize_read_enter();
   2107 	IFNET_READER_FOREACH(ifp) {
   2108 		if (if_is_deactivated(ifp))
   2109 			continue;
   2110 		IFADDR_READER_FOREACH(ifa, ifp) {
   2111 			if (ifa->ifa_addr->sa_family == af)
   2112 				goto out;
   2113 		}
   2114 	}
   2115 out:
   2116 	pserialize_read_exit(s);
   2117 	return ifa;
   2118 }
   2119 
   2120 /*
   2121  * Find an interface address specific to an interface best matching
   2122  * a given address.
   2123  */
   2124 struct ifaddr *
   2125 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2126 {
   2127 	struct ifaddr *ifa;
   2128 	const char *cp, *cp2, *cp3;
   2129 	const char *cplim;
   2130 	struct ifaddr *ifa_maybe = 0;
   2131 	u_int af = addr->sa_family;
   2132 
   2133 	if (if_is_deactivated(ifp))
   2134 		return NULL;
   2135 
   2136 	if (af >= AF_MAX)
   2137 		return NULL;
   2138 
   2139 	IFADDR_READER_FOREACH(ifa, ifp) {
   2140 		if (ifa->ifa_addr->sa_family != af)
   2141 			continue;
   2142 		ifa_maybe = ifa;
   2143 		if (ifa->ifa_netmask == NULL) {
   2144 			if (equal(addr, ifa->ifa_addr) ||
   2145 			    (ifa->ifa_dstaddr &&
   2146 			     equal(addr, ifa->ifa_dstaddr)))
   2147 				return ifa;
   2148 			continue;
   2149 		}
   2150 		cp = addr->sa_data;
   2151 		cp2 = ifa->ifa_addr->sa_data;
   2152 		cp3 = ifa->ifa_netmask->sa_data;
   2153 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2154 		for (; cp3 < cplim; cp3++) {
   2155 			if ((*cp++ ^ *cp2++) & *cp3)
   2156 				break;
   2157 		}
   2158 		if (cp3 == cplim)
   2159 			return ifa;
   2160 	}
   2161 	return ifa_maybe;
   2162 }
   2163 
   2164 struct ifaddr *
   2165 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2166     struct psref *psref)
   2167 {
   2168 	struct ifaddr *ifa;
   2169 	int s;
   2170 
   2171 	s = pserialize_read_enter();
   2172 	ifa = ifaof_ifpforaddr(addr, ifp);
   2173 	if (ifa != NULL)
   2174 		ifa_acquire(ifa, psref);
   2175 	pserialize_read_exit(s);
   2176 
   2177 	return ifa;
   2178 }
   2179 
   2180 /*
   2181  * Default action when installing a route with a Link Level gateway.
   2182  * Lookup an appropriate real ifa to point to.
   2183  * This should be moved to /sys/net/link.c eventually.
   2184  */
   2185 void
   2186 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2187 {
   2188 	struct ifaddr *ifa;
   2189 	const struct sockaddr *dst;
   2190 	struct ifnet *ifp;
   2191 	struct psref psref;
   2192 
   2193 	if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2194 		return;
   2195 	ifp = rt->rt_ifa->ifa_ifp;
   2196 	dst = rt_getkey(rt);
   2197 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2198 		rt_replace_ifa(rt, ifa);
   2199 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2200 			ifa->ifa_rtrequest(cmd, rt, info);
   2201 		ifa_release(ifa, &psref);
   2202 	}
   2203 }
   2204 
   2205 /*
   2206  * bitmask macros to manage a densely packed link_state change queue.
   2207  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2208  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2209  * As a state change to store is 0, treat all bits set as an unset item.
   2210  */
   2211 #define LQ_ITEM_BITS		2
   2212 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2213 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2214 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2215 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2216 #define LQ_STORE(q, i, v)						      \
   2217 	do {								      \
   2218 		(q) &= ~LQ_MASK((i));					      \
   2219 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2220 	} while (0 /* CONSTCOND */)
   2221 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2222 #define LQ_POP(q, v)							      \
   2223 	do {								      \
   2224 		(v) = LQ_ITEM((q), 0);					      \
   2225 		(q) >>= LQ_ITEM_BITS;					      \
   2226 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2227 	} while (0 /* CONSTCOND */)
   2228 #define LQ_PUSH(q, v)							      \
   2229 	do {								      \
   2230 		(q) >>= LQ_ITEM_BITS;					      \
   2231 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2232 	} while (0 /* CONSTCOND */)
   2233 #define LQ_FIND_UNSET(q, i)						      \
   2234 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2235 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2236 			break;						      \
   2237 	}
   2238 
   2239 /*
   2240  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
   2241  * for each ifnet.  It doesn't matter because:
   2242  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
   2243  *   ifq_lock don't happen
   2244  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
   2245  *   because if_snd, if_link_state_change and if_link_state_change_process
   2246  *   are all called with KERNEL_LOCK
   2247  */
   2248 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
   2249 	mutex_enter((ifp)->if_snd.ifq_lock)
   2250 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
   2251 	mutex_exit((ifp)->if_snd.ifq_lock)
   2252 
   2253 static void
   2254 if_link_state_change_work_schedule(struct ifnet *ifp)
   2255 {
   2256 	if (ifp->if_link_cansched && !ifp->if_link_scheduled) {
   2257 		ifp->if_link_scheduled = true;
   2258 		workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work,
   2259 		    NULL);
   2260 	}
   2261 }
   2262 
   2263 /*
   2264  * Handle a change in the interface link state and
   2265  * queue notifications.
   2266  */
   2267 void
   2268 if_link_state_change(struct ifnet *ifp, int link_state)
   2269 {
   2270 	int idx;
   2271 
   2272 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2273 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2274 	    ifp->if_xname, ifp->if_extflags);
   2275 
   2276 	/* Ensure change is to a valid state */
   2277 	switch (link_state) {
   2278 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2279 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2280 	case LINK_STATE_UP:
   2281 		break;
   2282 	default:
   2283 #ifdef DEBUG
   2284 		printf("%s: invalid link state %d\n",
   2285 		    ifp->if_xname, link_state);
   2286 #endif
   2287 		return;
   2288 	}
   2289 
   2290 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2291 
   2292 	/* Find the last unset event in the queue. */
   2293 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2294 
   2295 	/*
   2296 	 * Ensure link_state doesn't match the last event in the queue.
   2297 	 * ifp->if_link_state is not checked and set here because
   2298 	 * that would present an inconsistent picture to the system.
   2299 	 */
   2300 	if (idx != 0 &&
   2301 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2302 		goto out;
   2303 
   2304 	/* Handle queue overflow. */
   2305 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2306 		uint8_t lost;
   2307 
   2308 		/*
   2309 		 * The DOWN state must be protected from being pushed off
   2310 		 * the queue to ensure that userland will always be
   2311 		 * in a sane state.
   2312 		 * Because DOWN is protected, there is no need to protect
   2313 		 * UNKNOWN.
   2314 		 * It should be invalid to change from any other state to
   2315 		 * UNKNOWN anyway ...
   2316 		 */
   2317 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2318 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2319 		if (lost == LINK_STATE_DOWN) {
   2320 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2321 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2322 		}
   2323 		printf("%s: lost link state change %s\n",
   2324 		    ifp->if_xname,
   2325 		    lost == LINK_STATE_UP ? "UP" :
   2326 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2327 		    "UNKNOWN");
   2328 	} else
   2329 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2330 
   2331 	if_link_state_change_work_schedule(ifp);
   2332 
   2333 out:
   2334 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2335 }
   2336 
   2337 /*
   2338  * Handle interface link state change notifications.
   2339  */
   2340 static void
   2341 if_link_state_change_process(struct ifnet *ifp, int link_state)
   2342 {
   2343 	struct domain *dp;
   2344 	int s = splnet();
   2345 	bool notify;
   2346 
   2347 	KASSERT(!cpu_intr_p());
   2348 
   2349 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2350 
   2351 	/* Ensure the change is still valid. */
   2352 	if (ifp->if_link_state == link_state) {
   2353 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2354 		splx(s);
   2355 		return;
   2356 	}
   2357 
   2358 #ifdef DEBUG
   2359 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2360 		link_state == LINK_STATE_UP ? "UP" :
   2361 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2362 		"UNKNOWN",
   2363 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2364 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2365 		"UNKNOWN");
   2366 #endif
   2367 
   2368 	/*
   2369 	 * When going from UNKNOWN to UP, we need to mark existing
   2370 	 * addresses as tentative and restart DAD as we may have
   2371 	 * erroneously not found a duplicate.
   2372 	 *
   2373 	 * This needs to happen before rt_ifmsg to avoid a race where
   2374 	 * listeners would have an address and expect it to work right
   2375 	 * away.
   2376 	 */
   2377 	notify = (link_state == LINK_STATE_UP &&
   2378 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2379 	ifp->if_link_state = link_state;
   2380 	/* The following routines may sleep so release the spin mutex */
   2381 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2382 
   2383 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2384 	if (notify) {
   2385 		DOMAIN_FOREACH(dp) {
   2386 			if (dp->dom_if_link_state_change != NULL)
   2387 				dp->dom_if_link_state_change(ifp,
   2388 				    LINK_STATE_DOWN);
   2389 		}
   2390 	}
   2391 
   2392 	/* Notify that the link state has changed. */
   2393 	rt_ifmsg(ifp);
   2394 
   2395 #if NCARP > 0
   2396 	if (ifp->if_carp)
   2397 		carp_carpdev_state(ifp);
   2398 #endif
   2399 
   2400 	DOMAIN_FOREACH(dp) {
   2401 		if (dp->dom_if_link_state_change != NULL)
   2402 			dp->dom_if_link_state_change(ifp, link_state);
   2403 	}
   2404 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2405 	splx(s);
   2406 }
   2407 
   2408 /*
   2409  * Process the interface link state change queue.
   2410  */
   2411 static void
   2412 if_link_state_change_work(struct work *work, void *arg)
   2413 {
   2414 	struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
   2415 	int s;
   2416 	uint8_t state;
   2417 	bool schedule;
   2418 
   2419 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2420 	s = splnet();
   2421 
   2422 	/* Pop a link state change from the queue and process it. */
   2423 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2424 	ifp->if_link_scheduled = false;
   2425 	LQ_POP(ifp->if_link_queue, state);
   2426 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2427 
   2428 	if_link_state_change_process(ifp, state);
   2429 
   2430 	/* If there is a link state change to come, schedule it. */
   2431 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2432 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
   2433 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2434 
   2435 	if (schedule)
   2436 		if_link_state_change_work_schedule(ifp);
   2437 
   2438 	splx(s);
   2439 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2440 }
   2441 
   2442 /*
   2443  * Default action when installing a local route on a point-to-point
   2444  * interface.
   2445  */
   2446 void
   2447 p2p_rtrequest(int req, struct rtentry *rt,
   2448     __unused const struct rt_addrinfo *info)
   2449 {
   2450 	struct ifnet *ifp = rt->rt_ifp;
   2451 	struct ifaddr *ifa, *lo0ifa;
   2452 	int s = pserialize_read_enter();
   2453 
   2454 	switch (req) {
   2455 	case RTM_ADD:
   2456 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2457 			break;
   2458 
   2459 		rt->rt_ifp = lo0ifp;
   2460 
   2461 		if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2462 			break;
   2463 
   2464 		IFADDR_READER_FOREACH(ifa, ifp) {
   2465 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2466 				break;
   2467 		}
   2468 		if (ifa == NULL)
   2469 			break;
   2470 
   2471 		/*
   2472 		 * Ensure lo0 has an address of the same family.
   2473 		 */
   2474 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2475 			if (lo0ifa->ifa_addr->sa_family ==
   2476 			    ifa->ifa_addr->sa_family)
   2477 				break;
   2478 		}
   2479 		if (lo0ifa == NULL)
   2480 			break;
   2481 
   2482 		/*
   2483 		 * Make sure to set rt->rt_ifa to the interface
   2484 		 * address we are using, otherwise we will have trouble
   2485 		 * with source address selection.
   2486 		 */
   2487 		if (ifa != rt->rt_ifa)
   2488 			rt_replace_ifa(rt, ifa);
   2489 		break;
   2490 	case RTM_DELETE:
   2491 	default:
   2492 		break;
   2493 	}
   2494 	pserialize_read_exit(s);
   2495 }
   2496 
   2497 static void
   2498 _if_down(struct ifnet *ifp)
   2499 {
   2500 	struct ifaddr *ifa;
   2501 	struct domain *dp;
   2502 	int s, bound;
   2503 	struct psref psref;
   2504 
   2505 	ifp->if_flags &= ~IFF_UP;
   2506 	nanotime(&ifp->if_lastchange);
   2507 
   2508 	bound = curlwp_bind();
   2509 	s = pserialize_read_enter();
   2510 	IFADDR_READER_FOREACH(ifa, ifp) {
   2511 		ifa_acquire(ifa, &psref);
   2512 		pserialize_read_exit(s);
   2513 
   2514 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2515 
   2516 		s = pserialize_read_enter();
   2517 		ifa_release(ifa, &psref);
   2518 	}
   2519 	pserialize_read_exit(s);
   2520 	curlwp_bindx(bound);
   2521 
   2522 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2523 	ifp->if_link_cansched = false;
   2524 	workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
   2525 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2526 
   2527 	IFQ_PURGE(&ifp->if_snd);
   2528 #if NCARP > 0
   2529 	if (ifp->if_carp)
   2530 		carp_carpdev_state(ifp);
   2531 #endif
   2532 	rt_ifmsg(ifp);
   2533 	DOMAIN_FOREACH(dp) {
   2534 		if (dp->dom_if_down)
   2535 			dp->dom_if_down(ifp);
   2536 	}
   2537 }
   2538 
   2539 static void
   2540 if_down_deactivated(struct ifnet *ifp)
   2541 {
   2542 
   2543 	KASSERT(if_is_deactivated(ifp));
   2544 	_if_down(ifp);
   2545 }
   2546 
   2547 void
   2548 if_down_locked(struct ifnet *ifp)
   2549 {
   2550 
   2551 	KASSERT(IFNET_LOCKED(ifp));
   2552 	_if_down(ifp);
   2553 }
   2554 
   2555 /*
   2556  * Mark an interface down and notify protocols of
   2557  * the transition.
   2558  * NOTE: must be called at splsoftnet or equivalent.
   2559  */
   2560 void
   2561 if_down(struct ifnet *ifp)
   2562 {
   2563 
   2564 	IFNET_LOCK(ifp);
   2565 	if_down_locked(ifp);
   2566 	IFNET_UNLOCK(ifp);
   2567 }
   2568 
   2569 /*
   2570  * Must be called with holding if_ioctl_lock.
   2571  */
   2572 static void
   2573 if_up_locked(struct ifnet *ifp)
   2574 {
   2575 #ifdef notyet
   2576 	struct ifaddr *ifa;
   2577 #endif
   2578 	struct domain *dp;
   2579 
   2580 	KASSERT(IFNET_LOCKED(ifp));
   2581 
   2582 	KASSERT(!if_is_deactivated(ifp));
   2583 	ifp->if_flags |= IFF_UP;
   2584 	nanotime(&ifp->if_lastchange);
   2585 #ifdef notyet
   2586 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2587 	IFADDR_READER_FOREACH(ifa, ifp)
   2588 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2589 #endif
   2590 #if NCARP > 0
   2591 	if (ifp->if_carp)
   2592 		carp_carpdev_state(ifp);
   2593 #endif
   2594 	rt_ifmsg(ifp);
   2595 	DOMAIN_FOREACH(dp) {
   2596 		if (dp->dom_if_up)
   2597 			dp->dom_if_up(ifp);
   2598 	}
   2599 
   2600 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2601 	ifp->if_link_cansched = true;
   2602 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2603 }
   2604 
   2605 /*
   2606  * Handle interface slowtimo timer routine.  Called
   2607  * from softclock, we decrement timer (if set) and
   2608  * call the appropriate interface routine on expiration.
   2609  */
   2610 static void
   2611 if_slowtimo(void *arg)
   2612 {
   2613 	void (*slowtimo)(struct ifnet *);
   2614 	struct ifnet *ifp = arg;
   2615 	int s;
   2616 
   2617 	slowtimo = ifp->if_slowtimo;
   2618 	if (__predict_false(slowtimo == NULL))
   2619 		return;
   2620 
   2621 	s = splnet();
   2622 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2623 		(*slowtimo)(ifp);
   2624 
   2625 	splx(s);
   2626 
   2627 	if (__predict_true(ifp->if_slowtimo != NULL))
   2628 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2629 }
   2630 
   2631 /*
   2632  * Mark an interface up and notify protocols of
   2633  * the transition.
   2634  * NOTE: must be called at splsoftnet or equivalent.
   2635  */
   2636 void
   2637 if_up(struct ifnet *ifp)
   2638 {
   2639 
   2640 	IFNET_LOCK(ifp);
   2641 	if_up_locked(ifp);
   2642 	IFNET_UNLOCK(ifp);
   2643 }
   2644 
   2645 /*
   2646  * Set/clear promiscuous mode on interface ifp based on the truth value
   2647  * of pswitch.  The calls are reference counted so that only the first
   2648  * "on" request actually has an effect, as does the final "off" request.
   2649  * Results are undefined if the "off" and "on" requests are not matched.
   2650  */
   2651 int
   2652 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2653 {
   2654 	int pcount, ret = 0;
   2655 	u_short nflags;
   2656 
   2657 	KASSERT(IFNET_LOCKED(ifp));
   2658 
   2659 	pcount = ifp->if_pcount;
   2660 	if (pswitch) {
   2661 		/*
   2662 		 * Allow the device to be "placed" into promiscuous
   2663 		 * mode even if it is not configured up.  It will
   2664 		 * consult IFF_PROMISC when it is brought up.
   2665 		 */
   2666 		if (ifp->if_pcount++ != 0)
   2667 			goto out;
   2668 		nflags = ifp->if_flags | IFF_PROMISC;
   2669 	} else {
   2670 		if (--ifp->if_pcount > 0)
   2671 			goto out;
   2672 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2673 	}
   2674 	ret = if_flags_set(ifp, nflags);
   2675 	/* Restore interface state if not successful. */
   2676 	if (ret != 0) {
   2677 		ifp->if_pcount = pcount;
   2678 	}
   2679 out:
   2680 	return ret;
   2681 }
   2682 
   2683 int
   2684 ifpromisc(struct ifnet *ifp, int pswitch)
   2685 {
   2686 	int e;
   2687 
   2688 	IFNET_LOCK(ifp);
   2689 	e = ifpromisc_locked(ifp, pswitch);
   2690 	IFNET_UNLOCK(ifp);
   2691 
   2692 	return e;
   2693 }
   2694 
   2695 /*
   2696  * Map interface name to
   2697  * interface structure pointer.
   2698  */
   2699 struct ifnet *
   2700 ifunit(const char *name)
   2701 {
   2702 	struct ifnet *ifp;
   2703 	const char *cp = name;
   2704 	u_int unit = 0;
   2705 	u_int i;
   2706 	int s;
   2707 
   2708 	/*
   2709 	 * If the entire name is a number, treat it as an ifindex.
   2710 	 */
   2711 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2712 		unit = unit * 10 + (*cp - '0');
   2713 	}
   2714 
   2715 	/*
   2716 	 * If the number took all of the name, then it's a valid ifindex.
   2717 	 */
   2718 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2719 		return if_byindex(unit);
   2720 
   2721 	ifp = NULL;
   2722 	s = pserialize_read_enter();
   2723 	IFNET_READER_FOREACH(ifp) {
   2724 		if (if_is_deactivated(ifp))
   2725 			continue;
   2726 	 	if (strcmp(ifp->if_xname, name) == 0)
   2727 			goto out;
   2728 	}
   2729 out:
   2730 	pserialize_read_exit(s);
   2731 	return ifp;
   2732 }
   2733 
   2734 /*
   2735  * Get a reference of an ifnet object by an interface name.
   2736  * The returned reference is protected by psref(9). The caller
   2737  * must release a returned reference by if_put after use.
   2738  */
   2739 struct ifnet *
   2740 if_get(const char *name, struct psref *psref)
   2741 {
   2742 	struct ifnet *ifp;
   2743 	const char *cp = name;
   2744 	u_int unit = 0;
   2745 	u_int i;
   2746 	int s;
   2747 
   2748 	/*
   2749 	 * If the entire name is a number, treat it as an ifindex.
   2750 	 */
   2751 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2752 		unit = unit * 10 + (*cp - '0');
   2753 	}
   2754 
   2755 	/*
   2756 	 * If the number took all of the name, then it's a valid ifindex.
   2757 	 */
   2758 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2759 		return if_get_byindex(unit, psref);
   2760 
   2761 	ifp = NULL;
   2762 	s = pserialize_read_enter();
   2763 	IFNET_READER_FOREACH(ifp) {
   2764 		if (if_is_deactivated(ifp))
   2765 			continue;
   2766 		if (strcmp(ifp->if_xname, name) == 0) {
   2767 			PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2768 			psref_acquire(psref, &ifp->if_psref,
   2769 			    ifnet_psref_class);
   2770 			goto out;
   2771 		}
   2772 	}
   2773 out:
   2774 	pserialize_read_exit(s);
   2775 	return ifp;
   2776 }
   2777 
   2778 /*
   2779  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2780  * or if_get_bylla.
   2781  */
   2782 void
   2783 if_put(const struct ifnet *ifp, struct psref *psref)
   2784 {
   2785 
   2786 	if (ifp == NULL)
   2787 		return;
   2788 
   2789 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2790 }
   2791 
   2792 /*
   2793  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
   2794  * should be used.
   2795  */
   2796 ifnet_t *
   2797 _if_byindex(u_int idx)
   2798 {
   2799 
   2800 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2801 }
   2802 
   2803 /*
   2804  * Return ifp having idx. Return NULL if not found or the found ifp is
   2805  * already deactivated.
   2806  */
   2807 ifnet_t *
   2808 if_byindex(u_int idx)
   2809 {
   2810 	ifnet_t *ifp;
   2811 
   2812 	ifp = _if_byindex(idx);
   2813 	if (ifp != NULL && if_is_deactivated(ifp))
   2814 		ifp = NULL;
   2815 	return ifp;
   2816 }
   2817 
   2818 /*
   2819  * Get a reference of an ifnet object by an interface index.
   2820  * The returned reference is protected by psref(9). The caller
   2821  * must release a returned reference by if_put after use.
   2822  */
   2823 ifnet_t *
   2824 if_get_byindex(u_int idx, struct psref *psref)
   2825 {
   2826 	ifnet_t *ifp;
   2827 	int s;
   2828 
   2829 	s = pserialize_read_enter();
   2830 	ifp = if_byindex(idx);
   2831 	if (__predict_true(ifp != NULL)) {
   2832 		PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2833 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2834 	}
   2835 	pserialize_read_exit(s);
   2836 
   2837 	return ifp;
   2838 }
   2839 
   2840 ifnet_t *
   2841 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2842 {
   2843 	ifnet_t *ifp;
   2844 	int s;
   2845 
   2846 	s = pserialize_read_enter();
   2847 	IFNET_READER_FOREACH(ifp) {
   2848 		if (if_is_deactivated(ifp))
   2849 			continue;
   2850 		if (ifp->if_addrlen != lla_len)
   2851 			continue;
   2852 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2853 			psref_acquire(psref, &ifp->if_psref,
   2854 			    ifnet_psref_class);
   2855 			break;
   2856 		}
   2857 	}
   2858 	pserialize_read_exit(s);
   2859 
   2860 	return ifp;
   2861 }
   2862 
   2863 /*
   2864  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2865  * for example using pserialize or the ifp is already held or some other
   2866  * object is held which guarantes the ifp to not be freed indirectly.
   2867  */
   2868 void
   2869 if_acquire(struct ifnet *ifp, struct psref *psref)
   2870 {
   2871 
   2872 	KASSERT(ifp->if_index != 0);
   2873 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2874 }
   2875 
   2876 bool
   2877 if_held(struct ifnet *ifp)
   2878 {
   2879 
   2880 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2881 }
   2882 
   2883 /*
   2884  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2885  * Check the tunnel nesting count.
   2886  * Return > 0, if tunnel nesting count is more than limit.
   2887  * Return 0, if tunnel nesting count is equal or less than limit.
   2888  */
   2889 int
   2890 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2891 {
   2892 	struct m_tag *mtag;
   2893 	int *count;
   2894 
   2895 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
   2896 	if (mtag != NULL) {
   2897 		count = (int *)(mtag + 1);
   2898 		if (++(*count) > limit) {
   2899 			log(LOG_NOTICE,
   2900 			    "%s: recursively called too many times(%d)\n",
   2901 			    ifp->if_xname, *count);
   2902 			return EIO;
   2903 		}
   2904 	} else {
   2905 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2906 		    M_NOWAIT);
   2907 		if (mtag != NULL) {
   2908 			m_tag_prepend(m, mtag);
   2909 			count = (int *)(mtag + 1);
   2910 			*count = 0;
   2911 		} else {
   2912 			log(LOG_DEBUG,
   2913 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2914 			    ifp->if_xname);
   2915 		}
   2916 	}
   2917 
   2918 	return 0;
   2919 }
   2920 
   2921 static void
   2922 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2923 {
   2924 	struct tunnel_ro *tro = p;
   2925 
   2926 	tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
   2927 	tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2928 }
   2929 
   2930 static void
   2931 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2932 {
   2933 	struct tunnel_ro *tro = p;
   2934 
   2935 	rtcache_free(tro->tr_ro);
   2936 	kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
   2937 
   2938 	mutex_obj_free(tro->tr_lock);
   2939 }
   2940 
   2941 percpu_t *
   2942 if_tunnel_alloc_ro_percpu(void)
   2943 {
   2944 
   2945 	return percpu_create(sizeof(struct tunnel_ro),
   2946 	    if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
   2947 }
   2948 
   2949 void
   2950 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
   2951 {
   2952 
   2953 	percpu_free(ro_percpu, sizeof(struct tunnel_ro));
   2954 }
   2955 
   2956 
   2957 static void
   2958 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2959 {
   2960 	struct tunnel_ro *tro = p;
   2961 
   2962 	mutex_enter(tro->tr_lock);
   2963 	rtcache_free(tro->tr_ro);
   2964 	mutex_exit(tro->tr_lock);
   2965 }
   2966 
   2967 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
   2968 {
   2969 
   2970 	percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
   2971 }
   2972 
   2973 void
   2974 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
   2975 {
   2976 
   2977 	/* Collet the volatile stats first; this zeros *ifi. */
   2978 	if_stats_to_if_data(ifp, ifi, zero_stats);
   2979 
   2980 	ifi->ifi_type = ifp->if_type;
   2981 	ifi->ifi_addrlen = ifp->if_addrlen;
   2982 	ifi->ifi_hdrlen = ifp->if_hdrlen;
   2983 	ifi->ifi_link_state = ifp->if_link_state;
   2984 	ifi->ifi_mtu = ifp->if_mtu;
   2985 	ifi->ifi_metric = ifp->if_metric;
   2986 	ifi->ifi_baudrate = ifp->if_baudrate;
   2987 	ifi->ifi_lastchange = ifp->if_lastchange;
   2988 }
   2989 
   2990 /* common */
   2991 int
   2992 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   2993 {
   2994 	int s;
   2995 	struct ifreq *ifr;
   2996 	struct ifcapreq *ifcr;
   2997 	struct ifdatareq *ifdr;
   2998 	unsigned short flags;
   2999 	char *descr;
   3000 	int error;
   3001 
   3002 	switch (cmd) {
   3003 	case SIOCSIFCAP:
   3004 		ifcr = data;
   3005 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   3006 			return EINVAL;
   3007 
   3008 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   3009 			return 0;
   3010 
   3011 		ifp->if_capenable = ifcr->ifcr_capenable;
   3012 
   3013 		/* Pre-compute the checksum flags mask. */
   3014 		ifp->if_csum_flags_tx = 0;
   3015 		ifp->if_csum_flags_rx = 0;
   3016 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   3017 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   3018 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3019 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   3020 
   3021 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
   3022 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   3023 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
   3024 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   3025 
   3026 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
   3027 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   3028 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
   3029 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   3030 
   3031 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
   3032 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   3033 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
   3034 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   3035 
   3036 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
   3037 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   3038 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
   3039 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   3040 
   3041 		if (ifp->if_capenable & IFCAP_TSOv4)
   3042 			ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
   3043 		if (ifp->if_capenable & IFCAP_TSOv6)
   3044 			ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
   3045 
   3046 #if NBRIDGE > 0
   3047 		if (ifp->if_bridge != NULL)
   3048 			bridge_calc_csum_flags(ifp->if_bridge);
   3049 #endif
   3050 
   3051 		if (ifp->if_flags & IFF_UP)
   3052 			return ENETRESET;
   3053 		return 0;
   3054 	case SIOCSIFFLAGS:
   3055 		ifr = data;
   3056 		/*
   3057 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   3058 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   3059 		 */
   3060 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3061 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   3062 			s = splsoftnet();
   3063 			if_down_locked(ifp);
   3064 			splx(s);
   3065 		}
   3066 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   3067 			s = splsoftnet();
   3068 			if_up_locked(ifp);
   3069 			splx(s);
   3070 		}
   3071 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3072 		flags = (ifp->if_flags & IFF_CANTCHANGE) |
   3073 		    (ifr->ifr_flags &~ IFF_CANTCHANGE);
   3074 		if (ifp->if_flags != flags) {
   3075 			ifp->if_flags = flags;
   3076 			/* Notify that the flags have changed. */
   3077 			rt_ifmsg(ifp);
   3078 		}
   3079 		break;
   3080 	case SIOCGIFFLAGS:
   3081 		ifr = data;
   3082 		ifr->ifr_flags = ifp->if_flags;
   3083 		break;
   3084 
   3085 	case SIOCGIFMETRIC:
   3086 		ifr = data;
   3087 		ifr->ifr_metric = ifp->if_metric;
   3088 		break;
   3089 
   3090 	case SIOCGIFMTU:
   3091 		ifr = data;
   3092 		ifr->ifr_mtu = ifp->if_mtu;
   3093 		break;
   3094 
   3095 	case SIOCGIFDLT:
   3096 		ifr = data;
   3097 		ifr->ifr_dlt = ifp->if_dlt;
   3098 		break;
   3099 
   3100 	case SIOCGIFCAP:
   3101 		ifcr = data;
   3102 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   3103 		ifcr->ifcr_capenable = ifp->if_capenable;
   3104 		break;
   3105 
   3106 	case SIOCSIFMETRIC:
   3107 		ifr = data;
   3108 		ifp->if_metric = ifr->ifr_metric;
   3109 		break;
   3110 
   3111 	case SIOCGIFDATA:
   3112 		ifdr = data;
   3113 		if_export_if_data(ifp, &ifdr->ifdr_data, false);
   3114 		break;
   3115 
   3116 	case SIOCGIFINDEX:
   3117 		ifr = data;
   3118 		ifr->ifr_index = ifp->if_index;
   3119 		break;
   3120 
   3121 	case SIOCZIFDATA:
   3122 		ifdr = data;
   3123 		if_export_if_data(ifp, &ifdr->ifdr_data, true);
   3124 		getnanotime(&ifp->if_lastchange);
   3125 		break;
   3126 	case SIOCSIFMTU:
   3127 		ifr = data;
   3128 		if (ifp->if_mtu == ifr->ifr_mtu)
   3129 			break;
   3130 		ifp->if_mtu = ifr->ifr_mtu;
   3131 		/*
   3132 		 * If the link MTU changed, do network layer specific procedure.
   3133 		 */
   3134 #ifdef INET6
   3135 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3136 		if (in6_present)
   3137 			nd6_setmtu(ifp);
   3138 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3139 #endif
   3140 		return ENETRESET;
   3141 	case SIOCSIFDESCR:
   3142 		error = kauth_authorize_network(curlwp->l_cred,
   3143 		    KAUTH_NETWORK_INTERFACE,
   3144 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3145 		    NULL);
   3146 		if (error)
   3147 			return error;
   3148 
   3149 		ifr = data;
   3150 
   3151 		if (ifr->ifr_buflen > IFDESCRSIZE)
   3152 			return ENAMETOOLONG;
   3153 
   3154 		if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
   3155 			/* unset description */
   3156 			descr = NULL;
   3157 		} else {
   3158 			descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
   3159 			/*
   3160 			 * copy (IFDESCRSIZE - 1) bytes to ensure
   3161 			 * terminating nul
   3162 			 */
   3163 			error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
   3164 			if (error) {
   3165 				kmem_free(descr, IFDESCRSIZE);
   3166 				return error;
   3167 			}
   3168 		}
   3169 
   3170 		if (ifp->if_description != NULL)
   3171 			kmem_free(ifp->if_description, IFDESCRSIZE);
   3172 
   3173 		ifp->if_description = descr;
   3174 		break;
   3175 
   3176  	case SIOCGIFDESCR:
   3177 		ifr = data;
   3178 		descr = ifp->if_description;
   3179 
   3180 		if (descr == NULL)
   3181 			return ENOMSG;
   3182 
   3183 		if (ifr->ifr_buflen < IFDESCRSIZE)
   3184 			return EINVAL;
   3185 
   3186 		error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
   3187 		if (error)
   3188 			return error;
   3189  		break;
   3190 
   3191 	default:
   3192 		return ENOTTY;
   3193 	}
   3194 	return 0;
   3195 }
   3196 
   3197 int
   3198 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3199 {
   3200 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3201 	struct ifaddr *ifa;
   3202 	const struct sockaddr *any, *sa;
   3203 	union {
   3204 		struct sockaddr sa;
   3205 		struct sockaddr_storage ss;
   3206 	} u, v;
   3207 	int s, error = 0;
   3208 
   3209 	switch (cmd) {
   3210 	case SIOCSIFADDRPREF:
   3211 		error = kauth_authorize_network(curlwp->l_cred,
   3212 		    KAUTH_NETWORK_INTERFACE,
   3213 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3214 		    NULL);
   3215 		if (error)
   3216 			return error;
   3217 		break;
   3218 	case SIOCGIFADDRPREF:
   3219 		break;
   3220 	default:
   3221 		return EOPNOTSUPP;
   3222 	}
   3223 
   3224 	/* sanity checks */
   3225 	if (data == NULL || ifp == NULL) {
   3226 		panic("invalid argument to %s", __func__);
   3227 		/*NOTREACHED*/
   3228 	}
   3229 
   3230 	/* address must be specified on ADD and DELETE */
   3231 	sa = sstocsa(&ifap->ifap_addr);
   3232 	if (sa->sa_family != sofamily(so))
   3233 		return EINVAL;
   3234 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3235 		return EINVAL;
   3236 
   3237 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3238 
   3239 	s = pserialize_read_enter();
   3240 	IFADDR_READER_FOREACH(ifa, ifp) {
   3241 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3242 			continue;
   3243 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3244 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3245 			break;
   3246 	}
   3247 	if (ifa == NULL) {
   3248 		error = EADDRNOTAVAIL;
   3249 		goto out;
   3250 	}
   3251 
   3252 	switch (cmd) {
   3253 	case SIOCSIFADDRPREF:
   3254 		ifa->ifa_preference = ifap->ifap_preference;
   3255 		goto out;
   3256 	case SIOCGIFADDRPREF:
   3257 		/* fill in the if_laddrreq structure */
   3258 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3259 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3260 		ifap->ifap_preference = ifa->ifa_preference;
   3261 		goto out;
   3262 	default:
   3263 		error = EOPNOTSUPP;
   3264 	}
   3265 out:
   3266 	pserialize_read_exit(s);
   3267 	return error;
   3268 }
   3269 
   3270 /*
   3271  * Interface ioctls.
   3272  */
   3273 static int
   3274 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3275 {
   3276 	struct ifnet *ifp;
   3277 	struct ifreq *ifr;
   3278 	int error = 0;
   3279 	u_long ocmd = cmd;
   3280 	u_short oif_flags;
   3281 	struct ifreq ifrb;
   3282 	struct oifreq *oifr = NULL;
   3283 	int r;
   3284 	struct psref psref;
   3285 	int bound;
   3286 	bool do_if43_post = false;
   3287 	bool do_ifm80_post = false;
   3288 
   3289 	switch (cmd) {
   3290 	case SIOCGIFCONF:
   3291 		return ifconf(cmd, data);
   3292 	case SIOCINITIFADDR:
   3293 		return EPERM;
   3294 	default:
   3295 		MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
   3296 		    error);
   3297 		if (error != ENOSYS)
   3298 			return error;
   3299 		MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
   3300 		    enosys(), error);
   3301 		if (error != ENOSYS)
   3302 			return error;
   3303 		error = 0;
   3304 		break;
   3305 	}
   3306 
   3307 	ifr = data;
   3308 	/* Pre-conversion */
   3309 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
   3310 	if (cmd != ocmd) {
   3311 		oifr = data;
   3312 		data = ifr = &ifrb;
   3313 		IFREQO2N_43(oifr, ifr);
   3314 		do_if43_post = true;
   3315 	}
   3316 	MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
   3317 	    enosys(), error);
   3318 
   3319 	switch (cmd) {
   3320 	case SIOCIFCREATE:
   3321 	case SIOCIFDESTROY:
   3322 		bound = curlwp_bind();
   3323 		if (l != NULL) {
   3324 			ifp = if_get(ifr->ifr_name, &psref);
   3325 			error = kauth_authorize_network(l->l_cred,
   3326 			    KAUTH_NETWORK_INTERFACE,
   3327 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3328 			    KAUTH_ARG(cmd), NULL);
   3329 			if (ifp != NULL)
   3330 				if_put(ifp, &psref);
   3331 			if (error != 0) {
   3332 				curlwp_bindx(bound);
   3333 				return error;
   3334 			}
   3335 		}
   3336 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3337 		mutex_enter(&if_clone_mtx);
   3338 		r = (cmd == SIOCIFCREATE) ?
   3339 			if_clone_create(ifr->ifr_name) :
   3340 			if_clone_destroy(ifr->ifr_name);
   3341 		mutex_exit(&if_clone_mtx);
   3342 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3343 		curlwp_bindx(bound);
   3344 		return r;
   3345 
   3346 	case SIOCIFGCLONERS:
   3347 		{
   3348 			struct if_clonereq *req = (struct if_clonereq *)data;
   3349 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3350 			    &req->ifcr_total);
   3351 		}
   3352 	}
   3353 
   3354 	bound = curlwp_bind();
   3355 	ifp = if_get(ifr->ifr_name, &psref);
   3356 	if (ifp == NULL) {
   3357 		curlwp_bindx(bound);
   3358 		return ENXIO;
   3359 	}
   3360 
   3361 	switch (cmd) {
   3362 	case SIOCALIFADDR:
   3363 	case SIOCDLIFADDR:
   3364 	case SIOCSIFADDRPREF:
   3365 	case SIOCSIFFLAGS:
   3366 	case SIOCSIFCAP:
   3367 	case SIOCSIFMETRIC:
   3368 	case SIOCZIFDATA:
   3369 	case SIOCSIFMTU:
   3370 	case SIOCSIFPHYADDR:
   3371 	case SIOCDIFPHYADDR:
   3372 #ifdef INET6
   3373 	case SIOCSIFPHYADDR_IN6:
   3374 #endif
   3375 	case SIOCSLIFPHYADDR:
   3376 	case SIOCADDMULTI:
   3377 	case SIOCDELMULTI:
   3378 	case SIOCSETHERCAP:
   3379 	case SIOCSIFMEDIA:
   3380 	case SIOCSDRVSPEC:
   3381 	case SIOCG80211:
   3382 	case SIOCS80211:
   3383 	case SIOCS80211NWID:
   3384 	case SIOCS80211NWKEY:
   3385 	case SIOCS80211POWER:
   3386 	case SIOCS80211BSSID:
   3387 	case SIOCS80211CHANNEL:
   3388 	case SIOCSLINKSTR:
   3389 		if (l != NULL) {
   3390 			error = kauth_authorize_network(l->l_cred,
   3391 			    KAUTH_NETWORK_INTERFACE,
   3392 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3393 			    KAUTH_ARG(cmd), NULL);
   3394 			if (error != 0)
   3395 				goto out;
   3396 		}
   3397 	}
   3398 
   3399 	oif_flags = ifp->if_flags;
   3400 
   3401 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3402 	IFNET_LOCK(ifp);
   3403 
   3404 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3405 	if (error != ENOTTY)
   3406 		;
   3407 	else if (so->so_proto == NULL)
   3408 		error = EOPNOTSUPP;
   3409 	else {
   3410 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3411 		MODULE_HOOK_CALL(if_ifioctl_43_hook,
   3412 			     (so, ocmd, cmd, data, l), enosys(), error);
   3413 		if (error == ENOSYS)
   3414 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3415 			    cmd, data, ifp);
   3416 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3417 	}
   3418 
   3419 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3420 		if ((ifp->if_flags & IFF_UP) != 0) {
   3421 			int s = splsoftnet();
   3422 			if_up_locked(ifp);
   3423 			splx(s);
   3424 		}
   3425 	}
   3426 
   3427 	/* Post-conversion */
   3428 	if (do_ifm80_post && (error == 0))
   3429 		MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
   3430 		    enosys(), error);
   3431 	if (do_if43_post)
   3432 		IFREQN2O_43(oifr, ifr);
   3433 
   3434 	IFNET_UNLOCK(ifp);
   3435 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3436 out:
   3437 	if_put(ifp, &psref);
   3438 	curlwp_bindx(bound);
   3439 	return error;
   3440 }
   3441 
   3442 /*
   3443  * Return interface configuration
   3444  * of system.  List may be used
   3445  * in later ioctl's (above) to get
   3446  * other information.
   3447  *
   3448  * Each record is a struct ifreq.  Before the addition of
   3449  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3450  * not fit would extend beyond the struct ifreq, with the next struct
   3451  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3452  * union in struct ifreq includes struct sockaddr_storage, every kind
   3453  * of sockaddr must fit.  Thus, there are no longer any overlength
   3454  * records.
   3455  *
   3456  * Records are added to the user buffer if they fit, and ifc_len is
   3457  * adjusted to the length that was written.  Thus, the user is only
   3458  * assured of getting the complete list if ifc_len on return is at
   3459  * least sizeof(struct ifreq) less than it was on entry.
   3460  *
   3461  * If the user buffer pointer is NULL, this routine copies no data and
   3462  * returns the amount of space that would be needed.
   3463  *
   3464  * Invariants:
   3465  * ifrp points to the next part of the user's buffer to be used.  If
   3466  * ifrp != NULL, space holds the number of bytes remaining that we may
   3467  * write at ifrp.  Otherwise, space holds the number of bytes that
   3468  * would have been written had there been adequate space.
   3469  */
   3470 /*ARGSUSED*/
   3471 static int
   3472 ifconf(u_long cmd, void *data)
   3473 {
   3474 	struct ifconf *ifc = (struct ifconf *)data;
   3475 	struct ifnet *ifp;
   3476 	struct ifaddr *ifa;
   3477 	struct ifreq ifr, *ifrp = NULL;
   3478 	int space = 0, error = 0;
   3479 	const int sz = (int)sizeof(struct ifreq);
   3480 	const bool docopy = ifc->ifc_req != NULL;
   3481 	int s;
   3482 	int bound;
   3483 	struct psref psref;
   3484 
   3485 	memset(&ifr, 0, sizeof(ifr));
   3486 	if (docopy) {
   3487 		space = ifc->ifc_len;
   3488 		ifrp = ifc->ifc_req;
   3489 	}
   3490 
   3491 	bound = curlwp_bind();
   3492 	s = pserialize_read_enter();
   3493 	IFNET_READER_FOREACH(ifp) {
   3494 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3495 		pserialize_read_exit(s);
   3496 
   3497 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3498 		    sizeof(ifr.ifr_name));
   3499 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3500 			error = ENAMETOOLONG;
   3501 			goto release_exit;
   3502 		}
   3503 		if (IFADDR_READER_EMPTY(ifp)) {
   3504 			/* Interface with no addresses - send zero sockaddr. */
   3505 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3506 			if (!docopy) {
   3507 				space += sz;
   3508 				goto next;
   3509 			}
   3510 			if (space >= sz) {
   3511 				error = copyout(&ifr, ifrp, sz);
   3512 				if (error != 0)
   3513 					goto release_exit;
   3514 				ifrp++;
   3515 				space -= sz;
   3516 			}
   3517 		}
   3518 
   3519 		s = pserialize_read_enter();
   3520 		IFADDR_READER_FOREACH(ifa, ifp) {
   3521 			struct sockaddr *sa = ifa->ifa_addr;
   3522 			/* all sockaddrs must fit in sockaddr_storage */
   3523 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3524 
   3525 			if (!docopy) {
   3526 				space += sz;
   3527 				continue;
   3528 			}
   3529 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3530 			pserialize_read_exit(s);
   3531 
   3532 			if (space >= sz) {
   3533 				error = copyout(&ifr, ifrp, sz);
   3534 				if (error != 0)
   3535 					goto release_exit;
   3536 				ifrp++; space -= sz;
   3537 			}
   3538 			s = pserialize_read_enter();
   3539 		}
   3540 		pserialize_read_exit(s);
   3541 
   3542         next:
   3543 		s = pserialize_read_enter();
   3544 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3545 	}
   3546 	pserialize_read_exit(s);
   3547 	curlwp_bindx(bound);
   3548 
   3549 	if (docopy) {
   3550 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3551 		ifc->ifc_len -= space;
   3552 	} else {
   3553 		KASSERT(space >= 0);
   3554 		ifc->ifc_len = space;
   3555 	}
   3556 	return (0);
   3557 
   3558 release_exit:
   3559 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3560 	curlwp_bindx(bound);
   3561 	return error;
   3562 }
   3563 
   3564 int
   3565 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3566 {
   3567 	uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
   3568 	struct ifreq ifrb;
   3569 	struct oifreq *oifr = NULL;
   3570 	u_long ocmd = cmd;
   3571 	int hook;
   3572 
   3573 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
   3574 	if (hook != ENOSYS) {
   3575 		if (cmd != ocmd) {
   3576 			oifr = (struct oifreq *)(void *)ifr;
   3577 			ifr = &ifrb;
   3578 			IFREQO2N_43(oifr, ifr);
   3579 				len = sizeof(oifr->ifr_addr);
   3580 		}
   3581 	}
   3582 
   3583 	if (len < sa->sa_len)
   3584 		return EFBIG;
   3585 
   3586 	memset(&ifr->ifr_addr, 0, len);
   3587 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3588 
   3589 	if (cmd != ocmd)
   3590 		IFREQN2O_43(oifr, ifr);
   3591 	return 0;
   3592 }
   3593 
   3594 /*
   3595  * wrapper function for the drivers which doesn't have if_transmit().
   3596  */
   3597 static int
   3598 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3599 {
   3600 	int s, error;
   3601 	size_t pktlen = m->m_pkthdr.len;
   3602 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3603 
   3604 	s = splnet();
   3605 
   3606 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3607 	if (error != 0) {
   3608 		/* mbuf is already freed */
   3609 		goto out;
   3610 	}
   3611 
   3612 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   3613 	if_statadd_ref(nsr, if_obytes, pktlen);
   3614 	if (mcast)
   3615 		if_statinc_ref(nsr, if_omcasts);
   3616 	IF_STAT_PUTREF(ifp);
   3617 
   3618 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3619 		if_start_lock(ifp);
   3620 out:
   3621 	splx(s);
   3622 
   3623 	return error;
   3624 }
   3625 
   3626 int
   3627 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3628 {
   3629 	int error;
   3630 
   3631 	kmsan_check_mbuf(m);
   3632 
   3633 #ifdef ALTQ
   3634 	KERNEL_LOCK(1, NULL);
   3635 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3636 		error = if_transmit(ifp, m);
   3637 		KERNEL_UNLOCK_ONE(NULL);
   3638 	} else {
   3639 		KERNEL_UNLOCK_ONE(NULL);
   3640 		error = (*ifp->if_transmit)(ifp, m);
   3641 		/* mbuf is alredy freed */
   3642 	}
   3643 #else /* !ALTQ */
   3644 	error = (*ifp->if_transmit)(ifp, m);
   3645 	/* mbuf is alredy freed */
   3646 #endif /* !ALTQ */
   3647 
   3648 	return error;
   3649 }
   3650 
   3651 /*
   3652  * Queue message on interface, and start output if interface
   3653  * not yet active.
   3654  */
   3655 int
   3656 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3657 {
   3658 
   3659 	return if_transmit_lock(ifp, m);
   3660 }
   3661 
   3662 /*
   3663  * Queue message on interface, possibly using a second fast queue
   3664  */
   3665 int
   3666 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3667 {
   3668 	int error = 0;
   3669 
   3670 	if (ifq != NULL
   3671 #ifdef ALTQ
   3672 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3673 #endif
   3674 	    ) {
   3675 		if (IF_QFULL(ifq)) {
   3676 			IF_DROP(&ifp->if_snd);
   3677 			m_freem(m);
   3678 			if (error == 0)
   3679 				error = ENOBUFS;
   3680 		} else
   3681 			IF_ENQUEUE(ifq, m);
   3682 	} else
   3683 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3684 	if (error != 0) {
   3685 		if_statinc(ifp, if_oerrors);
   3686 		return error;
   3687 	}
   3688 	return 0;
   3689 }
   3690 
   3691 int
   3692 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3693 {
   3694 	int rc;
   3695 
   3696 	KASSERT(IFNET_LOCKED(ifp));
   3697 	if (ifp->if_initaddr != NULL)
   3698 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3699 	else if (src ||
   3700 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3701 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3702 
   3703 	return rc;
   3704 }
   3705 
   3706 int
   3707 if_do_dad(struct ifnet *ifp)
   3708 {
   3709 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3710 		return 0;
   3711 
   3712 	switch (ifp->if_type) {
   3713 	case IFT_FAITH:
   3714 		/*
   3715 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3716 		 * but loop packets back.  We do not have to do DAD on such
   3717 		 * interfaces.  We should even omit it, because loop-backed
   3718 		 * responses would confuse the DAD procedure.
   3719 		 */
   3720 		return 0;
   3721 	default:
   3722 		/*
   3723 		 * Our DAD routine requires the interface up and running.
   3724 		 * However, some interfaces can be up before the RUNNING
   3725 		 * status.  Additionaly, users may try to assign addresses
   3726 		 * before the interface becomes up (or running).
   3727 		 * We simply skip DAD in such a case as a work around.
   3728 		 * XXX: we should rather mark "tentative" on such addresses,
   3729 		 * and do DAD after the interface becomes ready.
   3730 		 */
   3731 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   3732 		    (IFF_UP | IFF_RUNNING))
   3733 			return 0;
   3734 
   3735 		return 1;
   3736 	}
   3737 }
   3738 
   3739 int
   3740 if_flags_set(ifnet_t *ifp, const u_short flags)
   3741 {
   3742 	int rc;
   3743 
   3744 	KASSERT(IFNET_LOCKED(ifp));
   3745 
   3746 	if (ifp->if_setflags != NULL)
   3747 		rc = (*ifp->if_setflags)(ifp, flags);
   3748 	else {
   3749 		u_short cantflags, chgdflags;
   3750 		struct ifreq ifr;
   3751 
   3752 		chgdflags = ifp->if_flags ^ flags;
   3753 		cantflags = chgdflags & IFF_CANTCHANGE;
   3754 
   3755 		if (cantflags != 0)
   3756 			ifp->if_flags ^= cantflags;
   3757 
   3758                 /* Traditionally, we do not call if_ioctl after
   3759                  * setting/clearing only IFF_PROMISC if the interface
   3760                  * isn't IFF_UP.  Uphold that tradition.
   3761 		 */
   3762 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3763 			return 0;
   3764 
   3765 		memset(&ifr, 0, sizeof(ifr));
   3766 
   3767 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3768 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3769 
   3770 		if (rc != 0 && cantflags != 0)
   3771 			ifp->if_flags ^= cantflags;
   3772 	}
   3773 
   3774 	return rc;
   3775 }
   3776 
   3777 int
   3778 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3779 {
   3780 	int rc;
   3781 	struct ifreq ifr;
   3782 
   3783 	if (ifp->if_mcastop != NULL)
   3784 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
   3785 	else {
   3786 		ifreq_setaddr(cmd, &ifr, sa);
   3787 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3788 	}
   3789 
   3790 	return rc;
   3791 }
   3792 
   3793 static void
   3794 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3795     struct ifaltq *ifq)
   3796 {
   3797 	const struct sysctlnode *cnode, *rnode;
   3798 
   3799 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3800 		       CTLFLAG_PERMANENT,
   3801 		       CTLTYPE_NODE, "interfaces",
   3802 		       SYSCTL_DESCR("Per-interface controls"),
   3803 		       NULL, 0, NULL, 0,
   3804 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3805 		goto bad;
   3806 
   3807 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3808 		       CTLFLAG_PERMANENT,
   3809 		       CTLTYPE_NODE, ifname,
   3810 		       SYSCTL_DESCR("Interface controls"),
   3811 		       NULL, 0, NULL, 0,
   3812 		       CTL_CREATE, CTL_EOL) != 0)
   3813 		goto bad;
   3814 
   3815 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3816 		       CTLFLAG_PERMANENT,
   3817 		       CTLTYPE_NODE, "sndq",
   3818 		       SYSCTL_DESCR("Interface output queue controls"),
   3819 		       NULL, 0, NULL, 0,
   3820 		       CTL_CREATE, CTL_EOL) != 0)
   3821 		goto bad;
   3822 
   3823 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3824 		       CTLFLAG_PERMANENT,
   3825 		       CTLTYPE_INT, "len",
   3826 		       SYSCTL_DESCR("Current output queue length"),
   3827 		       NULL, 0, &ifq->ifq_len, 0,
   3828 		       CTL_CREATE, CTL_EOL) != 0)
   3829 		goto bad;
   3830 
   3831 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3832 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3833 		       CTLTYPE_INT, "maxlen",
   3834 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3835 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3836 		       CTL_CREATE, CTL_EOL) != 0)
   3837 		goto bad;
   3838 
   3839 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3840 		       CTLFLAG_PERMANENT,
   3841 		       CTLTYPE_INT, "drops",
   3842 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3843 		       NULL, 0, &ifq->ifq_drops, 0,
   3844 		       CTL_CREATE, CTL_EOL) != 0)
   3845 		goto bad;
   3846 
   3847 	return;
   3848 bad:
   3849 	printf("%s: could not attach sysctl nodes\n", ifname);
   3850 	return;
   3851 }
   3852 
   3853 #if defined(INET) || defined(INET6)
   3854 
   3855 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3856 	static int							\
   3857 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3858 	{								\
   3859 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3860 	}
   3861 
   3862 #if defined(INET)
   3863 static int
   3864 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3865 {
   3866 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3867 }
   3868 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3869 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3870 #endif
   3871 
   3872 #if defined(INET6)
   3873 static int
   3874 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3875 {
   3876 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3877 }
   3878 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3879 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3880 #endif
   3881 
   3882 static void
   3883 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3884 {
   3885 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3886 	const char *pfname = NULL, *ipname = NULL;
   3887 	int ipn = 0, qid = 0;
   3888 
   3889 	switch (pf) {
   3890 #if defined(INET)
   3891 	case PF_INET:
   3892 		len_func = sysctl_net_ip_pktq_items;
   3893 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3894 		drops_func = sysctl_net_ip_pktq_drops;
   3895 		pfname = "inet", ipn = IPPROTO_IP;
   3896 		ipname = "ip", qid = IPCTL_IFQ;
   3897 		break;
   3898 #endif
   3899 #if defined(INET6)
   3900 	case PF_INET6:
   3901 		len_func = sysctl_net_ip6_pktq_items;
   3902 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3903 		drops_func = sysctl_net_ip6_pktq_drops;
   3904 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3905 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3906 		break;
   3907 #endif
   3908 	default:
   3909 		KASSERT(false);
   3910 	}
   3911 
   3912 	sysctl_createv(clog, 0, NULL, NULL,
   3913 		       CTLFLAG_PERMANENT,
   3914 		       CTLTYPE_NODE, pfname, NULL,
   3915 		       NULL, 0, NULL, 0,
   3916 		       CTL_NET, pf, CTL_EOL);
   3917 	sysctl_createv(clog, 0, NULL, NULL,
   3918 		       CTLFLAG_PERMANENT,
   3919 		       CTLTYPE_NODE, ipname, NULL,
   3920 		       NULL, 0, NULL, 0,
   3921 		       CTL_NET, pf, ipn, CTL_EOL);
   3922 	sysctl_createv(clog, 0, NULL, NULL,
   3923 		       CTLFLAG_PERMANENT,
   3924 		       CTLTYPE_NODE, "ifq",
   3925 		       SYSCTL_DESCR("Protocol input queue controls"),
   3926 		       NULL, 0, NULL, 0,
   3927 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3928 
   3929 	sysctl_createv(clog, 0, NULL, NULL,
   3930 		       CTLFLAG_PERMANENT,
   3931 		       CTLTYPE_QUAD, "len",
   3932 		       SYSCTL_DESCR("Current input queue length"),
   3933 		       len_func, 0, NULL, 0,
   3934 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3935 	sysctl_createv(clog, 0, NULL, NULL,
   3936 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3937 		       CTLTYPE_INT, "maxlen",
   3938 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3939 		       maxlen_func, 0, NULL, 0,
   3940 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3941 	sysctl_createv(clog, 0, NULL, NULL,
   3942 		       CTLFLAG_PERMANENT,
   3943 		       CTLTYPE_QUAD, "drops",
   3944 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3945 		       drops_func, 0, NULL, 0,
   3946 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3947 }
   3948 #endif /* INET || INET6 */
   3949 
   3950 static int
   3951 if_sdl_sysctl(SYSCTLFN_ARGS)
   3952 {
   3953 	struct ifnet *ifp;
   3954 	const struct sockaddr_dl *sdl;
   3955 	struct psref psref;
   3956 	int error = 0;
   3957 	int bound;
   3958 
   3959 	if (namelen != 1)
   3960 		return EINVAL;
   3961 
   3962 	bound = curlwp_bind();
   3963 	ifp = if_get_byindex(name[0], &psref);
   3964 	if (ifp == NULL) {
   3965 		error = ENODEV;
   3966 		goto out0;
   3967 	}
   3968 
   3969 	sdl = ifp->if_sadl;
   3970 	if (sdl == NULL) {
   3971 		*oldlenp = 0;
   3972 		goto out1;
   3973 	}
   3974 
   3975 	if (oldp == NULL) {
   3976 		*oldlenp = sdl->sdl_alen;
   3977 		goto out1;
   3978 	}
   3979 
   3980 	if (*oldlenp >= sdl->sdl_alen)
   3981 		*oldlenp = sdl->sdl_alen;
   3982 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   3983 out1:
   3984 	if_put(ifp, &psref);
   3985 out0:
   3986 	curlwp_bindx(bound);
   3987 	return error;
   3988 }
   3989 
   3990 static void
   3991 if_sysctl_setup(struct sysctllog **clog)
   3992 {
   3993 	const struct sysctlnode *rnode = NULL;
   3994 
   3995 	sysctl_createv(clog, 0, NULL, &rnode,
   3996 		       CTLFLAG_PERMANENT,
   3997 		       CTLTYPE_NODE, "sdl",
   3998 		       SYSCTL_DESCR("Get active link-layer address"),
   3999 		       if_sdl_sysctl, 0, NULL, 0,
   4000 		       CTL_NET, CTL_CREATE, CTL_EOL);
   4001 
   4002 #if defined(INET)
   4003 	sysctl_net_pktq_setup(NULL, PF_INET);
   4004 #endif
   4005 #ifdef INET6
   4006 	if (in6_present)
   4007 		sysctl_net_pktq_setup(NULL, PF_INET6);
   4008 #endif
   4009 }
   4010